Electronic Colloquium on Computational Complexity, Report No. 28 (2016)

Dependency Schemes in QBF Calculi:
Semantics and Soundness

Olaf Beyersdorff and Joshua Blinkhorn

School of Computing, University of Leeds, UK

Abstract. We study the parametrization of QBF resolution calculi by
dependency schemes. One of the main problems in this area is to un-
derstand for which dependency schemes the resulting calculi are sound.
Towards this end we propose a semantic framework for variable inde-
pendence based on ‘exhibition’ by QBF models, and use it to define a
property of dependency schemes called full exhibition. We prove that
all CDCL-based resolution calculi, including Q-resolution, universal and
long-distance Q-resolution, are sound when parametrized by a fully ex-
hibited dependency scheme. To illustrate proof of concept, we show that
the standard dependency scheme is fully exhibited.

1 Introduction

The excellent success of SAT solvers in the realm of propositional Boolean for-
mulae has motivated much interest in the corresponding search problem for
quantified Boolean formulae (QBF). The greater expressive capacity of QBF,
afforded by its PSPACE-completeness [21], presents novel challenges in solving,
and the array of emerging techniques is motivating a wealth of research in the
closely-related field of proof complexity [3H8L/10H13].

This relationship between practice and theory consists in the fact that the
trace of any unsuccessful run of a solver serves as a witness to falsity. Understand-
ing the refutational proof system that underpins a particular solving method,
and thereby accounts for its correctness, motivates the proof-theoretic study of
specific calculi; most notable is the enormous interest in propositional resolu-
tion, the calculus which underpins conflict-driven clause learning (CDCL) for
SAT (cf. [9]). Similarly for QBF, recent work has led to a complete understand-
ing of the relative strength of resolution-based QBF calculi [3}/6], including Q-
resolution (Q-Res) [14], universal Q-resolution (QU-Res) |12], and long-distance
Q-resolution (LD-Q-Res) [2].

The value of this research is twofold. Foremost, the twin notions of simulation
and separation (by proof-size bounds) of proof systems admit an illuminating
overview of relative strengths [6]. Additionally, the research spawns ideas for new
and stronger calculi which in turn might be utilised for improved solving.

Implemented in the state-of-the-art solver DepQBF [15[17], one of the recent
and exciting developments in QBF solving has seen the introduction of depen-
dency schemes: algorithms that gather information on variable independence

ISSN 1433-8092

by prior appeal to the syntactic form of an instance. Independence, however, is
usually presented as a semantic concept |15/18]: the truth of a QBF & is wit-
nessed by a Skolem-function model, in which each existential x is identified with
a Boolean function f;, such that substitution for each x produces a propositional
tautology. The arguments to f, are the universal variables U, left of = in the
quantifier prefix, but it may occur that some circuit computes f, without using
u € U, as an input. In this case we say that x is independent of u — and a dual
notion for false QBFs provides for independence of universals on existentials —
even though the Skolem-function model is in general not unique.

This lack of uniqueness has consequences for soundness in QBF calculi. The
impact of a dependency scheme in the proof system is to allow some logical
steps which previously were prohibited; specifically, the V-reduction rule of Q-Res
receives greater reign. This motivated the proposal of Q(D)-Res by Slivovsky and
Szeider [20], a parametrization of the classical calculus by dependency schemes.

For which schemes this calculus is sound is an open problem; soundness fails
for the so-called ‘optimal dependency scheme’ D°P' (defined semantically), but
an argument by transformation of refutation [20] suffices to prove that Q(D)-Res
is sound for the reflexive resolution path scheme D™ (defined syntactically).

Nothing is currently known about the intermediate dependency schemes;
moreover, the lack of general methods may frustrate future developments. It is
natural to propose the parametrization by dependency schemes of stronger QBF
calculi, of the other CDCL-based QBF resolution systems and QBF Frege [4],
whereupon methods for proofs of soundness based on properties of dependency
schemes will carry over.

In this paper we demonstrate that semantic notions of independence are
indeed equipped for this; our contributions are summarized below.

1. New QBF calculi parametrized by dependency schemes. We extend
the parametrisation by dependency schemes to all the CDCL-based resolution
calculi for QBF: with the new long-distance calculus LD-Q(D)-Res, with universal
resolution QU(D)-Res, and with their combination LQU(D)-Res.

Our new long-distance calculus presents the greatest challenge. The merged
literal w*, while accounting for the strength of long-distance techniques [11], is
something of a semantic obstacle, as its entrance in a refutational proof gives no
clue as to how it should be evaluated under assignment. Our key contribution
here is the proposal of merged literal functions that provide the missing seman-
tics, giving a clear account of the role of the merged literal. Progressing from
Q-resolution, variable independence and merging have a more subtle interaction;
in LD-Q(D)-Res, we must supplant merged literals with annotated literals, which
record existential pivots to prevent unsound V-reduction steps. Accordingly, we
introduce analogous annotated literal functions to complete our approach.

2. A semantic framework and a sufficient condition for soundness.
We address the issue of soundness in QBF dependency calculi, and propose a

semantic framework for variable independence that builds on previous litera-
ture [151/18]. We show that, for a given instance, the use of distinct QBF models
to assert (or ‘exhibit’) different independencies can be problematic for logical
consequence in the proof system. This motivates our key definition of full exhi-
bition, which applies to a dependency scheme whenever a single model exhibits
all the existential independencies for an arbitrary true QBF. In view of the de-
parture of semantic entailment, we proceed to a general method in which the
concept of full exhibition proves sufficient for soundness. Our argument is widely
applicable: it provides soundness for all resolution-type calculi considered here,
but also applies to much stronger QBF Frege systems [4] when parametrized by
a fully exhibited dependency scheme.

3. Demonstrating full exhibition. We conclude the paper with proof of con-
cept, and show that the standard dependency scheme is fully exhibited. Specif-
ically, this is achieved by an algorithmic transformation of an arbitrary model
M for a true QBF @ into a model M* that exhibits all the required indepen-
dencies. This reveals the possibility for QBF solving to implement, for example,
long-distance techniques in tandem with the standard dependency scheme, or
indeed with any other scheme shown to be fully exhibited by an extension of our
method.

2 Preliminaries

Quantified Boolean Formulas. A Quantified Boolean Formula (QBF) @ over
aset V ={vy,...,v,} of n variables is a formula in quantified Boolean logic with
quantifiers ranging over {0,1}. We consider only formulas in prenex conjunctive
normal form (PCNF), denoted & = Q. ¢, in which all variables are quantified
either existentially or universally in the quantifier prefic Q = Qivy--- Qnup,
Q; € {3,V} for i € [n], and ¢ is a propositional conjunctive normal form (CNF)
formula called the matriz. We typically write z; for existential variables and wu;
for universals. Where convenient, we refer to a clause as a set of literals and a
matrix as a set of clauses.

For any QBF &, we denote the set of existentially quantified variables of @ by
V3 ={z; € V| Q; =3}, and define the set Vy = {u; € V | Q; =V} of universal
variables similarly. The prefix Q imposes a linear ordering on the variables of @
that is captured by the binary relation <g, such that v; <4 v; holds whenever
i < j, in which case we say that v; is right of v;, or that v; is left of v;. The set
of variables right of v is denoted R(v) = {v' € V | v <g v'}.

Assignment Trees and Models. In order to develop the semantic definition
of independence, we make extensive use of assignment trees as defined in [15],
and give a precise restatement as follows.

Given a QBF & over n variables V = {v1,...,v,}, a complete assignment
to @ is a total function o : V' — {T, L}, which maps each variable of @ to a

T

PR

st U

X1 T
U2 u2 U2 u2

X2 i) X2 X2

Fig. 1. An assignment tree T for a QBF Vuj;3z1Vuz3xs . ¢, with arbitrary matrix ¢.

truth value true T or false L. We may represent such an assignment « as a
set of literals {l1,...,l,}, where var(l;) = v; for each i« = 1,...,n, such that
l; = v; if a(v;)) =T and I; = —w; otherwise. We allow to specify variables and
literals interchangeably as an argument to the assignment function, by defining
a(—w) = —a(v), where =T = L, and vice versa.

An assignment tree T for @ is a tree with root r in which every node except
r is labelled with some literal [, with var(l) € V. Every node labelled with a
universal literal has exactly one sibling labelled with the complementary literal,
and every node labelled with an existential literal has no siblings. Every path P
from r to a leaf of T defines a sequence of literals {l1,...,l,} which represents
a total assignment to the variables of V', and which strictly acknowledges the
linear ordering imposed by the prefix of @; that is, var(l;) = v; for alli = 1,...n.
We also use P to denote the assignment function corresponding to this sequence.
When representing an assignment tree diagramatically, it is conventional to place
the node labelled —u to the left of that labelled u, for each u € V4, as shown
in Fig. [1 Where convenient, we refer to an assignment tree as a set of paths.
An assignment tree T for the QBF & = Q. ¢ is a model for ¢ if P(¢) = T for
all paths P in T; that is every path in T satisfies every clause in the matrix of
®. We typically use M to denote a model. A QBF which has a model is true,
otherwise it is false.

Dependency Schemes. Closely following [20], a proto-dependency scheme D
is a function that maps each QBF & to a binary relation Dg. The binary relation
is a set of pairs of oppositely quantified Variablesﬂ Do = {(vi,w1), ..., (U, wm)}
such that w; is considered to depend on v;, for each ¢ = 1,...,m. Such a pair
is called a dependency, and w; is a dependent of v;. A proto-dependency scheme
D’ is said to be at least as general as another D (written D’ < D) if D, C Dg
for all QBFs @, and is strictly more general (written D’ < D) if the inclusion is
strict for some formulae.

In practice, a proto-dependency scheme may include spurious dependencies
(that is, pairs of variables that are in fact independent) which reduce the use-

! Similarly quantified variables are correctly considered independent.

fulness of the scheme, by inhibiting the strength of the calculus which uses it.
Moreover, a proto-dependency scheme may also omit genuine dependencies.

There are two proto-dependency schemes of particular interest, which in a
clear sense are the largest and smallest useful ones. The largest is the trivial
dependency scheme D™, which includes all the dependencies which are not
explicitly ruled out by the linear ordering of the quantifier prefix; that is, D&V =
{(v,w) | v <¢ w,q(v) # q(w)}. The smallest is the optimal dependency scheme
DePt cf. [15], which includes only non-spurious dependencies by means of the rule
D' = {(v,w) | v and w are not independent}. The definition of independence
we use is given in Section [i] (Definition [2)).

We restrict attention to those proto-dependency schemes which lie between
these two extremes of usefulness; if a proto-dependency scheme D satisfies D°Pt <
D < DYV, we say that D is a dependency scheme.

QBF Resolution Calculi. We give a brief overview of four resolution-based
CDCL QBF calculi, with the intention of augmenting them to utilise dependency
schemes — for a more detailed survey of the original systems, see [6]. Q-resolution
(Q-Res) introduced in [14] is the standard sound and complete refutational cal-
culus for QBF in PCNF. In addition to resolution over existential pivots with
non-tautologous resolvents, the calculus has a universal reduction rule

CuU{u}
70)

where v is a universal literal, and all literals in C' are left of u. QU-resolution
(QU-Res) is a natural extension of Q-Res that allows universal resolution pivots,
yielding a stronger calculus that is exponentially separated [12].

Long-distance Q-resolution (LD-Q-Res), formalised in [2], allows the introduc-
tion of a special merged literal u*, denoting the appearance of complementary
literals in u after a resolution step on an existential pivot = which is left of w:

01U{£L'}UU1 CQU{—'(E}UUQ
CiuCyuU

Here, Uy and U, contain only universal literals with var(U;) = var(Usz), and
for each u € var(U;) we require <¢ u. If for Iy € Uj,la € Us, we have
var(ly) = var(lz) = u, then l; = —ly, or at least one of [1,ls is already merged.
The set U is defined as {u* | u € var(Uy)}. Merged literals do not prohibit V-
reduction steps. The resulting system is exponentially stronger than Q-Res [11].

Finally, the calculus LQU"-Res [3] combines naturally the features of QU-
Res and LD-Q-Res, producing a system which introduces merged literals while
allowing resolution over universal, as well as existential, pivots.

3 Dependency Schemes and Q-resolution

In this short section, we discuss the role of dependency schemes in QBF calculi,
and recall the definition of Q(D)-Res |20], the first QBF dependency calculus to
be put forward in the literature.

el (Axiom) C'is a clause in the matrix of @.

DU L} Literal [, is universal. If [€ D and
——5— (+Red) var(l) = v, then (u,v) ¢ Ds.

If | € Cy, then =l ¢ Cs. In Q(D)-Res,
CrU{v} CaU {0} (Res) variable v is existential; in QU(D)-
C1UCs Res, v is existential or universal.

Fig. 2. The rules of Q(D)-Res [20] and QU(D)-Res

It is natural to try to strengthen the classical QBF calculi using dependency
schemes. The motivation for the ‘dependency version’ comes from identifying
the implicit use of the trivial dependency scheme in the rules of a calculus. Such
restrictions are inevitably imposed by the linear ordering of the quantifier prefix;
dependency calculi can relax these restrictions, replacing the implicit reference
to DY with an explicit reference to a more general dependency scheme D.

For example, in Q-Res, the universal reduction rule allows a universal u to
be dropped from a clause C' containing only variables left of w. In Q(D)-Res, u
may be dropped whenever the clause contains none of its dependents, where the
set of dependents of u is determined by D.

We recall the formal definition of Q(D)-Res in Fig. |2, and observe that Q-Res
and Q(D'")-Res are identical. It is natural to suggest relaxing the condition that
the pivot is existential, and to allow resolution over universal pivots. Indeed, the
resulting new system, which we call QU(D)-Res, is the analogous dependency
version of QU-Res. We omit its formal definition, which is a simple modification
to that of Q(D)-Res.

4 A Semantic Framework for Independence

In this section we extend the framework for semantic notions of independence
in terms of assignment trees, and prove a condition sufficient for soundness in
Q(D)-Res. Our key contribution is the notion of full exhibition.

4.1 The Genesis of Full Exhibition

In order to facilitate a clear understanding of independence as a concept, we feel
it is helpful to adopt a fresh approach tailored to the task. To that end, we first
introduce the new idea of complementary paths in an assignment tree, whose
universal assignments differ for exactly one variable.

Definition 1 (Complementary path with respect to a universal vari-
able). Let @ be a QBF over variables V, let T be an assignment tree for @ and

let P be the path in T determined by the total assignment to universal variables
«a. Then, for any uw € Vy, P" is the path in T determined by the total assignment
to universal variables o/ given by

o (v) = {ﬂa(’u) ifv=u,

a(v) otherwise .

We may now reformulate the definition of independence from [15] so that it
is better suited to our purposes. It is fortunate that, throughout this paper,
we require only to consider the dependence of existentials on universals; this
simplification, seen in the definition below, is the result of our dealing exclusively
with refutational calculi, the rules of which remain unaffected by the dependence
(or lack thereof) of universals on existentials.

Definition 2 (Independence of existentials from universals [15]). Let
D be a true QBF over variables V and let w € Vg, x € V3. We say that x is
independent of u in ® if there exists a model M for @ in which P(x) = P%“(x)
for all paths P in M. For such a model M we write M <¢ (u,z), and we say
that M exhibits the independence of x from u in @.

Remark 3. 1t is not necessary for us to consider false QBFs in Definition[2} since,
by definition, a false formula has no models. For a false formula, the condition for
independence is satisfied vacuously, confirming our intuition that no existential
variable can be dependent on any universal in such a formula.

As noted in [20], Definition [2| alone is too weak for soundness in Q(D)-Res. The
problem lies in the possibility for different models to exhibit different indepen-
dencies, which are then used together in the same refutation. We illustrate this
explicitly with the following formula, taken from [20], showing that Q(D°P')-Res
is unsound.

Ezample 4. Consider the true QBF @ = Vu Vug3z . {u1, ug, ~a}, {-u1, -us, x}.
Figure [3| shows models M; < (ug,2) and My < (uy,) for &, and hence D"
is the empty set. In Q(D°P*)-Res one can therefore reduce the universal literals

from both clauses, and then resolve over x to obtain the empty clause. Thus we
have a Q(D°P*)-Res refutation of a true QBF.

In order to avoid this problem, it is natural to seek a model which exhibits
simultaneously all the independencies used in a given proof. This is the intuition
behind full exhibition, and motivates the following new definition which describes
a key property for dependency schemes.

Definition 5 (Fully exhibited dependency scheme). Let D be a depen-
dency scheme. We say that D is fully exhibited if for each true QBF © there is
a model M for @ such that M < (u,x) for each pair (u,x) ¢ Dg, with u € Vy
and x € V3. For a given scheme D and formula ®, any model satisfying this
property is said to be fully exhibiting.

As we will see, the power of this definition allows simple proofs of soundness for
QBF dependency systems parametrized by fully-exhibited dependency schemes.

—\ul/r\’u,l _"U/l/r\ul
ANVANE 2NN

U2 U U U2 U2 U2 U2 u2
- -x x x -x x - x
M <s (UQ,J?) My <o (ulvm)

Fig. 3. Two models for the formula ¢ exhibiting different independencies.

4.2 Soundness of Q(D)-Res and QU(D)-Res for Fully-Exhibited D

As a first example of the application of Definition [5] we prove the following
theorem.

Theorem 6. Let D be a fully exhibited dependency scheme. Then Q(D)-Res is
sound.

Proof. Let @ = Q. ¢ be a QBF over variables V', suppose that 7 = {C4,...,C;}
is a Q(D)-Res refutation of @, and let

b = 10) ifi=0,
L dNCLN---NC; otherwise,

fori=1,...,1

Since D is fully exhibited, if @ is true there exists a model M for @ for which
M <g (u,z) for all pairs (u,z) ¢ Dg with u € V5 and x € V3. We prove by
induction on ¢ that if @ is true, M is a model for Q. ¢;, so Q. ¢; is true. Hence
at step ¢ = [, we deduce that Q. ¢; is true, a clear contradiction since ¢; contains
the empty clause Cj.

Since Q. ¢ = Q. ¢g, if @ is true then M is a model for Q. ¢g, thus the base
for the induction is established.

We now show if M is a model for Q.¢;, then M is a model for Q. ¢;+1. By
definition, ¢;+1 = (¢; A C;41), and C;11 was introduced either by resolution or
V-reduction. If C;11 is the resolvent of clauses Cj,Cy for j,k < i+ 1, then by
hypothesis every path of M satisfies both C; and C}, and hence satisfies Cj4;.
Thence M is a model for Q. ¢;11.

On the other hand, suppose that C;;; was obtained from Cj,j < i + 1,
by V-reduction. Then C;y1 = C;\{u}, where v € Vy and (u,x) ¢ Dg for all
x € C; N V3. Suppose that there exists some path P in M which satisfies C;
but falsifies C;1. Then P(z) = L for all z € C}, and since M <4 (u,z) for all
(u,x) ¢ Dg, we have P%(z) = P(z) for all literals z € C;. Also, since P(u) =T,
P"(u) = 1, and we deduce that P*(C;) = L, contradicting that M is a model
for Q.¢;. It follows that P(u) = T for some u € C; with var(u) # z, and so
every path in M satisfies C;41. Thence M is a model for Q. ¢; 1. O

The reverse implication does not hold — namely it is not true that the soundness
of Q(D)-Res implies that D is fully-exhibited — as evidenced by the following
counterexample taken from the DQBF literature [1], reformulated in the lan-
guage of QBF dependency schemes. Consider the formula ¥ = VuiVuo3z1dzs .
with matrix

Y = {{uhxlaf@}, {ulv L1, —|x2}, {—|u1,u27x1,x2}, {~u1, uz, -1, —'CU2}7

{“’U/h —U2,T1, ﬁ372}; {ﬁub U2, ﬁ3717‘%2}})

and the dependency scheme D’ defined by D'(®) = {(u1,x1), (ug,x2)} if & =¥
and D' (®) = D" (P) otherwise. It can be verified that ¥ is true, but there is no
model for ¥ which exhibits both independencies (u1,x2) and (uz, z3) simultane-
ously, and hence D’ is not fully exhibited. However no Q(D’)-Res steps may be
performed on clauses in 9, so Q(D’)-Res remains sound.

Extension to QU(D)-Res. Since the proof of Theorem [6] makes no use of
the fact that the pivot is existential, it suffices also to show the soundness of
QU(D)-Res for fully exhibited D.

Theorem 7. Let D be a fully exhibited dependency scheme. Then QU(D)-Res
s sound.

The fact that the reverse implication does not hold is established by exactly the
same counterexample ¥ above, which has no QU(D’)-Res refutation.

In fact, Theorem [7] even generalises further to far stronger QBF systems such
as QBF Frege systems defined in [4]. We only need the correctness of the propo-
sitional rules other than the V-reduction rule in the proof of Theorem [6} hence
the same argument also establishes the soundness of Frege +Vred parametrized
by a fully exhibited dependency scheme.

5 Dependency Schemes and Long-Distance Q-resolution

In this section, we define a new calculus LD-Q(D)-Res, the dependency version
of long-distance Q-resolution, and prove that it is sound whenever D is fully
exhibited.

5.1 Long-Distance Semantics

In the proof of Theorem @ we validated the rules of Q(D)-Res by modifying
the conventional argument by semantic entailment to use only a single fully
exhibited model. Progressing to long-distance Q-resolution, we again use a single
fully exhibited model M, but we validate logical steps on a path-by-path basis.

In this way, we provide a semantic account of the role of the merged literal;
that is, we learn how to evaluate it under assignment. In each derived clause,
the symbol u*, by means of a merged literal function, represents a particular

literal u or —u for each path P € M; as such, from the point of view of path
P the proof itself contains no merged literals, but is still logically correct at
the propositional level. The inevitable disappearance of u* by V-reduction ties
everything together, and the logical correctness for each individual path ensures
the correctness at the level of the QBF model.

As a starting point, consider the following resolution step in an LD-Q-Res
refutation of a QBF ¢ = Q. ¢ over variables V, where var(l,) = u € V4 and
x € V3.

C1 U {SU} U {lu} CyU {—‘lL'} U {—‘lu}
cCiuCyU {u*}

Let M be any model for the (conjunction of the) parent clauses prefixed by
Q, and let P € M. For any universal v which is right of u, we must have
x <g u <g v; therefore P(x) = PY(z), meaning that at least one of Cy U {u}
and Co U {—u} is satisfied by both P and P?. In either case we can then choose
a single literal u or —u for u* such that C; vV Cy V u* is satisfied by both P and
Pv.

Generalising, let T' be an assignment tree for @, and consider T as a set of
paths. We observe that any resolution step producing u* from complementary
literals gives rise to a well-defined merged literal function f : T — {u, —u}, with
rule

mp):{lu, if P(z) =L, Q)

~l,, ifP@)=T.

For the time being, we just observe two features of such a definition. First, f;
simply reads the truth value of P(z), selects the antecedent clause in which the
pivot variable x is falsified, and takes the universal literal from that clause. In this
way, any path P € T which satisfies both antecedent clauses is made to satisfy
Cy1 U Cy U f(P). Second, if v is any universal right of u, then P(x) = P (x);
hence v satisfies the complementary property fii(P) = fi(P?) for all P € T.

To use these ideas more formally, we require a definition that accounts for
‘successive merging’ of merged literals with other merged literals, and with non-
merged literals. We deal with this technicality in the next subsection, with a
recursive extension that is equipped for the ‘dependency version’ of LD-Q-Res.

5.2 Defining LD-Q(D)-Res

We now introduce a new calculus LD-Q(D)-Res, which is the ‘dependency version’
of long-distance Q-resolution, and state the rules in Fig.

Although the method of generalising the reference to the trivial dependency
scheme remains, more care must be taken when defining LD-Q(D)-Res. Replacing
the resolution condition x <g u with (u,z) ¢ Dg, one must annotate the merged
literals with the corresponding existential pivots, and check during V-reduction
that the reduced universal is independent of all the pivots for any annotated
literals in the clause. This condition is always satisfied in LD-Q-Res, since reduced

universals are always right of any merged variables in the clause, which are always
right of any relevant existential pivots. However, harnessing independence opens
up the potential to allow a universal variable u to be reduced from a clause
containing a literal merged over a pivot x which is not independent of u. A simple
counterexample E| shows that reducing u in such a case is in general unsound for
a fully-exhibited dependency scheme, and is not allowable in LD-Q(D)-Res.

C (Axiom) C is a clause in the matrix of @.
DUT{Z“} (V-Red) Literals I, and u® are universal. If

l € D and var(l) = v, then (u,v) ¢
Dy, and if | = v then (u,z) ¢ Da

X
DufuT} (V-Red™) for all z € X'.

D

C1UULU{z} CoUUx U {~x}
CiuCuU

(Res)

Variable x is existential. If for 1 € Ci,l2 € Ca,var(li) = var(le) = z,
then Iy = lo # z*. Uy, Uz contain only universal literals with var(U;) =
var(Uz). For each u € var(U;) we require (z,u) ¢ Dg . If for uy € U, uz €
Uz, var(ui) = var(uz) = u, then ui = —wue, or at least one of w1, us is
annotated. U is defined as {u” | u € var(U;)}, where X is the union of z
with any annotations on u in U; and Us.

Fig. 4. The rules of LD-Q(D)-Res

For any annotated literal u™, we call X the resolution set for u. Non-merged
literals have an empty resolution set. We give an example refutation below.

Ezxample 8. Given the false QBF & = VuyJz13xoVus . ¢, with matrix

¢ = {{U1,171,5L“2,U2}, {ml, —‘332,—%2}7 {—'lfl,uz}}
and a dependency scheme D for which Dy = {(u1, 1)}, we have the following
LD-Q(D)-Res refutation.
{ui, @1, 22, u2} {m1, w2, s}
{ur, @1, u5™"}

{1, uf™)

A

{1, u2}

{us™ ")}
1

2 To save space, we omit this counterexample.

Step A, producing an annotated literal ung}, is justified since (ug, z2) ¢ D,

and dropping u; in the presence of this annotated literal in step B is allowed
since (u1,z2) ¢ Dg. Step C is an example of successive merging.

Motivated by discussion of merged literal functions for LD-Q-Res in the pre-
vious subsection, we present a recursive definition of annotated literal functions
in LD-Q(D)-Res that accounts for successive merging.

Definition 9 (Annotated literal functions for an assignment tree 7).
Let uX € U be a literal introduced by merging universal literals I, € Uy, and
lo € Us in a resolution step
01 UU1 U{CC} CQUUQU{—'JT}
CiuCyUU

of an LD-Q(D)-Res refutation of a formula ®. Let X1, X5 be the resolution sets
of 11,1y respectively, and let T' be an assignment tree for @. Then the annotated
literal function fX : T — {u,—u} for T is given by

I, if P(z)= L and X; =0,
£X(P) = fXu(pP), if P(z) =1 and X; # 0,
v lg, ifP(l‘):TandX2:®,
fX2(P), if P(z)=T and Xo # 0,

where X = X1 U Xy U {z}.

The following lemma states that the complementary property is preserved for
annotated literal functions.

Lemma 10. Let @ be a QBF over variables V', let u,v € Vi, let X C V3 and
let T be an assignment tree for @ for which T < (v,z) for all x € X. Then
any annotated literal function f.X for T satisfies fX (P) = fX(PV) for all paths
PeT.

Proof. The lemma follows from the observation that, throughout the recursive
definition of the annotated literal function f.X, complementary paths P and PV
always map to the same case, since P(x) = P¥(x) for all x € X and for all
PeT. O

Evaluation of annotated literals. We defined annotated literal functions for
T specifically so that any P € T satisfying both antecedents of a resolution step
also satisfies the resolvent. For that reason, we define ©X to have the same truth
value as the concrete literal fX(P) when evaluated under «, the assignment
represented by path P; that is, we define (uX)|, = (fX(P))|o. Representing
assignments by paths, this would be written P(uX) = P(fX(P)), but we em-
phasize that the apparent circularity here is simply the result of the notational
convenience of using the symbol P to represent both an assignment tree path and
its corresponding assignment. The expression P(fX(P)) is always well-defined
because f;X can be computed for any given assignment tree T, so fX (P) is a
well-defined non-annotated literal, which can then be evaluated under P in the
usual way.

5.3 Soundness of LD-Q(D)-Res and LQU(D)-Res
We are now in a position to prove the following theorem.

Theorem 11. Let D be a fully exhibited dependency scheme. Then LD-Q(D)-
Res is sound.

Proof. Let ® = Q. ¢ be a QBF over variables V', suppose that 7 = {Cy,...,C;}
is a LD-Q(D)-Res refutation of &, and let

i = ¢ ifi =0,
" ldACIA---AC; otherwise,

for s = 1,...,1. Since D is fully exhibited, if @ is true there exists a model M
for @ for which M <g (u,x) for all pairs (u,z) ¢ Dg with u € Vi and = € V.
Our proof uses exactly the same induction on ¢ as in the proof of Theorem [0}
and the base case is no different. We only need confirm that if M is a model for
Q. ¢;, then M is a model for Q. ¢; 1.

Suppose that C;;1 = C1UC2UU is the resolvent of clauses C; = C1UU; U{z}
and C, = Co UUy U {—z} for j,k < i+ 1, and let P be an arbitrary path in
M. By the inductive hypothesis, P satisfies C; and Cj. Assume without loss
of generality that P(x) = L. Then P satisfies C; U U;. If P satisfies C; then
P satisfies C;41. Otherwise, P(l,) = T for some (annotated or non-annotated)
literal {,, € Uy with var(l,,) = u. The recursive definition of the annotated literal
function ensures that P(l,) = T = P(uX) = T for some annotated literal
uX € U, and so P satisfies C;,1. Therefore M is a model for Q. ¢;1.

On the other hand, suppose that C;11 was obtained from Cj,7 < ¢ + 1,
by V-reduction on a non-annotated universal literal w. Then Citq1 = C;\{l,},
where var(l,) = u, (u,z) ¢ Dg for all x € C; NV3 and for all z € X, where
X is the union of the resolution sets of all universal literals in C;. Suppose
that there exists some path P in M which satisfies C; but falsifies Cj11. Let
z € Cit1; then P(z) = L, and since M <g (u,x) for all (u,z) ¢ Dg, we
have P¥(z) = P(z) = L whenever z is a non-annotated literal. On the other
hand, suppose that z = v¥, where v # w; then, since M <g (u,z) for all
z € X, Lemma [10| gives fX (P) = fX(P*) = l, with var(l,) = v, which implies
PY(vX) = P(v*) = L. Also, since P(u) = T, we have P%(u) = L, and we
deduce that P“(C;) = L, contradicting that M is a model for Q.¢;. It follows
that P satisfies C;t1, and that M is a model for Q. ¢; 1.

The same argument follows for an annotated literal uX. Since M <4 (u,)
for all z € X, the special case of Lemma [10| with v = u gives fX(P) = fX(PY),
hence P(uX) = T implies P*(u*X) = L. This completes the proof. O
Extension to LQU(D)-Res. Since the proof of Theorem [11f makes no use of
the fact that the pivot is existential, it suffices also to show the soundness of
LQU(D)-Res, the ‘dependency version’ of LQUT-Res, for fully exhibited D. We

omit the formal definition of the system, which differs only from that of LD-
Q(D)-Res in allowing universal resolution pivots.

Theorem 12. Let D be a fully exhibited dependency scheme. Then LQU(D)-Res
s sound.

6 Demonstrating Full Exhibition

In this section, to demonstrate proof of concept, we prove that the standard
dependency scheme D' is fully exhibited. First, we restate its definition.

Definition 13 (Standard dependency scheme [1619]). Let ® = Q. ¢ be
a QBF over variables V, and let v,w € V such that v <g w. We say that v and
w are connected in @ if there exists a set of clauses Cq,...,Cx € ¢ such that
veC,weC, and C;NCixiNX #0 fori=1,...,k—1, where X = R(v)NV3.
The standard dependency scheme D% is defined by

D & {(v,w) | v and w are connected in D, q(v) # q(w)}.

We proceed by showing the correctness of an algorithm which transforms an
arbitrary model M of some true QBF @ into a model M*, where M* < (u,x)
for all (u,z) ¢ D4, Figure [5| introduces the procedure F1ip() which modifies
M so that P(xz) = P“(x) for some given path P, existential and universal w.

1 Flip (P,u,X)

2 {

3 for each z € X do flip z in P

4 X' «0

5 for each C € ¢ such that P(C) = 1 do

6 for each v € C such that P(v) # P"(v) do
7 push v — X’
8 if X' # 0 then Flip (P, u, X')
o }

Fig. 5. The flipping procedure

Theorem 14. The standard dependency scheme is fully exhibited.

Proof. We fix a true QBF @ and an arbitrary model M for é. Suppose we wish
to modify M so that M < (u,z) for some specific (u,z) ¢ D4, and to that
end we identify some pair of paths P and P* for which P(z) # P"(z) and then
invoke F1ip(P, u,{z}). On line 3, z is flipped in P and on line 5 the procedure
checks for any clauses that P now falsifies. Any falsified clause C' must contain =
but cannot contain u due to (u,z) ¢ Did; also C must contain some variable v
which P and P" assign oppositely, and v must therefore be existential. All such
existentials are added to the set X’ in line 7. If no clauses were falsified, the
procedure terminates on line 8 and M remains a model; otherwise the procedure

repeats by flipping X’ and checking again for falsified clauses. At any recursion

depth, the collected set X’ still contains only existentials, since the appearance
of u would always define a chain of clauses implying that (u,z) € D4, Similarly,
we observe that no flipped variable may be connected to u, hence

' is flipped in F1ip(P,u, {z}) = (u,x’) ¢ D, (2)

It is clear that F1lip() yields a model if it terminates; the fact that it always
terminates follows from the fact that no variable may be flipped twice.

Now we point out that using Flip() alone, we can transform M into a
model M’ where M’ < (u,x) for all u € U, = {u | (u,z) ¢ Di}; that is, M’
exhibits all independencies associated with x. To see this, note that a model
can be naturally partitioned into sets of paths, each of which is closed under
the operation of taking the complementary path with respect to u € U,. Then
any non-conformity of the assignment of = in a particular set can be erased by
repeated application of F1ip().

We now describe how to obtain the desired model M* which exhibits all the
independencies. Suppose that the existential variables of @ in prefix order are
Z1,...,Ty. Given an arbitrary model M, use the method described in the pre-
vious paragraph to obtain M, which exhibits all the independencies associated
with the rightmost existential x,,. Now repeat the process to obtain from M, a
model M,,_1 which exhibits all the independencies associated with x,,_1. We ob-
serve that M,,_; preserves the exhibition of the independencies associated with
Zy; due to condition , x, cannot be flipped in obtaining M,,_; from M, since
whenever (u,x,) ¢ Dy we already have P(z,) = P%(z,). Continuing in this
way, each model M; exhibits all the independencies corresponding to z;, . .., Ty,
and at the n'" step we obtain the required model M* = M;. O

Our concluding result now follows immediately from Theorems [7} [[1] and

Corollary 15. QU(D)-Res, LD-Q(D**)-Res and LQU(D**¢)-Res are sound proof
systems.

7 Conclusions and Open Problems

As we have shown, the parametrization by dependency scheme can be extended
to all four CDCL QBF calculi, and the property of full exhibition — which is pos-
sessed by the standard dependency scheme — is sufficient for soundness in each
case. Showing by counterexample that full-exhibition is not a necessary condi-
tion, our work leads naturally to the open problem of finding a characterization
for soundness in this setting. We also leave open the question of whether the
reflexive resolution path dependency scheme D™ is fully exhibited, and whether
our methods of model transformation from Sect. [f] can be furthered to provide
this result.

Acknowledgments. This research was supported by grant no. 48138 from the
John Templeton Foundation and EPSRC grant EP/L024233/1.

References

10.

11.

12.

13.

14.

Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and boolean formulae:
A certification perspective of DQBF. Theor. Comput. Sci. 523, 86-100 (2014),
http://dx.doi.org/10.1016/j.tcs.2013.12.020

. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. For-

mal Methods in System Design 41(1), 45-65 (2012), http://dx.doi.org/10.1007/
s10703-012-0152-6

Balabanov, V., Widl, M., Jiang, J.R.: QBF resolution systems and their proof
complexities. In: Theory and Applications of Satisfiability Testing - SAT 2014
- 17th International Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. pp. 154-169 (2014),
http://dx.doi.org/10.1007/978-3-319-09284-3_12

Beyersdorff, O., Bonacina, 1., Chew, L.: Lower bounds: From circuits to QBF proof
systems. In: ACM Conference on Innovations in Theoretical Computer Science
(ITCS’16). pp. 249-260. ACM (2016)

Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based cal-
culi. In: Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings,
Part II. pp. 81-93 (2014), http://dx.doi.org/10.1007/978-3-662-44465-8_8
Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on The-
oretical Aspects of Computer Science (STACS 2015). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 30, pp. 76-89. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2015), http://drops.dagstuhl.
de/opus/volltexte/2015/4905

Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF
resolution calculi. In: Proc. International Colloquium on Automata, Languages,
and Programming (ICALP’15). pp. 180-192. Springer (2015)

Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF
resolution is not simple. In: Proc. Symposium on Theoretical Aspects of Computer
Science (STACS’16) (2016)

Buss, S.R.: Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic
163(7), 906-917 (2012)

Egly, U.: On sequent systems and resolution for QBF's. In: Theory and Applications
of Satisfiability Testing (SAT’12). pp. 100-113 (2012)

Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and
strategy extraction in search-based QBF solving. In: Logic for Programming, Arti-
ficial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stel-
lenbosch, South Africa, December 14-19, 2013. Proceedings. pp. 291-308 (2013),
http://dx.doi.org/10.1007/978-3-642-45221-5_21

Gelder, A.V.: Contributions to the theory of practical quantified boolean formula
solving. In: Principles and Practice of Constraint Programming - 18th International
Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings.
pp. 647-663 (2012), http://dx.doi.org/10.1007/978-3-642-33558-7_47
Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25-42 (2015)

Kleine Biining, H., Karpinski, M., Flogel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12-18 (1995), http://dx.doi.org/10.1006/inco.
1995.1025

http://dx.doi.org/10.1016/j.tcs.2013.12.020
http://dx.doi.org/10.1007/s10703-012-0152-6
http://dx.doi.org/10.1007/s10703-012-0152-6
http://dx.doi.org/10.1007/978-3-319-09284-3_12
http://dx.doi.org/10.1007/978-3-662-44465-8_8
http://drops.dagstuhl.de/opus/volltexte/2015/4905
http://drops.dagstuhl.de/opus/volltexte/2015/4905
http://dx.doi.org/10.1007/978-3-642-45221-5_21
http://dx.doi.org/10.1007/978-3-642-33558-7_47
http://dx.doi.org/10.1006/inco.1995.1025
http://dx.doi.org/10.1006/inco.1995.1025

15.

16.

17.

18.

19.

20.

21.

Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. Ph.D. thesis, Johannes Kepler University (2012)

Lonsing, F., Biere, A.: A compact representation for syntactic dependencies in gbfs.
In: Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings. pp. 398—
411 (2009), http://dx.doi.org/10.1007/978-3-642-02777-2_37

Lonsing, F., Egly, U.: Depgbf: An incremental QBF solver based on clause groups.
CoRR abs/1502.02484 (2015), http://arxiv.org/abs/1502.02484

Samer, M.: Variable dependencies of quantified CSPs. In: Logic for Programming,
Artificial Intelligence, and Reasoning, 15th International Conference, LPAR 2008,
Doha, Qatar, November 22-27, 2008. Proceedings. pp. 512-527 (2008), http://dx.
doi.org/10.1007/978-3-540-89439-1_36

Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. J. Autom.
Reasoning 42(1), 77-97 (2009), http://dx.doi.org/10.1007/s10817-008-9114-5
Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83-101 (2016), http://dx.doi.org/10.1016/j.tcs.
2015.10.020

Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: Proceedings of the 5th Annual ACM Symposium on The-
ory of Computing, April 30 - May 2, 1973, Austin, Texas, USA. pp. 1-9 (1973),
http://doi.acm.org/10.1145/800125.804029

ECCC

http://eccc.hpi-web.de

ISSN 1433-8092

http://dx.doi.org/10.1007/978-3-642-02777-2_37
http://arxiv.org/abs/1502.02484
http://dx.doi.org/10.1007/978-3-540-89439-1_36
http://dx.doi.org/10.1007/978-3-540-89439-1_36
http://dx.doi.org/10.1007/s10817-008-9114-5
http://dx.doi.org/10.1016/j.tcs.2015.10.020
http://dx.doi.org/10.1016/j.tcs.2015.10.020
http://doi.acm.org/10.1145/800125.804029

