
A Note on Tolerant Testing with One-Sided Error

Roei Tell

March 10, 2016

Abstract

A tolerant tester with one-sided error for a property is a tester that accepts every
input that is close to the property, with probability 1, and rejects every input that
is far from the property, with positive probability. In this note we show that such
testers require a linear number of queries.

1 Introduction

This note deals with property testing, and assumes familiarity with the basic notions
involved; for expository texts, see, e.g., [Ron09, Gol16]. We will specifically be in-
terested in tolerant testers, introduced by Parnas, Ron, and Rubinfeld [PRR06]. These
are testers that distinguish, with high probability, between inputs that are close to the
property, and inputs that are far from the property.

We prove that it is impossible to test a property tolerantly with both a sub-linear
number of queries and one-sided error. Specifically, for a property Π and two constants
ε > 0 and ε′ < ε, an ε′-tolerant ε-tester with one-sided error for Π accepts inputs that are
ε′-close to Π, with probability 1, and rejects inputs that are ε-far from Π, with positive
probability. We show that for essentially any Π, and any pair of constants ε > 0 and
ε′ < ε, any ε′-tolerant ε-tester with one-sided error for Π requires a linear number
of queries. The proof is based on a simple claim that is implicit in the proofs of two
similar previous results (see [Tel15, Prop. 5.6 and Cor. 5.7]). In Section 4 we reproduce
the proofs of these two results, as corollaries of the said claim.

2 Preliminaries

We will be interested in properties of Boolean strings. The distance between two n-
bit strings, denoted by δ, is the relative Hamming distance (i.e., δ(x, y) = |{i∈[n]:xi 6=yi}|

n ).
The distance between a string x ∈ {0, 1}n and a non-empty set S ⊆ {0, 1}n is
mins∈S δ(x, s). We say that a string is ε-close to a set (resp., ε-far from a set), if its
distance from the set is at most ε (resp., at least ε). In the following definition we refer
to algorithms that get oracle access to a string x ∈ {0, 1}n; by this we mean that for
any i ∈ [n], the algorithm can query for the value of the ith bit of x.
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Definition 1 (tolerant testers with one-sided error). Let Πn ⊆ {0, 1}n, and let ε > 0 and
ε′ < ε. An ε′-tolerant ε-tester with one-sided error for Πn is a probabilistic algorithm T that
satisfies the following conditions:

1. For every x that is ε′-close to Πn it holds that Pr[Tx(1n) = 1] = 1.

2. For every x that is ε-far from Πn it holds that Pr[Tx(1n) = 0] > 0.

Note that in Condition (2) of Definition 1 we only require rejection of “far” inputs
with positive probability, rather than with high probability. Indeed, the lower bound
holds even for this relaxed definition.

3 The new result

The following claim is implicit in the proof of [Tel15, Claim 5.6.1].

Claim 2. Let n ∈ N, and let S ⊆ {0, 1}n. Assume that there exists a probabilistic algorithm
A that queries any input string in q locations, and satisfies the following conditions:

• For every s ∈ S it holds that A accepts s, with probability 1.

• There exists w /∈ S such that A rejects w, with positive probability.

Then, every x ∈ {0, 1}n is (q/n)-close to S = {0, 1}n \ S.

Proof. Let r be random coins such that when A queries w with coins r it holds that A
rejects w. Denote by (i1, ..., iq) the corresponding q locations in w that A queries, given
coins r. Now, let x ∈ {0, 1}n. Let x′ be the string obtained by modifying the q locations
(i1, ..., iq) in x to the values (wi1 , ..., wiq). Observe that when A queries x′ with coins r,
it queries locations (i1, ..., iq), sees the values (wi1 , ..., wiq), and thus rejects x′. Hence,
it cannot be that x′ ∈ S (otherwise A would have to accept x′ with probability 1). It
follows that δ(x, S) ≤ δ(x, x′) = q/n.

Note that Claim 2 also holds if we switch the roles of “accept” and “reject” in it
(i.e., if we assume that A rejects every s ∈ S with probability 1, and accepts some
w ∈ S with positive probability); we will use this fact in Section 4. Our lower bound
on tolerant testers with one-sided error follows easily from Claim 2:

Theorem 3 (tolerant testing with one-sided error). Let Πn ⊆ {0, 1}n, and let ε > 0. Assume
that there exists p ∈ Πn and z ∈ {0, 1}n such that δ(z, Πn) ≥ ε. Then, for every ε′ < ε,
every ε′-tolerant ε-tester with one-sided error for Π uses more than ε′ · n queries.

Proof. For ε′ < ε, let T be an ε′-tolerant ε-tester with one-sided error for Πn, and
denote the query complexity of T by q = q(n). Let S be the set of strings that are ε′-
close to Πn, and let w be the string z such that δ(z, Πn) ≥ ε. Note that T accepts every
s ∈ S, with probability 1, and rejects w, with positive probability. Invoking Claim 2

2



with the tester T, and with these S and w, we deduce that every x ∈ {0, 1}n is (q/n)-
close to being at distance more than ε′ from Πn (i.e., x is (q/n)-close to S). This applies
in particular to the string p ∈ Πn. However, the distance of p from any string y ∈ S is
more than ε′, because ε′ < δ(y, Πn) ≤ δ(y, p). It follows that q/n ≥ δ(p, S) > ε′.

Note that the two requirements in Theorem 3 (about the existence of p and of z)
only exclude “degenerate” cases: If either of the two requirements does not hold, then
the testing problem is trivial to begin with.

4 Previous results as corollaries of Claim 2

As mentioned in Section 1, Claim 2 is implicit in the proofs of two similar results,
which we now reproduce.

4.1 Testers for dual problems with one-sided error

Dual problems were introduced in [Tel15], and involve the testing of properties of the
form “all inputs that are far from the set” (e.g., testing the property of graphs that are
far from being connected). Specifically, a tester for the dual problem of a set Π accepts,
with high probability, every input that is far from Π, and rejects, with high probability,
every input that is far from being so; that is, it rejects every input that is far from the
set of inputs that are far from Π.

While dual testing problems turn out to be very interesting in general, solving dual
problems with one-sided error (i.e., accepting inputs that are far from Π with probability
1) requires a linear number of queries. Let us formally state and prove this.

Definition 4 (testers with one-sided error for dual problems). Let Πn ⊆ {0, 1}n, and let
ε > 0 and ε′ ≤ ε. An ε′-tester with one-sided error for the ε-dual problem of Πn is a
probabilistic algorithm T that satisfies the following conditions:

1. For every x that is ε-far from Πn it holds that Pr[Tx(1n) = 1] = 1.

2. For every x that is ε′-far from the set of strings that are ε-far from Πn, it holds that
Pr[Tx(1n) = 0] > 0.

Theorem 5 (dual problems with one-sided error; see [Tel15, Cor. 5.7]). Let Πn ⊆ {0, 1}n,
and let ε > 0. Assume that there exists p ∈ Πn and z ∈ {0, 1}n such that δ(z, Πn) ≥ 2 · ε.
Then, for every ε′ ≤ ε, every ε′-tester with one-sided error for the ε-dual problem of Π uses
more than ε · n queries.

Proof. For ε′ ≤ ε, let T be an ε′-tester with one-sided error for the ε-dual problem
of Π, and denote the query complexity of T by q = q(n). Let S be the set of strings
that are ε-far from Πn, and let w be the string p ∈ Πn. Note that T accepts every
s ∈ S, with probability 1. Also observe that p is at distance at least ε ≥ ε′ from any
z′ ∈ S (because ε ≤ δ(z′, Πn) ≤ δ(z′, p)), and thus T rejects p with positive probability.
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We can thus invoke Claim 2 with the tester T, and with S and w = p as above, and
deduce that every x ∈ {0, 1}n is (q/n)-close to being at distance less than ε from
Πn; that is, δ(x, Πn) < (q/n) + ε. However, by our hypothesis, there exists z such
that δ(z, Πn) ≥ 2 · ε. It follows that 2 · ε ≤ δ(z, Πn) < (q/n) + ε, which implies that
q(n) > ε · n.

4.2 Testers with perfect soundness

Testers with perfect soundness are testers that accept every input in Π, with positive
probability, and reject every input that is far from Π, with probability 1. It turns out
that this task also requires a linear number of queries. The proof of this result, which
we now detail, is very similar to the proof of Theorem 5.

Definition 6 (testers with perfect soundness). Let Πn ⊆ {0, 1}n, and let ε > 0. An ε-
tester with perfect soundness for Πn is a probabilistic algorithm T that satisfies the following
conditions:

1. For every x ∈ Πn it holds that Pr[Tx(1n) = 1] > 0.

2. For every x that is ε-far from Πn it holds that Pr[Tx(1n) = 0] = 1.

Theorem 7 (testing with perfect soundness; see [Tel15, Prop. 5.6]). Let Πn ⊆ {0, 1}n, and
let ε > 0. Assume that there exists p ∈ Πn and z ∈ {0, 1}n such that δ(z, Πn) ≥ 2 · ε. Then,
every ε-tester with perfect soundness for Π uses more than ε · n queries.

Proof. Let T be an ε-tester with perfect soundness for Π, and denote its query com-
plexity by q = q(n). Let S be the set of strings that are ε-far from Πn, and let w be the
string p ∈ Πn. Note that T rejects every s ∈ S, with probability 1, and accepts w, with
positive probability. Invoking Claim 2 with the tester T, and with these S and w, we
deduce that every x ∈ {0, 1}n is (q/n)-close to being at distance less than ε from Πn.
However, by our hypothesis, there exists z such that δ(z, Πn) ≥ 2 · ε, which implies (as
in the proof of Theorem 5) that q(n) > ε · n.
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