
Non-Malleable Extractors with Logarithmic Seeds

Gil Cohen∗

March 7, 2016

Abstract

We construct non-malleable extractors with seed length d = O(log n+log3(1/ε)) for
n-bit sources with min-entropy k = Ω(d), where ε is the error guarantee. In particular,

the seed length is logarithmic in n for ε > 2−(logn)
1/3

. This improves upon existing
constructions that either require super-logarithmic seed length even for constant error
guarantee, or otherwise only support min-entropy n/polylog n.

1 Introduction

A non-malleable extractor is a seeded extractor with a very strong guarantee concerning
the correlations (or, more precisely, the lack thereof) of the outputs of the extractor when
fed with different seeds. The notion of a non-malleable extractor was introduced by Dodis
and Wichs [DW09], motivated by the problem of designing privacy amplification protocols
against active adversaries. More recently, non-malleable extractors played a key role in the
construction of two-source extractors [CZ15].

We turn to give the formal definition of non-malleable extractors. We assume familiarity
with standard notions such as min-entropy, statistical distance, and weak-sources, and with
standard notation. The unfamiliar reader may consult the Preliminaries.

Definition 1.1 (Non-malleable extractors). A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is
called a (k, ε)-non-malleable extractor if for any (n, k)-source X and any function A : {0, 1}d →
{0, 1}d with no fixed points, it holds that

(nmExt(X, Y), nmExt(X,A(Y)), Y) ≈ε (Um, nmExt(X,A(Y)), Y),

where Y is uniformly distributed over {0, 1}d independently of X. If nmExt is a (k, ε)-
non-malleable extractor, we say that nmExt has error guarantee ε and that nmExt supports
min-entropy k.

∗Computing and Mathematical Sciences Department, Caltech. Email: coheng@caltech.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 30 (2016)

Computational aspects aside, for any integer n and ε > 0, Dodis and Wichs [DW09]
proved the existence of (k, ε)-non-malleable extractors having m output bits and seed length
d = log(n− k) + 2 log(1/ε) +O(1) for any k > 2m+ 2 log(1/ε) + log d+O(1). Although the
mere existence of non-malleable extractors, and with such great parameters, is somewhat
surprising (and somewhat non-trivial to prove!), explicit constructions are far more desirable.

Constructing non-malleable extractors gained a significant attention in the literature.
Already some of the early constructions [CRS14, DLWZ14, Li12a] have seed length d =
O(log(n/ε)), which is optimal up to a constant factor. However, these constructions could
only support min-entropy higher than n/2. This restriction was subsequently relaxed to
(1/2 − α) · n for some small universal constant α > 0 [Li12b]. In a breakthrough re-
sult [CGL15], Chattopadhyay, Goyal, and Li constructed a non-malleable extractor with seed
length d = O(log2(n/ε)) that supports a drastically lower min-entropy k = Ω(log2(n/ε)).
Based on the [CGL15] framework, an improved construction of non-malleable extractors was
given [Coh15b]. In particular, non-malleable extractors with seed length d = O(log(n/ε) ·
log(log(n)/ε)) that support min-entropy k = Ω(log(n/ε)). A second, incomparable, con-
struction with seed length d = O(log n) was given in [Coh15b], though it could only support
min-entropy k = n/polylog n, for a slightly sub-constant ε.

To summarize, prior to this work, explicit non-malleable extractors with logarithmic seed
length could only support high min-entropy (k = n/polylog n). To support lower min-entropy
(say, k = log n, or k = polylog n, or even k = n0.9), regardless of the error guarantee, a seed of
super-logarithmic length was required. In this work we improve upon existing constructions
by devising non-malleable extractors with logarithmic seeds that support logarithmic min-
entropy. Further, the error guarantee is sub-constant.

Theorem 1.2. For any integer n and for any ε > 0 there exists an explicit (k, ε)-non-
malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}

with seed length d = O(log n+ log3(1/ε)) for k = Ω(d).

To the matter of fact, our construction has a more flexible tradeoff between the different
parameters (see Lemma 4.1). Nevertheless, Theorem 1.2 is a clearly presentable instantiation
of the more general result in a natural regime of parameters. Note, in particular, that for
ε > 2−(logn)

1/3
, both the seed length and the supported min-entropy are logarithmic in n.

The non-malleable extractor that is given by Theorem 1.2 is reported to output a single
bit. In many scenarios, outputting one bit is not enough. By applying a result from [Coh15b]
that allows one to increase the output length of a given non-malleable extractor in a black-box
manner, we obtain the following.

Theorem 1.3. For any integer n and for any ε > 0, there exists an explicit (k, ε)-non-
malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = O(log n + log3(1/ε) + log k · log(1/ε)) and m = Ω(k/ log(1/ε)) output
bits, where k = Ω(d).

2

Note that the seed length of the non-malleable extractor that is given by Theorem 1.3
is logarithmic in n in the natural regime k = polylog n when restricting to error guarantee
2−(logn)

1/3
.

2 Proof Overview

The proof of Theorem 1.2 is based on the framework that was introduced by Chattopadhyay,
Goyal, and Li [CGL15], as well as on further ideas from [Coh15b], though applied in a more
intricate manner. To outline our proof, we believe it is instructive to start by presenting the
ideas of [CGL15, Coh15b]. We recall the two main primitives that played a key role in these
constructions – correlation breakers with advice and advice generators.

2.1 Correlation breakers with advice and advice generators

Informally speaking, a correlation breaker with advice is a function that breaks correlations
between a “good” random variable and an adversarially correlated random variable, given
an “advice”, and using an auxiliary weak-source of randomness. Somewhat more formally,
a (k, ε)-correlation breaker with advice is a function

AdvCB : {0, 1}w × {0, 1}` × {0, 1}a → {0, 1}m

such that for any, arbitrarily correlated, `-bit random variables Y, Y ′ such that Y is uni-
form; any arbitrarily correlated w-bit random variables X,X ′ that are jointly independent
of (Y, Y ′), and such that X has min-entropy k; and for any distinct a-bit strings α 6= α′, it
holds that AdvCB(X, Y, α) is ε-close to uniform in statistical distance even conditioned on
AdvCB(X ′, Y ′, α′). We think of α as an “advice”, and in particular refer to a as the advice
length. We refer to X as the auxiliary weak-source of randomness, or simply as the source.

By adopting the construction of local correlation breakers [Coh15a] (that, in turn, was
based on ideas from [Li13]), Chattopadhyay et al. [CGL15] constructed a correlation breaker
with advice for any

` = Ω
(
a · log

(aw
ε

))
,

that supports min-entropy

k = Ω

(
a · log

(
a`

ε

))
which has m = Ω(`/a) output bits (see Theorem 3.11).

We move to the notion of an advice generator. A (k, ε)-advice generator is a function

AdvGen : {0, 1}n × {0, 1}d → {0, 1}a

with the following property. For any (n, k)-source X and for any function A : {0, 1}d →
{0, 1}d with no fixed points, it holds that

Pr
(x,y)∼(X,Y)

[AdvGen(x, y) = AdvGen(x,A(y))] ≤ ε,

where Y is uniformly distributed over d-bit strings independently of X.

3

2.2 The [CGL15] construction

Clearly, an advice generator is a strictly weaker object than a non-malleable extractor.
Indeed, note that a (k, ε)-non-malleable extractor with m output bits is a (k, ε + 2−m)
advice generator. Nevertheless, Chattopadhyay et al. [CGL15] reduced the problem of
constructing a non-malleable extractor to that of constructing an advice generator, at least
as long as the advice generator is “nice”. With the notations set above, we say that AdvGen
is nice if conditioned on AdvGen(X, Y), AdvGen(X,A(Y)), the random variables X, Y remain
independent and, furthermore, both X and Y have not lost much of their respective min-
entropies.

The reduction suggested by [CGL15] can be written as

nmExt(x, y) = AdvCB(x, y,AdvGen(x, y)).

That is, one uses the source x and the seed y to generate an advice that is then passed to
the correlation breaker with advice which, in turn, also operates on x, y. Although a priori
it is not clear why such a suggestion is valid, as the advice is correlated with the source and
seed (in fact, it is completely determined by them!), this elegant reduction can be shown to
work.

Let X be an (n, k)-source, A : {0, 1}d → {0, 1}d be a function with no fixed points, and
Y a random variable that is uniformly distributed over d-bit strings, independently of X.
For ease of notation we write Y ′ for A(Y). The analysis proceeds as follows. As AdvGen
is a nice advice generator, with high probability over the fixings α = AdvGen(X, Y) and
α′ = AdvGen(X, Y ′), it holds that α 6= α′, and furthermore, X and Y remain independent
and have not lost much min-entropy. At this point, except for the fact that Y is no longer
uniform but rather has very high min-entropy, all the conditions for applying the correlation
breaker with advice are met. Luckily, Y having very high min-entropy is sufficient for the
specific implementation of AdvCB being used.

Given this reduction from non-malleable extractors to nice advice generators, and the
construction of correlation breakers with advice mentioned above, one can focus on the easier
task of devising an advice generator. Note that the shorter the advice length a is, the better
the resulting non-malleable will be in terms of seed length and supported min-entropy.

The following advice generator was suggested by [CGL15].1 First, partition y to two
substrings y = y1 ◦ y2 such that y1 has sufficient length so to be used as a seed for a
strong seeded extractor Ext on n-bit strings with error guarantee ε. Using state of the art
seeded extractors, |y1| = O(log(n/ε)) will do (see Theorem 3.4). We further assume that
|y| ≥ 100 · |y1|. Let ECC be an error correcting code with relative distance 1− ε, and define

AdvGen(x, y) = y1 ◦ ECC(y)Ext(x,y1).

In the expression above, by ECC(y)Ext(x,y1) we mean the following – we interpret the output
of Ext as an index i of the codeword ECC(y). Then, ECC(y)i refers to the content in that
i’th entry.

1The advice generator that we present in this section is a slightly modified version of the original generator
that was given by [CGL15].

4

With the notations set above, the analysis proceeds as follows. First, note that if Y1 6= Y ′1
then, as Y1 is a prefix of AdvGen(X, Y) and Y ′1 is a prefix of AdvGen(X, Y ′), we are done. This
then “forces” the adversary to set Y1 = Y ′1 , which implies that the same index of the codeword
is being sampled both for the computation of AdvGen(X, Y) and for the computation of
AdvGen(X, Y ′). As these two codewords are distinct (recall that Y 6= Y ′) and since Ext(X, Y1)
is ε-close to uniform, the distance of the code guarantees that the suffix of AdvGen(X, Y)
will be different from the respective suffix of AdvGen(X, Y ′) with probability 1−O(ε). This
advice generator can be shown to be nice using the assumption |y1| ≤ 100 · |y|.

As y1 is being used as a seed for Ext, its length must be taken to be Ω(log(n/ε)). This is
the dominating part of the advice length as the suffix can be set to have length O(log(1/ε)).
Recall that the correlation breaker with advice being used requires ` = O(a · log(aw/ε)).
As a = Ω(log(n/ε)) and since w = n, the total seed length required for the non-malleable
extractor is

` = O
(
a · log

(aw
ε

))
= O

(
log2

(n
ε

))
.

The min-entropy requirement can also be shown to be k = Ω(log2(n/ε)).

2.3 Switching the source and seed

Why did we pay log2(n/ε) in the seed length? Well, one factor of log(n/ε) is due to the
advice length a while the other is due to the fact that the source fed to AdvCB is X which
has length w = n. In [Coh15b] it was shown how to save on the second factor by passing
as a source to AdvCB not the original source X but rather a much shorter source. In fact,
that alternative source for AdvCB is the original seed Y . Of course, though, one also needs
to supply AdvCB with a uniform string (which before was simply Y) that is independent
of the source (which will now be Y). This string will be some function of both X, Y that
can be made independent of Y by conditioning on a carefully chosen event. To describe this
function we require another, very useful, primitive from the literature.

Raz [Raz05] gave a construction of a strong seeded extractor that is also guaranteed to
work with “weak-seeds”, namely, seeds that are not required to be uniform, and it suffices
that they have sufficient amount of min-entropy. More formally, Raz constructed a function

Raz : {0, 1}n × {0, 1}d → {0, 1}m,

with d = O(log(n/ε)), such that for any (n, k)-source X, and for any independent (d, 0.51d)-
source Y , (Raz(X, Y), Y) ≈ε (Um, Y) (see Theorem 3.7).

With Raz’s extractor in hand, the improved reduction from non-malleable extractors to
advice generators suggested by [Coh15b] is defined as follows. Split y to three substrings
y = y1 ◦ y2 ◦ y3 with lengths d1, d2, d3, respectively. Again, we take d1 = O(log(n/ε)) to
be sufficiently large as required by a seed for Ext. We further require d2 ≥ 100 · d1 and
d3 ≥ 100 · d2. The improved reduction is then given by

nmExt(x, y) = AdvCB (y3,Raz(x, y2),AdvGen(x, y)) .

5

With the notations set above, the analysis proceeds as follows. First, note that condi-
tioned on AdvGen(X, Y) and on AdvGen(X, Y ′), each of the random variables X, Y , which
remain independent, loses only O(log(n/ε)) bits of min-entropy. In particular Y2 has min-
entropy rate larger than 0.51. Thus, as Y3 is much longer than Y2, , by conditioning on Y2
and on Y ′2 we have that:

• Raz(X, Y2) is close to uniform.

• Y3 has min-entropy, say, d/2.

• The random variables Raz(X, Y2), Raz(X, Y ′2) are deterministic functions of X, and
thus are jointly independent of the joint distribution (Y3, Y

′
3).

Thus, the application of AdvCB is indeed valid (note also that unlike the original reduc-
tion [CGL15], no further assumptions on the inner workings of AdvCB are made). What
is the required seed length from the resulting non-malleable extractor when using this re-
duction? First, y1 is a seed for Ext and y2 is a seed for Raz. These, however, do not put
restriction beyond Ω(log(n/ε)) on the seed length. The bottleneck is, again, due to AdvCB.
More precisely, as y3 plays the role of the source to AdvCB, one must have that the min-
entropy of Y3 conditioned on the fixings above, which is d/2, is asymptotically bounded
below by a · log(a`/ε), where

` = Ω

(
a · log

(
ad3
ε

))
= Ω

(
log
(n
ε

)
· log

(
log n

ε

))
,

and so the seed length required by non-malleable extractor is

d = Ω

(
log
(n
ε

)
· log

(
log n

ε

))
.

Similarly, one can show that the resulting non-malleable extractor supports min-entropy that
is equal to the expression in the above equation.

So far we presented the ideas that go into previous works [CGL15, Coh15b]. We now
turn to describe the new ideas that allow us to obtain improved non-malleable extractors.

2.4 Improved advice generators via correlation breakers with ad-
vice

The “switch” that was described above allows one to reduce one factor of log(n/ε) in the seed
length of the resulting non-malleable extractor to log(log(n)/ε). Recall that the other factor
of log(n/ε) in the seed length is due to the advice length. We stress that, computational
aspects aside, one can generate an advice of length log(1/ε). In particular, one can potentially
completely decouple the advice length from the input length n.

The main idea that enables us to obtain improved non-malleable extractors in this work
is the construction of an improved advice generator. The key idea for doing so is to use a

6

correlation breaker with advice also for the construction of the advice generator. Thus, two
correlation breakers with advice will be used in the construction of the non-malleable extrac-
tor – a new one for generating the advice, and the other is for the original purpose of reducing
the construction of non-malleable extractors to the construction of advice generators. We
now elaborate.

Given a string y ∈ {0, 1}d, we partition y = y1 ◦ · · · ◦ y5, with |yi| = di. As before,
d1 = O(log(n/ε)) is chosen sufficiently long so to be used as a seed for a strong seeded
extractor. We require that di ≥ 100 · di−1 for i = 2, 3, 4, 5. For a parameter 1 ≤ b ≤ d1
to be chosen later on, set ain = d1/b and further partition y1 to b consecutive equal length
substrings, or blocks, y1 = y11 ◦ · · · yb1. Note that each yj1 has length ain. As mentioned, our
improved advice generator is based on a correlation breaker with advice

AdvCBin : {0, 1}d3 × {0, 1}`in × {0, 1}ain → {0, 1}log(1/ε),

where

`in = Ω

(
ain · log

(
ain · d3
ε

))
= Ω

(
1

b
· log

(n
ε

)
· log

(
log n

ε

))
(2.1)

as required by the construction of the correlation breakers with advice that we use. We
further make use of a second instantiation of Raz’s extractor

Razin : {0, 1}n × {0, 1}d2 × {0, 1}`in .

With these building blocks, our advice generator is given by

AdvGen(x, y) = ECC(y)Ext(x,y1) ◦©b
j=1AdvCBin

(
y3,Razin(x, y2), y

j
1

)
,

where the expression ©b
j=1sj stands for the concatenation s1 ◦ · · · ◦ sj. In words, instead of

setting y1 as a substring of the advice, as suggested by [CGL15], so to force the adversary
to set Y1 = Y ′1 , we make use of the different blocks of y1 as advices to AdvCBin applied
with “switched” source y3 and seed Razin(x, y2). The concatenation of the outputs of these
applications of AdvCBin, in turn, compose part of the advice instead of y1. The non-malleable
extractor is then given by

nmExt(x, y) = AdvCBout (y5,Razout(x, y4),AdvGen(x, y)) ,

for some suitable instantiations of a correlation breaker with advice AdvCBout and Raz’s
extractor Razout.

Before delving into the analysis, we remark that the idea above allows us to control
the advice length that is generated by AdvGen. Indeed, note that instead of advice length
O(log(n/ε)), now the output of AdvGen is of length O(b · log(1/ε)). Note that one cannot
simply take b = 1, hoping to minimize the advice length that is generated by AdvGen, as the
advice length passed “internally” to AdvCBin is ain = d1/b, and so by setting b = 1 we would
gain nothing. So we need to juggle between two advice lengths – the external O(b · log(1/ε)),
that increases with b, and the internal d1/b = O(log(n/ε)/b) which increases with b. Luckily,

7

even by taking all other considerations into account, the best idea is indeed setting these
two advices to be of essentially equal lengths by taking

b =

√
log n

log(1/ε)
.

We now proceed with the analysis. As before, if Y1 = Y ′1 , we are done. Otherwise, there
must exists some block number g ∈ [b] such that Y g

1 6= (Y ′)g1 (one should be slightly careful
as g is a function of Y1, Y

′
1 , though we allow ourselves to be somewhat imprecise in this

section). Thus, the g’th application of AdvCBin when applied to Y is fed with an advice that
is different from the advice that is passed to the corresponding application of AdvCBin when
applied to Y ′. By applying similar arguments to those used above when we analyzed the
“switch”, one can show that

AdvCB (Y3,Razin(X, Y2), Y
g
1) ≈ε Ulog(1/ε)

even conditioned on AdvCB(Y ′3 ,Razin(X, Y
′
2), (Y ′)g1). Hence,

Pr [AdvCB (Y3,Razin(X, Y2), Y
g
1) = AdvCB (Y ′3 ,Razin(X, Y

′
2), (Y ′)g1)] ≤ 2ε.

As we choose d5 � d4 � d3, one can show that even conditioned on the advices, the
outer correlation breaker with advice is fed with suitable source Y5 and a uniform string
Razout(X, Y4).

Now that it has been established that AdvGen, as defined above, is indeed an advice
generator which composes nicely with the outer correlation breaker with advice, we turn
to analyze the parameters. As mentioned above, since AdvCBin has output length log(1/ε)
and so does the prefix of AdvGen that computes the error correcting code, the advice length
generated by AdvGen is aout = O(b · log(1/ε)). Thus, the seed length that is required for the
reduction from non-malleable extractors to advice generators, using our advice generator, is
of order

aout · log

(
aout · `out

ε

)
= b · log

(
1

ε

)
· log

(
b · log log n

ε

)
, (2.2)

where in the above equation we took `out to be of order

aout · log

(
aout · d5

ε

)
= b · log

(
1

ε

)
· log

(
b · log n

ε

)
,

as required by the construction we use of correlation breakers with advice.
Equation (2.1) and Equation (2.2) are two constraints on the seed length of the resulted

non-malleable extractor. While Equation (2.1) decrease as a function of b, Equation (2.2)
increases with b. As it turns out, the best choice for b is given by

b = max

(
1,

√
log n

log(1/ε)

)
.

By taking into account the constraint d = Ω(log(n/ε)) that follows as we use d1 as a seed
for Ext, one can get away with a non-malleable extractor with seed length d = O(log n +
log3(1/ε)).

8

3 Preliminaries

In this section we recall some standard definition and notations, and state results from the
literature that we make use of.

Setting some standard notations. Unless stated otherwise, the logarithm in this paper
is always taken base 2. For every natural number n ≥ 1, define [n] = {1, 2, . . . , n}. Through-
out the paper, whenever possible, we avoid the use of floor and ceiling in order not to make
the equations cumbersome. Whenever we say that a function is efficiently-computable we
mean that the corresponding family of functions can be computed by a (uniform) algorithm
that runs in polynomial-time in the input length.

Random variables and distributions. We sometimes abuse notation and syntactically
treat random variables and their distribution as equal, specifically, we denote by Um a random
variable that is uniformly distributed over {0, 1}m. Furthermore, if Um appears in a joint
distribution (Um, X) then Um is independent of X. When m is clear from context, we omit it
from the subscript and write U . The support of a random variable X is denoted by supp(X).

Statistical distance. The statistical distance between two distributions X, Y on the same
domain D is defined by

SD (X, Y) = max
A⊆D
|Pr[X ∈ A]−Pr[Y ∈ A] |.

If SD(X, Y) ≤ ε we write X ≈ε Y and say that X and Y are ε-close.

Min-entropy [CG88]. The min-entropy of a random variable X, denoted by H∞(X), is
defined by

H∞(X) = min
x∈supp(X)

log2

(
1

Pr[X = x]

)
.

If X is supported on n-bit strings, we define the min-entropy rate of X by H∞(X)/n. In
such case, if X has min-entropy k or more, we say that X is an (n, k)-source. When wish to
refer to an (n, k)-source without specifying the quantitative parameters, we sometimes use
the standard terms source or weak-source.

We make further use of a useful generalization of the notion of min-entropy.

Average conditional min-entropy. Let X,W be two random variables. The average
conditional min-entropy of X given W is defined as

H̃∞(X | W) = − log2

(
E

w∼W

[
2−H∞(X|W=w)

])
.

We make frequent use of the following two lemmas.

9

Lemma 3.1 ([DORS08]). Let X, Y, Z be random variables such that Y has support size at
most 2`. Then,

H̃∞(X | (Y, Z)) ≥ H̃∞((X, Y) | Z)− ` ≥ H̃∞(X | Z)− `.

In particular, H̃∞(X | Y) ≥ H∞(X)− `.

Lemma 3.2 ([DORS08]). For any two random variables X, Y and any ε > 0, it holds that

Pr
y∼Y

[
H∞(X | Y = y) < H̃∞(X | Y)− log(1/ε)

]
≤ ε.

Extractors. For our construction, we make use of seeded extractors. We recall the defini-
tion of seeded extractors, some standard facts, and relevant results from the literature. For
more information, we refer the interested reader to [Sha11, Vad11].

Definition 3.3 (Seeded extractors [NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m
is called a (k, ε)-seeded extractor if for any (n, k)-source X it holds that Ext(X,S) ≈ε Um,
where S is uniformly distributed over {0, 1}d independently of X. We say that Ext is a strong
seeded-extractor if

(Ext(X,S), S) ≈ε Um+d.

We refer to k as the supported min-entropy of Ext and to ε as the error guarantee.

Throughout the paper we make use of the strong seeded extractor of Guruswami et al.
[GUV09].

Theorem 3.4 ([GUV09]). There exists a universal constant cGUV ≥ 1 such that the following
holds. For all positive integers n, k, and for any ε > 0, there exists an efficiently-computable
(k, ε)-strong seeded-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m having seed length d = cGUV ·
log(n/ε) and m = k/2 output bits.

Definition 3.5. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a (k, ε)-strong seeded extractor. For
an (n, k)-source X, we define the set

BadSeeds(X) = {y ∈ {0, 1}d | SD(Ext(X, y), U) >
√
ε}.

An element y ∈ BadSeeds(X) is called a bad seed for X (with respect to Ext). Otherwise y
is called a good seed for X.

The following useful and simple fact readily follows by Markov’s inequality.

Fact 3.6. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a (k, ε)-strong seeded extractor. Then, for
any (n, k)-source X, |BadSeeds(X)| ≤

√
ε · 2d.

We also make frequent use of the following extractor with weak-seeds.

10

Theorem 3.7 ([Raz05]). There exist universal constants cRaz, c
′
Raz ≥ 1 such that the following

holds. For all integers n, k, d and for any ε > 0 such that d ≥ cRaz · log(n/ε) and k ≥ c′Raz · d,
there exists an efficiently-computable function

Raz : {0, 1}n × {0, 1}d → {0, 1}k/2

with the following property. Let X be an (n, k)-source, and let Y be an independent (d, 0.51d)-
source. Then, (Raz(X, Y), Y) ≈ε (U, Y).

We also make use of error correcting codes. In particular, of algebraic-geometric codes.
We first recall the definition of an error correcting code.

Definition 3.8. Let Σ be some set. A mapping ECC : Σk → Σn is called an error correcting
code with relative-distance δ if for any x, y ∈ Σk, it holds that the Hamming distance between
ECC(x) and ECC(y) is at least δn. The rate of the code, denoted by ρ, is defined by ρ = k/n.
The set Σ is called the alphabet of the code.

Theorem 3.9 ([GS95] (see also [Sti09])). Let p be any prime number and let m be an even
integer. Set q = pm. For every ρ ∈ [0, 1] and for any large enough integer n, there exists
an efficiently-computable rate ρ linear error correcting code ECC : Fρnq → Fnq with relative
distance δ such that

ρ+ δ ≥ 1− 1
√
q − 1

.

Lastly, we give the definition of correlation breakers with advice, and the construction
from the literature that we make use of.

Definition 3.10. A (k, ε)-correlation-breaker with advice is a function

AdvCB : {0, 1}w × {0, 1}` × {0, 1}a → {0, 1}m

with the following property. Let X,X ′ be random variables distributed over {0, 1}w such that
X has min-entropy k. Let Y, Y ′ be random variables over {0, 1}` that are jointly independent
of (X,X ′) such that Y is uniform. Then, for any a-bit strings α 6= α′ it holds that

(AdvCB(X, Y, α),AdvCB(X ′, Y ′, α′)) ≈ε (Um,AdvCB(X ′, Y ′, α′)) .

The third argument to the function AdvCB is called the advice.

Theorem 3.11 ([CGL15]). There exists a universal constant cACB ≥ 1 such that the following
holds. For all integers `, w, a and for any ε > 0 such that

` ≥ cACB · a · log
(aw
ε

)
, (3.1)

there exists a poly(`, w)-time computable (k, ε)-correlation-breaker with advice

AdvCB : {0, 1}w × {0, 1}` × {0, 1}a → {0, 1}`/(2a)

for

k ≥ cACB · a · log

(
a`

ε

)
. (3.2)

11

4 Proof of Theorem 1.2 and Theorem 1.3

In this section we prove Theorem 1.2 and Theorem 1.3. We start with Theorem 1.2. In fact,
we prove a somewhat more general result that is given by Lemma 4.1 below.

Lemma 4.1. For any integer n, any ε > 0, and for any integer b < log(n/ε), there exists
an efficiently-computable (k, ε)-non-malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}log(1/ε)

for

k = Ω

(
log
(n
ε

)
+

1

b
· log

(n
ε

)
· log

(
log n

ε

)
+ b · log

(
1

ε

)
· log

(
log n

ε

))
,

with seed length

d = O

(
log
(n
ε

)
+

1

b
· log

(n
ε

)
· log

(
log n

ε

)
+ b · log

(
1

ε

)
· log

(
log log n

ε

))
.

Proof. Let cGUV, cRaz be the constants that appear in the statement of Theorem 3.4 and
Theorem 3.7, respectively. Set d1 = max(cGUV, cRaz) · log(n/ε) and let d2, d3, d4, d5 be integers
such that d = d1 + · · ·+ d5. We assume that di ≥ 20 · di−1. Note that by our assumption on
d, such a sequence of di’s exists. Given y ∈ {0, 1}d, we partition y = y1 ◦ y2 ◦ · · · ◦ y5 such
that |yi| = di for i = 1, . . . , 5.

Building blocks. For the construction of our non-malleable extractor we make use of
several building blocks from the literature. We now present these components while setting
and defining relevant parameters.

• Let q be the least even prime power of 2 that is larger or equal than 5/ε2. Note that
q ≤ 20/ε2. Let r be the least integer such that qr ≥ d. We identify [d] with an arbitrary
subset of Frq. Set v = 2r/ε and let ECC : Frq → Fvq be the error correcting code that is
given by Theorem 3.9, set with relative distance δ = 1−ε. By Theorem 3.9, an explicit
code with these parameters (namely, relative distance 1 − ε, rate 2/ε, and alphabet
size q ≤ 20/ε2) exists.

• Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}log v be the strong (2 log v, ε)-seeded extractor that
is given by Theorem 3.4. Note that d1 was defined to be of sufficient length so to be
used as a seed for Ext. We identify the output of Ext as an element of [v].

• Set ain = d1/b. Let cACB be the constant that appears in the statement of Theorem 3.11,
and set

`in = 2cACB · ain · log

(
ain · d3
ε

)
.

Let Razin : {0, 1}n × {0, 1}d2 × {0, 1}`in be the (2`in, ε) extractor with weak seeds that
is given by Theorem 3.7. As d2 ≥ d1 ≥ cRaz · log(n/ε), a seed of length d2 suffices for
Razin.

12

• Let
AdvCBin : {0, 1}d3 × {0, 1}`in × {0, 1}ain → {0, 1}log(1/ε)

be the correlation breaker with advice that is given by Theorem 3.11. Note that `in
was chosen so to meet the hypothesis of Theorem 3.11. Further, by Theorem 3.11,
the output length of AdvCBin is `in/(2ain), and is therefore bounded below by log(1/ε).
Thus, we may truncate the output of the function given by Theorem 3.11 so to have
log(1/ε) output bits as appears in the definition of AdvCBin above.

• Set aout = (b+ 2) · log(1/ε) + 5, and let

`out = 2cACB · aout · log

(
aout · d5

ε

)
.

Let Razout : {0, 1}n × {0, 1}d4 → {0, 1}`out be the (2`out, ε) extractor with weak seeds
that is given by Theorem 3.7. As d4 ≥ d1 ≥ cRaz · log(n/ε), a seed of length d4 suffices
for Razin.

• Finally, let

AdvCBout : {0, 1}d5 × {0, 1}`out × {0, 1}aout → {0, 1}log(1/ε)

be the correlation breaker with advice that is given by Theorem 3.11. Note that `out
was chosen so to meet the hypothesis of Theorem 3.11. As with AdvCBin, one can set
the output length, as we set above to log(1/ε) as `out/(2aout) ≥ log(1/ε).

The construction. With the building blocks introduced above, we are now ready to define
our non-malleable extractor. We start by defining the function

AdvGen : {0, 1}n × {0, 1}d → {0, 1}aout ,

which we prove to be an advice generator, as follows. Let y ∈ {0, 1}d and recall our notation
y = y1 ◦ · · · ◦y5, with |yi| = di. We further partition y1 to b consecutive substrings, or blocks,
y1 = y11 ◦ · · · ◦ yb1, each of length d1/b = ain. Define

AdvGen(x, y) = ECC(y)Ext(x,y1) ◦©b
j=1AdvCBin

(
y3,Razin(x, y2), y

j
1

)
,

where by ECC(y)Ext(x,y1) we mean the following – we interpret the (log v)-bit string Ext(x, y1)
as an element i ∈ [v]. Then, ECC(y)i the content of the i’th entry of the codeword ECC(y).
Further, for strings s1, . . . , sj, the expression©b

j=1sj stands for the concatenation s1◦· · ·◦sj.
Finally, define

nmExt(x, y) = AdvCBout(y5,Razout(x, y4),AdvGen(x, y)).

Note that the third argument, AdvGen(x, y), consists of log q + b log(1/ε) bits. Indeed, the
error correcting code ECC is over an alphabet of size q, which can be identified with {0, 1}log q.
Further, the output length of AdvCBin was set to log(1/ε). As q ≤ 20/ε2, the third argument
consists of at most (b+ 2) log(1/ε) + 5 = aout bits, as required by AdvCBout.

13

Analysis. With the construction in hand, we turn to the analysis. LetA : {0, 1}d → {0, 1}d
be a function with no fixed points, and let X an (n, k)-source. Let Y be a random variable
that is uniformly distributed over d-bit strings, independently of X. It will be convenient
to denote Y ′ = A(Y). We start by proving the following claim which, informally speaking,
states that AdvGen as defined above is an advice generator.

Claim 4.2.
Pr

(x,y)∼(X,Y)
[AdvGen(x, y) = AdvGen(x,A(y))] = O(

√
ε).

Proof of Claim 4.2. For (y1, y
′
1) ∈ supp(Y1, Y

′
1) consider the event (Y1, Y

′
1) = (y1, y

′
1). By

Fact 3.6, except with probability
√
ε over these fixings, y1 is a good seed for X with respect

to Ext. We proceed by considering two cases.

Case 1 – y1 = y′1. In this case we follow the analysis of Chattopadhyay et al. [CGL15].
Recall that Y 6= Y ′ and so, as ECC has relative distance δ = 1 − ε, the codewords
ECC(Y),ECC(Y ′) ∈ Fvq agree on at most ε fraction of the coordinates. Let

A = {i ∈ [v] | ECC(Y)i = ECC(Y ′)i}

be the random variable that consists of all indices on which the two codewords agree. With
probability 1, |A| ≤ εv. As Ext(X, y1) is

√
ε-close to uniform for y1 that is a good seed for

X, and since Ext(X, y1) is independent of A (as A is a deterministic function of Y), we have
that whenever y1 is a good seed for X,

Pr
X,Y

[Ext(X, y1) ∈ A] ≤ ε.

We can now conclude the proof of the claim for this case by taking back into account the
event that y1 is not a good seed for X.

Case 2 – y1 6= y′1. First, note that in this case there exists some g = g(y1, y
′
1) ∈ [b] such

that yg1 6= (y′)g1. Now, by Lemma 3.1,

H̃∞(Y2 | Y1, Y ′1) ≥ d2 − 2d1 ≥ 0.9d2,

and so by Lemma 3.2, except with probability ε over the fixings of (y1, y
′
1) ∼ (Y1, Y

′
1), it

holds that
H∞(Y2) ≥ 0.9d2 − log(1/ε) ≥ 0.51d2.

Thus, except with probability ε over the fixings of Y1, Y
′
1 , the random variable Y2 has min-

entropy rate 0.51. Further, Y2 remains independent of X conditioned on these fixings. Thus,
by Theorem 3.7, which is applicable as k = H∞(X) ≥ 2`in and k ≥ c′Razd2, the random
variable Razin(X, Y2) is ε-close to uniform conditioned on the further fixing of Y2. Thus, by
Markov’s inequality, except with probability O(

√
ε) over (y1, y

′
1, y2) ∼ (Y1, Y

′
1 , Y2), it holds

that Razin(X, y2) is O(
√
ε)-close to uniform.

14

At this point we further condition on the fixing of Y ′2 = y′2 for y′2 ∼ Y ′2 . By Lemma 3.1,

H̃∞ (Y3 | Y1, Y ′1 , Y2, Y ′2) ≥ d3 − 2(d1 + d2) ≥ 0.8d3.

Thus, by Lemma 3.2, except with probability ε over (y1, y
′
1, y2, y

′
2) ∼ (Y1, Y

′
1 , Y2, Y

′
2), it holds

that H∞(Y3) ≥ d3/2. To summarize, except with probability O(
√
ε) over the fixings of

Y1, Y
′
1 , Y2, Y

′
2 we have that:

• Razin(X, Y2) is O(
√
ε)-close to uniform.

• H∞(Y3) ≥ d3/2.

• The joint distribution of the random variables Razin(X, Y2), Razin(X, Y
′
2) is independent

of the joint distribution (Y3, Y
′
3).

By the above, together with the fact that yg1 6= (y′)g1, we can apply Theorem 3.11 to conclude
that,

(AdvCBin(Y3,Razin(X, y2), y
g
1),AdvCBin(Y

′
3 ,Razin(X, y

′
2), (y

′)g1)) ≈O(
√
ε)

(U,AdvCBin(Y
′
3 ,Razin(X, y

′
2), (y

′)g1)) . (4.1)

We remark that this application of Theorem 3.11 is valid as one can easily verify that Equa-
tion (3.1) and Equation (3.2) in the hypothesis of Theorem 3.11 holds. By Equation (4.1),
and since AdvCBin has output length log(1/ε), except with probability O(

√
ε) over the fixings

done so far,

AdvCBin(Y3,Razin(X, y2), y
g
1) 6= AdvCBin(Y

′
3 ,Razin(X, y

′
2), (y

′)g1),

which proves the claim as AdvCBin(y3,Razin(x, y2), y
g
1) is a substring of AdvGen(x, y).

We proceed to prove the following claim.

Claim 4.3. Conditioned on any fixing of AdvGen(X, Y),AdvGen(X, Y ′), the random vari-
ables X, Y remain independent. Moreover, except with probability ε over the fixing of the
variables AdvGen(X, Y), AdvGen(X ′, Y), each of Y4, Y5 has min-entropy rate 0.6, and X has
min-entropy k/2.

Proof of Claim 4.3. We note that by fixing Y1, Y2, Y3, Y
′
1 , Y

′
2 , Y

′
3 to y1, y2, y3, y

′
1, y
′
2, y
′
3, respec-

tively, the random variables AdvGen(X, Y), AdvGen(X, Y ′) have the form

AdvGen(X, Y) = ECC(Y)Ext(X,y1) ◦©b
j=1AdvCBin(y3,Razin(X, y2), y

j
1),

AdvGen(X, Y ′) = ECC(Y ′)Ext(X,y′1) ◦©
b
j=1AdvCBin(y

′
3,Razin(X, y

′
2), (y

′)j1).

We proceed by conditioning on the further fixings of

Ext(X, y1),Ext(X, y
′
1),Razin(X, y2),Razin(X, y

′
2).

15

Note that these random variables are deterministic functions of X, and so conditioning
on them does not introduce any dependencies between X and Y . Conditioned on the fix-
ings done so far, the only non fixed part of AdvGen(X, Y), AdvGen(X, Y ′) are the prefixes
ECC(Y)Ext(X,y1) and ECC(Y ′)Ext(X,y′1), which at this point are deterministic functions of Y .
Hence, one can further condition on the fixings of ECC(Y)Ext(X,y1), ECC(Y ′)Ext(X,y′1) without
introducing dependencies between X, Y , as desired.

As for the moreover part of the claim, note that

|Y1 ◦ Y2 ◦ Y3|+ |Y ′1 ◦ Y ′2 ◦ Y ′3 |+ |ECC(Y)Ext(X,Y1)|+ |ECC(Y ′)Ext(X,Y ′
1)
| ≤ 0.3d4.

Thus, by Lemma 3.1,

H̃∞(Y4 | AdvGen(X, Y),AdvGen(X, Y ′)) ≥ 0.7d4,

H̃∞(Y5 | AdvGen(X, Y),AdvGen(X, Y ′)) ≥ 0.7d5.

Similarly, as the output length of Razin,Ext is set to `in and log v, respectively, it holds that

H̃∞(X | AdvGen(X, Y),AdvGen(X, Y ′)) ≥ k − (`in + log v) ≥ 0.6k.

The proof then follows by Lemma 3.2 and since d4, k are a large enough multiple of log(1/ε).

We proceed with the proof of Lemma 4.1. By Claim 4.2 and Claim 4.3, we have that
except with probability O(

√
ε) over (α, α′) ∼ (AdvGen(X, Y),AdvGen(X, Y ′)) it holds that:

• α 6= α′.

• X, Y remain independent.

• H∞(X) ≥ k/2.

• Each of Y4, Y5 has min-entropy rate 0.6.

By Theorem 3.7, and since k/2 ≥ 2`out and k/2 ≥ c′Razd4, the random variable Razout(X, Y4)
is O(

√
ε)-close to uniform conditioned on the further fixing of Y4. Thus, by Markov’s in-

equality, except with probability O(
√
ε) conditioned on the fixings done so far, it holds that

Razout(X, y4) is O(
√
ε)-close to uniform. We now further condition on the fixing of Y ′4 . By

Lemma 3.1 and Lemma 3.2, except with probability O(
√
ε) over the fixings done so far

H∞(Y5) ≥ 0.6d5 − 2d4 − log(1/ε) ≥ d5/3.

To summarize, except with probability O(
√
ε) over the fixings done so far, we have that:

• Razout(X, Y4) is O(
√
ε)-close to uniform.

• Y5 has min-entropy rate at least 1/3.

16

• The joint distribution of the random variables Razout(X, Y4), Razout(X, Y
′
4) is indepen-

dent of the joint distribution (Y5, Y
′
5).

As α 6= α′, we can apply Theorem 3.11, whose hypothesis is met by our setting of parameters,
to conclude that,

(nmExt(X, Y), nmExt(X, Y ′)) ≈O(
√
ε) (U, nmExt(X, Y ′)) .

This concludes the proof but for the error guarantee which is O(
√
ε) rather than the stated

ε. Clearly, however, one can obtain error ε without affecting the statement of the lemma
simply by using building blocks with error α ·ε2 rather than ε for some small enough constant
0 < α < 1.

With Lemma 4.1 in hand, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Apply Lemma 4.1 with

b = max

(
1,

√
log n

log(1/ε)

)
.

It is easy to see that for ε < 1/n, b = 1 and the resulting seed length, and supported
min-entropy, are of order log2(1/ε). We turn to consider the case ε > 1/n. By some simple
calculations, one can verify that in this case

d = O

(
log n+

√
log n · log3(1/ε) +

√
log n · log(1/ε) · log log n

)
As √

log n · log(1/ε) · log log n ≤ max

(
log n,

√
log n · log3(1/ε)

)
for large enough n, and since for every x, y > 0,

√
xy ≤ x+ y, we have that

d = O

(
log n+

√
log n · log3(1/ε)

)
= O

(
log n+ log3(1/ε)

)
.

Further, one can easily verify that nmExt supports min-entropy k = Ω(d).

To prove Theorem 1.3 we make use of the following result that, informally speaking, gives
a black-box algorithm for increasing the output length of a non-malleable extractor.

Theorem 4.4 ([Coh15b]). There exists a universal constant α > 0 such that the following
holds. Let

nmExt : {0, 1}n × {0, 1}d1 → {0, 1}log(1/ε)

be an explicit (k, ε)-non-malleable extractor with

k = Ω (log n+ log(d1/ε) · log(1/ε)) .

17

Then, for any m < αk/ log(1/ε), there exists an explicit (k, ε′)-non-malleable extractor

nmExt′ : {0, 1}n × {0, 1}d → {0, 1}m

with error guarantee ε′ = O(ε1/4), having seed length

d = O (d1 + log(m/ε) · log(1/ε)) .

Proof of Theorem 1.3. We first apply Theorem 1.2 to obtain a non-malleable extractor nmExt′

with seed length d1 = O(log n+log3(1/ε)). Note that although Theorem 1.2 only guarantees
that nmExt′ has one output bit, the proof of Theorem 1.2 above implies that nmExt′ has
log(1/ε) output bits. Therefore, one can apply Theorem 4.4 to nmExt′ so to obtain a second
non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m that supports min-entropy k,
has error guarantee O(ε1/4), seed length

d = O (d1 + log(k/ε) · log(1/ε)) ,

and m = Ω(k/ log(1/ε)) output bits. Clearly, one can reduce the error guarantee from
O(ε1/4) to ε without changing the statement of Theorem 1.3.

References

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing,
17(2):230–261, 1988.

[CGL15] E. Chattopadhyay, V. Goyal, and X. Li. Non-malleable extractors and codes,
with their many tampered extensions. arXiv preprint arXiv:1505.00107, 2015.

[Coh15a] G. Cohen. Local correlation breakers and applications to three-source extractors
and mergers. In IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), pages 845–862. IEEE, 2015.

[Coh15b] G. Cohen. Non-malleable extractors – new tools and improved constructions. In
Electronic Colloquium on Computational Complexity (ECCC), page 183, 2015.

[CRS14] G. Cohen, R. Raz, and G. Segev. Nonmalleable extractors with short seeds and
applications to privacy amplification. SIAM Journal on Computing, 43(2):450–
476, 2014.

[CZ15] E. Chattopadhyay and D. Zuckerman. Explicit two-source extractors and resilient
functions. Electronic Colloquium on Computational Complexity (ECCC), 2015.

[DLWZ14] Y. Dodis, X. Li, T. D. Wooley, and D. Zuckerman. Privacy amplification and non-
malleable extractors via character sums. SIAM Journal on Computing, 43(2):800–
830, 2014.

18

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM Journal on
Computing, 38(1):97–139, 2008.

[DW09] Y. Dodis and D. Wichs. Non-malleable extractors and symmetric key cryptogra-
phy from weak secrets. In Proceedings of the forty-first annual ACM Symposium
on Theory of Computing, pages 601–610. ACM, 2009.

[GS95] A. Garcia and H. Stichtenoth. A tower of Artin-Schreier extensions of func-
tion fields attaining the Drinfeld-Vladut bound. Inventiones Mathematicae,
121(1):211–222, 1995.

[GUV09] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and random-
ness extractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4):20,
2009.

[Li12a] X. Li. Design extractors, non-malleable condensers and privacy amplification. In
Proceedings of the forty-fourth annual ACM Symposium on Theory of Computing,
pages 837–854, 2012.

[Li12b] X. Li. Non-malleable extractors, two-source extractors and privacy amplification.
In IEEE 53rd Annual Symposium on Foundations of Computer Science, pages
688–697, 2012.

[Li13] X. Li. New independent source extractors with exponential improvement. In
Proceedings of the forty-fifth annual ACM Symposium on Theory of Computing,
pages 783–792. ACM, 2013.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Raz05] R. Raz. Extractors with weak random seeds. In Proceedings of the thirty-seventh
annual ACM Symposium on Theory of Computing, pages 11–20, 2005.

[Sha11] R. Shaltiel. An introduction to randomness extractors. In Automata, languages
and programming, pages 21–41. Springer, 2011.

[Sti09] H. Stichtenoth. Algebraic function fields and codes, volume 254. Springer Science
& Business Media, 2009.

[Vad11] S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science, 2011.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

