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Abstract

We study the structure of the Fourier coefficients of low degree multivariate poly-
nomials over finite fields. We consider three properties: (i) the number of nonzero
Fourier coefficients; (ii) the sum of the absolute value of the Fourier coefficients; and
(iii) the size of the linear subspace spanned by the nonzero Fourier coefficients. For
quadratic polynomials, tight relations are known between all three quantities. In this
work, we extend this relation to higher degree polynomials. Specifically, for degree d
polynomials, we show that the three quantities are equivalent up to factors exponential
in d.

1 Introduction

Low degree polynomials play an important role in mathematics and computer science, as
well as Fourier analysis. In this paper, we study the structure of the Fourier coefficients
of low degree multivariate polynomials over finite fields. Let us first state our main result,
before providing background and motivation. Let F be a finite field, e : F→ C a nontrivial
additive character, and let f : Fn → F be a polynomial of total degree d. We show that the
following three quantities are equal, up to a factor of 16d:

• The number of nonzero Fourier coefficients of e(f).

• The sum of the absolute values of the Fourier coefficients of e(f) (namely, it’s L1

Fourier norm).

• The size of the linear space spanned by the nonzero Fourier coefficients of e(f).

∗Research supported by NSF CAREER award 1350481.
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Rank of polynomials. Various notions of rank for polynomials have been considered in
the literature, motivated by different applications.

The rank of a polynomial is the minimal number of lower degree polynomials required
to compute it. Here and throughout, by degree we mean total degree. Let F denote a finite
field.

Definition 1.1 (Rank). Let f : Fn → F be a polynomial of degree d. The rank of f is the
minimial r ≥ 1, such that there exist r polynomials g1, . . . , gr : Fn → F of degree ≤ d − 1,
and a function Γ : Fr → F such that

f(x) = Γ(g1(x), . . . , gr(x)).

The property that a polynomial has low rank is equivalent to the existence of a lower
degree polynomial which approximates it non-trivially [6, 9, 13]. This is a key ingredient in
higher-order Fourier analysis, a theory introduced by Gowers [8] which generalizes classical
Fourier analysis, and which found applications in several domains, including number theory,
coding theory, property testing and complexity theory [1–5,7, 11,12,15–19,21].

A current caveat of this theory is that the bounds it produces have horrible dependency
on the degree d (Ackerman-type bounds). Thus, it makes sense to consider more restricted
notions of rank, which may apply for polynomials of higher degree. One exception is the
work of Haramaty and Shpilka [10] on the structure of cubic and quartic polynomials, which
achieves quasi-polynomial bounds on the underlying parameters.

A more refined notion of rank, termed linear rank, was introduced by Tsang et al. [20],
motivated by a potential approach towards the log-rank conjecture in communication com-
plexity, for some special families of functions (XOR functions).

Definition 1.2 (Linear rank). Let f : Fn → F be a polynomial of degree d. The linear rank
of f is the minimial r ≥ 1, such that there exist r linear functions `1, . . . , `r : Fn → F and
r + 1 polynomials g0, g1, . . . , gr : Fn → F of degree ≤ d− 1, such that

f(x) = g0(x) + `1(x)g1(x) + . . .+ `r(x)gr(x).

Tsang et al. [20] proved a relation between the linear rank of a polynomial and its Fourier
coefficients, for F = F2. The Fourier coefficents of f : Fn2 → F2 are given by

(̂−1)f (γ) = Ex∈Fn
2

[
(−1)f(x)−〈x,γ〉

]
,

where γ ∈ Fn2 . The L1 spectral norm of f is

‖(̂−1)f‖1 =
∑
γ∈Fn

2

|(̂−1)f (γ)|.

We shorthand here ‖f̂‖1 := ‖(̂−1)f‖1.

Theorem 1.3 ( [20]). Let f : Fn2 → F2 be a polynomial of degree d. The linear rank of f is

at most O(2d
2/2 logd−2 ‖f̂‖1).
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An even more refined notion of structure is the number of variables that a polynomial
depends on, possibly after a change of basis. This notion makes sense for any function, not
necessarily a low degree polynomial.

Definition 1.4 (Linear dimension). Let f : Fn → F. The linear dimension of f is the
minimal r ≥ 1, such that f depends on r linear functions of the inputs. Equivalently, there
exists an invertible linear change of basis ϕ : Fn → Fn such that for g(x) = f(ϕ(x)) it holds
that

g(x) = g(x1, . . . , xr).

A corollary of Theorem 1.3 is that low degree polynomials with bounded spectral norm
have low linear dimension.

Theorem 1.5 ( [20]). Let f : Fn2 → F2 be a polynomial of degree d. The linear dimension

of f is at most O(2d
3/2 logd

2 ‖f̂‖1).

Our contribution. Our main theorem improves upon both Theorem 1.3 and Theorem 1.5.
We prove tight relations between the L1 spectral norm of polynomials and their linear di-
mension. We also extend the theorem for any finite field, not just F2. Let F be a finite field.
An additive character e : F → C is a nonzero function which satisfies e(x + y) = e(x)x(y).
It is trivial if e = 1 and nontrivial otherwise. For example, if F = Fp is a prime finite field,
the characters are ea(x) = exp(2πiax/p) for a = 0, . . . , p− 1.

Theorem 1.6 (Main theorem). Let F be a finite field, e : F → C a nontrivial additive
character. Let f : Fn → F be a polynomial of degree d ≥ 2. The linear dimension of f is at

most 16d log|F| ‖ê(f)‖1.

Note that for d = 1 we have ‖ê(f)‖1 = 1 and f has linear dimension 1. We observe that
the bound in Theorem 1.6 is essentially tight over small fields. For simplicity of exposition,
we consider F2.

Example 1.7. Fix s ∈ N. We construct a sequence of polynomials fd : Fnd
2 → F2, where fd

has degree 2d, log spectral norm ≈ ds, and linear dimension ≈ 2ds.
Let n1 = 2s, f1(x) = x1x2 + x3x4 + . . . + x2s−1x2s. Then f1 has linear dimension 2s,

all its 22s Fourier coefficients equal to ±2−s, and hence ‖ê(f1)‖1 = 2s. Define inductively
nd = 2nd−1 + 2s, fd : Fnd

2 → F2 as follows:

fd(x
′, x′′, x′′′) = f1(x

′)fd−1(x
′′) + (1− f1(x′))fd−1(x′′′)

where x′ ∈ F2s
2 and x′′, x′′′ ∈ Fnd−1

2 are disjoint variables. One can verify inductively that fd
has linear dimension nd ≥ 2ds and that

‖(̂−1)fd‖1 ≤ 2(2s + 1)d + 1.

We state an immediate corollary of Theorem 1.6, relating the sparsity, norm and dimen-
sionality of the Fourier coefficients of low degree polynomials.
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Corollary 1.8. Let F be a finite field, e : F → C a nontrivial additive character. Let

f : Fn → F be a polynomial of degree d ≥ 2. Let s = ‖ê(f)‖1. Then

(i) e(f) has at most s16
d

nonzero Fourier coefficients.

(ii) They are supported on an affine subspace of dimension 16d log|F| s.

(iii) Let e′ : F→ C be any other additive character. Then ‖ê′(f)‖1 ≤ s16
d
.

Relations to communication complexity The motivation for introducing the notion
of linear rank in [20] is related to the log-rank conjecture [14], a famous open problem in
communication complexity, asking about the relating between the rank of a matrix and
the best deterministic protocol for computing it. In [20], they focus on so-called “XOR
functions”, an interesting sub-case of the log rank conjecture.

Let f : Fn2 → F2. It defines the following communication problem: there are two players,
Alice and Bob. Alice is given x ∈ Fn2 and Bob is given y ∈ Fn2 as inputs. Their goal is to
compute f(x⊕ y) while communicating as few bits as possible. The associated matrix with
this problem is the 2n × 2n matrix Mx,y = f(x ⊕ y). The log rank conjecture speculates
that up to polynomial factors, log of the rank of M is an upper bound on the deterministic
communication complexity of the problem. In the context of XOR functions, it turns out that
having an efficient protocol would follow from a large subspace on which f is constant. Thus,
we get the following, possibly simpler, problem: if f has only s nonzero Fourier coefficients,
is it always true that there exists a subspace V ⊂ Fn2 of co-dimension (log s)O(1) such that
f |V is constant?

The work of [20] focused on the case where f is additionally assumed to have a low
degree as a polynomial over F2. If it’s degree is d, Theorem 1.5 provides such a subspace
of co-dimension O(2d

2/2(log s)d−2) on which f is constant, where s can be taken to be the
L1 spectral norm of f (which is an upper bound on the Fourier sparsity of f). This gives
a classical deterministic protocol which sends O(2d

2/2(log s)d−2) many bits. Subsequently,
Zhang [22] gave an improved quantum protocol which uses only O(2d log s) quantum bits.
This still leaves open the question of finding an improved deterministic protocol.

Here, we note that such a protocol follows as a direct application of our main result. By
Theorem 1.6, if the L1 spectral norm of f is s (or even better, if the Fourier sparsity of f is
s), then f depends on at most 16d log s many inputs (after an appropriate change of basis).
So, after this change of basis (which is known in advance to both players), each player can
simply send the relevant bits of their input to the other player. This protocol is a classical
deterministic one-round protocol which sends O(16d log s) bits.

1.1 Proof overview

Let f : Fn → F be a polynomial of degree d. Let fd be the homogeneous part of f of degree
d. The main idea is to bound the linear dimension of fd, use this to remove fd from f and
reduce to a polynomial of degree d − 1, and continue inductively. In order to isolate fd we
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apply derivatives to f and obtain the derivative polynomial of f , which is a symmetric set-
multilinear polynomial (also known as a symmetric tensor) which symmetrizes fd. In order
to study it, we develop a general theory for the linear dimension of tensors and symmetric
tensors.

A tensor T : (Fn)d → F is a multi-linear map. We say that T (x1, . . . , xd) has linear
dimension r if it only depends on at most r inputs out of each of x1, . . . , xr, possibly after
some change of basis. We show that linear dimension behaves well under restrictions. Let
T |xi=a be the restricted tensor obtained by fixing xi = a for some i ∈ [d], a ∈ Fn. Clearly, if
T has linear dimension d then also all of T |xi=a have linear dimension at most d. We show
(Theorem 4.2) that the inverse relation also holds: if all of T |xi=a have linear dimension ≤ d,
then T has linear dimension ≤ 4d. We also prove (Theorem 4.4) a version specialized for
symmetric tensors, such as the ones obtained by the derivatives of a polynomial.

The proofs of Theorem 4.2 and Theorem 4.4 follow from a general theorem about linear
spaces of functions of low linear dimension (we call such functions “linear-juntas”). We show
(Theorem 3.5) that any such linear space must be very structured, in a way that explains
why all the functions in it have low linear dimension.

Paper organization. We start with some preliminaries in Section 2. We then develop a
theory of subspaces of linear juntas in Section 3. We apply these to the study of the linear
dimension of tensors in Section 4. We apply these to the study of the Fourier structure of
polynomials in Section 5.

Acknowledgements. We thank the organizers of the workshop “log rank conjecture”
held in the National University of Singapore in January 2016 where this work started. We
specifically thank Shengyu Zhang, from whom we learned about this problem, and who gave
us helpful suggestions on an earlier version of this manuscript.

2 Preliminaries

Polynomials. Let F be a field, A a finite dimensional linear space over F. A polynomial
f : Fn → A is any function of the form

f(x) =
∑
I∈Nn

fI

n∏
i=1

xIii ,

where x = (x1, . . . , xn) ∈ Fn, fI ∈ A and only a finite number of fI are nonzero. We denote
by Poly(Fn, A) the set of all such polynomials, which is a F-linear space. Note that if F is a
finite field, then Poly(Fn, A) includes all functions f : Fn → A.

The (total) degree of a polynomial is deg(f) = maxfI 6=0

∑
i Ii. We denote by Polyd(Fn, A)

the linear space of polynomials of degree at most d.
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Fourier analysis. Let p be prime, q = pk, F = Fq be a finite field. Let Tr : Fq → Fp
be the trace map. The additive characters e : Fn → C are nonzero functions which satisfy
e(x+ y) = e(x)e(y). They are given by

eγ(x) = ωTr(〈γ,x〉)
p γ ∈ Fn.

where ωp = exp(2πi/p) is a primitive p-th root of unity and 〈x, γ〉 =
∑
xiγi. The trivial

character is e0 ≡ 1; the rest are called nontrivial. The Fourier coefficients of f : Fn → C are
given by

f̂(γ) = Ex∈Fn

[
f(x)eγ(x)

]
.

The Fourier inversion formula is

f(x) =
∑
γ∈Fn

f̂(γ)eγ(x).

Parseval’s identity is

Ex∈Fn|f(x)|2 =
∑
γ∈Fn

|f̂(γ)|2.

The L1 spectral norm of f is

‖f̂‖1 =
∑
γ∈Fn

|f̂(γ)|.

We state two simple claims regarding the behaviour of the L1 spectral norm under re-
striction and multiplication.

Claim 2.1. Let f : Fn → C. For some m < n let g : Fm → C be obtained by fixing
n − m inputs of f , say g(x1, . . . , xm) = f(x1, . . . , xm, cm+1, . . . , cn) for some ci ∈ F. Then

‖ĝ‖1 ≤ ‖f̂‖1.

Claim 2.2. Let f, g : Fn → C and define h(x) = f(x)g(x). Then ‖ĥ‖1 ≤ ‖f̂‖1‖ĝ‖1.

3 Linear spaces of linear juntas

Let F be a field, f : Fn → F be a function. A well studied notion is that of a junta: a
function is said to be a d-junta if it depends on at most d of its inputs. Here, we define the
notion of a linear junta. A function is a d-linear junta if it is a d-junta, after applying some
change of basis.

Definition 3.1 (Linear junta). A function f : Fn → F is a d-linear junta if it depends on at
most d inputs, possibly after a change of basis. Equivalently, if there exist d linear functions
`1, . . . , `d : Fn → F such that f(x) is determined by `1(x), . . . , `d(x). The linear dimension
of f is the smallest such d, which we denote by LinDim(f).

6



Our interest here will be in a collection of linear juntas which form a linear space. For
technical reasons, we restricted our attentions to polynomials. We note that this is a restric-
tion only when F is an infinite field.

Definition 3.2 (Linear space of linear juntas). A collection of functions Λ ⊂ Poly(Fn,F) is
said to be a linear space of d-linear juntas if

(i) Each function f ∈ Λ is a d-linear junta.

(ii) Λ is a linear subspace of Poly(Fn,F). That is, if f, g ∈ Λ then also αf + βg ∈ Λ for
all α, β ∈ F.

It will be instructive to consider a couple of examples for subspaces of linear d-juntas.

Example 3.3. Let Λ = {f(x) = f(x1, . . . , xd) : f ∈ Poly(Fd,F)} be the space of all functions
that depends on the first d inputs. It is a linear space of d-linear juntas.

Example 3.4. Let Λ = {f(x) = 〈a, x〉 : a ∈ Fn} where 〈a, x〉 =
∑
aixi be the space of all

linear functions from Fn to F. It is a linear space of 1-linear juntas.

Our main theorem in this section is that these examples are more or less exhaustive. For
any linear space of d-linear juntas, after an appropriate change of basis, any fixing of the
first 2d inputs results in all functions becoming linear functions. For the proof we would
need to study functions with multiple outputs, and extend the previous definitions to such
functions.

Let A ∼= Fm be a linear subspace over F. Typically we would not care about the dimension
of A. Two functions f, f ′ : Fn → A are said to be isomorphic, denoted f ≡ f ′, if they are
equal up to a change of basis in their inputs. That is, f ≡ f ′ if there exists an invertible
linear map ϕ : Fn → Fn such that f ′(x) = f(ϕ(x)). A function f : Fn → A is a d-junta if it
depends on at most d of its inputs, and it is a d-linear junta if it is isomorphic to a d-junta.
Let Poly(Fn, A) denote the F-linear subspace of all functions from Fn to A. Given two linear
spaces Λ,Λ′ ⊂ Poly(Fn, A), we say they are isomorphic, denoted Λ ≡ Λ′, if they are equal up
to a change of input basis. That is, if there exists an invertible linear map ϕ : Fn → Fn such
that Λ′ = {f(ϕ(x)) : f ∈ Λ}. A function f : Fn → A is a linear function if f(x) =

∑
aixi

for some ai ∈ A.

Theorem 3.5. Let F be a field, A a linear subspace over F. Let Λ ⊂ Poly(Fn, A) be a linear
subspace of d-linear juntas. Then there exists an isomorphic subspace Λ′ ≡ Λ such that, for
any fixing of the first 2d inputs, the functions in Λ′ become linear functions. That is,

{f(c1, . . . , c2d, x2d+1, . . . , xn) : Fn−2d → A : f ∈ Λ′, c1, . . . , c2d ∈ F}

are all linear functions from Fn−2d to A.
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3.1 Proof of Theorem 3.5

We prove Theorem 3.5 in this section. We use the following notation: for x ∈ Fn and S ⊂ [n]
let xS = (xi : i ∈ S). For c ∈ FS we denote by f |xS=c the function f restricted to inputs
with xS = c. We denote [r] = {1, . . . , r}.

Claim 3.6. The linear dimension of f : Fn → A is equal to the co-dimension of the subspace
Of ⊂ Fn given by the invariant shifts of f ,

Of := {v ∈ Fn : f(x) = f(x+ v) ∀x ∈ Fn}.

Proof. Assume LinDim(f) = d. As a change of basis does not change the dimension of
Of , we may assume that f(x) = f(x1, . . . , xd). Thus {0}d × Fn−d ⊂ Of . Moreover, if
v /∈ {0}d × Fn−d then by the minimality of d, f(x) 6= f(x + v) for some x ∈ Fn. Thus
dim(Of ) = n− d.

Lemma 3.7. Fix n ≥ 2d. Let f, g ∈ Poly(Fn, A) be functions such that

(i) LinDim(f) = d. Moreover, f(x) = f(x1, . . . , xd).

(ii) LinDim(g),LinDim(f + g) ≤ d.

Define g̃ : Fn−d → Poly(Fd, A) by

g̃(xd+1, . . . , xn) =
(
(c1, . . . , cd)→ g(c1, . . . , cd, xd+1, . . . , xn) : c ∈ Fd

)
.

Then we can decompose g̃ = g̃lin + g̃rest, where

(a) g̃lin : Fn−d → Poly(Fd, A) is a linear function.

(b) LinDim(g̃rest) ≤ d/2.

We note that the proof of Lemma 3.7 is inspired by the proof of Lemma 3.7 in the arxiv
version of [10] (the fact that the lemmas numbering match is an interesting coincidence).

Proof. The conditions and conclusions of the lemma do not change if we apply an invertible
change of basis to x1, . . . , xd or to xd+1, . . . , xn. Thus, by applying an appropriate change of
basis, we may assume that g(x) = g(xs+1, . . . , xs+d) for some 0 ≤ s ≤ d (as we only assume
that LinDim(g) ≤ d, it may be the case that g does not depend on all of these inputs;
still, for simplicity of exposition, we list all the d inputs). As non of f, g, f + g depend on
xs+d+1, . . . , xn, we may set all of them to zero; to simplify notations, simply assume from
now that n = s+ d.

Decompose x ∈ Fn as x = (x′, x′′, x′′′) where x′ ∈ Fs, x′′ ∈ Fd−s, x′′′ ∈ Fs. Note that
f(x) = f(x′, x′′) and g(x) = g(x′′, x′′′). Expand g(x) as

g(x) =
∑
I

gI(x
′, x′′)

s∏
j=1

(x′′′j )Ij ,
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where I ∈ {0, . . . , |F| − 1}s and gI : Fd → A. Equivalently, g̃ : Fs → Poly(Fd, A) is given by

g̃(x′′′) =

(
c→

∑
I

gI(c)
s∏
j=1

(x′′′j )Ij : c ∈ Fd
)
.

Define g̃lin : Fs → Poly(Fd, A) as the terms in g̃ which are linear in x′′′. Let e1, . . . , es ∈ Fs
denote the standard basis vectors (where (ei)j = 1i=j). Define

g̃lin(x′′′) :=

c→∑
i∈[s]

gei(c)x
′′′
i : c ∈ Fd

 .

By definition, g̃lin is a linear function from Fs to Poly(Fd, A). We need to show that g̃rest =
g̃ − g̃lin satisfies LinDim(g̃rest) ≤ d/2.

First, note that g̃(x′′′) depends only on the s variables x′′′1 , . . . , x
′′′
s , hence clearly

LinDim(g̃) ≤ s and also LinDim(g̃rest) ≤ s, and the lemma follows if s ≤ d/2. So, as-
sume from now on that s > d/2. By assumption, f + g has linear rank ≤ d. By Claim 3.6,
dim(Of+g) ≥ n− d = s. Thus, if we set

U := {u ∈ Of+g : u′′ = 0}

then r := dim(U) ≥ dim(Of+g)− (d− s) = 2s− d. For any u ∈ U we have the identity

f(x′+u′, x′′)− f(x′, x′′) + g(x′′, x′′′+u′′′)− g(x′′, x′′′) = (f + g)(x+u)− (f + g)(x) = 0. (1)

We first argue that if u ∈ U is nonzero, then u′′′ 6= 0. Indeed, if u′′′ = 0 then u′ 6= 0 and
Equation (1) implies that

f(x′ + u′, x′′)− f(x′, x′′) = 0

which implies that LinDim(f) ≤ d−1, contradicting our assumption. As U is a linear space,
this implies that

dim{u′′′ : u ∈ U} = dimU = r.

For simplicity of exposition, apply a change of basis to x′′′ so that {u′′′ : u ∈ U} is spanned
by the first r standard basis vectors in Fs, namely by e1, . . . , er. We will next show that g̃rest
does not depend on x′′′1 , . . . , x

′′′
r . Thus, it depends on at most s−r ≤ s−(2s−d) = d−s ≤ d/2

inputs, which implies that LinDim(g̃rest) ≤ d/2 as claimed.
So, fix i ∈ [r], where our goal is to show that g̃rest does not depend on x′′′i . Let ui ∈ U be

such that u′′′i = ei. By Equation (1)

g(x′′, x′′′ + ei)− g(x′′, x′′′) = f(x′, x′′)− f(x′ + u′i, x
′′)

where the right hand side is independent of x′′′. On the other hand we have

g(x′′, x′′′ + ei)− g(x′′, x′′′) =
∑
I

gI(x
′′) · Ii · (x′′′i )Ii−1 ·

∏
j∈[s],j 6=i

(x′′′j )Ij .

This implies that we must have gI(x
′′) = 0 whenever Ii ≥ 1, except for possibly I = ei.

However, as we already account for gei(x
′′) in g̃lin, we conclude that g̃rest is independent of

x′′′i .

9



Lemma 3.8. Let Λ ⊂ Poly(Fn, A) be a linear space of d-linear juntas. Assume furthermore
that some f ∈ Λ has LinDim(f) = d and f(x) = f(x1, . . . , xd). For each g ∈ Λ define
g̃, g̃lin, g̃rest as in Lemma 3.7. Then the set

{g̃rest : g ∈ Λ} ⊂ Poly(Fn−d,Poly(Fd, A))

is a linear space.

Proof. This follows directly from the construction of g̃rest in Lemma 3.7 and the linearity of
Λ. Let x = (x, x) with x ∈ Fd, x ∈ Fn−d. For any g1, g2 ∈ Λ let g3 = αg1 + βg2 ∈ Λ. Expand

gk(x) =
∑
I

gkI (x)
d∏
j=1

(xj)
Ij ∀k ∈ {1, 2, 3}.

Then g3I = αg1I + βg2I and hence by construction, αg̃1rest + βg̃2rest = g̃3rest is in the set.

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. The proof is by induction on d. If d = 1 then there is nothing to
prove, so assume d > 1. We may assume without loss of generality that there exists f ∈ Λ
such that LinDim(f) = d. By applying a change of basis on all functions in Λ, we may
assume that f(x) = f(x1, . . . , xd). Applying Lemma 3.7 to any g ∈ Λ, we conclude that
we can decompose g̃ = g̃lin + g̃rest, where Λ′ = {g̃rest : g ∈ Λ} ⊂ Poly(Fn−d, A′) is a linear
subspace of d/2 linear juntas. Applying induction, we may change basis for Fn−d so that
after the change of basis, then functions

{f ′(cd+1, . . . , c2d, x2d+1, . . . , xn) : f ′ ∈ Λ′, cd+1, . . . , c2d ∈ F}

are all linear functions from Fn−2d to Poly(Fd, A). Recalling that
f ′(cd+1, . . . , c2d, xd+1, . . . , xn−d)(c1, . . . , cd) = f(c1, . . . , c2d, x2d+1, . . . , xn) for any f ∈ Λ, we
conclude that (after an appropriate change of basis), all functions in Λ become linear after
any fixing of the first 2d inputs.

4 Linear dimension of tensors

Fix k ≥ 1, a field F and a linear space A over F. An order k tensor is a multi-linear map
T : (Fn)k → A given by

T (x1, . . . , xk) =
∑
I∈[n]k

TI

k∏
i=1

xi,Ii ,

where xi = (xi,1, . . . , xi,n) ∈ Fn for i ∈ [k] and TI ∈ A. Two tensors are said to be isomorphic
if they are equal, up to a change of basis for each x1, . . . , xk. That is, if ϕ1, . . . , ϕk : Fn → Fn
are invertible linear transformations, then T is isomorphic to T ′ defined as T ′(x1, . . . , xk) =
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T (ϕ1(x
1), . . . , ϕk(x

k)). We denote this T ≡ T ′. Given an order k tensor T , let T |xi=a for
i ∈ [k], a ∈ Fn be the order k − 1 tensor given by fixing xi = a. That is

T |xi=a(x1, . . . , xi−1, xi+1, xk) =
∑
I∈[n]k

TI · ai,Ii
∏

j∈[k],j 6=i

xj,Ij .

The linear dimension of a tensor T is the minimal d, such that T depends on at most d
linear functions of each of x1, . . . , xk.

Definition 4.1 (Linear dimension of tensors). The linear dimension of an order k tensor
T , denoted LinDim(T ), is the minimal d ≥ 1 such that the following holds. There exists an
order k tensor T ′, where T ′ ≡ T , such that

T ′(x1, . . . , xk) =
∑
I∈[d]k

T ′I

k∏
i=1

xi,Ii .

It is obvious that if LinDim(T ) = d then LinDim(T |xi=a) ≤ d for all i ∈ [k], a ∈ Fn.
Our main theorem in this section is the inverse relation: if all restrictions of tensor have low
linear dimension, then so does the tensor. This in fact is false if k = 2 and say A = F, as any
restriction of order 2 tensor is a linear function, and hence has linear dimension 1. However,
we show it does hold whenever k ≥ 3. In fact, it is sufficient if LinDim(T |xi=a) ≤ d for all
a ∈ Fn and two indices i ∈ [k].

Theorem 4.2. Let k ≥ 3, F a field, A a linear space over F. Let T : (Fn)k → A be a tensor
such that

LinDim(T |xi=c) ≤ d ∀i ∈ {1, 2}, c ∈ Fn.

Then LinDim(T ) ≤ 4d.

Proof. In order to prove Theorem 4.2, it suffices to prove that for every i ∈ [k], there
exists a linear transformation ϕi : Fn → Fn such that the tensor T ′(x1, . . . , xk) =
T (x1, . . . , xi−1, ϕi(x

i), xi+1, . . . , xk) depends on only the first 4d variables from xi. That is,
T ′I = 0 if Ii /∈ [4d]. Fix j ∈ {1, 2}\{i}. In the proof below, we would only use the assumption
that LinDim(T |xj=a) ≤ d for all a ∈ Fn. To simplify the presentation, fix j = 1, i = 2.

For every a ∈ Fn define the k − 1 dimensional tensor Ta = T |x1=a. By assumption,
LinDim(Ta) ≤ d. Define a function fa : F2n → Poly((Fn)k−3,F) as follows. Identify F2n ∼=
(Fn)2 and let

fa(y, z) = ((c4, . . . , ck)→ T (a, y, z, c4, . . . , ck) : c4, . . . , ck ∈ Fn) .

We claim that LinDim(fa) ≤ 2d. To see that, note that as Ta has linear dimension ≤ d, we
can apply a change of basis to each xi, so that afterwards Ta depends only on the first d
inputs of each xi. If we apply the change of basis of x2, x3 to y, z, we get that fa depends
only on y1, . . . , yd, z1, . . . , zd. Hence, LinDim(fa) ≤ 2d. Next, observe that {fa : a ∈ Fn} is a
linear space of functions, since αfa + βfb = fαa+βb for all a, b ∈ Fn, α, β ∈ F. We may thus
apply Theorem 3.5.
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Thus, there is a linear subspace V ⊂ F2n of co-dimension 4d such that, for any coset
V + w we have that (fa)|V+w is a linear function of y, z. Let V1, V2 be the projections of V
to the first and last n variables, respectively. As V ⊂ V1 × V2, we get that the same holds
for any coset of V1× V2. By applying an additional change of basis to both y and z, we may
assume that V1 = V2 = {0}4d × Fn−4d. That is, after applying this change of basis to y and
to z, we have that fa becomes linear in y, z whenever we fix y1, . . . , y4d, z1, . . . , z4d.

Hence, the same property also holds for Ta. That is, after applying the same change of
basis to x2, x3, for every c2, c3 ∈ F4d we have

Ta(x
2, . . . , xk)|x2

[4d]
=c2,x3[4d]=c3

=
n∑

i=4d+1

x2,iF
′
a,i,c2,c3

(x4, . . . , xk) +
n∑

i=4d+1

x3,iF
′′
a,i,c2,c3

(x4, . . . , xk),

where F ′a,i,c2,c3 , F
′′
a,i,c2,c3

are some functions on x4, . . . , xk. However, as Ta is a tensor, any
monomial in it must depend on exactly one variable from each of x2, . . . , xk. Thus, we must
have F ′a,i,c2,c3 = F ′′a,i,c2,c3 = 0 for all a, i, c2, c3. This implies that Ta depends from x2, x3 only
on the first 4d inputs of each, that is

Ta(x
2, . . . , xk) =

∑
i∈[4d]

∑
j∈[4d]

x2,ix3,jTa,i,j(x
4, . . . , xk),

where Ta,i,j are some order k − 3 tensors. As this holds for all a ∈ Fn, we have that

T (x1, x2, . . . , xk) =
∑
i∈[4d]

∑
j∈[4d]

x2,ix3,jT̃i,j(x
1, x4, . . . , xk),

where T̃i,j are some order k − 2 tensors. This concludes the proof: we showed that, after
applying an appropriate change of basis to x2, T depends only on the first 4d variables in
x2.

4.1 Symmetric tensors

An order k tensor T is said to be symmetric if TI depends only on the multi-set of I. As
we will see later, symmetric tensors arise naturally in the study of polynomials. We extend
some of the definitions from general tensors to symmetric ones.

First, note that any restriction T |xi=a is a symmetric tensor of order k − 1, and it’s
the same tensor for all i ∈ [k]. Two symmetric order k tensors are isomorphic if they are
equal up to the same change of basis in each variable. That is, T ≡ T ′ if T ′(x1, . . . , xk) =
T (ϕ(x1), . . . , ϕ(xk)) for some invertible linear transformation ϕ : Fn → Fn. The symmetric
linear dimension of a symmetric tensor is defined analogous to the definition of the linear
dimension of a tensor, except that we require to apply the same change of basis to all inputs.

Definition 4.3 (Symmetric linear dimension of symmetric tensors). The symmetric linear
dimension of an order k symmetric tensor T , denoted LinDimSym(T ), is the minimal d ≥ 1
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such that the following holds. There exists an order k symmetric tensor T ′, where T ′ ≡ T ,
such that

T ′(x1, . . . , xk) =
∑
I∈[d]k

T ′I

k∏
i=1

xi,Ii .

We state a variant of Theorem 4.2 for symmetric tensors.

Theorem 4.4. Let k ≥ 3, F a field, A a linear space over F. Let T : (Fn)k → A be a
symmetric tensor such that

LinDimSym(T |x1=c) ≤ d ∀c ∈ Fn.

Then LinDimSym(T ) ≤ 8d.

Proof. The proof is nearly identical to the proof of Theorem 4.2, so we only highlight the
differences. As T is symmetric we have that LinDimSym(T |xi=c) ≤ d for all i ∈ [k], c ∈ Fn.
Defining fa as in the proof of Theorem 4.2, we still have LinDim(fa) ≤ 2d for all a ∈ Fn.
Thus, there exist subspaces V1, V2 ⊂ Fn of co-dimension 4d each, such that fa becomes linear
when restricted to any coset of V1×V2. The only difference comes now: we are only allowed
to apply the same change of basis to V1 and V2. Thus, it might be that after this common
change of basis, we would need to fix y1, . . . , y8d, z1, . . . , z8d so that fa would become linear.
The remainder of the proof is unchanged.

5 Fourier structure of polynomials

Let F be a finite field and let e : F → C be a nontrivial additive character. Let f ∈
Polyd(Fn,F) be an n-variate degree-d polynomial over F. Its monomials of degree k, for
k ≤ d, are indexed by multi-sets {i1, . . . , ik} ⊂ [n], where each index i to appear in a multi-
set at most |F| − 1 times. We denote this set by [n]k,F. As the field is fixed throughout, we
shorthand [n]k = [n]k,F. We have

f(x) =
d∑

k=0

∑
I∈[n]k

fI
∏
i∈I

xi.

Theorem 5.1. Let f ∈ Polyd(Fn,F) for d ≥ 2. Then LinDim(f) ≤ 24d log|F| ‖ê(f)‖1.

We prove Theorem 5.1 in this section by induction on d. In order to reduce degrees, we
apply derivatives.

Definition 5.2 (Derivative). The directional derivative of f : Fn → F in direction h ∈ Fn
is ∆hf : Fn → F given by

∆hf(x) = f(x+ h)− f(x).
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Note that if deg(f) = d then deg(∆hf) ≤ d − 1. The derivative polynomial of f is
Df : (Fn)d → F given by

Df(y1, . . . , yd) = ∆y1 . . .∆ydf(x) = ∆y1 . . .∆ydf(0).

It depends only on the monomials of f of maximal degree d, and is given by the symmetric
order d tensor

Df(y1, . . . , yd) =
∑
I∈[n]d

fI
∑
σ∈Sd

d∏
j=1

yσ(j),ij

where Sd is the group of all permutations on [d].

Claim 5.3. ‖ê(Df)‖1 ≤ ‖ê(f)‖2d1 .

Proof. Claim 2.2 implies that

‖ ̂e(∆yf(x))‖1 = ‖ ̂e(f(x+ y))e(−f(x))‖1 ≤ ‖ ̂e(f(x+ y))‖1‖ ̂e(−f(x))‖1 = ‖ê(f)‖21.

The claim follows by applying this iteratively d times.

This motivates studying the linear dimension of Df which is a symmetric tensor of order
d. For a tensor T : (Fn)d → F, we define its Fourier coefficients by identifying it with a

function F : Fnd → F in the obvious way. In particular, ‖ê(T )‖1 = ‖ê(F )‖1.

Lemma 5.4. Let T : (Fn)d → F be a symmetric tensor for d ≥ 2. Then LinDimSym(T ) ≤
8d−2 log|F| ‖ê(T )‖1.

Proof. We prove the lemma by induction on d. The base case d = 2 follows from basic linear
algebra.

We have T (x, y) = xMy for some symmetric n×n matrix M . Assume that M has rank r.
By applying a change of basis to x and to y (not necessarily the same one), we may assume
that M is the r × r identity matrix. That is, T (x, y) =

∑r
i=1 xiyi. One can then verify that

e(T ) has exactly |F|2r nonzero Fourier coefficients, supported on x1, . . . , xr, y1, . . . , yr, each of

which equal in absolute value to |F|−r. Thus ‖ê(T )‖1 = |F|r and LinDimSym(T ) ≤ 2r (recall
that T is a symmetric tensor, hence linear dimension is only defined up to a simultaneous
change of basis to x, y).

In fact, a more careful analysis shows that LinDimSym(T ) = r. If char(F ) 6= 2 then
there exists a simultaneous change of basis to x, y such that T (x, y) =

∑r
i=1 aixiyi for some

nonzero ai ∈ F. If char(F) = 2 then r is even and there exists a simultaneous change of basis

to x, y such that T (x, y) =
∑r/2

i=1 ai(x2i−1y2i + x2iy2i−1). In either case we get ‖ê(T )‖1 = |F|r
and LinDimSym(T ) = r.

So, assume d ≥ 3. For any a ∈ Fn let Ta be the order d− 1 tensor given by restricting a
variable to a, that is

Ta(x
1, . . . , xd−1) = T (x1, . . . , xd−1, a).
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By Claim 2.1 we know that ‖ê(Ta)‖1 ≤ ‖ê(T )‖1. By the inductive hypothesis of the

lemma, we have LinDimSym(Ta) ≤ 8d−3 log|F| ‖ê(Ta)‖1. By Theorem 4.4, this implies that

LinDimSym(T ) ≤ 8d−2 log|F| ‖ê(T )‖1.

Corollary 5.5. Let f ∈ Polyd(Fn,F) for d ≥ 2. Let r = 24d−6 log|F| ‖ê(f)‖1. Then there
exists an invertible change of basis, after which all the monomials of degree d of f are
supported on the first r variables.

Proof. Apply Lemma 5.4 to T = Df . Since LinDimSym(Df) ≤ 8d−2 log|F|(‖ê(f)‖2d1 ) =

24d−6 log|F| ‖ê(f)‖1 = r, we have that there exists a change a basis, so that all the monomials

in T (y1, . . . , yd) depend on {yi,j : i ∈ [d], j ∈ [r]}. By definition of Df , this implies that all
the degree d monomials in f are supported on x1, . . . , xr.

For x ∈ Fn let x = (x′, x′′) with x′ ∈ Fr and x′′ ∈ Fn−r. Define

f0(x) = f(x′, 0), g(x) := f(x)− f0(x).

By Corollary 5.5, deg(g) ≤ d − 1. By Claim 2.1 ‖ê(f0)‖1 ≤ ‖ê(f)‖1 and by Claim 2.2,

‖ê(g)‖1 ≤ ‖ê(f)‖21. We may thus apply the inductive hypothesis to g, and deduce that

LinDim(g) ≤ 24(d−1) log|F| ‖ê(g)‖1 ≤ 24d−3 log|F| ‖ê(f)‖1.

We may thus conclude that

LinDim(f) ≤ LinDim(f0) + LinDim(g) ≤ (24d−6 + 24d−3) log|F| s ≤ 24d log|F| ‖ê(f)‖1.
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