
Noisy population recovery in polynomial time

Anindya De∗

Northwestern University
Evanston, IL, USA

anindya@eecs.northwestern.edu

Michael Saks †

Department of Mathematics
Rutgers University

Piscataway, NJ, USA
saks@math.rutgers.edu

Sijian Tang ‡

Department of Mathematics
Rutgers University

Piscataway, NJ, USA
st509@math.rutgers.edu

February 19, 2016

Abstract

In the noisy population recovery problem of Dvir et al. [DRWY12], the goal is to learn
an unknown distribution f on binary strings of length n from noisy samples. For some
parameter µ ∈ [0, 1], a noisy sample is generated by flipping each coordinate of a sample
from f independently with probability (1−µ)/2. We assume an upper bound k on the size
of the support of the distribution, and the goal is to estimate the probability of any string
to within some given error ε. It is known that the algorithmic complexity and sample
complexity of this problem are polynomially related to each other.

We show that for µ > 0, the sample complexity (and hence the algorithmic complexity)
is bounded by a polynomial in k, n and 1/ε improving upon the previous best result of
poly(klog log k, n, 1/ε) due to Lovett and Zhang [LZ15].

Our proof combines ideas from [LZ15] with a noise attenuated version of Möbius in-
version. In turn, the latter crucially uses the construction of robust local inverse due to
Moitra and Saks [MS13].

1 Introduction

1.1 Background and Our Result

The population recovery problem is a basic problem in noisy unsupervised learning which has
received significant attention in the recent past [DRWY12, WY12, MS13, LZ15]. In this problem,

∗Some part of this work was done while the author was a postdoc at DIMACS, Rutgers.
†Supported by NSF grant CCF-1218711 and by Simons Foundation award 332622.
‡Supported by NSF grant CCF-1218711

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 26 (2016)

there is an unknown distribution f over binary strings of length n, and an error parameter
0 < µ < 1. Noisy samples from it are generated as:

• Choose a string x according to f .

• Flip each coordinate of x independently with probability 1−µ
2

.

Given access to these noisy samples, the task of the learner is to output a set of strings S and
for each string x in S, an estimate f̃(x) of f(x), such that |f̃(x)− f(x)| ≤ ε. And for all x /∈ S,
f(x) ≤ ε. For µ = 1, the problem is trivial to solve, whereas for µ = 0, the distribution f
cannot be recovered with any number of samples. As µ becomes smaller, the learning problem
becomes progressively harder. There is an alternate (and easier) model called the lossy model
where instead of flipping bits, each bit is replaced by a ’?’ independently with probability 1−µ
and presented to the learner.
This problem was introduced by Dvir et al. [DRWY12] who related it to the problem of learning
DNF from restrictions. For the lossy model, Dvir et al. [DRWY12] gave a polynomial time
algorithm for population recovery for any µ & 0.365. Their analysis was improved by Batman,
et al. [BIMP13] who showed that the same algorithm works for any µ > 1 − 1/

√
2 ≈ 0.293.

Subsequently, Moitra and Saks [MS13] gave a polynomial time algorithm for population recovery
in the lossy model for any µ > 0.

For the noisy sample problem, algorithms are known only when the support size of f is
bounded by a parameter k. Wigderson and Yehudayoff [WY12] developed a framework called
“partial identification” and used this to give an algorithm that runs in time poly(klog k, n, 1/ε)
for any µ > 0. They also showed that their framework cannot obtain algorithms running in
time better than poly(klog log k).

Lovett and Zheng [LZ15] improved on this to show that the time complexity of this problem
is at most poly(klog log k, n, 1/ε) for any µ > 0. Interestingly, while their algorithm matches the
lower bound in [WY12], their algorithm departs from the framework of [WY12]. This offers the
possibility that one might be able to achieve better algorithms by extending the techniques of
[LZ15]. Another interesting feature of this problem is that the algorithmic complexity of the
problem is polynomial in the sample complexity of the problem. This seems to have been first
explicitly mentioned in [LZ15] though they refer to [BIMP13, MS13]. Thus, it suffices to focus
on bounding the sample complexity of the noisy population recovery problem (which is a purely
information theoretic quantity).

In this paper, we improve on the results of [LZ15] and show that for any µ > 0, the time
complexity of noisy population recovery problem is at most poly(k, n, 1/ε). This is the first
polynomial time algorithm for any µ < 1. The following is our main theorem.

Theorem 1.1. For any µ > 0, there exists an algorithm for the noisy population recovery
problem, running in time poly((k/ε)Oµ(1), n). Here Oµ(1) = Õ(1/µ4).

For the ensuing discussion, we first fix some preliminaries.

1.2 Preliminaries

In this section, we include some basic preliminaries concerning Fourier expansion and noise
operators. Let f : {0, 1}n → R. Recall that any such f can be expressed uniquely as a linear
combination of characters, where for S ⊆ [n], the character χS(x) is equal to

∏
i∈S(−1)xi .

2

For S ⊆ [n], the Fourier coefficient f̂(S) is defined to be f̂(S) =
∑

x∈{0,1}n f(x)χS(x). With

this definition, it follows that f(x) =
∑

S⊆[n] fS · χS(x) where fS = 2−n · |f̂(S)|. We define

‖f‖1 =
∑

x |f(x)| and ‖f̂‖L1 = 2−n
∑

S |f̂(S)| =
∑

S |fS|. Also we define the support of the

Fourier spectrum be supp(f̂) = {S : f̂(S) 6= 0}.
Let F be the space of real-valued functions on {0, 1}n. For S ⊆ [n], we define the operator
XS : F → F as,

(XSf)(x) = f(x) · χS(x),

where f ∈ F . Next, we define the Bonami-Beckner noise operator. For µ > 0 and i ∈ [n], define
Tµ,i : F → F to be the operator that only adds noise in coordinate i. In other words,

(Tµ,if)(x) =
1 + µ

2
· f(x) +

1− µ
2
· f(xi),

where xi is the element obtain by flipping the i-th bit of x. For S ⊂ [n] define the operator
Tµ,S : F → F to be the tensor product of Tµ,i for i ∈ S. In other words,

(Tµ,Sf)(x) =
∑
T⊆S

(1 + µ)|T | · (1− µ)|S\T |

2|S|
· f(xT),

where xT is obtained by flipping x in the coordinates in T . We define the Bonami-Beckner
operator Tµ : F → F as Tµ = Tµ,[n]. Another way to define the action of Tµ is the following.
Let Dµ be the product distribution on {0, 1}n such that for all i ∈ [n], Pr[ei = 0] = (1 + µ)/2,
Pr[ei = 1] = (1− µ)/2. Then,

(Tµf)(x) = Ee∼Dµ [f(x+ e)].

This definition implies |(Tµf)(x)| ≤ 1,∀x.

1.2.1 Robust local inverse for the noise matrix Let us define the matrixAµ,n ∈ R(n+1)×(n+1)

as

Aµ,n(i, j) =

(
i

j

)
· µj · (1− µ)i−j.

We index [n+ 1] by 0 ≤ i ≤ n and
(
i
j

)
is defined to be 0 if j > i. In a key part of the paper, we

will use the following key theorem from [MS13].

Theorem 1.2. (Moitra-Saks [MS13]) For any ε > 0, there exists v ∈ Rn+1 such that ‖Aµ,n · v−
e0‖∞ ≤ ε, ‖v‖∞ ≤ (2/ε)(1/µ)·log(2/µ) and the zeroth coordinate of Aµ,n · v is 1. Here e0 ∈ Rn+1

denotes the unit vector with 1 at the zeroth coordinate. Further, v can be computed in time
poly(n).

The non-trivial aspect of the above theorem is that while Aµ,n has very small singular values
and as a result, ‖A−1µ,n · e0‖∞ can be exponentially large in n, by settling for an ε-approximate
inverse, it is possible to achieve a significantly better bound. Unfortunately, Theorem 1.2 is not
exactly stated in these words in [MS13] though it follows very easily from the results there. In
Appendix B, we sketch the details on how to obtain Theorem 1.2 from the results in [MS13].

3

1.2.2 Möbius inversion Let (P,�) be a poset. Let FP be the space of real-valued functions
on P . Define µ : P × P → R recursively as follows:

For x ∈ P, µ(x, x) = 1.

For x, y ∈ P, µ(x, y) = 1x�y ·
(∑
x�z≺y

−µ(x, z)

)
.

We define ζ : FP → FP and µ : FP → FP as

(ζf)(x) =
∑
x�y

f(y) and (µf)(x) =
∑
x�y

µ(x, y) · f(y).

It is well known (see [Sta97]) that the transforms ζ and µ are inverses of each other. µ is usually
referred to as the Möbius transform of the poset P . While ζ is always well-conditioned (i.e.
‖ζ‖1→∞ ≤ 1), the same is not always true for µ. In particular, the entries of matrix defined
by µ can be exponentially large in |P |. However, in this paper, we consider a special kind of
poset for which ‖µ‖1→∞ is bounded. To state the next proposition, we will require the following
definition.

Definition 1. For x ∈ P([n]), define x↓ = {y : y � x}. For C ⊆ P([n]), define C↓ = ∪x∈Cx↓.
We read C↓ as the “downset” generated by C. Also, if C is a set such that for any x ∈ C, the
set x↓ ⊆ C, we say C is “downward closed”. Note that since the underlying poset is P([n]), for
x, y ∈ P([n]), x � y is equivalent to x ⊆ y.

Proposition 1.1. Let C ⊆ P([n]) and C↓ = {y : ∃x ∈ C, y � x}. Consider the poset defined
by C↓ ordered by set inclusion. Then, the Möbius transform µ for this poset is defined by

(µf)(x) =
∑
x�y

(−1)|y\x| · f(y).

Proof. Since it is obvious that ζ and µ are invertible transforms, we will just verify that µ ◦ ζ :
f 7→ f . To see this,

(µ ◦ ζf)(x) =
∑
x�y

(−1)|y\x| · (ζf)(y),

=
∑
x�y

(−1)|y\x|
∑
y�z

f(z) =
∑
x�y�z

(−1)|y\x| · f(z).

Since the set C↓ is downward closed, it is easy to see that for any z � x, the sum
∑

x�y�z(−1)|y\x| =
0. This implies that (µ ◦ ζf)(x) = f(x) which proves the claim.

2 Proof Overview

We recall that the samples available to learner are obtained in the following manner: First, an
element of {0, 1}n is sampled according to f and then each coordinate is flipped independently
with probability (1 − µ)/2. In other words, we have observations from the distribution Tµf

4

and we want to obtain an estimate of f . Dvir, et al. [DRWY12] gave a reduction to the case
that there is a known subset X of size 2k that contains the support of the distribution; for
convenience we rescale parameters so that |X| = k. Thus, from now onwards, we can assume
that we know the support of f and our task is to estimate the weight assigned by f to these
points.

Let us assume that the support of f is {x1, . . . , xk}. To prove Theorem 1.1, it suffices to
give an algorithm to compute f(x1) up to error ε. We first show that without loss of generality,
we can assume that x1 = 0 (i.e. the origin). To see this, note that the distribution x1 ⊕ Tµf is
the same as Tµg where g(x) = f(x⊕ x1).

A very basic observation concerning Tµf is that f̂(S) can be computed efficiently from Tµf
as long as |S| is small. The following claim formalizes this. For the rest of the discussion, let
γ(x,m, z) be defined as γ(x,m, z) = poly((1/x)m, z).

Claim 2.1. For S ⊂ [n], f̂(S) can be computed to additive accuracy ε with probability 1 − κ
using γ(µ, |S|, ε) · log(1/κ) samples from Tµf in time n · γ(µ, |S|, ε) · log(1/κ).

Proof. Observe that f̂(S) = µ−|S| · Ex∼Tµfχ(x). Using the fact that |χ(x)| ≤ 1 and applying
Chernoff bound, we get the claim.

Thus, for any fixed µ > 0, as long as |S| = Oµ(log k), the time and sample complexity of

computing f̂(S) using samples from Tµf is bounded by poly(n, k, 1/ε). For f : {0, 1}n → R,
define Att(f) ⊆ F as

Att(f) = {g ∈ F |E ⊆ {0, 1}n and g : x 7→ f(x) · (Tµ · 1E)(x)}.

A key step in our algorithm is to generalize Claim 2.1 to show that we can compute ĝ(S) for
g ∈ Att(f) from (sample access to) Tµf with the same sample complexity as Claim 2.1.

Claim 2.2. Let g : {0, 1}n → R be defined as g(x) = f(x) · (Tµ1E)(x). For S ⊂ [n], ĝ(S) can be
computed to additive accuracy ε with probability 1− δ using γ(µ, |S|, ε) · log(1/κ) samples from
Tµf in time n · γ(µ, |S|, ε) · log(1/κ). Here, we assume that 1E(·) can be efficiently computed.

The proof of Claim 2.2 relies heavily on ideas from [LZ15]. We prove this in Section 4. As
a consequence, we have the following corollary.

Corollary 2.3. Let ` : {0, 1}n → R where T = ‖̂̀‖L1, S0 = maxS:̂̀(S) 6=0 |S|. and g : {0, 1}n → R
be defined as Claim 2.2. We assume that ` =

∑
S `S · χS(x) where ` is specified by the list

{`S}. Then, 〈g, `〉 can be computed to accuracy ε with probability 1 − κ using γ(µ, S0, ε/T) ·
log(|supp(̂̀)|/κ) samples from Tµf in time γ(µ, |S0|, ε/T) · n · |supp(̂̀)| · log(|supp(̂̀)|/κ).

Proof. Note that 〈`, g〉 = 〈
∑

S `S · χS(x), g〉 =
∑

S `S · 〈χS, g〉 =
∑

S `S · ĝ(S). Claim 2.2

implies that using γ(µ, S0, ε/T) · log(|supp(̂̀)|/δ) samples from Tµf , ĝ(S) can be computed for

any S ∈ supp(̂̀) to accuracy ε/T with confidence 1− κ/T . As a corollary, using γ(µ, S0, ε/T) ·
log(|supp(̂̀)|/κ) samples from Tµf , we can compute ĝ(S) for all S ∈ supp(̂̀) to accuracy ε/T with

confidence 1− κ. Further, the time complexity of this algorithm is γ(µ, S0, ε/T) · n · |supp(̂̀)| ·
log(|supp(̂̀)|/κ). As a result, 〈`, g〉 can be computed to accuracy ε in the claimed time and
sample complexity.

5

Recall that our task is to compute f(0) to accuracy ε. The way we use Corollary 2.3
is as follows: By choosing E ⊆ {0, 1}n and ` : {0, 1}n → R carefully, one can ensure that
〈`, g〉 ≈ (Tµ1E)(0) · f(0). Thus, if we can can (approximately) compute 〈`, g〉, we will obtain
an approximation for f(0). The function ` is chosen so that S0 = Oµ(log(k/ε)), T = (k/ε)Oµ(1)

and |supp(̂̀)| = (k/ε)Oµ(1). Observe that if we plug in the values of S0, T and |supp(̂̀)| in
Corollary 2.3, the sample and time complexity of computing 〈`, g〉 (to error ε) is (k/ε)Oµ(1) and
time complexity is poly(n, (k/ε)Oµ(1)). The precise details of this calculation is given in Section 3.

For the moment, we elaborate on how the set E and the function `(·) are chosen. E ⊆ {0, 1}n
is chosen so that Tµ1E(·) has the following properties: Tµ1E(0) ≥ 1/2 and Tµ1E(x) decays
exponentially as x moves away from the origin. The following lemma makes this precise.

Lemma 2.4. Let {x1, . . . , xk} where x1 = 0. Define the set Far = {xi : dH(x1, xi) ≥ (1/µ2) ·
log k} and define the set E = {y ∈ {0, 1}n : dH(x1, y) ≤ dH(xi, y) for all xi ∈ Far}.

• (Tµ1E)(0) ≥ 1/2.

• For xi ∈ Far, (Tµ1E)(xi) ≤ e−
1
2
·µ2·dH(x1,xi).

Clearly, the function 1E(·) can be computed in time poly(n, k). Further, (Tµ1E)(0) can be com-
puted to additive error ε with confidence 1− κ in time poly(n, k, 1/ε) · log(1/κ).

While the above lemma is essentially identical to Lemma 3.2 in [LZ15], it is phrased a lit-
tle differently in that paper. For the sake of completeness, we reprove this lemma in Appendix A.

Let A = supp(f) where A = {x1, . . . , xk} with x1 = 0. Let 1E : {0, 1}n → {0, 1} be
the corresponding function from Lemma 2.4 and g : {0, 1}n → R be defined as g(x) = f(x) ·
(Tµ1E)(x). From Lemma 2.4, we get that g(x) decays exponentially in |x| for |x| ≥ µ−2 · log k
where |x| denotes the Hamming weight of x. Let Br(0) denote the Hamming ball of radius r
around the origin. Then, the above implies that if we set r = Oµ(log(k/ε)), then g essentially

vanishes outside Br(0). Next, consider a function ` : {0, 1}n → R where we set T = ‖̂̀‖L1 ,
S0 = maxS∈supp(̂̀) |S| such that `(0) = 1 and |`(x)| ≤ η for x ∈ supp(f)∩Br(0). Then, it follows

that (as shown in Section 3)∣∣〈`, g〉 − f(0) · (Tµ1E)(0)
∣∣ ≤ η + T · e−

µ2·r
2 .

If we set η = ε/16, then it just remains to bound the second term. Thus, we seek to construct
` : {0, 1}n → {0, 1} which is 1 at the origin, at most η (in absolute value) for x ∈ supp(f)∩Br(0)

and T , S0 and |supp(̂̀)| are as small as possible. In particular, in the above error term, we

have two competing parameters, namely T and r i.e. as r increases, the value of T = ‖̂̀‖L1

corresponding to the optimal `, also increases. Thus, it is not immediately obvious if there

exists `(·) such that the second error term T · e−µ
2·r
2 can be made vanishingly small. However,

for a careful choice of ` (as we discuss shortly), the second term can also be made ε/16. Thus,
|〈`, g〉 − f(0) · (Tµ1E)(0)| ≤ ε/8. Thus, if we approximate 〈`, g〉 (as done in Corollary 2.3) and
(Tµ1E)(0) (as done in Lemma 2.4), we obtain an ε-approximation to f(0).

We now motivate our construction of the function `(·). For this, let C = supp(f) ∩ Br(0)
and let C↓ be the downset generated by C. Note that x ∈ {0, 1}n can be identified as the
characteristic vector of a subset of [n] and hence, for the following discussion, we alternately

6

identify {0, 1}n with P([n]). We will first start with a suboptimal choice of ` which will motivate
our final construction.

Corresponding to every z ∈ C↓, consider the monomial ANDz : {0, 1}n → {0, 1} defined as

ANDz(x1, . . . , xn) =
∏
i:zi=1

xi.

We will define ` to be a linear combination of ANDz for z ∈ C↓ subject to the constraints

`(x) =

{
0 if x ∈ C↓ \ {0},
1 if x = 0.

Since ` is a linear combination of {AND}z∈C↓ , let us assume that ` =
∑

z∈C↓ αz · ANDz. In
terms of the ζ transform for the poset C↓, we can express ` as ` = ζT (

∑
z∈C↓ αz · 1z), where 1z

is the indicator function of z. Thus, αz = (µT `)(z) where µ is the Möbius transform for C↓.
Applying Proposition 1.1 and the value of ` on C↓, we obtain that αz = (−1)|z|. Thus, `(x) =∑

z∈C↓(−1)|z|ANDz(x). It is not difficult to see that for this choice of `, ‖̂̀‖L1 ≤ |C↓| ≤ k · 2r
and maxS:̂̀(S)6=0 |S| ≤ r. This choice of ` itself yields non-trivial results. In particular, in an

earlier version of this paper, the authors proved Theorem 1.1 with µ & 0.555, thereby giving
the first polynomial time algorithm for noisy population recovery for any µ < 1. However, to
prove Theorem 1.1 for any µ > 0, we require a more refined choice of `. Henceforth, let us refer
to the previous choice of ` as `0. In particular, the bottleneck in our argument comes from the
fact that we bound ‖ ̂̀0‖L1 by k ·2r. Instead, if we were able to bound ‖ ̂̀0‖L1 ≤ (1 + δ)r for some
δ < 1, this would immediately imply improve the lower bound required on µ. If δ > 0 could be
made arbitrarily small, then we obtain Theorem 1.1 for all µ > 0.

Towards a better choice of `, we notice that while `0(x) = 0 for x ∈ C↓ \ {0}, it suffices
to have |`(x)| ≤ η = ε/16 for x ∈ C↓ \ {0}. Unfortunately, it is not clear how this relaxed
requirement on ` can be exploited by the above analysis. To circumvent this, we consider a new
family of functions {ANDδ,z}z∈C↓ defined as follows.

For x ∈ C↓, ANDδ,z(x) = 1x�z · (1− δ)|x|−|z|,

and ÂNDδ,z is supported on C↓.

It is not difficult to see that the above conditions uniquely define ANDδ,z. For points in C↓, one
can view ANDδ,z(·) as a noise attenuated version of the function ANDz(·) (obtained by setting
δ = 0). We now set `(x) =

∑
z∈C↓ αz · ANDδ,z(x). Obtaining the coefficients {αz}z∈C↓ can be

viewed as a sort of noise attenuated Möbius inversion. The flexibility afforded by the parameter
δ allows us to exploit the relaxed constraints on ` and bound αz by δ|z| · (1/η)O(δ−1·log δ−1). To
prove this, we combine basic properties of the Möbius transform on C↓ with the robust local
inverse from Theorem 1.2. Intuitively, since the function ANDδ,z(·) combines properties of ANDz

with noise attenuation, it is not surprising that the properties of Möbius transform and the
robust local inverse are useful in bounding {αz}z∈C↓ . Further, we show that

‖̂̀‖L1 ≤ k2 · (1 + 2δ)r · (1/η)O(δ−1·log δ−1).

This proof of this inequality again uses the structure of C↓ as well as bounds on ‖ÂNDδ,z‖L1 (this
proof is given in Section 5). The above bound is incomparable to the bound of k ·2r we obtained

7

for the first choice of ` =
∑

z∈C↓(−1)|z| · ANDz. In particular, we pay a dependence on η to

bound ‖̂̀‖L1 whereas the bound on ‖ ̂̀0‖L1 had no dependence on η. However, the place where
we make a significant gain is that base of the exponential factor in r can be made arbitrarily
close to 1 by choosing a suitably small δ > 0. We summarize the properties of ` in the next
theorem.

Theorem 2.1. Let C ⊆ {0, 1}n be as defined above where |C| ≤ k and r = maxx∈C |x|. Given
any δ, η > 0, there exists ` : {0, 1}n → R which is a linear combination of {ANDδ,z}z∈C↓ such
that

• `(0) = 1 and |`(x)| ≤ η for x ∈ C↓ \ 0.

• ‖̂̀‖1 ≤ k2 · (1 + 2δ)r · (2/η)δ
−1·log(2δ−1).

• ̂̀ is supported on C↓ and hence maxS:̂̀(S)6=0 |S| = r.

Further, let `(x) =
∑

S∈C↓ `S · χS(x). Then, for every S ∈ C↓, `S can be computed in time
poly(|C↓|, n).

We compare the above theorem with an analogous result in Lovett and Zhang [LZ15] who
show the existence of `LZ : {0, 1}n → R which satisfies

• `LZ(0) = 1 and `LZ(x) = 0 for x ∈ C \ 0.

• ‖̂̀LZ‖L1 ≤ k · klog r and maxS: ̂̀LZ(S)6=0 |S| ≤ log k.

(This result is implied by Propersition 3.6 in their paper.)
We now compare `LZ with the function ` from Theorem 2.1

• `LZ(x) = 0 for x ∈ C \ 0 whereas we achieve the incomparable guarantee of |`(x)| ≤ η for
x ∈ C↓ \ 0.

• ̂̀LZ is supported on a subset of Blog k(0) whereas ̂̀ is supported on a subset of Br(0). Thus,

in terms of compactness of ̂̀, Lovett and Zhang achieve a superior guarantee.

• ‖`LZ‖L1 ≤ k ·klog r whereas for any δ, η > 0, we achieve ‖̂̀‖1 ≤ k2 · (1 + 2δ)r · (2/η)δ
−1·log δ−1

.
Our bound has worse asymptotic dependence on r (and a dependence on η). However,
when the value of η and r are eventually plugged in (to ε/16 and r = Oµ(log(k/ε)) resp.),

the bound on ‖̂̀‖1 remains kO(1) (for a fixed µ > 0) whereas the bound on ‖`LZ‖L1 becomes
kO(log log k). This is the crucial place where we gain over Lovett and Zhang [LZ15].

This concludes the proof overview. We now give the proof of the main theorem.

8

3 Proof of Theorem 1.1

Recall that we are assuming that supp(f) = {x1, . . . , xk} where x1 = 0. Also, from our discussion
in the preceding section, to prove Theorem 1.1, it suffices to show that f(0) can be approximated

to ε with (k/ε)Õ(1/µ) samples and in time poly((k/ε)Õ(1/µ), n). Let E be the set defined in
Lemma 2.4 and let g : {0, 1}n → R be defined as g(x) = f(x) · (Tµ · 1E)(x).

Let r ≥ µ−2 · log k (whose precise value will be fixed later). Let C = supp(f) ∩ Br(0).
Let δ, η > 0 whose values will be fixed later and let ` : {0, 1}n → R be the function from
Theorem 2.1 corresponding to the parameters C, r, δ and η. As we have mentioned before,
f(0) · (Tµ · 1E)(0) ≈ 〈`, g〉. Thus, our algorithm to approximate f(0) will be to approximate

〈`, g〉 (call the approximation 〈̃`, g〉) and (Tµ · 1E)(0) (call the approximation Υ) and return

〈̃`, g〉/Υ.
We first bound the difference between 〈`, g〉 and (Tµ · 1E)(0) · f(0) in terms of r, k, δ and η.

Claim 3.1. ∣∣〈`, g〉 − f(0) · (Tµ · 1E)(0)
∣∣ ≤ η + ‖̂̀‖L1 · e−

µ2·r
2 .

Proof. Using `(0) = 1 and the definition of g,∣∣〈`, g〉 − f(0) · (Tµ · 1E)(0)
∣∣ =

∣∣〈`, g〉 − `(0) · g(0)
∣∣

≤
∑
x∈C\0

∣∣`(x) · g(x)
∣∣+
∑
x 6∈C

∣∣`(x) · g(x)
∣∣. (1)

Next, we bound the first sum.∑
x∈C\0

∣∣`(x) · g(x)
∣∣ ≤ sup

x∈C\0
|`(x)| ·

∑
x∈C\0

∣∣g(x)
∣∣

≤ η ·
∑
x∈C

|g(x)| = η ·
∑
x∈C

|f(x) · (Tµ1E)(x)|

≤ η ·
∑
x∈C

|f(x)| ≤ η. (2)

In the above, the second inequality follows from the property of ` from Theorem 2.1, the third
inequality uses ‖Tµ1E‖∞ ≤ 1 and the last inequality uses ‖f‖1 = 1. Next, we bound the second
sum. ∑

x 6∈C

∣∣`(x) · g(x)
∣∣ ≤ sup

x
|`(x)| ·

∑
x 6∈C

∣∣g(x)
∣∣

≤ ‖̂̀‖L1 ·
∑
x 6∈C

|g(x)| = ‖̂̀‖L1 ·
∑
x∈C

|f(x) · (Tµ1E)(x)|

≤ ‖̂̀‖L1 ·
∑
x∈C

|f(x)| · e−
µ2·r
2 ≤ ‖̂̀‖L1 · e−

µ2·r
2 (3)

The second inequality uses that for all x, |`(x)| ≤ ‖̂̀‖L1 , the third inequality uses Lemma 2.4
whereas the last inequality uses ‖f‖1 = 1. Plugging (2) and (3) in (1), we obtain the claim.

9

Note that ‖̂̀‖1 ≤ k2 · (1 + 2δ)r · (2/η)δ
−1·log(2δ−1). If we set,

• η = ε/4,

• δ = µ2/16,

• r = (100/µ4) · log(1/µ) · log(k/ε),

then using Claim 3.1, we have
∣∣〈`, g〉 − f(0) · (Tµ · 1E)(0)

∣∣ ≤ ε/8.
Let `(x) =

∑
S∈C↓ `S · χS(x). Using Theorem 2.1, we can assume that we have the complete

list {`S}S∈C↓ in time poly(n, |C↓|) = poly(n, k · 2r) = poly((k/ε)Oµ(1), n). Applying Corollary 2.3,
using (k/ε)Oµ(1) · log(1/κ) and time n · (k/ε)Oµ(1) · log(1/κ), with confidence 1−κ, we can obtain

〈̃`, g〉 such that
∣∣〈̃`, g〉 − 〈`, g〉∣∣ ≤ ε

16
. This implies that∣∣〈̃`, g〉 − f(0) · (Tµ · 1E)(0)
∣∣ ≤ ∣∣〈̃`, g〉 − 〈`, g〉∣∣+

∣∣〈`, g〉 − f(0) · (Tµ · 1E)(0)
∣∣

≤ ε/16 + ε/16 = ε/8.

Using Lemma 2.4, we can compute an approximation Υ with confidence 1 − κ such that |(Tµ ·
1E)(0)−Υ| ≤ ε/8 and Υ ≥ 1/2 in time poly(n, k, 1/ε) · log(1/κ). Thus,∣∣∣∣ 〈̃`, g〉Υ

− f(0) · (Tµ · 1E)(0)

Υ

∣∣∣∣ ≤ ε

8 ·Υ
≤ ε

4
,

where the last inequality uses Υ ≥ 1/2. Further, with probability 1− κ, we have∣∣∣∣(Tµ · 1E)(0)

Υ
− 1

∣∣∣∣ ≤ ε/4.

Thus, with probability 1− 2κ,∣∣∣∣ 〈̃`, g〉Υ
− f(0)

∣∣∣∣ ≤ ∣∣∣∣ 〈̃`, g〉Υ
− f(0) · (Tµ · 1E)(0)

Υ

∣∣∣∣+

∣∣∣∣f(0)− f(0) · (Tµ · 1E)(0)

Υ

∣∣∣∣
≤ ε

4
+ f(0) ·

∣∣∣∣1− (Tµ · 1E)(0)

Υ

∣∣∣∣ ≤ ε

4
+ f(0) · ε

4
≤ ε

2
.

This concludes the proof of Theorem 1.1.

4 Proof of Claim 2.2

We begin by restating Claim 2.2.

Claim. Let g : {0, 1}n → R be defined as g(x) = f(x) · (Tµ1E)(x). For S ⊂ [n], ĝ(S) can be
computed to additive accuracy ε with probability 1− κ using γ(µ, |S|, ε) · log(1/κ) samples from
Tµf in time n · γ(µ, |S|, ε) · log(1/δ) where γ(µ, |S|, ε) = poly((1/µ)|S|, 1/ε). Here, we assume
that 1E(·) can be efficiently computed.

10

Since g(x) = f(x) · (Tµ1E)(x), we get that

ĝ(S) = 〈(XSf), (Tµ1E)〉 = 〈(TµXSf),1E〉.

We now make two observations. The first is that for any S ⊆ [n], Tµ,S is a self-adjoint operator.
The second is that if S, S ′ ⊆ [n] are disjoint sets, then the operators XS′ and Tµ,S commute.
Decomposing Tµ = Tµ,STµ,S, we have

TµXSf = Tµ,STµ,SXSf = Tµ,SXSTµ,Sf = Tµ,SXST
−1
µ,STµf.

Thus, we get

ĝ(S) = 〈Tµ,SXST
−1
µ,STµf,1E〉 = Ez∼Tµf〈Tµ,SXST

−1
µ,S1z,1E〉

An easy but crucial fact is the following.

Proposition 4.1. 〈Tµ,SXST
−1
µ,S1z,1E〉 can be computed in time poly(n, 2|S|).

Proof. To see this, define Az,S = {y : yS = zS}. Observe that

supp(Tµ,SXST
−1
µ,S1z) ⊆ Az,S and |Az,S| = 2|S|.

Further, Tµ,SXST
−1
µ,S1z can be computed on any point in Az,S in time 2O(|S|). Using the fact that

1E(·) can be efficiently evaluated, we conclude that 〈Tµ,SXST
−1
µ,S1z,1E〉 can be evaluated in time

poly(n, 2|S|).

Based on the above relation, our procedure to estimate ĝ(S) will be a simple random sampling
procedure. Let M be a sufficiently large number (which will be fixed soon).

• Sample z1, . . . , zM ∼ Tµf .

• Return g̃S = M−1 ·
(∑M

i=1〈Tµ,SXST
−1
µ,S1z,1E〉

)
.

To establish an upper bound on M , we recall the following facts from [LZ15] (Claim 3.5 in
[LZ15]).

Claim 4.2. ‖Tµ,i‖1→1 = 1 and ‖T−1µ,i ‖1→1 = 1/µ.

The above immediately implies

‖Tµ,S‖1→1 ≤ 1, ‖T−1µ,S‖1→1 ≤ (1/µ)|S|. (4)

Using ‖XS‖1→1 ≤ 1, this implies that ‖Tµ,SXST
−1
µ,S1z‖1 ≤ (1/µ)|S|.

〈Tµ,SXST
−1
µ,S1z,1E〉 ≤ ‖Tµ,SXST

−1
µ,S1z‖1 ≤ (1/µ)|S|.

An application of Chernoff bound yields that if M = poly(1/ε, 1/|µ||S|) · log(1/κ), then with
probability 1− κ, |g̃(S)− ĝ(S)| ≤ ε.

11

5 Proof of Theorem 2.1

Towards the proof of Theorem 2.1, we first recall the following basic facts about ANDz(·).

Proposition 5.1. For any z ∈ {0, 1}, the function ANDz : {0, 1}n → {0, 1} satisfies the
following:

• ÂNDz is supported on the subsets of {i : zi = 1},

• and ‖ANDz‖L1 = 1.

Recall that C = {x1, . . . , xk} ⊆ {0, 1}n where |xi| ≤ r (we are assuming that the size of the
set C is k as opposed to at most k). The next proposition proves important structural properties
of the function ANDδ,z(·).

Proposition 5.2. Let 0 ≤ δ ≤ 1. Then, for any point z ∈ C↓, there exists ANDδ,z : {0, 1}n → R,
with the following properties:

• For y ∈ C↓, ANDδ,z(y) = 1y�z · (1− δ)|y|−|z|,

• ÂNDδ,z(S) 6= 0 only if S ∈ C↓.

• ‖ÂNDδ,z‖L1 ≤ k · (1 + δ)r−|z|.

Proof. Let Symj : Rn → R as the elementary symmetric polynomial of degree j. We first
construct the function ANDδ,0 i.e. the function ANDδ,z where z is the origin. Towards constructing
ANDδ,0, we define the function hδ,0 : {0, 1}n → R as

hδ,0(y) =
r∑
j=0

(−δ)j · Symj(y) =
r∑
j=0

∑
S∈([n]

j)

(−δ)j · ANDS(y).

Thus, for any y ∈ {0, 1}n, |y| ≤ r,

hδ,0(y) =
r∑
j=0

(−δ)j
(
|y|
j

)
= (1− δ)|y|.

Next, observe that if S 6∈ C↓, ANDS(y) = 0. We define ANDδ,0 : {0, 1}n → R as

ANDδ,0(y) =
r∑
j=0

∑
S∈C↓:|S|=j

(−δ)j · ANDS(y).

In comparison to hδ,0(y), the only terms dropped in ANDδ,0(y) are ANDS(y) for S 6∈ C↓. Thus,
for y ∈ C↓,

ANDδ,0(y) =
r∑
j=0

(−δ)j
(
|y|
j

)
= (1− δ)|y|.

12

Thus, this satisfies the first requirement. For the second requirement, we observe that ÂNDS is

supported on S↓. Since C↓ is closed under downward closure, we get that ÂNDδ,0 is supported
on C↓. For the final item, note that

‖ÂNDδ,0‖L1 ≤
r∑
j=0

∑
S∈C↓:|S|=j

δj · ‖ÂNDS‖L1 ≤
r∑
j=0

∑
S∈C↓:|S|=j

δj.

The last inequality uses Proposition 5.1. Note that |C↓ ∩ {S : |S| = j}| ≤ k ·
(
r
j

)
. Thus,

‖ÂNDδ,0‖L1 ≤
r∑
j=0

∑
S∈C↓:|S|=j

δj ≤
r∑
j=0

(
r

j

)
· k · δj = k(1 + δ)r.

This finishes the construction of ANDδ,0. For z ∈ C↓ \ {0}, let Iz = {i : zi = 1}. Define
ANDδ,0,Iz : Rn\Iz → R as the function ANDδ,0 when the ambient dimensions are restricted to
[n] \ Iz. Note that correspondingly, we also project C↓ to the coordinates [n] \ Iz.

ANDδ,z(y) = ANDz(y) · ANDδ,0,Iz(y).

First, by definition of ANDδ,0,Iz(y), it follows that for every y ∈ C↓,

ANDδ,0,Iz(y) = (1− δ)|y[n]\Iz | = (1− δ)|y|−|z|.

This implies that ANDδ,z(y) = 1y�z · (1− δ)|y|−|z|.
Next, by Proposition 5.1, ÂNDz is supported on the sets Iz and by the first part of our

proof, ̂ANDδ,0,Iz is supported on the projection of C↓ to the coordinates in [n]\Iz. This together

implies that ÂNDδ,z is supported on C↓.

Finally, by Proposition 5.1, ‖ÂNDz‖L1 = 1 and by the first part of our proof, ‖ ̂ANDδ,0,Iz‖L1 ≤
k · (1 + δ)r−|z|. Combining these two, we get ‖ÂNDδ,z‖L1 ≤ k · (1 + δ)r−|z|. This finishes the
proof.

Proof of Theorem 2.1. Recall the matrix Aµ,r ∈ R(r+1)×(r+1) is defined as Aµ,r(i, j) =
(
i
j

)
µj(1−

µ)i−j where the rows and columns are indexed by 0 ≤ i, j ≤ r. Using Theorem 1.2, there
exists v ∈ Rr+1 such that ‖Aµ,r · v − e0‖ ≤ η where ‖v‖∞ ≤ (2/η)(1/δ) log(2/δ). Further, v can be
computed in time poly(r).

We define `(y) =
∑

z∈C↓ v|z| · δ|z| · ANDδ,z(y). First, it easily follows that ̂̀ is supported on C↓.
For y ∈ C↓ define the set Downy,t = {z ∈ C↓ : z � y and |z| = t}. Since C↓ is closed under

downward closure, |Downy,t| =
(|y|
t

)
. Note that ANDδ,z(y) = 0 for z 6∈ ∪0≤t≤|y|Downy,t. Thus, for

any y ∈ C↓,

`(y) =
∑
z∈C↓

v|z| · δ|z| · ANDδ,z(y) =
∑

0≤t≤|y|

vt · δt · (1− δ)|y|−t ·
(
|y|
t

)
= (Aµ,r · v)|y|.

Using Theorem 1.2, `(0) = 1 and for x ∈ C↓ \ {0}, |`(x)| ≤ η. To prove Theorem 2.1, all that

13

remains is to bound ‖̂̀‖L1 .

‖̂̀‖L1 ≤
∑
z∈C↓
|v|z|| · δ|z| · ‖ÂNDδ,z‖L1 (follows from definition of `)

≤
∑
z∈C↓
|v|z|| · δ|z| · k · (1 + δ)r−|z| (using Proposition 5.2)

≤ ‖v‖∞ ·
∑
z∈C↓

δ|z| · k · (1 + δ)r−|z|

= ‖v‖∞ ·
∑

0≤j≤r

δj · k · (1 + δ)r−j · |{z ∈ C↓ : |z| = j}|. (5)

Since |C| ≤ k and C↓ ⊆ Br(0), it easily follows that

|{z ∈ C↓ : |z| = j}| ≤ k ·
(
r

j

)
.

Plugging this in (5), we get

‖̂̀‖L1 ≤ ‖v‖∞
∑

0≤j≤r

δj · k · (1 + δ)r−j · k ·
(
r

j

)
= k2 · ‖v‖∞ · (1 + 2δ)r.

Using ‖v‖∞ ≤ (2/η)(1/δ)·log(2/δ), we get the final bound on ‖̂̀‖L1 .

Acknowledgments

A.D. is grateful to Rocco Servedio for many illuminating conversations about this problem.

References

[BIMP13] Lucia Batman, Russell Impagliazzo, Cody Murray, and Ramamohan Paturi. Finding
heavy hitters from lossy or noisy data. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 347–362. Springer,
2013.

[DRWY12] Zeev Dvir, Anup Rao, Avi Wigderson, and Amir Yehudayoff. Restriction access.
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 19–33. ACM, 2012.

[LZ15] Shachar Lovett and Jiapeng Zhang. Improved noisy population recovery, and reverse
bonami-beckner inequality for sparse functions. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pages 137–142. ACM, 2015.

[MS13] Ankur Moitra and Michael Saks. A polynomial time algorithm for lossy population
recovery. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 110–116. IEEE, 2013.

14

[Sta97] Richard Stanley. Enumerative Combinatorics. Cambridge University Press, 1997.

[WY12] Avi Wigderson and Amir Yehudayoff. Population recovery and partial identification.
In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium
on, pages 390–399. IEEE, 2012.

A Proof of Lemma 2.4

We begin by restating Lemma 2.4.

Lemma. Let {x1, . . . , xk} where x1 = 0. Define the set Far = {xi : dH(x1, xi) ≥ (1/µ2) · log k}
and define the set E = {y ∈ {0, 1}n : dH(x1, y) ≤ dH(xi, y) for all xi ∈ Far}.

• (Tµ1E)(0) ≥ 1/2.

• For xi ∈ Far, (Tµ1E)(xi) ≤ e−
1
2
·µ2·dH(x1,xi).

Clearly, the function 1E(·) can be computed in time poly(n, k). Further, (Tµ1E)(0) can be com-
puted to additive error ε in time poly(n, k, 1/ε).

Proof. We first lower bound (Tµ1E)(x1). Let s = log(k)/µ2. By definition,

(Tµ1E)(x1) = Pre∼Dµ [x1 + e ∈ E] = 1− Pre∈Dµ [x1 + e 6∈ E]

≥ 1−
(∑
i:dH(x1,xi)≥s

Pry∼x1+e[dH(x1, y) ≥ dH(xi, y)]

)
The last inequality follows by the definition of E and union bound. To lower bound the right
hand side, let us define Si = {j ∈ [n] : xi and xi differ in the jth coordinate}. If dH(xi, x1) ≥ s,
then |Si| ≥ s. For such a point xi ∈ S,

Pry∼x1+Dµ [dH(x1, y) ≥ dH(xi, y)] = Pre∼Dµ

[∑
j∈Si

ej ≥ |Si|/2

]

To bound the above sum, we recall the Chernoff bound.

Proposition. Let X1, . . . , Xn be n independent {0, 1} random variables such that 1 ≤ i ≤ n,
E[Xi] = p. If q > p, then,

Pr

[
X1 + . . .+Xn ≥ n · q

]
≤ exp

(
− n

2
·
(
q

p
− 1

)2)
.

Applying the above proposition, we get that

Pry∼x1+Dµ [dH(x1, y) ≥ dH(xi, y)] ≤ exp

(
−|Si|

2
· µ2

)
≤ 1

2k
.

This implies that

(Tµ1E)(x1) ≥ 1−
(∑
i:dH(x1,xi)≥s

Pry∼x1+e[dH(x1, y) ≥ dH(xi, y)]

)
≥ 1

2
.

15

We now upper bound (Tµ1E)(xi) for xi ∈ Far. Note that (Tµ1E)(xi) = Pre∼Dµ [xi + e ∈ E]. Note
that if xi + e ∈ E, then dH(xi + e, x1) ≤ dH(xi + e, xi). This implies that

∑
j∈Si ej ≥ |Si|/2.

Applying the Chernoff bound, we have

(Tµ1E)(xi) = Pre∼Dµ [xi + e ∈ E] ≤ Pre∼Dµ

[∑
j∈Si

ej ≥
|Si|
2

]
≤ e−

1
2
·µ2·dH(x1,xi).

The fact that 1E(·) can be computed in time poly(n, k) follows from the definition of E. Further,
since 1E(·) is computable in time poly(n, k) and Dµ is samplable in time poly(n), we immediately
get that

(Tµ1E)(x1) = Pre∼Dµ [x1 + e ∈ E],

can be approximated to ε in time poly(n, k, 1/ε) · log(1/κ) with confidence 1− κ.

B Robust local inverse from [MS13]

Recall that the matrix Aµ,n ∈ R(n+1)×(n+1) is defined to be

Aµ,n(i, j) =

(
i

j

)
· µj · (1− µ)i−j,

where
(
i
j

)
= 0 if j > i. Following Moitra and Saks [MS13], we now define an ε-local inverse.

Definition 2. Let w ∈ Rn+1 such that ‖Aµ,n · w − e0‖∞ ≤ ε. Such a vector w is said to be an
ε-local inverse of Aµ,n.

Further, ‖w‖∞ is defined to be the sensitivity of such a vector. Definition 2.1 from [MS13]
defines σn(µ, ε) to be

σn(µ, ε) = min
‖Aµ,n·w−e0‖∞≤ε

‖w‖∞.

The next observation states that the w achieving the optimum in the above definition can be
found using linear programming.

Observation B.1. Using linear programming, it is possible to find w ∈ Rn+1 in time poly(n)
such that ‖Aµ,n · w − e0‖∞ ≤ ε, such that ‖w‖∞ = σn(µ, ε).

We now restate Theorem 2.2 from [MS13] which gives an upper bound on σn(µ, ε).

Theorem. For all positive integers n and µ, ε > 0, σn(µ, ε) = (1/ε)f(µ) where f(µ) = (1/µ) ·
log(2/µ).

Now choose ε0 = ε
1+ε

in this theorem. Let α0 be the zeroth coordinate of Aµ,n ·w. Note that
1 + ε

1+ε
≥ α0 ≥ 1− ε

1+ε
. Define v = w/α0. Then the zeroth coordinate of Aµ,n · w is 1. For the

other coordinate i 6= 0, we have:

|(Aµ,n · v)i| = |(Aµ,n · w)i|/α0 ≤
ε

1 + ε
·
(

1− ε

1 + ε

)−1
≤ ε

Also we have: ‖v‖∞ = (1/α0) · ‖w‖∞ ≤ (1 − ε
1+ε

)−1((1 + ε)/ε)(2/µ)·log(1/µ) ≤ (2/ε)(2/µ)·log(1/µ).
This proves Theorem 1.2.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

