
On the Computational Complexity of MaxSAT

Mohamed El Halaby
Department of Mathematics

Faculty of Science

Cairo University

Giza, 12613, Egypt

halaby@sci.cu.edu.eg

Abstract

Given a Boolean formula in Conjunctive Normal Form (CNF) φ =
S ∪ H, the MaxSAT (Maximum Satisfiability) problem asks for an as-
signment that satisfies the maximum number of clauses in φ. Due to the
good performance of current MaxSAT solvers, many real-life optimization
problems such as scheduling can be solved efficiently by encoding them
into MaxSAT. In this survey, we discuss the computational complexity
of MaxSAT in detail in addition to major results on the classical and
parameterized complexities of the problem.

1 Introduction and Preliminaries

This paper surveys the computational complexity of the MaxSAT problem. It
consists of three sections and is structured as follows: The first section intro-
duces the MaxSAT problem and the world of propositional logic and satisfia-
bility. Section two discusses the computational complexity of MaxSAT from
the classical perspective. Finally, the third section discusses the parameterized
complexity of MaxSAT and its recent results.

The satisfiability problem (SAT), which is the problem of deciding if there
exists a truth assignment that satisfies a Boolean formula in conjunctive normal
form (CNF), is a core problem in theoretical computer science because of its
central position in complexity theory. Given a Boolean formula, SAT asks if
there is an assignment to the variables of the formula such that it is satisfied
(evaluates to true). SAT was the first problem proven to be NP-complete by
Cook [9]. Each instance of an NP-complete problem can be translated into an
instance of SAT in polynomial time. This makes it very important to develop
fast and efficient SAT solvers.

An important optimization of SAT is MaxSAT which asks for a truth as-
signment that satisfies the maximum number of clauses of a given CNF formula.
Many theoretical and practical problems can be encoded into SAT and MaxSAT
such as debugging [30], circuits design and scheduling of how an observation
satellite captures photos of Earth [36], course timetabling [2, 24, 23, 22], soft-
ware package upgrades [16], routing [38, 25], reasoning [31] and protein structure
alignment in bioinformatics [28].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 34 (2016)

mailto:halaby@sci.cu.edu.eg

A Boolean variable x can take one of two possible values 0 (false) or 1 (true).
A literal l is a variable x or its negation ¬x. A clause is a disjunction of literals,
i.e.,

∨n
i=1 li. A CNF formula is a conjunction of clauses [11]. Formally, a CNF

formula φ composed of k clauses, where each clause Ci is composed of mi is
defined as

F =

k∧
i=1

Ci

where

Ci =

mi∨
j=1

li,j

In this paper, a set of clauses {C1, C2, . . . , Ck} is referred to as a Boolean for-
mula. A truth assignment satisfies a Boolean formula if it satisfies every clause.

MaxSAT is a generalization of SAT. Given a CNF formula φ, the problem
asks for a truth assignment that maximizes the number of satisfied clauses in
φ. For example, if F = {(x ∨ ¬y), (¬x ∨ z), (y ∨ z), (¬z)} then I = {x = 0, y =
0, z = 0} satisfies three clauses. In fact, φ is unsatisfiable and thus the maximum
number of clauses that can be satisfied in φ is three.

Decision problems are one of the central concepts of computational com-
plexity theory. A decision problem is a special type of computational problems
whose answer is either True or False.

The next is an example of a problem from the field of graph theory. Given
a graph G = (V,E), where V is the set of vertices and E ⊆ V × V is the set
of edges, a clique is a subset C ⊆ V such that for every pair of distinct vertices
there is an edge, i.e., for all u, v ∈ C, (u, v) ∈ E.

Example 1.1 (Clique). Input: A graph G = (V,E) and a natural number k.
Decision problem: Output True if G has a clique C such that |C| = k, or False
otherwise.
Search problem: Find a clique C in G such that |C| = k if one exists, else output
∅.

The following example illustrates the difference between two versions of the
SAT problem: the decision version and the search version.

Example 1.2 (SAT). Input: A CNF formula φ.
Decision problem: Output True if φ is satisfiable, or False otherwise.
Search problem: Find an assignment that satisfies φ if one exists, else output ∅.

If the search problem can be solved, then certainly, the decision version can
be solved as well. For example, in SAT, given a CNF formula φ, if a satisfying
assignment is found, the output of the decision version is True, if no satisfying
assignment can be found, the decision version returns False. So, search is
harder, and if the search version can be solved, then we can certainly solve the
decision problem.

To prove that a problem is at least as hard as another problem, we need to
use a tool called reductions.

Definition 1.1 (Reduction). We say that a problem A reduces to another prob-
lem B if there exists a procedure R which, for every instance x of A, produces
an instance R(x) of B, such that the answer to R(x) is also the answer to x.

2

Figure 1: Reduction from A to B.

If it is possible to establish the scenario in figure 1, then it is reasonable to
say that A is at least as hard as B. However, if we do not limit the amount of
time required to compute R, this does not hold. R shall be a polynomial-time
algorithm.

Next, we define the notion of complexity classes and the relation between
these classes and reductions.

Definition 1.2 (Complexity class). A complexity class is a set of problems of
related resource-based complexity. Typically, a complexity class is defined by:
a model of computation, a resource (or collection of resources) and a function
known as the complexity bound for each resource[3].

Throughout this survey, the model of computation is the Turing machine and
the resource we are interested in is time. However, the complexity classes defined
later have different complexity bounds. Thus, a complexity class is basically a
group of related resource-based complexity. The time resource is essentially
how many steps are required to solve the problem. Another resource addressed
by computational complexity is space (i.e., how much memory is required to
solve the problem). The following are definitions of the fundamental complexity
classes in complexity theory.

Definition 1.3 (Class P). The set of decision problems solvable in polynomial
time.

An example of a P problem is checking whether a number is prime[1].

Definition 1.4 (Class NP). The set of decision problems for which an answer
can be verified in polynomial time.

It is easy to see that P ⊂ NP , since getting the answer for a P problem is
done in polynomial time.

Definition 1.5 (Class NP-complete). A decision problem A is said to be NP-
complete if it is in NP, and for every problem H in NP, there is a polynomial-
time reduction from H to A.

3

Definition 1.6 (Class NP-hard). A decision problem A is said to be NP-hard if
there is a polynomial-time reduction from an NP-complete problem A′ to A[34].
Equivalently, a problem A is NP-hard when every problem L in NP can be
reduced in polynomial time to A.

An easy way to prove that a problem is NP-complete is first to prove that
it is in NP, and then to reduce some known NP-complete problem to it. The
difference between the two classes NP-hard and NP-complete is that, for a
problem to be NP-complete, it must be in NP. However, an NP-hard problem
need not be in NP. The diagram in figure 2 illustrates the differences between
the four complexity classes.

Figure 2: Diagram for P, NP, NP-complete and NP-hard in case P6=NP.

3SAT was the first known example of an NP-complete problem[9]. This
implies that there is no algorithm that solves the problem in polynomial time.
Other examples of NP-complete problems are Clique and Knapsack. Later,
we will present a reduction from 3SAT to Max-2-SAT in order to prove the
NP-hardness of Max-2-SAT.

Definition 1.7 (Max-2-SAT). Given a 2-CNF φ = {C1, . . . , Cm} and a positive
integer k ≤ m, the Max-2-SAT problem asks whether there is a truth assignment
to the variables of φ that satisfies k or more clauses[13].

Example 1.3. The Max-2-SAT instance {(x), (y), (¬z), (w), (¬x ∨ ¬y), (¬y ∨
z), (¬x∨ z), (x∨¬w), (y∨¬w), (¬z ∨¬w)}, k = 7 has the answer True. Indeed,
the assignment {x = True, y = False, z = False, w = True} satisfies 7 clauses.

An example of an NP-hard problem is subset sum, which is given a set o
integers, checking whether or not there is a non-empty subset whose sum is
zero.

In the following section, we address the complexity of Max-2-SAT and estab-
lish that it is NP-complete. The reason for discussing Max-2-SAT is that it is the
most basic MaxSAT problem and thus what holds for Max-2-SAT will certainly
hold for more general MaxSAT formalisms. In addition, the number of occur-
rences of the each variable in the input formula contributes to the complexity
of MaxSAT and thus, we address a MaxSAT formalism called (k, s)-MaxSAT,
which is the MaxSAT problem on formulae with k variables in each clause and
each variable occurs s times.

4

Finally, section 3 addresses the parameterized complexity of MaxSAT. In
this section, we address the parameterized complexity of MaxSAT in subsection
3.1 and show that it is fixed parameter tractable. Following that, the parameter
is set above guaranteed values on the solution and the complexity of parameter-
ized MaxSAT is readdressed in subsection 3.2. In addition, if n is the number of
variables and m is the number of clauses in a formula φ, if the number of literals
in each clause is bounded above by a function r(n) in the number of variables,
the corresponding MaxSAT formalism is called Max-r(n)-SAT. The tractability
of Max-r(n)-SAT depends on r(n) and this is addressed in subsection 3.3. Fi-
nally, a recent bound introduced by Bliznets and Golovnev[5] on parameterized
MaxSAT is described in subsection 3.4.

2 Results and Discussion in Classical Complex-
ity

2.1 NP-completeness of Max-2-SAT

Even though we are concerned with WPMaxSAT, it is true that MaxSAT is
the simplest variation among all the MaxSAT formalisms mentioned. Also, the
most basic MaxSAT instances are those having at most two literals in each
clause, which are referred to as Max-2-SAT. Hence, proving that Max-2-SAT is
NP-hard implies that the other formulations are at least NP-hard. Note that
proving that a problem is NP − complete also means that it is NP -hard (see
figure 2).

Theorem 2.1. Max-2-SAT is NP-complete.

Proof. First, we will show that Max-2-SAT is in NP. This is obvious, because
checking whether an assignment satisfies a certain number of clauses or not can
be done in polynomial time.

In order to prove NP-hardness, we will reduce the 3SAT problem to Max-2-
SAT[27]. Once that is done, then we can say that Max-2-SAT is NP-complete,
since its solution leads to the solution of 3SAT, which is NP-complete. Recall
that in 3SAT, we are given a 3-CNF formula and asked to find a satisfying
assignment for it. For a 3SAT instance φ, we will convert it into a Max-2-SAT
instance R(φ), clause by clause.

Given a 3SAT formula φ with m clauses, for each clause Ci = (x∨y∨z) ∈ φ,
where x, y and z are literals, we will introduce a new variable wi (different from
all the variables in φ) for this clause. We then replace Ci by the following 10
clauses:

(x), (y), (z), (wi)

(¬x ∨ ¬y), (¬y ∨ ¬z), (¬x ∨ ¬z)
(x ∨ ¬wi), (y ∨ ¬wi), (z ∨ ¬wi)

We replace each clause in the 3SAT formula by 10 clauses in this manner,
introducing a fresh variable wi for every clause Ci. We end up with a 2-CNF
formula, R(φ), with 10m clauses. We now claim that:

1. If an assignment satisfies (x ∨ y ∨ z), then there is an assignment for wi,
that together with the assignment for x, y and z satisfies exactly 7 of the
10 clauses above.

5

2. If an assignment falsifies (x∨y∨z), then every assignment for wi, together
with the assignment for x, y and z satisfies at most 6 of the 10 clauses
above.

These claims imply that if there is a satisfying assignment for the original 3SAT
formula, then there is an assignment for the new 2-CNF formula that satisfies
at least 7m of the clauses. On the other hand, if no assignment satisfies the
3SAT formula, then at least for one of the original clauses, we will only be able
to satisfy 6 of the 10 new clauses, and therefore, the number of clauses satisfied
in the 2-CNF formula is strictly less than 7m. Therefore, we can decide whether
or not the given 3-CNF formula is satisfiable by determining whether or not it is
possible to satisfy 7m of the clauses in the 2-CNF formula. It remains to prove
the above claims, which we do by case analysis.

Case 1 x = y = z = True. Then by setting wi = True, we can satisfy the entire
first and third rows, or 7 clauses in all.

Case 2 x = y = True and z = False. Then by setting wi = True, we can satisfy
three clauses from the first row, two from the second row, and two from
the third row, or 7 clauses in all.

Case 3 x = True and y = z = False. Then by setting wi = False, we can satisfy
one clause on the first row, and the entire second and third rows, which is
again 7 clauses in all.

Case 4 x = y = z = False. Note that (x ∨ y ∨ z) is not satisfied. If we set
wi = True, this only satisfies one clause on the first row, and all clauses
on the second row; a total of 4 clauses. On the other hand if we set
wi = False, then we only satisfy all clauses on the second and third rows,
a total of 6 clauses.

Other cases are analogous to the above. So, given a 3SAT instance φ = {(x1 ∨
y1 ∨ z1), . . . , (xm ∨ ym ∨ zm)}, where xi, yi and zi(1 ≤ i ≤ m) are literals, the
corresponding Max-2-SAT instance is (R(φ), k), where

R(φ) =

m⋃
i=1

{(xi), (yi), (bi), (wi),

(¬xi ∨ ¬yi), (¬xi ∨ ¬zi), (¬yi ∨ ¬zi),

(xi ∨ ¬wi), (yi ∨ ¬wi), (zi ∨ ¬wi)}

and
k = 7m

Example 2.1. Let φ = {(x ∨ ¬y ∨ ¬z), (¬x ∨ ¬y ∨ ¬z)} be a 3SAT instance,
with m = 2 clauses. After reducing φ to Max-2-SAT, the generated clauses due
to the first clause are

(x), (¬y), (¬z), (w1)

(¬x ∨ y), (y ∨ z), (¬x ∨ z)

(x ∨ ¬w1), (¬y ∨ ¬w1), (¬z ∨ ¬w1)

6

and those due to the second clause are

(¬x), (¬y), (¬z), (w2)

(x ∨ y), (y ∨ z), (x ∨ z)

(¬x ∨ ¬w2), (¬y ∨ ¬w2), (¬z ∨ ¬w2)

Thus, R(φ) = {(x), (¬y), (¬z), (w1), (¬x ∨ y), (y ∨ z), (¬x ∨ z), (x ∨ ¬w1), (¬y ∨
¬w1), (¬z∨¬w1), (¬x), (¬y), (¬z), (w2), (x∨y), (y∨z), (x∨z), (¬x∨¬w2), (¬y∨
¬w2), (¬z ∨ ¬w2)}. Running a MaxSAT solver on R(φ) gives the solution A =
{x = True, y = False, z = False, w1 = True,w2 = False}, which satisfies
exactly 7 clauses from the first group and 7 clauses from the second group,
14 = 7(2) = 7m in total. Thus, we can conclude that φ is satisfiable.

2.2 (k, s)-MaxSAT

Definition 2.1 ((k, s)-formula). A CNF formula is called (k, s) if every clause
has exactly k variables and every variable appears in at most s clauses.

Definition 2.2 ((≤ k, s)-formula). A CNF formula is called (≤ k, s) if every
clause has at most k variables and every variable appears in at most s clauses.

Definition 2.3 ((k, s)-MaxSAT). (k, s)-MaxSAT ((≤ k, s)-MaxSAT) is the
MaxSAT problem where the input formula is (k, s) ((≤ k, s)).

An important question is what is the minimum s for which (2, s)-MaxSAT is
NP-complete. In[29] Raman, Ravikumar and Rao showed that (≤ 2, 3)-MaxSAT
is NP-complete by first proving that (≤ 2, 4)-MaxSAT is NP-complete then
forming a reduction from (≤ 2, 4)-MaxSAT to (≤ 2, 3)-MaxSAT.

Jaumard and Simeone[17] proved the first result (lemma 2.1) needed to prove
the NP-completeness of (≤ 2, 3)-MaxSAT.

Definition 2.4 (Vertex cover). Given a graph G = (v,E), a vertex cover is a
subset V ′ of V such that for all edges (u, v) ∈ E we have u ∈ V ′, v ∈ V ′ or
both. The subset V ′ is said to cover all the edges of G. Given a graph G and an
positive integer k, the vertex cover problem asks whether or not G has a vertex
cover of size at most k.

Vertex cover is a classical NP-complete problem. Its NP-completeness can
be proven by a reduction from 3SAT or from clique[18]. Figure 3 shows an
example of a vertex cover.

Lemma 2.1. (≤ 2, 4)-MaxSAT is NP-complete.

Proof. The reduction is from vertex cover. It is clear that the problem is in NP.
Given a cubic1 graph G = (V,E) such that |E| = m and |V | = n, the MaxSAT
instance R(G) is constructed in the following steps:

1. For each vertex vi ∈ V , introduce a Boolean variable xi.

2. Add the unit clause (xi) to R(G).

1A cubic graph is a graph where the number of edges incident to each vertex is three.
Vertex cover is also NP-compete for cubic graphs[14].

7

Figure 3: The vertices of the vertex cover are coloured black.

3. For each edge (vi, vj) ∈ E, add the clause (¬xi ∨ ¬xj) to R(G).

Now, R(G) = {(x1), . . . , (xn)} ∪ {(¬xi ∨ ¬xj) | (vi, vj) ∈ E}, having n + m
clauses with each clause having at most two literals. A variable xi can appear
in the clauses (xi), (¬xi∨¬xi1), (¬xi∨¬xi2) and (¬xi∨¬xi3), which corresponds
to a vertex appearing in three edges (vi, vi1), (vi, vi2) and (vi, vi3), where vi1 , vi2
and vi3 are vertices in V . So, each variable appears at most four times in R(G),
which means R(G) is a (≤ 2, 4)-formula.

It remains to show that if G has a vertex cover of size at most k, then at
least n+m− k clauses in R(G) can be satisfied. And, conversely, if there is an
assignment for the variables of R(G) that satisfies at least n + m − k clauses,
then G has a vertex cover of size at most k.

If G has a vertex cover of size at most k, then assigning the variables cor-
responding to the vertices of the vertex cover the value False would satisfy at
most k clauses in R(G). This is because if a vertex vi is in the vertex cover,
then after setting xi to False, all the clauses corresponding to edges in which
vi participates are satisfied.

Suppose R(G) has an assignment that satisfies at least n + m − k clauses.
Without loss of generality, we can assume that the falsified clauses are the clauses
corresponding to the vertices. To see this, consider an edge {vi, vj} ∈ E, where
both xi and xj are True. This means the clause (¬xi ∨ xj) is falsified. We can
set one of xi and xj to False in order to satisfy (¬xi ∨ ¬xj) and falsify either
(xi) or (xj), thus keeping at least n+m−k clause satisfied. It is now clear that
the vertices corresponding to the variables assigned False construct a vertex
cover of size at most k.

Next, the previous lemma is used to prove (≤ 2, 3)-MaxSAT is NP-complete.
The following notations are used in the proof. Given a formula φ

1. V ar(φ) denote the set of variables appearing in φ.

2. For a variable x ∈ V ar(φ), d(x) denotes the number of clauses in which x
appears.

3. The number of variables x for which d(x) is 4 is denoted by b.

Theorem 2.2. (≤ 2, 3)-MaxSAT is NP-complete.

8

Proof. This can be shown via a reduction from (≤ 2, 4)-MaxSAT. Given a (≤
2, 4) formula φ, construct a formula R(φ) by doing the following steps for each
x ∈ V ar(φ) with d(x) = 4:

1. Replace the ith occurrence of x with a new variable xi, (1 ≤ i ≤ 4).

2. Add the following set of 16 clauses

{(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x4 ∨ y4),

(¬x1 ∨ ¬y7), (¬x2 ∨ ¬y8), (¬x3 ∨ ¬y5), (¬x4 ∨ ¬y6),

(¬y1 ∨ y5), (¬y2 ∨ y6), (¬y3 ∨ y7), (¬y4 ∨ y8),

(¬y1 ∨ y5), (¬y2 ∨ y6), (¬y3 ∨ y7), (¬y4 ∨ y8),

(¬y1 ∨ y2), (¬y3 ∨ y4), (y5 ∨ ¬y6), (y7 ∨ ¬y8)}

where y1, . . . , y8 are new variables. Let X be the accumulated set of 16b
clauses added for all such variables x.

After performing the previous two steps, each x ∈ V ar(R(φ)) appears at most
three times. That is, each xi, (1 ≤ i ≤ 4) appears once as a replacement for
some occurrence of the variable x and twice in X. Each variable yi, (1 ≤ i ≤ 8)
occurs three times in X. To complete the reduction, we will show that: there
is an assignment that satisfies at least k clauses of φ if and only if there is an
assignment that satisfies at least k + 16b clauses of R(φ).

Assume φ has an assignment that satisfies at least k clauses. We can satisfy
k + 16b clauses in R(φ) by

1. Setting the truth values of xi, (1 ≤ i ≤ 4) to that of x, for every x with
d(x) = 4.

2. Setting each yi, (1 ≤ i ≤ 8) to False if xi is True, or to True if xi is
False.

The first step satisfies k clauses and the second satisfies the 16b clauses of X.
In total, k + 16b clauses are satisfied.

Conversely, assume R(φ) has an assignment that satisfies at least k + 16b
clauses. First, We will show how to modify this assignment such that it satisfies
all the 16b clauses of X while still satisfying at least k + 16b clauses. Next, we
will show that the only assignments that satisfy all the clauses of X are the
ones in which the values for the xi variables and the value of x are the same
(i.e., either all are True or all are False), and from that we can construct an
assignment for φ.

Consider xi, (1 ≤ i ≤ 4) variables in the 16 clauses above. There are three
cases regarding their truth values:

1. All xi, (1 ≤ i ≤ 4) are True or all are False. In this case all the 16 clauses
are satisfiable.

2. Exactly one the xi variables is False or exactly one is True. In this case,
15 clauses are satisfiable. To see this, let (without loss of generality)

9

• x1 = True and x2 = x3 = x4 = False. After plugging in these
values, we are left with the following unsatisfiable set of clauses:

{(y2), (y3), (y4),

(¬y7),

(¬y1 ∨ y5), (¬y2 ∨ y6), (¬y3 ∨ y7), (¬y4 ∨ y8),

(¬y1 ∨ y2), (¬y3 ∨ y4), (y5 ∨ ¬y6), (y7 ∨ ¬y8)}

At most, we can satisfy all except one of them, thus satisfying 15
clauses in total. Setting yi, (1 ≤ i ≤ 8) to True satisfies all the 16
clauses except (¬x1 ∨ ¬y7).

• x1 = False and x2 = x3 = x4 = True. After plugging in these
values, we are left with the following unsatisfiable set of clauses:

{(y1),

(¬y8), (¬y5), (¬y6),

(¬y1 ∨ y5), (¬y2 ∨ y6), (¬y3 ∨ y7), (¬y4 ∨ y8),

(¬y1 ∨ y2), (¬y3 ∨ y4), (y5 ∨ ¬y6), (y7 ∨ ¬y8)}

At most we can satisfy 15 clauses in total. Setting yi, (1 ≤ i ≤ 8) to
False satisfies all the 16 clauses except (x1 ∨ ¬y1).

Thus, 15 clauses at most can be satisfied in both cases.

3. Exactly two of the xi variables are True. In this case, at most 14 clauses
are satisfiable. We have two subcases:

• x1 = x2 = True and x3 = x4 = False. This assignment falsi-
fies a subset of three clauses2 (independently) in X, such as {(x3 ∨
y3), (¬y3 ∨ y7), (¬y7 ∨ ¬x1)} or {(x4 ∨ y4), (¬y4 ∨ y8), (¬y8 ∨ ¬x2).
However, setting every yi, (1 ≤ i ≤ 8) to False leads to only two un-
satisfied clauses in X instead of three, namely (x3∨y3) and (x4∨y4).
The same argument works if x1 = x2 = False and x3 = x4 = True.

• x1 = x3 = True and x2 = x4 = False. This assignment falsifies a
subset of four clauses (independently) in X, such as {(x2∨y2), (¬y2∨
y6), (¬y6∨y5), (¬y5∨¬x3)} or {(x4∨y4), (¬y4∨y8), (¬y8∨y7), (¬y7∨
¬x1)}. However, setting every yi, (1 ≤ i ≤ 8) to True satisfies all
the clauses of X, except (¬x1 ∨ y7) and (¬x3 ∨ y5). The case where
x1 = x2 = True and x3 = x4 = False is symmetric.

Hence, the only two assignments that satisfy every clause in X are the ones
where all the values of xi, (1 ≤ i ≤ 4) are the same (i.e., all are True or or all
are False).

Starting with an assignment for R(φ) that satisfies at least k + 16b clauses,
in order to obtain an assignment that satisfies all the l6b new clauses and still
satisfy k + 16b clauses in total, do the following for each set X of the 16 new
clauses.

2Not all the clauses can be falsified together.

10

1. If the values of xi, (1 ≤ i ≤ 4) are all the same (the first case) then we are
done.

2. If exactly one of the xi, (1 ≤ i ≤ 4) variables is either True or False (the
second case), then by flipping the value of that variable (either from True
to False or from False to True) we will satisfy one extra clause and we
may falsify at most one original clause, in particular the clause containing
that variable.

3. If exactly two of the xi, (1 ≤ i ≤ 4) variables are True (the third case),
then we flip the values of these two variables (from True to False) to
satisfy two extra clauses in X and falsify at most two original clauses, in
particular the two clauses containing these two variables.

Next, we will use the fact that (≤ 2, 3)-MaxSAT is NP-complete to show
that (2, 3)-MaxSAT is also NP-complete.

Theorem 2.3. (2,3)-MaxSAT is NP-complete.

Proof. The reduction is from (≤ 2, 3)-MaxSAT. Given a (≤ 2, 3)-MaxSAT for-
mula φ with m clauses, replace each unit clause (xi) with the two clauses (xi∨yi)
and (xi ∨¬yi), where yi is a new variable. By doing so, we have changed φ into
a new instance R(φ) where each clause has exactly two literals.

If the number of unit clauses in φ is u, then |R(φ)| = m + u clauses. An
assignment that satisfies at least k clauses in φ clearly satisfies at least k + u
clauses in R(φ). Also, if R(φ) has an assignment that satisfies at least k + u
clauses, then the same assignment satisfies at least k clauses in φ by ignoring
the values for the yi, (1 ≤ i ≤ u) variables.

However, the variables appearing in the unit clauses may appear four times
after this transformation, and thus R(φ) becomes a (2, 4)-formula. Fortunately,
we can use the reduction presented in theorem 2.2 to convert R(φ) into an
equivalent (2, 3)-formula.

Given an (≤ n, 2)-MaxSAT formula, algorithm 1 solves the problem in O(n),
where n is the number of variables in the input formula.

11

Algorithm 1: MaxSAT(φ) Solves the (≤ n, 2)-MaxSAT problem φ

Input: An (≤ n, 2)-MaxSAT instance φ = U ∪N having m clauses over n variables, where
U is the set of unit clauses and N is the set of non-unit clauses

Output: An assignment that satisfies the maximum number of clauses in φ
1 foreach variable v of φ do
2 if v appears either only positively or only negatively then
3 set the value of v appropriately
4 remove the clauses in which v appears (from U and/or N)

// At this point, the variables that are left unset appear twice, where one of the
occurences is positive and the other is negative

5 while U 6= ∅ do
6 choose a variable v that appears in a unit clause UC
7 set v in such a way to satisfy UC
8 U ← U \ UC
9 if v occurs in another clause C then

// v appears in C in its complementary case
10 if C ∈ U then
11 U ← U \ C
12 else

// C is in N
13 remove v from C
14 if C becomes a unit clause then
15 U ← U ∪ C
16 N ← N \ C

17 if N 6= ∅ then
18 choose a clause C ∈ N
19 choose a literal y in C
20 set y to True
21 N ← N \ C
22 if y occurs in another clause C′ then
23 remove y from C′

24 if C′ becomes a unit clause then
25 U ← U ∪ C
26 N ← N \ C

27 MaxSAT(φ) // Recurse on φ after the previous changes

28 if there exists a variable v that is unset then
29 set v arbitrarily

The algorithm starts by looping over the variables of φ to identify those
which occur only positively or only negatively. After identifying such variables,
there values are set in such a way to satisfy the clauses in which they appear.
Next, the satisfied clauses are removed from the formula (lines 1-4).

In each step of the while loop (lines 5-16) a unit clause is removed from
U after satisfying it by setting its literal to True (lines 6-8). If the variable
appearing in the removed unit clause occurs negatively in another clause C,
then C is removed if it is a unit clause (lines 9-11). Otherwise, the negative
occurrence of the variable is removed from C (line 13). Now, if C becomes a
unit clause, then it is added to U , then it is removed from N (line 14-18). The
loop continues until all the unit clauses have been removed.

After the while loop ends, if N still contains any clauses (line 17), then one is
picked (line 18) and one of its literals is chosen and set to True (line 20) in order
to satisfy the entire clause. Next, if the chosen literal occurs in another clause,
then it is removed from that clause (lines 22-23). If the clause now becomes
unit, it is added to U then removed from N (lines 24-26). Finally, a recursive
call to the algorithm is made on the reduced formula (line 27).

The correctness of algorithm 1 is clear since a unit clause can be satisfied by

12

satisfying their literals. If there are no unit clauses, then any variable in one of
the clauses in the formula can be set to satisfy the clause. In[32], Tovey showed
that a CNF formula is always satisfiable if every clause contains more than one
variable, and every variable appears once positively and once negatively. After
algorithm 1 satisfies all the unit clauses, we are left with a formula satisfying
the two previous properties.

The loop in lines 1-4 takes time linear in the number of variables n. This is
because in one pass over φ, by keeping appropriate counters, we can identity unit
clauses and those variables that appear either only positively or only negatively.
Also, setting the value of a variable and removing the clauses in which it appears
take constant time.

In lines 5-16, each step of the while loop removes at least one clause from
φ and the loop terminates when no unit clauses remain. The assignment state-
ments, setting the values of variables and adding or removing a clause from a
set all take constant time in each step.

Consequently, the entire algorithm takes O(|φ|) time and since each variable
appears at most twice, then |φ| ≤ 2n. So, the running time is O(n).

The next theorem is a direct result from algorithm 1.

Theorem 2.4. The (≤ n, 2)-MaxSAT problem is in class P .

Proof. Given a (≤ n, 2)-MaxSAT formula, algorithm 1 can solve the instance in
polynomial time.

3 Results and Discussion in Parametrized com-
plexity

The aim of standard computational complexity is to classify problems by the
amount of resources needed to solve them. The fundamental idea of measuring
the required amount of the resource as a function of the input size has led to a
variety of complexity classes, such as the ones discussed previously.

However, leaning on developing a sense of intractability towards a particular
problem just by calculating its complexity only in terms of its input size means
ignoring any structure about the instance. This method can make some prob-
lem seem harder than they really are. The theory of parametrized complexity
attempts to overcome this issue of overestimating the difficulty by measuring
the complexity not only by the size of the input, but also in terms of a numerical
parameter that depends on the input in some way.

The main idea in parametrized complexity is that it loosens the concept
of tractability (i.e., polynomial-time solvability) by accepting algorithms whose
running times are non-polynomial (usually exponential) in the parameter only,
this is called fixed-parameter tractability (FPT). For example, the vertex cover
problem has an algorithm whose running time is O(kn + 1.2738k)[8], where k
(the parameter) is the size of the vertex cover and n is the number of vertices in
the graph. Notice that the running time in this example is linear in the number
of vertices but exponential in the parameter. In other words, the algorithm gets
exponentially slower as the size of the vertex cover (the solution) gets bigger.

Definition 3.1 (Parametrized problem). A parametrized problem Π is a col-
lection of (input, parameter) pairs, where input is an instance and parameter

13

is a natural number.

Example 3.1. In the following examples of parametrized problems, G = (V,E)
is a graph and φ is a CNF formula.

• k−Vertex cover: {(G, k) | there is a vertex cover in G of size k}.

• k−Clique: {(G, k) | there is a clique in G of size k}.

• SAT-VAR: {(φ, k) | φ is satisfiable and has k variables}.

• SAT-LEN: {(φ, k) | φ is satisfiable and |φ| ≤ k}.

• SAT-TRUE: {(φ, k) | φ is satisfiable with k variables set to True}. It is
not known whether this problem is in FPT.

Definition 3.2 (Class FPT). A parameterized problem Π is said to be fixed-
parameter tractable (or belongs to the class FPT) if there is an O(naf(k)) time
algorithm that solves each instance (I, k) of Π, where n is the size of I, a is
a constant independent of k and f is an arbitrary (computable, but could be
exponential) function of k.

The parametrized version of MaxSAT that we are concerned with in this
section is: given a CNF formula φ and a parameter k, is there an assignment
that satisfies at least k clauses in φ. In[6], Cai and Chen showed that Max-c-
SAT3 is FPT.

3.1 Parameterized MaxSAT is FPT

This subsection is concerned with proving that parameterized MaxSAT is FPT.
Theorem 3.1 proves this result using lemmas 3.1 and 3.2.

Lemma 3.1. Given a CNF formula φ having m clauses, there exists an assign-
ment satisfying at least dm2 e clauses.

Proof. Choose any assignment A for φ. If A satisfies dm2 e or more, then we are
done. If not, then the bitwise complement assignment Ā of A satisfies every
clause falsified by A and falsifies every clause satisfied by A. Thus, Ā satisfies
at least dm2 e clauses.

Lemma 3.2. If there are k clauses in a given CNF formula φ such that each
of these k clauses have at least k literals, then in O(|φ|) time we can find an
assignment that satisfies all these k clauses.

Proof. Let φk = {C1, . . . , Ck} be a set of k clauses, each having at least k
literals. To find an assignment that satisfies φk, do the following: at step i, set
the first unassigned literal in clause Ci to True and . We are guaranteed to find
an unassigned literal at step i, since there are i− 1 variables have already been
assigned in previous i − 1 steps. thus, in a single loop over φ, clauses with k
or more literals can be identified and satisfied. Hence, the assignment can be
found in O(|φ|) time.

3Given a CNF formula φ such that each clause in φ has up to c literals, and a parameter
k, find an assignment that satisfies at least k clauses in φ.

14

Algorithm 2 solves the MaxSAT parametrized problem.

Algorithm 2: FPT-MaxSAT(φ, k)

Input: An CNF formula φ with m clauses and a parameter k
Output: True, if there is an assignment that satisfies at least k clauses of φ, False

otherwise

Step 1 If k > m, then output False and terminate.

Step 2 If k ≤ dm
2
e, then output True and terminate.

Step 3 Let φL be the {C | C ∈ φ and C has k or more literals} and φS ← φ \ φL. Now,
φ = φL ∪ φS . If |φL| ≥ k, then output True and terminate.

Step 4 Construct a binary tree T , where each node is a pair (f, j) such that f is a formula
and j is a non-negative integer. Build T in the following way:

1. Let the pair (φS , k − |φL|) be the root of T .

2. For any node (f, j)

(a) If j > |f |, then make (f, j) a leaf node with the label No.

(b) If j = 0, then make (f, j) a leaf node with the label Y es.

(c) For a variable v appearing in f , let vT (vF) be the number of clauses in f
that contains the literal v (¬v). If for each variable u appearing in f , we
have uT = 0 or uF = 0, then (f, j) is a leaf node labeled Y es.

(d) Otherwise, among all the variables v with vT > 0 and vF > 0, choose a
variable x that appears the maximum number of times (i.e., vT + vF is
maximum).
If v occurs twice in f (i.e., vT + vF = 2), then f is an (≤ n, 2)-formula and
we can obtain the maximum number of clauses N that can be satisfied in f
by running algorithm 1 (with a slight modification to compute N). If
N ≥ j, then (f, j) is a leaf node labeled Y es, otherwise (f, j) is a leaf node
labeled No.
If vT + vF > 2, then expand (f, j) to have (fT , j − vT) and (fF , j − vF) as
its left and right child respectively, where fv (F¬v) is the formula where
the literal v (¬v) is assigned True.

3. At any step of T ’s construction, if a leaf node is labeled Y es, then output True
and terminate.

Step 5 Output No and terminate.

We will now show that the algorithm is correct. The first step is a simple
case. The second step follows from lemma 3.1. The third step follows from
lemma 3.2. The fourth step attempts to satisfy k − |φL| clauses by assigning
one variable the value True in each satisfied clause. At most k − |φL| variables
are assigned in this process, and some clauses in φL may become satisfied as well.
So, φL has at most |φL| clauses left, each of length at least k− (k−|φL|) = |φL|.
Lemma 3.2 can be applied to satisfy the remaining clauses in φL, which makes
the total number of satisfied clauses (k − |φL|) + |φL| = k as required.

Each node in the tree T has a Y es/No label. For a node (f, j), the label
represents whether we can satisfy j clauses in f or not, if so, then it is labeled
Y es, otherwise it is labeled No. If it is not yet known whether it is possible
to satisfy j clauses, then (f, j) is not given a label, and the algorithm attempts
to assign the variables of f . The idea is that if j clauses can be satisfied in f ,
then the partial assignment constructed along some path from (f, j) to a leaf
node labeled Y es indeed does the job. If all the paths from (f, j) lead to leaf

15

nodes labeled No, then the fifth step is executed and all the leaves of the subtree
rooted at (f, j) are labeled No.

The first three steps can clearly be carried out in linear time. In the fourth
step, the processing time required to expand a node (f, j) or to figure out if it
is a leaf is O(|f |). If (f, j) is an internal node, then its two children are have
integers strictly less than j and formulae of sizes less than |f |. Furthermore,
since v occurs more than twice (since (f, j) is an internal node), then vT+vF ≥ 3,
and so at least one of vT and vF is greater than or equal to 2. Thus, at least one
child node has an integer strictly less than j − 1. Hence, the size of T satisfies
the Fibonacci recurrence F (j) ≤ 1 +F (j−1) +F (j−2), which has the solution

F (j) ≤ ϕj , where ϕ = 1+
√

5
2 = 1.6180339 . . . is the golden ratio. Since the root

node of T has the integer k− |φL|, the number of nodes in T is bounded by the
solution to F (j) at k − |φL|, which is ϕk−|φL|.

So, T can be constructed in O(|φS |ϕk−|φL|) time. To obtain an upper bound
for the running time of the algorithm, we need to bound |φS | from above. Since
the fourth step (the construction of the binary tree) is only executed if m < 2k
(since k > dm2 e) and the root of the tree has integer k− |φL|, then |φS | < cm <
2ck, assuming φ is a c-SAT formula4. Thus, the entire algorithm has a running
time of O(|φ|+ ckϕk).

Theorem 3.1. Given a CNF formula φ and a non-negative integer k, algorithm
2 can find an assignment that satisfies at least k clauses in φ in O(|φ| + k22k)
time.

3.2 Parameterizing MaxSAT above guaranteed values

Parameterizations above guaranteed values is Parameterizations setting the pa-
rameter k to be a quantity above a lower bound or below an upper bound. For
example, given a CNF formula with m clauses, a possible lower bound on the
number of satisfied clauses is dm2 e. It is an interesting question to find out how
difficult it is to satisfy a number of clauses that is beyond the lower bound.
Theorem 3.2 shows that MaxSAT problem of determining if we can satisfy at
least em2 e+ k clauses is FPT. This result is proved using lemmas 3.3 and 3.1.

Lemma 3.3. If each variable in a given CNF formula φ is set to True or False
uniformly and independently, then the probability of satisfying a unit clause in
φ is 1

2 and the probability of satisfying a non unit clause in φ is at least 3
4 .

Proof. A unit clause has either the form (x) or (¬x), where x is a variable.
Since x is set uniformly and independently, then the probability a unit cluase
is satisfied is 1

2 . The shortest non-unit clause has the form C = (l1 ∨ l2), where
l1 and l2 are literals and both can either be a variable or the negation of a
variable. It is easy to see that among all the four possible assignments for C,
there is only one assignment that falsifies C, which is the one where both l1
and l2 are falsified. Thus, the probability that a non-unit clause is satisfied is
at least 3

4 .

Corollary 3.1. Given a CNF formula φ with m clauses, of which p are non-
unit, an assignment exists that satisfies at least dm2 e+ p

4 − 1 clauses, and it can
be obtained in O(|φ|) time.

4If every clause in a CNF formula has up to c clauses, then it is called a c-SAT formula.

16

Proof. If we set each variable in φ to True or False uniformly and indepen-
dently, from lemma 3.3, the expected number of satisfied unit clauses and non-
unit clauses by this random assignment is m−p

2 and 3p
4 respectively. So, in total

we have at least m−p
2 + 3p

4 = m
2 + p

4 clauses expcted to be satisfied. Thus, there
is an assignment that satisfies at least dm2 + p

4e ≥ d
m
2 e+ p

4 − 1 clauses.

Theorem 3.2. Given a CNF formula φ with m clauses and a non-negative
integer k, we can find an assignment that satisfies at least dm2 e+ k clauses in φ
or find out that such an assignment does not exist in O(|φ|+ k22k) time.

Proof. Algorithm 3 accomplishes this task. If the number of unit clauses is
zero, then all the clauses are unit and the algorithm identifies the variables with
more positive occurrences and assigns them True (lines 3-4) and assigns the
remaining variables False (lines 3-5). If the number of non-unit clauses exceeds
4k+4, then lemma 3.1 can be applied to obtain an assignment that satisfies the
required number of clauses, since dm2 e + 4k+4

4 − 1 = dm2 e + k (lines 6-7). Each
iteration of the while loop (lines 9-11) identifies two clauses of the form (x) and
(¬x), then removes them from U . At the end of the while loop, if |U | ≥ dm2 e+k,
then the required number of clauses that needs to be satisfied can be reached
since all the clauses left in U can be satisfied. Otherwise, algorithm 2 is called
with the input φ (the reduced version) and k.

It is easy to see that the running time of the statements in lines 2-9 is O(|φ|).
The final step calls algorithm 2 when |U | ≤ dm2 e+ k − 1 and |N | ≤ 4k + 4− 1.
So, we have m = |U |+ |N | ≤ dm2 e+ k − 1 + 4k + 3. Thus, m ≤ dm2 e+ 5k + 2,
and hence the number of clauses required to be satisfied (dm2 e+ k) is bounded
by 6k + 3. The running time is O(|φ| + k2ϕ6k), which follows from the time
analysis of algorithm 2.

In 2011, Gutin et. al [15] proved a similar result. They showed that if for
any three clauses in a CNF formula φ there is an assignment that satisfies all of
them (also known as 3-satisfiability), then the following parameterized MaxSAT
problem is in FPT: determine whether there is an assignment that satisfies at
least 2m

3 + k clauses in φ, where m = |φ| and k is the parameter. In order to
prove this result, they used an earlier theorem[20] that states that we can satisfy
at least 2

3 of the clauses of every 3-satisfiable formula.

17

Algorithm 3: FPT-MaxSAT(φ, k)

Input: An CNF formula φ with m clauses and a parameter k
Output: True, if there is an assignment that satisfies at least S = dm

2
e+ k

clauses of φ, otherwise False
1 T ← 0
2 let U be the set of unit clauses and N be the set of non-unit clauses

// Now, we have φ = U ∪N
3 if N = ∅ then
4 assign those variables with more positive occurrences the value True, and

assign the remaining variables the value False
5 increment T whenever a clause is satisfied
6 if T ≥ k then
7 return True

8 else if |N | ≥ 4k + 4 then
9 return True

10 else
11 while U contains unit clauses (x) and (¬x) do
12 U ← U \ {(x), (¬x)}
13 T ← T + 1

14 if |U | ≥ dm
2
e+ k then

15 return True

16 return FPT-MaxSAT(φ,T)

3.3 Parameterized complexity of Max-r(n)-SAT

Now, we will discuss a special case of parameterized MaxSAT, called Max-r(n)-
SAT, which is not in FPT.

Before defining the Max-r(n)-SAT problem, first note that a if each clause
in a CNF formula φ with |φ| = m has ri, (1 ≤ i ≤ m) literals, then the expected
number of clauses satisfied in φ by a random assignment (each variable is set
to either True or False uniformly and independently) is asat(φ) = (1− 1

2r1
) +

· · · + (1 − 1
2rm) =

∑m
i=1(1 − 1

2ri
). This follows from the fact that the the only

assignment (among all the possible 2ri assignments) that falsifies a clause with
ri literals is that which falsifies all the ri literals.

Definition 3.3 (Max-r(n)-SAT). Given a CNF formula φ with m clauses over
n variables such that each clause has at most r(n) literals, and a parameter
k, the Max-r(n)-SAT problem asks whether or not there is an assignment that
satisfies at least asat(φ) + k clauses.

Unlike c-SAT instances where each clause has at most c literals, for a fixed
constant c, the number of literals in each clause of a Max-r(n)-SAT formula is
a function in the number of variables. This change takes MaxSAT out of the
FPT class and into a more difficult class called para-NP-complete (see theorem
3.3).

Definition 3.4 (para-NP). A parameterized problem Π is in the class para-NP
if a pair (I, k) can be decided whether or not it is in Π in O(naf(k)) time, where
n = |I|, f is a function of k only and a is a constant independent from k.

18

Definition 3.5 (FPT reduction). Given two parameterized problems Π1 and
Π2, an FPT-reduction R from Π1 to Π2 is a many-to-one transformation from
Π1 to Π2, such that

1. (I1, k1) ∈ Π1 if and only if R((I2, k2)) ∈ Π2, and k2 ≤ g(k1) for a fixed
function g.

2. R can be computed in O(f(k)|I1|a) time.

Definition 3.6 (Class para-NP-complete). A parameterized problem Π is in
the class para-NP-complete if

1. Π is in para-NP, and

2. for any parameterized problem Π′ in para-NP, there is an FPT-reduction
from Π′ to Π.

Definition 3.7 (Class XP). A parameterized problem Π is in the class XP if
each instance (I, k) of Π can be be solved by an nO(f(k)) time algorithm, where
f(k) is an arbitrary function of k only and n is the size of I.

It is known that FPT ⊂ XP[12]. In [12], Flum and Grohe showed that
a para-NP problem Π is in para-NP-complete if there is a reduction from an
NP-complete problem to the subproblem of Π, where the parameter is a fixed
constant.

Theorem 3.3. Max-r(n)-SAT is para-NP-complete for r(n) = dlog ne.

Proof. It is easy to see that Max-r(n)-SAT is in para-NP. This is because we
decide whether a given assignment satisfies asat(φ) + k clauses in polynomial
time. To prove its para-NP-completeness, Crowston et al. [10] gave a reduction
from a problem called Linear-3-SAT to Max-r(n)-SAT with k fixed to 2.

Given a 3-SAT formula φ with m clauses and n variables such that m < cn
(the number of clauses is linear in the number of variables), for a fixed constant
c, Linear-3-SAT asks if there is an assignment that satisfies φ. Tovey showed
in [33] that any 3-SAT is NP-complete, even for 3-CNF formulae with every
variable appearing in at most four clauses. As result, the NP-completeness of
Linear-3-SAT follows.

Let φ = {C1, . . . , Cm} be a Linear-3-SAT over the variables x1, . . . , xn. We
have m < cn, for a positive constant c, since φ is an instance to Linear-3-SAT.
Construct a Max-r(n)-SAT formula R(φ) with m′ = 2dlogn′e+1 clauses over the
n′ = 2cn variables x1, . . . , xn, y1, . . . , yn′−n. The set of clauses of R(φ) is divided
into three groups:

1. G1 = {(l1 ∨ · · · ∨ ldlogn′e) | li ∈ {yi,¬yi}, 1 ≤ i ≤ dlog n′e} \ {¬y1 ∨ · · · ∨
¬ydlogn′e}.

2. G2 = {Ci ∨ ¬y4 ∨ · · · ∨ ¬ydlogn′e | 1 ≤ i ≤ m}.

3. G3 consists of m′−(|G1|+|G2|) clauses of length dlog n′e over the variables
ydlogn′e+1, . . . , yn′−n, such that each variable appears in at least one clause
and each clause contains only positive literals.

19

Every clause in R(φ) (belonging to either G1, G2 or G3) is of length dlog n′e,
and thus asat(R(φ)) = m′(1 − 2−dlogn′e) = m′(1 − 2×2−dlog n′e

2) = m′(1 −
2

2dlog n′e+1) = m′(1 − 2
m′) = m′ − 2. So, if we fix the value of k to 2, Max-r(n)-

SAT asks whether or not we can satisfy all the clauses of R(φ). To complete
the proof, it must be shown φ is satisfiable if and only if R(φ) is satisfiable for
k = 2.

Assume that there is an assignment A that satisfies φ. If we extend A to
A′ by assigning each yi, (1 ≤ i ≤ n′ − n) variables the value True, then R(φ)
is satisfied. To see this, note that A′ satisfies G1 and G3 since every clause in
them contains at least one positive literal. Also, A′ satisfies G2 since A satisfies
every clause Ci, (1 ≤ i ≤ m) in φ, which is included as part of each clause in
G2.

Suppose R(φ) is satisfied by some assignment. Then all the yi, (1 ≤ i ≤
dlog n′e) are set to True in that assignment, or otherwise the clauses in C1

having only one positive literal are not satisfied. Thus, the only literals satisfied
in any clause belonging to G2 are all the literals of Ci, (1 ≤ i ≤ m), and hence
φ is satisfied.

Furthermore, Crowston et al. showed that

• Max-r(n)-SAT is not in XP for r(n) ≥ log log n+ g(n), where g(n) is any
unbounded strictly increasing function.

• Max-r(n)-SAT is in XP for any r(n) ≤ log log n− log log log n.

• Max-r(n)-SAT is in FPT for any r(n) ≤ log log n − log log log n − g(n),
where g(n) is any unbounded strictly increasing function.

3.4 Solving parameterized MaxSAT in O∗(1.618k) time

Bliznets and Golovnev[5] introduced an algorithm that solves parameterized
MaxSAT in O∗(1.358k) time, where k is the parameter and O∗ is the modi-
fied big-Oh notation introduced in[37] that suppresses all other polynomially
bounded terms. This result is established by algorithm 4, whose running time
and correctness are stated in this subsection. The previously known bounds are
O∗(1.618k)[21], O∗(1.3995k)[26], O∗(1.3803k)[4] and O∗(1.3695k)[7]. In their
paper, the following notations and definitions are used. Given a CNF formula
φ with m clauses over n variables.

• MaxSAT(φ, k) = True if and only if we can satisfy at least k clauses in φ.

• φ[x = ¬y] denotes the formula obtained from φ by replacing x and ¬x by
¬y and y respectively.

• A variable x in φ has degree d, denoted deg(x) = p, if x occurs exactly d
times in φ.

• A variable x in φ is said to be of type (a, b) if the literal x occurs a times
and the literal ¬x occurs b times.

• A variable x in φ is said to be (k, 1)-singleton ((k, 1)-non-singleton) if x
is of type (k, 1) and the only negation is contained (is not contained) in a
unit clause.

20

• A literal l occurring in φ is called pure if the literal ¬l does not appear in
φ.

• A literal l1 in φ is said to dominate another literal l2 if all the clauses
containing l2 also contain l1.

• A literal l1 is said to be a neighbor to another literal l2 if they appear
together in a clause of φ.

• #φ(l) denotes the number of occurrences of a literal l in φ.

• For q > 1, it is said that there exists a branching (a1, . . . , aq) if we can
construct formulae φ1, . . . , φq such that the answer for the parameterized
MaxSAT problem (φ, k) can be obtained from the answers for (φ1, k −
a1), . . . , (φq, k−aq). If l is a literal of φ, then clearly we can solve (φ, k) if
we can solve (φ[l], k−#φ(l)), (φ[¬l], k−#φ(¬l)), and thus (#φ(l),#φ(¬l))
is a branching.

• For a branching (a1, . . . , aq), where ai ≤ aj , (1 ≤ i < j ≤ q), a branch-
ing number, denoted by τ(a1, . . . , aq), is the unique root5 of the poly-
nomial Xaq − (Xaq−a1 + Xaq−a2 + · · · + Xaq−aq). Theorem 2.1 in[19]
suggests that if at each stage of an algorithm only branchings from the set
(a1,1, . . . , a1,q1), (q2,1, . . . , a2,q2), . . . , (at,1,
. . . , at,qt) are used, where ai,1≤ai,2≤···≤ai,qi , (1 ≤ i ≤ t), then the running

time of the algorithm is O∗(ck), where c is the largest positive root of the
polynomial

t∏
j=1

(
Xaj,qj −

qj∑
i=1

Xaj,qj−aj,i

)
.

• A branching (a1, . . . , aq) dominates another branching (b1, . . . , bq) if for
all i = 1, . . . , q, we have ai ≥ bi.

The authors presented algorithm 4, which establishes their new bound. The
following simplification rules, lemmas and theorems are needed to prove the
algorithm’s correctness and running time.

Simplification rules

In the following rules, (φ, k) is a parameterized MaxSAT instance.

1. A literal l can be assigned the value True if l is pure or if the number of
unit clauses (l) is not smaller than the number of clauses containing (¬l).

2. A variable x with deg(x) ≤ 2 can be eliminated. This is easy to see since at
most one clause is falsified. To see this, consider th case that l is pure. If so,
then l can be set to True. Otherwise, φ has the form φ′∪{(l∨A), (¬l∨B)}
and MaxSAT(φ, k) = MaxSAT(φ′ ∪ {(A∨B)}, k− 1). Thus, the problem
can be reduced.

5A root of a polynomial P (X) is the number Xi such that P (Xi) = 0.

21

3. Pairs of clauses of the form (x) and (¬x) can be removed. This also easy
to see because these two clauses form a contradiction and exactly one of
them must be falsified. Thus, the problem is reduced and the parameter
is decreased by one.

4. If two variables x and y with deg(x) = deg(y) = 3 appear together in
three clauses, then these three clauses can be satisfied by assigning x and
y. Indeed if both variables have degree three and they are neighbors in
three clauses, then they certainly do not appear elsewhere and two out of
three clauses can be satisfied by assigning x and the third can be satisfied
by assigning y.

5. Let x be a variable with deg(x) = 3. Then φ is of the form φ′ ∪ {(x ∨
A), (x∨B), (¬x∨C)}. If A or B have length less than two (either empty or
a unit clause), then the problem (φ, k) can be reduced. That is, assume A
is a unit clause, then it is easy to see that MaxSAT(φ, k) = MaxSAT(φ′ ∪
{(¬A∨B ∨C), (A∨C)}, k− 1). If A is empty, then by setting x to True
we can decrease k by two. In both cases, the problem is reduced. The
cases involving B are similar.

Each one of these simplification rules can be applied in polynomial time and
whenever one of them is applied, the parameter k is decreased by at least one
and the problem is reduced. Also, applying a rule satisfies come clauses.

Lemma 3.4. If a CNF formula φ contains a variable x with deg(x) ≥ 6, then
the branching number on x is at most τ(1, 5).

Proof. The possible branchings on x are τ(3, 3) = 1.25992, τ(2, 4) = 1.27202
and τ(1, 5) = 1.32472. Clearly, τ(1, 5) is the largest branching number.

Theorem 3.4. If a variable x occurs three times in φ, then either the parameter
can be decreased or there is a (1, 6)-, (2, 4)- or (3, 3)-branching.

Theorem 3.5. If all the variables in φ are either (3, 1)-singletons or (4, 1)-
singletons, then at least d 2m

3 e clauses of φ are satisfiable.

Proof. Consider the formula ψ = {(¬x), (¬y), (¬z), (x∨ y), (x∨ z), (x∨ y ∨ z)},
where all the variables x, y and z are (3, 1)-singletons and m = 7. ψ is the
smallest formula with 3 variables that are all (3, 1) singletons and the maximum
number of satisfied clauses in ψ is 5. Indeed, the assignment A = {x = True, y =
False, z = True} satisfies 5 clauses in ψ. Thus, at least d 2m

3 e = d4.666e = 5
clauses are satisfied. This also holds if we have (3, 1)-singletons and (4, 1)-
singletons, in fact we can satisfy more.

The minimum set cover (MSC) is a problem that is used in algorithm 4 to
solve a special case of MaxSAT. The decision version of MSC is NP-complete
and the optimization version is NP-hard.

Definition 3.8 (Minimum Set Cover (MSC)). Given a universe U and a col-
lection S of subsets of U , the MSC problem asks for the minimum cardinality
of a subset S′ of S such that

⋃
Si∈S′ Si = U . That is, the target is finding the

minimum cardinality of a subset of S that covers U .

22

If each set in S is of size at most four, van Rooij and Bodlaender developed
an algorithm[35] that solves MSC in O∗(1.290.6|U |+0.9|S|) time, if each set in S
has size at most four.

Algorithm 4: FPT-MaxSAT2(φ, k)

Input: An CNF formula φ with m clauses and a parameter k
Output: True, if there is an assignment that satisfies at leastk clauses of φ, otherwise

False
1 apply simplification rules 1-5
2 if there is a variable x with deg(x) ≥ 6 then
3 branch on x according to lemma 3.4

4 if there is a variable x with deg(x) = 3 then
5 branch on x according to theorem 3.4

// At this point, the remaining variables are of degree 4 and 5 only

6 if there is a variable x of type (3, 2), (3, 1)-non-singleton or (4, 1)-non-singleton then
7 branch on x

// At this point, the remaining variables are either singletons or of type

(2, 2)
8 if there is a variable x of type (2, 2) then
9 if x has a neighbor y of type (4, 1)-singleton and x, ¬x are not simultaneously

dominated by y then
10 branch on y

11 else
12 branch on x

// At this point, all the variables are either (3, 1)-singletons or

(4, 1)-singletons
13 if k ≤ n then
14 return True

15 if 2m
3
< k then

16 if k ≤MSC(φ) then
17 return True

18 else
19 return False

20 if there is a clause of length 2, (x ∨ y) then
21 branch as φ[x, y],φ[x = ¬y]

22 else
23 return True

Algorithm 4 begins by simplifying the input formula according to the five
simplification rules (line 1) stated previously. Next, variables of degrees greater
than or equal to 6 are dealt with according to lemma 3.4 (lines 2-3), which sug-
gests a (1, 5)-branching. Thus, we have τ(1, 5) = 1.32472 < 1.3579. Variables
of degrees 3 are dealt with according to theorem 3.4 (lines 4-6), which gives a
(1, 6)-branching. Thus, we have τ(1, 6) = 1.2852 < 1.3579. The remaining vari-
ables in φ now are of degrees 4 and 5. Lines 6-7 check the conditions where x is
of type (3, 2), (3, 1)-non-singleton or (4, 1)-non-singleton. If x is of type (3, 2),
then we get a (3, 2)-branching, and so we have τ(3, 2) = 1.32472 < 1.3579.
Else, x is a (4, 1)-non-singleton or (3, 1)-non-singleton and by branching on x
we get at least τ(3, 2) = 1.32472 < 1.3579. Lines 8-10 handles the conditions
of (2, 2) variables. If there is a (2, 2) variable x with a (4, 1)-singleton y, such

23

that y does not dominate x and ¬x together at the same time, then branching
on y gives τ(4, 1) and the next iteration in the φ[y] branch there is a vari-
able of degree three or smaller. Thus, the total branching number is less than
τ(4 + 1, 4 + 6, 1) = τ(5, 10, 1) < 1.3579. If the condition in line 9 is false, then x
is of type (2, 2) and either the neighbors of x are variables of degree four, or x
and ¬x are simultaneously dominated by y. Thus, the two branches we get by
branching on x (line 12) are φ[x] and φ[¬x] contain a variable of degree three. By
theorem 3.4, the possible branchings are (1, 6), (2, 4) and (3, 3), and so the pos-
sible branching numbers are τ(2+1, 2+6, 2+1, 2+6), τ(2+2, 2+3, 2+2, 2+3)
and τ(2 + 3, 2 + 3, 2 + 3, 2 + 3). The worst running time among these three
corresponds to τ(3, 8, 3, 8) ≈ 1.3480 < 1.3579.

At this point, the only variables remaining are of degree four and five, but
singletons, specifically, (3, 1)- and (4, 1)-singletons. This means that all the
negated literals appear in unit clauses. Thus, we n clauses can be satisfied by
setting all the variables to False. If this satisfies the required number of clauses,
then we are done (lines 13-14).

In line 15, the condition in the if-statement checks if k is greater than the
guaranteed value proved by theorem 3.5. Note that all the clauses in φ are
either unit clauses containing negated literals or clauses containing only positive
literals. Indeed there always exists an optimal assignment that satisfies all the
clauses containing only positive literals6. We want an assignment that assigns
True to the minimal number of variables and at the same time satisfies all the
clauses containing no negated literals. This can be modeled as the MSC problem.
The MSC instance is constructed as follows: U is the set of clauses containing
no negated literals, S = {Si ⊂ U | clausesinSicontainthevariablexi}. Now, we
want to cover U with the minimal number of sets from S. In line 16, the minimal
number of subsets required to cover U is returned by the algorithm in[35]. IF
t is the answer, then m − t clauses can be satisfied (because t unit clauses are
falsified). If m− t is greater than or equal to k (line 16), the required number of
satisfied clauses has been reached, if not then the algorithm terminates returning
False (line 19). Every set in S has cardinality at most four, since each variable
appears positively in at most four clauses, and thus algorithm due to van Rooij
and Bodlaender solves this MSC instance in O∗1.290.6|U |+0.9|S|. Since there are
m − n positive clauses, |U | = m − n. Also, since n < k and m < 3k

2 , then the
running time is O∗(1.291.2k), which is ≈ 1.3574k < 1.3579k.

In line 20, there exists clauses (¬x) and (¬y) since all the variables are (a, b)-
singletons. If there is a clause (x∨y), then it can be satisfied even if the optimal
solution does not satisfy it. We can do this by setting x to True, which does
not decrease the number of satisfied clauses. Thus, the algorithm branches as
x = y = True and x = ¬y. At least three clauses can be satisfied in the first
branch since the variables are (3, 1)- or (4, 1)-singletons. In the second branch,
by simplification rule 3 we can only satisfy one of (x) and (¬x) and also (x∨ y)
can be satisfied. Finally, the algorithm can True in line 23 since 2m

3 ≥ k.

6If a clause containing only positive literals is falsified, then we can flip any of the variables
to satisfy that clause.

24

4 Conclusion

In this paper, we discussed the complexity of the Max-SAT problem in two ways:
In classical computational complexity and parameterized complexity. The aim
in both cases is to classify the problem into complexity classes via reductions.
The main result in classical complexity is that the smallest s for which (2, s)-
Max-SAT is in the NP-complete class is 3. The following two tables summarize
the most important results discussed.

Problem Class Reason
Max-2-SAT NP-complete Red. from 3SAT[27]
(≤ 2, 4)-Max-SAT NP-complete Red. from vertex cover[29]
(≤ 2, 3)-Max-SAT NP-complete Red. from (≤ 2, 4)-Max-SAT[29]
(2, 3)-Max-SAT NP-complete Red. from (≤ 2, 3)-Max-SAT[29]
(≤ n, 2)-Max-SAT P Polynomial-time algorithm[29]

Table 1: Results in classical complexity.

Problem Class Reason
Parameterized MaxSAT FPT Algorithm 2
Satisfying at least dm2 e+ k FPT Algorithm 3
Max-r(n)-SAT para-NP-complete Red. from Linear-3-SAT

Table 2: Results in parameterized complexity.

References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals
of mathematics, pages 781–793, 2004.

[2] Roberto Aśın Achá and Robert Nieuwenhuis. Curriculum-based course
timetabling with sat and maxsat. Annals of Operations Research, pages
1–21, 2012.

[3] Mikhail J Atallah. Algorithms and theory of computation handbook. CRC
press, 1998.

[4] Nikhil Bansal and Venkatesh Raman. Upper bounds for maxsat: Further
improved. In Algorithms and Computation, pages 247–258. Springer, 1999.

[5] Ivan Bliznets and Alexander Golovnev. A new algorithm for parameter-
ized max-sat. In DimitriosM. Thilikos and GerhardJ. Woeginger, editors,
Parameterized and Exact Computation, volume 7535 of Lecture Notes in
Computer Science, pages 37–48. Springer Berlin Heidelberg, 2012.

[6] Liming Cai and Jianer Chen. On fixed-parameter tractability and approx-
imability of np optimization problems. Journal of Computer and System
Sciences, 54(3):465–474, 1997.

[7] Jianer Chen and Iyad A Kanj. Improved exact algorithms for max-sat. In
LATIN 2002: Theoretical Informatics, pages 341–355. Springer, 2002.

25

[8] Jianer Chen, Iyad A Kanj, and Ge Xia. Improved parameterized upper
bounds for vertex cover. In Mathematical Foundations of Computer Science
2006, pages 238–249. Springer, 2006.

[9] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM, 1971.

[10] Robert Crowston, Gregory Gutin, Mark Jones, Venkatesh Raman, and
Saket Saurabh. Parameterized complexity of maxsat above average. LATIN
2012: Theoretical Informatics, pages 184–194, 2012.

[11] Pedro Filipe Medeiros da Silva. Max-sat algorithms for real world instances.
2010.

[12] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2006.

[13] Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified
np-complete problems. In Proceedings of the sixth annual ACM symposium
on Theory of computing, pages 47–63. ACM, 1974.

[14] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified
np-complete graph problems. Theoretical computer science, 1(3):237–267,
1976.

[15] Gregory Gutin, Mark Jones, and Anders Yeo. A new bound for 3-satisfiable
maxsat and its algorithmic application. In Fundamentals of Computation
Theory, pages 138–147, 2011.

[16] Mikoláš Janota, Inês Lynce, Vasco Manquinho, and Joao Marques-Silva.
Packup: Tools for package upgradability solving system description. Jour-
nal on Satisfiability, Boolean Modeling and Computation, 8:89–94, 2012.

[17] Brigitte Jaumard and Bruno Simeone. On the complexity of the maximum
satisfiability problem for horn formulas. Information Processing Letters,
26(1):1–4, 1987.

[18] RichardM. Karp. Reducibility among combinatorial problems. In Ray-
mondE. Miller, JamesW. Thatcher, and JeanD. Bohlinger, editors, Com-
plexity of Computer Computations, The IBM Research Symposia Series,
pages 85–103. Springer US, 1972.

[19] Dieter Kratsch. Exact Exponential Algorithms. Springer-Verlag Berlin Hei-
delberg, 2010.

[20] Karl J Lieberherr and Ernst Specker. Complexity of partial satisfaction.
Journal of ACM (JACM), 28(2):411–421, 1981.

[21] Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed
values: Maxsat and maxcut. Journal of Algorithms, 31(2):335–354, 1999.

[22] Filip Maric. Timetabling based on sat encoding: a case study, 2008.

26

[23] Elizabeth Montero, Maŕıa-Cristina Riff, and Leopoldo Altamirano. A pso
algorithm to solve a real course+ exam timetabling problem. In Interna-
tional Conference on Swarm Intelligence, pages 24–1, 2001.

[24] Fahima NADER, Mouloud KOUDIL, Karima BENATCHBA, Lotfi AD-
MANE, Said GHAROUT, and Nacer HAMANI. Application of satisfiabil-
ity algorithms to time-table problems. Rapport Interne LMCS, INI, 2004.

[25] G-J Nam, Fadi Aloul, Karem A. Sakallah, and Rob A. Rutenbar. A compar-
ative study of two boolean formulations of fpga detailed routing constraints.
Computers, IEEE Transactions on, 53(6):688–696, 2004.

[26] Rolf Niedermeier and Peter Rossmanith. New upper bounds for MaxSat.
Springer, 1999.

[27] Christos H Papadimitriou. Computational complexity, chapter 9: NP-
complete Problems. Addison-Wesley, 1994.

[28] Wayne Pullan. Protein structure alignment using maximum cliques and
local search. In AI 2007: Advances in Artificial Intelligence, pages 776–
780. Springer, 2007.

[29] Venkatesh Raman, Bala Ravikumar, and S Srinivasa Rao. A simplified
np-complete maxsat problem. Information Processing Letters, 65(1):1–6,
1998.

[30] Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H Liffiton,
and Karem A Sakallah. Improved design debugging using maximum satis-
fiability. In Formal Methods in Computer Aided Design, 2007. FMCAD’07,
pages 13–19. IEEE, 2007.

[31] Tian Sang, Paul Beame, and Henry Kautz. A dynamic approach to mpe and
weighted max-sat. In Proceedings of the 20th international joint conference
on Artifical intelligence, pages 173–179. Morgan Kaufmann Publishers Inc.,
2007.

[32] Craig A Tovey. A simplified np-complete satisfiability problem. Discrete
Applied Mathematics, 8(1):85–89, 1984.

[33] Craig A. Tovey. A simplified np-complete satisfiability problem. Discrete
Applied Mathematics, 8(1):85 – 89, 1984.

[34] Jan Van Leeuwen and Jan Leeuwen. Handbook of theoretical computer
science: Algorithms and complexity, volume 1, chapter 2: A Catalog of
Complexity Classes. Elsevier, 1990.

[35] Johan MM Van Rooij and Hans L Bodlaender. Exact algorithms for dom-
inating set. Discrete Applied Mathematics, 159(17):2147–2164, 2011.

[36] Michel Vasquez and Jin-Kao Hao. A logic-constrained knapsack formu-
lation and a tabu algorithm for the daily photograph scheduling of an
earth observation satellite. Computational Optimization and Applications,
20(2):137–157, 2001.

27

[37] GerhardJ. Woeginger. Exact algorithms for np-hard problems: A survey.
In Michael Jnger, Gerhard Reinelt, and Giovanni Rinaldi, editors, Combi-
natorial Optimization Eureka, You Shrink!, volume 2570 of Lecture Notes
in Computer Science, pages 185–207. Springer Berlin Heidelberg, 2003.

[38] Hui Xu, Rob A Rutenbar, and Karem Sakallah. sub-sat: a formulation
for relaxed boolean satisfiability with applications in routing. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
22(6):814–820, 2003.

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

