
Solution-Graphs of Boolean Formulas and

Isomorphism

Patrick Scharpfenecker∗ and Jacobo Torán

University of Ulm, Institute of Theoretical Computer Science,
Ulm, Germany

patrick.scharpfenecker@uni-ulm.de,
jacobo.toran@uni-ulm.de

February 22, 2016

Abstract

The solution graph of a Boolean formula on n variables is the subgraph
of the hypercube Hn induced by the satisfying assignments of the formula.
The structure of solution graphs has been the object of much research
in recent years since it is important for the performance of SAT-solving
procedures based on local search. Several authors have studied connectivity
problems in such graphs focusing on how the structure of the original
formula might affect the complexity of the connectivity problems in the
solution graph [9, 19].

In this paper we study the complexity of the isomorphism problem of
solution graphs of Boolean formulas. We investigate how this complexity
depends on the formula type, considering for this the classes of formulas
introduced in [9, 19].

We observe that for general formulas the solution graph isomorphism
problem can be solved in exponential time while in the cases of 2CNF
formulas as well as for CPSS formulas, the problem is in the counting
complexity class C=P, a subclass of PSPACE. We also prove a strong
property on the structure of solution graphs of Horn formulas showing
that they are just unions of partial cubes.

In addition we give a PSPACE lower bound for the problem on general
Boolean functions. We use a recent result on the complexity of testing
the number of perfect matchings [7] to prove that for 2CNF as well as
for CPSS formulas the solution graph isomorphism problem is hard for
C=P under polynomial time many one reductions, thus matching the given
upper bound.

1 Introduction

Schaefer provided in [17] a well known dichotomy result for the complexity of the
satisfiability problem on different classes of Boolean formulas. He showed that

∗Supported by DFG grant TO 200/3-1.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 24 (2016)

for formulas constructed from specific Boolean functions (now called Schaefer
functions), satisfiability is in P while for all other classes, satisfiability is NP-
complete. Surprisingly, there are no formulas of intermediate complexity.

More recently, Gopalan et al. and Schwerdtfeger [9, 19] uncovered a similar
behavior for connectivity problems on solution graphs of Boolean formulas.
The solution graph of a Boolean formula on n variables is the subgraph of the
n-dimensional hypercube induced by all satisfying assignments. The study of
solution graphs of Boolean formulas has been the object of important research
in recent years, especially for the case of random formula instances. It has been
observed both empirically and analytically that the solution space breaks in
many small connected components as the ratio between variables and clauses in
the considered formulas approaches a critical threshold [15, 1]. This phenomenon
explains the better performance on random formulas of SAT-solvers based on
message passing with decimation than those based on local search or DPLL
procedures (see e.g. [8]). The motivation behind the works of [9] and [19] was to
obtain new information about the connectivity properties of the solution space
for different types of Boolean formulas. Introducing some new classes of Boolean
functions, they were able to prove a dichotomy result for the st-connectivity
problem [9] as well as a trichotomy result for connectivity [19]. For different
formula classes the complexity of the connectivity problem is either in P, or
complete for coNP or for PSPACE while for st-connectivity it is either in P or
PSPACE-complete.

In this paper we look further in the solution space of Boolean formulas
studying the complexity of the isomorphism of their solution graphs. In other
words, we consider the following natural questions: given two Boolean formulas,
how hard is it to test if their solution graphs are isomorphic? Does the complexity
of the problem depend on the structure of the formula? Observe that isomorphism
of solution graphs is a very strong concept of equivalence between fromulas,
stronger than Boolean isomorphism [2] and stronger than saying that both
formulas have the same number of satisfying assignments. Since the complexity
of the general graph isomorphism problem, GI, is not completely settled (see
[13]), one might expect that it would be hard to obtain a complete classification
for solution graph isomorphism. We show in fact that for different types of
Boolean formulas, the complexity of the isomorphism problem on their solution
graphs varies. We also characterize completely the complexity of the problem
for some types of Boolean formulas. For solution graphs of 2CNF formulas,
isomorphism of a single connected component is exactly as hard as testing Graph
Isomorphism. For a collection of such components (encoded by a single 2CNF
formula), the isomorphism problem is complete for the complexity class C=P, a
complexity class defined in terms of exact counting. This means that deciding
isomorphism of the solution graphs of 2CNF formulas is exactly as hard as
testing if two such formulas have the same number of satisfying assignment. This
result also holds for the more general class of CPSS formulas (definitions in the
preliminaries section). Again showing that for this class of formulas isomorphism
and counting have the same complexity. For the upper bound we use a recent
result on isometric dimension of partial cubes [18], the fact that GI is low for the
class C=P [12] as well as the closure of this class under universal quantification
[10]. The hardness property uses a result of Curticapean [7], where it is proven
that SamePM , the problem to decide if two given graphs have the same number
of perfect matchings is complete for C=P. We show that this problem can

2

be reduced to the verification of whether two 2CNF formulas have the same
number of satisfying solutions, implying that this problem and even Iso(CPSS)
are complete for C=P.

For the other types of formulas used in [9, 19], built from Schaefer, safely
tight and general functions, we observe that the corresponding solution graph
isomorphism problems can be solved in EXP, thus improving the trivial NEXP
upper bound.

For classes of functions that are not safely tight, we can also improve the
C=P lower bound and show that the isomorphism problem for their solution
graphs is in fact hard for PSPACE.

Figure 1 summarizes the complexity results for isomorphism of solutions
graphs for specific classes of formulas.

Function Hard for Upper bound
CPSS C=P C=P
Schaefer, not CPSS C=P EXP
safely tight, not Schaefer C=P EXP
not safely tight PSPACE EXP

Figure 1: Classification of Isomorphism problems.

While we could not improve the EXP upper bound for the isomorphism of
solution graphs corresponding to Horn formulas, we prove a strong new property
for the structure of such graphs which might help to develop a non-trivial
isomorphism algorithm. We show that the set of solutions between a locally
minimal and locally maximal solution is a partial cube. Therefore a solution
graph can be seen as taking a partial cube for every locally maximal solution
and glueing them together.

2 Preliminaries

For two words x, y ∈ {0, 1}n, ∆(x, y) denotes the Hamming-distance between
them. We associate words in {0, 1}n with subsets of [n] = {1, . . . , n} in the
standard way.

We mostly deal with undirected graphs without self-loops. For such a graph
G = (V,E) with vertex set V = [n] and edge set E ⊆

(
V
2

)
, its simplex graph

(see e.g. [4]) is defined as simplex(G) = (V ′, E′) with V ′ as the set of all cliques

(including the empty clique) in G and E′ = {{u, v} ∈
(
V ′

2

)
| ∆(u, v) = 1}. So

G′ = simplex(G) is the set of all cliques of G and two cliques are connected
iff they differ (considered as strings of {0, 1}n) in one element. We will only
consider the simplex graph of bipartite graphs. As these graphs have only cliques
of size at most 2, |V ′| = |V |+ |E|+ 1. G′ contains all original nodes V , a node
u = {i, j} for every edge {i, j} ∈ G which is connected to {i} and {j} and a new
node o = ∅ which is connected to all original nodes.

Two graphs G = (V,E) and H = (V ′, E′) with V = V ′ = [n] are isomorphic
iff there is a bijection π : V → V ′ such that for all u, v ∈ V : (u, v) ∈ E ⇔
(π(u), π(v)) ∈ E′. If such a bijection exists we write G ∼= H, if not, G 6∼= H. The
graph isomorphism problem (GI) is the decision problem of whether two given

3

graphs are isomorphic. Given a class of graphs C, Iso(C) denotes the graph
isomorphism problem on graphs in C.

The Boolean isomorphism problem consists in deciding, given two Boolean
formulas F and G on variables x1, . . . , xn, whether there is a permutation π ∈ Sn
of the variables such that for all x ∈ {0, 1}n, F (x1, . . . , xn) = G(xπ(1), . . . , xπ(n)).

We deal with different classes of formulas. 2CNF denotes the class of formulas
in conjunctive normal form and with exactly two literals per clause. For a 2CNF
formula F (x1, . . . , xn) we define the directed implication graph I(F) = (V,E) on
nodes V = {x1, . . . , xn, x1, . . . , xn} and edges (k, l) ∈ E with k, l ∈ V iff there is
no solution to F which falsifies the clause (k → l). By replacing all variables in
a cycle with a single variable we get the reduced implication graph RI(F). We
say that a 2CNF formula F is reduced if I(F) = RI(F).

We deal mostly with standard complexity classes like P, NP, EXP and NEXP.
A class that might not be so familiar is the counting class C=P [22]. This consists
of the class of problems A for which there is a nondeterministic polynomial
time Turing machine M and a polynomial time computable function f such
that for each x ∈ {0, 1}∗, x ∈ A if and only if the number of accepting paths of
M(x) is exactly f(x). The standard complete problem for C=P is ExactSAT:
given a Boolean formula F and a number k, does F have exactly k satisfying
assignments?

2.1 Solution graphs of Boolean formulas

Intuitively, a solution graph for a given Boolean formula is the induced subgraph
on all satisfying solution represented in a host graph. In this paper we only
consider induced subgraphs of the n-dimensional hypercube Hn which is the
graph with V = {0, 1}n and E = {{u, v}|∆(u, v) = 1}.

Definition 1. Let F (x1, . . . , xn) be an arbitrary Boolean formula. Then the
solution graph GF is the subgraph of the n-dimensional hypercube Hn induced by
all satisfying solutions x of F .

Note that two satisfying solutions are connected by an edge iff their Hamming
distance is one. For a set of Boolean formulas D (for example D =2CNF), Iso(D)
denotes the isomorphism problem on the class of solution graphs of D-formulas.

Given a graph G and two nodes u, v, d(u, v) is the length of the shortest
path between u and v in G or ∞ if there is no such path.

Definition 2. An induced subgraph G of Hn is a partial cube iff for all x, y ∈ G,
d(x, y) = ∆(x, y). We call such an induced subgraph ”isometric”. The isometric
dimension of a graph G is the smallest n such that G embeds isometrically into
Hn.

Definition 3. A graph G = (V,E) is a median graph iff for all nodes u, v, w ∈ V
there is a unique median a ∈ V which lies on the shortest paths between (u, v),
(u,w) and (v, w).

For any Boolean function F : {0, 1}n → {0, 1} we can represent F with
the subset of all its satisfying assignments in {0, 1}n. A Boolean function
F ⊆ {0, 1}n is closed under a ternary operation � : {0, 1}3 → {0, 1} iff ∀x, y, z ∈
F : �(x, y, z) := (�(x1, y1, z1), . . . ,�(xn, yn, zn)) ∈ F . Note that we abuse the
notation of a ternary operation to an operation on three bit-vectors by applying

4

the operation bitwise on the three vectors. For R a set of Boolean functions with
arbitrary arities (for example R = {(x∨y), (x⊕y), (x⊕y⊕z)}, we define SAT (R)
to be the satisfiability problem for all Boolean formulas which are conjunctions
of instantiations of functions in R. For the given example R, F (x, y, z) = (z ∨
y)∧ (x⊕y) is a formula in which every clause is an instantiation of an R-function.
Similarly, Conn(R) (stConn(R)) is the connectivity (reachability) problem, given
a conjunction F of R-functions (and s, t), is the solution graph connected (is
there a path from s to t). We mostly use F for Boolean formulas/functions and
R,S for sets of functions.

Note that r ∈ R can be an arbitrary Boolean function as for example
r = (x⊕y) or r = (x∨y∨z)∧ (x∨z). With Hornn we define the set of all Horn-
clauses of size up to n. The ternary majority function maj : {0, 1}3 → {0, 1} is
defined as maj(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

In the next definitions we recall some terms introduced in [19] and [9].

Definition 4. A Boolean function F is

• bijunctive, iff it is closed under maj(a, b, c).

• affine, iff it is closed under a⊕ b⊕ c.

• Horn, iff it is closed under a ∧ b.

• dual-Horn, iff it is closed under a ∨ b.

• IHSB−, iff it is closed under a ∧ (b ∨ c).

• IHSB+, iff it is closed under a ∨ (b ∧ c).

A function has such a property componentwise, iff every connected component in
the solution graph is closed under the corresponding operation. A function F has
the additional property ”safely”, iff the property still holds for every function F ′

obtained by identification of variables1.

In the case of Horn-formulas, the usual definition (the conjunction of Horn-
clauses, clauses with at most one positive literal) implies that the represented
functions are Horn.

Definition 5. A set of functions R is Schaefer (CPSS) if at least one of the
following conditions holds:

• every function in R is bijunctive.

• every function in R is Horn (and safely componentwise IHSB−).

• every function in R is dual-Horn (and safely componentwise IHSB+).

• every function in R is affine.

If we have a Boolean formula F which is build from a set of CPSS functions
R we say that F is CPSS. Clearly, every CPSS formula is Schaefer. We later use
a bigger class of functions called safely tight. This class properly contains all
Schaefer sets of functions.

1Identifying two variables corresponds to replacing one of them with the other variable.

5

Definition 6. A set R of functions is (safely) tight if at least one of the following
conditions holds:

• every function in R is (safely) componentwise bijunctive.

• every function in R is (safely) OR-free.

• every function in R is (safely) NAND-free.

A function is OR-free if we can not derive (x ∨ y) by fixing variables. Similarly,
a function is NAND-free if we can not derive (x ∨ y) by fixing variables.

3 Isomorphism for solution graphs

We now turn our attention to the isomorphism problem on solutions graphs.
In general the solution graph of a formula can have an exponential number of
connected components and each component might be of exponential size (in
the formula size). The NP upper bound for GI translates directly into a NEXP
upper bound for the isomorphism of solution graphs.

Based on the celebrated new algorithm from Babai for Graph Isomorphism

[3] running in time nlog
O(1)

, it is not hard to see that the isomorphism of solution
graphs is in EXP: for two given Boolean formulas on n variables, we can construct
explicitely their solution graphs in time O(2n) and then apply Babai’s algorithm

on them, resulting in a 2n
O(1)

algorithm. But we do not need such a strong
result, the algorithm of Luks for testing isomorphism of bounded degree graphs
[14] suffices.

Theorem 1. The problem to decide for two given Boolean formulas whether
their respective solution graphs are isomorphic is in EXP.

Proof. Luks [14] gave an algorithm for graph isomorphism with time-complexity
|V |deg(G). A solution graph embedded in the hypercube Hn has degree at most

n−1. The running time of Luks algorithm on such graphs is bounded by 2n
2

.

By restricting the encoding formula, we can get better upper bounds. Theo-
rem 4 will show that the isomorphism problem for CPSS encoding formulas is
in C=P, a subclass of PSPACE. For this, we need the following two results.

Theorem 2 ([18]). Given a CPSS function F (x1, . . . , xn), every connected
component of F is a partial cube of isometric dimension at most n.

Theorem 3 ([16], Theorem 5.72). For any two finite isomorphic partial cubes G1

and G2 on a set X, there is an automorphism of the cube H(X) that maps one
of the partial cubes onto the other. Moreover, for any isomorphism α : G1 → G2,
there is a boolean automorphism σ : H(X)→ H(X) such that σ on G1 is exactly
α.

We note that isomorphism of (explicitly given) partial cubes is already GI-
complete. The hardness follows from the observation that for any graph, its
simplex is a median graph. The other two facts we need is that median graphs
are partial cubes (see e.g. [16], Theorem 5.75), and the fact that a given pair of
graphs G,H, can be transformed in logarithmic space into a pair of bipartite
graphs G′, H ′ so that simplex(G′) ∼= simplex(H ′) iff G ∼= H.

6

To see this we first suppose that for two given general graphs G,H we know
that |E| 6= |V |. This could easily enforced in an isomorphism-preserving logspace
reduction. In a next step, we replace each edge (u, v) in both graphs with
the gadget (u, zu,v), (zu,v, v) where zu,v is a new vertex. This yields two new
bipartite graphs G′, H ′ which are isomorphic iff G and H were isomorphic. But
then simplex(G′) ∼= simplex(H ′) iff G ∼= H. This implies the following Lemma.

Lemma 1. Isomorphism for median graphs is GI-complete under logarithmic
space many-one reductions.

Note that it is known that median graphs can be exactly embedded as a
solution graph of a reduced 2CNF formula (see e.g. [5]). Lemma 1 gives therefore
an alternative reduction to the one given in [6] between Boolean isomorphism
for 2CNF formulas and GI. With Theorem 3 we get:

Corollary 1. The Isomorphism Problem for reduced 2CNF solution graphs is
GI-complete under logarithmic space many-one reductions.

Proof. The hardness part follows from the observation given above. By Theo-
rem 3 two partial cubes are isomorphic iff there is an automorphism of the whole
hypercube mapping one partial cube to the other. But such an automorphism
is just a Boolean automorphism of the Boolean function. For general boolean
formulas this problem is hard for NP and in Σ2 [2], but for Schaefer-formulas,
which contain 2CNF formulas, this problem can be reduced in polynomial time
to GI (see [6]) by creating a unique normal form and looking for a syntactic
isomorphism of the formulas.

This basically tells us that even if we look at two exponentially sized, iso-
morphic partial cubes embedded in the hypercube Hn, finding an isomorphism
is as easy as finding a Boolean isomorphism. The problem is more complex
when the solution graphs might have more than one connected component. We
face the additional problem that single connected components may not have a
single formula representing just this component. For the isomorphism of solution
graphs of CPSS functions we will show an upper bound of C=P. For this we
need the following Lemma showing that the problem of testing if there is an
isomorphism between two connected components which maps a given solution
to another given solution, can be reduced to GI.

Lemma 2. Given CPSS functions F and G and two satisfying solutions s and
t. Deciding if there is an isomorphism π between the connected components
containing s and t with π(s) = t can be reduced to GI.

Proof. We know by Theorem 3 that if two partial cubes are isomorphic then
there is always a Boolean isomorphism2. One could easily guess a candidate
permutation of variables for the isomorphism. But it is not clear how to verify
that this permutation is in fact an isomorphism. To reduce this problem to GI
we would have to extract a single connected component and create a formula
which contains only this subgraph. In general, this is not possible. We use the
construction depicted in Figure 2 to achieve such an extraction which is enough
in the case of isomorphism.

2Boolean isomorphisms are signed permutations: they may map variables to variables and
may flip variables.

7

We describe this construction which basically performs a walk on the solution
graph beginning at a given node s. We use several blocks of variables. Given
the original variables x = (x1, . . . , xn), we create new blocks of variables xi and
xi,j for i ∈ {0, . . . , w} and j ∈ {1, . . . , n} (w to be fixed later), each containing n
variables. For example x0 = (x01, . . . , x

0
n) and x0,4 = (x0,41 , . . . , x0,4n). We fix the

first block of variables x0 to s ∈ {0, 1}n. We then add n new blocks x0,1, . . . , x0,n

such that every x0,j may only differ from x0 in bit j. If x0j = 0 we add the clause

(x0j → x0,jj), if x0j = 1 we add the clause (x0j → x0,jj). This will not be relevant in
the first step as these clauses are obviously satisfied but this ensures that a walk
never returns to s: if we add these clauses for all later steps and for example for
the case x0j = 0 there is an i such that xij = 1 then for all i′ > i, xi

′

j 6= 0.
All other variables have to be equivalent to the variables in the previous

block (or the previous variables could get reused in x0,jj , except x0j). In addition

we add for every j the clauses F (x0,j) to ensure that every following block of x0

satisfies F . Obviously, every x0,j has distance at most 1 from x0 = s and is a
node in the solution graph. We then add a new block x1 such that x1j = x0,jj .
This performs all steps of the previous branching-step in parallel and we require
x1 to satisfy F .

Although all nodes visited in the branching-step have distance at most 1
from s, the nodes described in x1 have distance

∑
j∈[n] d(x0, x0,j). Therefore

x1 may not be in the same connected component as x0. We now show that, in
the case of CPSS functions, this can never happen. Let us assume w.l.o.g. that
exactly the first k blocks have distance 1.

Claim 1. Let S be a CPSS function with satisfying solution x. If xi for
1 ≤ i ≤ k ≤ n is equal to x with the i-th bit flipped, x′ = x11, . . . , x

k
k, xk+1, . . . , xn

and x1, . . . , xk, x′ all satisfy S, then there is a path from x to x′.

Proof: Obviously, xi is connected to x as d(x, xi) = 1. We show by induction
on j that for all j with 1 ≤ j ≤ k, yj = x11, . . . , x

j
j , xk+1, . . . , xn satisfies S.

As their consecutive distances are 1 the statement follows. For j = 1 we
know that x1 = y1. Now let yj satisfy S. If S is componentwise bijunctive,
then maj(x′, yj , xj+1) = yj+1 satisfies S by its closure property. If S is not
componentwise bijunctive it is Horn and componentwise IHSB- (or dual). Again
the closure property gives x′ ∧ (yj ∨ xj+1) = yj+1. �

Note that the given construction on (F, x) creates a formula F ′ such that
every satisfying solution is a walk on F of length w := n starting at x (we use
n branch and reduce blocks). Therefore, the set of all satisfying solutions to
F ′ is the set of all walks on F where every step is the traversal of a complete
subhypercube and in every step the walk may refuse to take a step and remain
at the previous node. Obviously, if there is an isomorphism π mapping the two
components onto each other such that π(x) = y, then there is an isomorphism
mapping the sets of paths onto each other. This isomorphism just has to use π
for every block and has to exchange the parallel steps according to π.

We can now reduce the Boolean isomorphism question between F ′ and G′

to GI (again, using [6]) implementing the additional properties with graph
gadgets. We therefore force all blocks to be mapped internally in the same
way and we force the n parallel blocks to be mapped exactly as each block is
mapped internally. The result are two graphs which are isomorphic iff there is

8

an isomorphism mapping the components rooted at x and y in F and G onto
each other so that x gets mapped to y.

Theorem 4. Iso(CPSS) ∈ C=P.

Proof. The proof uses the fact that GI is low for the class C=P [12]. This means
that a nondeterministic polynomial time algorithm with a C=P acceptance
mechanism and having access to an oracle for GI, can be simulated by an
algorithm of the same kind, but without the oracle. In symbols C=PGI = C=P.

We already know that the solution graphs of CPSS functions consist of at
most an exponential number of connected components and every such component
is a partial cube. For two solution graphs F and G to be isomorphic there has
to be a bijection mapping each connected component of F onto an isomorphic
component of G.

One way to check the existence of such a bijection is by looking at each
possible partial cube and count the number of connected components isomorphic
to it in both graphs. If the numbers match for all partial cubes, the graphs are
isomorphic. Instead of checking all possible partial cubes, which would be too
many, one only has to check the ones which occur in the graphs. For x ∈ {0, 1}n
let Ax and Bx be the sets

Ax = {y ∈ {0, 1}n | F (y) = 1 ∧ Fx ∼= Fywith an isomorphism mapping x to y}

Bx = {y ∈ {0, 1}n | G(y) = 1 ∧ Fx ∼= Gywith an isomorphism mapping x to y}

The existence of an isomorphism between Fx and Fy (or Gy) mapping x to y
can be checked with a GI oracle (as proven in Lemma 2). Our algorithm checks
for every x ∈ {0, 1}n satisfying F , whether ||Ax|| = ||Bx||. The same test is
performed for all x satisfying G. Both tests are successful if and only if the
graphs are isomorphic. Clearly the graphs are isomorphic if and only if both
tests succeed.

This procedure shows that the problem is in the class ∀C=PGI .3 Using the
mentioned fact that GI is low for C=P, this class coincides with ∀C=P. In
addition, Green showed [10] that C=P is closed under universal quantification,
i.e. ∀C=P = C=P. We conclude that Iso(CPSS) ∈ C=P.

In Theorem 4 we exploited the fact that CPSS functions consist of partial
cubes of small isometric dimension. But for general Schaefer functions this
property does not hold. The solution graph might have an exponential isometric
dimension or the connected subgraphs might even not be partial cubes. Therefore
it seems improbable that the C=P-algorithm can be adapted for general Schaefer
solution graphs. These graphs should admit a better lower bound. Unfortunately,
we can only provide such a lower bound for the more powerful class of Boolean
functions that are not safely tight.

Theorem 5. Let S be a set of functions which is not safely tight. Then Iso(S)
is hard for PSPACE under logarithmic-space reductions.

Proof. The proof is based on the reduction from s, t-connectivity to GI from [11].
We know that the s, t-connectivity problem for functions that are not safely tight

3We use the same quantifier notation which is common for the classes in the polynomial
time hierarchy.

9

Figure 2: A walk on solution graphs.

is PSPACE-complete [9]. We give a construction of solution graphs that have
colored vertices as a way to distinguish some vertices. Later we show how the
formulas can be modified to produce the colors in their solution graphs. Given a
formula F built on functions from S, as well as satisfying assignments s and t,
we create two copies of GF (which is the solution graph defined by F) and color
vertex s in one of the copies with color white and with black in the second copy.
Let GF ′ be the disjoint union of the two copies. Now we consider two copies
GF1

and GF2
of GF ′ . We color in GF1

one of the copies of vertex t with the
grey color while in GF2

, the second copy of t is colored grey. All other nodes
have no color. There is a path from s to t in GF if and only if GF1

and GF2
are

isomorphic.
This construction can easily be performed with solution graphs. Given the

formula F (x1, . . . , xn), two disjoint copies of the encoded graph are defined by
the formula

F (a, b, x1, . . . , xn) = (a↔ b) ∧ F (x1, . . . , xn)

using two new variables a and b. Coloring a vertex by attaching a gadget to
it can be done with the following construction. We assume w.l.o.g. that the
node we want to color is 0n in GF . We add to 0n the graph Hm with m > n as
neighbor. Then F ′(x1, . . . , xn, y1, . . . , ym) = F (x1, . . . , xn)∧

∧
i≤n,j≤m(xi → yj).

The new graph can be described as the old solution graph of F but 0n now is
the minimal node of a new, complete hypercube on m variables. Note that 0n

is the only node of the original solution graph which is part of a hypercube of
dimension m. In addition, it is the only node of the hypercube of dimension m
which is connected to some of the old nodes. This completes the reduction.

The given construction uses new clauses which are Horn and 2CNF and can
even be applied to simpler classes of formulas. The following statements use the
hardness results of [18] with the reduction in Theorem 5.

Corollary 2. Iso(2CNF) is hard for NL and Iso(Horn3) is hard for P under
logspace reductions.

10

Note that the resulting solution graphs in this corollary can not have more
than two connected components. The isomorphism for these 2CNF graphs is
therefore polynomial time reducible to GI.

4 Structure of solution graphs of Horn formulas

While [18] showed that CPSS formulas contain only partial cubes of small
isometric dimension as connected components, Horn formulas may encode partial
cubes of exponential isometric dimension or graphs which are not even partial
cubes. So for the isomorphism question, things seem to get more complicated.
We give an interesting property for Horn solution graphs which suggests that
Iso(Horn) might be easier than general solution graph isomorphism.

Let dm(a, b) denote the monotone distance between a and b. So dm(a, b) <∞
iff there is a strictly monotone increasing path from a to b or vice versa. In
[9] it is shown that in OR-free formulas there is a unique minimal satisfying
assignment in every connected component. As Horn-formulas are OR-free, given
an assignment y satisfying a Horn-formula F , the connected component of
y contains a unique minimal satisfying assignment. For the next result we
will assume w.l.o.g. that this minimal satisfying assignment in the connected
component of y is 0n. If this is not true, we could modify F setting all variables
to 1 which are 1 in y and get a formula F ′ on less variables where 0n

′
is the

required minimal satisfying assignment. The resulting formula satisfies this
property and still contains the connected component corresponding to y in F .
With [y]F := {a ∈ {0, 1}n | dm(a, y) <∞} we denote the set of all nodes a lying
between 0n and y for which there is a monotone increasing path from a to y.

Theorem 6. For every solution y to a Horn-formula F , [y]F is a partial cube.

Proof. Let a, b ∈ [y]F be two arbitrary nodes. We show that d(a, b) = ∆(a, b).
In case the two monotone increasing paths a = a1, . . . , ak = y from a to y
and b = b1, . . . , bl = y from b to y are already of total length ∆(a, b), then we
are done. Otherwise, suppose that there is at least one variable xi which gets
increased to 1 in both paths. The positions in the path where such variables
are increased may differ. Every variable can be classified as either not changed
in any of the paths, changed in only one path (and therefore contributing to
∆(a, b), or changed in both paths. We can now construct the shorter path from
a1 ∧ y = a1 over a1 ∧ bl−1 and a1 ∧ b1 = a ∧ b = b1 ∧ a1 back to b1 ∧ a2 and
b1 ∧ ak = b1. Figure 3 illustrates in the first row the original path and in the
second row the new path.

a1 a2 . . . ak = bl = y bl−1 . . . b2 b1

a1 ∧ bl = a1 a1 ∧ bl−1 . . . a1 ∧ b1 = a ∧ b b1 ∧ a2 . . . b1 ∧ ak−1 b1 ∧ ak = b1

Figure 3: Original and shorted paths from a1 to b1 over y = bl = ak.

Note that all these nodes are in GF as Horn-formulas are closed under
conjunction and the overall sum of nodes in this sequence is the same as in the
original path. But as the first half is the conjunction of a1 with every node
in the second half, every variable which gets increased in both halfs (0 in a1)
will lead to two identical consecutive nodes in the first half. By symmetry, the

11

same happens in the new second half. This path is now two nodes shorter for
every variable which was changed in both paths. All remaining flips are still
present.

Figure 4 gives a minimal example (with repeated y node in the middle) which
illustrates how an increasing/decreasing path can be transformed to a shortest
path of the same length as the Hamming distance between the source and target
nodes. The original path has length 6 with one common variable in both halfs
while the shortcut has length 4, which is optimal.

Long path a = 11000 11010 11011 11111 11111 01111 00111 00011 = b

Optimal path a = 11000 01000 00000 00000 00000 00010 00011 00011 = b

Figure 4: Finding shortcuts in Horn solution graphs.

This result shows that Horn solution graphs encode for every locally maximal
solution y a partial cube [y]F and every intersection of two such partial cubes
[y]F ∩ [y′]F = [z]F is also a partial cube. We point out that a similar statement
holds for dual-Horn-formulas.

5 Iso(2CNF) and the number of perfect match-
ings

We showed in Theorem 4 that Iso(2CNF) ∈ C=P. In this section we show that
Iso(2CNF) is also hard for C=P. For this we will consider several reductions
involving the following decision problems:

Same2SAT : Given two 2CNF-formulas F and F ′, does the number of
satisfying assignments for F and F ′ coincide?

SamePM : Given two graphs, does the number of perfect matchings in each
of the graphs coincide?

Curticapean [7] showed recently that SamePM is C=P-complete. In a series
of reductions, Valiant [20, 21] proved that the (functional) problem of computing
the permanent can be Turing reduced to computing the number of satisfying
assignments of a 2CNF formula. We take ideas from these reductions to show
that SamePM is many-one reducible to Same2SAT and to Iso(2CNF).

Theorem 7. SamePM is polynomial time many one reducible to Same2SAT .

Proof. Valiant [20] gave a way to Turing reduce the problem of counting perfect
matchings to the problem of counting satisfying assignments of a 2CNF formula
by counting all matchings as an intermediate step.

Reducing the number of matchings (perfect or not) of a given graph B to
the number of satisfying solutions of a formula is easy. We define a variable xe
for each edge e in B and for each pair of edges e, e′ with a common vertex we
create a clause (xe ∨ xe′). If FB is the conjunction of all these clauses, the set of
satisfying assignments for FB coincides with the set of matchings in B.

The number of perfect matchings of a graph B with n vertices can be
computed from the number of all matchings in B and some derived graphs Bk.
For this, let bi be the number of matchings with exactly i unmatched nodes.

12

Then b0 is the number of perfect matchings that we want to compute, while bn−2
is the number of edges in B. Let us define a modification Bk of B (1 ≤ k ≤ n)
consisting of a copy of B and for every node u in B, k otherwise isolated nodes
u1, . . . , uk with a single edge connecting each of them to u. Now each matching
in B can be extended in Bk by matching each non-matched node of B to one
of its k new neighbors. Each original matching of B with i unmatched nodes
corresponds to (k + 1)i matchings in Bk. The total number of matchings ck in
Bk is

∑n
i=0 bi · (k + 1)i. The following equation system describes the relation

between matchings in Bk graphs and in B.
1 1 1 · · · 1
1 2 4 · · · 2n

...
...

...
. . .

...
1 (n+ 1) (n+ 1)2 · · · (n+ 1)n

×

b0
b1
...
bn

 =

c0
c1
...
cn

The (n+ 1)× (n+ 1) matrix V is a Vandermonde-matrix and can therefore be
inverted in polynomial time. The c coefficients are numbers of matchings, that
can be reduced to numbers of satisfying assignments of 2CNF formulas. The
first entry of V −1 × (c0, . . . , cn)T is b0, the number of perfect matchings in B
that we want to compute. Given V −1 and 2CNF formulas F0, . . . , Fn having
respectively c0, . . . , cn satisfying assignments (the formulas can be created from
B0, . . . , Bn with the aforementioned reduction), b0 can be computed as the sum
and difference of ci’s multiplied by coefficients defined by V −1.

If we are given two graphs B1 and B2, on n vertices by doing the same
construction we get two sets of coefficients (c1 and c2) and the number of perfect
matchings in B1 and B2 coincide if and only if the following statement holds:

(V −11,1 , . . . , V
−1
1,n+1)× (c10, . . . , c

1
n)T = (V −11,1 , . . . , V

−1
1,n+1)× (c20, . . . , c

2
n)T

The c coefficients in the equation can be expressed as numbers of solutions
of 2CNF formulas, while the other numbers are rational numbers. Inverting the
Vandermonde matrix leads to rational numbers of length at most polynomial
in n. Therefore, using an appropriate factor, we can multiply both sides of this
equation by the same factor and reduce every rational number to an integer
of polynomial length. This equation can be transformed so that both sides
contain only additions and multiplications of positive numbers. These can be
implemented as numbers of satisfying assignments of 2CNF formulas using
the following gadgets. Note that input formulas are all anti-monotone and
therefore have the satisfying solution 0n and we maintain this solution through
all constructions.

Multiplying the number of satisfying assignments of 2CNF-formulas can be
achieved by the conjunction of both formulas (with disjoint sets of variables).

The sum of the solution sets is again a conjunction of both formulas (with
disjoint sets of variables) with the following modification: For two fixed satisfying
assignments 0n of F and 0m of F ′, we add the clauses

∧
i∈[n],j∈[m](xi → yj). So

for every solution v′ 6= 0n in F , the variables of F ′ get fixed to 0m. By symmetry
the same holds for all v′ 6= 0m satisfying F ′. This corresponds to the disjoint
union of the solution sets except for 0n+m which occurs only once. So we add
a new variable b and add the clauses

∧
i∈[n](xi → b) ∧

∧
j∈[m](yj → b) in the

same way as before. This duplicates 0n+m as b is allowed to be 1 or 0 but if we

13

deviate from this assignment, we fix b to 0. The number of satisfying solutions
is therefore the sum of F and F ′ and 0n+m+1 is still a satisfying solution.

For encoding the coefficients of the inverse Vandermonde matrix we need a
way to transform a positive integer k into a 2CNF-formula G with exactly k
satisfying solutions. This can be achieved by looking at the binary encoding
of k = (k1, . . . , kl)2. For every i with ki = 1 we create the 2CNF formula
Gi =

∧
j∈[i](xi ∨ xi) on i variables and take the sum of all these formulas (as

described before) where every formula has its own set of variables and contains
0i as satisfying solution. This new formula G has exactly k satisfying solutions.

We form for both sides of the equation 2CNF-formulas implementing these
computations, and get two formulas F, F ′ that have the same number of satisfying
assignments iff B1 and B2 have the same number of perfect matchings.

Theorem 8. Same2SAT is polynomial time many-one reducible to Iso(2CNF).

Proof. Two formulas having only isolated satisfying assignments have the same
number of solutions if and only if their solution graphs are isomorphic. A formula
F can be transformed into another one F ′ with the same number of solutions
but having only isolated satisfying assignments. This can be done by duplicating
each occurring variable x with a new variable x′ and adding the restriction
(x↔ x′). The Hamming distance between two solutions in F ′ is then at least
two.

These reductions plus Theorem 4 imply:

Corollary 3. Same2SAT and Iso(2CNF) are C=P-complete.

Corollary 4. Iso(Horn) and Iso(safely tight) are hard for C=P.

This last result follows from the observation that all constructed 2CNF
formulas, those for counting matchings as well as those for multiplication and
summation constructions are also Horn.

6 Conclusions and Open Problems

We studied the isomorphism problem for solution graphs for the different types of
Boolean formulas defined in [9, 19]. Although it is not clear how our results can
have a direct application in the developement of SAT-solvers, we believe that it is
worth exploring the structure of such graphs and its relationship to the formula
structure. For example, all connected components of solution graphs of CPSS
functions have a nice structure since they are partial cubes of small isometric
dimension [18]. We showed that this implies that isomorphism for solution
graphs of CPSS formulas (a class that includes 2CNF formulas) can be reduced
to counting. It is open whether other formula classes provide other properties
which can be exploited for isomorphism. The class of Horn formulas is such a
candidate as we showed that their solution graphs have an interesting structure.
We also proved that several natural problems like Iso(2CNF), Iso(CPSS) and the
problem to decide whether two 2CNF formulas have the same number of solutions
are complete for C=P, a class that did not have natural complete problems other
than the standard counting versions of NP-complete problems. We achieved
better lower bounds only for general Boolean functions. Our classification results

14

are summarized in the table in Figure 1. The natural open questions would
be to match upper and lower bounds in all the function types, testing whether
for the case of isomorphism, there is also a dichotomy (trichotomy) result with
respect to the formula structure as in the cases of satisfiability and connectivity.

References

[1] Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi. On
the solution-space geometry of random constraint satisfaction problems.
Random Struct. Algorithms, 38(3):251–268, May 2011.

[2] Manindra Agrawal and Thomas Thierauf. The Boolean isomorphism prob-
lem. In Proceedings of 37th Conference on Foundations of Computer Science,
pages 422–430. IEEE Comput. Soc. Press, 1996.

[3] László Babai. Graph Isomorphism in Quasipolynomial Time. In Proceedings
of 48th Annual Symposium on the Theory of Computing, STOC, 2016.

[4] H.-J. Bandelt and M. van de Vel. Embedding Topological Median Algebras
in Products of Dendrons. Proceedings of the London Mathematical Society,
s3-58(3):439–453, May 1989.

[5] Hans-Jurgen Bandelt and Victor Chepoi. Metric graph theory and geometry:
a survey. Contemporary Mathematics, 453:49–86, 2008.

[6] Elmar Böhler, Edith Hemaspaandra, Steffen Reith, and Heribert Vollmer.
Equivalence and isomorphism for boolean constraint satisfaction. In Julian
Bradfield, editor, Computer Science Logic, volume 2471 of Lecture Notes in
Computer Science, pages 412–426. Springer Berlin Heidelberg, 2002.

[7] Radu Curticapean. Parity separation: A scientifically proven method for
permanent weight loss. arXiv preprint arXiv:1511.07480, 2015.

[8] Oliver Gableske. SAT Solving with Message Passing. PhD thesis, University
of Ulm, 2016.

[9] Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H.
Papadimitriou. The Connectivity of Boolean Satisfiability: Computational
and Structural Dichotomies. SIAM Journal on Computing, 38(6):2330–2355,
January 2009.

[10] Frederic Green. On the power of deterministic reductions to C=P. Mathe-
matical Systems Theory, 26(2):215–233, June 1993.

[11] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Com-
pleteness results for graph isomorphism. Journal of Computer and System
Sciences, 66(3):549–566, May 2003.

[12] Johannes Köbler, Uwe Schöning, and Jacobo Torán. Graph isomorphism is
low for PP. Computational Complexity, 2(4):301–330, December 1992.

[13] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism
problem: its structural complexity. Birkhauser Verlag Basel, aug 1993.

15

[14] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested
in polynomial time. Journal of Computer and System Sciences, 25(1):42–65,
August 1982.

[15] Marc Mézard, Thierry Mora, and Riccardo Zecchina. Clustering of solutions
in the random satisfiability problem. Physical Review Letters, 94(19):197205,
2005.

[16] Sergei Ovchinnikov. Graphs and Cubes. Universitext, Springer, 2011.

[17] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings
of the tenth annual ACM symposium on Theory of computing - STOC ’78,
pages 216–226, New York, New York, USA, May 1978. ACM Press.

[18] Patrick Scharpfenecker. On the structure of solution-graphs for boolean
formulas. In Fundamentals of Computation Theory - 20th International
Symposium, FCT 2015, Gdańsk, Poland, August 17-19, 2015, Proceedings,
pages 118–130, 2015.

[19] Konrad W. Schwerdtfeger. A Computational Trichotomy for Connectivity
of Boolean Satisfiability. page 24, December 2013.

[20] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing, 8:410–421, July 1979.

[21] L.G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, January 1979.

[22] Klaus W. Wagner. The complexity of combinatorial problems with succinct
input representation. Acta Informatica, 23(3):325–356.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

