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Abstract

Suppose Alice holds a uniformly random string X ∈ {0,1}N and Bob holds a noisy version Y of
X where each bit of X is flipped independently with probability ε ∈ [0, 1

2 ]. Alice and Bob would like
to extract a common random string of min-entropy at least k. In this work, we establish the com-
munication versus success probability trade-off for this problem by giving a protocol and a matching
lower bound (under the restriction that the string to be agreed upon is determined by Alice’s input X).
Specifically, we prove that in order for Alice and Bob to agree on a common string with probability
2−γk (γk > 1), the optimal communication (up to o(k) terms, and achievable for large N) is precisely
(C(1− γ)− 2

√
C(1−C)γ)k, where C := 4ε(1− ε). In particular, the optimal communication to

achieve Ω(1) agreement probability approaches 4ε(1− ε)k.
We also consider the case when Y is the output of the binary erasure channel on X , where each

bit of Y equals the corresponding bit of X with probability 1− ε and is otherwise erased (that is,
replaced by a ‘?’). In this case, the communication required becomes (ε(1− γ)− 2

√
ε(1− ε)γ)k.

In particular, the optimal communication to achieve Ω(1) agreement probability approaches εk, and

with no communication the optimal agreement probability approaches 2−
1−
√

1−ε

1+
√

1−ε
k.

Our protocols are based on covering codes and extend the approach of (Bogdanov and Mossel,
2011) for the zero-communication case. Our lower bounds rely on hypercontractive inequalities. For
the model of bit-flips, our argument extends the approach of (Bogdanov and Mossel, 2011) by allow-
ing communication; for the erasure model, to the best of our knowledge the needed hypercontractivity
statement was not studied before, and it was established (given our application) by (Nair and Wang
2015). We also obtain information complexity lower bounds for these tasks, and together with our
protocol, they shed light on the recently popular “most informative Boolean function” conjecture of
Courtade and Kumar.

1 Introduction

Suppose Alice holds a string X = (x1,x2, . . .) of uniformly random bits and Bob holds a correlated
random string Y = (y1,y2, . . .) where the bit y j is the bit x j flipped (independently for each j) with
probability ε ∈ (0,1). Their goal is to communicate as little as possible and agree on a uniformly random
string in {0,1}k (or under a relaxed requirement, sample a common string from a distribution of min-
entropy at least k).

Besides being a natural task, this scenario also relates to the problem of extracting a unique ID
from process variations; see [BM11], which studied the communication free version of this question,
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for further discussion of this motivation. The agreement distillation problem also naturally arises in
the context of simulating communication protocols that use perfect shared randomness when the parties
only share correlated randomness, and was recently studied with this motivation in [CGMS15]. The
underlying information-theoretic question, on the maximum information a function of X can convey
about its noisy version Y , has also received widespread interest lately, following the appealing conjecture
made in [CK14] that a dictator (or canalizing) function is the most informative Boolean function (the one
maximizing I[ f (X) : Y ]).

Our work is a follow-up to [CGMS15, BM11] and is motivated by questions such as: How many bits
of communication are needed for the agreement distillation task to succeed with high probability? At the
other extreme, what is the best success probability of a strategy that involves no communication? More
precisely, what is the trade-off between communication and success probability?

Note that there are two trivial protocols: one where Alice simply sends the first k bits of X to Bob
(which achieves agreement probability of 1), and a zero-communication protocol where both players
simply output their first k bits as the common randomness (which achieves agreement probability of
(1− ε)k). The former protocol does not exploit the fact that Bob holds a string Y which is correlated
with X . How much can we leverage this to save on communication while at the same time ensuring good
agreement probability? A simple protocol based on capacity-achieving codes for the binary symmetric
channel was given in [CGMS15] with communication (h(ε)+o(1))k and high agreement probability; in
[CGMS15], an Ω(εk) lower bound based on [BM11] was also observed. This established that a factor
c(ε) savings in communication is the best one can hope for, but left a gap even in the asymptotic growth
of c(ε).

1.1 Our results

We obtain tight communication complexity upper and lower bounds for the above problem, identifying
the precise trade-off between communication and agreement probability (see Theorem 1.1 below, our
bounds are sharp up to o(k) bits). Our upper bounds are achieved by one-way communication protocols
where Alice sends a single message to Bob. Our lower bounds hold for a slightly more general model
where Alice’s output depends only on her input X , but Bob’s output may depended on his input Y and
the transcript of an arbitrary two-way interaction with Alice. Below is a statement of the bounds we get.

Theorem 1.1. Let γ ∈ [0,1], ε ∈ [0,1/2], and k > 1 be an integer. Consider the above setting where Alice
and Bob have uniformly random strings X and Y (of sufficiently large length compared to k) that differ
in each position independently with probability ε . The goal is for Alice and Bob to agree on a shared
string gA(X), which only depends on Alice’s input X. Define C := 4ε(1− ε).

• (Upper bound) There is a protocol where gA(X) is uniformly distributed in {0,1}k, and Alice sends
(C(1− γ)−2

√
C(1−C)γ)k bits to Bob, who then succeeds in guessing gA(X) with probability at

least 2−γk−O(logk).

• (Matching lower bound) Suppose there is a protocol with H∞[gA(X)] > k where Alice and Bob
exchange c bits after which Bob is able to guess gA(X) with probability 2−γk. Then

c > (C(1− γ)−2
√

C(1−C)γ)k .

In particular, this implies that for large k, to achieve agreement probability Θ(1) the optimal com-
munication approaches 4ε(1−ε)k, and with zero communication the best achievable success probability
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approaches 2−
ε

1−ε
k.1

Note that in the above setup, Bob’s input Y can be viewed as X that is distorted by a binary symmetric
channel, BSC(ε), which flips each bit independently with probability ε . Inspired by this view, one can
consider a similar problem for other discrete memoryless channels relating X and Y . We consider the
binary erasure channel, BEC(ε), where each Yj equals X j with probability 1− ε and is erased (say,
replaced by a ‘?’) with probability ε , and obtain tight upper and lower bounds for this setting as well
(basically the quantity C = 4ε(1− ε) is replaced by ε in the bounds).

Theorem 1.2. Let γ,ε ∈ [0,1] and k > 1 be an integer. For the agreement distillation problem when Y is
obtained by passing X through BEC(ε), the following hold.

• (Upper bound) There is a protocol where gA(X) is uniformly distributed in {0,1}k, and Alice sends
(ε(1− γ)−2

√
ε(1− ε)γ)k bits to Bob, who succeeds in guessing gA(X) with probability at least

2−γk−O(logk).

• (Matching lower bound) Suppose there is a protocol where H[gA(X)] > k and Alice and Bob ex-
change c bits after which Bob is able to guess gA(X) with probability 2−γk. Then c > (ε(1− γ)−
2
√

ε(1− ε)γ)k.

In particular, it can be shown that, for large k, to achieve agreement probability Θ(1) the optimal
communication approaches εk, and with zero communication the best achievable success probability

approaches 2−
(1−
√

1−ε)k
1+
√

1−ε .

We also study information complexity bounds, proving the following lower bound on the information
content needed in the protocol transcript.

Theorem 1.3. Let gA(X) take values in the set {0,1}k′ such that H[gA(X)] > k. Suppose π(X ,Y ) is
the transcript of a protocol that enables Bob to guess gA(X) with probability at least 1− δ , for some
δ ∈ [0,1]. Then we have

• H[π(X ,Y )]> 4ε(1− ε)k−δk′−h(δ ) when Y is the output of BSC(ε) on X;

• H[π(X ,Y )]> εk−δk′−h(δ ) when Y is the output of BEC(ε) on X.

[Note that some term like −δk′ in the lower bounds is unavoidable. For example, gA(X) might be 0k′

with probability 1−δ and a uniformly random string in {0,1}k′ with probability δ . If Bob produces 0k′

always, they agree with probability 1−δ .]

Since the entropy H[π(X ,Y )] lower bounds the length of the transcript, the above also implies lower
bounds on the communication complexity. However, the bounds are good only when δ → 0, whereas
Theorems 1.1 and 1.2 apply even when the success probability 1−δ is very small, and imply communi-
cation lower bounds of (4ε(1− ε)−o(1))k and (ε−o(1))k for any constant success probability.

The communication upper bounds from Theorems 1.1 and 1.2 of course imply protocols with the
same upper bounds on entropy. In particular, when the failure probability δ → 0, the optimal entropy of
the transcript of an agreement distillation protocol approaches 4ε(1−ε)k for BSC(ε) and εk for BEC(ε).

1For the problem with zero communication, lower and upper bounds in [BM11] already establish that the best probability
of success is 2−

ε

1−ε
k (see Section 1.2).
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1.2 Prior and related work

The variant of agreement distillation where the goal of the two parties is to extract a single bit without
any interaction was studied independently a number of times; see [Yan07] and references therein. It is
known that in this case the optimal protocol is for the two parties to use the first bit. The works [MO05,
MOR+06] consider the problem of extracting a common random bit in the multi-party setting where
m players receive noisy versions of a common random string; in this case for large m the majority
function is close to being optimal in terms of maximizing the agreement probability. The problem
of two parties agreeing on k random bits without any communication, when given strings X ,Y corre-
lated via BSC(ε), was considered by Bogdanov and Mossel [BM11]. They proved that no strategy can
achieve agreement probability better than 2−kε/(1−ε) and also gave a protocol with agreement probability
O((kε)−1/2 ·2−kε/(1−ε)) when k > Ω(1/ε).

All these results are for the model where no communication is allowed between Alice and Bob, and
the goal is to maximize the agreement probability. Canonne et al. [CGMS15] considered the setting
where Alice and Bob can communicate, and gave a simple scheme based on capacity-achieving codes
for agreeing on k random bits with high probability when Alice sends a single message of (h(ε)+o(1))k
bits to Bob. They also noted an Ω(εk) lower bound based on the agreement probability upper bound
for zero communication protocols from [BM11]. Zhao and Chia [ZC11] establish that to agree with
high probability on a common random variable K with Shannon entropy H[K] > k, the communication
required approaches precisely (1−ρ2(X1;Y1))k, where ρ(A;B) is the Hirschfeld-Gebelein-Rényi (HGR)
maximal correlation of the pair (A;B) of random variables. The HGR correlation for BSC(ε) (resp.
BEC(ε)) equals 1− 2ε (resp.

√
1− ε), so this implies the communication bounds of Theorems 1.1

and 1.2, albeit for the setting of ensuring high Shannon entropy and agreement probability tending to
1. The Shannon entropy of a random variable is lower bounded by its min-entropy, so a lower bound
for distilling randomness with Shannon entropy k implies the same lower bound for min-entropy (our
setting). But note that our lower bounds hold also for success probability bounded away from 1, for
which we have to rely on hypercontractivity based arguments. Indeed, the main novelty in our results is
the establishment of the precise trade-off between communication and probability of agreement.

Our work focuses only on the efficiency of shared randomness generation as a function of communi-
cation (and success probability). We allow the number of correlated samples N→∞ for any desired value
of k, the number of shared random bits to be generated (indeed in our protocols as presented, N will be
exponential in k and we did not try to optimize this trade-off). Prior work has also studied the efficiency
of common randomness generation as a function of N [AC98, ZC11], specifically understanding the “CR
capacity” C(R) wherein C(R)N bits of shared randomness can be generated (with high probability) using
RN bits of communication, for a fixed R > 0 and growing N.2

Turning to our information-theoretic results, the entropy lower bound in Theorem 1.3 for BSC(ε)
is based on the following claim. Let Xn,Y n ∈ {0,1}n be random strings with (Xi,Yi) being i.i.d. and
related via the channel BSC(ε). Then, for every function gA : {0,1}n → {0,1}k we have I[gA(Xn) :
Y n] 6 (1− 2ε)2k. This upper bound on mutual information follows from the so-called Mrs. Gerber’s
Lemma [WZ73]; such an upper bound was established using a limit argument in [CT14], and is attributed
to Erkip [Erk96] in [CK14].

The earlier mentioned conjecture from [CK14] on the most informative Boolean function asserts that
when k = 1, we have I[gA(Xn) : Y n]6 1−h(ε). If this conjecture were true for every k, then one would

2With zero communication, it is not possible to distill any common randomness with high probability, unless the joint
distribution of X1 and Y1 is decomposable, which is captured by the HGR maximal correlation ρ(X1,Y1) equaling 1 [GK72,
Rom00, MM12].
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have I[gA(Xn) : Y n]6 (1−h(ε))k when the range of gA is {0,1}k. However, our communication protocol
in Theorem 1.1 implies the existence of a function gA for which

I[gA(Xn) :Y n] =H[gA(Xn)]−H[gA(Xn) |Y n]> k−(4ε(1−ε)+o(1))k =(1−2ε)2k−o(k)> (1−h(ε))k

(for ε ∈ (0,1/2)). So for functions outputting a large number k of bits, the projection onto the first k bits is
not the most informative function. This latter result was already established in the recent work [CT14],
where a function gA(Xn) based on lossy data compression (under Hamming distortion) was shown to
achieve liminfn→∞ I[gA(Xn) : Y n]> (1−2ε)2k.

Our entropy lower bound in Theorem 1.3 for the case of BEC(ε) is based on the inequality I[gA(Xn) :
Y n]6 (1−ε)k for an arbitrary function gA : {0,1}n→{0,1}, which we establish using Shearer’s lemma.
So, for the erasure channel, outputting the first k bits indeed maximizes the information about the channel
output Y n, for every k > 1, and in particular the dictator is the most informative function when k = 1.

As an appealing conjecture bridging information theory and analysis of Boolean functions, the most
informative function conjecture of Courtade and Kumar [CK14] has generated a lot of interest. Closely
related problems were studied earlier by Erkip and Cover [EC98], and recent works addressing aspects
of the Courtade-Kumar conjecture include [AGKN13a, AGKN14, CT14, OSW15, KOW15, Sam15b,
Sam15a].

1.3 Techniques in brief

Our communication protocols are extensions of the Bogdanov-Mossel protocol [BM11]. Their zero
communication protocol for BSC(ε) was based on an “affine covering code” C ⊆ Fn

2 of size 2k, and
both Alice and Bob rounded their inputs Xn and Y n to the closest point in C (with some explicit rule
in case of ties). The probabilistic method is used to establish the existence of an affine space of Fn

2
of dimension k such that each output is generated with the same probability 2−k, and the agreement
probability is high (at least ≈ 2−εk/(1−ε)). In our scheme, we use different functions for Alice and Bob,
with Bob searching for a codeword in a larger radius. This will lead to a list of candidates on Bob’s side,
and he will use Alice’s message to pick a unique element from the list. Picking parameters carefully
leads us to the protocol with the optimal trade-off between communication and agreement probability
claimed in Theorem 1.1. The protocol for the erasure case in Theorem 1.2 works similarly, with the
analysis handling some technicalities by conditioning on the high probability event of Y having close to
εN erasures.

Turning to our lower bounds, as mentioned above, our entropy lower bounds are based on Mrs.
Gerber’s lemma for BSC(ε) and Shearer’s lemma for BEC(ε). Our communication lower bounds rely
on hypercontractive inequalities for the random variables corresponding to BSC(ε) and BEC(ε). If
(Xi,Yi) are i.i.d. copies of a correlated random variable (X ,Y ), and f : Xn→ R, such a hypercontractive
inequality upper bounds ‖E[ f (X)|Y ]‖q by the norm ‖ f‖p with p < q (see Section 4.1 for the definition of
these norms). The best possible relationship between p and q depends on amount of correlation between
X and Y . For BSC(ε), it is a classical result in the analysis of Boolean functions that one can take
p = 1+(1−2ε)2(q−1) [O’D14, Chap. 16]. The inequality for the erasure channel does not appear to
have been studied before, and we use the bound p = 1+(1− ε)(q−1), shown to be valid for 1 6 q 6 3
by Nair [NW15], prompted by our application.

The lower bound for zero-communication in [BM11] was also established using hypercontractivity.
The reduction to an hypercontractive inequality was more direct in their case, as the success probability
can be expressed as E(X ,Y )[gA(X)gB(Y )] which equals an inner product EX [gA(X)T1−2εgB(X)] for the
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Bonami-Beckner noise operator T1−2ε . When Alice is allowed to send a message to Bob, we need a bit
more care in applying the hypercontractive inequality to deduce the lower bound. Also, as mentioned
earlier, for the case of erasures, the requisite hypercontractive inequality seems to not have been studied
before.

It is natural to wonder what the situation is for more general channels besides the BSC and the
BEC. The lower bound on communication to achieve constant agreement probability, which approaches
4ε(1− ε)k and εk respectively for BSC(ε) and BEC(ε), arises from the limiting ratio p−1

q−1 as q ↓ 1. For
an arbitrary discrete channel (X ,Y )∼ p(x,y), this limit has been shown to equal

s∗(Y ;X) := sup
r(y)6=p(y)

D(r(x)||p(x))
D(r(y)||p(y))

(1.1)

where r(x) denotes the x-marginal distribution of r(x,y) = r(y)p(x|y) [AGKN13b]. Our methods imply
a communication lower bound of (1− s∗(Y ;X))k−o(k) for an arbitrary channel, though we do not know
if this is tight in general.

2 The model

Alice receives a random string X =(X1,X2, . . . ,XN) and Bob receives a (correlated) string Y =(Y1,Y2, . . . ,YN).
We will assume the length N of these strings is sufficiently large, but it will otherwise not play an im-
portant role (and will be mostly suppressed) in our arguments. Alice uses her random input string X to
produce an output in {0,1}k′ . Then, based on the inputs, Alice and Bob interact using a two-party proto-
col σ to produce a transcript σ(X ,Y ). Finally, Bob produces an output in {0,1}k′ based on his input Y
and σ(X ,Y ). Their goal is to ensure that the outputs agree and have high min-entropy.

Definition 2.1. A (k′,k,η ,R)-agreement distillation protocol for a pair of random variables R = (X ,Y )
is a triple (gA,gB,σ), where σ is a two-party protocol and gA(X),gB(Y,σ(X ,Y )) ∈ {0,1}k′ , such that

1. H∞[gA(X)]> k;

2. Pr[gA(X) = gB(Y,σ(X ,Y ))]> η .

Let Π(k′,k,η ,R) be the collection of all (k′,k,η ,R)-protocols. For π ∈Π(k′,k,η ,R), let π(X ,Y ) denote
the transcript of the underlying two-party protocol on input (X ,Y ). Let

hR(k′,k,η) = min
π∈Π(k′,k,η ,R)

H[π(X ,Y )]; (2.1)

cR(k′,k,η) = min
π∈Π(k′,k,η ,R)

max
x,y
|π(x,y)|. (2.2)

We will consider two joint distributions of R = (X ,Y ) in this work, where (Xi,Yi) are independently
generated as follows.

• Binary symmetric channel, BSC(N,ε): Xi is uniform in {0,1}, and Yi = Xi with probability (1−ε)
and Yi = 1−Xi with probability ε .

• Binary erasure channel, BEC(N,ε): Xi is uniform in {0,1}, and Yi = Xi with probability (1− ε)
and Yi =? with probability ε .
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3 The entropy bounds

In this section, we show the following, which implies the lower bounds claimed in Theorem 1.3.

Theorem 3.1. We have the following lower bounds:

hBSC(N,ε)(k′,k,η)> 4ε(1− ε)k− (1−η)k′−h(η);

hBEC(N,ε)(k′,k,η)> εk− (1−η)k′−h(η).

Both parts of the theorem will be justified using the following idea. The channel limits the mutual
information between Alice’s output and Bob’s input. Alice’s message must, therefore, make up for the
shortfall.

Claim 3.2. (a) If (X ,Y )∼ BSC(N,ε), then

I[gA(X) : Y ]6 (1−2ε)2 I[gA(X) : X ] = (1−2ε)2 H[gA(X)]. (3.1)

(b) If (X ,Y )∼ BEC(N,ε), then

I[gA(X) : Y ]6 (1− ε) I[gA(X) : X ] = (1− ε)H[gA(X)]. (3.2)

Proof of Theorem 3.1. First, we have

E[|Π(X ,Y )|]> H[Π(X ,Y )]

> I[Π(X ,Y ) : gA(X)Y ]

= I[gA(X) : Π(X ,Y )Y ]− I[Y : gA(X)]+ I[Y : Π(X ,Y )]

> H[gA(X)]−H[gA(X) |Π(X ,Y )Y ]− I[Y : gA(X)] (3.3)

> H[gA(X)]−h(η)− (1−η)k′− I[Y : gA(X)]. (3.4)

Our assumption implies that H[gA(X)]> k. We use the claim above to bound the last term on the right.

Binary symmetric channel: From (3.4) and Claim 3.2 (a), we obtain

E[|Π(X ,Y )]> (1− (1−2ε)2)H[gA(X)]−h(η)− (1−η)k′

> 4ε(1− ε)k− (1−η)k′−h(η).

Erasure channel: From (3.4) and Claim 3.2 (b), we obtain

E[|Π(X ,Y )]> (1− (1− ε))H[gA(X)]−h(η)− (1−η)k′ > εk− (1−η)k′−h(η) .

Proof of Claim 3.2. (a) Recall the following consequence of Mrs. Gerber’s Lemma due to Wyner and
Ziv [WZ73, Corollary 4]:

Suppose (X ,W ) is a pair of random variables, where X takes values in {0,1}N and
H[X |W ] = Nv. Let Z ∈ {0,1}N be sequence of N independent bits, each taking the
value 1 with probability ε; let Z be independent of (X ,W ). Let Y = X⊕Z. Then,

H[Y |W ]> Nh(ε ∗h−1(v)),

where h is the binary entropy function and ε ∗ v = ε(1− v)+(1− ε)v. Note that h(ε ∗
h−1(v))> 1− (1− v)(1−2ε)2 (see, for example, [CT14]).
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We take W = gA(X) in the above statement; then, H[X |W ] = H[X | gA(X)] = N −H[gA(X)].
So, we set v = 1−H[gA(X)]/N and conclude that H[Y | gA(X)] > N− (1−2ε)2H[gA(X)]. Thus,
I[gA(X) : Y ] = H[Y ]−H[Y | gA(X)]6 (1−2ε)2H[gA(X)].

(b) We first derive a version of Shearer’s lemma. Let sgn(Y ) be the erasure pattern of Y , that is, a
sequence in {0,1}N , where the 0s correspond to erasures.

H[Y | sgn(Y ),gA(X) = z] = E
σ

[H[Y | sgn(Y ) = σ ,gA(X) = z]]

= E
σ

[
∑

i:σi=1
H[Xi | (X j : j < i,σ j = 1),g(X) = z]

]

> E
σ

[
∑

i:σi=1
H[Xi | (X j : j < i),g(X) = z]

]

= E
σ

[
∑

i
1{σi = 1}H[Xi | (X j : j < i),g(X) = z]

]
= (1− ε)∑

i
H[Xi | (X j : j < i),g(X) = z]

= (1− ε)H[X | g(X) = z].

Taking expectations of both sides over choices of z, we obtain H[Y | sgn(Y )gA(Y )]> (1−ε)H[X |
gA(X)]. Then, we have

H[Y | gA(X)] = H[Y sgn(Y ) | gA(X)]

= H[sgn(Y )]+H[Y | sgn(Y )gA(X)]

> h(ε)N +(1− ε)H[X | gA(X)]. (3.5)

Thus,

I[gA(X) : Y ] = H[Y ]−H[Y | gA(X)]

= h(ε)N +(1− ε)N−H[Y | gA(X)]

6 (1− ε)(N−H[X | gA(X)]) (using (3.5))

= (1− ε)(H[X ]−H[X | gA(X)])

= (1− ε)I[X : gA(X)] = (1− ε)H[gA(X)].

4 The communication lower bounds

We now turn to our lower bounds on communication, formally stated below. Note that these imply the
lower bounds claimed in Theorems 1.1 and 1.2.

Theorem 4.1. Let γ,ε ∈ [0,1] and k > 1 be an integer.

cBSC(N,ε)(k′,k,2−γk)>
[
C(1− γ)−2

√
C(1−C)γ

]
k where C = 4ε(1− ε); (4.1)

cBEC(N,ε)(k′,k,2−γk)>
[
ε(1− γ)−2

√
ε(1− ε)γ

]
k . (4.2)
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The arguments for the two channels, BSC(N,ε) and BEC(N,ε), differ only in the choice of the
appropriate hypercontractive inequality. We, therefore, first present the common part of the argument.
Fix a protocol π ∈ Π(k′,k,η ,R), where R is either BSC(N,ε) or BEC(N,ε). Let T denote the set of
possible transcripts of π; let t = |T |. We will obtain a lower bound on t.

Let X ,Y denote the domains of X and Y respectively; X ,Y = {0,1}N for BSC(N,ε); X =
{0,1}N and Y = {0,1,?}N for BEC(N,ε). Recall that gA(X) and gB(Y,π(X ,Y )) take values in Z =
{0,1}k′ . For y ∈ Y and z ∈Z , let

β (z|y) := Pr[gA(X) = z | Y = y] = Pr[gA(X) = z∧Y = y]/Pr[Y = y];

let Success denote the event “gA(X) = gB(Y,π(X ,Y ))”. For y ∈ Y , let

Zy = {gB(y,τ) : τ ∈T };

then, ty := |Zy| 6 t. On input (x,y), if gA(x) 6∈ Zy, then Success is impossible. Arrange z ∈ Zy as
zy,1,zy,2, . . . so that β (zy,1|y)> β (zy,1|y)> · · ·> β (zy,ty |y); let βy,i = β (zy,i|y).

Claim 4.2. Let π ∈Π(R,k,η) be a protocol with t transcripts and let q > 1. Then,

Pr[Success]6 E
Y

[
tY

∑
i=1

βY,i

]
6

(
∑

z
E
Y
[β (z|Y )q]

)1/q

· t1−1/q. (4.3)

Proof. When Alice sends no message, Bob’s best strategy on receiving y is to output the “most likely
answer”; so, the probability of Success is at most βy1 . We now generalize this principle to the case where
Bob may base his decision on a transcript. We have

Pr[Success | Y = y]6 ∑
z̃∈Zy

Pr[Success∧gB(Y,π(X ,Y )) = z̃ | Y = y]

6 ∑
z̃∈Zy

Pr[gA(X) = z̃ | Y = y]

= ∑
z̃∈Zy

β (z̃|y)6
ty

∑
i=1

βy,i,

where the last inequality holds because 〈βy,i : i = 1,2, . . . , ty〉 are the top ty values of β (z|y). Thus,

Pr[Success]6 E
Y

[
tY

∑
i=1

βY,i

]
(4.4)

6 E
Y

( tY

∑
i=1

β
q
Y,i

)1/q

t1−1/q
Y

 (by Hölder’s inequality)

6

(
E
Y

[
tY

∑
i=1

β
q
Y,i

])1/q

· t1−1/q
Y (by Jensen’s inequality) (4.5)

6

(
∑

z
E
Y
[β (z|Y )q]

)1/q

· t1−1/q.
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4.1 Hypercontractivity

For functions α : X → R and β : Y → R, let

‖α‖p = E
X
[|α(X)|p]1/p ;

‖β‖q = E
Y
[|β (Y )|q]1/q .

For z ∈Z , let 1z be the indicator random variable 1[gA(X) = z] and βz : Y → R be defined by βz(y) =
β (z|y) = E[1x(X) | Y = y]. Then,(

E
Y
[β (z|Y )q]

)1/q

= ‖βz‖q = ‖E[1z(X) | Y ]‖q.

Using this, we may rearrange inequality (4.3) and obtain

t > Pr[Success]q/(q−1)

[
∑

z
‖E[1z(X) | Y ]‖q

q

]−1/(q−1)

. (4.6)

Now assume that we have a pair (p,q), 1 6 p < q, such that for all functions f : X → R,

E[ f (X) | Y ]‖q 6 ‖ f‖p. (4.7)

Later we will choose an appropriate pair (p,q) depending on the channel. Using (4.7) with the function
1z, we obtain

t > Pr[Success]q/(q−1)

[
∑

z
‖1z‖q

p

]−1/(q−1)

= Pr[Success]q/(q−1)

[
∑

z
Pr[gA(X) = z]q/p

]−1/(q−1)

> Pr[Success]q/(q−1)

[
∑

z
Pr[gA(X) = z]Pr[gA(X) = z](q−p)/p

]−1/(q−1)

> Pr[Success]q/(q−1)

[
2−k(q−p)/p

∑
z

Pr[gA(X) = z]

]−1/(q−1)

(since H∞[gA(X)]> k)

> Pr[Success]q/(q−1)
[
2k(q−p)/p]

]1/(q−1)
.

The above argument was general, and applicable for any channel where we can find an appropriate
pair (p,q) so that (4.7) holds. We now specialize the argument to BSC(N,ε) and BEC(N,ε).
Binary symmetric channel: In this case, we set q = 1+δ and p = 1+(1−2ε)2δ [O’D14, Chap. 16].
Then,

t > Pr[Success](1+δ )/δ ·24ε(1−ε)k/(1+(1−2ε)2δ ). (4.8)

Binary erasure channel: In this case, for q = 1+δ , we can take p = 1+(1−ε)δ [NW15], and deduce

t > Pr[Success](1+δ )/δ ·2εk/(1+(1−ε)δ ) . (4.9)
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4.2 The trade-off

Let us fix the success probability at η = 2−γk and try to choose δ above so that we obtain the best lower
bound on t from (4.8) and (4.9).

Binary symmetric channel: Plugging in Pr[Success] = 2−γk into (4.8), we conclude that

t > 2rBSC(N,ε)
γ (δ )k,

where
rBSC(N,ε)

γ (δ ) :=
C

1+(1−C)δ
− γ

δ
− γ,

and C = 4ε(1− ε). We need to choose δ so that rγ(δ ) is maximum. Setting the derivative to zero gives
us the optimum choice δ ∗γ for which

rBSC(N,ε)
γ (δ ∗γ ) =C(1− γ)−2

√
C(1−C)γ .

This justifies our lower bound (4.1) for BSC(N,ε).
Note that at γ = 0 (success probability constant), this quantity is 4ε(1− ε). As γ increases, rγ(δ

∗
γ )

decreases monotonically, and becomes 0 when γ = ε/(1−ε), at which point we may only conclude that
t > 1 (which is consistent with the results of Bogdanov and Mossel [BM11] for zero communication).

Erasure channel: The calculations are identical. We obtain

t > 2rBEC(N,ε)
γ (δ )k,

where
rBEC(N,ε)

γ (δ ) :=
ε

1+(1− ε)δ
− γ

δ
− γ.

Fixing γ , we find the optimum value δ ∗γ for δ , such that

rBEC(N,ε)
γ (δ ∗γ ) = ε(1− γ)−2

√
ε(1− ε)γ.

This justifies our lower bound (4.2) for BEC(N,ε). When γ = (1−
√

1− ε)/(1+
√

1− ε), we obtain
rBEC(N,ε)

γ (δ ∗γ ) = 0; in the next section we will show that there is indeed a zero communication protocol
of BEC(N,ε) that succeeds with probability close to 2−(1−

√
1−ε)k/(1+

√
1−ε).

5 Communication protocols

Our protocols are similar to the protocol of Bogdanov and Mossel [BM11]. We first recall their protocol.
Let Z = {0,1}k. Alice and Bob use an affine subspace of Fn

2 (where F2 = {0,1} is the field with two
elements) with 2k vectors v = (vz : z ∈ {0,1}k). We will assume that this subspace is constructed at
random, by the following process: pick k linearly independent vectors w1,w2, . . . ,wk uniformly at random
and another random vector w0 ∈ {0,1}N ; then set

vz = w0 +
k

∑
i=1

ziwi.

11



Note, in particular, that if z,z′ ∈ {0,1}k and z 6= z′, then (vz,vz′) ranges uniformly over {0,1}N×{0,1}N .

On receiving X ∈ {0,1}n, Alice’s output gA(X) will be the z ∈ Z for which vz is closest to X . To
break ties, the following rule is used. Fix a total ordering � on {0,1}N such that if the Hamming weight
of x is less than the Hamming weight of x′, then x � x′. Then, gA(x) = z for which x+ vz is the smallest
with respect to �. For this function, Bogdanov and Mossel [BM11] show the following.

Lemma 5.1. For all z ∈ {0,1}k, we have PrX [ f (X) = z] = 2−k.

In the original protocol of Bogdanov and Mossel, Bob uses the same function as Alice to produce
his output. We extend the above protocol, allowing Alice to send a short message to Bob. Fix a function
χ : Z → {0,1}ck such that |χ−1(α)| = 2(1−c)k for all α ∈ {0,1}ck. Alice’s message to Bob is then
m = χ(gA(X)). On receiving the message m, Bob’s output is z ∈ χ−1(m) for which vz agrees most with
Y (breaking ties arbitrarily).

It will be convenient to state our proofs using {+1,−1} instead of {0,1}; so we assume that the
vectors vz and the random string X take values in {+1,−1}N ⊆ RN . If the channel is BSC(ε), then we
will assume that Y ∈ {+1,−1}N ; if the channel is BEC(ε), then we will assume that Y ∈ {+1,−1,0}N ,
where 0 corresponds to erasures. Also, we will assume that ε 6= 0, for Alice and Bob have identical
strings and they can just out the first k bits.

5.1 Agreement distillation protocol for BSC(ε)

We fix γ > 0, and describe a protocol with low communication that achieves success probability 2−γk−o(k).
We will do the computation assuming that the affine space of vectors v is chosen at random. The overall
success probability then is averaged over the random choices of the affine subspace. Clearly, there is a
choice of an affine subspace where the success probability is at least this average.

Fix z ∈ Z. Note that the quantity X ·vz = ∑i X [i]vz[i] is then a sum of N independent random variables
taking values in {+1,−1}, such that E[X · vz] = 0 and var[X · vz] = N. To estimate the probabilities, we
will assume that N is large and use the normal approximation. Let

ϕ(r) =
1√
2π

exp
(
−r2

2

)
;

Φ
c(r) =

∫
∞

r
ϕ(x)dx.

Theorem 5.2 (Berry-Esseen theorem [Fel71, Sec. XVI.5, Theorem 2]). Let S = ξ1+ξ2+ · · ·+ξN , where
the ξi are independent random variables. Suppose µi = E[ξi], σ2

i = var[ξi] and τi = E[|ξi− µi|3]. Let
µ = E[S] = ∑i µi and σ2 = var[S] = ∑i σ2

i and τ = ∑i τi. Then,

|Pr[S > µ + rσ ]−Φ
c(r)|6 6τ

σ3 . (5.1)

In all our applications σ2 = Θ(N) (the constant depends on ε) and τ 6 N; thus, the right hand side
is O(1/

√
N), where the implicit constant depends only on ε and is positive if ε ∈ (0,1) is positive. In

particular, using standard estimates for Φc(r) (see, for example, [Coo09]), we conclude that for all r > 0
and all large enough N

r2

r2 +1
ϕ(r)< Pr[S > µ + rσ ]< ϕ(r) (5.2)
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Thus, for all large N, one has

ϕ(r)
(
1−O(r−2)

)
< Pr[X · vz > r

√
N]< ϕ(r) .

Note the following behavior of ϕ when its argument is scaled.

ϕ(αr) =
1

α(
√

2πr)1−α2 ϕ(r)α2
. (5.3)

Let
η = 2ε−

√
4ε(1− ε)γ.

For z ∈ {0,1}k, let

Az :=
{

x ∈ {+1,−1}n : vz · x > r
√

N
}

;

Bz :=
{

x ∈ {+1,−1}n : vz · x > (1−η)r
√

N
}
.

Fix r = Θ(
√

k), such that for all large enough N

2−(k+1) 6 µ(Az)6 2−(k+1) (1+O(1/k)) . (5.4)

Consider the following events for z ∈ {0,1}k.

E1(z) := (X ,Y ) ∈ Az×Bz;

E2(z) := ∀z′ 6= z : X 6∈ Az′ ;

E3(z) := ∀z′ 6= z(χ(z) = χ(z′)) : Y 6∈ Bz′ .

E1(z) and E2(z) ensure that Alice outputs z; E1(z) and E3(z) ensure that Bob outputs z; thus, if all three
events hold, then Alice and Bob both output the string z. Thus,

Pr[Success]> ∑
z

Pr[E1(z)]
(

1−Pr[E2(z) | E1(z)]−Pr[E3(z) | E1(z)]
)
. (5.5)

We will estimate the probabilities appearing on the right separately.
First, we have

Pr[E1(z)] = Pr[X ∈ Az] ·Pr[Y ∈ Bz | X ∈ Az]. (5.6)

For our choice of r (see (5.4)), Pr[X ∈ Az]> 2−(k+1). To compute the second factor, fix v (the affine space
of 2k vectors) and x ∈ Az; say x · vz = r′

√
N for some r′ > r. Now, Y · vz is the sum of N independent

random variables taking values in {+1,−1}, such that E[Y ·vz] = (1−2ε)r′
√

N and var[Y ·vz] = 4ε(1−
ε)N. Thus,

Pr[Y · vz > (1−η)r
√

N | X = x]> ϕ

(
(1−η)r− (1−2ε)r′√

4ε(1− ε)

)
(1−O(1/k))

> ϕ

(
(1−η)r− (1−2ε)r√

4ε(1− ε)

)
(1−O(1/k)) (since ϕ(r) is decreasing)

= ϕ

(
(2ε−η)r√

4ε(1− ε)

)
(1−O(1/k))

= ϕ (
√

γr)(1−O(1/k))

>
1

√
γ(
√

2πr)1−γ
2−γ(k+1)(1−O(1/k)). (5.7)
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Using these in (5.6), we obtain

Pr[E1(z)] = Pr[X ∈ Az] ·Pr[Y ∈ Bz | X ∈ Az]>
1

√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)(1−O(1/k)). (5.8)

Recall that if z 6= z′, then as v varies, vz and vz′ vary uniformly over all pairs of distinct vectors in
{+1,−1}N . It follows that

Pr[E2(z) | E1(z)]6 ∑
z′:z′ 6=z

Pr[0N ∈ Az′ ]

6 (2k−1) ·2−(k+1)(1+O(k−1))

6
1
2
(1+O(k−1)). (5.9)

Similarly, we have

Pr[E3(z) | E1(z)]6 ∑
z′:χ(z)=χ(z′),z′ 6=z

Pr[Y ∈ Bz′ ]

6 2(1−c)k
ϕ((1−η)r)

6 2(1−c)k 1
(1−η)(

√
2πr)η(2−η)

2−(1−η)2(k+1). (see (5.3) above) (5.10)

Thus, if c > 1− (1−η)2 =C(1− γ)−2
√

C(1−C)γ where C = 4ε(1− ε), then this quantity is at most
1
4 (say) for all large k. It follows from (5.5), (5.8), (5.9) and (5.10) that

Pr
v,X ,Y

[Success]> ∑
z

1
√

γ(
√

2πr)1−γ
2−(γ+1)(k+1)

(
1− 1

2
− 1

4

)
(1−O(k−1))

= 2−γk−O(logγk)

= 2−γk(1+o(1)).

Thus, there exists a choice of the subspace v such that Alice and Bob succeed with probability at least
2−γk(1+o(1)).

Constant probability of success: The above argument, was carried out with γ > 0 a constant, so that
it yielded agreement with probability 2−γk(1+o(1)). We may, in fact, set γ = 1/r2 = Θ(1/k) in the above
argument, and conclude that with communication ck ≈ (C(1− γ)− 2

√
C(1−C)γ)k = 4ε(1− ε)k−

Θ(
√

k), we obtain Prv,X ,Y [Success] = Ω(1).

5.2 Agreement distillation protocol for BEC(ε)

The calculations are similar to the one we used above. We fix r and Az as before. However, this time we
set η = ε−

√
ε(1− ε)γ and let

Bz :=
{

x ∈ {+1,−1}n : vz · x > (1−η)r
√

N
}
.

We define events E1(z), E2(z) and E3(z) as before, and observe that

Pr[Success]> ∑
z

Pr[E1(z)](1−Pr[E2(z) | E1(z)]−Pr[E3(z) | E1(z)]). (5.11)
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continues to hold. To estimate the first factor, we expand it as before and obtain

Pr[E1(z)] = Pr[X ∈ Az] ·Pr[Y ∈ Bz | X ∈ Az].

Pr[X ∈ Az]> 2−(k+1). As before, for each fixed x ∈ Az (such that x · vz = r′
√

N, r′ > r), we view Y · vz as
a sum of N independent random variables, each taking values in either {0,+1} or {0,−1}; in particular,
E[Y · vz] = (1− ε)r′

√
N and var[Y · vz] = ε(1− ε)N. Thus,

Pr[Y · vz > (1−η)r | X = x]> ϕ

(
(1−η)r− (1− ε)r′√

ε(1− ε)

)
(1−O(k−1))

>
1

√
γ(
√

2πr)1−γ
2−γ(k+1)(1−O(k−1)).

using calculations identical to those leading to (5.7). We finally have the following lower bound for the
first factor of (5.11).

Pr[E1(z)] = Pr[X ∈ Az] ·Pr[Y ∈ Bz | X ∈ Az]

>
1

√
γ(
√

2πr)1−γ
2−(γ+1)(k+1)(1−O(k−1)). (5.12)

Calculations that lead to
Pr[E2(z) | E1(z)]6

1
2
(1+O(k−1)) (5.13)

remain the same.

Finally, we consider E3(z). First, we observe that since N is large, we may assume that with probabil-
ity tending to 1, the number of ones in Y is (1− ε)N±N3/4 (say), even when conditioning on E1. Now,
the pair (vz,vz′) is uniformly distributed over all possible pairs of distinct vectors. So, we will fix vz, and
assume that vz′ is uniformly distributed in {+1,−1}N (that it cannot be vz can be overlooked). Fix y with
say `= (ε +N−1/4)N = ε ′N zeroes. Then, Y · vz′ is the sum of (1− ε ′)N independent random variables,
each taking values uniformly in {+1,−1}. In particular, E[Y ·vz′ ] = 0 and var[Y ·vz′ ] = (1−ε ′)N. Then,

Pr[E3(z) | E1(z)]6 ∑
z′:χ(z)=χ(z′),z′ 6=z

Pr[Y ∈ Bz′ ]

6 2(1−c)k
ϕ

(
(1−η)√

1− ε ′
r
)(

1+O(k−1)
)

6 2(1−c)k 1
(1−η)(

√
2πr)1−(1−η)2/(1−ε ′)

2−(1−η)2(k+1)/(1−ε ′)
(
1+O(k−1)

)
. (see (5.3) above)

(5.14)

Thus, if c > 1− (1−η)2/(1−ε ′) = ε(1− γ)−2
√

ε(1− ε)γ , then this quantity is at most 1
4 (say) for all

large k. It follows from (5.11), (5.12), (5.13) and (5.14) that

Pr
v,X ,Y

[Success]> ∑
z

1
√

γ(
√

2πr)1−γ
2−(γ+1)(k+1)

(
1− 1

2
− 1

4

)
(1−O(k−1))

= 2−γk−O(logγk).

We may, as before, fix a choice of v such that Alice and Bob succeed with probability at least 2−γk(1+o(1)).
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Constant probability of success: Again, we may set γ = 1/r2 = Θ(1/k) in the above argument, and
conclude that with communication εk−Θ(

√
k), we obtain Prv,X ,Y [Success] = Ω(1).

6 Open problems

Our work raises a number of intriguing open questions, such as:

• Is there a protocol for general channels whose communication, for agreeing on a k-bit random
string with constant probability, approaches s∗(Y ;X)k? Here s∗(Y ;X) is the channel parameter
defined in (1.1).

• We considered protocols where the shared random string was a function gA(X) of Alice’s input X .
What can we achieved by a general multi-round communication protocol, where the shared random
string can depend on both X and Y ? Can we do better than the lower bounds we established, or do
the lower bounds continue to hold in this (seemingly) more powerful model?

• The setup for BEC(ε) is not symmetric between Alice and Bob. What can be done if Alice and
Bob switch roles, and the shared randomness should be a function of Y ? What are the possible
trade-offs in the symmetric setup where X and Y are the independent outputs of BEC(ε) on a
common random string Z ∈ {0,1}N?
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