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Abstract

One of the major challenges of the research in circuit complexity is proving super-polynomial
lower bounds for de-Morgan formulas. Karchmer, Raz, and Wigderson [KRW95] suggested to
approach this problem by proving that formula complexity behaves “as expected” with respect
to the composition of functions f � g. They showed that this conjecture, if proved, would imply
super-polynomial formula lower bounds.

The first step toward proving the KRW conjecture was made by Edmonds et. al. [EIRS01],
who proved an analogue of the conjecture for the composition of “universal relations”. In this
work, we extend the argument of [EIRS01] further to f � g where f is an arbitrary function and
g is the parity function.

While this special case of the KRW conjecture was already proved implicitly in H̊astad’s
work on random restrictions [H̊as98], our proof seems more likely to be generalizable to other
cases of the conjecture. In particular, our proof uses an entirely different approach, based on
communication complexity technique of Karchmer and Wigderson [KW90]. In addition, our
proof gives a new structural result, which roughly says that the naive way for computing f � g
is the only optimal way. Along the way, we obtain a new proof of the state-of-the-art formula
lower bound of n3−o(1) due to [H̊as98].
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1 Introduction

One of the major challenges in the quest for proving lower bounds is to find an explicit function
that requires formulas of super-polynomial size. Formally, (de Morgan) formulas are defined as
circuits with AND, OR, and NOT gates that have fan-out 1, or in other words, their underlying
graph is a tree.

The state-of-the-art in this direction is a lower-bound of Ω̃(n3) due to H̊astad [H̊as98]1, building
on earlier work by [Sub61, And87, IN93, PZ93]. This result was achieved by the celebrated method
of random restrictions, and in particular, by providing a lower-bound on the shrinkage exponent,
which is the parameter controlling the effect of random restrictions. H̊astad’s lower bound on the
shrinkage exponent is known to be best possible, so improving the cubic lower-bound requires a
new approach.

In this work we pursue a different approach following the KRW conjecture, named after Karch-
mer, Raz, and Wigderson who suggested this conjecture in [KRW95]. The KRW conjecture is about
composed functions of the form f � g : {0, 1}mn → {0, 1} defined by

f � g(x1, . . . , xm) = f(g(x1), . . . , g(xm)),

where f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1}. The conjecture says roughly2 that

L(f � g) ≈ L(f) · L(g)

where L(·) denotes the formula size of a function, namely, the number of leaves in the underlying
tree. In other words, the conjecture says that the naive way of computing f �g, by first computing g
on each component and then f , is essentially the best way to do it. In addition to being interesting
in its own right, the KRW conjecture is particularly important due to the fact that it implies
super-polynomial lower bounds for an explicit function [KRW95].

Despite some early successes in the study of the KRW conjecture [EIRS01, HW93], so far it has
not bore new lower bounds. Recently, Gavinsky et. al. [GMWW14] have made the first progress in
two decades in this direction. In this work, we push this direction further, and obtain a new proof
of the state-of-the-art cubic lower bound on the formula size of Andreev’s function.

Theorem 1.1. Let Andn : {0, 1}n → {0, 1} be Andreev’s function [And87] over n bits. Then,

L(Andn) ≥ n3−o(1).

Although this was already proved by [H̊as98], our proof is based on an entirely different method —
specifically, the communication-complexity technique of Karchmer and Wigderson [KW90]. Unlike
the proof by random restrictions, this method does not seem to have any inherent limitation, and
we do not see a reason why it should not be able to prove stronger lower bounds. More importantly,
we see this work as a step toward proving the KRW conjecture.

Toward proving the KRW conjecture. As a first step toward proving their conjecture,
[KRW95] suggested to study the composition of universal relations, which are objects that are
similar to functions but are easier to analyze in this context. Let us denote the universal relation
by U . Then, [KRW95] suggested to prove an analogue of their conjecture for the composition U �U .

1Recently, Tal [Tal14] provided a new proof of the lower bound on the shrinkage exponent, and along the way
improved the lower order factors in H̊astad’s lower bound.

2The original KRW conjecture was formulated in terms of formula depth, this variant with formula size is
from [GMWW14].
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This challenge was met by Edmonds et. al. [EIRS01], and an alternative proof was discovered later
by H̊astad and Wigderson [HW93].

Recently, Gavinsky et. al. [GMWW14] made further progress and proved an analogue of the
KRW conjecture for f � U : the composition of an arbitrary function f with the universal relation.
Thus, the next step to proving the KRW conjecture would be to replace the universal relation in
their result with a function g, for every choice of g. In this work, we do it for the special case where
g is the parity function over n bits, denoted ⊕n.

Theorem 1.2 (Main theorem). Let f : {0, 1}m → {0, 1} be a non-constant function. Then,

L(f � ⊕n) ≥ L(f) · L(⊕n)

2Õ(
√
m+logn)

.

To summarize, the KRW conjecture has been verified on U�U [EIRS01], and then f�U [GMWW14].
In this work we prove it for f � ⊕n, and one would hope that the next step(s) would lead to f � g
for every g.

It is important to note that lower bounds on the composition f � ⊕n were already proved
implicitly in the aforementioned works on the Andreev’s function [And87, IN93, PZ93, H̊as98,
Tal14]. In particular, [H̊as98, Tal14] implicitly prove that

L(f � ⊕n) ≥ L(f) · L(⊕n)

poly(logm, log n)
.

However, our proof seems more likely to be generalized to other choices of g, and in addition, it
gives a structural inverse result: not only is the naive way to compute f � ⊕n optimal in terms of
complexity, but it is essentially the only optimal way to compute f �⊕n. More specifically, we show
that any formula computing f � ⊕n with near optimal complexity must incur a cost of ≈ L(⊕n)
before starting the computation of f . We discuss this result a bit more in Section 1.2 below, and
a formal description is given in Section 3.

Bypassing a barrier for Karchmer-Wigderson relations. As all the previous works on
the KRW conjecture, our proof is based on a method of Karchmer and Wigderson [KW90]. A
particularly interesting feature of our proof of Theorem 1.1 is that it is the first proof of a super-
quadratic formula lower bound that uses this method. In particular, this requires bypassing a
known barrier for Karchmer-Wigderson relations, see Section 1.1 below for more detail.

Average-case lower bounds. A recent line of research [San10, KR08, KRT13, CKK+15, Tal14]
extended the aforementioned formula lower-bounds to the average-case setting. Our proof can be
extended to the average-case setting as well, yielding the following results. In what follows, we say
that a function F is (s, ε)-hard if every formula of size at most s computes F correctly on at most
1
2 + ε fraction of the inputs.

Theorem 1.3. Let f : {0, 1}m → {0, 1} be an (s, ε)-hard function. Then, f�⊕n is (s′, ε+2−m)-hard
for

s′ ≥ s · L(⊕n)/2Õ(
√
m+logn).

Corollary 1.4. For every n, c ∈ N there exists a function Fn,c : {0, 1}n → {0, 1} bits that is
(S, n−c)-hard for

S ≥ n3−Õ( 1√
logn

)
.

4



1.1 Background: Karchmer-Wigderson relations

Karchmer and Wigderson [KW90] observed an interesting connection between depth complexity
and communication complexity: for every boolean function f , there exists a corresponding commu-
nication problem KWf , such that any deterministic protocol for solving KWf can be syntactically
converted to a formula computing f , and vice versa. In particular, the depth complexity of f is
equal to the deterministic communication complexity of KWf and the formula size of f equals the
protocol size of KWf , which is the smallest number of transcripts in a deterministic protocol that
solves KWf . The communication problem KWf is often called the Karchmer-Wigderson relation
of f , and we will refer to it as a KW relation for short.

The KW relation KWf is defined as follows: Alice gets an input x ∈ f−1(0), and Bob gets as
input y ∈ f−1(1). Clearly, it holds that x 6= y. The goal of Alice and Bob is to find a coordinate i
such that xi 6= yi. Note that there may be more than one possible choice for i, which means
that KWf is a relation rather than a function. In what follows, we denote the communication
complexity and protocol size of KWf by C(KWf ) and L(KWf ) respectively.

The randomized-complexity barrier. KW relations allow us to translate questions about
formula complexity to questions about communication complexity, thus giving us a different angle
for attacking those questions. This method had great success in proving monotone formula lower-
bounds [KW90, GS91, RW92, KRW95], culminating in exponential formula lower-bounds [RW92].

In contrast, in the non-monotone setting, this method has been stuck so far at proving quadratic
lower-bounds. This is no coincidence: unlike the monotone setting, in the general setting it is known
that every KW relation can be solved by a randomized protocol of quadratic size. Therefore,
we cannot hope to prove better lower bounds using techniques that work against randomized
protocols, and this fact severely restricts the techniques that we may employ. In particular, as
noted by [GMWW14], this barrier implies that KW relations do not have “hard distributions”,
i.e., distributions over the inputs that are hard for every deterministic protocol. This fact makes
it difficult to analyze those relations using information-theoretic techniques, and similar reasons
prohibit the use of rectangle-based techniques [KKN95].

As mentioned above, our proof of Theorem 1.1 is the first proof of a super-quadratic lower-
bound using KW relations. In particular, our proof is the first to bypass the randomized-complexity
barrier.

1.2 Proof outline

In order to prove Theorem 1.2, we analyze KWf�g (for the case of g = ⊕n) and show that

C(KWf�g) ≈ C(KWf ) + C(KWg).

(We actually prove a similar but stronger statement, namely log L(KWf�g) ≈ log L(KWf ) +
log L(KWg) but for this outline we shall focus on the communication complexity.)

In the KW relation KWf�g, Alice and Bob’s inputs are conveniently viewed as m× n matrices
X,Y , respectively, such that g(X) ∈ f−1(0) and g(Y ) ∈ f−1(1), where g(X) ∈ {0, 1}m is obtained
by applying g to each row of X and similarly g(Y ). Their goal is to find an entry (i, j) such
that Xi,j 6= Yi,j .

The naive protocol for Alice and Bob is as follows. Alice computes a = g(X) and Bob computes
b = g(Y ). In the first stage they solve KWf on a, b and find an index i ∈ [m] where ai 6= bi. Then,
in the second stage, then solve KWg on inputs Xi, Yi to find j as required. This protocol shows
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that C(KWf�g) ≤ C(KWf ) +C(KWg). We remark that the naive strategy for KWf�g corresponds
to the naive formula for f � g, but note that the order is reversed (top-down vs. bottom up).

The KRW conjecture asserts that the naive protocol for KWf�g is essentially optimal. A natural
approach for proving the KRW conjecture is to show that any optimal protocol that solves KWf�g
must behave approximately like the naive protocol. This approach potentially gives, in addition to a
lower bound, a structural result about optimal protocols for KWf�g. This approach was first taken
in [EIRS01] for the composition of two universal relations. In this work, we extend the argument
of [EIRS01] to the case where f is an arbitrary function and g = ⊕n is the parity function.

Why should it be the case the any optimal behaves like the naive protocol? In order to gain
intuition, consider the following thought experiment: Suppose that every message of Alice and Bob
was either only “about” g(X) and g(Y ), or only “about” Xi and Yi for some i ∈ [m]. Intuitively,
in the first case they are trying to solve KWf on g(X) and g(Y ), and in the second case they are
trying to solve KWg on some pair of rows Xi and Yi. We now claim that if such a protocol was
optimal, then Alice and Bob would have had to finish solving KWf before solving KWg on any
pair of rows, or in other words, they would have had to behave as in the naive protocol.

More specifically, we claim that it only makes sense for Alice and Bob to communicate about a
pair of rows Xi and Yi if they already know that g(Xi) 6= g(Yi). To see why this is true, suppose
that Alice and Bob communicate about some Xi and Yi without knowing whether g(Xi) 6= g(Yi)
or not. In such a case, Alice and Bob might send a lot of bits about Xi and Yi, only to find out
eventually that Xi = Yi. This would mean that their effort has been in vain, since if Xi = Yi then
the answer to KWf�g cannot possibly lie in Xi and Yi. Hence, if Alice and Bob do not wish to
waste bits on rows where Xi = Yi, they should first make sure that g(Xi) 6= g(Yi). However, finding
i ∈ [m] such that g(Xi) 6= g(Yi) requires solving KWf on g(X) and g(Y ). Therefore, Alice and
Bob must solve KWf before solving KWg. We now discuss how to turn this intuitive argument
into a formal proof.

We begin with an arbitrary optimal protocol Π for KWf�g, and show that it has an approximate
two-stage structure similar to the naive protocol in the following sense. We split transcripts of
Π into two parts π1 and π2, supposedly corresponding to the stages of solving KWf and KWg

respectively. We identify a collection of partial transcripts π1 that did not fully solve a certain
random embedding of KWf into KWf�g. We call these partial transcripts “alive” since the proof
focuses only on them and shows that they lead to many distinct leaves of the protocol. We refer
the reader to Section 3 for more details, and remark that this embedding is generic and allows
embedding KWf into KWf�g for any choice of g. We then prove:

1. The first stage is hard: There are live partial transcripts π1 whose length is almost
about C(KWf ).

2. The second stage is hard: If π1 is alive, then there is some π2 whose length is about C(KWg).

These two items together imply that Π has a transcript whose length is

|π1|+ |π2| ≈ C(KWf ) + C(KWg).

In addition, observe that the second item implies a structural result on the optimal protocols
for KWf�g: Essentially, this item says that as long as Alice and Bob have not solved KWf on g(X)
and g(Y ), they must still incur a cost of C(KWg). This roughly means that in any optimal protocol,
Alice and Bob must first solve KWf and then solve KWg. Translating this result from the language
of KW relations to the language of formulas, this means that any optimal formula for f � g must
first compute g and then compute f (in the case of g = ⊕n).
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Our definition of π1 being alive makes it not too difficult to prove the first item above (see the
f -stage lemma in Section 4). However, the second item is much more technically difficult. Here
we must prove that in order to solve KWg on one of the m rows of X,Y , Alice and Bob must
communicate C(KWg) bits. The difficulty is that since Alice and Bob already spoke |π1| bits, they
are not playing on all possible input pairs X,Y but rather on a residual rectangle that depends
on π1.

Nevertheless, since |π1| ≤ m, they only communicated about one bit on the average row. In-
tuitively, this means that on the typical row, the players should be quite far from solving KWg.
Hence, if they try to finish solving KWf�g on one of those typical rows, they will have to commu-
nicate about C(KWg) bits. However, there can be a few “revealed” rows on which π1 reveals a lot,
and on which it might be easier to solve KWf�g. We therefore take steps to force Alice and Bob
to play on the typical “non-revealed” rows. In order to carry out our approach two ingredients are
necessary:

• The first ingredient is a way to measure how much progress the players made on a given
row, in a way that guarantees there will only be a few revealed rows. Luckily, for the parity
function g = ⊕n, this progress is directly related to the information that was communicated
on the row. We then use an averaging argument which implies that on most rows, π1 reveals
at most one bit of information (and hence, only one bit of progress was made).

• The second ingredient is a way to force Alice and Bob to play only on the non-revealed rows.
This is done by forcing X and Y to be identical on the revealed rows (so the final output
(i, j) cannot be in these rows). Formally, this is done by focusing on a sub-rectangle of the
residual rectangle of π1, in which X and Y are identical on the revealed rows. However, one
must do this without losing the complexity of the problem.

Showing that this is possible is highly non-trivial, and is the most difficult part of our ar-
gument. The main difficulty comes from the fact that if, in the residual rectangle of π1, it
holds that g(Xi) 6= g(Yi) for some revealed row (Xi, Yi), then we cannot force Xi and Yi to be
identical. The point is that such a situation cannot occur, because π1 is alive, i.e., it has not
fully solved KWf yet. This implies that π1 has could not find a small set of (revealed) rows
in which the answer to KWf lies. Thus, Alice and Bob cannot rule out that g(Xi) = g(Yi) in
any revealed row i.

In implementing the two above ingredients, we develop two new tools that might be of use to future
works:

• Averaging argument for min-entropy: In the discussion above, we argued that Alice
and Bob gained only very little information on the average row of X and Y and therefore, by
an averaging argument, this holds for most rows of X and Y . Such an averaging argument is
easy to prove when we model information using Shannon entropy. Edmonds et. al. [EIRS01],
whose argument we extend, could not use Shannon entropy in their argument. Therefore,
they defined another measure of information called “predictability” and proved an averaging
argument for this measure.
For our argument, neither Shannon entropy nor predictability are appropriate, and instead
we model information using min-entropy. This requires us to prove a (non-trivial) averaging
argument for min-entropy — see Section 6.1 for details.

• Fortification lemma: Throughout our proof, we often need to connect statements about
information to statements about complexity. For example, we would like to say things like
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“Alice and Bob learned only little information, so the complexity of solving KWf has not
decreased by much”. The reason is that in the implementation of the second ingredient, we
restrict ourselves to a sub-rectangle. This restriction effectively gives information to Alice
and Bob, and we need to make sure that this information does not allow them to solve KWf

prematurely.
However, information is not always related to complexity. In particular, it is possible to come
up with examples for relations KWf in which Alice and Bob may get little information while
reducing the complexity by much, or vice versa. In order to resolve this issue, we prove a
general “fortification lemma”, which shows that every relation KWf has a sub-relation KW ′f
for which the information and the complexity are related — see Section 6.2 for details.

1.3 Organization of the paper

We cover the required preliminaries in Section 2. Then, in Section 3, we prove our main theorem
(Theorem 1.2), as well as our structural result and the resulting cubic lower bounds (Theorem 1.1).
The proof of the main theorem uses three lemmas, which are proved in Sections 4, 5 and 7. We
develop the new tools discussed above in Section 6. We extend our main theorem and the cubic
lower bounds to the average-case setting in Section 8. Finally, in Section 9, we discuss some future
directions and suggest some open problems whose solution might bring us closer to proving the
KRW conjecture.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. Given two strings x, y ∈ {0, 1}n , the relative (Hamming)
distance between x and y is the fraction of coordinates on which they disagree. For a function
t : N→ N, we denote

Õ(t)
def
= O(t · logO(1) t)

Ω̃(t)
def
= Ω(t/ logO(1) t).

We denote the set of m × n binary matrices by {0, 1}m×n. For every binary m × n matrix X, we
denote by Xj ∈ {0, 1}n the j-th row of X. Throughout the paper, we denote by ⊕n the parity
function over n bits.

2.1 Formulas

Definition 2.1. A formula φ is a binary tree, whose leaves are identified with literals of the forms
xi and ¬xi, and whose internal vertices are labeled as AND (∧) or OR (∨) gates. The size of a
formula is the number of its leaves (which is the same as the number of its wires up to a factor
of 2). We note that a single input coordinate xi can be associated with many leaves.

Definition 2.2. A formula φ computes a binary function f : {0, 1}n → {0, 1} in the natural way.
The formula complexity of a boolean function f : {0, 1}n → {0, 1}, denoted L(f), is the size of the
smallest formula that computes f . The depth complexity of f , denoted D(f), is the smallest depth
of a formula that computes f .

The following definition generalizes the above definitions from functions to promise problems,
which will be useful when we discuss Karchmer-Wigderson relations.
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Definition 2.3. Let X,Y ⊆ {0, 1}n be disjoint sets. We say that a formula φ separates X and Y if
φ(X) = 0 and φ(Y) = 1. The formula complexity of the rectangle X× Y, denoted L(X× Y), is the
size of the smallest formula that separates X and Y. The depth complexity of the rectangle X×Y,
denoted D(X× Y), is the smallest depth of a formula that separates X and Y.

Note that Definition 2.2 is indeed a special case of Definition 2.3 where X = f−1(0) and Y =
f−1(1). The following theorem establishes a tight connection between the formula complexity and
the depth complexity of a function.

Theorem 2.4 ([BB94], following [Spi71, Bre74]). For every α > 0 the following holds: For every

formula φ of size s, there exists an equivalent formula φ′ of depth at most O(2
1
α · log s) and size at

most s1+α.

2.2 Communication complexity

Let X, Y, and O be sets, and let R ⊆ X×Y×O be a relation. The communication problem [Yao79]
that corresponds to R is the following: two players, Alice and Bob, get inputs x ∈ X and y ∈ Y,
respectively. They would like to find o ∈ O such that (x, y, o) ∈ R. To this end, they send bits to
each other until they find o, but they would like to send as few bits as possible. The communication
complexity of R is the minimal number of bits that is transmitted by any protocol that solves R.
More formally, we define a protocol as a binary tree, in which every vertex represents a possible
state of the protocol, and every edge represents a message that moves the protocol from one state
to another:

Definition 2.5. A (deterministic) protocol that solves a relation R ⊆ X×Y×O is a rooted binary
tree with the following structure:

• Every node of the tree is labeled by a rectangle Xv × Yv where Xv ⊆ X and Yv ⊆ Y. The
root is labeled by the rectangle X×Y. Intuitively, the rectangle Xv ×Yv is the set of pairs of
inputs that lead the players to the vertex v.

• Each internal vertex v is owned by Alice or by Bob. Intuitively, v is owned by Alice if it is
Alice’s turn to speak at state v, and same for Bob.

• Every edge of the tree is labeled by either 0 or 1.

• For every internal vertex v that is owned by Alice, the following holds: Let v0 and v1 be the
children of v associated with the out-going edges labeled with 0 and 1, respectively. Then,

– Xv = Xv0 ∪ Xv1 , and Xv0 ∩ Xv1 = ∅.
– Yv = Yv0 = Yv1 .

Intuitively, when the players are at the vertex v, Alice sends 0 to Bob if her input is in Xv0
and 1 if her input is in Xv1 . An analogous property holds for vertices owned by Bob, while
changing the roles of X and Y.

• For each leaf `, there exists a value o such that X`×Y`×{o} ⊆ R. Intuitively, o is the output
of the protocol at `.
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Definition 2.6. Given a protocol Π and a vertex v of Π, the transcript of v is the string that is
obtained by concatenating the labels of the edges on the path from the root to v. Intuitively, this
string consists of the messages that Alice and Bob sent in their conversation until they got to v.
Since the transcript determines v uniquely and vice versa, we will often identify the transcript with
the vertex v. If v is a leaf of the protocol, we say that it is a full transcript, and otherwise we say
that it is a partial transcript. Unless stated explicitly otherwise, whenever we say “transcript” we
mean “full transcript”.

Given a pair of inputs (x, y) ∈ X × Y, we define the transcript of (x, y), denoted Π(x, y), as
the (full) transcript of the protocol when Alice and Bob get the inputs x and y respectively. More
formally, Let ` be the unique leaf ` such that (x, y) ∈ X` ×Y`, and define Π(x, y) be the transcript
of `.

Definition 2.7. The communication complexity of a protocol Π, denoted C(Π), is the the depth
of the protocol tree. In other words, it is the maximum number of bits that can be sent in an
execution of the protocol on any pair of inputs (x, y). For a relation R, we denote by C(R) the
minimal communication complexity of a (deterministic) protocol that solves R.

Definition 2.8. We define the size of a protocol Π to be its number of leaves. Note that this is also
the number of distinct full transcripts of the protocol. We define the protocol size3 of a relation R,
denoted L(R), as the size of the smallest protocol that solves it.

2.3 Karchmer-Wigderson relations

In this section, we define KW relations formally, and state the correspondence between KW relations
and formulas. We start by defining KW relations for general rectangles, and then specialize the
definition to functions.

Definition 2.9. Let X,Y ⊆ {0, 1}n be two disjoint sets. The KW relation KWX×Y ⊆ X×Y × [n]
is defined by

KWX×Y
def
= {(x, y, i) : xi 6= yi}

Intuitively, KWX×Y corresponds to the communication problem in which Alice gets x ∈ X, Bob
gets y ∈ Y, and they would like to find a coordinate i ∈ [n] such that xi 6= yi (note that x 6= y since
X ∩ Y = ∅).

Definition 2.10. Let f : {0, 1}n → {0, 1} be a non-constant function. The KW relation of f ,

denoted KWf , is defined by KWf
def
= KWf−1(0)×f−1(1).

We are now ready to state the connection between formulas and KW relations. We state the
connection for general rectangles, and the specialization to functions is straightforward.

Theorem 2.11 (Implicit in [KW90]4). Let X,Y ⊆ {0, 1}n be two disjoint sets. Then, for every
formula φ that separates X and Y, there exists a protocol Πφ that solves KWX×Y , whose underlying
tree is the same as the underlying tree of φ. In the other direction, for every protocol Π that solves
KWX×Y there exists a formula φΠ that separates X and Y, whose underlying tree is the same as
the underlying tree of Π.

3This parameter is usually called the “protocol partition number” [KN97], but we prefer to use the term “protocol
size” in order to streamline the presentation.

4This fact was discussed explicitly in [Raz90, KKN95, GMWW14].
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Corollary 2.12 ([KW90]). For every two disjoints sets X,Y ⊆ {0, 1}n it holds that D(X × Y) =
C(KWX×Y), and L(X×Y) = L(KWX×Y). In particular, for every non-constant f : {0, 1}n → {0, 1},
it holds that D(f) = C(KWf ), and L(f) = L(KWf ).

Note that due to the connection between formula depth and formula size (Theorem 2.4), it holds
that the communication complexity C(KWf ) and the logarithm of the protocol size log L(KWf )
are always within constant factor of each other. In order to streamline the presentation, in many of
the intuitive discussions in this paper we will identify those two measures: for example, we will say
that “Alice and Bob must transmit t bits” and mean that the protocol size is at least 2t. However,
our formal results will always be about the protocol size.

Throughout this work, we will rely extensively on the following sub-additivity property of proto-
col size and formula complexity: for every X,Y ⊆ {0, 1}n such that X = X0 ∪X1 and Y = Y0 ∪ Y1,
it holds that

L(X× Y) ≤ L(X0 × Y) + L(X1 × Y)

L(X× Y) ≤ L(X× Y0) + L(X× Y1).

To see why the first inequality holds, consider the following protocol for KWX×Y : Alice starts by
saying whether her input belongs to X0 or to X1. Then, the players proceed by invoking the optimal
protocol for either KWX0×Y or KWX1×Y . It is easy to see that the size of this protocol is at most
L(X0 × Y) + L(X1 × Y). The proof of the second inequality is similar.

2.4 Information theory

We use basic concepts from information theory, see [CT91] for more details.

Definition 2.13 (Entropy). The entropy of a random variable x is

H(x)
def
= Ex0←x

[
log

1

Pr [x = x0]

]
=
∑
x0

Pr [x = x0] · log
1

Pr [x = x0]
.

The conditional entropy H(x|y) is defined to be Ey0←y[H(x|y = y0)].

Fact 2.14. H(x) is non-negative and is upper bounded by the logarithm of the size of the support
of x. Equality is attained when x is uniformly distributed over its support.

The notion of mutual information between two variables x and y, defined next, measures how
much information x gives on y and vice versa. Intuitively, the information that x gives on y is
captured by how much the uncertainty about y decreases when x becomes known.

Definition 2.15 (Mutual Information). The mutual information between two random variables
x, y, denoted I(x : y) is defined as

I(x : y)
def
= H(x)−H(x|y) = H(y)−H(y|x). (1)

For a random variable z, the conditional mutual information I(x; y|z) is defined as

I(x : y|z) def
= H(x|z)−H(x|y, z) = H(y|z)−H(y|x, z).

Fact 2.16. For all random variables x, y, z it holds that

0 ≤ I(x : y|z) ≤ H(x|z) ≤ H(x).
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Definition 2.17. The min-entropy of a random variable x is

H∞(x) = min
x0

{
log

1

Pr [x = x0]

}
.

In other words, H∞(x) is the minimum number h such that Pr [x = x0] = 2−h for some x0.

The following fact is an immediate consequence of the definitions of entropy and min-entropy.

Fact 2.18. H∞(x) ≤ H(x).

2.5 The lower bound for parity

Since our main result is a lower bound on KWf�⊕n , it is helpful to recall a proof of the lower bound
for KW⊕n . We prove that every protocol that solves KW⊕n must transmit at least 2 log n bits, and
more generally, must have at least n2 distinct transcripts. We use the following fact from the field
of interactive information complexity, which intuitively says that the information that Alice and
Bob learn from the execution of a protocol is at most the information that an external observer
learns.

Fact 2.19 ([BR11]). Let Π be a protocol, and let x and y be random inputs to Alice and Bob in Π
respectively. Let π = Π(x, y) denote the transcript of Π when given x and y as inputs. Then

I (π : x, y) ≥ I (π : x|y) + I (π : y|x) .

We also use the following definition of an edge of the boolean hypercube.

Definition 2.20. An edge (of the boolean hypercube) is a pair of strings (x, y) in {0, 1}n such that
the parity of x is 0, and such that x and y differ on exactly one coordinate, which is called the axis
of the edge.

We are now ready to prove the lower bound. The following proof is due to [GMWW14], and is
based on the proof of [KW90].

Theorem 2.21 ([Khr72]). It holds that L(KW⊕n) ≥ n2.

Proof. Fix a protocol Π that solves the KW⊕n . Let (x, y) be a uniformly distributed edge of the
hypercube, and let j denote its axis. The intuition for the proof is the following: At the end of
the protocol, Alice and Bob must learn j, since it is the only valid output for (x, y). On the other
hand, at the beginning of the protocol, Alice and Bob know nothing about j. Hence, throughout
the protocol, each of them has to learn at least log n bits. In particular, this means that each of
them has to send at least log n bits to the other, and therefore the protocol must send at least
2 log n bits in total.

Let π = Π(x, y) be the transcript of the protocol when Alice and Bob get x and y as inputs.
Since the entropy of a random variable is upper bounded by the logarithm of the size of its support,
it holds that

log L(Π) ≥ H(π) ≥ I(π : x, y).

Hence, it suffices to prove that I(π : x, y) ≥ 2 log n. By Fact 2.19, it holds that

I(π : x, y) ≥ I(π : x|y) + I(π : y|x).
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We prove that both terms on the right hand side the are equal to log n, and this will imply the
desired lower bound. For I(π : y|x), observe that

I(π : y|x) = H(y|x)−H(y|x, π) = H(j|x)−H(j|x, π),

where the second equality holds because x and j together determine y, and x and y together
determine j. Now, the term H(j|x, π) is 0, because the transcript π reveals j (since it tells where
x and y differ). As for the term H(j|x), observe that j is uniformly distributed even conditioned
on x, and therefore H(j|x) = log n. It thus follows that I(π : y|x) ≥ log n. Similarly, it holds that
I(π : x|y) = log n. Those two equalities imply together than

log L(Π) ≥ I(π : x, y) ≥ I(π : x|y) + I(π : y|x) = 2 log n,

as required. �

2.6 Error-Correcting Codes

A code C : {0, 1}n → {0, 1}n
′

is an injective function. The images of the code C are called
codewords, and we say that C has relative distance δ if the relative distance between every two
distinct codewords c, c′ is at least δ. The parameters n and n′ are called the message length and
the block length respectively. We use the following fact from coding theory:

Fact 2.22. Let m,n ∈ N be numbers such that 2m/2 ≥ n. Then, there exists a code C : {0, 1}n →
{0, 1}2

m

with relative distance at least 1
2 −

1
2 ·

n
2m/2

. Furthermore, there exists a polynomial-time
algorithm when given as input m, n, and x ∈ {0, 1}n, computes C(x).

Proof sketch. The code C is the concatenation of a Reed-Solomon code of block length 2m/2 and
degree n/(m/2) over GF(2m/2), and the Hadamard code of message length m/2. It is easy to
see that the concatenated code has the required message length and block length. For the relative
distance, observe that the Reed-Solomon code has relative distance 1− n/(m/2)

2m/2
≥ 1− n

2m/2
, and that

the Hadamard code has relative distance 1
2 . Hence, the concatenated code has relative distance at

least 1
2 −

1
2 ·

n
2m/2

, as required. �

We say that a code C : {0, 1}n → {0, 1}n
′

is (ρ, L)-list decodable if for every w ∈ {0, 1}n
′
, there are

at most L codewords c whose relative distance to w is less than ρ. We use the following binary
version of the Johnson bound, taken from [Sud01].

Theorem 2.23 (Johnson bound). A code C : {0, 1}n → {0, 1}n
′

with relative distance δ is (ρ, n′)-

list decodable for ρ
def
= 1

2 ·
(
1−
√

1− 2 · δ
)
.

By combining the Johnson bound with Fact 2.22, we get the following result.

Corollary 2.24. The code C of Fact 2.22 is (ρ, 2m)-list decodable for ρ
def
= 1

2 −
1
2 ·
√

n
2m/2

.

3 Main theorem

In this section, we describe the proof of our main theorem, restated next.

Theorem 1.2 (Main theorem). Let f : {0, 1}m → {0, 1} be a non-constant function. Then,

L(f � ⊕n) ≥ L(f) · L(⊕n)

2Õ(
√
m+logn)

.
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We actually prove the equivalent statement that says that any protocol that solves KWf�⊕n has

at least L(f) · L(⊕n)/2Õ(
√
m+logn) distinct transcripts.

The rest of this section is organized as follows: In Section 3.1, we state a structural result about
protocols that solve KWf�⊕n . Then, in Section 3.2, we prove the structural result based on two
lemmas that are proved in Sections 5 and 7 respectively. Next, in Section 3.3, we explain how to
derive the main theorem from the structural result. Finally, in Section 3.4, we show how to derive
the cubic lower bounds for Andreev’s function from our main theorem.

3.1 The structural result

Let us recall how the communication problem KWf�⊕n is defined. Alice and Bob get m×n boolean
matrices X and Y and should find an entry (i, j) on which the matrices differ. Let a, b ∈ {0, 1}m be
the strings obtained by computing the parity of each row of X and Y respectively. Alice and Bob
are guaranteed that a ∈ f−1(0) and b ∈ f−1(1). We would like to prove that Alice and Bob must
first solve KWf on a and b, thus finding a row i ∈ [m] such that ai 6= bi, and then solve KW⊕n on
Xi and Yi.

Fix a protocol Π for KWf�⊕n and a partial transcript π1 of Π. Intuitively, our structural result
says that if Alice and Bob have not solved KWf yet in π1, then they have to send about C(KW⊕n)
more bits before they finish solving KWf�⊕n (actually, we will show the analogous lower bound on
protocol size).

To make sense of the statement “Alice and Bob have not solved KWf in π1” we must first see
how any protocol for KWf�⊕n contains (many copies of) a protocol for KWf . To this end, we
define some notation, starting by recalling the definition of an edge.

Definition 2.20. An edge (of the boolean hypercube) is a pair of strings (z0, z1) in {0, 1}n such
that the parity of z0 is 0 and such that z0 and z1 differ on exactly one coordinate, which is called
the axis of the edge.

As we have seen in Section 2.5, the uniform distribution over edges of the boolean hypercube is
a hard distribution for KW⊕n . Therefore, we would like to use edges as inputs to KWf�⊕n . Now,
an input to KWf�⊕n contains m inputs to KW⊕n , and this motivates the following definition.

Definition 3.1. A product of edges is a pair of m × n boolean matrices Z = (Z0, Z1) such that
for every i ∈ [m], the pair (Z0

i , Z
1
i ) is an edge. Let Z =

{
(Z0, Z1)

}
denote the set of all products

of edges.

Definition 3.2. Given Z = (Z0, Z1) ∈ Z and a string w ∈ {0, 1}m, we denote by Zw the matrix
defined by

Zwi
def
= Zwii

for every i ∈ [m].

Observe that for every Z ∈ Z, there is a natural reduction from KWf to KWf�⊕n : Given inputs
a ∈ f−1(0) and b ∈ f−1(1) for Alice and Bob inKWf , we define inputs for Alice and Bob inKWf�⊕n
by X = Za and Y = Zb. We now execute the protocol for KWf�⊕n on X and Y , and it outputs
an entry (i, j) such that Xi,j 6= Yi,j . By the definition of X and Y , it follows that ai 6= bi, and
therefore we obtained a solution for KWf on a and b. The above reduction formalizes the idea
that KWf�⊕n contains a copy of KWf for each Z.

Recall that we say that π1 is alive if Alice and Bob have not solved KWf in π1. Intuitively, we
will define the notion that “π1 is alive” as follows. First, we will say π1 is alive with respect to a
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specific Z if after the players sent π1, they still have to send
√
m · poly logm bits in order to solve

the copy of KWf in KWf�⊕nthat corresponds to Z. We will say that π1 is alive if it is alive for
many (at least 2−2m fraction) of the Zs.

In order to formalize this intuitive definition, we generalize the reduction of KWf to KWf�⊕n
to sub-relations of KWf�⊕n . Let X ⊆ (f � ⊕n)−1(0) and Y ⊆ (f � ⊕n)−1(1), and note that the
rectangle X×Y defines a sub-relation KWX×Y of KWf�⊕n . Now, given Z = (Z0, Z1), we can define
a corresponding sub-relation of KWf by considering the rectangle A× B defined as follows:

A def
=

{
a ∈ f−1(0)|Za ∈ X

}
B

def
=

{
b ∈ f−1(1)|Zb ∈ Y

}
.

We say that A× B is the f -rectangle of X× Y with respect to Z.
We are now ready to formalize what it means for a partial transcript π1 of Π to be alive. Recall

that the transcript π1 is associated with a sub-rectangle Xπ1 ×Yπ1 of KWf�⊕n in a natural way —
Xπ1 ×Yπ1 contains all the pairs on inputs on which Alice and Bob transmit π1. For every product
of edges Z, we denote by Aπ1,Z × Bπ1,Z the f -rectangle of Xπ1 × Yπ1 with respect to Z.

Definition 3.3. Given a partial transcript π1 of Π and Z ∈ Z, we say that π1 is `-alive with respect
to Z if L(Aπ1,Z ×Bπ1,Z) ≥ 2`. We say that π1 is (`, α)-alive if it is `-alive with respect to α fraction
of the Z’s, i.e., if

Pr
Z∈Z

[
L(Aπ1,Z × Bπ1,Z) ≥ 2`

]
≥ α.

For our proof we will use α
def
= 2−2m and `

def
= C ·

√
m · logC m for large enough constant C > 0.

We say that π1 is alive as short-hand for (`, 2−2m)-alive. We can finally state our structural result
formally.

Theorem 3.4 (Structure theorem). Let Π be a protocol for KWf�⊕n and let π1 be a live partial

transcript of Π. Then, there exist at least L(⊕n)/2Õ(
√
m) distinct suffixes π2 such that π1 ◦ π2 is a

(full) transcript of Π.

3.2 Proof of the structure theorem

Let Π be a protocol for KWf�⊕n , and let π1 be a live partial transcript of Π. Intuitively, we wish to
prove that after Alice and Bob have transmitted the messages in π1, they have to transmit another
log L(⊕n)− Õ(

√
m) bits in order to solve KWf�⊕n . To this end, we will design a distribution over

inputs X ∈ Xπ1 and Y ∈ Yπ1 for Alice and Bob, and show that in order to solve KWf�⊕n on inputs
coming from this distribution, Alice and Bob must transmit log L(⊕n) − Õ(

√
m) bits (and thus

must have L(KW⊕n)/2Õ(
√
m) distinct transcripts).

In order to design the latter distribution, we use the fact that the hardest distribution over
inputs for KW⊕n is the uniform distribution over edges of the boolean hypercube (see Section 2.5).
Our distribution for KWf�⊕n will look roughly as follows. Let Zπ1 ⊆ Z be the set of Zs that are
“alive for π1”, i.e. for which L(Aπ1,Z × Bπ1,Z) ≥ 2`. We will choose a random Z ∈ Zπ1 , then pick
a ∈ Aπ1,Z and b ∈ Bπ1,Z at random, and then set X = Za and Y = Zb.

Observe that X and Y have the following property: for every i ∈ [m], it either holds that
Xi = Yi (when ai = bi) or that Xi and Yi form an edge (when ai 6= bi). In particular, it is
intuitively clear that when given inputs from this distribution, Alice and Bob must solve KW⊕n on
some Xi and Yi that form an edge. If we could show that this edge is always uniformly distributed,
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we could easily complete the argument by showing that Alice and Bob must send log L(⊕n) bits.
Indeed this would work if Z was uniform over all products of edges, i.e. if Zπ1 = Z.

Unfortunately, Zπ1 consists only of α = 2−2m fraction of the products of edges, and therefore
we cannot guarantee that Xi and Yi form a uniformly distributed edge. However, intuitively, Alice
and Bob “know” only 2m bits of information on Z, and therefore they know only two bits of
information on the average row (Xi, Yi). By an averaging argument, on most rows, Alice and Bob
know very little information. Such rows are still hard for KW⊕n , and therefore Alice and Bob must
still transmit about log L(⊕n) in order to solve KWf�⊕n on one of those rows. If this is the case,
we are done.

One must be careful because there could still be a few “revealed” rows on which Alice and Bob
have a lot of information, and such rows might be easy for KW⊕n . In order to prevent Alice and
Bob from solving KWf�⊕n on those rows, we choose the distribution such that for every such row i
it holds that ai = bi. This forces the equality Xi = Yi, and therefore prevents Alice and Bob from
solving KWf�⊕n on the i-th row.

The following definition captures the essential properties of our distribution. The amount of
information that Alice and Bob know about an edge is modeled using the min-entropy of the axis
of the edge. The parameter t specifies the maximal amount of information that Alice and Bob may
know on the axis of a row, and the set R consists of the rows on which Alice and Bob have too
much information.

Definition 3.5. Let X and Y be random m× n matrices. We say that (X,Y ) is a t-almost hard
distribution if there exists a set R ⊆ [m] such that the following properties hold:

• For every i ∈ R, it holds that Xi = Yi.

• For every i ∈ [m]−R, there is a random coordinate ji such that

– Either Xi = Yi, or Xi = Yi + eji i.e. Xi and Yi form an edge with axis ji.

– For every specific choice X∗ of X it holds that H∞(ji|X = X∗) ≥ log n− t.
– For every specific choice Y ∗ of Y it holds that H∞(ji|Y = Y ∗) ≥ log n− t.

The above argument is implemented in the following two lemmas, which are proved in Sections 7
and 5 respectively, and which together imply the structure theorem immediately. The first lemma
says that there exists an almost-hard distribution over inputs that are consistent with π1. Since
this is the most involved part in our proof, we refer to it as the “main lemma”.

Lemma 3.6 (Main Lemma). Let Π be a protocol for KWf�⊕n, and let π1 be a live partial transcript

of Π. Then, there exists a t-almost hard distribution that is supported on Xπ1 × Yπ1, where t
def
=

c ·
√
m · logcm for some absolute constant c > 0.

The second lemma states that a hard distribution is indeed hard, i.e., that on inputs from this
distribution, the players must transmit about log L(⊕n) bits. We refer to this lemma as the “parity-
stage lemma”, since it analyzes the stage of the protocol Π in which the players solve KW⊕n .

Lemma 3.7 (Parity-stage Lemma). Let Π2 be a protocol that solves KWf�⊕n on a t-almost hard
distribution (X,Y ) with probability 1. Then, Π2 has at least L(⊕n)/22t transcripts.
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3.3 Proof of the Main Theorem

We now explain how to prove our main theorem using the structure theorem. To this end, we
use the following lemma, which says that there are many appropriate live partial transcripts π1 to
which the structure theorem can be applied. We refer to this lemma as the “f -stage lemma” since
we view π1 as the stage of the protocol in which the players solve KWf .

Lemma 3.8 (f -stage lemma). Let Π be a protocol for KWf�⊕n of depth d. Then, there exist at

least L(f)/
(

2Õ(
√
m) · d

)
alive partial transcripts π1 of Π, none of them is an ancestor of another.

The intuition for the f -stage lemma is straightforward: if the players spoke less than

log L(f)− Õ(
√
m) ≤ C(KWf )− Õ(

√
m)

bits, then they could not have solved KWf yet. The proof is is provided in Section 4.
We turn to the proof of the main theorem. Let Π be a protocol that solves KWf�⊕n . We would

like to show that it has at least L(f) · L(⊕n)/2Õ(
√
m+logn) distinct transcripts. The natural way to

do so would be the following: first, we would apply the f -stage lemma to show that there are ≈ L(f)
alive partial transcripts π1. Then, we would apply the structure theorem to those transcripts, thus
showing that each of them has ≈ L(g) suffixes. We would conclude that Π has ≈ L(f) ·L(g) distinct
transcripts, as required.

This proof almost works, but has one issue: the f -stage lemma loses a factor that depends
on the depth of Π. Thus, if Π has very large depth, the number of alive partial transcripts π1

may be insufficient to prove the desired lower bound. In order to resolve this issue, we use a
theorem that says that any protocol can be “balanced”, i.e., every protocol can be transformed
into an equivalent protocol whose depth is logarithmic in its size. We apply this theorem to Π to
obtain a new balanced protocol Π′, and then apply the foregoing proof to Π′. Specifically, we use
the following theorem, which was stated in Section 2 for formulas, and which we now restate for
protocols solving KW relations:

Theorem 2.4 ([BB94], following [Spi71, Bre74]). For every α > 0 the following holds: Let Π be
a protocol of size s that solves a KW relation KWf . Then, there exists a protocol Π′ of depth at

most O(2
1
α · log s) and size at most s1+α that solves KWf .

Proof of the main theorem. Let Π be a protocol that solves KWf�⊕n , and let us denote its

size by S. We wish to prove that S ≥ L(f) · L(⊕n)/2Õ(
√
m+logn). We may assume without loss of

generality that
S ≤ L(f) · L(⊕n) ≤ 2m · n2,

since otherwise we are done. We apply Theorem 2.4 to Π with α = 1√
m+logn

, thus obtaining a new

protocol Π′ whose depth and size are

d′ ≤ O
(

2
√
m+logn · (m+ 2 log n)

)
= 2O(

√
m+logn)

S′ ≤ S
1+ 1√

m+logn ,

respectively. We will prove that S′ ≥ L(f) · L(⊕n)/2Õ(
√
m+logn), and this will imply the same lower
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bound for S as follows:

S ≥
(
S′
)1/(1+ 1√

m+logn
)

≥
(
S′
)1− 1√

m+logn

= S′/
(
S′
) 1√

m+logn

(Since S′ ≤ S2) ≥ S′/S
2√

m+logn

(Since S ≤ 2m · n2) ≥ S′/
(
2m · n2

) 2√
m+logn

= S′/2O(
√
m+logn)

≥ L(f) · L(⊕n)/2Õ(
√
m+logn).

In order to prove that S′ ≥ L(f) · L(⊕n)/2Õ(
√
m+logn), we apply the f -stage lemma to Π′, thus

obtaining a collection of L(f)/2Õ(
√
m+logn) alive partial transcripts π1, none of which is an ancestor

of another. For each such π1, we apply the structure theorem and obtain L(⊕n)/2Õ(
√
m) distinct

suffixes π2 such that π1 ◦ π2 is a transcript of Π′. Since none of the π1’s is an ancestor of another,
all the transcripts π1 ◦ π2 obtained in this way are distinct. It follows that the number of distinct
transcripts π1 ◦ π2 constructed in this way is at least

L(f) · L(⊕n)/2Õ(
√
m+logn),

as required. �

3.4 Cubic Lower Bounds for Andreev’s Function

In this section, we derive the cubic lower bounds for Andreev’s function from our main theorem.
The following argument is due to Andreev [And87], and was used in all the works on Andreev’s
function.

Theorem 1.1. Let Andn : {0, 1}n → {0, 1} be Andreev’s function [And87] over n bits. Then,

L(Andn) ≥ n3−o(1).

Andreev’s function is defined as follows: the input consists of two parts, each of length n/2. The

first part is the truth table of a function f : {0, 1}m → {0, 1} over m
def
= log(n/2) bits. The second

part is a sequence x1, . . . , xm of strings in {0, 1}n/2m. Andreev’s function is now defined by

AndN (f, x1, . . . , xm)
def
= (f � ⊕ n

2m
)(x1, . . . , xm).

Proof of Theorem 1.1. It is well known that there are functions over m bits whose formula
complexity is at least 2m/ logm (see, e.g., [Juk12, Theorem 1.23]). We fix the input f : {0, 1}m →
{0, 1} of Andn to be such a function. Clearly, the formula complexity of Andn can only be decreased
by such a fixing. After the fixing, the function Andn is exactly the function f � ⊕ n

2m
. By our main

theorem, the formula complexity of the latter function is at least

2m−Õ(
√
m+logn) ·

( n

2m

)2
= n3−Õ(

√
logn).

Therefore, the formula complexity of Andn is at least n3−o(1), as required. �
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4 The f-Stage Lemma

In this section we prove the f -stage lemma. Before we restate the lemma, let us restate the definition
of a alive partial transcript.

Definition 3.3. Given a partial transcript π1 of Π and Z ∈ Z, we say that π1 is `-alive with respect
to Z if L(Aπ1,Z ×Bπ1,Z) ≥ 2`. We say that π1 is (`, α)-alive if it is `-alive with respect to α fraction
of the Z’s, i.e., if

Pr
Z∈Z

[
L(Aπ1,Z × Bπ1,Z) ≥ 2`

]
≥ α.

We say that π1 is alive if it is (` = C ·
√
m · logC m,α = 2−2m)-alive (where C is some large constant

to be fixed later).

Lemma 3.8 (f -stage lemma). Let Π be a protocol for KWf�⊕n of depth d. Then, there exist at

least L(f)/
(

2Õ(
√
m) · d

)
alive partial transcripts π1 of Π, none of them is an ancestor of another.

For the rest of this section, we fix Π to be a protocol for KWf�⊕n . Let `
def
= C ·

√
m · logC m

be the parameter from the definition of “alive”. We will prove that Π has at least L(f)/O(2` · d2)
partial transcripts π1 are alive, none of them is an ancestor of another.

This section is organized as follows: We start with a motivating discussion for the proof in
Section 4.1. Next, in Section 4.2, we prove the f -stage lemma based on a combinatorial lemma,
which is then proved in Section 4.3. Finally, in Section 4.4, we state and prove a generalization of
the f -stage lemma, which will be used in Section 8 below to prove the average-case version of the
main theorem.

4.1 Motivation

The basic intuition for the f -stage lemma is the following: Recall that for every product of edges Z ∈
Z, there is copy of KWf that is embedded in KWf�⊕n , obtained by mapping inputs a and b for

KWf into the inputs X
def
= Za and Y

def
= Zb for KWf�⊕n .

Now, suppose that we choose a uniformly distributed Z ∈ Z and some inputs a and b according

to some (unspecified) distribution, and then we run the protocol Π on inputs X
def
= Za and Y

def
= Zb

until it transmits log L(f) − ` bits. Let π1 be the resulting transcript. Intuitively, since Π only
transmitted log L(f) − ` bits in π1, the players must still transmit at least ` bits in order to
solve KWf . On the other hand, since log L(f)− ` ≤ 2m, the protocol has revealed at most 2m bits
of information on Z. Therefore, we expect that after transmitting π1, the players will still be “` bits
far” from solving the copy KWf for at least 2−2m fraction of the Z’s — and this is roughly the
definition of π1 being alive.

The above intuitive argument can be formalized, and it shows that there exists at least one
alive transcript π1 of length log L(f)− `. However, we want to prove something stronger: we want
to prove that there exist many alive transcripts π1 — specifically, we wish to prove that there are
about L(f)/2` such transcripts. It turns out that this claim is more difficult to prove. To see why,
it is useful to consider the following simpler version of the f -stage lemma, which refers to KWf

rather than KWf�⊕n :

“Lemma”. Let Πf be a protocol that solves KWf . Then, there exist L(f)/2` partial tran-
scripts πf of Πf whose corresponding rectangle Aπf ×Bπf satisfies L(Aπf ×Bπf ) ≥ 2`, none of them
is an ancestor of another.
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It turns out that this “lemma” is false. To see why, consider the protocol Πf for KWf in which
Alice sends Bob the unary representation of her input a — in other words, Alice views a as a
number and sends the string 1a0 to Bob. After receiving Alice’s message, Bob knows a coordinate i
such that ai 6= bi and sends it to Alice using logm bits. It is now easy to see that every partial
transcript π of the form 1t0 satisfies

L(Aπ × Bπ) ≤ m� 2`.

Therefore, the only partial transcripts πf for which L(Aπf ×Bπf ) ≥ 2` are those of the form 1t for
some t ∈ N. However, it is obvious that we cannot find even two such transcripts such that neither
of them is an ancestor of the other, and therefore the claim is false.

A notable feature of the counterexample Πf above is that it is very unbalanced; in particular,
its depth is more than 2m. It turns out that a variant of the above lemma holds if we consider only
protocols Πf that are not too deep. Specifically, we have the following result.

Lemma 4.1. Let Πf be a protocol of depth d that solves KWf . Then, there exist

L(f)

2 · (d+ 1) · 2`

partial transcripts πf of Πf whose corresponding rectangle Aπf × Bπf satisfies L(Aπf × Bπf ) ≥ 2`,
none of them is an ancestor of another.

As far as we know, Lemma 4.1 is new, and we believe that it is interesting in its own right.
In order to go from Lemma 4.1 to the f -stage lemma, we first observe that the only property of
protocols that Lemma 4.1 uses is the fact that the protocol size L(·) is a sub-additive measure. We
therefore generalize Lemma 4.1 to a general lemma about sub-additive measures on trees:

Definition 4.2. Given a rooted binary tree T = (V,E), we say that φ : V → N is a sub-additive
measure on T if for every vertex u with children v and w in T it holds that φ(u) ≤ φ(v) + φ(w).

Lemma 4.3. Let T = (V,E) be a rooted binary tree with root r and depth d, and let φ be a sub-
additive measure on T . Suppose that there is some t0 ∈ N such that φ(l) ≤ t0 for every leaf l of T .
Then, for every t ∈ N such that t ≥ t0 there are at least⌊

φ(r)

2 · (d+ 1) · t

⌋
vertices v with φ(v) ≥ t, none of which is the ancestor of another.

Lemma 4.1 is a special case of Lemma 4.3 where the tree T is the protocol Πf , and where the
sub-additive measure φ is defined by

φ(π)
def
= L(Aπ × Bπ).

Now, in order to prove the f -stage lemma, we apply Lemma 4.3 to the protocol Π with a different
sub-additive measure. This measure takes into account both the complexity of rectangles of the
form Aπ1,Z ×Bπ1,Z and the number of Z’s. We can therefore obtain many transcripts π1 for which
L(Aπ1,Z × Bπ1,Z) is large for many of the Z’s, as required by the f -stage lemma.

We prove the f -stage lemma from Lemma 4.3 in Section 4.2, and then prove Lemma 4.3 in
Section 4.3.
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4.2 Proof of the f-stage lemma

Let us view Π as a tree, and its partial transcripts as vertices. We define the following measure
on Π:

φ(π)
def
= EZ [L(Aπ,Z × Bπ,Z)] .

where the expectation is with respect to a uniformly chosen Z ∈ Z. This measure is sub-additive
since for every fixed Z, the measure L(Aπ,Z × Bπ,Z) is sub-additive. Furthermore, it holds that:

• φ assigns L(f) to the root of Π.

• For every leaf π of Π, it holds that φ(π) ≤ 1. The reason is that a leaf π must solve
KWf�⊕n , and in particular must solve KWf with respect to any Z that can reach it. Hence,
L(Aπ,Z × Bπ,Z) ≤ 1.

We now apply Lemma 4.3 to Π and φ with t = 2 · 2`, and we get that there are at least

L(f)

2 · (d+ 1) · 2 · 2`
=

L(f)

O(d · 2`)

partial transcripts π1 such that φ(π1) ≥ 2 · 2`, none of them is an ancestor of another. We show
that every such transcript π1 is alive, and this will conclude the proof.

Let π1 be partial transcript such that φ(π1) ≥ 2 · 2`. In other words, it holds that

EZ∈Z [L(Aπ,Z × Bπ,Z)] ≥ 2 · 2`.

We now apply a standard averaging argument as follows. Since for any Z it holds that L(Aπ,Z ×
Bπ,Z) ≤ L(f), there must be at least 2`/L(f) fraction of Z’s for which L(Aπ,Z×Bπ,Z) ≥ 2` (otherwise
the expectation cannot reach 2 · 2`). Since 2`/L(f) > 2−2m we conclude that π1 is (`, 2−2m)-alive,
as required.

4.3 Proof of Lemma 4.3

Proof. Fix t ∈ N. We can assume that φ(r) ≥ 2 · (d + 1) · t since otherwise there is nothing to
prove. We say that a vertex v is a maximal vertex if φ(v) ≤ 2 · t, and φ assigns to its parent a
number that is greater than 2 · t. We claim that T has at least φ(r)/(2 · t) maximal vertices: To
see it, observe that there is a maximal vertex on every path from the root r to a leaf (since φ takes
value t0 at the leaves and at least 2 · (d+ 1) · t > 2 · t at the root). Hence, by the sub-additivity, if
we denote by M the set of maximal vertices, we get that

φ(r) ≤
∑
v∈M

φ(v) ≤ 2 · t · |M | .

This implies that |M | ≥ φ(r)/(2 ·t), as required. We say that a maximal vertex v is good if φ(v) ≥ t,
otherwise we say it is bad. We will prove that at least 1/(d + 1) fraction of the maximal vertices
are good, and this will imply the required result.

Let T ′ be the tree obtained by trimming T at maximal vertices — that is, for every maximal
vertex v, we remove all the descendants of v and leave v as a leaf of T ′. From now on, we refer to
maximal vertices as leaves (since they are leaves of T ′). In the new terminology, we wish to prove
that at least 1/(d + 1) fraction of the leaves of T ′ are good. We will prove it by constructing a
d-to-1 mapping from the bad leaves to the good leaves. In order to construct this mapping, we use
the following claim.
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Claim 4.4. Every internal node of T ′ has at least one good leaf as a descendant.

Proof. Fix an internal node u. Clearly, u has some descendant v that has two leaves as children.
Then, v is not a leaf, and therefore φ(v) > 2 · t. Therefore, at least one of the children of v must
have measure at least t by the sub-additivity. This child of v is a good leaf that is a descendant
of u, as required. �

Now, we define the mapping from the bad leaves to the good leaves as follows: Let vbad be a bad
leaf, and let u be the parent of vbad. Then, we map vbad to some arbitrarily chosen good leaf vgood

that is a descendant of u — such a leaf vgood exists by the above claim.
We conclude the proof by showing that this mapping is d-to-1. Fix a good leaf vgood. Then,

all the bad leaves that are mapped to vgood are direct children of the ancestors of vgood. Since T
is of depth d, it follows that vgood has at most d ancestors, and therefore there are at most d bad
leaves that are mapped to vgood. It follows that at least 1/(d + 1) fraction of the leaves are good,
as required. �

Remark 4.5. The above proof of Lemma 4.3 is an improved and simplified version of our original
proof. This version was suggested to us by Osamu Watanabe and Masaki Yamamoto.

4.4 Generalized f-stage lemma

In this section, we prove a generalization of the f -stage lemma, that will be used in Section 8
below to prove the average-case version of the main theorem. While the f -stage lemma applies
to protocols Π that solve KWf�⊕n , the generalization applies to protocols that only solve a sub-
rectangle X×Y of KWf�⊕n , provided that X×Y has many “hard” f -rectangles. Recall that given
a sub-rectangle X×Y of KWf�⊕n and a product of edges Z, the f -rectangle of X×Y with respect
to Z is the rectangle A× B defined by:

A def
=

{
a ∈ f−1(0)|Za ∈ X

}
B

def
=

{
b ∈ f−1(1)|Zb ∈ Y

}
.

We have the following result.

Lemma 4.6 (generalized f -stage lemma). Let s ∈ N. Let X × Y be a sub-rectangle of KWf�⊕n
such that for at least 2−m fraction of the Z’s, the f -rectangle A × B of X × Y with respect to Z
satisfies L(A × B) ≥ s. Let Π be a protocol for KWX×Y of depth d. Then, there exist at least
s/O(2` · d) alive partial transcripts π1 of Π, none of them is an ancestor of another.

Proof. Let Z ′ be the set of Z’s for which the f -rectangle A × B of X × Y with respect to Z
satisfies L(A× B) ≥ s. As in the proof of the f -stage lemma in Section 4.2, we apply Lemma 4.3
to Π and φ where

φ(π)
def
= EZ∈Z′ [L(Aπ,Z × Bπ,Z)] .

We can lower bound the value that φ assigns to the root of Π by s, and upper bound each leaf by
1. We apply the lemma with t = 2 · 2`. We thus obtain that there are at least

s

O(d · 2`)

partial transcripts π1 with φ(π1) ≥ 2 · 2`.
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We now apply an averaging argument as before. Since for any Z ∈ Z ′ it holds that L(Aπ,Z ×
Bπ,Z) ≤ L(f), there must be at least 2`/L(f) fraction of Z’s in Z ′ for which L(Aπ,Z × Bπ,Z) ≥ 2`

(otherwise the expectation cannot reach 2`). Since 2`/L(f) > 2−m we conclude that L(Aπ,Z ×
Bπ,Z) ≥ 2` for 2−m fraction of Z ∈ Z ′ which is at least 2−2m fraction of Z. So π1 is (2`, 2−2m)-alive
as required. �

5 The Parity-Stage Lemma

In this section, we prove the parity-stage lemma, restated next. It is instructive to compare this
proof to the proof of the lower bound for KW⊕n in Section 2.5.

Lemma 3.7. Let Π2 be a protocol that solves KWf�⊕n on a t-almost hard distribution (X,Y ) with
probability 1. Then, Π2 has at least L(⊕n)/22t transcripts.

Proof. The basic idea of the proof is similar to that of the lower bound for KW⊕n in Section 2.5:
At the end of the protocol, Alice and Bob must learn an axis ji for some i ∈ [m] − R, since the
matrices X and Y differ only such axes. On the other hand, at the beginning of the protocol each
of them knows at most t bits on each axis ji, due to the definition of an almost hard distribution.
Therefore, by the end of the protocol, each of the players has to learn at least log n − t bits of
information, and the protocol must transmit at least 2 log n − 2t bits in total. The difference
between this proof an the proof in Section 2.5 is that in the current proof, the players may choose
which axis ji they will learn among multiple options, and this complicates the argument a bit.
Details follow.

Assume, for the sake of contradiction, that there is a protocol Π2 that solves KWf�⊕n on a
t-almost hard distribution (X,Y ) and is too efficient, i.e., has less than L(⊕n)/22t transcripts. Let
π2 = Π2(X,Y ) be the (random) transcript of Π2 when Alice and Bob get X and Y as inputs. By
assumption, the support of π2 is of size less than L(⊕n)/22t = n2/22t, and therefore

I(π2 : X,Y ) ≤ H(π2) < 2 log n− 2t.

On the other hand, by Fact 2.19 it holds that

I(π2 : X,Y ) ≥ I(π2 : X|Y ) + I(π2 : Y |X).

Hence, at least one of the terms on the right-hand side is smaller than log n − t. Without loss of
generality, assume that it is I(π2 : Y |X). It thus holds that

log n− t > I(π2 : Y |X) = H(π2|X)−H(π2|X,Y ) = H(π2|X),

where the last equality holds since X and Y determine π2. Hence, there exists some specific X∗

such that H(π2|X∗) < log n − t. Furthermore, since entropy is an upper-bound on min-entropy
(Fact 2.18), it follows that H∞(π2|X∗) < log n− t. Therefore, there exists a specific transcript π∗2
such that log 1

Pr[π∗2 |X∗]
< log n− t or in other words,

Pr [π∗2|X∗] >
2t

n
. (2)

Suppose that this transcript π∗2 ends by outputting (i∗, j∗). Assuming the protocol solves KWf�⊕n ,
this means that for all X,Y ’s consistent with π∗2, it holds that Xi∗,j∗ 6= Yi∗,j∗ .
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Now, let R ⊆ [m] be the set whose existence is guaranteed by the definition of an almost-hard
distribution. We consider two cases, i∗ ∈ R and i∗ /∈ R, and show that in both cases there is a
non-zero probability that Xi∗,j∗ = Yi∗,j∗ conditioned on π∗2, thus obtaining a contradiction to the
correctness of the protocol. Suppose first that i∗ ∈ R. In this case, it holds that Xi∗ = Yi∗ with
probability 1. In particular, it follows that Xi∗,j∗ = Yi∗,j∗ , as required.

Next, suppose that i∗ /∈ R. This means that there is a random coordinate ji∗ such that either
Xi∗ = Yi∗ , or Xi∗ and Yi∗ differ only on ji∗ . Moreover, it holds that

H∞(ji∗ |X∗) ≥ log n− t,

and in particular,

Pr [ji∗ = j∗|X∗] ≤ 2t

n
. (3)

By combining Inequalities 2 and 3, it holds that

Pr [ji∗ = j∗|X∗, π∗2] < 1.

The latter inequality implies that conditioned on X∗ and π∗2, the event “ji∗ 6= j∗” has non-zero
probability. Now, observe that in this event it must hold that Xi∗,j∗ = Yi∗,j∗ , since ji∗ is the only
coordinate on which Xi∗ and Yi∗ may differ. We conclude X∗i∗j∗ = Y ∗i∗j∗ with non-zero probability
and this contradicts the correctness of the protocol. �

6 Technical tools

In this section we describe two technical tools that may be of independent interest.
The first is an averaging argument for min-entropy. Basically, it says that if we reveal t � m

bits of information on an m-tuple, then on most elements almost no information was revealed.
The second tool, which we call fortification, is a way to relate the information transmitted

between Alice and Bob to the communication complexity of the residual problem. This is important
because some of the steps we take in the proof of the main lemma reveal information to Alice and
Bob, and we need to make sure that this does not decrease the complexity of the problem by too
much.

6.1 An averaging argument for min-entropy

In our proof of the main lemma, we would like to say that if Alice and Bob communicated a small
amount of information on the average row, then they communicated a small amount of information
on most rows. This requires some sort of an averaging argument for information. Such an averaging
argument is easy to prove for entropy, and was proved by [EIRS01] for an information measure called
“predictability”. In this section, we prove such an averaging argument for min-entropy.

On the high level, the averaging argument says that if at most r bits of information were
communicated on a tuple (u1, . . . , um) of random variables, then for every k ≥ 1, at most r

k bits
of information were communicated on all but k of the random variables. As a warm-up, we first
prove the following weak version of our averaging argument. We note that the following proof is
similar to the proof of [EIRS01], and is also in the spirit of standard arguments from the literature
on extractors.

Lemma 6.1 (Weak averaging argument for min-entropy). Let U be some finite universe, and let
u = (u1, . . . , um) be a tuple of random variables taking values in U such that H∞(u) ≥ m log |U|−r.
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Then, for every k ≥ 1, there exists a set R ⊆ [m] of size at most k, and an event E ⊆ Um of
probability at least |U|−k, such that for every i ∈ [m]−R it holds that

H∞(ui|E) ≥ log |U| − r

k
.

Proof. In what follows, for every S ⊆ [m] we denote by uS the tuple of ui’s that belong to S. We
construct the set R and the event E iteratively. We start with R = ∅ and E = Um. Then, in each
iteration, if there is some i ∈ [m]−R that violates the above requirement, we add it to the set R.
More specifically, if i violates the requirement, then there is some specific value u∗i such that

Pr [u∗i |E] ≥ 2r/k

|U|
.

Then, we add i to R, and add the condition ui = u∗i to the event E (i.e., we set E to E ∩
{u′ : u′i = u∗i }). The process stops when there is no i ∈ [m]−R that violates the requirement.

It remains to prove that |R| ≤ k. To this end, we prove that the following invariant is maintained
throughout the iterations:

H∞(u[m]−R|E) ≥ (m− |R|) · log |U| − r +
r

k
· |R| .

This will imply the required upper bound on |R|, since clearly the left-hand side cannot exceed
(m− |R|) · log |U|.

We prove that the invariant is maintained by induction. First, note that it holds trivially when
the process starts, i.e., when R = ∅ and E = Um. Next, suppose that the invariant holds at the
beginning of some iteration, and that in this iteration we add a coordinate i to R. Then, for every
assignment u∗[m]−(R∪{i}) ∈ U

[m]−(R∪{i}), it holds that

Pr
[
u[m]−(R∪{i}) = u∗[m]−(R∪{i})|E, ui = u∗i

]
=

Pr
[
u[m]−(R∪{i}) = u∗[m]−(R∪{i}) and ui = u∗i |E

]
Pr [ui = u∗i |E]

≤ 2−[(m−|R|)·log|U|−r+ r
k
·|R|]/Pr [ui = u∗i |E] (4)

≤ 2−[(m−|R|)·log|U|−r+ r
k
·|R|]/2−(log|U|−r/k) (5)

= 2−[(m−|R|−1)·log|U|−r+ r
k
·(|R|+1)],

where Inequality 4 holds due to the induction hypothesis, and Inequality 5 holds since i violates
the requirement. This implies that

H∞(u[m]−(R∪{i})|E, u∗i ) ≥ (m− |R ∪ {i}|) · log |U| − r +
r

k
· |R ∪ {i}| ,

as required. Hence, it holds that |R| ≤ k when the process ends. It is now easy to see that when

the process ends, the probability of E is at least
(

2r/k

|U|

)k
≥ |U|−k. The result follows. �

The reason we say that the above lemma is weak is because it only provides a lower bound
of |U|−k on the probability of the event E, which is very small when U is large. Intuitively, this
means that in order to use this lemma, we need to reveal a lot of information to Alice and Bob.
We therefore prove the following stronger version of the lemma that gives a lower bound of m−O(k),
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which is better when m is much smaller than U , as is the case in our application. To the best of
our knowledge, this stronger version of the lemma is new.

The basic idea of the proof is the following: whenever a coordinate i violates the requirement,
it is because there was some “heavy” value u∗i . In the above proof, we resolved this situation by
conditioning on ui = u∗i , but this event may have a very low probability. In order to condition
on an event with a higher probability, we consider two cases: If the heavy values, taken together,
have relatively high probability, then we condition on the event that ui takes a heavy value and
add i to R. If, on the other hand, the heavy values, taken together, have low probability, then we
condition on ui not taking a heavy value, and do not add i to R — hopefully, this will resolve the
issue, because after discarding the heavy values, ui will satisfy the requirement. This idea works,
except for two minor issues:

• When we condition on i not taking a heavy value, this conditioning may cause new values
to become heavy, even if they were not heavy before. This may get us into a “vicious cycle”
of discarding values. In order to resolve this issue, whenever we discard heavy values, we
increase the threshold that determines which values are considered heavy, so no new heavy
values can be created immediately.

• When we condition ui on any event — whether it is taking a heavy value or not taking a
heavy value — it may cause new values to become heavy for another random variable ui′ .
This may get us into a different “vicious cycle”, in which we condition ui, then condition ui′ ,
then condition ui again, etc. In order to resolve this issue, we choose the different parameters
such that ui may cause new heavy values for another coordinate ui′ only if ui was conditioned
on taking a heavy value. However, when ui is conditioned on taking a heavy value, it is added
to R, and thus will not be selected again. Thus, the “vicious cycle” cannot happen.

We turn to provide the formal lemma and proof.

Lemma 6.2 (Averaging argument for min-entropy). Let U be some finite universe, and let u =
(u1, . . . , um) be a tuple of random variables taking values in U such that H∞(u) ≥ m log |U| − r.
Then, for every k ≥ 1, there exists a set R ⊆ [m] of size at most k, and an event E of probability
at least 1

4 ·m
−2k, such that for every i ∈ [m]−R it holds that

H∞(ui|E) ≥ log |U| − r + 4

k
− 2 · logm− 2.

Proof. For convenience, we denote

τ
def
= log |U| − r + 4

k
− 2 · logm,

that is, τ is the threshold of the lemma except for the additive term of −2.
We construct the set R and the event E iteratively. We start with R = ∅ and E = Um. In each

iteration, we select a coordinate i ∈ [m] and do something with it. We describe a single iteration:
Suppose that there is a coordinate i ∈ [m] −R that has been chosen in p previous iterations and
that satisfies

H∞(ui|E) ≤ τ + log(1− 1

m
)p.

Then, we select the coordinate i (the right-hand side is going to be the threshold that controls
which values are considered “heavy”). By assumption, there exist values u∗i such that

Pr [u∗i |E] ≥ 2−τ/

(
1− 1

m

)p
.
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We define those values to be our “heavy values”. Let E′ be the event that ui takes a heavy value.
We consider two cases:

• If Pr [E′|E] ≥ 1
m2 , then we set E = E ∩ E′ and add i to R.

• Otherwise, we set E = E − E′.

The following claim deals with the issues from the discussion above. Specifically, it shows that we
chose the parameters in a way such that “new heavy values” can be created only by the first case
above but not by the second case.

Claim 6.3. The second case above cannot occur twice for the same coordinate i without the first
case occurring in between (for some index).

Proof. Suppose otherwise. This means that there are some coordinate i and numbers h1 ≤ h2

such that the second case occurred for i in both the h1-th and h2-th iterations, and the first case did
not occur for any coordinate between those two iterations. Without loss of generality, we choose
i, h1, h2 such that h2− h1 is minimal among all the triplets (i, h1, h2) that satisfy those conditions.

Let p be the number of iterations in which i has been chosen before the h1-th iteration. Let
E1 and E2 be the event E at the h1-th and the h2-th iterations respectively. By assumption,
only the second case happened for all the coordinates between those two iterations, and all those
coordinates have been chosen at most once (because we assumed h2− h1 is minimal). This implies
that there have been at most m iterations between the h1-th and h2-th iterations, and in each of
those iterations, the second case occurred. Now, observe that every time the second case occurs,
the probability of E is multiplied by a factor that is at least 1− 1

m2 . Therefore,

Pr [E2|E1] ≥
(

1− 1

m2

)m
≥ 1− 1

m
.

Let E′1 be the event E′ at the h1-th iteration, and observe that E2 ⊆ E1 − E′1. Now, for every
specific choice u∗i of ui in E1 − E′1, it holds that

Pr [u∗i |E1] < 2−τ/

(
1− 1

m

)p
.

Therefore, for every u∗i it holds that

Pr [u∗i |E2] =
Pr [u∗i ∧ E2|E1]

Pr [E2|E1]

≤ Pr [u∗i |E1]

Pr [E2|E1]

<
2−τ/

(
1− 1

m

)p
1− 1

m

= 2−τ/

(
1− 1

m

)p+1

.

But this means that i could not have been selected at the h2-th iteration, which is a contradiction.
�
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Observe that the first case cannot occur more than m times, and thus, combined with the latter
claim, we get that the total number of iterations is at most m2. In particular, the second case
cannot happen for a coordinate i more than m times. Therefore, when the process terminates,
every i ∈ [m]−R has been selected at most m times (since if i /∈ R, the first case never occurred
for it). This implies that, when the process terminates, it holds for every i ∈ [m]−R that

H∞(ui|E) ≥ τ + log(1− 1

m
)m

≥ τ − 2,

where the second inequality holds for sufficiently large m. This means that every i ∈ [m] − R
satisfies the requirement of the lemma.

We turn to upper bounding the size of the set R. Again, we do it by proving that an invariant
is maintained throughout the iterations. Formally, we prove the following.

Claim 6.4. At each iteration, the following invariant is maintained:

H∞(u[m]−R|E) ≥ (m− |R|) · log |U| − r +
r + 4

k
· |R| − 4 · s

m2
,

where s is the total number of times the second case has occurred before this iteration.

Proof. We prove the claim by induction. Before the first iteration, when |R| = ∅, the claim holds
by the assumption of the lemma. Fix an iteration, let i be the coordinate that is selected in this
iteration, and let s be the number of times the second case occurred before this iteration. We
consider each of the two cases that may occur separately.

Suppose that the first case occurred, so Pr [E′|E] ≥ 1
m2 . Then, for every assignment u∗[m]−(R∪{i}) ∈

U [m]−(R∪{i}) the following holds:

Pr
[
u∗[m]−(R∪{i})|E ∩ E

′
]

=
Pr
[
u∗[m]−(R∪{i}) and E′|E

]
Pr [E′|E]

≤ m2 · Pr
[
u∗[m]−(R∪{i}) and E′|E

]
= m2 ·

∑
u∗i is a heavy value

Pr
[
u∗[m]−(R∪{i}) and u∗i |E

]
≤ m2 ·

∑
u∗i is a heavy value

2−H∞(u[m]−R|E)

≤ m2 · 2τ · 2−H∞(u[m]−R|E) (6)

= m2 · 2log|U|−(r+4)/k

m2
· 2−H∞(u[m]−R|E)

≤ 2log|U|−(r+4)/k · 2−
[
(m−|R|)·log|U|−r+ r+4

k
·|R|− 4·s

m2

]
(7)

= 2
−
[
(m−|R|−1)·log|U|−r+ r+4

k
·(|R|+1)− 4·s

m2

]
,

where Inequality 6 follows from the fact that there can be at most 2τ heavy values, and Inequality 7
follows from the induction assumption. It follows that

H∞(u[m]−(R−{i})) ≥ (m− |R ∪ {i}|) · log |U| − r +
r + 4

k
· |R ∪ {i}| − 4 · s

m2
,
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as required.
Suppose now that the second case occurred. Then, for every assignment u∗[m]−R ∈ U

[m]−R it
holds that

Pr
[
u∗[m]−R|E − E

′
]
≤

Pr
[
u∗[m]−R|E

]
Pr [E − E′|E]

≤ 1

1− 1
m2 ·

Pr
[
u∗[m]−R|E

]
≤

(
1 +

2

m2

)
· Pr

[
u∗[m]−R|E

]
≤ exp(

2

m2
) · Pr

[
u∗[m]−R|E

]
≤ 2−H∞(u[m]−R|E)+ 4

m2

≤ 2
−
[
(m−|R|)·logn−r+ r+1

k
·|R|− 4·(s+1)

m2

]
,

where the last inequality follows from the induction assumption. It follows that

H∞(u[m]−R) ≥ (m− |R|) · log n− r +
r + 4

k
· |R| − 4 · (s+ 1)

m2
,

as required. �

We can now bound the size of the setR: since it must hold thatH∞(u[m]−R|E) ≤ (m−|R|)·log n,
and since s ≤ m2, it follows from the last claim that |R| ≤ k, as required. It remains to lower
bound the probability of the event E. The probability of E decreases by a factor of 1

m2 whenever
the first case occurs, and by a factor of 1 − 1

m2 whenever the second case occurs. The first case
occurs at most k times, and the second case occurs at most m2 times. Hence, the probability of E
is at least (

1

m2

)k
· (1− 1

m2
)m

2 ≥ 1

4
·m2k,

as required. �

6.2 Fortification

In the proof of the main lemma, we will want to relate the information that Alice and Bob transmit
about their inputs to the reduction in the complexity of the communication problem. For example,
we will want to argue that if Alice and Bob transmitted only one bit of information, then the
communication complexity of the problem was decreased by at most one bit (or, alternatively, that
the protocol size of the problem was decreased by a factor of at most two).

However, this is not always true. For example, consider a KW relation KWA×B (where A, B ⊆
{0, 1}m are disjoint), and suppose that the first bit of all the strings in B is 0, while in A, the
first bit is 0 for exactly half of the strings. In this case, if Alice tells Bob that the first bit of her
input is 1, she only tells him only one bit of information, but the communication complexity of the
problem drops to zero — since now Alice and Bob know that they differ on the first bit.

We say that a rectangle A × B is fortified5 (with respect to a given protocol Π) if when Alice

5The term “fortified” was coined by Moshkovitz [Mos14] in order to denote two-prover games that remain hard
when restricted to sub-rectangles. She also proved a fortification lemma that transforms two-prover games into fortified
ones. While our notion of fortification is very different from hers on the technical level, there is a conceptual similarity
between the two notions.
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and Bob speak, the complexity is decreased in proportion to the information transmitted. More
formally, we define fortified rectangles as follows.

Definition 6.5. We say that a rectangle A× B is ρ-fortified on Alice’s side if for every Ã ⊆ A it
holds that

L(Ã × B)

L(A× B)
≥ ρ ·

∣∣∣Ã∣∣∣
|A|

.

Similarly, we say that A× B is ρ-fortified on Bob’s side if the same holds for subsets B̃ ⊆ B.

In this section, we show that even though there are rectangles A × B that are not fortified,
every rectangle has a fortified sub-rectangle with similar complexity. For example, in the non-

fortified rectangle A × B described above, we could take the sub-rectangle A′ × B where A′ def
=

{a ∈ A : a1 = 0}. More generally, we have the following result.

Lemma 6.6 (Fortification lemma). Let A,B ⊆ {0, 1}m be disjoint sets. There exists a subset
A′ ⊆ A such that A′ × B is 1

4m -fortified on Alice’s side, and such that L(A′ × B) ≥ 1
4 · L(A × B).

An analogous statement holds for Bob’s side.

Remark 6.7. Although Definition 6.5 and Lemma 6.6 are phrased in terms of Karchmer-Wigderson
relations, they work equally well for any communication problem.

We begin our proof of the fortification lemma by proving the following proposition, which is
almost what we want.

Proposition 6.8. Let A,B ⊆ {0, 1}m be disjoint sets. For every 0 < ρ < 1, there exists A1 ⊆ A
such that

• for every Ã ⊆ A1 it holds that L(Ã×B)
L(A×B) ≥ ρ ·

|Ã|
|A| .

• L(A1 × B) ≥ (1− ρ) · L(A× B).

The same holds for B1 ⊆ B.

The reason that Proposition 6.8 is not exactly what we want is that in the first item, the denom-
inator on the right hand side is |A|, while it should be |A1| in order to satisfy the definition of
a fortified rectangle. This is problematic, since in our application we will be able to control the

ratio
|Ã|
|A1| , but we will have no way to control the ratio

|Ã|
|A| .

Proof of Proposition 6.8. We prove the proposition for A1 ⊆ A, and the proof for B1 ⊆ B is
analogous. Let Amax ⊆ A be a maximal set that satisfies

L(Amax × B) < ρ · |Amax|
|A|

· L(A× B). (8)

We choose A1
def
= A−Amax. Observe that it indeed holds that L(A1 × B) ≥ (1− ρ) · L(A× B) by

the sub-additivity of formula complexity. Now, suppose for the sake of contradiction that there is
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a set Ã ⊆ A1 such that L(Ã,B) < ρ · |Ã||A| · L(A,B). Then, this would imply that

L
(

(Ã ∪ Amax)× B
)
≤ L(Ã × B) + L(Amax × B)

< ρ ·

∣∣∣Ã∣∣∣
|A|
· L(A× B) + ρ · |Amax|

|A|
· L(A× B)

= ρ ·

∣∣∣Ã ∪ Amax

∣∣∣
|A|

· L(A× B),

where the first inequality holds by the sub-additivity of protocol size, and the second inequality
holds by our assumptions on Ã and Amax. It follows that Ã∪Amax is a set that satisfies Inequality 8
and that strictly contains Amax, thus contradicting the maximality of Amax. Hence, no such set Ã
exists. �

Remark 6.9. Consider again the example of a non-fortified rectangle A × B from the beginning
of this section. For this rectangle, the above proof would take Amax to be the set of strings a such
that a1 = 1. Thus, the set A′ would be the set of strings a in which a1 = 0, as required.

In order to prove the fortification lemma from Proposition 6.8, we need to replace the ratio
|Ã|
|A|

with the ratio
|Ã|
|A1| . To this end, observe that∣∣∣Ã∣∣∣

|A1|
=

∣∣∣Ã∣∣∣
|A|

/
|A1|
|A|

.

Hence, we could achieve our goal by controlling the ratio |A1|/ |A|. The following proposition
provides us the means to do so. Intuitively, this proposition is a form of “inverse fortification” —
it allows us to lower bound the density of a subset Ã in terms of its complexity.

Proposition 6.10. Let A,B ⊆ {0, 1}m be disjoint sets. For every c ≥ 1, there exists a subset
A0 ⊆ A such that for every Ã ⊆ A0 it holds that∣∣∣Ã∣∣∣

|A0|
≥

(
L(Ã × B)

L(A0 × B)

)c
, (9)

and such that
L(A0 × B) ≥ 2−m/c · L(A× B). (10)

Proof. We set A0 to be a minimal set that satisfies

|A0|
|A|
≤
(
L(A0 × B)

L(A× B)

)c
.

Observe that A0 indeed satisfies Inequality 9: otherwise, there would have been Ã ⊂ A0 that
satisfied ∣∣∣Ã∣∣∣

|A0|
<

(
L(Ã × B)

L(A0 × B)

)c
,
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and this would have implied that∣∣∣Ã∣∣∣
|A|

=

∣∣∣Ã∣∣∣
|A0|

· |A0|
|A|

<

(
L(Ã × B)

L(A0 × B)

)c
·
(
L(A0 × B)

L(A× B)

)c
=

(
L(Ã × B)

L(A× B)

)c
,

thus contradicting the minimality of A0. It remains to show that A0 ×B satisfies Inequality 10. It
holds that

|A0|
|A|
≤
(
L(A0 × B)

L(A× B)

)c
,

or in other words

L(A0 × B) ≥
(
|A0|
|A|

) 1
c

· L(A× B)

≥
(

1

2m

) 1
c

· L(A× B)

= 2−m/c · L(A× B),

as required. �

We are now ready to prove the fortification lemma.

Proof of Lemma 6.6. Let A,B ⊆ {0, 1}m be disjoint sets. Our goal is to find a subset A′ ⊆ A
such that A′ ×B is 1

4m -fortified on Alice’s side, and such that L(A′ ×B) ≥ 1
3 · L(A×B) (the proof

for Bob’s side is analogous). We start by applying Proposition 6.10 to A × B with c = m, thus
obtaining a subset A0 ⊆ A. Then, we apply Proposition 6.8 to A0×B with ρ = 1

2m , thus obtaining
a subset A1 ⊆ A0. Finally, we choose A′ to be A1.

We prove that A′ has the required properties. Observe that by Proposition 6.8, it holds that

L(A′ × B) ≥ (1− 1

2m
) · L(A0 × B) ≥ 1

2
· L(A0 × B),

and that by Proposition 6.10, it holds that

L(A0 × B) ≥ 1

2
· L(A× B).

Therefore,

L(A′ × B) ≥ 1

4
· L(A× B),

as required.
It remains to prove that A′ is 1

4m -fortified on Alice’s side. Let Ã ⊆ A′. By Proposition 6.8, it
holds that

L(Ã × B) ≥ 1

2m
·

∣∣∣Ã∣∣∣
|A0|

· L(A0 × B) ≥ 1

2m
· |A

′|
|A0|

·

∣∣∣Ã∣∣∣
|A′|
· L(A′ × B).
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Next, by Proposition 6.10, it holds that

|A′|
|A0|

≥
(
L(A′ × B)

L(A0 × B)

)m
≥
(

1− 1

2m

)m
≥ 1

2
.

Thus,

L(Ã × B) ≥ 1

4m
·

∣∣∣Ã∣∣∣
|A′|
· L(A′ × B).

The required result follows. �

7 Proof of the Main Lemma

In this section, we prove the main lemma, restated next.

Lemma 3.6 (Main Lemma). Let Π be a protocol for KWf�⊕n, and let π1 be a live partial transcript
of Π. Then, there exists a Õ(

√
m)-almost hard distribution that is distributed over Xπ1 × Yπ1.

Fix a protocol Π for KWf�⊕n , and let π1 be a live partial transcript of Π. Let Xπ1 ×Yπ1 be the
rectangle associated with π1. We would like to construct a t-almost hard distribution over Xπ1×Yπ1 ,

where t
def
= Õ(

√
m) and where the constant in the Big-O notation will be chosen to be sufficiently

large as to make our argument hold.

7.1 Basic idea

By the definition of π1 being alive, there is a set Zπ1 ⊂ Z, with |Zπ1 | ≥ 2−2m · |Z|, such that
for each Z ∈ Zπ1 , it holds that L(Aπ1,Z × Bπ1,Z) ≥ 2` where ` = C ·

√
m · logC m for some large

constant C to be determined later, and where

Aπ1,Z
def
=

{
a ∈ f−1(0)|Za ∈ Xπ1

}
Bπ1,Z

def
=

{
b ∈ f−1(1)|Zb ∈ Yπ1

}
.

Consider the following graph G: the graph G is a layered graph, and the three layers are Xπ1 , Zπ1 ,
and Yπ1 . A vertex X ∈ Xπ1 (respectively, Y ∈ Yπ1) is a neighbor of a vertex Z = (Z0, Z1) ∈ Zπ1
if and only if X = Za for some a ∈ f−1(0) (respectively, Y = Zb for some b ∈ f−1(1)). We define
the distribution (X,Y ) of G as the distribution that is sampled by picking a uniformly distributed
path X−Z−Y in G. While this distribution is not an almost-hard distribution, we will show that
there is a subgraph G′ of G such that the distribution of G′ is an almost-hard distribution.

Let us examine the properties of the distribution (X,Y ) of G more closely. Let Z denote the
vertex that is sampled by this distribution, and let j1, . . . , jm ∈ [n] be the axes of Z (i.e., ji is
the unique coordinate on which Z0

i and Z1
i differ). Then, for every i ∈ [m], it always holds that

either Xi = Yi, or that Xi and Yi disagree exactly on one coordinate, which is ji. Hence, in order
for (X,Y ) to be a t-almost hard distribution, it only needs to satisfy the property that for every
i ∈ [m], either that Xi = Yi with probability 1, or that for all specific choice X∗and Y ∗ of X and Y
respectively, it holds that

H∞(ji|X = X∗) ≥ log n− t
H∞(ji|Y = Y ∗) ≥ log n− t.
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This property would have been satisfied if Zπ1 = Z. In this case, j1, . . . , jm would have been
uniformly distributed over [n], and therefore all of them would have had min-entropy log n (con-
ditioned on either X or Y ). However, Zπ1 only constitutes 2−2m fraction of Z, and therefore the
min-entropy of some ji’s may be as low as log n− 2m. In order to resolve this issue, we apply the
averaging argument for min-entropy (Lemma 6.2), and conclude the min-entropy of all but

√
m of

the ji’s is at least about log n−O(
√
m). We refer to the

√
m rows in which the min-entropy of ji

is lower than log n−O(
√
m) as the revealed rows, and to the other rows as the non-revealed rows.

The non-revealed rows already satisfy what we need, so it remains to deal with the revealed
rows. Let R ⊆ [m] denote the set of revealed rows. We will make sure that Xi = Yi for every
i ∈ R. To this end, recall that X = Za and Y = Zb for some a ∈ f−1(0) and b ∈ f−1(1). We will
construct the graph G′ such that a and b always agree on the coordinates in R.

To see why this is possible, recall that conditioned on the choice of Z, the strings a and b
are taken from the rectangle Aπ1,Z × Bπ1,Z . Since π1 is alive with respect to Z, this means that
L(Aπ1,Z × Bπ1,Z) ≥ 2`. We claim that this means that a and b can be chosen such that a|R = b|R.
If this was not the case, i.e., if it was the case that a|R 6= b|R for all a ∈ Aπ1,Z and b ∈ Bπ1,Z , then
the complexity of Aπ1,Z ×Bπ1,Z would have been lower: Alice and Bob could have solved the game
by sending each other their values at R, and this protocol is of size at most 2O(|R|) < 2` (for an
appropriate choice of `). There are two more complications:

• It is not sufficient to show that there exists at least one choice of a and b such that a|R = b|R.
Rather, we need to show that there are many such choices — otherwise, forcing a and b to
agree on R would reveal too much information to Alice and Bob.
To this end, we process the graph as follows: we partition the strings a ∈ Aπ1,Z according to
a|R, and remove the classes that are too small. We do the same for Bπ1,Z . By choosing the
parameters appropriately, we can make sure that at most half of the strings in Aπ1,Z and Bπ1,Z
are removed in the latter process. We then use the fortification lemma (Lemma 6.6) to show
that the latter removal of strings did not decrease the complexity of Aπ1,Z × Bπ1,Z by too
much, and hence this complexity is still large. We now argue as before that since Aπ1,Z×Bπ1,Z
has large complexity, we can choose a class of Aπ1,Z and a class of Bπ1,Z that agree on R.
Finally, we observe that the classes we chose must be large, since all the small classes were
already removed. Hence, there are indeed many choices of a and b that agree on R.

• The above discussion assumed implicitly that conditioned on X, the vertex Z is distributed
uniformly over neighbors of X, and similarly for Y . This is may not always hold, but it does
hold if all the vertices Z have the same degree. Throughout the proof, we take steps to ensure
that the vertices Z have roughly equal degrees, and this will be good enough for our purposes.

7.2 A technical road-map

In the rest of this section, we describe the proof in detail. The proof follows the basic idea described
above, but along the way there are some technical issues that need to be resolved and careful
accounting that needs to be done. Therefore, we start by giving a “technical road-map” of the
proof, which explains the main steps, the issues that we deal with, and the considerations that
underly the accounting.
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Notation. In what follows, we will consider subgraphs of the graph G described above. Given
such a subgraph G0 and a vertex Z, we define the rectangle of Z in G0 by A0,Z ×B0,Z where

A0,Z
def
=

{
a ∈ f−1(0)|Za is a neighbor of Z in G0

}
B0,Z

def
=

{
b ∈ f−1(1)|Zb is a neighbor of Z in G0

}
.

In general, we will identify the edges that come out of Z with the elements of A0,Z and B0,Z . For
example, we may say that we remove a string from A0,Z and mean that we remove the corresponding
edge. We define the complexity of Z in G0 to be the protocol size of its rectangle, i.e., L(A0,Z×B0,Z).
Observe that in G, all the Z’s have complexity at least 2` by the assumption that π1 is alive.

Throughout the proof, we refer to the edges between Xπ1 and Z as the X-side of the graph or
as Alice’s side of the graph. Similarly, we refer to the edges between Yπ1 and Z as the Y-side or
as Bob’s side.

7.2.1 The main steps

The proof consists of five main parts:

1. We process Alice’s side, which means we remove vertices and edges in order to obtain some
desired properties. Along the way, we construct the set RX of revealed rows for the X-side,
i.e., the set of indices i ∈ [m] such that H∞(ji|X) is too small.

2. We process Bob’s side in a similar manner, thus obtaining the set RY of revealed rows for
the Y-side.

3. We force the X’s and Y ’s in the graph to agree on the set of revealed rows R def
= RX ∪RY .

4. We perform a clean-up step that removes all the vertices whose degree became too small, and
denote the resulting graph by G′.

5. We conclude by proving that the distribution of G′ is an almost-hard distribution, as required.

The most technical part is the processing of Alice’s side. It consists of four steps:

• Fortification: We fortify the the rectangle of each Z. This is done to make sure that the
following steps, which remove edges on Alice’s side, do not reduce the complexity of the Z’s
by too much. This results in a subgraph of G that we denote by GA1 (here, “A1” denotes
“first step on Alice’s side”).

• Regularization: As discussed above, throughout the proof we will need to guarantee that
the Z’s are roughly regular, i.e., that all the Z’s have roughly the same degree. We create this
property in this step, by taking a subset of the Z’s that have roughly the same degree on the
X-side in GA1, and discarding all the rest. We denote the resulting subgraph by GA2.

• Finding the revealed rows: For each X in GA2, we consider the distribution on axes
j1, . . . , jm that is induced by choosing a random neighbor Z of X. We observe that this
distribution has min-entropy which is at least m · log n − O(m), and apply the averaging
argument for min-entropy to this distribution (Lemma 6.2). This yields a set of revealed
axes RX of size

√
m, such that the min-entropy of each ji for i ∈ [m] − RX is at least

log n− Õ(
√
m).

Note that the averaging argument only says that the min-entropy of ji is large conditioned
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on some event EX . We therefore remove from the graph all the edges that are not consistent
with EX , for each X. In addition, note that the set RX may be different for each X. We now
choose the most popular set RX , denote it by RX, and discard all the X’s with a different
set. We denote the resulting subgraph by GA3.

• Removing the small classes: For each Z, consider its rectangle AA3,Z × BA3,Z in GA3.
We would like to partition the strings a ∈ AA3 into classes according to a|R, and remove the
small classes — as discussed above, this is done in order to make sure that when we force the
a’s and the b’s to agree on R, we will retain many a’s.
However, there is a small issue here that needs to be dealt with: at this point we do not
know yet the set R of revealed rows — we know the set RX of revealed rows for the X-side,
but we do not know yet the set RY of revealed rows for the Y-side. Therefore, we perform
this step of “removing the small classes” for every possible candidate for R. By choosing the
parameters appropriately, we can ensure that doing so does not remove too many a’s. We
denote the resulting subgraph by GA4.

The processing of Bob’s side is similar to that of Alice’s side, except that the step of removing the
small classes is a little simpler since at this point we know R. This processing creates corresponding
subgraphs GB1,GB2, GB3, GB4.

Next, we force the X’s and Y ’s to agree on the revealed rows as follows: For every Z in GB4, we
consider the rectangle AB4,Z ×BB4,Z . We claim that there must be a ∈ AB4,Z and b ∈ BB4,Z such
that a|R = b|R, or otherwise the complexity of AB4,Z ×BB4,Z would have been too small. We then
claim that a and b must belong to large classes of AB4,Z and BB4,Z respectively, since the small
classes have already been removed, and therefore there are many a’s and b’s such that a|R = b|R.
We now discard all the other a’s and b’s for every Z, thus creating a new subgraph Gagr.

The final step is the clean-up step. The reason that this step is needed is that each of the
previous steps removed some edges. This is problematic for two reasons: First, the degree of some
X’s may have become too small, in which case the min-entropy H∞(ji|X) may also become too
small, and the same goes for the Y ’s. Second, the degree of some Z’s may have become too small,
thus violating the rough regularity of the Z’s. In order to rectify those violations, we remove the
vertices whose degrees are too small. However, this removal may decrease the degrees of other
vertices, so we continue removing vertices until there are no more vertices whose degrees are too
small. By choosing the parameters appropriately, we can make sure that the process terminates
before the whole graph is deleted.

7.2.2 Issues and accounting

Retaining a large number of edges. Recall that at the end of the step of “finding the revealed
rows” on Alice’s side, we have for each X the property that for every i ∈ [m]−RX, it holds that

H∞(ji|X) ≥ log n− Õ(
√
m).

However, in the following steps, we remove vertices and edges from the graph, and this may destroy
this property. More specifically, after we remove edges from the graph, this property will continue
to hold for every X whose degree was reduced by a factor of at most 2Õ(

√
m), but may cease to

hold for X’s whose degree was reduced by more than that.
As explained above, we deal with this issue in the clean-up step by removing all the X’s whose

degree is too small, i.e., whose degree was reduced by a factor of more than 2Õ(
√
m). However, in

order for this solution to be effective, we need to make sure that the degree of most X’s is not too
small (or otherwise the clean-up may remove too many X’s).
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To this end, it suffices to show that the number of edges of Gagr on the X-side is at least 2−Õ(
√
m)

times the number of edges of GA3 on the X-side. In order to do so, we keep track of the number of
edges on the X-side throughout the proof and make sure that it does not decrease too much. The
same goes for the Y-side.

Retaining a large number of Z’s. When we perform the step of “finding the revealed rows”
on Alice’s side, we use the fact that in GA2, the distribution j1, . . . , jm has min-entropy at least

m · log(n)−O(m).

In order to show this lower bound on the min-entropy, we use the fact that the number of Z’s
in GA2 is at least 2−O(m) fraction of all the possible Z’s. The latter fact follows from the assumption
that π1 is alive, but we also need to make sure that it is not invalidated by the regularization step.
Therefore, when performing the regularization, we make sure that we did not remove too many Z’s.

Furthermore, since we also perform the step of “finding the revealed rows” on Bob’s side, we
also need to make sure that the number of Z’s in the graph GB2 is sufficiently large. To this end,
we keep track of the number of Z’s throughout the processing on Alice’s side and make sure that
we do not remove too many Z’s.

Interaction between the two sides of the graph. When we process Bob’s side, we remove
some of the Z’s in the regularization step and in the step of “removing the small classes”. However,
when we remove Z’s, it also causes the removal of edges on the X-side. Hence, we have to make
sure that those steps do not remove too many edges on the X-side.

To this end, we first make sure that those steps do not remove too many Z’s: in particular, we
make sure that after each step, we retain at least 2−Õ(

√
m) fraction of the Z’s. Then, we use the

fact that the Z’s are roughly regular on the X-side to deduce that we retained at least 2−Õ(
√
m)

fraction of the edges on the X-side.

Average degree vs. minimum degree. In many places throughout the proof, we will have a
lower bound on the average degree of vertices, but we will want this lower bound to hold for the
minimum degree, i.e., we will want it to hold for every vertex. For example, at the beginning of the
step of “finding the revealed rows” on Alice’s side, we know that the average X is connected to at
least 2−O(m) fraction of all the possible Z’s, but we will want it to hold for every X. Whenever we
encounter such a situation, we resolve the issue by removing from the graph all the vertices whose
degree is too small compared to the average degree. We will use the following fact to show that
this removal does not discard too many edges.

Fact 7.1. Let G0 = (U0∪V0, E0) be a bipartite graph, and denote the average degree of U0 by dU . If
we remove all the vertices of U0 whose degree is less than ε · dU , then we remove at most ε fraction
of the total number of edges.

Proof. By the definition of average degree, it holds that |E0| = dU · |U0|. The number of vertices
that we remove is at most |U0|, and each of them is connected to at most ε · dU edges. Hence, the
total number of edges we removed is at most ε · dU · |U0| = ε · |E0|, as required. �

We finally turn to present the full proof.
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7.3 Processing Alice’s side

Fortification. The first step we take in processing the graph on Alice’s side is fortifying the Z’s
on Alice’s side. For each Z, we apply the fortification lemma (Lemma 6.6) to the rectangle of Z
in G, namely Aπ1,Z × Bπ1,Z , thus obtaining a sub-rectangle AA1,Z × BA1,Z that is 1

4m -fortified on
Alice’s side (where BA1,Z = Bπ1,Z). We then replace Aπ1,Z×Bπ1,Z with AA1,Z×BA1,Z by removing
from G all the edges that correspond to strings in Aπ1,Z − AA1,Z . We denote the resulting graph
by GA1.

Regularization. Next, we make sure that all the vertices Z have roughly the same degree on
the X-side (i.e., have the same number of neighbors X). To this end, we partition the Z’s to
m + 1 classes, such that the Z’s in the i-th class has degree at least 2i−1 and less than 2i (for
1 ≤ i ≤ m+ 1). Let i be such that the i-th class is the class that contains a largest number of Z’s.
We remove from GA1 all the Z’s outside the i-th class, and denote the resulting graph by GA2 and
the resulting set of Z’s by ZA2.

Let dZ,X
def
= 2i. By definition, all the vertices Z in ZA2 have degrees between 1

2 · dZ,X and dZ,X.
Moreover, observe that GA2 retains at least 1

m+1 fraction of the Z’s. Since G originally had at

least 2−2m · |Z| vertices Z (and so did GA1), it follows that GA2 has at least 2−2m−log(m+1) · |Z|
vertices Z.

Finding the revealed rows. We turn to applying the averaging argument to the X’s in order
to find the revealed rows. However, we can only do so for X’s with sufficiently large degree. To
compute the average degree of the X’s we observe that each Z must be connected to at least one
vertex X, and therefore the average degree of the X’s is at least

|ZA2|
|Xπ1 |

≥ 2−2m−log(m+1) · |Z|
2m·n

=
2−2m−log(m+1) ·

(
2m·(n−1) · nm

)
2m·n

= 2−3m−log(m+1) · nm.

We remove from the graph all the X’s with degree less than 2−4m · nm. By Fact 7.1, we removed
less than half of the edges of the graph on the X-side.

Now, for each of the remaining X ′s, we perform the following steps. Let Z be a uniformly
distributed neighbor of X, and let j1, . . . , jm be the axes of Z. Observe that given X, there is a
one-to-one correspondence between Z and the sequence j1, . . . , jm. Thus, the fact that the degree
of X is at least 2−4m · nm implies that

H∞(j1, . . . , jm) ≥ m · log n− 4 ·m.

We apply the averaging argument for min-entropy (Lemma 6.2) to j1, . . . , jm with parameters
r = 4m and k =

√
m, thus obtaining a set RX of size

√
m and an event EX ⊆ [n]m of probability

at least 2−O(
√
m logm) = 2−Õ(

√
m) such that for every i ∈ [m]−RX it holds that

H∞(ji|EX) ≥ log n−O(
√
m).

Observe that the event EX is a set of tuples (j1, . . . , jm), each of which corresponds to an edge
going out of X. We remove all the edges of X that do not belong to EX . Note that we retain at
least 2−Õ(

√
m) fraction of the edges since the probability of EX is at least 2−Õ(

√
m).

Next, we partition the X’s according to their set RX , pick the class that is connected to the
largest number of edges, and remove all the X’s outside of this class. Let RX be the set RX of the
class that was picked, and denote by GA3 the resulting graph. There are

(
m√
m

)
= 2Õ(

√
m) classes
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so it is easy to see that after the removal we retain at least 2−Õ(
√
m) fraction of the edges, and

therefore GA3 retains at least 2−Õ(
√
m) fraction of the edges of GA2.

Summing up the discussion so far, the graph GA3 has the following property: Let X be a vertex
in GA3, let Z be a uniformly distributed neighbor of X in GA3, and let j1, . . . , jm be the axes of
the edges in Z. Then, for every i ∈ [m]−RX it holds that

H∞(ji) ≥ log n−O(
√
m). (11)

Removing small classes from the rectangles of the Z’s. The last step we perform is a
preparation toward forcing the a’s and the b’s of each Z to agree on the revealed rows — see the
discussion in Section 7.1 about the first complication. As explained there, for each Z, we would like
to partition its set of a’s according to their values at the revealed rows R, and remove the classes
of the partition that are too small.

However, we do not know yet what is the set R of revealed rows. Indeed, we know the set RX of
the revealed rows on Alice’s side, but we do not know yet the revealed rows on Bob’s side. In order
to resolve this issue, we define classes of edges for all the possible candidates for R, and remove the
small classes. Note that now the classes no longer form a partition of the a’s of Z, but it does not
matter for our argument.

Formally, we define a label to be a pair (R, λ) where R ⊆ [m] is a set of size 2
√
m that

contains RX, and λ ∈ {0, 1}R is an assignment of bits to R. There are only 2Õ(
√
m) possible labels.

We say that a string a ∈ {0, 1}m is consistent with the label (R, λ) if a|R = λ.
Next, we perform the following for each vertex Z in G: Let AA3,Z × BA3,Z be the rectangle

of Z in G3. For every possible label (R, r), define the class of (R, λ) to be the subset of all strings
a ∈ AA3,Z that are consistent with (R, λ). We say that a class is small if it contains less than

2−3·
√
m·logm fraction of the strings in AA3,Z . We now remove from AA3,Z every string a that belongs

to some small class. If new small classes are created by the latter removal, we remove them as well,
and repeat this process until no small classes remain. By the union bound, it is not hard to see
that this removes at most half of the strings in AA3,Z . Denote the resulting set by AA4,Z , and let

BA4,Z
def
= BA3,Z .

Finally, observe that the average degree of the Z’s on the X-side is at least 2−Õ(
√
m) ·dZ,X: After

the regularization, the average degree was at least 1
2 · dZ,X, and after finding the revealed rows and

removing the small classes we retained at least 2−Õ(
√
m) fraction of the edges. We now remove all

the Z ′s whose degree is less than half the average degree in order to maintain the property that all
the Z’s have roughly the same degree — in particular, after the removal, all Z’s will have degree
between 2−Õ(

√
m) · dZ,X and dZ,X. We denote the resulting set of Z’s by ZA4, and the resulting

graph by GA4.
Observe that GA4 retains quarter of the edges of GA3 on the X-side: The removal of the small

classes removed at most half of the edges of each Z, and hence at most half of the edges of GA3.
Then, the removal of low-degree Z’s removed at most half of the remaining edges by Fact 7.1. Since
GA3 retained 2−Õ(

√
m) fraction of the edges of GA2, it follows that GA4 retains 2−Õ(

√
m) fraction of

the edges of GA2.
Furthermore, we claim that the set ZA4 of Z’s in GA4 contains at least 2−Õ(

√
m) fraction of the

Z’s in ZA2. To see why this is the case, recall that the number of edges on the X-side in GA2 is at
least 1

2 · dZ,X · |ZA,2| (since the minimal degree of a Z in GA2 is 1
2 · dZ,X). On the other hand, the

number of edges on the X-side in GA4 is at most dZ,X · |ZA4|, and we know that this number is at
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least 2−Õ(
√
m) fraction of the number of edges in GA2. Therefore,

dZ,X · |ZA4| ≥ 2−Õ(
√
m) · 1

2
· dZ,X · |ZA,2|

|ZA4| ≥ 2−Õ(
√
m) · |ZA,2|

≥ 2−Õ(
√
m) · |ZA,1|

≥ 2−O(m) · |Z| .

Moreover, observe that the complexity of every Z ∈ ZA4 is at least 2−Õ(
√
m) fraction of its original

complexity in G: First, recall that the complexity of the fortified rectangles AA1,Z × BA1,Z was
1
3 fraction of the original complexity. By the fortification, the complexity of each Z in G4 is

L(AA4,Z × BA4,Z) ≥ 1

4m
·
|AA4,Z |
|AA1,Z |

· L(AA1,Z × BA1,Z)

≥ 2−Õ(
√
m) · L(AA1,Z × BA1,Z)

≥ 2`−Õ(
√
m).

7.4 Processing Bob’s side

We now take the same steps as in Section 7.3 in the Y-side of the graph: We apply the fortification on
Bob’s side to the vertices Z in GA4, thus obtaining a new graph GB1. We then apply regularization,
thus obtaining a new graph GB2 such that the degrees of the Z’s on the Y-side are are between
1
2 · dZ,Y and dZ,Y for some degree dZ,Y . Next, we find the revealed rows for the Y ’s, thus obtaining
a new graph GB3 and a set RY such that the following holds for every Y : Let Z be a uniformly
distributed neighbor of Y , and let j1, . . . , jm be the axes of Z. Then, for every i ∈ [m] − RY it
holds that

H∞(ji) ≥ log n− Õ(
√
m). (12)

Let R def
= RX ∪RY .

There is a small difference in the step of “removing the small classes”: Now, we know the set
of revealed rows R, so we do not need the labels to contain a candidate for R. Instead, for each Z,
we simply partition the strings b ∈ BB3,Z according to b|R, and remove all the classes that contain

only 2−3·
√
m fraction of the strings in BB3,Z . The rest of this step proceeds as before, and we denote

the resulting graph by GB4.
Again, we note that the following points:

• The graph GB4 retains at least 2−Õ(
√
m) fraction of the vertices Z of GA4.

• The degree of every Z in GB4 on the Y-side is at least 2−Õ(
√
m) · dZ,Y .

• The complexity of each Z in GB4 is at least 2`−Õ(
√
m).

• The graph GB4 retains at least 2−Õ(
√
m) fraction of the edges of GB3 on the Y-side.

It is also important to note that GB4 does not lose too many edges on the X-side: We lose edges
on the X-side when we remove Z’s. However, since |ZB4| ≥ 2−Õ(

√
m) · |ZA4|, and since all the

degrees of Z’s on the X-side are between 2−Õ(
√
m) · dZ,X and dZ,X, the graph GB4 retains at least

2−Õ(
√
m) fraction of the edges of GA4 on the X-side.
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7.5 Forcing agreement on the revealed rows

We are now ready to force the a’s and b’s of each Z to agree on R. Fix a vertex Z. We show that
there exists an assignment λZ ∈ {0, 1}R, and strings a ∈ AB4,Z and b ∈ BB4,Z such that

a|R = b|R = λZ .

To this end, we show that if this was not the case, the formula complexity L(AB4,Z × BB4,Z) was

at most 22
√
m ·m — thus contradicting the lower bound of 2`−Õ(

√
m) we have on L(AB4,Z ×BB4,Z)

(for an appropriate choice of the constant C in the definition of `). The upper bound of 22
√
m ·m

is derived by considering the following protocol for KWAB4,Z×BB4,Z
: Alice sends to Bob a|R. By

assumption, a|R 6= b|R, so now Bob knows a coordinate i such that ai 6= bi and sends it to Alice.
At this point, they solved KWAB4,Z×BB4,Z

. It is not hard to see that the size of this protocol is at

most 22
√
m ·m. Hence, there exist a, b, λZ as above.

Due to the step of “removing the small classes” on Alice’s side, we know that the fraction of
the strings a′ ∈ AB4,Z that satisfy a′|R = λZ is at least 2−3·

√
m·logm: To see why, first observe that

AB4 = AA4 ⊆ AA3. Then, recall that in the step of “removing the small classes”, we partitioned
AA3 to classes which were labeled by pairs (R′, λ′), and we obtained AA4 by removing the classes
that consisted of less than 2−3·

√
m·logm fraction of the strings in AA3. Now, we know that there is

a string a ∈ AB4 and rZ such that a|R = λZ , and this implies that the class labeled by (R, λZ)
was not removed. Hence, this class, consists of at least 2−3·

√
m·logm fraction of the strings in AA3,

and in particular consists of at least 2−3·
√
m·logm fraction of the strings in AB4. A similar argument

shows that at least 2−3·
√
m fraction of the strings b′ ∈ BB4,Z satisfy b|R = λZ .

We now define for every Z the sets

Aagr,Z = {a ∈ AB4 : a|R = λZ}
Bagr,Z = {b ∈ BB4 : b|R = λZ}

and remove all the edges of Z that correspond to strings outside Aagr,Z and Bagr,Z . We denote the
resulting graph by Gagr. We summarize the properties of Gagr:

• For every Z, it holds that a|R = b|R for all a ∈ Aagr,Z and b ∈ Bagr,Z .

• The graph Gagr retains at least 2−Õ(
√
m) fraction of the edges of GB4 on the X-side, and hence

at least 2−Õ(
√
m) fraction of the edges of GA3 on the X-side. Similarly, Gagr contains at least

2−Õ(
√
m) fraction of the edges of GB3 on the Y-side.

• The Z’s are “roughly regular”: For every Z, its degree on the X-side is between 2−Õ(
√
m) ·dZ,X

and dZ,X. The same holds for the Y-side and dZ,Y .

7.6 Clean-up

We are almost ready to define our almost-hard distribution. Recall that this distribution is going to
be defined by sampling a uniformly distributed path X −Z−Y on a graph G′, and that we denote
by j1, . . . , jm the axes of the edges in Z. We would like this distribution to satisfy the following
properties:

• For every i ∈ R, it holds that Xi = Yi with probability 1.

• For every i ∈ [m] − R and every specific choice X∗, the min-entropy H∞(ji|X = X∗) is at
least log n− Õ(

√
m). The same holds for Y ∗’s.
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The first property holds for the distribution of Gagr. The second property basically follows from
our step of “finding the revealed rows” in Alice’s and Bob’s sides, that is, Inequalities 11 and 12
above. However, the latter inequalities were proved for GA3 and GB3 respectively, and they do not
imply similar inequalities for Gagr because of two issues:

• Gagr contains only some of the edges of GA3, and this may cause the min-entropy H(ji|X∗)
in Gagr to be much smaller than in GA3.
We note that this is an issue only for a minority of the vertices X∗: since Gagr retains

2−Õ(
√
m) fraction of the edges of GA3, it holds that the degree of the average X∗ is at least

2−Õ(
√
m) fraction of its degree in GA3. For such vertices X∗, the min-entropy H(ji|X∗) is

still sufficiently large. However, in order for the above second property to hold, we need the
min-entropy to be large for every X∗. Similar considerations apply for Y ∗ and GB3.

• When we proved the lower bound on the min-entropy H∞(ji|X∗) for GA3, we assumed that Z
is a uniformly distributed neighbor of X∗. However, in a uniformly distributed path X−Z−Y ,
this is not necessarily the case.
It turns out that this is not a problem: It can be shown that the probability of each specific
choice Z∗ of Z is at most 2Õ(

√
m) times the probability of any other specific choice, and this

is sufficiently good for our purposes. This follows from the “rough regularity” of the Z’s, i.e.,
the fact that the degree of each specific choice Z∗ on the X-side is at most 2Õ(

√
m) larger than

the degree of any other specific choice. The same argument works for the Y ∗’s.

We could try to resolve the first issue by removing from Gagr the X’s and Y ’s whose degree is too
low. However, this might harm the rough regularity of the Z’s, since it may cause some of the Z’s
to lose too many edges. We could fix the rough regularity by removing the Z’s whose degree is too
small, but then we will have X’s and Y ’s with low degrees again. Fortunately, it turns out that
if we repeat this process sufficiently many times, we end up with a graph in which all X’s, Y ’s,
and Z’s have sufficiently large degrees. We choose the latter graph to be G′.

We turn to describing G′ formally. Let ε > 0 be a number such that

• Gagr retains at least ε fraction of the edges of GA3 (respectively, GB3) on the X-side (respec-
tively, on the Y-side).

• Every Z in Gagr has degree at least ε · dZ,X (respectively, ε · dZ,Y) on the X-side (respectively,
on the Y-side).

It holds that ε = 2−Õ(
√
m). We define the graph G′ to be the graph obtained from Gagr by

performing the following steps iteratively, until there are no more vertices to remove:

1. Remove all the vertices X whose degree is less than 1
4 · ε

3 fraction of their degree in GA3.

2. Remove all the vertices Y whose degree is less than 1
4 · ε

3 fraction of their degree in GB3.

3. Remove all the vertices Z whose degree on the X-side is less than 1
4 · ε · dZ,X.

4. Remove all the vertices Z whose degree on the Y-side is less than 1
4 · ε · dZ,Y .

When the process ends, we define the resulting graph to be G′. Our almost-hard distribution will
be the distribution of G′. However, in order for this distribution to be well defined, we need to
prove that G′ is not empty. The basic idea of the proof is the following: First, we observe that
Steps 1 and 2 cannot remove too many edges, since they only remove vertices whose degree is much
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lower than the average degree. Then, we observe that Steps 3 and 4 cannot remove too many Z’s
— the reason is that a vertex Z is only removed if many of its edges were removed in Steps 1
and 2. Finally, we observe that since only a few Z’s are removed in Steps 3 and 4, and since the
Z’s are roughly regular, then those steps also cannot remove too many edges. We conclude that
the process has not removed too many edges in all of the steps, and hence some edges must have
remained. Details follow.

In order to prove that G′ is not empty, we upper bound the number of edges that are removed
by the foregoing process, and show that this number is less than the total number of edges of Gagr.
First, we define some notation:

• We denote by eA3,X and eA3,Y , the numbers of edges of GA3 on the X-side and Y-side respec-
tively. We similarly denote eB3,X, eB3,Y , eagr,X and eagr,Y for GB and Gagr.

• We denote Zagr the set of Z’s of Gagr.

• We denote by X and Y the sets of X’s and Y ’s in Gagr. Observe that X is equal to the set
of X’s in GA3, and Y is equal to the set of Y ’s in GB3.

• For every X ∈ X, we denote by dX the degree of X in GA3. Note that this is the degree
in GA3, and may be different than the degree in GB3 or Gagr.

• With some abuse of notation, for every Y ∈ Y, we denote by dY the degree of Y in GB3.
Note that this is the degree in GB3 and not in GA3.

We now prove that the X-side of G′ is not empty, and a similar proof holds for the Y-side. To
this end, we upper bound the number of edges on the X-side that are removed in each step of the
iterative construction above, and show that the total number of edges removed is less than eagr,X.
We start our proof by upper bounding the total number of edges that are removed in Step 1 above
(in all iterations combined): Whenever we remove a vertex X, we remove at most 1

4 · ε
3 · dX edges.

Hence, the total number of edges that are removed in Step 1 is at most∑
X∈X

1

4
· ε3 · dX =

1

4
· ε3 ·

∑
X∈X

dX =
1

4
· ε3 · eA3,X ≤

1

4
· ε2 · eagr,X, (13)

where the inequality holds since eagr,X ≥ ε · eA3,X by the definition of ε. Next, observe that the
number of edges on the X-side that are removed in Step 3 (in all iterations combined) is at most

1

4
· ε · dZ,X · |Zagr| ≤

1

4
· eagr,X,

where the inequality follows from the fact that every Z ∈ Zagr has at least ε · dZ,X edges on the
X-side in Gagr. Finally, we upper bound the number of edges that are removed on the X-side in
Step 4 (again, in all iterations combined): In order for a vertex Z to be removed in Step 4, we must
have removed at least 3

4 · ε · dZ,Y of its edges on the Y-side previously. Those edges could only be
removed in Step 2. On the other hand, it can be shown that the total number of edges removed on
the Y-side in Step 2 is at most 1

4 · ε
2 · eagr,Y using the same argument as in Inequality 13. Therefore

the total number of Z’s that are removed in Step 4 is at most

1
4 · ε

2 · eagr,Y
3
4 · ε · dZ,Y

≤
1
4 · ε

2 · dZ,Y · |Zagr|
3
4 · ε · dZ,Y

=
1

3
· ε · |Zagr| .
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where the inequality again follows from the fact that every Z ∈ Zagr has at least ε · dZ,Y edges on
the Y-side in Gagr. Now, note that each of those Z’s can have at most dZ,X edges on the X-side, so
the total number of edges that are removed in Step 4 on the X-side is at most

1

3
· ε · dZ,X · |Zagr| ≤

1

3
· eagr,X.

Summing up, the total number of edges that are removed on the X-side is at most

1

4
· ε2 · eagr,X +

1

4
· eagr,X +

1

3
· eagr,X < eagr,X,

and therefore G′ is non-empty on the X-side. Similarly, it can be shown that G′ is non-empty on
the Y-side, as required.

7.7 The almost-hard distribution

As mentioned above, our almost-hard distribution is the distribution of G′: choose a uniformly
distributed path X−Z−Y in G′, and output (X,Y ). We now prove that this is indeed an Õ(

√
m)-

almost hard distribution. Clearly, for every i ∈ R it holds that Xi = Yi with probability 1. For
every i ∈ [m] −R it either holds that Xi = Yi or it holds that Xi and Yi disagree on exactly one
coordinate, which is ji, the i-th axis of Z. It remains to prove that for every X∗ or Y ∗, it holds
that

H∞(ji|X = X∗) ≥ log n− Õ(
√
m) (14)

H∞(ji|Y = Y ∗) ≥ log n− Õ(
√
m). (15)

We use the following claim, whose proof is deferred to the end of this section.

Claim 7.2. Fix a specific choice X∗ of X. The probability of each specific choice Z∗ of Z to be
chosen conditioned on X = X∗ is at most 2Õ(

√
m) times larger than the probability of any other

specific choice. The same holds for Y ∗.

We now prove Inequality 14, and Inequality 15 can be proved similarly. Basically, Inequality 14
follows from the corresponding inequality for GA3 (Inequality 11). As discussed in Section 7.6, there
are two issues to deal with: First, the latter inequality assumes that Z is uniformly distributed,
while in Inequality 14 the vertex Z is not uniformly distributed — this issue is resolved using
Claim 7.2. Second, the degree of X∗ in G′ is smaller than its degree in GA3 — however, it is only
smaller by a factor of 2Õ(

√
m), so this does not decrease the min-entropy of ji by too much. We

now provide the formal argument, which is a straightforward calculation.
Fix i ∈ [m]−R, and fix a specific choice X∗ of X. Fix a specific choice j∗ for ji, and let Zi,j∗

be the set of neighbors Z∗ of X∗ in G′ whose axis on the i-th row is j∗. Recall that we proved that
in GA3, if Z is a uniformly distributed neighbor of X∗, then

H∞(ji|X = X∗) ≥ log n− Õ(
√
m).

This implies in particular that under this distribution it holds that

Pr [ji = j∗|X = X∗] ≤ 2Õ(
√
m)

n
.

In other words, this means that Zi,j∗ constitutes at most 2Õ(
√
m)/n fraction of the neighbors

of X∗ in GA3. Next, observe that by our construction of G′, the degree of X∗ in G′ is at least
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2−Õ(
√
m) fraction of its degree in GA3. Therefore Zi,j∗ constitutes at most 2Õ(

√
m)/n fraction of the

neighbors of X∗ in G′. Finally, the latter fact together with Claim 7.2 implies that the probability
that Z ∈ Zi,j∗ is at most 2Õ(

√
m)/n, as required. This concludes the proof of the main lemma.

Proof of Claim 7.2. Fix choices X∗ and Z∗. For every specific choice Z ′ of Z, it holds that

Pr [Z∗|X∗]
Pr [Z ′|X∗]

=
Pr [Z∗ and X∗]

Pr [Z ′ and X∗]
.

Now, Pr [Z∗ and X∗] is the probability of the edge (X∗, Z∗) to be selected, which is proportional
to the number of paths X − Z − Y in which it participates. The latter number is exactly the
degree of Z∗ on the Y-side, which is between 2−Õ(

√
m) · dZ,Y and dZ,Y . The same holds for the

probability Pr [Z ′ and X∗]. It thus follows that

Pr [Z∗ and X∗]

Pr [Z ′ and X∗]
≤

dZ,Y

2−Õ(
√
m) · dZ,Y

≤ 2Õ(
√
m),

as required. �

8 Average-Case Lower Bounds

In this section, we prove average-case analogues of our main theorem (in Section 8.1) and of the
cubic lower bound for Andreev’s function (in Section 8.2). Hardness on-average is defined as follows.

Definition 8.1. A function F : {0, 1}N → {0, 1} is said to be (s, ε)-hard if every formula of size
at most s computes F correctly on at most 1

2 + ε fraction of the inputs.

8.1 Average-case lower bound for composition

We prove the following theorem, which is an average-case analogue of our main theorem.

Theorem 1.3. Let f : {0, 1}m → {0, 1} be an (s, ε)-hard function. Then, f�⊕n is (s′, ε+2−m)-hard
for

s′ ≥ s · L(⊕n)/2Õ(
√
m+logn).

To this end, we use the following immediate corollary of the Karchmer-Wigderson connection
(Theorem 2.11).

Corollary 8.2. A function F : {0, 1}N → {0, 1} is (s, ε)-hard if and only if for every two sets
X ⊆ F−1(0) and Y ⊆ F−1(1) such that |X|+ |Y| > (1

2 + ε) · 2N , it holds that L(KWX×Y) ≥ s.

Let f : {0, 1}m → {0, 1} be an (s, ε)-hard function and let X ⊆ (f �⊕n)−1(0) and Y ⊆ (f �⊕n)−1(1)
be such that (1

2 + ε+ 2−m) · 2m·n. Our goal is to prove that

L(KWX×Y) ≥ s · n2/2Õ(
√
m+logn).

In order to do so, we prove that the rectangle X × Y satisfies the requirement of the generalized
f -stage lemma (Lemma 4.6). We then derive the lower bound by plugging the latter lemma into
the proof of the main theorem in Section 3.3.
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Recall that for every product of edges Z = (Z0, Z1), we define the f -rectangle of X × Y with
respect to Z as the rectangle AZ × BZ where

AZ
def
=

{
a ∈ f−1(0)|Za ∈ X

}
BZ

def
=

{
b ∈ f−1(1)|Zb ∈ Y

}
.

In order to show that the rectangle X×Y satisfies the requirement of the generalized f -stage lemma,
we need to show that for at least 2−m fraction of the Z’s it holds that L(KWAZ×BZ ) ≥ s. To this
end, it suffices to prove that at least 2−m fraction of the Z’s satisfy that |AZ |+ |BZ | ≥ (1

2 + ε) · 2m,
and this will imply the required lower bound on L(KWAZ×BZ ) by the average-case hardness of f .
We prove this via a straightforward averaging argument.

More specifically, consider the following bipartite graph G: One side of the graph is the set
X ∪ Y, and other side is the set Z of all Z’s. A matrix W ∈ X ∪ Y is connected to Z ∈ Z if and
only if W = Zw for some w ∈ {0, 1}m. It is easy to see that the degree of every W ∈ X ∪ Y is
exactly nm, so the total number of edges in the graph is

|X ∪ Y| · nm ≥ (
1

2
+ ε+ 2−m) · 2m·n · nm = (

1

2
+ ε+ 2−m) · 2m · |Z| ,

where the equality holds since |Z| = 2m·(n−1) ·nm. On the other hand, the degree of each Z in this
graph is exactly |AZ | + |BZ |. Now, the Z’s whose degree is less than

(
1
2 + ε

)
· 2m contribute less

than (
1

2
+ ε

)
· 2m · |Z|

edges. Therefore, at least 2−m · 2m · |Z| edges are connected to Z’s whose degree is at least(
1
2 + ε

)
· 2m. The degree of every such Z is at most 2m, and therefore the number of such Z’s must

be at least:
2−m · 2m · |Z| /2m = 2−m · |Z| .

It thus follows that |AZ | + |BZ | ≥ (1
2 + ε) · 2m for at least 2−m fraction of the Z’s, and therefore

the rectangle X× Y satisfies the requirement of the generalized f -stage lemma.
We finally turn to prove the lower bound. Fix a protocol Π that solves KWX×Y , and let us

denote its size by S. Without loss of generality, we may assume that S ≤ 2m · n2, or otherwise we
are done. We apply Theorem6 2.4 to Π with α = 1√

m+logn
, thus obtaining a new protocol Π′ of

depth at most 2Õ(
√
m+logn) and size S′ ≤ S

1+ 1√
m+logn . We prove that S′ ≥ s · L(⊕n)/2Õ(

√
m+logn)

and this will imply the same lower bound for S, as required (see Section 3.3 for details).

By the generalized f -stage lemma (Lemma 4.6), it follows that Π′ has at least s/2Õ(
√
m+logn)

partial transcripts π1 that are alive, where none of them is an ancestor of another. By the structure
theorem (Theorem 3.4), for each such partial transcript π1 there are at least L(⊕n)/2Õ(

√
m) suffixes

π2 such that π1 ◦ π2. Summing over all the possible choices for π1 and π2, it follows that Π′ has at
least s · L(⊕n)/2Õ(

√
m+logn) distinct transcripts, which is what we wanted to prove.

8.2 Average-case cubic lower bound

In the rest of this section, we prove Corollary 1.4, which gives average-case cubic lower bounds for
a variant of the Andreev function due to Komargodski and Raz [KR13]. Our proof is essentially
the same as that of [KR13], modulo the proof of Theorem 1.3, and some different choices of the
parameters.

6See also the restatement of this theorem in Section 3.3
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Corollary 1.4. For every n, c ∈ N there exists a function Fn,c : {0, 1}n → {0, 1} bits that is
(S, n−c)-hard for

S ≥ n3−Õ( 1√
logn

)
.

Let n, c ∈ N be as in the theorem. Let m
def
= 10 · c · log n. Let C : {0, 1}n/2 → {0, 1}2

m

be the
list-decodable code of Fact 2.22, and recall that the list-decodability means that for every string

w ∈ {0, 1}2
m

, there are at most 2m codewords of C that are (1
2−

1
2 ·
√

n
2m/2

)-close to w. The function

Fn,c is defined as follows: The input of Fn,c consists of two parts, each of length n/2. The first
part of the input is denoted f . Recall that C(f) is a string of length 2m, and we view it as a truth
table of a function from {0, 1}m to {0, 1}. The second part of the input is a sequence x1, . . . , xm of

strings in {0, 1}n/2m. The function Fn,c is now defined by

Fn,c(f, x1, . . . , xm)
def
=
(
C(f) � ⊕ n

2m

)
(x1, . . . , xm).

We use the following claim, which is proved by a straightforward counting argument.

Claim 8.3. Let f be a uniformly distributed string in {0, 1}n/2. Then, the function C(f) is

(s, n−2c)-hard for s
def
= n/16 · logm with probability at least 1− 2−n/5.

Proof. We count the number of functions from {0, 1}m to {0, 1} that can be approximated by

formulas of size s
def
= n/16·logm. Following a calculation in [Juk12] (see the proof of Theorem 1.23),

the number of formulas of size s over m variables is at most (9m)s ≤ 2n/4. By the list-decodability

of C, for each such formula φ there are at most 2m strings h ∈ {0, 1}n/2 such that

Pr
x←{0,1}n/2

[C(h)(x) = φ(x)] >
1

2
+ n−2c ≥ 1

2
+

1

2
·
√

n

2m/2
. (16)

It follows that the total number of strings h that satisfy Inequality 16 for any formula of size s
is at most 2n/4 · 2m. Therefore, if f is chosen uniformly at random, the probability that C(f) is
(s, n−2c)-hard is at least

1− 2n/4 · 2m

2n/2
≥ 1− 2−n/5,

as required. �

By Theorem 1.3, for every fixed choice of f for which C(f) is (s, n−2c)-hard, it holds that
C(f) � ⊕ n

2m
is (S, n−2c + 2−m)-hard for

S
def
= s · n2/2Õ(

√
m+logn) = n

3−Õ( 1√
logn

)
.

Therefore, for every such fixed choice of f and every fixed formula φ of size S, it holds that

Pr
x1,...,xm←{0,1}n/2m

[Fn,c(f, x1, . . . , xm) = φ(f, x1, . . . , xm)] ≤ 1

2
+ n−2c + 2−m.

Now, let f be uniformly distributed, and let Hf denote the event in which C(f) is (s, n−2c)-hard.
It follows that for every formula φ of size at most S and for uniformly distributed f and x1, . . . , xm
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it holds that

Pr [Fn,c(f, x1, . . . , xm) = φ(f, x1, . . . , xm)]

≤ Pr [Fn,c(f, x1, . . . , xm) = φ(f, x1, . . . , xm)|Hf ] + Pr [¬Hf ]

≤ 1

2
+ n−2c + 2−m + 2−n/5

≤ 1

2
+ n−c.

Hence, Fn,c is (s, n−c)-hard for S ≥ n3−Õ( 1√
logn

)
, as required.

9 Future Directions and Open Problems

In order to prove the KRW conjecture, one should replace the parity function in our result with a
general function g : {0, 1}n → {0, 1}. It seems to us that a good starting point would be to prove
the KRW conjecture for the composition of a universal relation and a function g, denoted U �g. We
now explain what this composition is, and then discuss how one might prove the KRW composition
for it.

The composition U � g. The universal relation is the following communication problem: Alice
and Bob get two distinct strings x, y ∈ {0, 1}m, and should find a coordinate on which x and y
disagree. The difference between the universal relation and KW relations is that x and y are not
required to be a 0-preimage and 1-preimage of some function f . This makes the universal relation
much simpler and easier to analyze, and therefore the universal relation is often a good starting
point for studying KW relations. For convenience, we denote the universal relation by U .

As was observed by [HW93], it is often useful to relax the requirement that x and y are distinct
as follows: We allow x and y to be equal, but in this case, we also allow Alice and Bob to reject
the inputs instead of outputting a coordinate. It is not hard to show that this relaxation does
not increase the complexity of the problem by much. It is well-known that the communication
complexity of the (relaxed) universal relation is at least m, and that the “hardest inputs” are those
in which x = y [KRW95, EIRS01, HW93, GMWW14].

The composition U � g is the following communication problem: Alice and Bob get as inputs
m × n matrices X and Y respectively such that g(X) 6= g(Y ), and their goal is to find an entry
(i, j) such that Xi,j 6= Yi,j . Again, we relax the requirement that g(X) 6= g(Y ) as follows: We allow
X and Y to satisfy g(X) = g(Y ), but in this case, we also allow Alice and Bob to reject the inputs
and not output an entry (i, j). Here, too, the relaxation does not increase the complexity of the
problem by much.

The KRW conjecture for U � g. The analogue of the KRW conjecture for U � g would be to
prove that

C(U � g) ≈ C(U) + C(KWg) ≈ m+ C(KWg)

(for simplicity, we focus on the communication complexity rather than on the protocol size). We
could try to to prove it using the approach of this paper as follows. Suppose that there is a protocol
Π that solves U � g. Then, we would have liked to prove the following claims:

• An analogue of the f-stage lemma: There is a partial transcript of π1 of length m −
Õ(
√
m) that is alive, i.e., that has not solved the universal relation on g(X) and g(Y ).
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• An analogue of the structure theorem: Any live partial transcript π1 has a suffix of
length C(KWg)− Õ(

√
m).

If we could prove those two claims, they would have implied the lower bound

C(U � g) ≥ m+ C(KWg)− Õ(
√
m), (17)

which would have been sufficiently good for our purposes.

An analogue of the f-stage lemma. Recall that in Section 3, we implemented the above
approach by defining products of edges Z = (Z0, Z1). We then invoked the protocol on inputs X
and Y of the form X = Za, Y = Zb for a ∈ f−1(0) and b ∈ f−1(1). In particular, we proved the
f -stage lemma by considering the invocation of the protocol on such inputs for different Z’s.

We would like to prove an analogue of the f -stage lemma for U � g using a similar strategy. To
this end, we would like to invoke the protocol Π on inputs of the form X = Za, Y = Zb, and show
that it cannot solve the universal relation on a and b using m− Õ(

√
m) bits. A natural way to do

so would be to choose the pair (a, b) to be a hard input for the universal relation.
As we noted above, the hard inputs to the universal relation are those in which a = b. Now,

observe that whenever a = b, it also holds that X = Y . Thus, it seems that for an analogue of the
f -stage lemma for U � g, we should invoke the protocol Π on inputs of the form (X,X). This leads
to the following natural definition for what it means that “π1 is alive”.

Definition 9.1. We say that a partial transcript π1 is alive if for at least 2−(m−Õ(
√
m)) fraction of

the matrices X ∈ {0, 1}m×n, the input (X,X) is consistent with π1. In other words, if we denote

by Xπ1 × Yπ1 the rectangle of π1, then X ∈ Xπ1 ∩ Yπ1 for at least 2−(m−Õ(
√
m)) fraction of the

matrices X ∈ {0, 1}m×n.

Intuitively, this definition says that π1 has gives at most m− Õ(
√
m) bits of information about

the inputs of the players. In particular, π1 gives at mostm−Õ(
√
m) bits about a and b, and therefore

it is still far from solving the universal relation on a and b. This intuition can be formalized using
the ideas of [EIRS01, HW93, GMWW14], but it is not necessary for our discussion. The following
analogue of the f -stage lemma can now be proved using a straightforward averaging argument.

Lemma 9.2 (Universal-stage lemma). There is a live partial transcript π1 of length m − Õ(
√
m)

that has not solved the universal relation.

An analogue of the structure theorem. The difficult part in proving the lower bound on
C(U �g) would be proving an analogue of the structure theorem. Such an analogue would say that if
Alice and Bob have not solved the universal relation yet, then they must transmit C(KWg)−Õ(

√
m)

more bits. Given Definition 9.1, this can be formalized as follows.

Conjecture 9.3. Let X ⊆ {0, 1}m×n be a set of matrices of density at least 2−(m−Õ(
√
m)). Then, the

restriction of U �g to the rectangle X×X has communication complexity at least C(KWg)−Õ(
√
m).

We note that it is possible to construct artificial examples of functions g for which Conjecture 9.3
does not hold: in particular, if g is easy on (1− ε)-fraction of its inputs, it is possible that all the
matrices in X contain only easy inputs as rows7. However, it might be possible to prove it for some

7Consider a function g : {0, 1}n → {0, 1} that is defined as follows: given an input x, if the first five bits of x are
all zeroes, then g(x) is some hard function of the remaining bits, and otherwise g(x) = x6. Now, consider the set
X ⊆ {0, 1}m×n that consists of all the matrices X in which there is no row with the first five bits all being zeroes.
It is not hard to see that the communication complexity of U � g restricted to X × X is at most m + O(1), and this
might be much smaller than C(KWg) if m� n.
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“reasonable” class of functions, and that might be sufficient for proving formula lower bounds. For
example, it might be possible to prove this conjecture for the case where g is a random function.
We also note there is a simple (but non-trivial) proof of the conjecture for the case where g = ⊕n
— in fact, this observation was the trigger to this work.

Another way to deal with the aforementioned artificial examples is to change the conjecture
such that it allows us to get rid of the easy inputs of g. This is done by replacing {0, 1}m×n with
some subset X0 that depends on g and should consist of the hard inputs:

Conjecture 9.4. For every non-constant function g : {0, 1}n → {0, 1} there exists X0 ⊆ {0, 1}m×n

such that the following holds: Let X ⊆ X0 be a set of matrices of density at least 2−(m−Õ(
√
m))

in X0. Then, the restriction of U � g to the rectangle X × X has communication complexity at
least C(KWg)− Õ(

√
m).

It is not hard to see that Conjecture 9.4 is sufficient for proving the lower bound on C(U � g):
this can be done by replacing {0, 1}m×n with X0 in Definition 9.1 and Lemma 9.2 above.

Conjecture 9.4 could serve as the next intermediate goal toward proving the KRW conjecture,
and we suggest it as an open problem. In fact, we do not know how to prove this conjecture even
if the density of X in X0 is allowed to be as high as 1

2 , and the desired lower bound is allowed to
be as small as C(KWg)− 0.99 ·m.

The 1-out-of-k problem. We now discuss a special case of Conjecture 9.3 which seems to be
interesting in its own right. First, we define the following communication problem.

Definition 9.5 (The 1-out-of-k problem). Let g : {0, 1}n → {0, 1} be a non-constant function, and
let k ∈ N. The 1-out-of-k version of KWg is the following communication problem: Alice and Bob

get matrices X,Y ∈ {0, 1}k×n respectively such that

• g(X) and g(Y ) are the all-zeroes and all-ones strings respectively.

• All the rows of X and Y are all distinct.

The goal of Alice and Bob is to find an entry (i, j) such that Xi,j 6= Yi,j .

Clearly, the communication complexity of the 1-out-of-k version of KWg is at most C(KWg), since
Alice and Bob can run the optimal protocol for KWg on the first rows of X and Y . The question
is whether the communication complexity of the 1-out-of-k version of KWg can be much smaller?
We suggest proving the following conjecture as another open problem.

Conjecture 9.6. For every non-constant g : {0, 1}n → {0, 1} and k ∈ N, the communication
complexity of the 1-out-of-k version of KWg is at least C(KWg)− poly log n.

Observe that Conjecture 9.6 is indeed a special case of Conjecture 9.3: the reason is that we
can always choose the subset X to be the set of matrices X such that the first k bits of g(X) are
equal, and all the rows of X are distinct. The density of this set X is slightly less than 2−k, and
the communication complexity of the restriction of U � g to the rectangle X × X is at most the
communication complexity of the 1-out-of-k version of KWg.

We note that although we defined the 1-out-of-k problem only for KW relations, it could
be generalized to other models of computation. For those models, one could state analogues of
Conjecture 9.6 that are interesting in their own right. For example, consider the following analogues
for communication complexity and circuit complexity:
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Conjecture 9.7 (The 1-out-of-k problem for communication complexity). Let f : {0, 1}n ×
{0, 1}n → {0, 1}, and consider the communication problem of computing f . The 1-out-of-k version
of f is defined as follows: Alice gets distinct x1, . . . , xk ∈ {0, 1}n, Bob gets distinct y1, . . . , yk ∈
{0, 1}n, and their goal is to output an index i ∈ [k] and the bit f(xi, yi). The conjecture is that the
communication complexity of this problem is at least C(f)− poly log n.

Conjecture 9.8 (The 1-out-of-k problem for circuit complexity). Let f : {0, 1}n → {0, 1}, and
consider the problem of computing f using a boolean circuit. The 1-out-of-k version of f is defined
as follows: a circuit gets as input distinct x1, . . . , xk, and it should output an index i ∈ [k] and
the bit f(xi). The conjecture is that the circuit complexity of this problem is at least the circuit
complexity of f up to a polynomial factor.

The 1-out-of-k problem is a close variant of the “choose” problem introduced by Beimel et. al.
[BBKW14], who also posed conjectures that correspond to Conjectures 9.7 and 9.8. The difference
between the 1-out-of-k problem defined above and the “choose” problem of [BBKW14] is that in
the “choose” problem, the inputs are not required to be distinct, and on the other hand, we have
k functions f1, . . . , fk instead of a single function f . The question is whether choosing one of
the functions fi and computing it on its corresponding input is easier than computing the easiest
function among f1, . . . , fk in isolation.

[BBKW14] made an interesting observation, which also translates to the 1-out-of-k problem
as follows: 1-out-of-k conjectures of the above form are implied by direct-sum conjectures. For
concreteness, we explain this claim for the example of communication complexity. A direct-sum
conjecture for communication complexity says that the complexity of computing k independent
instances of f is k · C(f). The observation of [BBKW14] is that the latter direct-sum conjecture
implies that the communication complexity of the 1-out-of-k version of f is C(f).

To see why this is true, suppose there was a protocol that solved the 1-out-of-k version of f using
less than C(f) bits. If this was the case, it would have been possible to compute k independent
instances of f using less than k · C(f) as follows: Alice and Bob first use the protocol for the
1-out-of-k version of f on the k instances, thus computing f on one instance. Then, they would
compute f independently on each of the remaining instances. The complexity of this protocol
would be (k− 1) ·C(f) plus the complexity of the 1-out-of-k version of f , which is less than k ·C(f)
by assumption.

Direct-sum conjectures have been studied in many different areas. In particular, the direct-sum
conjecture for communication complexity has been proposed in [KRW95], and partial results were
obtained in [FKNN95, KKN95, BBCR10, BR11, Bra12] . In particular, the result of [FKNN95]
implies that the complexity of the 1-out-of-k problem of Conjecture 9.7 above is at least

√
C(f).

Unfortunately, the known results are insufficient for proving Conjecture 9.6. It is interesting ques-
tion whether proving Conjectures 9.6 and 9.7 is easier than proving the corresponding direct-sum
conjectures, or alternatively, whether 1-out-of-k conjectures imply direct-sum conjectures.
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