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Abstract. We study the parametrization of QBF resolution calculi by
dependency schemes. One of the main problems in this area is to un-
derstand for which dependency schemes the resulting calculi are sound.
Towards this end we propose a semantic framework for variable inde-
pendence based on ‘exhibition’ by QBF models, and use it to define a
property of dependency schemes called full exhibition. We prove that
all CDCL-based resolution calculi, including Q-resolution, universal and
long-distance Q-resolution, are sound when parametrized by a fully ex-
hibited dependency scheme. To illustrate proof of concept, we show that
the standard dependency scheme is fully exhibited.

1 Introduction

The excellent success of SAT solvers in the realm of propositional Boolean for-
mulae has motivated much interest in the corresponding search problem for
quantified Boolean formulae (QBF). The greater expressive capacity of QBF,
afforded by its PSPACE-completeness [21], presents novel challenges in solving,
and the array of emerging techniques is motivating a wealth of research in the
closely-related field of proof complexity [3–8,10–13].

This relationship between practice and theory consists in the fact that the
trace of any unsuccessful run of a solver serves as a witness to falsity. Understand-
ing the refutational proof system that underpins a particular solving method,
and thereby accounts for its correctness, motivates the proof-theoretic study of
specific calculi; most notable is the enormous interest in propositional resolu-
tion, the calculus which underpins conflict-driven clause learning (CDCL) for
SAT (cf. [9]). Similarly for QBF, recent work has led to a complete understand-
ing of the relative strength of resolution-based QBF calculi [3, 6], including Q-
resolution (Q-Res) [14], universal Q-resolution (QU-Res) [12], and long-distance
Q-resolution (LD-Q-Res) [2].

The value of this research is twofold. Foremost, the twin notions of simulation
and separation (by proof-size bounds) of proof systems admit an illuminating
overview of relative strengths [6]. Additionally, the research spawns ideas for new
and stronger calculi which in turn might be utilised for improved solving.

Implemented in the state-of-the-art solver DepQBF [15,17], one of the recent
and exciting developments in QBF solving has seen the introduction of depen-
dency schemes: algorithms that gather information on variable independence
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by prior appeal to the syntactic form of an instance. Independence, however, is
usually presented as a semantic concept [15, 18]: the truth of a QBF Φ is wit-
nessed by a Skolem-function model, in which each existential x is identified with
a Boolean function fx, such that substitution for each x produces a propositional
tautology. The arguments to fx are the universal variables Ux left of x in the
quantifier prefix, but it may occur that some circuit computes fx without using
u ∈ Ux as an input. In this case we say that x is independent of u – and a dual
notion for false QBFs provides for independence of universals on existentials –
even though the Skolem-function model is in general not unique.

This lack of uniqueness has consequences for soundness in QBF calculi. The
impact of a dependency scheme in the proof system is to allow some logical
steps which previously were prohibited; specifically, the ∀-reduction rule of Q-Res
receives greater reign. This motivated the proposal of Q(D)-Res by Slivovsky and
Szeider [20], a parametrization of the classical calculus by dependency schemes.

For which schemes this calculus is sound is an open problem; soundness fails
for the so-called ‘optimal dependency scheme’ Dopt (defined semantically), but
an argument by transformation of refutation [20] suffices to prove that Q(D)-Res
is sound for the reflexive resolution path scheme Drrs (defined syntactically).

Nothing is currently known about the intermediate dependency schemes;
moreover, the lack of general methods may frustrate future developments. It is
natural to propose the parametrization by dependency schemes of stronger QBF
calculi, of the other CDCL-based QBF resolution systems and QBF Frege [4],
whereupon methods for proofs of soundness based on properties of dependency
schemes will carry over.

In this paper we demonstrate that semantic notions of independence are
indeed equipped for this; our contributions are summarized below.

1. New QBF calculi parametrized by dependency schemes. We extend
the parametrisation by dependency schemes to all the CDCL-based resolution
calculi for QBF: with the new long-distance calculus LD-Q(D)-Res, with universal
resolution QU(D)-Res, and with their combination LQU(D)-Res.

Our new long-distance calculus presents the greatest challenge. The merged
literal u∗, while accounting for the strength of long-distance techniques [11], is
something of a semantic obstacle, as its entrance in a refutational proof gives no
clue as to how it should be evaluated under assignment. Our key contribution
here is the proposal of merged literal functions that provide the missing seman-
tics, giving a clear account of the role of the merged literal. Progressing from
Q-resolution, variable independence and merging have a more subtle interaction;
in LD-Q(D)-Res, we must supplant merged literals with annotated literals, which
record existential pivots to prevent unsound ∀-reduction steps. Accordingly, we
introduce analogous annotated literal functions to complete our approach.

2. A semantic framework and a sufficient condition for soundness.
We address the issue of soundness in QBF dependency calculi, and propose a



semantic framework for variable independence that builds on previous litera-
ture [15,18]. We show that, for a given instance, the use of distinct QBF models
to assert (or ‘exhibit’) different independencies can be problematic for logical
consequence in the proof system. This motivates our key definition of full exhi-
bition, which applies to a dependency scheme whenever a single model exhibits
all the existential independencies for an arbitrary true QBF. In view of the de-
parture of semantic entailment, we proceed to a general method in which the
concept of full exhibition proves sufficient for soundness. Our argument is widely
applicable: it provides soundness for all resolution-type calculi considered here,
but also applies to much stronger QBF Frege systems [4] when parametrized by
a fully exhibited dependency scheme.

3. Demonstrating full exhibition. We conclude the paper with proof of con-
cept, and show that the standard dependency scheme is fully exhibited. Specif-
ically, this is achieved by an algorithmic transformation of an arbitrary model
M for a true QBF Φ into a model M∗ that exhibits all the required indepen-
dencies. This reveals the possibility for QBF solving to implement, for example,
long-distance techniques in tandem with the standard dependency scheme, or
indeed with any other scheme shown to be fully exhibited by an extension of our
method.

2 Preliminaries

Quantified Boolean Formulas. A Quantified Boolean Formula (QBF) Φ over
a set V = {v1, . . . , vn} of n variables is a formula in quantified Boolean logic with
quantifiers ranging over {0, 1}. We consider only formulas in prenex conjunctive
normal form (PCNF), denoted Φ = Q .φ, in which all variables are quantified
either existentially or universally in the quantifier prefix Q = Q1v1 · · · Qnvn,
Qi ∈ {∃,∀} for i ∈ [n], and φ is a propositional conjunctive normal form (CNF)
formula called the matrix. We typically write xi for existential variables and ui
for universals. Where convenient, we refer to a clause as a set of literals and a
matrix as a set of clauses.

For any QBF Φ, we denote the set of existentially quantified variables of Φ by
V∃ = {xi ∈ V | Qi = ∃}, and define the set V∀ = {ui ∈ V | Qi = ∀} of universal
variables similarly. The prefix Q imposes a linear ordering on the variables of Φ
that is captured by the binary relation <Φ, such that vi <Φ vj holds whenever
i < j, in which case we say that vj is right of vi, or that vi is left of vj . The set
of variables right of v is denoted R(v) = {v′ ∈ V | v <Φ v′}.

Assignment Trees and Models. In order to develop the semantic definition
of independence, we make extensive use of assignment trees as defined in [15],
and give a precise restatement as follows.

Given a QBF Φ over n variables V = {v1, . . . , vn}, a complete assignment
to Φ is a total function α : V → {>,⊥}, which maps each variable of Φ to a
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Fig. 1. An assignment tree T for a QBF ∀u1∃x1∀u2∃x2 .φ, with arbitrary matrix φ.

truth value true > or false ⊥. We may represent such an assignment α as a
set of literals {l1, . . . , ln}, where var(li) = vi for each i = 1, . . . , n, such that
li = vi if α(vi) = > and li = ¬vi otherwise. We allow to specify variables and
literals interchangeably as an argument to the assignment function, by defining
α(¬v) = ¬α(v), where ¬> = ⊥, and vice versa.

An assignment tree T for Φ is a tree with root r in which every node except
r is labelled with some literal l, with var(l) ∈ V . Every node labelled with a
universal literal has exactly one sibling labelled with the complementary literal,
and every node labelled with an existential literal has no siblings. Every path P
from r to a leaf of T defines a sequence of literals {l1, . . . , ln} which represents
a total assignment to the variables of V , and which strictly acknowledges the
linear ordering imposed by the prefix of Φ; that is, var(li) = vi for all i = 1, . . . n.
We also use P to denote the assignment function corresponding to this sequence.
When representing an assignment tree diagramatically, it is conventional to place
the node labelled ¬u to the left of that labelled u, for each u ∈ V∀, as shown
in Fig. 1. Where convenient, we refer to an assignment tree as a set of paths.
An assignment tree T for the QBF Φ = Q .φ is a model for Φ if P (φ) = > for
all paths P in T ; that is every path in T satisfies every clause in the matrix of
Φ. We typically use M to denote a model. A QBF which has a model is true,
otherwise it is false.

Dependency Schemes. Closely following [20], a proto-dependency scheme D
is a function that maps each QBF Φ to a binary relation DΦ. The binary relation
is a set of pairs of oppositely quantified variables1 DΦ = {(v1, w1), . . . , (vm, wm)}
such that wi is considered to depend on vi, for each i = 1, . . . ,m. Such a pair
is called a dependency, and wi is a dependent of vi. A proto-dependency scheme
D′ is said to be at least as general as another D (written D′ ≤ D) if D′Φ ⊆ DΦ
for all QBFs Φ, and is strictly more general (written D′ < D) if the inclusion is
strict for some formulae.

In practice, a proto-dependency scheme may include spurious dependencies
(that is, pairs of variables that are in fact independent) which reduce the use-

1 Similarly quantified variables are correctly considered independent.



fulness of the scheme, by inhibiting the strength of the calculus which uses it.
Moreover, a proto-dependency scheme may also omit genuine dependencies.

There are two proto-dependency schemes of particular interest, which in a
clear sense are the largest and smallest useful ones. The largest is the trivial
dependency scheme Dtrv, which includes all the dependencies which are not
explicitly ruled out by the linear ordering of the quantifier prefix; that is, Dtrv

Φ =
{(v, w) | v <Φ w , q(v) 6= q(w)}. The smallest is the optimal dependency scheme
Dopt, cf. [15], which includes only non-spurious dependencies by means of the rule
Dopt
Φ = {(v, w) | v and w are not independent}. The definition of independence

we use is given in Section 4 (Definition 2).
We restrict attention to those proto-dependency schemes which lie between

these two extremes of usefulness; if a proto-dependency schemeD satisfiesDopt ≤
D ≤ Dtrv, we say that D is a dependency scheme.

QBF Resolution Calculi. We give a brief overview of four resolution-based
CDCL QBF calculi, with the intention of augmenting them to utilise dependency
schemes – for a more detailed survey of the original systems, see [6]. Q-resolution
(Q-Res) introduced in [14] is the standard sound and complete refutational cal-
culus for QBF in PCNF. In addition to resolution over existential pivots with
non-tautologous resolvents, the calculus has a universal reduction rule

C ∪ {u} ,
C

where u is a universal literal, and all literals in C are left of u. QU-resolution
(QU-Res) is a natural extension of Q-Res that allows universal resolution pivots,
yielding a stronger calculus that is exponentially separated [12].

Long-distance Q-resolution (LD-Q-Res), formalised in [2], allows the introduc-
tion of a special merged literal u∗, denoting the appearance of complementary
literals in u after a resolution step on an existential pivot x which is left of u:

C1 ∪ {x} ∪ U1 C2 ∪ {¬x} ∪ U2

C1 ∪ C2 ∪ U
Here, U1 and U2 contain only universal literals with var(U1) = var(U2), and
for each u ∈ var(U1) we require x <Φ u . If for l1 ∈ U1, l2 ∈ U2, we have
var(l1) = var(l2) = u, then l1 = ¬l2, or at least one of l1, l2 is already merged.
The set U is defined as {u∗ | u ∈ var(U1)}. Merged literals do not prohibit ∀-
reduction steps. The resulting system is exponentially stronger than Q-Res [11].

Finally, the calculus LQU+-Res [3] combines naturally the features of QU-
Res and LD-Q-Res, producing a system which introduces merged literals while
allowing resolution over universal, as well as existential, pivots.

3 Dependency Schemes and Q-resolution

In this short section, we discuss the role of dependency schemes in QBF calculi,
and recall the definition of Q(D)-Res [20], the first QBF dependency calculus to
be put forward in the literature.



(Axiom)
C C is a clause in the matrix of Φ.
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If l ∈ C1, then ¬l /∈ C2. In Q(D)-Res,
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Fig. 2. The rules of Q(D)-Res [20] and QU(D)-Res

It is natural to try to strengthen the classical QBF calculi using dependency
schemes. The motivation for the ‘dependency version’ comes from identifying
the implicit use of the trivial dependency scheme in the rules of a calculus. Such
restrictions are inevitably imposed by the linear ordering of the quantifier prefix;
dependency calculi can relax these restrictions, replacing the implicit reference
to Dtrv with an explicit reference to a more general dependency scheme D.

For example, in Q-Res, the universal reduction rule allows a universal u to
be dropped from a clause C containing only variables left of u. In Q(D)-Res, u
may be dropped whenever the clause contains none of its dependents, where the
set of dependents of u is determined by D.

We recall the formal definition of Q(D)-Res in Fig. 2, and observe that Q-Res
and Q(Dtrv)-Res are identical. It is natural to suggest relaxing the condition that
the pivot is existential, and to allow resolution over universal pivots. Indeed, the
resulting new system, which we call QU(D)-Res, is the analogous dependency
version of QU-Res. We omit its formal definition, which is a simple modification
to that of Q(D)-Res.

4 A Semantic Framework for Independence

In this section we extend the framework for semantic notions of independence
in terms of assignment trees, and prove a condition sufficient for soundness in
Q(D)-Res. Our key contribution is the notion of full exhibition.

4.1 The Genesis of Full Exhibition

In order to facilitate a clear understanding of independence as a concept, we feel
it is helpful to adopt a fresh approach tailored to the task. To that end, we first
introduce the new idea of complementary paths in an assignment tree, whose
universal assignments differ for exactly one variable.

Definition 1 (Complementary path with respect to a universal vari-
able). Let Φ be a QBF over variables V , let T be an assignment tree for Φ and



let P be the path in T determined by the total assignment to universal variables
α. Then, for any u ∈ V∀, Pu is the path in T determined by the total assignment
to universal variables α′ given by

α′(v) =

{
¬α(v) if v = u ,

α(v) otherwise .

We may now reformulate the definition of independence from [15] so that it
is better suited to our purposes. It is fortunate that, throughout this paper,
we require only to consider the dependence of existentials on universals; this
simplification, seen in the definition below, is the result of our dealing exclusively
with refutational calculi, the rules of which remain unaffected by the dependence
(or lack thereof) of universals on existentials.

Definition 2 (Independence of existentials from universals [15]). Let
Φ be a true QBF over variables V and let u ∈ V∀, x ∈ V∃. We say that x is
independent of u in Φ if there exists a model M for Φ in which P (x) = Pu(x)
for all paths P in M . For such a model M we write M ≺Φ (u, x), and we say
that M exhibits the independence of x from u in Φ.

Remark 3. It is not necessary for us to consider false QBFs in Definition 2, since,
by definition, a false formula has no models. For a false formula, the condition for
independence is satisfied vacuously, confirming our intuition that no existential
variable can be dependent on any universal in such a formula.

As noted in [20], Definition 2 alone is too weak for soundness in Q(D)-Res. The
problem lies in the possibility for different models to exhibit different indepen-
dencies, which are then used together in the same refutation. We illustrate this
explicitly with the following formula, taken from [20], showing that Q(Dopt)-Res
is unsound.

Example 4. Consider the true QBF Φ = ∀u1∀u2∃x . {u1, u2,¬x}, {¬u1,¬u2, x}.
Figure 3 shows models M1 ≺ (u2, x) and M2 ≺ (u1, x) for Φ, and hence Dopt

Φ

is the empty set. In Q(Dopt)-Res one can therefore reduce the universal literals
from both clauses, and then resolve over x to obtain the empty clause. Thus we
have a Q(Dopt)-Res refutation of a true QBF.

In order to avoid this problem, it is natural to seek a model which exhibits
simultaneously all the independencies used in a given proof. This is the intuition
behind full exhibition, and motivates the following new definition which describes
a key property for dependency schemes.

Definition 5 (Fully exhibited dependency scheme). Let D be a depen-
dency scheme. We say that D is fully exhibited if for each true QBF Φ there is
a model M for Φ such that M ≺ (u, x) for each pair (u, x) /∈ DΦ, with u ∈ V∀
and x ∈ V∃. For a given scheme D and formula Φ, any model satisfying this
property is said to be fully exhibiting.

As we will see, the power of this definition allows simple proofs of soundness for
QBF dependency systems parametrized by fully-exhibited dependency schemes.
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Fig. 3. Two models for the formula Φ exhibiting different independencies.

4.2 Soundness of Q(D)-Res and QU(D)-Res for Fully-Exhibited D

As a first example of the application of Definition 5, we prove the following
theorem.

Theorem 6. Let D be a fully exhibited dependency scheme. Then Q(D)-Res is
sound.

Proof. Let Φ = Q .φ be a QBF over variables V , suppose that π = {C1, . . . , Cl}
is a Q(D)-Res refutation of Φ, and let

φi =

{
φ if i = 0 ,

φ ∧ C1 ∧ · · · ∧ Ci otherwise ,

for i = 1, . . . , l.
Since D is fully exhibited, if Φ is true there exists a model M for Φ for which

M ≺Φ (u, x) for all pairs (u, x) /∈ DΦ with u ∈ V∀ and x ∈ V∃. We prove by
induction on i that if Φ is true, M is a model for Q .φi, so Q .φi is true. Hence
at step i = l, we deduce that Q .φl is true, a clear contradiction since φl contains
the empty clause Cl.

Since Q .φ = Q .φ0, if Φ is true then M is a model for Q .φ0, thus the base
for the induction is established.

We now show if M is a model for Q.φi, then M is a model for Q .φi+1. By
definition, φi+1 = (φi ∧ Ci+1), and Ci+1 was introduced either by resolution or
∀-reduction. If Ci+1 is the resolvent of clauses Cj , Ck for j, k < i + 1, then by
hypothesis every path of M satisfies both Cj and Ck, and hence satisfies Ci+1.
Thence M is a model for Q .φi+1.

On the other hand, suppose that Ci+1 was obtained from Cj , j < i + 1,
by ∀-reduction. Then Ci+1 = Cj\{u}, where u ∈ V∀ and (u, x) /∈ DΦ for all
x ∈ Cj ∩ V∃. Suppose that there exists some path P in M which satisfies Cj
but falsifies Ci+1. Then P (z) = ⊥ for all z ∈ Cj , and since M ≺Φ (u, x) for all
(u, x) /∈ DΦ, we have Pu(z) = P (z) for all literals z ∈ Cj . Also, since P (u) = >,
Pu(u) = ⊥, and we deduce that Pu(Cj) = ⊥, contradicting that M is a model
for Q.φi. It follows that P (u) = > for some u ∈ Cj with var(u) 6= x, and so
every path in M satisfies Ci+1. Thence M is a model for Q .φi+1. ut



The reverse implication does not hold – namely it is not true that the soundness
of Q(D)-Res implies that D is fully-exhibited – as evidenced by the following
counterexample taken from the DQBF literature [1], reformulated in the lan-
guage of QBF dependency schemes. Consider the formula Ψ = ∀u1∀u2∃x1∃x2 .ψ
with matrix

ψ =
{
{u1, x1, x2}, {u1,¬x1,¬x2}, {¬u1, u2, x1, x2}, {¬u1, u2,¬x1,¬x2},
{¬u1,¬u2, x1,¬x2}, {¬u1,¬u2,¬x1, x2}

}
,

and the dependency scheme D′ defined by D′(Φ) = {(u1, x1), (u2, x2)} if Φ = Ψ
and D′(Φ) = Dtrv(Φ) otherwise. It can be verified that Ψ is true, but there is no
model for Ψ which exhibits both independencies (u1, x2) and (u2, x2) simultane-
ously, and hence D′ is not fully exhibited. However no Q(D′)-Res steps may be
performed on clauses in ψ, so Q(D′)-Res remains sound.

Extension to QU(D)-Res. Since the proof of Theorem 6 makes no use of
the fact that the pivot is existential, it suffices also to show the soundness of
QU(D)-Res for fully exhibited D.

Theorem 7. Let D be a fully exhibited dependency scheme. Then QU(D)-Res
is sound.

The fact that the reverse implication does not hold is established by exactly the
same counterexample Ψ above, which has no QU(D′)-Res refutation.

In fact, Theorem 7 even generalises further to far stronger QBF systems such
as QBF Frege systems defined in [4]. We only need the correctness of the propo-
sitional rules other than the ∀-reduction rule in the proof of Theorem 6; hence
the same argument also establishes the soundness of Frege+∀red parametrized
by a fully exhibited dependency scheme.

5 Dependency Schemes and Long-Distance Q-resolution

In this section, we define a new calculus LD-Q(D)-Res, the dependency version
of long-distance Q-resolution, and prove that it is sound whenever D is fully
exhibited.

5.1 Long-Distance Semantics

In the proof of Theorem 6, we validated the rules of Q(D)-Res by modifying
the conventional argument by semantic entailment to use only a single fully
exhibited model. Progressing to long-distance Q-resolution, we again use a single
fully exhibited model M , but we validate logical steps on a path-by-path basis.

In this way, we provide a semantic account of the role of the merged literal;
that is, we learn how to evaluate it under assignment. In each derived clause,
the symbol u∗, by means of a merged literal function, represents a particular



literal u or ¬u for each path P ∈ M ; as such, from the point of view of path
P the proof itself contains no merged literals, but is still logically correct at
the propositional level. The inevitable disappearance of u∗ by ∀-reduction ties
everything together, and the logical correctness for each individual path ensures
the correctness at the level of the QBF model.

As a starting point, consider the following resolution step in an LD-Q-Res
refutation of a QBF Φ = Q .φ over variables V , where var(lu) = u ∈ V∀ and
x ∈ V∃.

C1 ∪ {x} ∪ {lu} C2 ∪ {¬x} ∪ {¬lu}
C1 ∪ C2 ∪ {u∗}

Let M be any model for the (conjunction of the) parent clauses prefixed by
Q, and let P ∈ M . For any universal v which is right of u, we must have
x <Φ u <Φ v; therefore P (x) = P v(x), meaning that at least one of C1 ∪ {u}
and C2 ∪ {¬u} is satisfied by both P and P v. In either case we can then choose
a single literal u or ¬u for u∗ such that C1 ∨ C2 ∨ u∗ is satisfied by both P and
P v.

Generalising, let T be an assignment tree for Φ, and consider T as a set of
paths. We observe that any resolution step producing u∗ from complementary
literals gives rise to a well-defined merged literal function f∗u : T → {u,¬u}, with
rule

f∗u(P ) =

{
lu , if P (x) = ⊥ ,
¬lu , if P (x) = > .

(1)

For the time being, we just observe two features of such a definition. First, f∗u
simply reads the truth value of P (x), selects the antecedent clause in which the
pivot variable x is falsified, and takes the universal literal from that clause. In this
way, any path P ∈ T which satisfies both antecedent clauses is made to satisfy
C1 ∪ C2 ∪ f∗u(P ). Second, if v is any universal right of u, then P (x) = P v(x);
hence v satisfies the complementary property f∗u(P ) = f∗u(P v) for all P ∈ T .

To use these ideas more formally, we require a definition that accounts for
‘successive merging’ of merged literals with other merged literals, and with non-
merged literals. We deal with this technicality in the next subsection, with a
recursive extension that is equipped for the ‘dependency version’ of LD-Q-Res.

5.2 Defining LD-Q(D)-Res

We now introduce a new calculus LD-Q(D)-Res, which is the ‘dependency version’
of long-distance Q-resolution, and state the rules in Fig. 4.

Although the method of generalising the reference to the trivial dependency
scheme remains, more care must be taken when defining LD-Q(D)-Res. Replacing
the resolution condition x <Φ u with (u, x) /∈ DΦ, one must annotate the merged
literals with the corresponding existential pivots, and check during ∀-reduction
that the reduced universal is independent of all the pivots for any annotated
literals in the clause. This condition is always satisfied in LD-Q-Res, since reduced



universals are always right of any merged variables in the clause, which are always
right of any relevant existential pivots. However, harnessing independence opens
up the potential to allow a universal variable u to be reduced from a clause
containing a literal merged over a pivot x which is not independent of u. A simple
counterexample 2 shows that reducing u in such a case is in general unsound for
a fully-exhibited dependency scheme, and is not allowable in LD-Q(D)-Res.

(Axiom)
C C is a clause in the matrix of Φ.

D ∪ {lu}
(∀-Red)

D

D ∪ {uX}
(∀-RedX)

D

Literals lu and uX are universal. If
l ∈ D and var(l) = v, then (u, v) /∈
DΦ, and if l = vX

′
then (u, x) /∈ DΦ

for all x ∈ X ′.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

Variable x is existential. If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z,
then l1 = l2 6= z∗. U1, U2 contain only universal literals with var(U1) =
var(U2). For each u ∈ var(U1) we require (x, u) /∈ DΦ . If for u1 ∈ U1, u2 ∈
U2, var(u1) = var(u2) = u, then u1 = ¬u2, or at least one of u1, u2 is
annotated. U is defined as {uX | u ∈ var(U1)}, where X is the union of x
with any annotations on u in U1 and U2.

Fig. 4. The rules of LD-Q(D)-Res

For any annotated literal uX , we call X the resolution set for u. Non-merged
literals have an empty resolution set. We give an example refutation below.

Example 8. Given the false QBF Φ = ∀u1∃x1∃x2∀u2 .φ, with matrix

φ =
{
{u1, x1, x2, u2}, {x1,¬x2,¬u2}, {¬x1, u2}

}
and a dependency scheme D for which DΦ = {(u1, x1)}, we have the following
LD-Q(D)-Res refutation.

{u1, x1, x2, u2} {x1,¬x2,¬u2}
A

{u1, x1, u{x2}
2 }

B
{x1, u{x2}

2 } {¬x1, u2}
C

{u{x1,x2}
2 }
⊥

2 To save space, we omit this counterexample.



Step A, producing an annotated literal u
{x2}
2 , is justified since (u2, x2) /∈ DΦ,

and dropping u1 in the presence of this annotated literal in step B is allowed
since (u1, x2) /∈ DΦ. Step C is an example of successive merging.

Motivated by discussion of merged literal functions for LD-Q-Res in the pre-
vious subsection, we present a recursive definition of annotated literal functions
in LD-Q(D)-Res that accounts for successive merging.

Definition 9 (Annotated literal functions for an assignment tree T ).
Let uX ∈ U be a literal introduced by merging universal literals l1 ∈ U1 and
l2 ∈ U2 in a resolution step

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
C1 ∪ C2 ∪ U

of an LD-Q(D)-Res refutation of a formula Φ. Let X1, X2 be the resolution sets
of l1, l2 respectively, and let T be an assignment tree for Φ. Then the annotated
literal function fXu : T → {u,¬u} for T is given by

fXu (P ) =


l1 , if P (x) = ⊥ and X1 = ∅ ,
fX1
u (P ) , if P (x) = ⊥ and X1 6= ∅ ,
l2 , if P (x) = > and X2 = ∅ ,
fX2
u (P ) , if P (x) = > and X2 6= ∅ ,

where X = X1 ∪X2 ∪ {x}.
The following lemma states that the complementary property is preserved for
annotated literal functions.

Lemma 10. Let Φ be a QBF over variables V , let u, v ∈ V∀, let X ⊆ V∃ and
let T be an assignment tree for Φ for which T ≺ (v, x) for all x ∈ X. Then
any annotated literal function fXu for T satisfies fXu (P ) = fXu (P v) for all paths
P ∈ T .

Proof. The lemma follows from the observation that, throughout the recursive
definition of the annotated literal function fXu , complementary paths P and P v

always map to the same case, since P (x) = P v(x) for all x ∈ X and for all
P ∈ T . ut

Evaluation of annotated literals. We defined annotated literal functions for
T specifically so that any P ∈ T satisfying both antecedents of a resolution step
also satisfies the resolvent. For that reason, we define uX to have the same truth
value as the concrete literal fXu (P ) when evaluated under α, the assignment
represented by path P ; that is, we define (uX)|α = (fXu (P ))|α. Representing
assignments by paths, this would be written P (uX) = P (fXu (P )), but we em-
phasize that the apparent circularity here is simply the result of the notational
convenience of using the symbol P to represent both an assignment tree path and
its corresponding assignment. The expression P (fXu (P )) is always well-defined
because fXu can be computed for any given assignment tree T , so fXu (P ) is a
well-defined non-annotated literal, which can then be evaluated under P in the
usual way.



5.3 Soundness of LD-Q(D)-Res and LQU(D)-Res

We are now in a position to prove the following theorem.

Theorem 11. Let D be a fully exhibited dependency scheme. Then LD-Q(D)-
Res is sound.

Proof. Let Φ = Q .φ be a QBF over variables V , suppose that π = {C1, . . . , Cl}
is a LD-Q(D)-Res refutation of Φ, and let

φi =

{
φ if i = 0 ,

φ ∧ C1 ∧ · · · ∧ Ci otherwise ,

for i = 1, . . . , l. Since D is fully exhibited, if Φ is true there exists a model M
for Φ for which M ≺Φ (u, x) for all pairs (u, x) /∈ DΦ with u ∈ V∀ and x ∈ V∃.
Our proof uses exactly the same induction on i as in the proof of Theorem 6,
and the base case is no different. We only need confirm that if M is a model for
Q .φi, then M is a model for Q .φi+1.

Suppose that Ci+1 = C1∪C2∪U is the resolvent of clauses Cj = C1∪U1∪{x}
and Ck = C2 ∪ U2 ∪ {¬x} for j, k < i + 1, and let P be an arbitrary path in
M . By the inductive hypothesis, P satisfies Cj and Ck. Assume without loss
of generality that P (x) = ⊥. Then P satisfies C1 ∪ U1. If P satisfies C1 then
P satisfies Ci+1. Otherwise, P (lu) = > for some (annotated or non-annotated)
literal lu ∈ U1 with var(lu) = u. The recursive definition of the annotated literal
function ensures that P (lu) = > ⇒ P (uX) = > for some annotated literal
uX ∈ U , and so P satisfies Ci+1. Therefore M is a model for Q .φi+1.

On the other hand, suppose that Ci+1 was obtained from Cj , j < i + 1,
by ∀-reduction on a non-annotated universal literal u. Then Ci+1 = Cj\{lu},
where var(lu) = u, (u, x) /∈ DΦ for all x ∈ Cj ∩ V∃ and for all x ∈ X, where
X is the union of the resolution sets of all universal literals in Cj . Suppose
that there exists some path P in M which satisfies Cj but falsifies Ci+1. Let
z ∈ Ci+1; then P (z) = ⊥, and since M ≺Φ (u, x) for all (u, x) /∈ DΦ, we
have Pu(z) = P (z) = ⊥ whenever z is a non-annotated literal. On the other
hand, suppose that z = vX , where v 6= u; then, since M ≺Φ (u, x) for all
x ∈ X, Lemma 10 gives fXv (P ) = fXv (Pu) = lv with var(lv) = v, which implies
Pu(vX) = P (vX) = ⊥. Also, since P (u) = >, we have Pu(u) = ⊥, and we
deduce that Pu(Cj) = ⊥, contradicting that M is a model for Q.φi. It follows
that P satisfies Ci+1, and that M is a model for Q .φi+1.

The same argument follows for an annotated literal uX . Since M ≺Φ (u, x)
for all x ∈ X, the special case of Lemma 10 with v = u gives fXu (P ) = fXu (Pu),
hence P (uX) = > implies Pu(uX) = ⊥. This completes the proof. ut

Extension to LQU(D)-Res. Since the proof of Theorem 11 makes no use of
the fact that the pivot is existential, it suffices also to show the soundness of
LQU(D)-Res, the ‘dependency version’ of LQU+-Res, for fully exhibited D. We
omit the formal definition of the system, which differs only from that of LD-
Q(D)-Res in allowing universal resolution pivots.



Theorem 12. Let D be a fully exhibited dependency scheme. Then LQU(D)-Res
is sound.

6 Demonstrating Full Exhibition

In this section, to demonstrate proof of concept, we prove that the standard
dependency scheme Dstd is fully exhibited. First, we restate its definition.

Definition 13 (Standard dependency scheme [16, 19]). Let Φ = Q .φ be
a QBF over variables V , and let v, w ∈ V such that v <Φ w. We say that v and
w are connected in Φ if there exists a set of clauses C1, . . . , Ck ∈ φ such that
v ∈ C1, w ∈ Ck and Ci∩Ci+1∩X 6= ∅ for i = 1, . . . , k−1, where X = R(v)∩V∃.
The standard dependency scheme Dstd is defined by

Dstd : Φ 7→ {(v, w) | v and w are connected in Φ , q(v) 6= q(w)} .

We proceed by showing the correctness of an algorithm which transforms an
arbitrary model M of some true QBF Φ into a model M∗, where M∗ ≺ (u, x)
for all (u, x) /∈ Dstd

Φ . Figure 5 introduces the procedure Flip() which modifies
M so that P (x) = Pu(x) for some given path P , existential x and universal u.

1 Flip (P, u,X)
2 {
3 for each x ∈ X do flip x in P
4 X ′ ← ∅
5 for each C ∈ φ such that P (C) = ⊥ do
6 for each v ∈ C such that P (v) 6= Pu(v) do
7 push v → X ′

8 if X ′ 6= ∅ then Flip (P, u,X ′)
9 }

Fig. 5. The flipping procedure

Theorem 14. The standard dependency scheme is fully exhibited.

Proof. We fix a true QBF Φ and an arbitrary model M for Φ. Suppose we wish
to modify M so that M ≺ (u, x) for some specific (u, x) /∈ Dstd

Φ , and to that
end we identify some pair of paths P and Pu for which P (x) 6= Pu(x) and then
invoke Flip(P, u, {x}). On line 3, x is flipped in P and on line 5 the procedure
checks for any clauses that P now falsifies. Any falsified clause C must contain x
but cannot contain u due to (u, x) /∈ Dstd

Φ ; also C must contain some variable v
which P and Pu assign oppositely, and v must therefore be existential. All such
existentials are added to the set X ′ in line 7. If no clauses were falsified, the
procedure terminates on line 8 and M remains a model; otherwise the procedure
repeats by flipping X ′ and checking again for falsified clauses. At any recursion



depth, the collected set X ′ still contains only existentials, since the appearance
of u would always define a chain of clauses implying that (u, x) ∈ Dstd

Φ . Similarly,
we observe that no flipped variable may be connected to u, hence

x′ is flipped in Flip(P, u, {x})⇒ (u, x′) /∈ Dstd
Φ . (2)

It is clear that Flip() yields a model if it terminates; the fact that it always
terminates follows from the fact that no variable may be flipped twice.

Now we point out that using Flip() alone, we can transform M into a
model M ′ where M ′ ≺ (u, x) for all u ∈ Ux = {u | (u, x) /∈ Dstd

Φ }; that is, M ′

exhibits all independencies associated with x. To see this, note that a model
can be naturally partitioned into sets of paths, each of which is closed under
the operation of taking the complementary path with respect to u ∈ Ux. Then
any non-conformity of the assignment of x in a particular set can be erased by
repeated application of Flip().

We now describe how to obtain the desired model M∗ which exhibits all the
independencies. Suppose that the existential variables of Φ in prefix order are
x1, . . . , xn. Given an arbitrary model M , use the method described in the pre-
vious paragraph to obtain Mn which exhibits all the independencies associated
with the rightmost existential xn. Now repeat the process to obtain from Mn a
model Mn−1 which exhibits all the independencies associated with xn−1. We ob-
serve that Mn−1 preserves the exhibition of the independencies associated with
xn; due to condition (2), xn cannot be flipped in obtaining Mn−1 from Mn, since
whenever (u, xn) /∈ Dstd

Φ we already have P (xn) = Pu(xn). Continuing in this
way, each model Mi exhibits all the independencies corresponding to xi, . . . , xn,
and at the nth step we obtain the required model M∗ = M1. ut

Our concluding result now follows immediately from Theorems 7, 11 and 12.

Corollary 15. QU(Dstd)-Res, LD-Q(Dstd)-Res and LQU(Dstd)-Res are sound proof
systems.

7 Conclusions and Open Problems

As we have shown, the parametrization by dependency scheme can be extended
to all four CDCL QBF calculi, and the property of full exhibition – which is pos-
sessed by the standard dependency scheme – is sufficient for soundness in each
case. Showing by counterexample that full-exhibition is not a necessary condi-
tion, our work leads naturally to the open problem of finding a characterization
for soundness in this setting. We also leave open the question of whether the
reflexive resolution path dependency scheme Drrs is fully exhibited, and whether
our methods of model transformation from Sect. 6 can be furthered to provide
this result.
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