
Complexity of Constraint Satisfaction Problems over Finite

Subsets of Natural Numbers

Titus Dose

Julius-Maximilians-Universität, Würzburg, Germany

Abstract

We study the computational complexity of constraint satisfaction problems that are based
on integer expressions and algebraic circuits. On input of a finite set of variables and a finite
set of constraints the question is whether the variables can be mapped onto finite subsets
of N (resp., finite intervals over N) such that all constraints are satisfied. According to the
operations allowed in the constraints, the complexity varies over a wide range of complexity
classes such as L, P, NP, PSPACE, NEXP, and even Σ1, the class of c.e. languages.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 5 of Report No. 31 (2016)

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Basic Notations and Encoding of Objects . 5
2.2 Definition of the Key Problems . 6

3 CSPs Permitting Only Set Operations 9
3.1 Two Special Cases . 9

3.1.1 A General Upper Bound . 9
3.1.2 CSPs without Any Operations . 10

3.2 Union . 11
3.2.1 Variant over Arbitrary Finite Sets . 11
3.2.2 Variant over Finite Intervals . 14

3.3 Intersection . 15
3.3.1 Variant over Arbitrary Finite Sets . 15
3.3.2 Variant over Finite Intervals . 17

3.4 Intersection and Union . 18
3.4.1 Variant over Arbitrary Finite Sets . 18
3.4.2 Variant over Finite Intervals . 19

3.5 Set Difference . 19
3.6 Overview and Conclusion . 20

4 CSPs Permitting Arithmetic Operations 21
4.1 Addition . 21
4.2 Multiplication . 24

4.2.1 Upper Bounds . 24
4.2.2 Lower Bounds . 31

4.3 Addition and Intersection . 32
4.4 Lower Bounds for CSPs with Exactly One Arithmetic Operation and Set Operations 33
4.5 Discussion of Two Open Questions . 37
4.6 Addition and Multiplication . 39
4.7 Overview . 40

References 42

1 Introduction

The problems investigated in this paper are motivated by constraint satisfaction problems and
integer expressions. We first introduce these notions and then explain their connection.

Constraint satisfaction problems. A constraint satisfaction problem (CSP) is a computational
problem that on input of a finite set of variables and a finite set of constraints asks whether there
is a mapping from the variables to some fixed domain such that all constraints are satisfied.

An example of a classical CSP is 3-Colorability, i.e., the question of whether there is a
mapping α from a graph’s vertices onto {0, 1, 2} such that for adjacent nodes u and v it holds that
α(u) 6= α(v).

The set of relations permitted in the constraints is called constraint language. Obviously CSPs
over finite domains permitting arbitrary constraints belong to NP. The question which constraint
languages lead to CSPs even decidable in polynomial time has been a topic of intensive research
over the past decades.

Feder and Vardi [FV99] conjectured a dichotomy for CSPs over finite domains such that these
CSPs are either in P or NP-complete. This conjecture is still open.

In the past years there has been an increasing interest in CSPs over infinite domains. Here
much higher complexities are obtained, and some problems are even undecidable.

Integer expressions and algebraic circuits. In 1973, Meyer and Stockmeyer [SM73] asked for
the complexity of decision problems regarding so-called integer expressions. An integer expression
is a term built by singleton sets of natural numbers, the pairwise addition, and set operations like
union, intersection, or complement. Meyer and Stockmeyer investigated the membership problem,
i.e., the question of whether a given natural number is contained in the subset of N described by
an integer expression. Moreover, they studied the inequality problem, i.e., the question of whether
two given integer expressions describe the same subset of N.

For some constant m ∈ N the integer expression (0∪ 21) + (0∪ 22) + · · ·+ (0∪ 2m−1) describes
the set of all even natural numbers < 2m in a succinct way. Note that here the natural number n
is an abbreviation for the set {n}.

McKenzie and Wagner [MW03] considered generalized integer expressions and the complexity
of membership problems for circuits over finite subsets of N.

Here a circuit is a directed, acyclic graph with two kinds of nodes: on the one hand, there
are input nodes containing a single natural number. On the other hand all remaining nodes, so-
called operation nodes, perform one of the following operations: union, intersection, complement,
pairwise addition, and pairwise multiplication. Each operation node has an indegree equal to the
number of operands required by the operation.

So each of the nodes computes a set of natural numbers: the input nodes compute singletons,
and each operation node computes the corresponding set obtained from its predecessors. The set
computed by the circuit overall is defined as the set computed by some fixed output node.

In contrast to integer expressions, these circuits are able to store intermediate results and reuse
them several times. Thus, it is possible to describe large numbers and sets in a succinct way.

Similar to Meyer and Stockmeyer, who investigated the equivalence problem for integer expres-
sions, Glaßer et al. [GHR+07] considered the equivalence problem for circuits.

Moreover, Glaßer et al. [GRTW10] studied the satisfiability problem for circuits where the
corresponding circuits are allowed to have unassigned input nodes. Now the problem is to decide
for a given natural number b whether there exists an assignment for the input nodes such that b is
contained in the set computed by the circuit.

This modification makes the circuits even more similar to CSPs.
Consider the following circuit. Goldbach’s conjecture fails if and only if there is an assignment

for the ?-node in the circuit below such that the set computed by the rightmost node contains 0.

Note that 1× 1 ∩ 1 = P where P is the set of all primes.

3

1 × ∩ +

?

∩

++

×

0+

Hence, if the satisfiability problem for circuits is decidable, then Goldbach’s conjecture can be
proven or refuted. Up to now it is not known whether this is possible1

Connection of circuits and CSPs. Glaßer et al. [GJM15] combined CSPs and integer circuits,
and investigated CSPs over the domain of singletons of natural numbers and with operations from
{+,×,∪,∩, }.

As we will see later, each CSP-instance can be represented by a primitive positive fo-sentence

such as ∃X∃Y (X + X + 4) ∩
(
P + P

)
= Y , where P can be expressed by 1× 1 ∩ 1. Here we

use natural numbers as abbreviations for singletons. Hence, this sentence is true if and only if
Goldbach’s conjecture does not hold.

However, the set of singletons of natural numbers is not closed under the mentioned operations.
As it can be seen in the example above, variables and constants are singletons, whereas there are
terms that describe bigger and even infinite sets. Therefore, we consider CSPs over the domain
Pfin(N) = {A ⊆ N | A is finite}, and replace the complement with the set difference. Thus,
compared to the CSPs considered by Glaßer et al. [GJM15] we consider problems that allow a
straighter definition (i.e., variables and terms have the same domain), but that is more distant to
the satisfiability problem for circuits.

Some results of the mentioned papers can be translated to our situation, but in general the
questions for the enlarged domain turn out to be different ones.

As soon as one of the arithmetical operations is permitted, the complexity of the CSPs is very
high, and it is very difficult to obtain completeness results for certain complexity classes.

Therefore, we also consider a restricted version of the described CSPs, in which the domain is
the set of all finite intervals over N, denoted by [N]. Note that this domain is not closed under all
permitted operations anymore, but in several cases it is easier to obtain completeness results for
this domain.

Our contribution. In the first part we consider all CSPs that only permit set operations. Here,
for each problem we are able to show the ≤log

m -completeness for one of the complexity classes L, P,
and NP. We observe that there is a case in which the problem over [N] is more difficult than the
corresponding problem over Pfin(N).

When also admitting arithmetical operations, the complexity is much higher. Each of the
problems is ≤log

m -hard for NP, and once both arithmetical operations are permitted, we obtain
Σ1-completeness.

The case where addition is the only operation is particularly interesting. Here for CSPs over
arbitrary finite sets we obtain only NP-hardness and membership in NEXP, and one of this paper’s
open questions is to close this gap. In contrast, the corresponding CSP over [N] turns out to be
NP-complete. For the variant over Pfin(N) we even do not know whether the problem admitting
addition and intersection is decidable. The corresponding problem over [N] is shown to be NP-
complete again.

Furthermore, we consider the multiplication of intervals, and show that the CSP over [N]
permitting only multiplication belongs to Σp

3 . This result can be improved if the problem of
testing whether two products of intervals are equal can be shown to belong to some class of the
polynomial hierarchy lower than Πp

2 .

1Knuth [Knu02] even assumes that Goldbach’s conjecture is a problem that will never be solved. He mentions
that “it might very well be that the conjecture happens to be true, but there is no rigorous way to prove it”.

4

2 Preliminaries

We start with a couple of short remarks concerning the notations and encodings we use.

2.1 Basic Notations and Encoding of Objects

We use standard notation:
N is the set of non-negative integers {0, 1, 2, . . . }, and N+ is the set of positive integers {1, 2, 3, . . . }.

Let Pfin(N) be the set of finite subsets of N. For A,B ∈ Pfin(N) we define A+B =def {a+ b | a ∈
A, b ∈ B} and A×B =def {ab | a ∈ A, b ∈ B}. The set difference is denoted by −.

Furthermore, we denote the set of finite intervals over N by [N]. An interval {x | a ≤ x ≤ b}
for non-negative integers a and b is represented by [a, b]. The set of an interval’s endpoints {a, b}
is denoted by R([a, b]). We emphasize that [a, b] = ∅ in case a > b.

Further on let {N} =def {{n} | n ∈ N}.
Besides we make use of the following common notations for complexity classes.

complexity class contains all problems decidable in
L deterministic logarithmic space

NL non-deterministic logarithmic space
P deterministic polynomial time

NP non-deterministic polynomial time
PSPACE deterministic polynomial space

EXP deterministic exponential time
NEXP non-deterministic exponential time

Moreover, for i ∈ N we use the common notations Σp
i and Πp

i for the classes of the polynomial
time hierarchy. Σ1 denotes the set of recursively enumerable sets.

For subsets A and B of N we denote A ≤log
m B or A ≤p

m B if there is a total function f : N→ N
computable in logarithmic space or polynomial time such that x ∈ A⇔ f(x) ∈ B.

We assume the reader to know that commonly known NP-complete problems like SAT, 3SAT
or SOS are even ≤log

m -complete for NP.

Furthermore, in general we assume functions to be total without pointing that out every time.
Nevertheless, we will occasionally mention it.

We denote by Wf the set f(A) = {f(x) | x ∈ A} for a function f : A → B and arbitrary sets
A and B.

Further on we notice some aspects regarding the encoding of objects by natural numbers or
words over some finite alphabet.

We exclusively use standard encodings in this paper. The exact encoding is normally irrelevant.
We assume natural numbers to be encoded in binary, dyadic, or k-adic representation for k > 2.
Anyway, the length of the encoding of a non-negative integer is in Θ(log n).

We denote the length of an encoding of an object o by |o|. Only for finite sets M the notation
|M | refers to the cardinality of M .

We presume that finite subsets of natural numbers {a1, . . . , ak} for k ∈ N+ are encoded such

that the encoding’s length is in Θ(
∑k
i=1 |ak|). An interval [a, b] for a < b is encoded such that the

length of the encoding is in Θ(|a|+ |b|).
We furthermore assume graphs to be represented as adjacency matrices.

At last we remark that we interpret all problems studied in this paper as sets of non-negative
integers although for the sake of simplicity we define some problems as sets of sentences or graphs
for instance.

5

2.2 Definition of the Key Problems

We successively define the CSPs this paper deals with. Let X be a variable or a symbol for a
constant where symbols for constants are encoding of finite subsets of N. In the latter case we
identify the symbol X with the set it encodes.

Then X is a term. For terms β and γ as well as O ⊆ {+,×,∪,∩,−} and ⊕ ∈ O the expression
(β ⊕ γ) is a term. X = Y for terms X and Y is an atom.

Let a1 = (t1,1 = t1,2), . . . , am = (tm,1 = tm,2) for m ∈ N be atoms. Furthermore, let X1, . . . , Xn

be the variables in the mentioned atoms. Then ϕ = ∃X1 . . . ∃Xn a1 ∧ · · · ∧ am is an O-sentence,
or a sentence if O is apparent fromt the context.

Let Varϕ denote the set of variables in ϕ, and let Constϕ denote the set of constants in ϕ.
Moreover, we denote the set of all terms occurring in ϕ by Tϕ.

We define the semantics of terms. A mapping α : Tϕ → Pfin(N) is an assignment of terms if
the following conditions are satisfied.

� For constants C it holds that α(C) = C.

� For all variables X it holds α(X) ∈ Pfin(N).

� For ⊕ ∈ {+,×,∪,∩,−} and all terms X ⊕ Y it holds that α(X ⊕ Y) = α(X)⊕ α(Y).

ϕ is true if and only if there is an assignment of terms α with α(ti,1) = α(ti,2) for all i =
1, . . . ,m. We call such an α satisfying.

The restriction of an assignment of terms to Varϕ is called assignment of variables or as-
signment. Note that in some cases we also call the restriction of an assignment of terms to
Varϕ ∪ Constϕ assignment. We name an assignment of variables β satisfying if the assignment
of terms induced by β is satisfying. Note that for each assignment of variables β there is exactly
one assignment of terms β such that for all X ∈ Varϕ it holds that α(X) = β(X).

With these notions it is possible to define this paper’s key problems.

Definition 2.1
Let O ⊆ {+,×,∪,∩,−}. Then CSP

(
Pfin(N), {=} ∪O

)
=def {ϕ | ϕ is a true O-sentence}.

Furthermore, we de�ne

CSP
(

[N], {=} ∪O
)

=def {ϕ | ϕ is an O-sentence, all constants in ϕ are intervals,

there is a satisfying assignment α with α(Varϕ) ⊆ [N]}.

Recall that here all constants are encoded as intervals. That means that a constant [a, b] for

a, b ∈ N and a ≤ b is encoded such that the encoding's length is in Θ(|a|+ |b|).

We obtain the following lemma directly from the definition.

Lemma 2.2
For O ⊆ O′ ⊆ {+,×,∪,∩,−} and M ∈ {Pfin(N), [N]}] it holds that

CSP
(

M, {=} ∪O
)
≤log

m CSP
(

M, {=} ∪O′
)
.

We also consider a slightly different problem. This enables us to simplify numerous proofs.

Definition 2.3
Let O ⊆ {+,×,∪,∩,−}. We de�ne

CSP′
(
Pfin(N),O

)
=def {ϕ |ϕ is true, and each atom is of the form X ⊕ Y = Z

for X,Y, Z ∈ Constϕ ∪Varϕ and ⊕ ∈ O}.

Let CSP′
(
[N], {=} ∪O

)
for O ⊆ {∩,+} be de�ned analogous to CSP′

(
Pfin(N), {=} ∪O

)
.

6

Note that we do not differentiate between the atoms X⊕Y = Z and Z = X⊕Y in the definition
above.

The following lemma often allows us to presume that an input sentence is of the described
simpler form. This is so because we can resolve a bigger term into several smaller terms by storing
intermediate results in new variables. For CSPs over intervals, however, this works only when the
set [N] is closed under the permitted operations.

Lemma 2.4
Let O ⊆ {+,×,∪,∩,−}. Then CSP′

(
Pfin(N), {=} ∪O

)
≡log

m CSP
(
Pfin(N), {=} ∪O

)
holds.

If O ⊆ {+,∩} it also holds that CSP′
(

[N], {=} ∪O
)
≡log

m CSP
(

[N], {=} ∪O
)

.

Proof. We initially prove the first part.
≤log

m is trivial. We show the reverse reduction.

Let ϕ = ∃Z1 . . . ∃Zm
∧n
i=1

(
ti,1 = ti,2

)
be an O-sentence. We sketch the computation of an

O-sentence ϕ′ with ϕ ∈ CSP
(
Pfin(N), {=} ∪O

)
⇔ ϕ′ ∈ CSP′

(
Pfin(N), {=} ∪O

)
.

� Let mi,j ∈ N be the number of occurrences of symbols from O in the term ti,j . For every
term ti,j add new variables Xi,j,1, . . . , Xi,j,mi,j

. At the front of the output sentence quantify
existentially over all variables Xi,j,ki,j , Zr for i = 1, . . . , n, j = 1, 2, ki,j = 1, . . . ,mi,j and
r = 1, . . . ,m.

� For each term ti,j and all k = 1, . . . ,mi,j do:

– Let ⊕k be the kth operation symbol in the term ti,j (counted from left to right).

– If there is no bracket to the left of ⊕k, but there is a variable or constant directly in
front of ⊕k, then let L denote this variable or constant.

– Otherwise there is at least one closing bracket directly to the left of ⊕k. Find the
corresponding opening bracket for that closing bracket. There is a term τ ⊕s τ ′ for two
terms τ, τ ′ and s ∈ {1, . . . ,mi,j} between these brackets. In that case let L denote the
variable Xi,j,s.

– Thus, L denotes the term which is the left operand of ⊕k. Proceed analogously on the
right side such that R denotes the term which is the right operand of ⊕k.

– Append the atom L⊕k R = Xi,j,k to the output sentence.

� For each atom ti,1 = ti,2 let Y1 and Y2 be the variables which stand for ti,1 and ti,2 respectively.
Depending on the availability of operations append T1+{0} = T2, T1×{1} = T2, T1∪T1 = T2,
T1 ∩ T1 = T2 or T1 − ∅ = T2 to the output sentence.

Since at each point in time only a constant number of variables and constants has to be stored
and apart from that only the numbers of operation symbols in terms have to be counted, the
algorithm is computable in logarithmic space.

Furthermore, the output sentence contains only atoms of the form X ⊕ Y = Z for ⊕ ∈ O and
variables or constants X,Y, Z.

If ϕ is true, then ϕ′ is true as well: Let α be a satisfying assignment of terms for ϕ. Assign
α(Z1), . . . , α(Zm) to the variables Z1, . . . , Zm in ϕ′ and extend the mapping constructed that way
to an assignment of terms β for ϕ′. Then β is satisfying as well.

Reversely, if ϕ′ is true, let β be a satisfying assignment of terms for ϕ′. Now define α : Varϕ →
Pfin(N), X 7→ β(X). Then α is a satisfying assignment of variables for ϕ and thus, ϕ is true.

The second part can be shown analogously. If there is a satisfying assignment of terms α for

an O-sentence ϕ ∈ CSP
(

[N], {=} ∪ O
)

with O ⊆ {+,∩}, then – as for any two intervals I and J

both I + J ∈ [N] and I ∩ J ∈ [N] hold – for each term t it holds α(t) ∈ [N].

7

Because of the transitivity of ≤log
m we may hereafter assume for logspace computations and

computations with even higher complexity that the input O-sentence is always of the form described
in definition 2.3.

The following result shows that for CSPs over Pfin(N) it is possible to express both “∪” and “∩”
by “-”.

Lemma 2.5
It holds

CSP
(
Pfin(N), {=} ∪O

)
≤log

m CSP
(
Pfin(N), {=,−} ∪ (O− {∪,∩})

)
for O ⊆ {+,×,∪,∩}.

Proof. The statement holds due to lemma 2.4 and because X = Y ∪ Z and X = Y ∩ Z can also
be expressed by

(
(X − Y)− Z = ∅

)
∧
(
Y −X = ∅

)
∧
(
Z −X = ∅

)
and X = (Y − (Y −X)).

Thus, it suffices to consider such problems CSP
(
Pfin(N), {=} ∪O

)
for O ⊆ {∪,∩,−,+,×} for

which − ∈ O ⇒ {∪,∩} ⊆ O holds.

8

3 CSPs Permitting Only Set Operations

We firstly focus on CSPs permitting no arithmetic but only set operations. This constraint makes
the situation essentially easier in two different ways:

On the one hand it will become apparent that all the problems investigated in this section are
in NP whereas – as we will see in section 4 – CSPs are NP-hard once an arithmetical operation is
permitted, where some of these problems are PSPACE- or even Σ1-hard.

On the other hand in this section it is much easier to assign CSPs to particular complexity
classes. For every subset of O ⊆ {∪,∩,−} and for M ∈ {Pfin(N), [N]} we prove CSP(M, {=} ∪O)
to be ≤log

m -complete for one of the classes L, P and NP. Thus, all the problems mentioned are
considered exhaustively.

This will not be possible in section 4.

3.1 Two Special Cases

We start with the consideration of two special cases. At first we will prove an upper bound for
the CSP in which all set operations are admitted. This will be an upper bound for all problems
considered in this section. Afterwards we will investigate CSPs in which no operations at all are
permitted.

3.1.1 A General Upper Bound

The following lemma shows that all CSPs without arithmetical operation are in NP.

Lemma 3.1
Let O = {−,∪,∩} and M ∈ {[N],Pfin(N)}. Then CSP

(
M, {=} ∪O

)
∈ NP.

Proof. We show the two statements parallel.
Let ϕ ∈ CSP

(
M, {=} ∪ O

)
. Furthermore, let K =

⋃
C∈Constϕ

C in case M = Pfin(N) and

K = [0,max
(
{x ∈

⋃
C∈Constϕ

C}
)
] in case M = [N].

Let α be a satisfying assignment of terms for ϕ. Then β with β(X) = α(X)∩K is a satisfying
assignment of terms as well. This can be shown by a structural induction over the definition of an
assignment of terms.

Assume β to be non-satisfying. Then there were an atom t1 = t2 with terms t1, t2 such
that α(t1) = α(t2), but α(t1) ∩ K 6= α(t2) ∩ K. Without loss of generality there is an x ∈(
α(t1)∩K

)
−
(
α(t2)∩K

)
. Thus x ∈ K, and hence x ∈ α(t1)−α(t2) which contradicts α(t1) = α(t2).

Consequently, whenever there is a satisfying assignment of terms for ϕ, then there is also a
satisfying assignment of terms whose range contains only sets of small numbers, i.e., the occurring
numbers are all less than or equal to the greatest number occurring in some constant. Thus,
we obtain that the following non-deterministic polynomial time algorithm decides whether ϕ ∈
CSP

(
M, {=} ∪O

)
.

1. Guess an assignment of variables with a range ⊆ {A ∈M | A ⊆ K}.

2. Test whether the assignment is satisfying, and return 0 or 1 appropriately.

Step 1 can be executed in polynomial time since K only contains O(|ϕ|) elements if M = Pfin(N).
In the other case the interval endpoints have to be chosen from a set with numbers of polynomial
length.

Remark 3.2
When investigating CSPs with exclusively set operations, there occur some NP-complete problems.
The lemma above proves each of them to be in NP. Thus, it is sifficient to show the NP-hardness
for each of these problems. Then the ≤log

m -completeness follows immediately.

9

3.1.2 CSPs without Any Operations

Now we consider the case in which there are no operations available at all. CSP
(
M, {=}

)
for

M ∈ {Pfin(N), [N]}2 is the only CSP considered in this paper which we cannot prove to be ≤log
m -

hard for P.
We show that this problem is in L. Thereto we use the undirected connectivity problem.

Definition 3.3
Let (V,E) be an undirected graph. Nodes u, v ∈ V are connected if u = v, or if there are k ∈ N+

and nodes v1, v2, . . . , vk with (u, v1), (v1, v2), . . . , (vk−1, vk), (vk, v) ∈ E.
We de�ne

USTCON = {(V,E, u, v) | (V,E) is an undirected graph with connected nodes u, v}.

For a long time it was unknown whether USTCON ∈ L. The directed variant of the problem is
known to be NL-complete. Since undirected graphs are specific directed graphs, USTCON ∈ NL
was obvious. Yet there was the hope that the connectivity problem might be easier to decide for
the special case of undirected graphs.

Papadimitriou [Pap94] for instance pointed out that the problem is easier than the directed
variant because it could be solved in randomized logarithmic space. Nevertheless he was not able
to show that the problem belongs to L.

Eventually Reingold [Rei05] proved USTCON to be decidable even in deterministic logarithmic
space.

He also indicates that there are log-space computable transformations between natural repre-
sentations of graphs and thus, “the result is to a large extent independent of the representation of
the input graph”.

Therefore, we will assume in the following that graphs are represented by their adjacency
matrices.

By use of polynomially many requests to USTCON the following lemma can be shown:

Lemma 3.4
CSP

(
M, {=}

)
∈ L.

Proof. Let ϕ = ∃X1 . . . ∃Xn

(
Y1 = Y2

)
∧ · · · ∧

(
Y2m−1 = Y2m

)
for n,m ∈ N and constants or

variables Yi be an arbitrary ∅-sentence.

We consider the undirected graph Gϕ = (Vϕ, Eϕ) with Vϕ = Varϕ ∪ Constϕ and Eϕ =
{{Y2i−1, Y2i} | i = 1, . . . ,m ∧ Y2i−1 6= Y2i}.

The total function f with ϕ 7→ Gϕ is in FL as for each atom it only has to be searched the
appropriate column and row in the adjacency matrix. This requires only logarithmic space since
at each point in time only two references to constants or variables have to be stored3.

We show

ϕ is not true ⇔ ∃C1, C2 ∈ Constϕ ⊆ Vϕ :
(
C1 6= C2 ∧ C1 and C2 are connected

)
.

“⇒”: We show the contraposition. Let there be no path from C1 to C2 for any different
constants C1, C2. We iteratively construct a satisfying assignment of terms α. Let α(C) = C for
each constant C. Furthermore, for every variable X for which there is a Y ∈ Varϕ ∪ Constϕ with

� non-defined α(Y) and

� an atom X = Y or Y = X in ϕ

2We assume M ∈ {Pfin(N), [N]} in the following without mentioning that again.
3The respective constant cannot necessarily be stored in logarithmic space indeed, but it suffices to store a

reference to it. The equality test for two constants of at most linear length can be obviously done in logarithmic
space.

10

let α(X) = α(Y).
After the iterative procedure has become stationary, set α(X) = ∅ for each remaining variable

X.
Thus, each variable is mapped onto ∅ or onto the value of a constant. Consequently, if there was

an atom Y2i−1 = Y2i not satisfied by ϕ, then according to the construction of α it would hold that
α(Y2i−1) 6= ∅ ∧ α(Y2i) 6= ∅. Therefore, we would obtain α(Y2i−1), α(Y2i) ∈ Constϕ. Then, it would
follow directly from the construction of α that there is a path4 from a constant C = α(Y2i−1) to
Y2i−1 and also a path from a constant C ′ = α(Y2i) to Y2i. But then there were a path from C to
C ′ as well, which would be a contradiction due to C = α(Y2i−1) 6= α(Y2i) = C ′.

“⇐”: Connectivity of two nodes C1, C2 ∈ Constϕ ⊆ V in Gϕ means that for every satisfying
assignment of terms α, it holds that α(C1) = α(C2). Because of C1 6= C2 there is no satisfying
assignment of terms, and thus, ϕ is not true.

Consider the following algorithm:

� Input: ∅-sentence ϕ

� For any two constants C,C ′ do:

– If C and C ′ are connected in f(ϕ), then return 0.

� Return 1.

It suffices to show that the loop body can be executed in deterministic logarithmic space. This is
so because it has to be computed cUSTCON(f(ϕ), C, C ′) for polynomially many pairs of constants
C,C ′, and each of the values cUSTCON(f(ϕ), C, C ′) can be computed in logarithmic space. Thus,
it follows CSP(M, ∅) ∈ L.

Now it is obvious that CSP(M, ∅) is ≤log
m -complete for L. Nevertheless, we demonstrate the

reduction USTCON ≤log
m CSP(M, ∅) to show that a direct proof of CSP(M, ∅) ∈ L is as difficult

as a proof for USTCON ∈ L.

Let G = (V,E) with V = {v1, . . . , vn} be an undirected graph and vi, vj ∈ V . If i = j, then
return ∅ = {0}.

Otherwise return ϕ = ∃V1 . . . ∃Vn
(
Vi = {0}

)
∧
(
Vj = {1}

)
∧
∧

(vs,vt)∈E
(
Vs = Vt

)
.

With a similar reasoning as in the proof of lemma 3.4, it can be shown that there is a path
from vi to vj if and only if the returned sentence is not true.

3.2 Union

In this section we show the ≤log
m -completeness of CSP(Pfin(N), {∪}) for P and the ≤log

m -completeness
of CSP([N], {∪}) for NP.

3.2.1 Variant over Arbitrary Finite Sets

Lemma 3.5
CSP(Pfin(N), {∪}) ∈ P.

Proof. According to lemma 2.4 it is sufficient to decide CSP′((Pfin(N), {∪}) in polynomial time.
Hence let ϕ = ∃X1 . . . ∃Xk

∧t
i=1

(
Ai∪Bi = Ci

)
with k, t ∈ N and variables or constants Ai, Bi, Ci.

The following algorithm decides whether there is a satisfying assignment of variables. For this
purpose let K =

⋃
C∈Constϕ

C.

1. Set α(X) =

{
X if X is a constant

K otherwise

4We use the term path in a way, such that in any graph there is a path from each node to itself, namely the
trivial path without any edge.

11

2. Apply the following rules to every atom X ∪ Y = Z.

(a) Set α(Z) = α(Z) ∩ (α(X) ∪ α(Y)).

(b) Set α(X) = α(X) ∩ α(Z) and analogously α(Y) = α(Y) ∩ α(Z).

(c) If α(C) for a constant C has been changed, return 0.

3. If a value α(X) for an X ∈ Varϕ has been changed in step 2, execute step 2 again.

4. Return 1.

To see that the algorithm works in polynomial time, it suffices to show that step 2 is executed
only polynomially often. We obtain this by the fact that for each variable X there are at most |K|
changes of α(X).

It remains to show that the algorithm returns 1 if and only if ϕ is true.

“⇒”: Assume that the algorithm returns 1. Let α(X) denote the value of X under α at the end
of the algorithm’s execution. We now show that α has been constructed such that for each atom
Ai ∪Bi = Ci the equation α(Ai) ∪ α(Bi) = α(Ci) holds.

Assume that not all equations α(Ai) ∪ α(Bi) = α(Ci) are satisfied. Then there is a j such
that α(Aj) ∪ α(Bj) 6= α(Cj) holds. In the following we write A,B,C for α(Aj), α(Bj), α(Cj) and
distinguish the following cases.

� ∃x ∈ C − (A ∪ B): In that case the rule 2a C = C ∩
(
A ∪ B

)
would have had to be applied

during the last execution of step 2 in which nothing has been changed. Then x /∈ C would
hold.

� ∃x ∈
(
A ∪ B

)
− C: In that situation the rules of 2b A = A ∩ C and B = B ∩ C would still

have been applied during the last execution of the body loop such that x /∈ A∪B would have
held.

Thus, we obtain contradictions in each case. Hence ϕ is true.

“⇐”: Let β : Constϕ ∪Varϕ → Pfin(N) be a satisfying assignment for ϕ. Thus, β(C) = C holds
for any C ∈ Constϕ. We may assume that β(Constϕ ∪ Varϕ) ⊆ P(K) holds because otherwise
β(X) could be replaced with β(X) ∩K, and thus, all equations would still be satisfied.

Before the first execution of step 2

∀X ∈ Constϕ ∪Varϕ : β(X) ⊆ α(X) (∗)

obviously holds.
We show: If (∗) holds before the application of a rule, then it also holds afterwards.

� Rule 2a: Let Ub denote the value of α(Z) before the application of the rule. Let furthermore
Ua denote the value of α(X) after the application of the rule. α(X) and α(Y) denote the
respective value at the time of the application of the rule. These values are not changed by
applying the rule. If Ub = Ua, then (∗) also holds after applying the rule. Otherwise there is
an x ∈ Ub−Ua. Hence x /∈ α(X)∪α(Y). Then due to (∗) it follows x /∈ β(X)∪β(Y). Thus,
x /∈ β(Z) holds. Therefore, (∗) also holds after the application of the rule.

� Rule 2b: Obviously it is enough to consider only the first of the two equations. Let Ub denote
the value of α(X) before applying the rule and Ua the value after the application. α(Z)
refers to the value at the time of the application of the rule. This value is not changed by
applying the rule. If Ub = Ua, then (∗) also holds after applying the rule. Otherwise there is
an x ∈ Ub − Ua. Thus x /∈ α(Z). Then (∗) follows due to x /∈ β(Z), and by that x /∈ β(X)
as well. Therefore, (∗) also holds after the application of the rule.

Particularly, for any constant C and at any point in time during the execution of the algorithm
C = β(C) ⊆ α(C) ⊆ C holds. Hence α(C) is not changed, and thus, the algorithm returns 1.

CSP(Pfin(N), {∪}) is even ≤log
m -hard for P. This is shown by the proof of the following lemma.

12

Lemma 3.6
CSP(Pfin(N), {∪}) is ≤log

m -hard for P.

Proof. We make use of the problem Monotone Circuit Value Evaluation, which was shown
to be ≤log

m -hard for P by Greenlaw et al. [GHR91]. We denote this problem by MCVE.
Consider the following algorithm:

� Input: a monotone boolean circuit α with input gates x1, . . . , xn ∈ {0, 1}. Let the OR-gates
be denoted by o1, . . . , ok and the AND-gates by a1, . . . , am such that without loss of generality
ok denotes the output gate.

� We successively desribe a sentence ϕ. Let

ϕ =∃X1 . . . ∃Xn∃O1 . . . ∃Ok∃A1∃H1∃H ′1 . . . ∃Am∃Hm∃H ′m
ψ(X1, . . . , Xn, O1, . . . , Ok, A1, . . . , Am, H1, H

′
1, . . . ,Hm, H

′
m).

Hence, there is one variable for each OR- and each AND-gate. Furthermore, there are two
more auxiliary variables for each AND-gate.

� Set ψ(X1, . . . , Xn, O1, . . . , Ok, A1, . . . , Am, H1, H
′
1 . . . , Hm, H

′
m) to

n∧
i=1

(
Xi =

{
{1} if xi = 1

∅ otherwise

)
∧

k∧
i=1

χoi ∧
m∧
i=1

χai ∧ (Ok = {1}).

In the following the set {1} stands for the boolean value 1 in the boolean circuit whereas ∅
stands for 0.

� For an OR-gate oi and the two variables A,B, that stand for the inputs of oi, set χoi =
(Oi = A ∪B).

� Analogously, for an AND-GATE ai and variables A,B which stand for the inputs of ai set
χai = (Ai ∪Hi = A) ∧ (Ai ∪H ′i = B).

� Return f(α) = ϕ .

Let f be the function computed by the algorithm.

Since at any point in time only constantly many variables or constants have to be stored, f
can be computed in logarithmic space. Furthermore, it can be easily seen that for a circuit α
which returns 1 on input x1, . . . , xn the sentence f(α) is true: to obtain a satisfying assignment of
variables, it suffices to assign the value which stands for the ouput value of a gate oi or aj to the
corresponding variable Oi or Aj . For OR-gates this is required by the sentence. For AND-gates
it is possible to choose an assignment which satisfies all the sentence’s atoms. It remains to show
the reverse statement:

Let ϕ = f(α) for monotone circuit α with inputs x1, . . . , xn be a true sentence. We show that
then the circuit α returns 1 on input x1, . . . , xn.

As ϕ is true, there is a mapping

β : {X1, . . . , Xn, O1, . . . , Ok, A1, . . . , Am, H1, . . . ,Hm, H
′
1, . . . ,H

′
m} → Pfin(N)

such that

ψ(β(X1), . . . , β(Xn), β(O1), . . . , β(Ok), β(A1), β(H1), β(H ′1), . . . , β(Am), β(Hm), β(H ′m))

is true. Then Wβ ⊆ {{1}, ∅} holds:
This is so because the β(Xi) must be equal to {1} or ∅ according to the sentence, and all β(Oi),

β(Aj), β(Hj), β(H ′j) have to be a subset of the union of the two “incoming variables”.

We consider the circuit α on input x1, . . . , xn. Let γ : {o1, . . . , ok, a1, . . . , am} → {0, 1} be the
function which maps every gate onto its output value.

We show the following statements inductively. Assume max(∅) = 0.

13

(A) max(β(Xr)) ≤ xr, r = 1, . . . , n,
(B) max(β(Oi)) ≤ γ(oi), i = 1, . . . k and
(C) max(β(Ai)) ≤ γ(ai), j = 1, . . . ,m.

The statements in (A) are obvious. Now, let g be a gate, and let G be the corresponding
variable. The gates’s inputs are inputs of the circuit, OR-, or AND-gates. Assume that for their
values a, b and the corresponding variables A,B the following holds

max(β(A)) ≤ a and max(β(B)) ≤ b.

We distinguish two cases:

� g is an OR-gate. In case γ(g) = 1, trivially the condition holds. Otherwise we have a = b = 0,
and thus β(A) = ∅ and β(B) = ∅, by which we also obtain β(G) = β(A) ∪ β(B) = ∅. This
shows (B).

� g is an AND-gate. If γ(g) = 1, the statement (C) is obviously true. Otherwise without loss
of generality there is an a with a = 0, and thus β(A) = ∅. Due to β(G) ⊆ β(A) we obtain
β(G) = ∅. This shows (C).

From 1 = max(β(Ok)) ≤ γ(ok) ≤ 1 it follows γ(ok) = 1. Thus the proof is complete.

Now the following theorem follows directly.

Theorem 3.7
CSP(Pfin(N), {∪}) is ≤log

m -complete for P.

Proof. The statement can be deduced from lemma 3.5 and lemma 3.6.

3.2.2 Variant over Finite Intervals

Assume P 6= NP. Then, contrary to expectation the problem CSP([N], {=,∪}) is harder than the
problem CSP([Pfin(N)], {=,∪}). Since the variant over [N] might firstly appear to be a restriction
of the variant over Pfin(N), one would at first view rather expect the opposite. The {∪}-sentences
over [N] are indeed a restricted version of sentences over Pfin(N) because the only difference is that
the constants have to be specific elements of Pfin(N), namely finite intervals.

As a result of the fact that in the variant over intervals also the variables must be mapped onto
intervals, we obtain greater expressive power in this specific situation.

For instance, the sentence ∃X∃Y {0} ∪ {2} = X ∪ Y expresses that exactly one of the two
variables has to be mapped onto {0} under a satisfying assignment of variables whereas the value
{2} has to be assigned to the other one.

It is not possible to express this once arbitrary finite subsets can be assigned to variables.

With the help of such tricks we are able to show 3SAT ≤log
m CSP([N], {∪}).

Lemma 3.8
3SAT ≤log

m CSP([N], {∪}).

Proof. Let H be a propositional formula in conjunctive normal form with exactly three literals per
clause and variables x1, . . . , xn. That means H =

∧m
i=1Ki for clauses Ki = li,1 ∨ li,2 ∨ li,3 with

literals li,j ∈ {x1,¬x1, x2,¬x2, . . . , xn,¬xn}.

We sketch a {∪}-sentence

ϕ = ∃X1 . . . ∃Xn∃X ′1 . . . ∃X ′n∃Li,1∃Li,2∃Li,3 . . . ∃Lm,1∃Lm,2∃Lm,3 ψ1 ∧ ψ2 ∧ ψ3

with ϕ ∈ CSP([N], {∪})⇔ H ∈ 3SAT.
Thus, for each propositional variable there are two variables in ϕ. These variables’ purpose is to

describe the truth value of the corresponding propositional variable and its negation. Let {2} stand
for the truth value 1, and let {0} stand for the truth value 0. Set ψ1 =

∧n
r=1

(
Xr∪X ′r = {0}∪{2}

)
.

14

Hence, under a satisfying assignment Xr and X ′r are mapped onto either {0} or {2}, and Xr is
mapped onto {0} if and only if X ′r is mapped onto {2}. Thus, Xr describes the value of xr, and
X ′r describes the value of ¬x′r.

Let s : {(i, j) | i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}} → {1, . . . , n} map the pair (i, j) onto the index of
the variable in li,j . Now it has to be made sure that each Li,j is mapped onto the correct value of
{Xs(i,j), X

′
s(i,j)}. We require this in ϕ by

ψ2 =

m∧
i=1

3∧
j=1

(
Li,j =

{
Xs(i,j) if li,j = xi,j

X ′s(i,j) if li,j = ¬xi,j

)
.

If there is an assignment for the propositional variables of ψ such that for each clause, there is
at least one literal with the truth value 1, ψ is satisfiable. This can be described in ϕ as follows:

ψ3 =
∧

1≤i≤m

(
Li,1 ∪ Li,2 ∪ Li,3 ∪ {0} = {0} ∪ {2}

)
.

Hence ϕ ∈ CSP([N], {∪}) ⇔ H ∈ 3SAT.
With the observation that at any point in time of the algorithm’s execution only constantly

many indices of the polynomially many variables have to be stored, and thus, only logarithmic
space is required for the computation of the reduction, the proof is complete.

Now we immediately obtain.

Theorem 3.9
CSP([N], {∪}) is ≤log

m -complete for NP.

Proof. The hardness follows from lemma 3.8. CSP([N], {∪}) is in NP according to remark 3.2.

3.3 Intersection

Analogously to section 3.2.1 we show CSP(Pfin(N), {∩}) to be ≤log
m -complete for P. Unlike for

CSP([N], {∪}) we cannot prove the variant over finite intervals to be NP-complete5. Instead we
will see that CSP([N], {∩}) is ≤log

m -complete for P.

3.3.1 Variant over Arbitrary Finite Sets

Lemma 3.10
CSP(Pfin(N), {∩}) ∈ P.

Proof. Like in the proof of lemma 3.5 and according to lemma 2.4 it suffices to show that there is a
polynomial time algorithm which decides whether a sentence ϕ = ∃X1 . . . ∃Xk

∧t
i=1

(
Ai∩Bi = Ci

)
with k, t ∈ N and variables or constants Ai, Bi, Ci belongs to CSP′(Pfin(N), {∩}).

The following algorithm decides whether there is a total α : Constϕ ∪ Varϕ → Pfin(N) with
α(C) = C for all constants C such that the equations α(Ai) ∩ α(Bi) = α(Ci) hold.

1. Set α(X) =

{
X if X constant

∅ otherwise
.

2. For each atom X ∩ Y = Z apply the following rules.

(a) Set α(Z) = α(Z) ∪ (α(X) ∩ α(Y)).

(b) Set α(X) = α(X) ∪ α(Z) and analogously α(Y) = α(Y) ∪ α(Z).

(c) If α(C) for a constant C has been changed, return 0.

3. If α(X) for an X ∈ Varϕ has been changed in step 2, then execute step 2 again.

5Probably this cannot be proven at all.

15

4. Return 1.

Similarly to the proof of lemma 3.5 it now can be shown that the algorithm returns 1 if and
only if ϕ is true.

By a reduction similar to the reduction in the proof of lemma 3.6 the ≤log
m -hardness of the

problem CSP(Pfin(N), {∩}) for P can be shown.

Lemma 3.11
CSP(Pfin(N), {∩}) and CSP([N], {∩}) are ≤log

m -hard for P.

Proof. We show both statements parallel. The following algorithm computes a reduction from
MCVE to the two mentioned problems.

� Input: a monotone boolean circuit α with inputs x1, . . . , xn ∈ {0, 1}. Let the OR-gates
be denoted by o1, . . . , ok and the AND-gates by a1, . . . , am. Without loss of generality ok
denotes the ouput gate.

� We successively build a sentence ϕ. For that purpose let

ϕ =∃X1 . . . ∃Xn∃O1 . . . ∃Ok∃A1 . . . ∃Am∃H1∃H ′1 . . . ∃Hm∃H ′m
ψ(X1, . . . , Xn, O1, . . . , Ok, A1, . . . , Am, H1, H

′
1 . . . , Hm, H

′
m).

Hence, for each input gate and each OR- and AND-gate, there is a corresponding variable
and for each AND-gate, there are two more auxiliary variables.

� Set

ψ(X1, . . . , Xn, O1, . . . , Ok, A1, . . . , Am, H1, H
′
1 . . . , Hm, H

′
m) =

n∧
i=1

(
Xi =

{
{1} if xi = 0

∅ otherwise

)
∧

k∧
i=1

χoi ∧
m∧
i=1

χai ∧ (Ok = ∅).

� If oi is an OR-gate and A,B are the variables which stand for the inputs of oi, set χoi =
(Oi = A ∩B).

� If ai is an AND-gate and A,B are the variables that stand for the inputs of ai, set χai =(
Ai ∩Hi = A

)
∧
(
Ai ∩H ′i = B

)
.

� Return f(α) = ϕ.

Let f denote the function computed by the algorithm. f can be computed in logarithmic space
since at each point in time, there are only constantly many variables or constants that have to be
stored.

It remains to show

α ∈ MCVE⇔ f(α) = ϕ ∈ CSP(Pfin(N), {∩})⇔ f(α) ∈ CSP([N], {∩}).

The right equivalence obviously holds. The left equivalence can be proven analogously to the
proof of lemma 3.6.

It follows directly:

Theorem 3.12
CSP(Pfin(N), {∩}) is ≤log

m -complete for P.

Proof. The statement follows from lemma 3.10 and lemma 3.11.

16

3.3.2 Variant over Finite Intervals

Also CSP([N], {∩}) can be shown to belong to P.

Lemma 3.13
CSP([N], {∩}) ∈ P.

Proof. According to lemma 2.4 it suffices to show CSP′
(
[N], {=,∩}

)
∈ P. Hence, let ϕ be a

{∩}-sentence whose atoms are all of the form A ∩B = C.
We present an iterative algorithm, which decides CSP([N], {∩}). Consider the mapping α :

Varϕ ∪ Constϕ → [N] defined by α(X) = ∅ for variables X and α(C) = C for C ∈ Constϕ. The
following algorithm changes this mapping’s values:

1. For each atom X ∩ Y = Z apply the following rules:

(a) First set α(Z) = α(Z) ∪ (α(X) ∩ α(Y)). Afterwards set

α(Z) = [min
(
α(Z)

)
,max

(
α(Z)

)
].

(b) Set α(X) = α(X) ∪ α(Z) and then α(X) = [min
(
α(X)

)
,max

(
α(X)

)
.] Proceed analo-

gously for Y .

(c) If α(C) for a constant C has been changed, return 0.

2. If there has been a change of a value α(X) for an X ∈ Varϕ in step 1, execute 1 again.

3. Return 1.

In each execution of step 1 except for the last one there is at least one change of a value α(X)
for a variable X.

It can be shown inductively that at each point in time during the execution of the algorithm,
it holds for each variable X that α(X) = [a, b], where [a, b] = ∅ or both a and b are equal to some
lower or upper interval endpoint of a constant in ϕ6:

The induction basis is trivial. Assume that now α(X) for an X ∈ Varϕ is changed. We
distinguish two cases:

1. By applying rule 1a to X = Y ∩ Z for Y,Z ∈ Varϕ ∪ Constϕ there is a change of α(X).
According to the induction hypothesis before the application of the rule the endpoints of
α(X), α(Y), α(Z) also occur as endpoints of constants. Then this holds for α(Y) ∩ α(Z) as
well, and hence also for α(X) after the application of the rule.

2. For the case Z = X ∩ Y for Y, Z ∈ Varϕ ∪ Constϕ it can be argued analogously.

Since there are only linearly many interval endpoints of constants, and the values α(X) for variables
X change monotonically7, there are only polynomially many executions of step 1. Thus, the
algorithm only requires polynomial time.

We now show that the algorithm returns 1 if and only if there is a satisfying assignment of the
variables in ϕ.

“⇒”: We consider the case in which the algorithm returns 1 and show that then α|Varϕ
8 is

a satisfying assignment. Assume that this is not so. Then there is an atom Z = X ∩ Y with
α(X) ∩ α(Y) 6= α(Z). We distinguish two cases.

1. ∃x ∈
(
α(X) ∩ α(Y)

)
− α(Z). In that situation the algorithm would not have terminated

returning 1 but applied the rule 1a to α(Z).

6Assume for the rest of the section that there are two different numbers occurring as endpoints of some constant.
Note that then, for [a, b] = ∅ we can choose a, b from the set of interval endpoints of constants such that a > b and
thus, also in that case the latter condition holds.

7This means that the lower endpoint of X decreases monotonically whereas the upper endpoint increases mono-
tonically.

8The mapping α|Varϕ changes during the execution of the algorithm. Here, it is referred to the function after
the execution of the algorithm.

17

2. ∃x ∈ α(Z)−
(
α(X) ∩ α(Y)

)
. Here instead of terminating the algorithm would have applied

the rule 1b.

Consequently α is a satisfying assignment of variables.

“⇐”: Let β : Varϕ → [N] be a satisfying assignment of variables for ϕ. We farther write
β(C) for the value of a constant C, and show that at any point in time α(X) ⊆ β(X) for all
X ∈ Varϕ ∪ Constϕ. At the beginning of the algorithm’s execution this is obviously true. For an
arbitrary atom X ∩ Y = Z we write U =def α(X), V =def α(Y), and W =def α(Z) for the current
values. Now we consider what happens when one of the rules is applied, and write U ′, V ′, and W ′

for the values of α(X), α(Y), and α(Z) after the application of the respective rule.

1. Consider the application of rule 1a. Then U ⊆ α(X), V ⊆ α(Y), and W ⊆ α(Z). Further-
more, it holds W ′ = W ∪ (U ∩ V) ⊆ β(Z) ∪

(
β(X) ∩ β(Y)

)
⊆ β(Z).

2. Now consider the application of rule 1b. We only discuss the application for X. Then U ⊆
α(X) and W ⊆ α(Z). Due to β(Z) ⊆ β(X) we obtain U ′ = U ∪W ⊆ β(X) ∪ β(Z) ⊆ β(X).

In particular for each constant C, it holds α(C) ⊆ β(C) at any point in time wherefore the
algorithm does not return 0. As described above, the algorithm terminates after polynomially
many steps of computation, and returns 1.

Theorem 3.14
CSP([N], {∩}) is ≤log

m -complete for P.

Proof. We obtain the statement from lemma 3.13 and lemma 3.11.

3.4 Intersection and Union

In this section we prove the NP-completeness of CSP
(
M, {=,∪,∩}

)
for M = [N] and M = Pfin(N).

3.4.1 Variant over Arbitrary Finite Sets

We show the ≤log
m -hardness for NP by a reduction from 3SAT.

Lemma 3.15
CSP(Pfin(N), {∪,∩}) is ≤log

m -hard for NP.

Proof. We show 3SAT ≤log
m CSP(Pfin(N), {∪,∩}). As 3SAT is ≤log

m -complete for NP, this is
sufficient. Let ψ be an arbitrary propositional formula in conjunctive normal form with exactly
3 literals per clause and variables x1, . . . , xn, hence ψ =

∧r
i=1(li,1 ∨ li,2 ∨ li,3) for literals li,j ∈

{xi,j ,¬xi,j} and xi,j ∈ {x1, . . . , xn}.

We construct a sentence ϕ such that ϕ ∈ CSP(Pfin(N), {∪,∩})⇔ ψ ∈ 3SAT. Here the set {0}
describes the truth value 0, and the set {0, 1} stands for the truth value 1.

ϕ =∃X1∃Y1∃Z1 . . . ∃Xn∃Yn∃Zn ∃L1,1∃L1,2∃L1,3 . . . ∃Ln,1∃Ln,2∃Ln,3
n∧
i=1

(
Xi ∪ Yi = {0, 1} ∧ Zi ∪ {0} = Xi

)
∧

∧
i∈{1,...,r},j∈{1,2,3},s∈{1,...,n},li,j=¬xs

(
Li,j ∪Xs = {0, 1} ∧ Li,j ∩Xs = {0}

)
∧

∧
i∈{1,...,r},j∈{1,2,3},s∈{1,...,n},li,j=xs

(
Li,j = Xs

)
∧

∧
i∈{1,...,r}

3⋃
j=1

(
Li,j = {0, 1}

)
The second line of the sentence expresses that for i = 1, . . . , n and each satisfying assignment α, it
holds α(Xi) ∈ {{0}, {0, 1}}.

The third line requires that the variables Li,j , which stand for the literals li,j = ¬xs, must
be mapped onto an element of {{0, 1}, {0}} by a satisfying assignment of variables α, and that
α(Li,j) = {0, 1} if and only if α(Xs) 6= {0, 1}.

18

In the fourth line we express that for the variable Li,j , which stands for a literal li,j = xs, the
equation α(Xs) = α(Li,j) holds for any satisfying assignment of variables α.

f can be computed in logarithmic space because at any point in time of the computation it
suffices to store constantly many variables and the number of variables and clauses in ψ.

For an assignment γ of the propositional variables xi we define an assignment of variables α
for ϕ as follows:

If γ(xi) = 1, set α(Xi) = {0, 1}. Otherwise set α(Xi) = {0}. Then γ is satisfying for ψ if and
only if α is satisfying for ϕ.

As a result the following theorem can be proven:

Theorem 3.16
CSP(Pfin(N), {∪,∩}) is ≤log

m -complete for NP.

Proof. The statement is implied by lemma 3.4 and remark 3.2.

3.4.2 Variant over Finite Intervals

With the help of lemma 3.8 the following theorem can be shown:

Theorem 3.17
CSP([N], {∪,∩}) is ≤log

m -complete for NP.

Proof. Lemma 3.8 and lemma 2.2 imply the hardness of CSP([N], {∪,∩}) for NP. We obtain
CSP([N], {∪,∩}) ∈ NP by remark 3.2.

3.5 Set Difference

This section’s purpose is the investigation of CSPs which permit the set difference and an arbitrary
subset of other set operations.

When considering CSPs over Pfin(N), the situation is quite simple as the following remark
underlines.

Remark 3.18
Consider CSP

(
Pfin(N), {=} ∪ O

)
for O ⊆ {−,∩,∪} with − ∈ O. According to remark 3.2 this

problem belongs to NP. According to lemma 3.15 CSP(Pfin(N), {∪,∩}) is ≤log
m -hard for NP. Hence,

Lemma 2.2 yields the ≤log
m -hardness of CSP

(
Pfin(N), {=,∪,∩,−}

)
. Consequently we obtain the

≤log
m -completeness of CSP

(
Pfin(N), {=} ∪ O

)
for arbitrary O ⊆ {−,∩,∪} with − ∈ O for NP by

lemma 2.5.

The situation for CSPs over [N] is a bit more complicated. From lemma 3.2 we again obtain
NP as an upper bound. Yet also the ≤log

m -hardness for NP of

CSP
(
[N], {=} ∪O

)
, O ⊆ {−,∪,∩} with − ∈ O,

can be shown. Our approach is similar to lemma 3.8.

Theorem 3.19
CSP

(
[N], {=} ∪ O

)
for O ⊆ {−,∩,∪} with − ∈ O is ≤log

m -complete for NP.

Proof. As remarked above it is sufficient to show the ≤log
m -hardness for NP. Due to lemma 2.2 it

suffices to prove 3SAT ≤log
m CSP

(
[N], {=,−}

)
.

Let H be a propositional formula in conjunctive normal form with exactly 3 variables per clause
and variables x1, . . . , xn, hence H =

∧m
i=1

(∨3
j=1 li,j

)
for literals li,j . Furthermore, let s : {(i, j) |

i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}} → {1, . . . , n} be a function such that li,j ∈ {xs(i,j),¬xs(i,j)}.
We describe a sentence ϕ which is true if and only if H is satisfiable. Here the truth value 0 is

represented by the set [0] and the truth value 1 by the set [2]. Therefore, our sentence expresses
that the CSP-variables Xi which stand for the variables in H must be mapped onto an element of

19

{[0], [2]} by a satisfying assignment. Note that X ′i is mapped onto the respective other value (line
2). Further on we use variables Li,j which stand for the literals.

Finally (line 4) it must be required that for all i = 1, . . . ,m there is at least one literal Li,j in
the i-th clause which is mapped onto the value [2].

∃X1∃X ′1 . . . ∃Xn∃X ′n∃L1,1∃L1,2∃L1,3 . . . ∃Lm,1∃Lm,2∃Lm,3∧
i=1,...,n

((
[0, 2]−X

)
−X ′ = ∅ ∧ X − ([0, 2]− [1]) = ∅ ∧X ′ − ([0, 2]− [1]) = ∅

)
∧

j=1,...,m

3∧
k=1

Lj,k =

{
Xs(j,k) if lj,k = xs(j,k)

X ′s(j,k) if lj,k = ¬xs(j,k)∧
j=1,...,m

((
[2]− Li,1

)
− Li,2

)
− Li,3 = ∅.

3.6 Overview and Conclusion

The following tables provide an overview over the results obtained in this section. The first table
deals with the CSPs over Pfin(N).

CSP
(
Pfin(N),O

)
with O = ≤log

m -hard for member of

∅ L L, 3.4
{∪} P, 3.2 P, 3.2
{∩} P, 3.3 P, 3.3
{∪,∩} NP, 3.4 NP, 3.2
{−} NP, 2.5 NP, 3.2
{−,∪} NP, 2.5 NP, 3.2
{−,∩} NP, 2.5 NP, 3.2
{−,∪,∩} NP, 2.5 NP, 3.2

The succeeding table gives information about the CSPs over [N].

CSP
(
Pfin(N),O

)
with O = ≤log

m -hard for member of

∅ L L, 3.4
{∪} NP, 3.8 NP, 3.2
{∩} P, 3.3 P, 3.3
{∪,∩} NP, 3.4 NP, 3.4
{−} NP, 2.5 NP, 3.2
{−,∪} NP, 2.5 NP, 3.2
{−,∩} NP, 2.5 NP, 3.2
{−,∪,∩} NP, 2.5 NP, 3.2

Thus, for each of the problems the ≤log
m -completeness for one of the complexity classes L,P,NP

is proven.
Further on it can be seen that in both situations we receive the same results for almost all cases.

The only exception is CSP
(
M, {=,∪}

)
for M ∈ {[N],Pfin(N)}. This is the only case throughout

this paper where – under the assumption P 6= NP – deciding a problem over [N] is more difficult
than deciding the corresponding problem over Pfin(N). In section 4 there are some examples for
which under the assumption NP 6= PSPACE the reverse statement holds.

20

4 CSPs Permitting Arithmetic Operations

Before we move to the consideration of some specific problems, we show an upper bound for all
CSPs investigated in this paper:

Theorem 4.1
Let M ∈ {Pfin(N), [N]} and O ⊆ {+,×,∪,∩,−}. Then CSP(M,O) ∈ Σ1.

Proof. The set

{(ϕ, α) | ϕ ∈ CSP(M,O), α is a satisfying assignment of variables for ϕ}

is decidable. Hence, CSP(M,O) is a projection of a decidable set, and thus CSP(M,O) ∈ Σ1.

4.1 Addition

In this section we show that CSP(Pfin(N), {+}) is NP-hard and belongs to NEXP, and prove
CSP([N], {+}) to be NP-complete.

At first we show: if there is a satisfying assignment of variables for a given sentence ϕ, then
there is also a satisfying assignment for ϕ satisfying some upper bound.

Lemma 4.2
Let ϕ ∈ CSP′

(
M, {+}

)
for M ∈ {Pfin(N), [N]} and n =def |ϕ|. Furthermore, let x = max(

⋃
C∈Constϕ

C∪
{0}). Then there is a satisfying assignment of variables α for ϕ with ∀X ∈ Varϕ : max(α(X) ∪
{0}) ≤ x2n.

Proof. The following non-deterministic algorithm successively constructs an initially undefined
assignment α.

1. Set α(C) = C for each constant C.

2. For each variable X with undefined α(X) occurring in an atom X = Y + Z such that α(Y)
and α(Z) are already defined, set α(X) =def α(Y) + α(Z).

3. For each variable X with undefined α(X) occurring in an atom X + Z1 = Z2 such that
α(Z2) is defined and unequal to ∅, guess a set S ∈ M with max{S} ≤ max(α(Z2), and set
α(X) =def S.

4. If there is a variable X such that α(X) has been defined in the last execution of the steps 2
and 3, then go to step 2.

5. For all variables X with undefined α(X) define α(X) =def ∅.

6. If α is satisfying, then return α.

If the algorithm returns an assignment on one computation path, then this assignment is obvi-
ously satisfying.

Thus, it suffices to show that the algorithm returns an assignment on at least one computation
path. The algorithm terminates on each computation path since there is one more loop iteration
only if there is a variable whose value has been changed in the last iteration. Thus, there are at
most |Varϕ| loop iterations.

Let β be a satisfying assignment for ϕ. We show inductively that before every loop iteration
there is a computation path such that for the assignment α constructed on that path the following
holds:

∀X ∈ Varϕ : α(X) non-defined ∨ α(X) = β(X).

Before the first loop iteration the condition holds obviously. Assume the condition is satisfied
before an arbitrary loop iteration.

Let X be a variable whose value α(X) is defined in step 2. Then by the induction hypothesis
we obtain α(Y) = β(Y) and α(Z) = β(Z). Since β is satisfying, β(X) = β(Y) + β(Z) holds, and
thus, after the execution of step 2 it holds α(X) = β(X).

21

Let X be a variable whose value α(X) is defined in step 3. Then it holds α(Z2) 6= ∅, and by the
induction hypothesis we obtain α(Z2) = β(Z2). As for the addition A+B = C with A,B,C ∈M
and C 6= ∅ it holds max(C) ≥ max(A∪B), it follows max(β(X)) ≤ max(β(Z2)). Hence, there is a
computation path with α(X) = β(X) after the execution of step 3.

When reaching step 5 all atoms X + Y = Z with defined α(X), α(Y), and α(Z) are satisfied
by α.

Thus, let X + Y = Z be an atom such that one of the values α(X), α(Y), and α(Z) is not
defined yet.

If α(Z) was defined and α(Z) 6= ∅, then α(X) and α(Y) would be defined due to step 3 as well.
If α(Z) = ∅, however, then the atom X + Y = Z is satisfied by setting α(X) = ∅ and α(Y) = ∅
respectively. Let α(Z) be undefined now. Then without loss of generality α(X) is undefined as
well (due to step 2). By setting α(X) = α(Z) = ∅ we obtain α(X) + α(Y) = α(Z). Hence, after
executing step 5 every equation of ϕ is satisfied. Consequently, α is a satisfying assignment.

For each variable X the value α(X) is defined exactly once. Let the variables be denoted as
X1, . . . , X|Varϕ| such that for i < j the value α(Xi) is defined before α(Xj) is defined. Then we

obtain directly from the algorithm max(α(Xi+1)) ≤ 2 ·max
(⋃

j≤i α(Xj)
)
. By means of a simple

induction ∀i : max(α(Xi)) ≤ x2i can be shown. Because of |Varϕ| ≤ n the proof is complete.

Through this result we can approach as follows: guess all assignments of variables whose ranges
are subsets of P({0, 1, . . . , x ·2n}). Test whether the respective assignment is satisfying, and return
the corresponding return value. This shows the decidability of the mentioned problems. The
following theorem gives information concerning the complexity.

Theorem 4.3
It holds that

1. CSP(Pfin(N), {+}) ∈ NEXP

2. CSP([N], {+}) ∈ NP.

Proof. According to lemma 2.4 it suffices to prove the two statements for CSP′(Pfin(N), {+}) and
CSP′([N], {+}) respectively.

1.: According to Lemma 4.2 the following algorithm decides CSP′(Pfin(N), {+}).

� Input: ϕ

� Determine n = |ϕ| and the greatest number x occurring in a constant.

� Guess α(X) ⊆ {k ∈ N | k ≤ x · 2n} for all X ∈ Varϕ non-deterministically.

� If α is satisfying, return 1. Otherwise return 0.

The sets α(X) contain at most x · 2n numbers of linear length. Therefore, guessing such sets
as well as checking whether a given assignment of variables is satisfying, is possible in polynomial
time.

2. Almost the same algorithm can be used:

� Input: ϕ

� Determine n = |ϕ| and the greatest number x which occurs in a constant.

� Guess α(X) = [k1, k2] with k1, k2 ≤ x · 2n for all X ∈ Varϕ.

� Test whether α is satisfying. Return 0 or 1 correspondingly.

Here only 2 · |Varϕ| numbers ≤ x · 2n have to be guessed. This is possible in non-deterministic
polynomial time. Due to the length restriction for the interval endpoints it can be tested in
polynomial time whether a given atom is satisfied. Thus, the algorithm works in non-deterministic
polynomial time.

22

Remark 4.4
The second part of theorem 4.3 can also be proven in a shorter and easier way. Instead of showing
the existence of an upper bound S such that it is sufficient to choose the interval endpoints from
the set [0, S], one could also decide CSP([N], {+}) using the NP-problem ILP as an oracle.

Such a proof for an even stronger result, namely CSP([N], {+,∩}) ∈ NP, can be found in the
proof of theorem 4.22.

Yet the result CSP([N], {+}) ∈ NP can be easily derived from lemma 4.2, which is necessary for
the first part of the proof of theorem 4.3 anyway. Thus, it stood to reason to prove the statement
CSP([N], {+,∩}) ∈ NP also in the depicted manner.

Now there have to be found lower bounds for both problems. We are able to show the ≤log
m -

hardness for NP for both problems by a reduction from an SOS-variant.
This reduction constructs sentences such that all occurring variables are mapped onto singletons

by any satisfying assignment. Thus, in the case of CSP(Pfin(N), {+}) it is sufficient to use strongly
restricted sentences. Hence, it suggests itself that the lower bound might not be sharp.

For CSP([N], {+}) however, the mentioned result yields the NP-completeness.

This is evidence that here the CSPs over finite subsets of N are more difficult than the corre-
sponding CSPs over finite intervals. In section 3.2 we had observed the opposite situation.

We now define the SOS-variant mentioned before.

Definition 4.5
Let MSOS = {x1, . . . , xn, b | ∃a1, . . . , an ∈ N :

∑
i∈I aixi = b}.

Lemma 4.6 ([BGSW05])
MSOS is ≤log

m -complete for NP.

This enables us to prove the following theorem.

Theorem 4.7
CSP(Pfin(N), {+}) and CSP([N], {+}) are ≤log

m -hard for NP.

Proof. Let M ∈ {Pfin(N), [N]}. We show MSOS ≤log
m CSP(M, {+}).

Let X = {x1, . . . , xn} ⊆ N and b ∈ N.
We construct a sentence ϕ which is true if and only if x1, . . . , xn, b ∈MSOS.

For that purpose we assume that xi and b are given in binary representation in the MSOS-
instance9. When constructing the sentence ϕ, we will use the binary representation for all occurring
numbers as well.

Our construction’s concept is the following: guess the values ai with an existential quantifier
and compute aixi by use of the shift-and-add-technique.

Firstly we describe a sentence which enforces that a variable is mapped onto {aixi} by a
satisfying assignment of terms where ai is guessed. Let thereto bi,mi

bi,mi−1 . . . bi,0 be the binary
representation of xi.

Then

aixi =

mi∑
j=0

aibi,j2
j = 2 ·

(
· · · 2

(
2
(
2aibi,mi + aibi,mi−1

)
+ aibi,mi−2

)
. . .

)
+ aibi,0. (∗)

Consider the following sentence:

ψi =∃Ai∃Ri,0∃Ri,1 . . . ∃Ri,mi

(
Ri,mi

=

{
{0} bi,mi

= 0

Ai otherwise

)
∧

∧
mi−1≥j≥0

(
Ri,j = (Ri,j+1 +Ri,j+1) +

{
{0} bi,j = 0

Ai otherwise

)
.

9Other common encodings like the dyadic encoding can be converted into binary representation in logarithmic
space.

23

Let α be a satisfying assignment of terms which maps each variable onto a singleton set. According
to (∗) it holds α(Ri,0) = {aixi} if ai is the unique element of α(Ai).

Let ϕ be the sentence, which arises out of
∧n
i=1 ψi ∧

(∑n
i=1Ri,0 = {b}

)
, when all existential

quantifiers are moved to the front.

Every assignment of terms α which satisfies the sentence ϕ maps each variable onto a singleton:
otherwise α would map at least one Ri,0 onto a set containing zero or at least two elements. Then
the atom

∑n
i=1Ri,0 = {b} would not be satisfied. Consequently, for M ∈ {[N],Pfin(N)} it holds

that ϕ ∈ CSP
(
M, {=,+}

)
⇔ 〈x1, . . . , xn,b〉 ∈MSOS.

The observation that the sketched function can be computed in logarithmic space completes
the proof.

4.2 Multiplication

Our results for CSP(Pfin(N), {×}) are the same as for CSP(Pfin(N), {+}). Nevertheless, the proofs
are more complicated, which is mainly because the multiplication of non-empty sets is not monotone
due to the set {0}, for which there is no additive counterpart.

For the problem CSP([N], {×}) the situation is completely different from the situation we have
for CSP([N], {+}) since the set of finite intervals is not closed under multiplication. Consequently,
we are only able to show CSP([N], {×}) ∈ Σp

3 as an upper bound.

4.2.1 Upper Bounds

We start with the proof of the upper bounds.

CSP([N], {×})

First we consider the multiplication of intervals. We show some properties, which significantly
simplify deciding CSP([N], {×}).

Lemma 4.8
Let A1, . . . , Am, B1, . . . , Bn be finite intervals with

∏m
i=1Ai =

∏n
i=1Bi 6= ∅. Then it holds that∏

1≤i≤m,|Ai|=1

Ai =
∏

1≤i≤n,|Bi|=1

Bi.

If
∏m
i=1Ai 6= {0}, then also ∏

1≤i≤m,|Ai|6=1

Ai =
∏

1≤i≤n,|Bi|6=1

Bi

holds.

Proof. We define {α} =def

∏
1≤i≤m,|Ai|=1Ai and {β} =def

∏
1≤i≤n,|Bi|=1Bi. None of the intervals

Ai, Bi is empty. Therefore, {α} ×
∏

1≤i≤m,|Ai|≥2Ai = {β} ×
∏

1≤i≤n,|Bi|≥2Bi.
Assume α 6= β. We furthermore assume without loss of generality α > β. Then for all

x ∈
∏m
i=1Ai the number α is a divisor of x, and thus, α | y for y ∈

∏n
i=1Bi. Due to α > β there

is a prime power pe such that pe | α and pe - β.
In every interval Bi with |Bi| ≥ 2 there is a number bi relatively prime to p: If the greatest

common divisor of min(Bi) and p is greater than 1, then min(Bi) = rp for r ∈ N. Thus gcd(r · p+
1, p) = 1.

Furthermore, b = β ·
∏

1≤i≤n,|Bi|≥2 bi ∈
∏n
i=1Bi and pe - b hold. Consequently α - b, a

contradiction.

The second statement is implied by the first.

24

Lemma 4.9
Let A1, . . . , Am, B1, . . . , Bn be intervals with at least two elements each. Furthermore, let

max(A1) ≤ max(A2) ≤ · · · ≤ max(Am), max(B1) ≤ max(B2) ≤ · · · ≤ max(Bn),

and
∏m
i=1Ai =

∏n
i=1Bi. Then max(Am) = max(Bn).

Proof. Let L =def

∏m
i=1Ai and R =def

∏n
i=1Bi. In addition, let the greatest elements of Ai and

Bi respectively be denoted by ai and bi respectively.
Because of L = R the second greatest elements of L and R are equal. Thus

max(L− {max(L)}) = max(R− {max(R)}). (∗)

We show max(L−{max(L)}) =
(∏m−1

i=1 ai

)
· (am−1) = max(L)−

∏m−1
i=1 ai: the right equation

is obvious. Furthermore, it apparently holds that max(L)−
∏m−1
i=1 ai ∈ L− {max(L)}.

Let x ∈ L−{max(L)}. Let xi ∈ Ai for i = 1, . . . ,m such that x =
∏m
i=1 xi. Due to x 6= max(L)

there is a j such that xj < aj . Then

x ≤
(∏

1≤i≤m,i6=j

ai

)
· (aj − 1) = max(L)−

∏
1≤i≤m,i6=j

ai ≤ max(L)−
m−1∏
i=1

ai.

Analogously it can be seen that max(R− {max(R)}) = max(R)−
∏n−1
i=1 bi.

From (∗) and max(L) = max(R) we obtain
∏m−1
i=1 ai =

∏n−1
i=1 bi. Then it follows that

am =
max(L)∏m−1
i=1 ai

=
max(R)∏n−1
i=1 bi

= bn.

When a product M = C1 × · · · × Ck of intervals is given and finite intervals shall be assigned
to the variables X1, . . . , Xn for n ∈ N such that

∏n
i=1Xi = M , then for each Xi and all x from

the set assigned to Xi the condition x ≤ max(
⋃k
i=1 Ci) must hold.

By use of that property we can prove that, if ϕ ∈ CSP([N], {×}), then there is a non-deterministc
polynomial time algorithm which finds a satisfying assignment for the sentence ϕ on at least one
computation path. The following theorem specifies this statement.

Theorem 4.10
There is a non-deterministic polynomial time algorithm A satisfying the following properties:

� As input A receives a {×}-sentence ϕ whose constants are intervals.

� On each computation path A returns a {×}-sentence ψ whose constants are finite intervals
with at least two elements each, and in which no variables occur.

� If and only if ϕ ∈ CSP([N], {×}), then A returns a sentence ψ ∈ CSP([N], {×}) on at least
one computation path.

Proof. We describe the algorithm A, which constructs an assignment α. Assume that at the
beginning α(C) = C holds for each constant C:

1. Guess a set K ′ ⊆ Varϕ non-deterministically, and set α(X) = ∅ for all elements X ∈ K ′. Set
K = K ′ ∪ {∅}.

2. For each atom a = (A1 × · · · ×Am = B1 × · · · ×Bn) execute the following steps.

(a) If K ∩ {A1, . . . , Am} 6= ∅ ∧K ∩ {B1, . . . , Bn} 6= ∅, then delete the atom a in ϕ.

(b) If it holds that K ∩ {A1, . . . , Am} 6= ∅ ∧ K ∩ {B1, . . . , Bn} = ∅, or if it holds that
K ∩ {A1, . . . , Am} = ∅ ∧K ∩ {B1, . . . , Bn} 6= ∅, then return [0, 1] = [1, 2].

25

3. Guess a set L′ ⊆ Varϕ
10 non-deterministically and set α(X) = {0} for all X ∈ L′. Then

define L = L′ ∪ {{0}}.

4. For each atom a = (A1 × · · · ×Am = B1 × · · · ×Bn) execute the following steps.

(a) If L ∩ {A1, . . . , Am} 6= ∅ ∧ L ∩ {B1, . . . , Bn} 6= ∅, delete the atom a in ϕ.

(b) If it holds that L ∩ {A1, . . . , Am} 6= ∅ ∧ L ∩ {B1, . . . , Bn} = ∅, or if it holds that
L ∩ {A1, . . . , Am} = ∅ ∧ L ∩ {B1, . . . , Bn} 6= ∅, then return [0, 1] = [1, 2].

5. Guess a set M ′ ⊆ Varϕ
11 non-deterministically.

Set M = M ′ ∪ {C ∈ Constϕ | |C| = 1}.
Replace each atom a = (A1 × · · · ×Am = B1 × · · · ×Bn) with(∏

1≤i≤m,Ai /∈M

Ai =
∏

1≤i≤n,Bi /∈M

Bi

)
∧
(∏

1≤i≤m,Ai∈M

Ai =
∏

1≤i≤n,Bi∈M

Bi

)
.

For each constant {c} ∈ M guess the prime decomposition (if it has been guessed wrongly,
then return [0, 1] = [1, 2]). Let p1, . . . , pk be the primes which are divisors of c. Store only

the vector (e1, . . . , ek) for which c =
∏k
i=1 p

ei
i . We also store the values α(X) for variables

X ∈M that way.

6. Execute the following steps.

(a) For each atom a = (A1 × · · · × Am = B1 × · · · × Bn) for which all occurring variables
are in M apply the following rules.

i. If α(Ai) is defined for every i, then there is a vector (e1, . . . , ek) such that
∏k
i=1 p

ei
i is

the unique number
∏m
i=1 α(Ai). The vector is computed as the componentwise sum

of the vectors for the α(Ai). For each Bi with undefined α(Bi) do the following:
Guess a vector (e′1, . . . , e

′
k) with e′j ≤ ej non-deterministically. Store α(Bi) as

(e′1, . . . , e
′
k).

ii. Proceed analogously if α(Bi) is defined for every i.

(b) For each atom a = (A1 × · · · × Am = B1 × · · · × Bn) for which all occurring variables
are not in M apply the following rules.

i. If all α(Ai) = [ai, a
′
i] are defined, then for each Bi with undefined α(Bi) guess two

numbers s1 < s2 with s2 ≤ max({a′1, . . . , a′m}), and define α(Bi) =def [s1, s2].

ii. Proceed analogously if all α(Bi) are defined.

(c) If the value α(X) for a variable X has been defined in the steps 6a and 6b, execute 6
again.

7. For each undefined variable X set α(X) =def ∅.12

8. For every atom a = (A1× · · · ×Am = B1× · · · ×Bn) where all occurring variables are in M ,
test whether it is satisfied. Here it suffices to compute the sum of the respective vectors of
exponents.

If a is not satisfied, return [0, 1] = [1, 2]. Otherwise remove a.

Furthermore, replace each occurrence of a variable X in the sentence with the constant
interval α(X). Delete each atom for which on both sides the constant ∅ occurs. Let the
sentence constructed that way be denoted by ψ.

9. Return ψ.

10 Note that every atom with a variable in K has been deleted. Thus, Varϕ does not contain any elements in K.
11The variables in M will be mapped onto singletons by α.
12This step is unnecessary since there is a computation path on which the corresponding variables have already

been defined to be empty in step 1 and removed afterwards. Despite of that this step simplifies the argumentation
at some later point.

26

The proof is complete as soon as the following four statements have been proven:

1. For each sentence ψ returned on some computation path, ϕ /∈ CSP([N], {×}) implies ψ /∈
CSP([N], {×}).

2. If ϕ ∈ CSP([N], {×}), then on at least one computation path A returns a true sentence ψ.

3. A works in non-deterministic polynomial time.

1.) If the input sentence is not in CSP([N], {×}), then obviously the sentence computed after
the execution of step 4 is not in CSP([N], {×}) either.

For intervals A1, . . . , Am, B1, . . . , Bn it holds:

∏
1≤i≤m,|Ai|=1

Ai =
∏

1≤i≤n,|Bi|=1

Bi ∧
∏

1≤i≤m,|Ai|6=1

Ai =
∏

1≤i≤n,|Bi|6=1

Bi ⇒
m∏
i=1

Ai =

n∏
i=1

Bi.

Hence, if the sentence has a satisfying assignment after step 5, then also before that step.

In step 8 it is tested whether all atoms whose variables and constants are all in M are satisfied
by the assignment constructed so far. All these variables and constants do not occur in any other
atom. Hence, if ϕ is not true, then either the conjunction of the already mentioned atoms is not
true, or this conjunction is true, but the rest of the sentence is not. In the first case the sentence
[0, 1] = [1, 2] is returned whereas in the second case the returned sentence is not true as well. This
proves the statment.

2.) Let ϕ ∈ CSP([N], {×}) with a satisfying assignment of variables β. Then there is a
computation path on which A guesses the sets K,L,M such that for all variables X of the input
sentence

X ∈ K ⇔ β(X) = ∅,
X ∈ L⇔ β(X) = {0}, and

X ∈M ⇔ β(X) ∈ {N} − {{0}}.

A does not terminate on this computation path until step 5 inclusively. We now consider the
sentence which A has computed after the execution of step 4. This sentence is satisfied by β.

For all remaining variables the set β(X) is not empty and does not equal {0}. Due to that and
lemma 4.8 the assignment β also satisfies the sentence generated by A after the execution of step
5.

There is obviously a computation path on which for each variable X for which α(X) has been
defined in step 6a α(X) = β(X).

Because of lemma 4.9 this also holds for any variable Y for which α(Y) has been defined in
step 6b.

Hence, when reaching step 7 each atom in which α is defined for all occurring variables is
satisfied by α.

For all other atoms a = (A1 × · · · ×Am = B1 × · · · ×Bn) there is at least one variable Ai and
at least one variable Bj such that α(Ai) and α(Bj) are not defined yet. Otherwise all variables in
a would have a defined function value under α due to step 6a and step 6b.

By setting α(Ai) = ∅ and α(Bj) = ∅ the assignment α satisfies the atom a. Consequently, α
satisfies the complete sentence and in particular, the returned sentence ψ is true.

3.) The steps 6a and 6b are obviously executed |Varϕ| times at most, where ϕ denotes the
input sentence. Hence, the only steps of the algorithm for which it is not obvious that they can be
executed in non-deterministic polynomial time are the steps 6a and 8.

Let e be the greatest exponent which occurs in the prime decomposition of the number c for
a constant C = {c}. Let X1, . . . , Xr be the variables of M such that for i < j the value α(Xi) is
defined before α(Xj) is defined. Let farther xi denote the unique element in α(Xi).

27

It can be shown inductively that the greatest exponent in the prime decomposition of xi is not
greater than e · 2i.

Particularly the sets α(X) can be computed in polynomial time and stored in polynomial space.
Now it is obvious that also step 8 can be executed in polynomial time.

Since A is a polynomial time algorithm, for each ψ returned by the algorithm it holds that
|ψ| ∈ O(p(|ϕ|)) for some polynomial p.

Thus, in order to decide whether ϕ ∈ CSP([N], {×}), it is sufficient to test for a sentence ψ
returned by A whether it is true.

Thereto, we define the following problem.

Definition 4.11
Let IntervalEquality be the set

{(([a1, a
′
1], . . . , [am, a

′
m]), ([b1, b

′
1], . . . , [bn, b

′
n])) | ai < a′i, bi < b′i,

m∏
i=1

[ai, a
′
i] =

n∏
i=1

[bi, b
′
i]}.

Lemma 4.12
IntervalEquality ∈ Πp

2 .

Proof. Let A1, . . . , Am, B1, . . . , Bn be non-empty intervals with |Ai|, |Bj | ≥ 2.
It holds

m∏
i=1

Ai =

n∏
i=1

Bi ⇔∀x1 ∈ A1 . . . ∀xm ∈ Am∀y1 ∈ B1 . . . ∀yn ∈ Bn

∃x′1 ∈ B1 . . . ∃x′n ∈ Bn∃y′1 ∈ A1 . . . ∃y′m ∈ Am
m∏
i=1

xi =

n∏
i=1

x′i ∧
n∏
i=1

yi =

m∏
i=1

y′i.

As the xi, yi, x
′
i, y
′
i all have polynomial length, A ∈ ∀p∃pP = Πp

2 .

With this the following upper bound for CSP([N], {×}) can be proven.

Theorem 4.13
CSP([N], {×}) ∈ Σp

3 .

Proof. According to theorem 4.10 and lemma 4.12 the problem CSP([N], {×}) can be decided by
an NP-algorithm with Πp

2-oracle.

Remark 4.14
Our decision algorithm for IntervalEquality tests whether two products of intervals are equal
by considering all elements of the two products. Maybe this can be done more efficiently. In lemma
4.9 we have shown that for an equation of products of intervals the maximal upper interval endpoint
is the same in both products. Perhaps it can be shown a more general result such that an algorithm
only has to consider the interval endpoints of the intervals in order to decide IntervalEquality.

CSP(Pfin(N), {×})

We use an abbreviating notation for the set of prime divisors of numbers occurring in a sentence:

Definition 4.15
Let ϕ be a {×}-sentence. We de�ne

Pϕ = {p | p prime and p | c for a 0 6= c ∈ C, C ∈ Constϕ}.

28

We obtain directly from the definition:

Lemma 4.16
Let ϕ be a {×}-sentence and n =def |ϕ|. Then |Pϕ| ∈ O(n2).13

The following lemma significantly shrinks the space in which we have to search a satisfying
assignment.

Lemma 4.17
Let ϕ ∈ CSP′(Pfin(N), {×}) and let α be a satisfying assignment of variables for ϕ. Define β as
follows: Set β(X) = ∅ if α(X) = ∅, and set

β(X) =
{
y | ∃x ∈ α(X) : y =

x∏
p∈P−Pϕ, pe|x, pe+1-x p

e

}
= {y | ∃x ∈ α(X) : y can be received from x by cutting all prime factors p /∈ Pϕ},

if α(X) 6= ∅. Then β is a satisfying assignment of variables.

Proof. LetA×B = C be an arbitrary atom in ϕ. Then α(A)×α(B) = α(C). If ∅ ∈ {α(A), α(B), α(C)},
then obviously also β satisfies the atom. Otherwise

β(C) =
{
y | ∃x ∈ α(C) : y =

x∏
p∈P−Pϕ, pe|x, pe+1-x p

e

}
=
{
y | ∃x ∈ α(A)× α(B) : y =

x∏
p∈P−Pϕ, pe|x, pe+1-x p

e

}
=
{
y | ∃x ∈ α(A) y =

x∏
p∈P−Pϕ, pe|x, pe+1-x p

e

}
×{

y | ∃x ∈ α(B) : y =
x∏

p∈P−Pϕ, pe|x, pe+1-x p
e

}
= β(A)× β(B).

We can further reduce the size of the space in which we have to search a satisfying assignment.

Lemma 4.18
Let ϕ ∈ CSP′(Pfin(N), {×}) with n =def |ϕ|. Define

ζ = max({e | pe | c for p ∈ Pϕ and c ∈ C for some C ∈ Constϕ }).

Then there is a satisfying assignment of variables α for ϕ with

∀X ∈ Varϕ ∪ Constϕ : α(X) ⊆
{ ∏

pi∈Pϕ

pei
i | ∀i : ei ≤ ζ · 2n

}
∪ {0}.

Proof. We present a non-deterministic algorithm which returns an assignment of variables sat-
isfying the requirements mentioned above. Thereto the algorithm successively constructs a total
mapping α : Varϕ∪Constϕ → Pfin(N), from which we will eventually receive the already mentioned
assignment of variables.

1. Set α(C) = C for all constants C.

2. Guess a subset K ′ of Varϕ non-deterministically and set α(X) = ∅ for all X ∈ K ′. Set
K = K ′ ∪ {∅}.

3. Delete all atoms A×B = C in ϕ for which A,C ∈ K or B,C ∈ K.

If for an atom A×B = C it holds that (C ∈ K ∧ A,B /∈ K) ∨ ({A,B}∩K 6= ∅ ∧ C /∈ K),
then terminate the computation without a return value.

13It can be obviously found a better upper bound, namely O(n). Yet the bound mentioned above is sufficent for
our purposes.

29

4. Guess a subset L′ of Varϕ −K non-deterministically and set α(X) = {0} for all X ∈ L′. Set
L = L′ ∪ {{0}}.

5. Delete each atom A×B = C in ϕ for which A,C ∈ L or B,C ∈ L.

If there is an atom A×B = C with (C ∈ L ∧ A,B /∈ L) ∨ ({A,B} ∩ L 6= ∅ ∧ C /∈ L), then
terminate the computation without a return value.

6. Execute the following steps:

(a) For every atom A×B = C for which α(C) is defined14 and α(A) is still undefined, guess
a non-empty subset S 6= {0} of{ ∏

pi∈Pϕ

peii | ∃x ∈ α(C)− {0}∀i : peii | x
}
∪ {0}

and set α(A) = S. Proceed analogously for B.

(b) For each atom A×B = C with defined values α(A) and α(B) and undefined α(C), set
α(C) = α(A)× α(B).

(c) If α(X) for a variable X has been defined in step 6a or 6b, then execute step 6 again.

7. For all X ∈ Varϕ with undefined α(X) set α(X) = ∅15.

8. Set α =def α|Varϕ . If α is satisfying, return α. Otherwise terminate without a return value.

We show that the algorithm returns a satisfying assignment on at least one computation path:

Let β be a satisfying assignment of variables for ϕ such that for every variable X the set β(X)
contains only numbers whose prime divisors are in Pϕ. Such an assignment exists according to
lemma 4.17. Then there is a computation path on which the algorithm above chooses the sets K
and L such that for all variables X

X ∈ K ⇔ β(X) = ∅ and X ∈ L⇔ β(X) = {0}.

Let α denote the assignment which is constructed on the computation path sketched above. Until
step 5 inclusively the two assignments α and β are equal for all the variables X for which α(X)
has been defined so far. Hence, the atoms deleted during the steps 1 to 5 are satisfied by any
assignment of terms ζ with ζ(X) = α(X) for variables with an already defined α(X). Thus, these
atoms require no further consideration.

In step 6 the value α(X) is defined only for those variables X which exclusively occur in atoms
A×B = C for which β(A), β(B), β(C) /∈ {∅, {0}}16. Thus, it can be shown inductively that there
is a computation path on which after step 6 the assignments α and β are equal for all variables X
for which α(X) has been defined so far.

In particular, for every atom A×B = C for which the values α(A), α(B) and α(C) are defined
after step 6 it holds that α(A)× α(B) = α(C). Let A×B = C be an atom such that for at least
one of the variables there has not yet been defined a value under α. Then α(C) and at least one
of the two values α(A) and α(B) have not been defined yet: Assume that this is not so. Then

� α(C) has been defined wherefore according to step 6a also α(A) and α(B) have been defined,

� or α(A) and α(B) have been defined yet wherefore according to step 6b also α(C) has been
defined.

14Note that in the following α(C) /∈ {∅, {0}}.
15This step is actually unneccessary since for any set of variables which are mapped onto ∅ there is a corresponding

computation path in which these variables have already been mapped onto ∅ and deleted afterwards. Nevertheless,
this step simplifies the argumentation at some later point.

16Note that some atoms of the input sentence have already been deleted

30

We respectively obtain a contradiction.
Hence, α is satisfying when we set α(X) = ∅ for any variable X not defined after step 6. This

is done in step 7.

It remains to show ∀X ∈ Varϕ ∪ Constϕ : α(X) ⊆
{∏

pi∈Pϕ
pei

i | ∀i : 0 ≤ ei ≤ ζ · 2n
}

.

Let the variable X1, . . . , X|Varϕ| be indexed such that for i < j the value α(Xi) is defined before
α(Xj) is defined. Inductively it can be easily shown that for all j = 1, . . . , |Varϕ| it holds that

α(Xj) ⊆
{∏

pi∈P p
ei
i | ∀i : ei ≤ ζ · 2j

}
. Due to |Varϕ| ≤ n the proof is complete.

The preceding lemma shows: in order to decide for a given {×}-sentence whether it is true, it
suffices to test finitely many assignments of variables with regard to whether they are satisfying.
That yields the decidability of CSP(Pfin(N), {×}).

Yet the lemma also makes a statement with respect to the size of the set of assignments
which have to be tested. Thereby we can find a concrete complexity class as an upper bound for
CSP(Pfin(N), {×}).

Here the following aspect is important: It might be that for every satisfying assignment α there
is a variable X such that α(X) contains some superexponential number. But according to the
preceding lemma, for each variable X the set α(X) contains only exponentially many elements.

Theorem 4.19
It holds CSP(Pfin(N), {×}) ∈ NEXP.

Proof. According to lemma 4.18 the following algorithm decides the problem.

� Input: {×}-sentence ϕ′.

� Compute ϕ = f(ϕ′) for the FL-function f which reduces CSP(Pfin(N), {×}) to the problem
CSP′(Pfin(N), {×}). Thus, all atoms in ϕ are of the form A×B = C.

� Determine n = |ϕ| and ζ = max({e | ∃C ∈ Constϕ ∃c ∈ C ∃p ∈ P : pe | c}).

� Compute the set Pϕ = {p1, . . . , p|Pϕ|}.

� For each variable X in ϕ guess a set S ⊆
{∏|Pϕ|

i=1 p
ei
i | ∀i : 0 ≤ ei ≤ ζ · 2n

}
∪ {0} and set

α(X) = S. Set farther α(C) = C for all C ∈ Constϕ.

� If there is an atom A × B = C in ϕ with α(A) × α(B) 6= α(C), then return 0. Otherwise
return 1.

The algorithm guesses |Varϕ| ∈ O(n) subsets S of
{∏

pi∈Pϕ
peii | ∀i : ei ≤ ζ · 2n

}
∪ {0} for

ζ ∈ O(2n). Note that the sets S contain exponentially many exponentially long numbers. Hence,
the algorithm can be computed in 2p(n) computation steps for an appropriate polynomal p.

4.2.2 Lower Bounds

For M ∈ {[N],Pfin(N)} we prove the ≤log
m -hardness of CSP(M, {×}) for NP. For M = Pfin(N) this

could also be shown over a reduction from CSP(Pfin(N), {+}) since the earlier proven reduction
MSOS ≤log

m CSP(Pfin(N), {+}) yields a sentence whose constants are either singletons or empty.
This can be seen at a later point after the proof of lemma 4.24. Because [N] is not closed under
multiplication, however, we cannot proceed that way for M = [N].

Therefore, we show MSOS ≤log
m CSP(M, {×}) parallel for both cases, and thus obtain:

Theorem 4.20
For M ∈ {[N],Pfin(N)} the problem CSP(M, {×}) is ≤log

m -hard for NP.

31

Proof. Proceeding similarly to the proof of theorem 4.7 we show MSOS ≤log
m CSP(M, {×}).

Let a1, . . . , ak, b ∈ N. We construct a {×}-sentence ϕ such that ϕ ∈ CSP(M, {×}) if and only

if there are x1, . . . , xk ∈ N with
∑k
i=1 xiai = b.

It holds that
∑k
i=1 xiai = b ⇔

∏k
i=1

(
2xi2ai

)
= 2b. For a short representation of the numbers

2s for s ∈ N in ϕ we use a square-and-multiply-algorithm. Thereto let bm . . . b0 be the binary

representation of s. Then 2s = 2
∑m

i=0 bi2
i

=
∏

0≤i≤m

(
22i
)bi

=
∏

0≤i≤m,bi=1 22i

. Let in the

following bi,mi . . . bi,0 be the binary representation of ai. Furthermore, bk+1,mk+1
. . . bk+1,0 denotes

the binary representation of b.

For i ∈ {1, . . . , k+ 1} we construct a sentence ψi. This sentence contains a variable Ai which is
mapped onto 2ai in case i ∈ {1, . . . , k} and onto 2b in case i = k+1 by every satisfying assignment.
For that purpose let m = max(m1, . . . ,mk+1).

Set χ =def ∃Ym . . . ∃Y0

(
Y0 = {2}

)
∧
∧m−1
j=0

(
Yj+1 = Yj×Yj

)
and ψi =def ∃Ai

(
Ai =

∏
0≤j≤mi,bj=1 Yj

)
.

Let ϕ be the sentence which is received from ∃X1 . . . ∃Xk

(
χ∧
∧k+1
i=1 ψi∧Ak+1 =

∏k
i=1

(
Ai×Xi

))
when all the existential quantifiers are moved to the front.

Let α be a satisfying assignment of variables for ϕ. Obviously α maps every variable Yj and
each variable Ai onto a singleton. If there was a variable Xi not mapped onto a singleton, then
the atom Ak+1 =

∏k
i=1(Ai ×Xi) would not be satisfied. Hence Wα ⊆ {N}.

Thus, it suffices to show that there are x1, . . . , xn ∈ N with
∏k
i=1 2xi2ai = 2b if and only if

there is a satisfying assignment α with Wα ⊆ {N} for ϕ.

“⇒”: Let x1, . . . , xn ∈ N such that
∏k
i=1 2xi2ai = 2b holds. Then each assignment of terms

with Xi 7→ {2xi} satisfies the sentence ϕ.

“⇐”: Under every assignment α it holds that α(Ai) = {2ai} for i = 1, . . . , k and α(Ak+1) = {2b}.
If we denote the unique element in α(Xi) by x′i, then

∏k
i=1 x

′
i2
ai = 2b. Particularly the x′i are

powers of two and for x1, . . . , xn with xi = log2 x
′
i it holds

∏k
i=1 2xi2ai = 2b.

Since the numbers occurring in the input are already given in binary representation, the sentence
ϕ can be computed in logarithmic space.

4.3 Addition and Intersection

In contrast to the variant over arbitrary finite subsets of N, which will be shortly discussed in
section 4.5, an upper bound for CSP([N], {+,∩}) can be found quite simple: by use of integer
linear programs (ILPs) we show CSP([N], {+,∩}) ∈ NP.

Furthermore, we obtain the NP-hardness from the NP-hardness of CSP([N], {+}).

We define a variant of integer linear programs, which is known to be in NP:

Definition 4.21
Let ILP =def

{
(A, b) | A ∈ Zm×n, b ∈ Zm, m, n ∈ N+,∃x ∈ Nn : Ax ≤ b

}
where (d1, . . . , dm) ≤

(e1, . . . , em) if and only if for all i = 1 . . . ,m the condition di ≤ ei holds.

Theorem 4.22
CSP([N], {+,∩}) ∈ NP.

Proof. We prove the statement by specifying a non-deterministic polynomial time algorithm. Ac-
cording to lemma 2.4 it suffices to show CSP′([N], {+,∩}) ∈ NP.

Hence, let ϕ be a {+,∩}-sentence with Constϕ ⊆ [N] such that each atom is of the form
X ⊕ Y = Z for X,Y, Z ∈ Varϕ ∪ Constϕ and ⊕ ∈ {+,∩}.

Guess a subset M of variables in ϕ non-deterministically, and replace each occurrence of a
variable in M with the constant ∅. Delete each atom X ⊕ Y = Z for ⊕ ∈ {∩,+} if Z = ∅ and

32

(X = ∅ ∨ Y = ∅). If no atom remains, return {0} + {0} = {0}. If for an atom X ⊕ Y = Z for
⊕ ∈ {∩,+} the condition(

(X = ∅ ∨ Y = ∅) ∧ Z 6= ∅
)
∨
(
Z = ∅ ∧X,Y 6= ∅ ∧ ⊕ = +

)
holds, then return {0}+ {0} = {1}. In all other cases return the possibly modified sentence.

Thus, ϕ ∈ CSP′([N], {+,∩}) if and only if on at least one computation path a sentence ϕ′ has
been returned and satisfies the following conditions:

� there is a satisfying assignment of variables with range ⊆ [N]− {∅} for ϕ′, and

� if there is an atom X ⊕ Y = Z in ϕ′ containing ∅ as a constant, then ⊕ = ∩, Z = ∅, and
X,Y 6= ∅.

The problem of testing these conditions can be solved with the help of an NP-algorithm for
ILP. For each R ∈ (Varϕ ∪ Constϕ)− {∅} we introduce two ILP-variables r0, r1. If R = [l, u], set
r0 = l and r1 = u.

1. For each atom X + Y = Z we set up the equations x0 + y0 = z0 and x1 + y1 = z1.

2. For each atom X ∩ Y = Z with Z 6= ∅ use four further variables d, e, d′, e′. We express
z0 = max(x0, y0) and z1 = min(x1, y1):

� On z0 = max(x0, y0): Add x0 ≤ z0, y0 ≤ z0, z0 = dx0 + ey0, and d+ e = 1.

� On z1 = min(x1, y1): Add x1 ≥ z1, y1 ≥ z1, z1 = d′x1 + e′y1, and d′ + e′ = 1.

3. For each atom X ∩ Y = Z with Z = ∅ we want to express y1 < x0 ∨ x1 < y0. Hence, we
guess a bit b. If b = 0, we add the inequation y1 < x0. Otherwise we add x1 < y0.

4. Furthermore, for every pair of ILP-variables x0, x1 which describe the lower and upper end-
point of some interval we add the inequation x0 ≤ x1.

Thus, by construction it holds: On at least one computation path an ILP-instance (A, b) with
(A, b) ∈ ILP is returned if and only if the sentence ϕ′ has a satisfying assignment of variables
which does not map any variable onto the empty set.

Hence, the algorithm decides CSP([N], {+,∩}).

Since ILP ∈ NP, the algorithm works in non-deterministical polynomial time.

Corollary 4.23
CSP([N], {+,∩}) is ≤log

m -complete for NP.

Proof. CSP([N], {+,∩}) ∈ NP follows from theorem 4.22. The hardness is obtained by theorem
4.7 and Lemma 2.2.

4.4 Lower Bounds for CSPs with Exactly One Arithmetic Operation
and Set Operations

In this section we prove different lower bounds for CSPs over Pfin(N) which permit at least one
set operation beside exactly one arithmetical operation. More precisely we will show the Πp

2-
hardness for CSP

(
Pfin(N), {=,⊗,∪}

)
, where ⊗ ∈ {+,×}, and the PSPACE-hardness for the prob-

lem CSP
(
Pfin(N), {=,⊗,⊕}

)
, where ⊗ ∈ {+,×} and ⊕ ∈ {∩,−}.

The two bounds follow almost immediately from literature, and it should be possible to improve
them in at least some cases. We, however, focused mostly on other questions, particularly on the
decidabiliy of the mentioned problems. The exact consideration of the lower bounds is left for
further work.

The following lemma allows us to translate lower bounds for certain problems to other problems.

33

Lemma 4.24
It holds that CSP(Pfin(N), {=,+} ∪ O) ≤log

m CSP(Pfin(N), {=,×} ∪ O) for O ⊆ {∩,∪,−} with
O ∩ {∪,−} 6= ∅.

Proof. Let ϕ be given. Replace each + with × in ϕ, and each constant C = {k1, . . . , kr} with a
variable which is mapped onto {2k1 , . . . , 2kr} by every assignment of terms. In the following we
describe how this can be done.

For i ∈ {1, . . . , r} let bl . . . b0 be the binary representation of ki. Then, for each i = 1, . . . , r it

holds that 2ki = 2
∑l

j=0 bj2j

=
∏l
j=0

(
22j
)bj

=
∏
j∈[0,l],bj=1 22j

, where 22j

=
(

22j−1
)2

.

Hence, {2ki} can be described in the following way

αi =∃Xi∃Y0 . . . ∃Yl
(
Y0 = {2}

)
∧
(
Y1 = Y0 × Y0

)
∧
(
Y2 = Y1 × Y1

)
∧ · · · ∧(

Yl = Yl−1 × Yl−1

)
∧
(
Xi =

∏
j∈[0,l],bj=1

Yj

)
.

Thus, for each assignment of terms γ for αi it holds that γ(Xi) = {2ki}. The variable Yj in αi

is now renamed Yi,j
17. Consider the sentence received from ∃XC

∧
1≤i≤r αi ∧

(
XC =

⋃
1≤i≤rXi

)
by moving the existential quantifiers to the front and name it ψC .

For each assignment of terms γ for ψC one has γ(XC) = {2c | c ∈ C}.
Now for C ∈ Constϕ replace all occurrences of C in ϕ with XC , build the conjunction of that

sentence and
∧
C∈Constϕ

ψC , move all existential quantifiers to the front, and name the sentence

obtained that way ϕ′.

Due to ∀x, y, z ∈ N
(
x+y = z ⇔ 2x ·2y = 2z

)
an assignment of variables γ for ϕ is satisfying

if and only if the assignment of variables X 7→ {2x | x ∈ γ(X)} is satisfying for ϕ′.

ϕ′ can be computed in logarithmic space since the input numbers are given in binary represen-
tation.

As we use the union beside the multiplication for our construction, we have shown

CSP(Pfin(N), {=,+} ∪O) ≤log
m CSP(Pfin(N), {=,×,∪} ∪O).

According to lemma 2.5 it holds CSP(Pfin(N), {=,×,∪} ∪ O) ≤log
m CSP(Pfin(N), {=,×,−}). This

completes the proof.

Consider the following problem.

Definition 4.25
A natural number n is an integer expression. For two integer expressions α and β also (α+β) and
(α ∪ β) are integer expression.

We de�ne the set L(α) ⊆ N described by an integer expression α:
For n ∈ N let L(n) =def {n}. For the integer expression (β ⊕ γ) with ⊕ ∈ {+,∪} we de�ne

L(β⊕γ) =def L(β)⊕L(γ). Let INEQ =def {(α, β) | α, β are integer expressions and L(α) 6= L(β)}.

Meyer and Stockmeyer [SM73] prove the following lemma.

Theorem 4.26 ([SM73])
INEQ is ≤log

m -complete for Σp
2 .

We denote CSP(Pfin(N), {=,+,∪}) ∩ {ϕ | ϕ is a {+,∪}-sentence in which no variable occurs}
by constCSP(Pfin(N), {+,∪}).

17Thereby the sentence contains some redundant segments. Nevertheless it still can be computed in logarithmic
space, which is sufficient for our purposes.

34

Theorem 4.27
constCSP(Pfin(N), {+,∪}) is ≤log

m -hard for Πp
2 .

Proof. Lemma 4.26 yields that INEQ is ≤log
m -hard for Πp

2 . Let α, β be integer expressions. Thus,
α and β are {+,∪}-terms. Hence (α, β) ∈ INEQ⇔ α = β ∈ constCSP(Pfin(N), {+,∪}).

Therefore, CSP(Pfin(N), {=,+,∪}) is ≤log
m -hard for Πp

2 . Yet it should be possible to show the
existence of a better upper bound – such as the ≤log

m -hardness for Σp
3 – as we did not use any

variables, but only constants for our reduction.
Due to lemma 4.24 CSP(Pfin(N), {=,×,∪}) is ≤log

m -hard for Πp
2 as well. Thus we have proven

the following corollary.

Corollary 4.28
CSP(Pfin(N), {=,+,∪}) and CSP(Pfin(N), {=,×,∪}) are ≤log

m -hard for Πp
2 .

If beside one arithmetical operation there is also one of the two operations intersection and
set difference available, we can show the corresponding problem to be PSPACE-hard. Thereto we
slightly modify a proof given by McKenzie and Wagner [MW03] such that we get along without
the union.

For the further argumentation we need the problem 3KNF-QBF, which is known to be ≤log
m -

complete for PSPACE.

Definition 4.29
Let 3KNF-QBF =def {F | F is a closed quanti�ed boolean formula in 3-cnf with F ≡ 1 }.

Theorem 4.30
The following statements hold:

1. CSP(Pfin(N), {+,∩}) is ≤p
m-hard for PSPACE.

2. CSP(Pfin(N), {×,∩}) is ≤log
m -hard for PSPACE.

3. CSP(Pfin(N), {+,−}) is ≤log
m -hard for PSPACE.

4. CSP(Pfin(N), {×,−}) is ≤log
m -hard for PSPACE.

Proof. We show the first two statements by use of a ≤p
m- or ≤log

m -reduction from 3KNF-QBF.
The third statement can be shown analogously to the first statement whereas the last statement
follows from the second.

1. Let F = Q1x1 . . . QmxmH(x1, . . . , xm) be a 3KNF-QBF-instance with Q1, . . . , Qm ∈ {∃,∀}
and H =

∧n
j=1Hj for an n ∈ N and formulas H1, . . . ,Hn with three literals each.

For k = m,m−1, . . . , 1, 0 we construct a conjunction of atoms ϕk with variablesXm, Xm−1, . . . , Xk

such that for all α1, . . . , αk ∈ {0, 1} and each assignment of terms I the following condition holds:

Qk+1xk+1 . . . QmxmH(α1, . . . , αk, xk+1, . . . , xm)⇔
n∑
j=1

3 · 6j +

k∑
i=1

αi6
n+i +

m∑
i=k+1

6n+i ∈ I(Xk).

We name this equivalence (∗). The ϕk are constructed such that for any two assignments of terms
I, I ′ it holds I(Xk) = I ′(Xk). For that reason we will simply write Xk for the set I(Xk) for an
arbitrary assignment of terms I.

For k = 0 we obtain from (∗) that Q1x1 . . . QmxmH(x1, . . . , xm)⇔
∑n
j=1 3 · 6j +

∑m
i=1 6n+i ∈

X0.

Hence, we obtain for r =
∑n
j=1 3 · 6j +

∑m
i=1 6n+i a polynomial time computable reduction

function for 3KNF-QBF ≤p
m CSP(Pfin(N), {+,∩}), namely

F 7→ ∃Xm∃Xm−1 . . . ∃X0 : ϕ0 ∧
(
X0 ∩ {r} = {r}

)
.

35

We first consider the case k = m. For i = 1, . . . ,m define ai =def 6n+i +
∑
xi in Hj

6j and

bi =def

∑
xi in Hj

6j .

Then set ϕm =def

(
Xm =

∑m
i=1{ai, bi}+

∑n
j=1{0, 6j , 2 · 6j}

)
. Note that each summand 6j in

the expression above occurs at most five times.
We show that then for all α1, . . . , αm ∈ {0, 1} it holds

H(α1, . . . , αm)⇔
n∑
j=1

3 · 6j +

m∑
i=1

αi · 6n+i ∈ Xm :

“⇒”: Let γi ∈ {ai, bi} with γi = ai for αi = 1 and γi = bi otherwise. As H(α1, . . . , αm) is
true, for each clause Hj there is at least one satisfied literal, and thus, there is a γi in which the
summand 6j occurs. Hence, we obtain

∑m
i=1 γi =

∑n
j=1 βj6

j +
∑m
i=1 αi6

n+i with βj ∈ {1, 2, 3}.
Then

∑m
i=1 γi +

∑n
j=1(3− βj) · 6j =

∑n
j=1 3 · 6j +

∑m
i=1 αi · 6n+i ∈ Xm holds.

“⇐”: Let
n∑
j=1

3 · 6j +

m∑
i=1

αi · 6n+i ∈ Xm.

Then
n∑
j=1

3 · 6j +

m∑
i=1

αi · 6n+i ∈
m∑
i=1

γi +

n∑
j=1

{0, 6j , 2 · 6j}

for

γi =

{
ai αi = 1

bi αi = 0
.

As for each clause Hj the summand 6j occurs at least once in
∑m
i=1 γi, one has due to the choice

of the γi
H(α1, . . . , αm).

For the step from k to k − 1 assume (∗). For Qk = ∃ we obtain

∃xkQk+1 . . . QmxmH(α1, . . . , αk−1, xk, xk+1, . . . , xm)

⇔ Qk+1xk+1 . . . QmxmH(α1, . . . , αk−1, 0, xk+1, . . . , xm)∨
∨Qk+1xk+1 . . . QmxmH(α1, . . . , αk−1, 1, xk+1, . . . , xm)

IV⇔
n∑
j=1

3 · 6j +

k−1∑
i=1

αi6
n+i +

m∑
i=k+1

6n+i ∈ Xk ∨
n∑
j=1

3 · 6j +

k−1∑
i=1

αi6
n+i +

m∑
i=k

6n+i ∈ Xk

⇔
n∑
j=1

3 · 6j +

k−1∑
i=1

αi6
n+i +

m∑
i=k

6n+i ∈ Xk−1,

where ϕk−1 =def ϕk ∧
(
Xk−1 =

(
Xk + {0, 6n+k}

))
.

For Qk = ∀ it can be argumented analogously:

∀xkQk+1 . . . QmxmH(α1, . . . , αk−1, xk, xk+1, . . . , xm)

⇔ Qk+1xk+1 . . . QmxmH(α1, . . . , αk−1, 0, xk+1, . . . , xm)∧
∧Qk+1xk+1 . . . QmxmH(α1, . . . , αk−1, 1, xk+1, . . . , xm)

IV⇔
n∑
j=1

3 · 6j +

k−1∑
i=1

αi6
n+i +

m∑
i=k+1

6n+i ∈ Xk ∧
n∑
j=1

3 · 6j +

k−1∑
i=1

αi6
n+i +

m∑
i=k

6n+i ∈ Xk

⇔
n∑
j=1

3 · 6j +

k−1∑
i=1

αi6
n+i +

m∑
i=k

6n+i ∈ Xk−1,

36

where ϕk−1 =def ϕk ∧
(
Xk−1 = (Xk + {6n+k}) ∩Xk

)
.

Obviously the reduction function can be computed in polynomial time.

2. 3KNF-QBF ≤log
m CSP(Pfin(N), {×,∩}) can be shown analogously: all occurrences + have

to be replaced with × and the numbers 6i for i = 1, . . . , n + m must be replaced with pi where
pi is the i-th prime. Because of π(i)18 ∈ Θ(i/ log i) one has pn+m ∈ O((n + m)2) and thus
|pn+m| ∈ O(log(n + m)). The occurring products are not computed in the reduction itself, but
written as a product in the output sentence.

Except for that the argumentation is the same as in part 1.

3. For CSP(Pfin(N), {+,−}) the same proceeding as for CSP(Pfin(N), {+,∩}) is possible. The
intersection can be simulated by the set difference according to the proof of lemma 2.5. Thereby
one can even show the ≤log

m -hardness for PSPACE:

The constants occurring in the output sentence need not be computed in the reduction function,
but they can be written into the output sentence by use of an shift-and-add-algorithm. Note that
only numbers of the form 6k for k ≤ n+m have to be described. As n and m are encoded as the
number of clauses or variables in the input formula, the binary representation of numbers smaller
or equal n + m can be computed in logarithmic space. Hence, for all the numbers it is executed
for, the shift-and-add-algorithm works in logarithmic space.

Sets with more than one element can be generated since we can simulate the union using the
set difference (see the proof of lemma 2.5).

4. follows from 2. and lemma 2.5.

In section 3 we had observed that under the assumption P 6= NP there are CSPs for which the
variant over [N] is more difficult than the variant over Pfin(N). Here we have the reverse situation.

In corollary 4.23 we had determined that CSP([N], {+,∩}) is ≤log
m -complete for NP. Ac-

cording to theorem 4.30, however, CSP(Pfin(N), {+,∩}) is ≤p
m-hard for PSPACE. Hence, un-

der the assumption NP 6= PSPACE the problem CSP(Pfin(N), {+,∩}) is more difficult than
CSP([N], {+,∩}).

4.5 Discussion of Two Open Questions

Concerning the problems investigated up to now there remain several open questions. In this section
we will discuss the two – in our opinion – most fundamental questions. Thereto we report about
how we have tried to answer these questions, and try to give reasons what the main difficulties are.

1. For CSPs over arbitrary finite subsets with O ∈ {{+}, {×}} we were only able to show the
≤log

m -hardness for NP as well as the upper bound NEXP. These two bounds are quite far
apart from each other.

Here we will only argue the case O = {+} further on. The arguments for the case O = {×}
are partially the same.

2. For CSP([N], {+,∩}) we were able to show the NP-completeness. However, for the prob-
lem CSP(Pfin(N), {+,∩}) we could not even prove the decidability. Thus, we only know
CSP(Pfin(N), {+,∩}) ∈ Σ1 from theorem 4.1.

Papers by Jeż and Okhotin: Jeż and Okhotin [JO10a] investigate similar questions. Among
others they consider equations over variables, constants, and the addition. There the variables
stand for arbitrary subsets of N whereas constants are “ultimately periodic” sets, i.e., sets A ⊆ N
for which there are d, p ∈ N such that for all x ≥ d it holds that x ∈ A⇔ x+ p ∈ A.

Jeż and Okhotin investigate the complexity of testing whether there is a solution for such
equation systems, and proved the Π1-completeness of the problem.

18Here π(i) denotes the number of primes smaller than or equal to i.

37

For our purposes this result does not help directly since Jeż and Okhotin consider problems
which are on the one hand more difficult to solve due to the infinite sets permitted as constants,
but easier to solve in some sense on the other hand because the variables do not only stand for
finite sets. Farther we could show that CSP(Pfin(N), {+}) ∈ NEXP, which is a upper bound better
than Π1.

In further papers [JO10b, JO11, JO14] Jeż and Okhotin allow more operations besides the
addition, namely intersection and union, but the results cannot be translated to our situation for
the same reasons.

Generally, Jeż and Okhotin do not cover one of our areas with their investigations [Jez15]. In
particular their previous papers are restricted to equation systems which have smallest/greatest/unique
solutions [Jez15].

Sumsets: In the following we discuss the possibility CSP(Pfin(N), {+}) /∈ EXP.

Definition 4.31
Let (G,+) be an abelian group and S ⊆ G �nite. Then S is a sumset if and only if there is an

A ⊆ G with A+A = S.

Croot and Lev [CL07] point out that it is not known whether there is a polynomial time
algorithm which decides whether a given set is a sumset. More exact, they mention that the best
known algorithm proceeds as follows: for each s ∈ S and for all 2|S| subsets S′′ of S′ = {s′ − s |
s′ ∈ S} compute S′′ + S′′, and compare it to S′.

For G = Z it is necessary and sufficient to consider the elements s ∈ S ∩ 2Z. For a sumset S
namely, the numbers min(S) and max(S) are always even. Furthermore, [1, 3] is no sumset, but
{s− 1 | s ∈ [1, 3]} is a sumset.

Croot and Lev indeed formulate the problem generally over subsets of abelian groups, but they
mention explicitly that even if the group is cyclic there is no better algorithm known. In particular,
no better algorithm for testing whether a finite set S ⊆ Z is a sumset is known.

Lemma 4.32
Let A ⊆ Z and z ∈ Z. Then A is a sumset if and only if A+ {2z} is a sumset.

Proof. For X ⊆ Z it holds X +X = A⇔ (X + {z}) + (X + {z}) = A+ {2z}.

Thus, instead of testing whether S ⊆ Z is a sumset, it can also be tested whether the set

S′ =
{
s− 2

⌊min(S∪{0})
2

⌋
| s ∈ S

}
⊆ N is a sumset.

Hence, it is not known whether SUMSET ∈ P where SUMSET =def {S ∈ Pfin(N) | S is a sumset}.
SUMSET ∈ NP is obvious, though. Furthermore, obviously SUMSET ≤log

m CSP(Pfin(N), {+})
holds.

By use of {+}-terms with length n, however, even sets S with |S| ∈ 2Θ(n) can be described.

We define

SUCCINCT-SUMSET =def {(C1, . . . , Cn) | Ci ∈ Pfin(N),

n∑
i=1

Ci ∈ SUMSET}.

Then obviously SUCCINCT-SUMSET ≤log
m CSP(Pfin(N), {+}).

For SAT one can also define a variant SUCCINCT-SAT. Note that SAT is complete for NP
and SUCCINCT-SAT is complete for NEXP. By use of the translation lemma one obtains

SAT ∈ P⇒ SUCCINCT-SAT ∈ EXP.

Hence, if EXP 6= NEXP, then we obtain P 6= NP from the translation lemma. From EXP 6= NEXP
it follows SAT /∈ P and SUCCINCT-SAT /∈ EXP.

According to the current level of knowledge it is possible that we have the same situation for the
two problems SUMSET and SUCCINCT-SUMSET, i.e., under the assumption EXP 6= NEXP
both SUMSET /∈ P and SUCCINCT-SUMSET /∈ EXP.

38

Upper bound for CSP(Pfin(N), {+,∩}): We already know from theorem 4.30 that the
problem CSP(Pfin(N), {+,∩}) is ≤log

m -hard for PSPACE. As an upper bound we could only show
the trivial property CSP(Pfin(N), {+,∩}) ∈ Σ1 up to know.

We try to find some evidence that proving a better upper bound is difficult:

In order to show CSP(Pfin(N), {+}) ∈ NEXP we have presented an algorithm which proceeds
as follows: first determine for which variables there are only finitely many possible values they
can be mapped onto by a satisfying assignment of variables. Afterwards map all the remaining
variables onto the empty set. By use of the intersection we can express though, that a variable
X cannot be mapped onto ∅ by a satisfying assignment of variables without restricting the size of
α(X) for a satisfying assignment of variables α. The following sentence is an example for that:

∃X∃Y (X ∩ Y = {0}) ∧ (X + {1} = X).

This sentence has no satisfying assignment over Pfin(N). The atom X + {1} = X would only be
satisfied by an assignment α with α(X) = ∅. Such an assignment, however, would not satisfy the
first atom.

An iterative algorithm like the algorithm in the proof of lemma 4.2, which tries to successively
construct a satisfying assignment α, would first set α(X) ⊇ {0}, then set α(X) ⊇ {0, 1}, and so
on. In that case it would not terminate. However, if there is a break condition like in

∃X∃Y (X ∩ Y = {0}) ∧
(
(X + {1}) ∩

k∑
i=1

[0, ci] = X
)

for ci ∈ N, it would find a satisfying assignment.
It remains open if there is some bound for such an iterative algorithm such that it either

terminates without having considered any numbers above this bound, or it does not terminate at
all. If there was such a bound, then CSP(Pfin(N), {+,∩}) would be decidable.

We consider a further example. Let C1, . . . , Ck and C ′1, . . . , C
′
k′ be arbitrary constants. Let

furthermore ϕ(C1, . . . , Ck) and ψ(C ′1, . . . , C
′
k′) be terms over {+,∩}. Consider the sentence

∃X∃Y
(
X = Y + Y

)
∧
(
X ∩ ϕ(C ′1, . . . , C

′
k′) = ψ(C1, . . . , Ck)

)
.

It formulates the question: Is there a sumset X with ψ(C1, . . . , Ck) ⊆ X and(
ϕ(C ′1, . . . , C

′
k′)− ψ(C1, . . . , Ck)

)
∩X = ∅?

Thus, it has to be answered the question for the existence of a sumset S for which exponentially
many requirements of the form x ∈ S or x /∈ S are given.

Here it is unknown whether there is – in case of the existence of such a sumset – also a “small”
such sumset, or whether it all such sumsets are “very large”.

4.6 Addition and Multiplication

As soon as both addition and multiplication are permitted in a CSP, we receive undecidable, but
recursively enumerable problems. It is easy to see that we can formulate arbitrary diophantine
equations.

More precisely, we prove such CSPs to be ≤log
m -complete for Σ1.

Theorem 4.33
Let M ∈ {Pfin(N), [N]} and O ⊆ {∪,∩,−}. Then CSP

(
M, {=,+,×}∪O

)
is ≤log

m -complete for Σ1.

Proof. We first show:
A) For an arbitrary {+,×}-sentence ψ it can be computed a {+,×}-sentence ψ′ such that

ψ′ ∈ CSP
(
M, {=,+,×}

)
⇔ there is a satisfying assignment of variables

with range {{a} | a ∈ N} for ψ.

39

Such a sentence ψ′ can be constructed as follows: for each variable X in ψ append the following
conjunction of atoms at the end of ψ:

∧
(
X +X = {2} ×X

)
∧
(
X × {0} = {0}

)
.

Let α be an arbitrary assignment of terms for ψ′. If α(X) = ∅ held for some variable X, the
atom X × {0} = {0} would not be satisfied. If one had α(X) = {x1, . . . , xr} for some variable X
and an r ∈ N− {0, 1} such that xi < xi+1, then

α(X +X) = α(X) + α(X) ⊇ {x1 + x1, x1 + x2, . . . , x1 + xr, xr + xr}

would contain at least r+1 elements whereas α({2}×X) = {2}×α(X) contains r elements. Thus,
α would not be satisfying.

Every satisfying assignment of terms for ψ′, hence, maps each variable onto a singleton. Fur-
thermore each satisfying assignment of variables for ψ′ is satisfying for ψ as well.

Reversely, if there is a satisfying assignment of variables for ψ which maps each variable onto
a singleton, then this assignment is obviously satisfying for ψ′ as well.

B) According to the Matiyasevich-Robinson-Davis-Putnam theorem [Mat70, DPR61] there is
an n ∈ N and a multivariate polynomial p with integer coefficients such that for each set A ∈ Σ1

there is an a ∈ N such that
x ∈ A⇔ ∃y ∈ Nn, p(a, x, y) = 0.

Now we can move the monomials with negative coefficients to the right side of the diophantine
equation p(a, x, y) = 0. Consequently, there are multivariate polynomials l, r with non-negative
integer coefficients such that

x ∈ A⇔ ∃y ∈ Nn l(a, x, y) = r(a, x, y).

Due to A) we can formulate the right side of the equivalence above as a {+,×}-sentence ϕ.

Note that l, r, and a are independent of the input x. As in particular for terms of the form xe

occurring in the polynomial the size of the exponent e is constant, the sentence ϕ can be computed
in logarithmic space.

It holds that CSP
(
M, {=,+,×} ∪O

)
∈ Σ1 because of theorem 4.1.

4.7 Overview

The following tables yield an overview over the results obtained in this section.
The first table deals with the CSPs over Pfin(N).

CSP
(
Pfin(N),O

)
with O = hardness member of

{+} ≤log
m -hard for NP, 4.7 NEXP, 4.3

{×} ≤log
m -hard for NP, 4.20 NEXP, 4.19

{+,∩} ≤p
m-hard for PSPACE, 4.30 Σ1, 4.1

{+,∪} ≤log
m -hard for Πp

2 , 4.28 Σ1, 4.1
{+,−} ≤log

m -hard for PSPACE, 4.30 Σ1, 4.1
{+,×} ≤log

m -hard for Σ1, 4.33 Σ1, 4.1

The following tabular contains the results concerning CSPs over [N].

CSP
(
[N],O

)
with O = ≤log

m -hard for member of

{+} NP, 4.7 NP, 4.3
{×} NP, 4.20 Σp

3 , 4.13
{+,∩} NP, 4.23 NP, 4.22
{+,×} Σ1, 4.33 Σ1, 4.1

40

The lower bounds for CSPs over [N] are in general lower than those for the corresponding CSPs
over Pfin(N). If [N] is closed under all allowed operations, then we know the corresponding CSP to
be complete for one of the classes L, NP, and Σ1. For the variant over Pfin(N) the problems are
very difficult, even if less operations are permitted.

In contrast to the section before, here remain several open questions. The following are partic-
ular interesting:

Is CSP(Pfin(N), {∪,∩}) decidable? What is the exact complexity of CSP(Pfin(N), {+})? Does
IntervalEquality belong to some class of the polynomial hierarchy lower than Πp

2?

41

References

[BGSW05] E. Böhler, C. Glaßer, B. Schwarz, and K. W. Wagner. Generation problems. Theor.
Comput. Sci., 345(2-3):260–295, 2005.

[CL07] E. S. Croot, III and V. F. Lev. Open problems in additive combinatorics. In Additive
combinatorics, volume 43 of CRM Proc. Lecture Notes, pages 207–233. Amer. Math.
Soc., Providence, RI, 2007.

[DPR61] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Dio-
phantine equations. Annals of Mathematics, 74(2):425–436, 1961.

[FV99] T. Feder and M. Y. Vardi. The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, February 1999.

[GHR91] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. A Compendium of Problems Complete
for P, 1991.

[GHR+07] C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, and M. Waldherr. Equivalence
problems for circuits over sets of natural numbers. In Volker Diekert, Mikhail V.
Volkov, and Andrei Voronkov, editors, CSR, volume 4649 of Lecture Notes in Computer
Science, pages 127–138. Springer, 2007.

[GJM15] C. Glaßer, P. Jonsson, and B. Martin. Constraint satisfaction problems around skolem
arithmetic. CoRR, abs/1504.04181, 2015.

[GRTW10] C. Glaßer, C. Reitwießner, S. Travers, and M. Waldherr. Satisfiability of algebraic
circuits over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394 –
1403, 2010.

[Jez15] A. Jez. Private communication, 2015.

[JO10a] A. Jez and A. Okhotin. On equations over sets of integers. CoRR, abs/1001.2932,
2010.

[JO10b] A. Jez and A. Okhotin. Univariate equations over sets of natural numbers. Fundam.
Inform., 104(4):329–348, 2010.

[JO11] A. Jez and A. Okhotin. Complexity of equations over sets of natural numbers. Theory
Comput. Syst., 48(2):319–342, 2011.

[JO14] A. Jez and A. Okhotin. Computational completeness of equations over sets of natural
numbers. Inf. Comput., 237:56–94, 2014.

[Knu02] D. E. Knuth. All questions answered. Notices of the AMS, 49(3):318–324, 2002.

[Mat70] Y. V. Matiyasevich. Enumerable sets are Diophantine. Doklady Akad. Nauk SSSR,
191:279–282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.

[MW03] P. McKenzie and K. W. Wagner. The complexity of membership problems for circuits
over sets of natural numbers. In Proceedings of the 20th Annual Symposium on The-
oretical Aspects of Computer Science, STACS ’03, pages 571–582, London, UK, UK,
2003. Springer-Verlag.

[Pap94] C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[Rei05] O. Reingold. Undirected st-connectivity in log-space. In Proceedings of the Thirty-
seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages 376–385,
New York, NY, USA, 2005. ACM.

42

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time(preliminary report). In Proceedings of the Fifth Annual ACM Symposium on
Theory of Computing, STOC ’73, pages 1–9, New York, NY, USA, 1973. ACM.

43

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

