
Pseudorandomness when the odds are against you

Sergei Artemenko∗ Russell Impagliazzo† Valentine Kabanets‡ Ronen Shaltiel§

March 11, 2016

Abstract

Impagliazzo and Wigderson [IW97] showed that if E = DTIME(2O(n)) requires size 2Ω(n)

circuits, then every time T constant-error randomized algorithm can be simulated deterministi-
cally in time poly(T). However, such polynomial slowdown is a deal breaker when T = 2α·n, for
a constant α > 0, as is the case for some randomized algorithms for NP-complete problems. Pa-
turi and Pudlak [PP10] observed that many such algorithms are obtained from randomized time
T algorithms, for T ≤ 2o(n), with large one-sided error 1 − ε, for ε = 2−α·n, that are repeated
1/ε times to yield a constant-error randomized algorithm running in time T/ε = 2(α+o(1))·n.

We show that if E requires size 2Ω(n) nondeterministic circuits, then there is a poly(n)-time
ε-HSG (Hitting-Set Generator) H : {0, 1}O(logn)+log(1/ε) → {0, 1}n, implying that time T ran-
domized algorithms with one-sided error 1− ε can be simulated in deterministic time poly(T)/ε.
In particular, under this hardness assumption, the fastest known constant-error randomized
algorithm for k-SAT (for k ≥ 4) by Paturi et al. [PPSZ05] can be made deterministic with
essentially the same time bound. This is the first hardness versus randomness tradeoff for algo-
rithms for NP-complete problems. We address the necessity of our assumption by showing that
HSGs with very low error imply hardness for nondeterministic circuits with “few” nondetermin-
istic bits.

Applebaum et al. [AASY15] showed that “black-box techniques” cannot achieve poly(n)-time
computable ε-PRGs (Pseudo-Random Generators) for ε = n−ω(1), even if we assume hardness
against circuits with oracle access to an arbitrary language in the polynomial time hierarchy. We
introduce weaker variants of PRGs with relative error, that do follow under the latter hardness
assumption. Specifically, we say that a function G : {0, 1}r → {0, 1}n is an (ε, δ)-re-PRG for a
circuit C if (1 − ε) · Pr[C(Un) = 1] − δ ≤ Pr[C(G(Ur) = 1] ≤ (1 + ε) · Pr[C(Un) = 1] + δ. We
construct poly(n)-time computable (ε, δ)-re-PRGs with arbitrary polynomial stretch, ε = n−O(1)

and δ = 2−nΩ(1) . We also construct PRGs with relative error that fool non-boolean distinguishers
(in the sense introduced by Dubrov and Ishai [DI06]).

Our techniques use ideas from [PP10, TV00, AASY15]. Common themes in our proofs are
“composing” a PRG/HSG with a combinatorial object such as dispersers and extractors, and
the use of nondeterministic reductions in the spirit of Feige and Lund [FL97].

∗Department of Computer Science, University of Haifa, email sartemen@gmail.com. Research supported by ERC
starting grant 279559.
†Department of Computer Science, University of California, San Diego, email: russell@cs.ucsd.edu. Research

supported by the Simons Foundation and NSF grants #CNS-1523467 and CCF-121351.
‡School of Computing Science, Simon Fraser University, email: kabanets@cs.sfu.ca. Research supported by an

NSERC Discovery grant.
§Department of Computer Science, University of Haifa, email ronen@cs.haifa.ac.il. Research supported by

BSF grant 2010120, ISF grant 864/11, and ERC starting grant 279559.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 37 (2016)

1 Introduction

Derandomization, the construction of deterministic algorithms from randomized algorithms, is an
area where there are tight connections between lower bounds and algorithm design. Indeed, strong
enough circuit lower bounds can be used to construct pseudo-random generators that can then be
used to simulate randomized algorithms with only polynomial overhead. This is often summarized
as saying, “Randomness is never essential for efficient algorithm design”, if such lower bounds exists.

However, there are many algorithmic applications where a simulation with polynomial overhead
is next to useless. For example, consider the best algorithms for different NP-complete problems
such as different variations of SAT. Many of the best algorithms for these problems are in fact ran-
domized or careful derandomizations of probabilistic algorithms [PPZ99, PPSZ05, Sch99, IMP12,
San10, AYZ95]. If the Exponential Time Hypothesis is true, these problems all require exponential
time, so a polynomial slowdown might take an algorithm from best possible to worse than exhaus-
tive search. On the other hand, as observed in [PP10], most of these randomized algorithms are in
fact fast algorithms, but with only a very small success probability ε. [PP10] call such algorithms
OPP algorithms, for One-sided error Probabilistic Polynomial Time. (These algorithms can then
be repeated O(1/ε) times to yield a final randomized algorithm with constant success probability).

It is not to hard to see that OPP algorithms can be derandomized in time comparable to
the running time of the final randomized algorithm, if we can construct efficient pseudorandom
generators (or hitting set generators) which work for a very low error parameter ε using short
seeds.

In this paper, we address the question of constructing such generators. We give constructions
of pseudorandom generators and hitting-set generators that get essentially optimal simulations of
OPP, and go beyond to also consider algorithms that have two-sided error that only slightly favors
the correct answer. In order to get these generators, we need stronger lower bounds, lower bounds
against nondeterministic circuits rather than deterministic circuits. However, we also show that
such lower bounds are necessary for strong derandomization of OPP algorithms.

As we explain later, in some settings there are black-box impossibility results on constructing
generators for very low error parameter. In this paper, we also introduce new notions of pseudo-
random generator with “relative error” which can be used to replace low-error generators in certain
settings. We give constructions of such generators, and discuss potential applications.

1.1 Pseudorandom generators and hitting-set generators

We start by reviewing the definitions of pseudorandom generators and hitting set generators.

Definition 1.1 (PRGs and HSGs). Let C be a class of boolean functions C : {0, 1}n → {0, 1}. A
function G : {0, 1}r → {0, 1}n is:

• an ε-PRG for C if for every C in C, |Pr[C(G(Ur)) = 1]− Pr[C(Un) = 1]| ≤ ε.

• an ε-HSG for C if for every C in C s.t. Pr[C(Un) = 1] > ε, there exists x ∈ {0, 1}r s.t.
C(G(x)) = 1.

We will be interested in generators that fool circuits of size nb for some fixed constant b, and
run in time poly(nb). In the case of logarithmic seed length (r = O(logn)) this is often referred
to as the Nisan-Wigderson setting. We will typically be interested in larger seed length (which is
required to handle low error ε).

1

Such PRGs imply circuit lower bounds, and so in the current state of knowledge, we cannot
construct them unconditionally. A long line of research [BM84, Yao82, NW94, BFNW93, Imp95,
IW97, STV01, ISW06, SU05, Uma03] is devoted to constructing such PRGs under the weakest
possible hardness assumptions. An important milestone of this line of research is the hardness
versus randomness tradeoff of Impagliazzo and Wigderson [IW97].

Definition 1.2 (E is hard for exponential size circuits). We say that E is hard for exponential
size circuits, if there exists a language L in E = DTIME(2O(n)) and a constant β > 0, such that
for every sufficiently large n, circuits of size 2βn fail to compute the characteristic function of L on
inputs of length n.

Theorem 1.3 ([IW97]). If E is hard for exponential size circuits, then for every constant b > 1
there exists a constant c > 1 such that for every sufficiently large n, there is a function G : {0, 1}r →
{0, 1}n that is an n−b-PRG for size nb circuits, with r = c logn. Furthermore, G is computable in
time poly(nb).

By a standard probabilistic argument, for every ε > 0, there exists a (nonexplicit) ε-PRG with
seed length r = c logn + O(log(1/ε)) for size nb circuits. In particular, if we shoot for PRGs with
“polynomial stretch” (that is, r = nΩ(1)), we can expect to get error ε = 2−nΩ(1) that is exponentially
small. The known proofs of Theorem 1.3 do not achieve these parameters. In fact, they cannot
achieve negligible error of ε = n−ω(1) if the constructed PRG runs in time poly(n), even if we allow
large seed length r = Ω(n).1 It is natural to ask if we can construct poly(n)-time computable
ε-PRGs or ε-HSGs with ε = n−ω(1)? Under what assumptions? Can we get ε to be exponentially
small?

1.2 Limitations on deterministic reductions for PRGs and HSGs

There is a formal sense in which “black-box” proofs of Theorem 1.3 cannot achieve negligible ε
[SV10, GR08, AS14a]. It is instructive to explain this argument. Loosely speaking, “black-box”
proofs are made of two components: The first is a construction, this is an oracle procedure Con(·)

which implements the PRG G(x) = Conf (x) given oracle access to the hard function f that is
guaranteed in the hardness assumption. Note that as G runs in time poly(n), the construction
cannot afford to query f ∈ E on inputs of length larger than ` = c logn (for some constant c > 1).
On inputs of this length, the maximal possible circuit complexity of f is at most 2` = nc.

The second component in the proof is a reduction Red(·), which is given black-box access to
a circuit D that is not fooled by the PRG, and implements a small circuit C : {0, 1}` → {0, 1}
for f (contradicting the hardness assumption). By the discussion above, in order to contradict

1In this paper we are mostly interested in PRGs that run in time poly(n), that is polynomial in the output length.
Another natural notion is allowing PRGs to run in time exponential in the seed length (that is time 2O(r)). These
notions differ in the case of “polynomial stretch” (r = nΩ(1)) which will be the setting that we will consider. PRGs
which run in time exponential in the seed length make sense in most applications which run the PRGs over all 2r
seeds. An exception is the case of “SAT algorithms” where r may be α · n for a constant α < 1 that is close to 1,
and there may be a substantial difference between running 2r instantiations of a time poly(n) PRG, (which gives
time less than 2n) compared to 2r instantiations of a PRG running in time larger than 2r, which takes time at least
2r · 2r > 2n. Other applications in which there is a big difference between 2O(r) time PRGs and poly(n) time PRGs
are applications that run the PRG only once. In such cases, it is typically important that the PRG run in time
polynomial in the output length (so that the application runs in polynomial time). We will elaborate on several such
applications in this paper.

2

the hardness assumption, the reduction must produce a circuit C of size less than nc. However,
note that in some sense, the reduction needs to distinguish between a useless function D that
always answers zero, and a useful function D that is not fooled by the PRG, and answers one with
probability ε. It intuitively follows that Red (which only has black-box access to D) must query D
at least 1/ε times. (This part of the argument can be made formal, see [SV10, GR08, AS14a], and
also applies for constructions of HSGs). In particular, the circuit C that is implemented by Red
has size ≥ 1/ε. This gives 1/ε ≤ nc which implies ε ≥ n−c.

The same kind of limitations apply in the closely related problem of hardness amplification
(there the goal is to start with a worst-case hard lower bound (such as the assumption E is hard
for exponential size circuits) and produce an average-case hard function. An influential work
of Feige and Lund [FL97] shows that nondeterministic reductions can be used to bypass these
limitations. Specifically, we may relax the requirement that Red implements a (deterministic)
circuit, and allow Red to implement a nondeterministic circuit. Indeed, nondeterminism allows Red
to make exponentially many queries to D (on different “nondeterministic computations paths”)
circumventing the limitation above. The price we pay is that we need to assume a hardness
assumption against nondeterministic circuits. This approach indeed leads to hardness amplification
with negligible ε under hardness assumptions for nondeterministic circuits [TV00, Dru13, AASY15].

1.3 Hardness assumptions for nondeterministic circuits

We start by defining various notions of nondeterministic circuit.

Definition 1.4 (nondeterministic circuits with few nondeterministic bits). We say that a function
f : {0, 1}n → {0, 1} is computed by a size s circuit D with k nondeterministic bits if there exists a
size s deterministic circuit C : {0, 1}n × {0, 1}k → {0, 1} such that for every x ∈ {0, 1}n

f(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1.

Definition 1.5 (oracle circuits and Σi-circuits). Given a boolean function A(x), an A-circuit is
a circuit that is allowed to use A gates (in addition to the standard gates). An NP-circuit is a
SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit where A is the
canonical ΣP

i -complete language. The size of all circuits is the total number of wires and gates.2

Note for example that an NP-circuit is different than a nondeterministic circuit. The former is a
nonuniform analogue of PNP (which contains coNP) while the latter is an analogue of NP. Hardness
assumptions against nondeterministic/NP/Σi circuits appear in the literature in various contexts
of derandomization [KvM02, MV05, TV00, GW02, SU05, GST03, SU06, BOV07, SU09, Dru13,
AS14b, AASY15]. Typically, the assumption is of the following form: E is hard for exponential size
circuits (where the type of circuits is one of the types discussed above). More specifically:

Definition 1.6. We say that E is hard for exponential size circuits of type X if there exists a
problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently large n,
circuits of type X with size 2βn fail to compute the characteristic function of L on inputs of length n.

2An alternative approach is to define using the Karp-Lipton notation for Turing machines with advice. For
s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic circuit
is equivalent to NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit is equivalent to DTIMENP(sΘ(1))/sΘ(1), a size sΘ(1)

nondeterministic NP-circuit is equivalent to NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to
DTIMEΣPi (sΘ(1))/sΘ(1).

3

Such assumptions can be seen as the nonuniform and scaled-up versions of assumptions of the
form EXP 6= NP or EXP 6= ΣP

2 (which are widely believed in complexity theory). As such, these
assumptions are very strong, and yet plausible - the failure of one of these assumptions will force
us to change our current view of the interplay between time, nonuniformity and nondeterminism.3

It is known that Theorem 1.3 extends to every type of circuits considered in Definitions 1.4,
Definition 1.5 and their combinations.

Theorem 1.7 ([IW97, KvM02, SU05, SU06]). For every i ≥ 0, the statement of Theorem 1.3
also holds if we replace every occurrence of the word “circuits” by “Σi-circuits” or alternatively by
“nondeterministic Σi-circuits”.

1.4 A construction of HSGs with low error

Our first result is a construction of a poly(n)-time computable ε-HSG that works for small ε. We
rely on the assumption that E is hard for exponential size nondeterministic circuits. (Note that by
the earlier discussion we cannot expect to get this with hardness against deterministic circuits).

Theorem 1.8 (HSG with seed length r = log(1/ε) + O(logn)). If E is hard for exponential size
nondeterministic circuits then for every constant b > 1 there exists a constant c > 1 such that for
every sufficiently large n, there is a function G : {0, 1}r → {0, 1}n that is an ε-HSG for size nb

circuits, with r = log(1/ε) + c logn. Furthermore, G is computable in time poly(nb).

We stress that the seed length achieved in Theorem 1.8 matches that of nonexplicit HSGs that
exist by a probabilistic argument: the dependence of r on ε is an additive factor of 1 · log(1/ε). In
some settings, achieving this correct dependence (with the right constant) for a polynomial time
computable HSG is crucial (as seen in the example of the next section).4

1.5 Derandomizing randomized algorithms with large one sided error

By going over all seeds of the HSG, we can deterministically simulate randomized polynomial time
algorithms with large one-sided error of 1− ε(n) in time 2r · poly(n) = poly(n)/ε(n). This is stated
precisely in the theorem below.

Theorem 1.9. Let A be a time T (n) ≥ n randomized algorithm that accepts some language L with
one sided error of 1− ε(n). That is, for every sufficiently large n and x ∈ {0, 1}n:

• x ∈ L ⇒ Pr[A(x) = 1] ≥ ε(n).

• x 6∈ L ⇒ Pr[A(x) = 1] = 0.

If E is hard for exponential size nondeterministic circuits then there is a deterministic algorithm
running in time poly(T (n))/ε(n) that accepts L.

3Another advantage of constructions based on this type of assumptions is that any E-complete problem (and such
problems are known) can be used to implement the constructions, and the correctness of the constructions (with that
specific choice) follows from the assumption. We do not have to consider and evaluate various different candidate
functions for the hardness assumption.

4We remark that when applying the probabilistic argument for PRGs we get an additive factor of 2 · log(1/ε)
whereas for HSGs it is possible to get 1 · log(1/ε). This difference is crucial for the application of derandomizing OPP
algorithms as we explain below.

4

Note that if T (n)� 1/ε(n) then the slowdown is polynomial in T (n) but linear in 1/ε(n). As
we explain below, in many algorithms in the literature, T (n) = poly(n) and ε(n) = 2−α·n for some
constant 0 < α < 1. Note that even the more modest goal of amplifying the success probability
of A to obtain a randomized algorithm with constant one-sided error, requires running time of
poly(T (n))/ε(n) which is poly(n) · 2α·n for the choices above. We achieve the same time with a
deterministic algorithm.5

Moreover, if we were to amplify A, and then derandomize it using known hardness versus
randomness tradeoffs, we would end up with a deterministic algorithm running in time at least
poly(n)/ε(n)c for a large constant c. Such a slowdown is a “deal breaker” if ε is very small (say
ε = 2−α·n) for a constant α that is only slightly smaller than one. In the next section we observe
that this is the case in many randomized k-SAT algorithms.

1.6 Deterministic k-SAT algorithms

Paturi and Pudlak [PP10] observed that many of the randomized algorithms in the literature for
solving k-SAT and other NP-complete problems (in particular the algorithm of Paturi, Pudlak
and Zane [PPZ99], Paturi et al. [PPSZ05], Schöning [Sch99]) are based on designing probabilistic
polynomial-time (or subexponential-time) algorithms with one-sided error, whose success probabil-
ity may be exponentially small. To improve the success probability to a constant, one repeats the
original randomized algorithm the inverse of the success probability times. The running time of
this new randomized algorithm is dominated by the inverse of the success probability of the original
algorithm.

For example, suppose A is a SAT-algorithm running in time T (n) = 2o(n) that, given a satisfiable
formula, produces a satisfying assignment with probability at least ε = 2−α·n (for some constant
0 < α < 1). The algorithm with constant success probability is produced by repeating A O(1/ε)
times, and so has the running time 2(α+o(1))·n.

By Theorem 1.9, all such algorithms can be made deterministic (with essentially the same
time bounds) under the assumption that E is hard for nondeterministic circuits. This is the first
application of the hardness versus randomness paradigm that yields a nontrivial derandomization
of these algorithms.

Some of these randomized algorithms (and in particular the PPZ algorithm [PPZ99] and
Schöning’s algorithm [Sch99]) have deterministic versions. However the fastest known algorithms
for k-SAT for k ≥ 4 due to Paturi et al. [PPSZ05] does not have a matching deterministic algo-
rithm. We get the first derandomization result for these k-SAT algorithms from [PPSZ05], based
on circuit complexity assumptions.

For each k ≥ 4, let us denote by TPPSZ
k (n) ≤ 2o(n) the running time of the randomized PPSZ

algorithm [PPSZ05], and let 2−αPPSZ
k ·n (where 0 < αPPSZ

k < 1 is a constant specified in [PPSZ05])
be its success probability. The fastest known constant-error randomized algorithm for k-SAT, for
k ≥ 4, is obtained by repeating the above algorithm the inverse success probability number of
times, resulting in the running time

2αPPSZ
k ·n · TPPSZ

k (n) ≤ 2(αPPSZ
k +o(1))·n.

Our approach gives the following result:
5The assumption in Theorem 1.9 can be relaxed to “E is hard for size nω(1) nondeterministic circuits” and then,

the final running time will be 2T (n)o(1)
/ε(n).

5

Theorem 1.10. If E is hard for nondeterministic circuits, then there are deterministic algorithms
for k-SAT, for each k ≥ 4, running in time

Tk(n) = 2αPPSZ
k ·n · poly(TPPSZ

k (n)) ≤ 2(αPPSZ
k +o(1))·n.

We remark that the assumption could be relaxed to E is hard for size nω(1) nondeterministic
circuits, and then the deterministic time Tk(n) for k-SAT would become

2αPPSZ
k ·n · 2(TPPSZ

k (n))o(1)
,

which is still at most 2(αPPSZ
k +o(1))·n, as TPPSZ

k (n) ≤ nβ(n) for every β(n) ∈ ω(1).

1.7 Hardness assumptions implied by HSGs with low error

In Theorem 1.8 we show that hardness for nondeterministic circuits implies HSGs with low error.
Is this assumption necessary? Is the converse statement true? We do not know the answer to
these questions. However, we can show ε-HSGs for deterministic poly-size circuits are essentially
equivalent to 1

2 -HSGs for a subclass of nondeterministic circuits: The class of poly-size nondeter-
ministic circuits with approximately log(1/ε) nondeterministic bits. The precise definitions and
statements appear in Section 6. Note that as n > r ≥ log(1/ε), the circuits we are interested in are
nondeterministic circuits with a sublinear number of nondeterministic bits. Using this connection,
we can show that ε-HSGs with seed length r = no(1) +O(log(1/ε)) imply that E is hard for poly-size
nondeterministic circuits with o(n) nondeterministic bits.

Theorem 1.11. Let δ > 0 be a constant. Assume that for every sufficiently large n, there is a
2−nδ -HSG H : {0, 1}O(nδ) → {0, 1}n for size s ≥ n circuits, and furthermore that the family of
functions H = {Hn} is computable in time exponential in the seed length, that is time 2O(nδ).
Then there exists a constant γ > 0 and a problem L ∈ E such that, for every sufficiently large
n′, nondeterministic circuits of size (γn′)1/δ with γ · n′ nondeterministic bits fail to compute the
characteristic function of L on inputs of length n′.

1.8 Limitations on nondeterministic reductions for PRGs

Theorem 1.8 demonstrates that hardness assumption for nondeterministic circuits can yield poly-
nomial time computable HSGs with low error. A recent result of Applebaum et al. [AASY15]
shows that these techniques cannot be extended to yield PRGs. We state this result informally
below (the reader is referred to [AASY15] for the formal model and precise statement).

Informal Theorem 1.12. For every i ≥ 0, it is impossible to use “black-box reductions” to prove
that the assumption that E is hard for exponential size Σi-circuits implies that for ε = n−ω(1), there
is a poly(n)-time computable ε-PRG G : {0, 1}n−1 → {0, 1}n for size n2.

While hardness against circuits with oracle to PH problems does not suffice, hardness for circuits
with oracle to PSPACE problems does suffice. This follows by inspecting the correctness proofs of
Theorem 1.3 (the one that seems easiest to handle is by Sudan, Trevisan and Vadhan [STV01]).

Theorem 1.13 (PRG with seed length r = O(logn) + log(1/ε))). If E is hard for exponential size
PSPACE-circuits then for every constant b > 1 there exists a constant c > 1 such that for every
sufficiently large n, there is a function G : {0, 1}r → {0, 1}n that is an ε-PRG for size nb circuits,
with c · (logn+ log(1/ε)). Furthermore, G is computable in time poly(nb).

6

In fact, something more precise can be said. The circuit model that comes up is the nonuni-
form class which corresponds to the fourth level of the counting hierarchy (which is contained in
PSPACE).

1.9 Derandomizing randomized algorithms with large two sided error

By Theorem 1.12 we do not expect to construct ε-PRGs for small ε under the assumption that E is
hard for Σ1-circuits. Nevertheless, it turns out that we can use this assumption to extend Theorem
1.9 to the case of two-sided error.

Theorem 1.14. Let A be a time T (n) ≥ n randomized algorithm such that for every sufficiently
large n and x ∈ {0, 1}n:

• x ∈ L ⇒ Pr[A(x) = 1] ≥ 2 · ε(n).

• x 6∈ L ⇒ Pr[A(x) = 1] ≤ ε(n).

If E is hard for exponential size Σ1-circuits then there is a deterministic algorithm running in time
poly(T (n))
ε(n)2 that accepts L.6

Note that even the more modest goal of amplifying the success probability of A to obtain a
randomized algorithm with constant two-sided error, requires running time of T (n)/ε(n)2. We
achieve roughly the same time with a deterministic algorithm. In fact, the conclusion of Theorem
1.14 is stronger than the one that follows if we were to run the PRG of Theorem 1.13 on all seeds.
The latter approach would have given time poly(n)

ε(n)c for a large constant c.
Loosely speaking, we avoid the limitations on PRGs by showing a derandomization procedure

which runs the algorithm on 2r “pseudorandom strings” (just like in PRGs). The key difference is
that the “estimation of the success probability of A(x)” is not done by “averaging over all pseudo-
random strings”. This allows the procedure not to be fooled by a small fraction of “pseudorandom
strings” that yield incorrect results.

1.10 Implications to derandomization of BPPpath

The class BPPpath defined by Han, Hemaspaandra and Thierauf [HHT97] consists of polynomial
time randomized algorithms A(x) which are allowed to output “don’t know”. It is required that for
every input x, conditioned on giving an answer, the probability that A(x) answers correctly is at
least 2/3, and that the probability that A(x) answers is larger than ε(n) for some ε(n) > 0.

Han, Hemaspaandra and Thierauf [HHT97] showed that this class is quite powerful and contains
PNP
|| which contains NP. (The subscript “||” in PNP

|| means that the queries to the NP oracle are
nonadaptive). Shaltiel and Umans [SU06] showed that BPPpath is equal to PNP

|| if ENP
|| is hard for

exponential size nondeterministic circuits.
Theorem 1.14 allows us to give a deterministic simulation of BPPpath algorithms with running

time depending on the parameter ε(n). More specifically, it follows that under the hardness as-
sumption, every BPPpath algorithm that gives an answer with probability ε(n), can be simulated
in deterministic time poly(n)/ε(n)2.

6The assumption in Theorem 1.14 can be improved to E is hard for exponential size nondeterministic circuit.
This is because Shaltiel and Umans [SU06] showed that this assumption implies that E is hard for exponential size
Σ1-circuits which make nonadaptive queries to their oracle. This latter assumption is sufficient for our proof. We
defer the details to the final version.

7

1.11 PRGs with relative error

Theorem 1.14 demonstrates that it is sometimes possible to achieve consequences of PRGs with
low error, under hardness assumptions that do not seem to suffice for such PRGs. We now give
another such example.

A useful property of a δ-PRG G : {0, 1}r → {0, 1}n with very small error δ = n−ω(1) is that it
“preserves the probability of small events”. By that we mean that for every circuit C : {0, 1}n →
{0, 1} such that Pr[C(Un) = 1] ≤ δ,

Pr[C(G(Ur)) = 1] ≤ Pr[C(Un) = 1] + δ ≤ 2δ

which is still negligible. The notion of PRGs with “relative error” defined below captures this
property. In the definition below, the reader should think of δ � ε, and recall eε ≈ 1 + ε for
sufficiently small ε.

Definition 1.15 (re-PRGs). Let p1, p2 be two numbers, we define a relation on p1, p2 by:

p1
re∼(ε,δ) p2 ⇔ max(p1, p2) ≤ eε ·min(p1, p2) + δ.

A function G : {0, 1}r → {0, 1}n is an (ε, δ)-re-PRG for a class C of functions C : {0, 1}n → {0, 1}
if for every C in the class C,

Pr[C(G(Ur)) = 1] re∼(ε,δ) Pr[C(Un) = 1].

The use of the formalism above is inspired by the notion of (ε, δ)-differential privacy. An (1, δ)-
re-PRG indeed “preserves the probability of small events” and gives that Pr[C(Un) = 1] ≤ δ implies
Pr[C(G(Ur)) = 1] ≤ e · δ. It also immediately follows that:

Fact 1.16. If G is an (ε, δ)-re-PRG for C and δ ≤ ε then G is a 4ε-PRG for C.

Thus, an (ε, δ)-re-PRG with δ � ε can be thought of as an ε-PRG which has the additional
property that it preserves the probability of small events.

Our next result is a construction of poly(n)-time computable (ε, δ)-re-PRGs with arbitrary
polynomial stretch, ε = n−O(1) and exponentially small δ = 2−

√
r = 2−nΩ(1) .

Theorem 1.17. If E is hard for exponential size Σ3-circuits, then for every constants b, e > 1 and
µ > 0 there exists a constant γ > 0 such that and every sufficiently large n, there is a function
G : {0, 1}r=nµ → {0, 1}n that is an (n−b, 2−γ·

√
r)-re-PRG for size nb circuits. Furthermore, G is

computable in time poly(nb).

We remark that we would have liked to achieve δ = 2−Ω(r) (rather than δ = 2−Ω(
√
r)) but we

don’t know how to achieve this.

1.12 Randomness reduction in Monte-Carlo constructions

In many famous explicit construction problems (such as constructing rigid matrices or generator
matrices for linear codes matching the Gilbert-Varshamov bound) a random n bit string has the
required property with overwhelming probability of 1 − δ for exponentially small δ. It is often
the case that we do not have poly(n)-time deterministic algorithm that produce an n bit string
with the required property. An intermediate goal is to reduce the number of random bits used

8

(while preserving exponentially small failure probability). Using re-PRGs, achieves this task for
problems where checking whether a given an n bit string x satisfies the property can be decided in
the polynomial time hierarchy (and note that the two aforementioned construction problems satisfy
this requirement). This is stated formally below:

Theorem 1.18. Let i ≥ 0 be a constant and let L be a language such that:

• There is a constant α > 0 s.t. for every sufficiently large n, PrX←Un [X ∈ L] ≥ 1 − δ for
δ = 2−nα.

• L is accepted by a family of poly-size Σi-circuits.

If E is hard for exponential size Σi+3-circuits then there is a poly(n)-time algorithm B such that
Pr[B(Ur) ∈ L] ≥ 1− 4 · δ with r = O(log(1/δ)2) = n2α.

Note that standard PRGs (which under this assumption achieve error ≥ 1/poly(n)) give a
version of Theorem 1.18 with δ = 1/poly(n). Our result gives this tradeoff also for smaller values
of δ. We remark that we would have liked the dependence of r on δ in Theorem 1.18 to be
r = O(log(1/δ)), and this would follow if we can improve the parameter δ = 2−Ω(

√
r) in Theorem

1.17 to δ = 2−Ω(r).
The aforementioned examples of matrix rigidity and linear codes matching the Gilbert-

Varshamov bound do not seem related to computational hardness assumptions. Assuming circuit
lower bounds in order to handle them, may seem like an overkill. We remark that one can also
apply Theorem 1.18 to solve explicit construction problem that are computational in nature. For
example, the language L consisting of truth tables of functions f : {0, 1}logn → {0, 1} with almost
maximal circuit complexity also satisfies the requirements in Theorem 1.18, and so, if E is hard
for exponential size Σ4-circuits, then there is a randomized polynomial time algorithm that uses
r = n2α random bits and generates an n-bit truth table of a function with almost maximal circuit
complexity with probability at least 1− 2−nα .

This approach can be useful to construct other “computational” pseudorandom objects, and is
used to explicitly construct nonboolean PRGs (formally defined in the next section) with relative
error, under hardness assumptions. This result is described in the next section.

1.13 PRGs with relative error for nonboolean distinguishers

Dubrov and Ishai [DI06] considered a generalization of PRGs which fools circuits that output many
bits (and not just boolean circuits).

Definition 1.19 (nb-PRG). Let ` be a parameter, and let C be a class of functions C : {0, 1}n →
{0, 1}`. A function G : {0, 1}r → {0, 1}n is an (`, ε)-nb-PRG for C if for every C in C, the probability
distributions C(G(Ur)) and C(Un) are ε-close, meaning that for every function D : {0, 1}` → {0, 1},
|Pr[D(C(G(Ur))) = 1]− Pr[D(C(Un)) = 1]| ≤ ε.

For every ` ≥ 1, an (`, ε)-nb-PRG is in particular a (1, ε)-nb-PRG which is easily seen to be
equivalent to an ε-PRG. Thus, (`, ε)-nb-PRGs are a generalization of ε-PRGs, and so the limitations
of Theorem 1.12 apply to them.

The motivation for nb-PRGs is reducing the randomness complexity of sampling procedures.
We now explain this application. Let P be a distribution over `-bit strings, and let A be a sampling
algorithm for it. That is, A is a poly(n)-time algorithm such that A(Un) = P . An (`, ε)-nb-PRG

9

G : {0, 1}r → {0, 1}n for size nb-circuits can be used to sample a distribution P ′ that is ε-close
to P , using only r < n random bits. This is because the sampling algorithm B(Ur) = A(G(Ur))
produces a distribution that is ε-close to A(Un).7 Note that if we want B to run in time poly(n),
we must require that G runs in time poly(n). Thus, this is another setting where we would like to
have PRGs computable in time poly(n).
In this paper we consider a generalization of nb-PRGs with (ε, δ)-relative error.

Definition 1.20 (re-nb-PRG). Let C be a class of functions C : {0, 1}n → {0, 1}`. A function
G : {0, 1}r → {0, 1}n is an (`, ε, δ)-re-nb-PRG for C if for every C in C, the probability distributions
C(G(Ur)) and C(Un) are (ε, δ)-close in relative distance, meaning that for every function D :
{0, 1}` → {0, 1}, Pr[D(C(G(Ur))) = 1] re∼(ε,δ) Pr[D(C(Un)) = 1].

If we use re-nb-PRGs (rather than nb-PRGs) in the construction of the sampling algorithm
B, then we “preserve probability of small events”. That is for every D : {0, 1}` → {0, 1}, if
Pr[D(P) = 1] ≤ δ then Pr[D(P ′) = 1] ≤ O(δ). This property is helpful in some applications.

Previous work by Applebaum et al. [AASY15] (improving upon [DI06, AS14b]) gives (`, n−O(1))-
nb-PRGs with seed length r = O(`+ logn) and ε = n−O(1). This is under the assumption that E is
hard for exponential size nondeterministic circuits. Note that r ≥ ` is a trivial lower bound on the
seed length. In this paper we construct (ε, δ)-re-nb-PRGs with ε = n−O(1) and r = 1·`+O(log(1/δ))2

for δ ≥ 2−nΩ(1) . This is done under the stronger assumption that E is hard for exponential size
Σ6-circuits.

Theorem 1.21 (re-nb-PRG with seed length 1 · ` + O(log(1/δ))2). If E is hard for exponential
size Σ6-circuits then for every constants b > 1, α > 0 there exists a constant c > 1 such that
for every functions ` = `(n) ≤ n, δ = δ(n) ≤ 2−nα, and every sufficiently large n, there is a
function G : {0, 1}r → {0, 1}n that is an (`, ε, δ)-re-nb-PRG for circuits of size nb with ε = n−b,
and r = `+ c · (log(1/δ))2.

Note that the dependence of r on ` is an additive term of 1 · `. This is best possible, with the
correct leading constant. We would have liked the dependence of r on δ to be an additive term
of O(log(1/δ)). Once again, we would get this if we could improve the parameter δ = 2−Ω(

√
r) in

Theorem 1.17 to δ = 2−Ω(r). We also remark that the requirement that δ ≤ 2−nα may be omitted,
and then r = `+ c · ((log(1/δ))2 + logn).

1.14 Cryptographic applications of re-nb-PRGs

Dubrov and Ishai [DI06] observe that nb-PRGs can be used to reduce the randomness complexity of
parties in multi-party cryptographic protocols. They consider the setup where honest parties run in
polynomial time, and security is information theoretic (that is security is guaranteed even against
unbounded adversaries). The precise details can be found in [DI06]. When using nb-PRGs, this
application requires nb-PRGs with small error, as the probability of a security breach in the final
protocol is additive in the error of the nb-PRG. However, assuming the probability of a security
breach in the original protocol is at most δ (for some negligible δ), we can use (`, 1, δ)-re-nb-
PRGs to “preserve the probability of small events” and obtain a protocol with reduced randomness
complexity, and where the probability of a security breach is at most 4 · δ.

7It is important to note that if G is a standard PRG, we can only guarantee that B(Ur) is computationally
indistinguishable from A(Un), rather than statistically indistinguishable.

10

The key idea in the application above is that the nb-PRG is used to fool “honest parties” rather
than “adversaries”. This observation is crucial if we want to use NW-style PRGs in cryptography.
More precisely, unlike “cryptographic PRGs” which fool circuits of superpolynomial size, NW-style
PRGs (such as our re-nb-PRGs) only fool circuits of fixed polynomial size nb and run in time
poly(nb). Thus, they are unsuitable to fool cryptographic adversaries (which are more powerful
than honest parties).

It is our hope that re-nb-PRGs may find other applications in cryptography. Toward this goal,
we present the following toy example of a potential application of re-nb-PRGs: Suppose we are
given a one-way function f : {0, 1}n3 → {0, 1}n that is computable in time nb and circuits of very
large size (say s = 2n1/3) cannot invert with probability larger than δ. Can we reduce the input
length of f to say O(n) bits while preserving its security? Note that this only makes sense if we
use tools that don’t imply a stronger one-way function. We are not aware of such a conversion.

Nevertheless, using a poly(n)-time computable (n, 1, δ)-re-nb-PRG G : {0, 1}O(n) → {0, 1}n3

for size nb circuits (which we can achieve for δ = 2−
√
n under Theorem 1.21) we can argue that

f ′(x) = f(G(x)) is a one-way function where the input length is reduced from n3 to O(n), and the
security of f is preserved: circuits of size s can invert f ′ with probability at most 4 · δ.

2 Overview of the technique

In this section we give a high level overview of the technique used to prove our results.

2.1 HSGs with low error

We assume that E is hard for exponential size nondeterministic circuits, and construct a poly(n)-
time computable ε-HSG G : {0, 1}O(logn)+log(1/ε) → {0, 1}n for circuits of fixed polynomial size. By
Theorem 1.7 our assumption implies a poly(n)-time computable 1

2 -HSGG′ : {0, 1}O(logn) → {0, 1}2n
for nondeterministic circuits of fixed polynomial size. It is standard that using z ← U2n, we can
produce t = O(1/ε) ≤ 2n pairwise independent random variables Y1(z), . . . , Yt(z) of length n.
Furthermore, even though t may be super-polynomial, there is a polynomial time algorithm that
given z, i, outputs the i’th variable Yi(z).

Our generator G will receive two seeds: a seed x for G′, and an i ∈ [t]. It uses x to prepare a
2n bit long output string z = G′(x), and then uses z as a seed to generate the i’th random variable
Yi(z).

Let D : {0, 1}n → {0, 1} be some fixed polynomial size deterministic circuit with Pr[D(Un) =
1] ≥ ε, and let B = {x : D(x) = 1}. By Chebyshev’s inequality, pairwise independent variables
have a “hitting property” for sets B of size at least ε ·2n, meaning that with probability at least 2/3
over choosing z ← U2n, there exists an i ∈ [t] such that Yi(z) ∈ B which means that D(Yi(z)) = 1.
Consider the nondeterministic circuit C : {0, 1}2n → {0, 1}, which given z ∈ {0, 1}2n accepts iff
∃i : D(Yi(z)) = 1. This is a fixed polynomial size nondeterministic circuit (and jumping ahead we
mention that it uses log t = log(1/ε) +O(1) nondeterministic bits). We have that Prz←U2n [C(z) =
1] ≥ 2/3. Thus by the guarantee on G′, there exists a seed x for G′ such that C(G′(x)) = 1. This in
turn means that there exists a seed (x, i) for G, such that D(G(x, i)) = 1 as required. The precise
argument is given in Section 5.

The proof above uses the standard pairwise independent based randomness efficient amplifica-
tion of success probability of randomized algorithms with a twist: The circuit C uses its nondeter-

11

minism to “speed up” the amplification as it does not have to explicitly go over all t options for
i. A technically related (though somewhat different) idea was used by Paturi and Pudlak [PP10]
in the context of “boosting” the success probability of hypothetical efficient randomized circuit-sat
algorithms. There, given a circuit D, one considers a deterministic circuit D′ which is hardwired
with a “good string” z, and on input i, applies C on Yi(z). The key idea is that the input length
of D′ is log(1/ε) < n, and this is used to argue that feeding D′ (rather than D) to the hypothetical
circuit-sat algorithm, allows one to make progress.

2.2 Derandomization of randomized algorithms with large error

By going over all seeds of our ε-HSG we can derandomize one-sided error polynomial time algorithms
with success probability ε and prove Theorem 1.9. We now explain that this argument extends
also to two-sided error algorithms of the form of Theorem 1.14. We make slight modifications
in the construction above. This time we require that G′ is a 1

10 -PRG for Σ1-circuits, and by
Theorem 1.7 such PRGs follow from the assumption that E is hard for exponential size Σ1-circuits
(and a more careful analysis allows an even weaker assumption). We also increase the number
of pairwise independent variables from O(1/ε) to t = O(1/ε2). We do this, as with this “query
complexity”, pairwise independent variables give an “averaging sampler”, which means that for any
set B ⊆ {0, 1}n, the fraction of Yi’s that land in B is with probability 9/10 close to the volume |B|2n
of B. Let G be the function obtained by these modifications.

We do not expect to prove that G is an ε-PRG, as by Theorem 1.12 such a proof will not be
black-box. More concretely, the generator G′ has an error of 1/10, and so a 1/10-fraction of its
seeds may be useless, and we cannot hope that G has error < 1/10.

Let D : {0, 1}n → {0, 1} be a fixed polynomial size circuit. In the two sided error case, we want
to distinguish the case that Pr[D(Un) = 1] ≥ 2ε from the case that Pr[D(Un) = 1] ≤ ε. We show
how to use G in order to distinguish these two cases, in deterministic time poly(n)/ε2.

In analogy to the previous argument, we can show that with probability 9/10 over z ← U2n,
the estimate p(z) = 1

t · | {i : D(Yi(z)) = 1} | is very close to the acceptance probability of D. For
simplicity, let us cheat and assume equality. The key observation is that by the classical results
of [Sto83, Sip83, JVV86] on approximate counting of NP witnesses (see Section 4.1 for a precise
statement), p(z) can be estimated by a fixed polynomial size Σ1-circuit C(z). Furthermore, this
estimation is sufficiently accurate to distinguish the case that p(z) ≥ 2ε from the case that p(z) ≤ ε.
Similarly to the earlier argument, the fact that G′ fools C, means that replacing z ← U2n with
G′(x) : x← UO(logn) makes little difference. This means that by going over all x ∈ {0, 1}c logn, and
checking if for at least half of them p(G′(x)) ≥ 2ε, we can indeed distinguish the two cases. This
takes time poly(n)/ε2 as required. The precise argument is given in Section 5.

2.3 HSGs with low error imply hardness for weak nondeterministic circuits

Let G : {0, 1}r → {0, 1}n be an ε-HSG for fixed polynomial size circuits. Note that in section 2.1 we
explained that such HSGs follow from 1

2 -HSGs for fixed polynomial size nondeterministic circuits
with roughly log(1/ε) nondeterministic bits. We now show that G implies such HSGs. Indeed
consider, the function G′ that outputs the first n− k bits of the output of G, for k = log(1/ε)− 1.
We show that G′ is a 1

2 -HSG for fixed polynomial size circuits with k nondeterministic bits. Indeed,
let C : {0, 1}n−k → {0, 1} be such a circuit that accepts at least half of its inputs. This means
that there exists a fixed polynomial size deterministic circuit D : {0, 1}n → {0, 1}, such that

12

C(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1. The fact that C accepts half of its input implies that
D accepts at least 1

2 · 2
−k = ε fraction of the pairs (x, y) ∈ {0, 1}n, which implies that there exists

a seed s for G such that D(G(s)) = 1. This in turn implies that C(G′(s)) = 1 as required.
There is an easy general transformation by Impagliazzo, Shaltiel and Wigderson [ISW99] which

transforms an HSG into a worst-case hard function in E. This transformation can be used to
transform G′ into a function that is hard for nondeterministic circuits with few nondeterministic
bits. The precise argument is given in Section 6.

2.4 A construction of re-PRGs

Our starting point is a construction of Trevisan and Vadhan [TV00], which under the assumption
that E is hard for exponential size Σ1-circuits, gives a polynomial time computable function f :
{0, 1}n → {0, 1}n′=Ω(n) such that for every fixed polynomial size circuit A : {0, 1}n → {0, 1},
PrV←Un [A(V) = f(V)] ≤ 2−n′/3.8

A natural approach toward constructing PRGs is to use the Goldreich-Levin theorem [GL89]
to transform f into a boolean function g. Indeed, the standard way to do this is to define g(v, y) =
EC(f(v))y where EC is a binary list-decodable code (and the GL theorem is for the special case of
the Hadamard code). For this to work, we require that EC has an efficient list-decoding algorithm
that can recover from distance 1

2 − ε. In our setting, ε = 2−Ω(n), and we want a list-decoding
algorithm implementable by a polynomial size circuit D. This is obviously impossible, as D needs
to read at least 1/ε positions in the “received word”.

We may hope to circumvent this problem by allowing D to be a poly-size Σi-circuit. This
will allow D to query the received word in exponentially many positions (on different computation
paths). On the one hand, if we assume that E is hard for exponential size Σi+1-circuits, then the
proof of Trevisan and Vadhan (which relativizes) gives security against Σi-circuits. However, the
lower bounds of Applebaum et al. [AASY15] show that even Σi-circuits cannot be used for this task
of list decoding binary codes. Indeed, if we could get a boolean function g that cannot be computed
with advantage better than ε = 2−Ω(n) over random guessing, we would obtain an O(ε)-PRG by
plugging g into the NW generator.

Instead, we shoot for a weaker conclusion, and try to show that the function g has the property
that G(x) = (x, g(x)) is a (2−Ω(n), n−O(1))-re-PRG with one bit stretch. (Later, we will be able to
get arbitrary stretch by plugging g in the NW-generator). That is, that for every fixed polynomial
size circuit C, Pr[C(G(Un)) = 1] re∼(n−O(1),δ) Pr[C(Un+1) = 1] for δ = 2−Ω(n). We give a “list-
decoding algorithm”, that given C, constructs a Σ2-circuit A that computes the function f too
well. This allows us to choose i = 2 and start from the assumption that E is hard for exponential-
size Σ3-circuits.

Our “list-decoding algorithm” builds on ideas by Trevisan and Vadhan [TV00] and Applebaum
et al. [AASY15]. For our purposes it is more intuitive to restate the construction of g in an
equivalent way: We set g(v, y) = E(f(v), y) where E is a strong extractor with error δO(1), which
allows seed length and entropy threshold of O(log(1/δ)).

After a suitable averaging argument, we get that for a non-negligible fraction of good v, a circuit
C that distinguishes G(Un) from Un+1, can be used to distinguish (Y,E(z∗, Y)) from uniform for
z∗ = f(v). The guarantee of strong extractors says that there cannot be more than poly(1/δ)
strings z ∈ {0, 1}n′ for which this distinguishing is possible. (As the uniform distribution over these

8This is another example showing that nondeterministic reductions can achieve very low error.

13

z’s would be a source on which the extractor fails).
The key observation is that we can design a Σ1-circuit Bv(z) which uses approximate counting

of NP witnesses and accept iff C distinguishes (Y,E(z, Y)) from uniform with relative distance.
This is because we can use approximate counting to estimate the acceptance probability of C on
these two distributions.9 We have that z∗ = f(v) is one of the few z’s that Bv accepts. We can
guess z∗ = f(v) by using random sampling of NP-witnesses [JVV86, BGP00] to uniformly sample
an accepting input of Bv. This strategy can be seen as a Σ2-circuit A that given v computes f(v)
with probability δO(1) = 2−Ω(n), contradicting the hardness of f .

We obtain re-PRGs with polynomial stretch by plugging g into the NW-generator. The analysis
of the NW-generator can be used (with suitable modifications) to argue that if G(x) = (x, g(x))
is an re-PRG then we obtain an re-PRG with larger output with closely related ε, δ. An inherent
limitation of the NW-generator (that is discussed in detail in [ISW06]) gives that the seed length is
quadratic in the input length of g. This is the reason why we get that the seed length has quadratic
dependence on log(1/δ). The precise argument is given in Section 7.

2.5 A construction of re-nb-PRGs

We first show that an (ε, δ · 2−`)-re-PRG for Σ1-circuits is an (`, O(ε), O(δ))-re-nb-PRG for deter-
ministic circuits. This implication appears in Section 8.

This means that our previous construction of re-PRGs can give re-nb-PRGs assuming E is hard
for exponential size Σ4-circuits. A disadvantage of this approach is that because of the quadratic
loss mentioned above, we obtain seed length approximately r = O(` + log(1/δ))2. Previous work
on nb-PRGs [AS14b, AASY15] already achieved seed length that is linear in ` which is optimal
up to constants. We can obtain seed length r = 1 · ` + O(log(1/δ))2. That is, we can remove the
quadratic dependence on ` but not on log(1/δ).

For this, we imitate an approach developed by Applebaum et al. [AASY15], which we can now
improve as we can use re-PRGs instead of standard PRGs. We first show that with probability
1−δ, a random poly(nb)-wise independent hash function h : {0, 1}r → {0, 1}n is an re-PRG for size
nb Σ1-circuits, with excellent dependence of r on ε and δ. We then show that checking whether a
given circuit h is not an re-PRG for Σ1-circuits can be done by Σ3-circuits. Loosely speaking, this
is because a Σ3-circuit can guess a Σ1-circuit that is not fooled by h, and use approximate counting
of NP-witnesses (which costs an NP-oracle) to check whether that circuit is not fooled by the
given circuit. (Here again, it is crucial that the notion of distance is relative, so that approximate
counting can be used).

Finally, we construct the re-nb-PRG G as follows: We use two seeds x1 for h and x2 for
an (n−O(1), δ)-re-PRG G′ for Σ3-circuits (that we have under the assumption that E is hard for
exponential size Σ6-circuits). G computes G′(x2) and use this to choose a hash function h from the
family. The final output is h(x1).

We have that a random h from the family is an re-PRG for Σ1-circuits with probability 1− δ,
and that Σ3-circuits can check whether h is an re-PRG for Σ1-circuits. As re-PRGs preserve the
probability of small events, we conclude that with probability 1−4δ over the choice of x2 we obtain
a hash function h that is an re-PRG for Σ1-circuits (which we already showed is an re-nb-PRG for
deterministic circuits). Therefore, G is an re-nb-PRG. The precise argument is given in Section 8.

9It is important to note that here we critically use the fact that C distinguishes with relative distance, and we
cannot hope to do this for an additive distance of 2−Ω(n). This is the reason why constructing re-PRGs with small δ
is easier than constructing δ-PRGs.

14

3 Organization of the paper

In Section 4 we state the classical results on approximate counting and sampling of NP witnesses.
We also define several notions of relative approximation and prove some useful lemmas regarding
them. In section 5 we construct HSGs with low error, and prove Theorem 1.8. We also show how
to derandomize two sided error algorithms and prove Theorem 1.14. In Section 6 we show that
HSGs with low error are essentially equivalent to 1

2 -HSGs for nondeterministic circuits with few
nondeterministic bits. We also prove Theorem 1.11 and show that HSGs with low error imply
lower bounds for nondeterministic circuits with few nondeterministic bits. In Section 7 we give
our construction of re-PRGs. In Section 8 we show how to use re-PRGs in order to construct
re-nb-PRGs.

4 Preliminaries

4.1 Approximate counting and uniform sampling of NP witnesses

We use the classical result on approximate counting and uniform sampling of NP-witnesses [Sto83,
Sip83, JVV86, BGP00], which we now state in a way that is convenient for our application.

Definition 4.1 (relative approximation). We say that a number p is an ε-relative approximation
to q if e−ε · q ≤ p ≤ eε · q.

Theorem 4.2 (approximate counting [Sto83, Sip83, JVV86]). For every i ≥ 0, every sufficiently
large s and every 0 < ε ≤ 1, there is a Σi+1-circuit of size poly(s/ε) that given a Σi-circuit C of
size s outputs an ε-relative approximation of | {x : C(x) = 1} |.

Theorem 4.3 (uniform sampling [JVV86, BGP00]). For every i ≥ 0, every sufficiently large s
and every δ > 0, there is a randomized size poly(s, log(1/δ)) Σi+1-circuit A that given a Σi-circuit
C : {0, 1}n → {0, 1} of size s ≥ n outputs a value in {0, 1}n ∪ {⊥} such that for every size s Σi-
circuit, Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) 6= ⊥) is uniform over {x : C(x) = 1}.

4.2 Notions of relative error

In Section 1 we defined a notion of relative distance between two numbers which we notate by
p1

re∼(ε,δ) p2. This notion was used in the definition of re-PRGs and re-nb-PRGs. In this section we
discuss properties of this distance, as well as related notions of distance.

Definition 4.4. Let p1, p2 be two numbers, and let pmax = max(p1, p2) and pmin = min(p1, p2).
We say that p1, p2 are

• ε-close if pmax − pmin ≤ ε, and use the notation p1
ad∼ε p2.

• (ε, δ)-relative-close if pmax ≤ eε · pmin + δ, and use the notation p1
re∼(ε,δ) p2.

• (ε, δ)-relative-threshold-close if pmax ≤ δ or pmax ≤ eε ·pmin, and use the notation p1
rt∼(ε,δ)

p2.

The three notions above can be used to define distance between probability distributions. Thus,
for example, if X,Y are distributions over a finite set Ω, we write X re∼(ε,δ) Y if for every function
D : Ω→ {0, 1}, Pr[D(X) = 1] re∼(ε,δ) Pr[D(Y) = 1].

15

It is easy to verify the following relationships between the three notions, by using the approximations
1 + x ≤ ex ≤ 1 + 3x and 1− x ≤ e−x ≤ 1− x/3 which hold for 0 ≤ x ≤ 1

Lemma 4.5. For every numbers 0 ≤ p1, p2 ≤ 1, and 0 ≤ ε, δ ≤ 1

• p1
re∼(ε,δ) p2 ⇒ p1

ad∼3ε+δ p2.

• p1
rt∼(ε,δ) p2 ⇒ p1

re∼(ε,δ) p2.

• For ε ≤ 1
2 , p1

re∼(ε,δ) p2 ⇒ p1
rt∼(4ε,4δ/ε) p2.

• p1
rt∼(ε,δ) p2 ⇒ p1

ad∼3ε+δ p2.

• p1
ad∼δ p2 ⇒ p1

rt∼(ε,3δ/ε) p2.

In our constructions of re-PRGs and re-nb-PRGs, we will shoot for ε = n−O(1) and δ = 2−nΩ(1) .
Note that by Lemma 4.5, for these choices, the notions of “relative-close” and “relative-threshold-
close” are equivalent. It turns out that for our purposes, the notion of “relative-threshold-close” is
easier to work with. For this reason we now redefine the notions of re-PRGs and re-nb-PRGs using
the notion of relative-threshold-close instead of relative-close. The definitions are identical except
that we use “relative-threshold-close” instead of “relative-close”.

Definition 4.6 (rt-PRGs). A function G : {0, 1}r → {0, 1}n is an (ε, ρ)-rt-PRG for a class C of
functions C : {0, 1}n → {0, 1} if for every C in the class C,

Pr[C(G(Ur)) = 1] rt∼(ε,ρ) Pr[C(Un) = 1].

Definition 4.7 (rt-nb-PRG). Let C be a class of boolean functions C : {0, 1}n → {0, 1}`. A
function G : {0, 1}r → {0, 1}n is an (`, ε, ρ)-rt-nb-PRG for C if for every C in C, the probability
distributions C(G(Ur))

rt∼(ε,ρ) C(Un).

By the discussion above it immediately follows that:

Fact 4.8 (rt-PRGs are re-PRGs). An (ε, ρ)-rt-PRG is also an (ε, ρ)-re-PRG, and an (ε, ρ)-rt-nb-
PRG is also an (ε, ρ)-re-nb-PRG.

In the remainder of the paper we will only discuss rt-PRGs.

4.3 Some useful technical lemmas on relative error

The next lemma shows that if we can approximate two quantities p1, p2 using an η-relative approx-
imation, for η < ε/10 then when we can essentially tell if p1

rt
6∼(ε,ρ) p2.

Lemma 4.9. Let 0 ≤ p1, p2 ≤ 1 and let p′1, p′2 be η-relative approximations of p1, p2 respectively.
Let T (p′1, p′2) be a test that accepts iff max(p′1, p′2) ≥ ρ · e−η and max(p′1,p′2)

min(p′1,p′2) ≥ e
ε−2η. Then,

• p1
rt
6∼(ε,ρ) p2 ⇒ T (p′1, p′2) accepts.

16

• T (p′1, p′2) accepts ⇒ p1
rt
6∼(ε−4η,ρ·e−2η) p2.

We also need the following technical lemma that allows us to perform “Markov style arguments”
with relative distance.

Lemma 4.10. Let R,W be independent random variables, and let ψ1, ψ2 be boolean functions.
Assume that

Pr[ψ1(R,W) = 1]
rt
6∼(ε,ρ) Pr[ψ2(R,W) = 1].

Let ε′ = ε/10 and ρ′ = ρ · ε/10, and let G =
{
r : Pr[ψ1(r,W) = 1]

rt
6∼(ε′,ρ′) Pr[ψ2(r,W) = 1]

}
. Then

Pr[R ∈ G] ≥ ρ · ε/10.

Proof. Let ar = Pr[ψ1(r,W) = 1], br = Pr[ψ2(r,W) = 1] and pr = Pr[R = r]. We can write
a = Pr[ψ1(R,W) = 1] =

∑
r p(r)ar and b = Pr[ψ2(R,W) = 1] =

∑
r p(r)br. Assume w.l.o.g.

that a > b and we know that a > eεb and a > ρ. We conclude that a − b =
∑
r p(r)(ar − br) >

max((eε− 1)b, ρ− b) and assume that (ar − br) is positive for all r (otherwise we take only positive
terms and increase the sum).

Let A = {r : ar > eε
′
br ∧ ar > ρ′}, B = {r : ar ≤ ρ′}, C = {r : ar ≤ eε

′
br ∧ ar > ρ′}.∑

r∈A
p(r) ≥

∑
r∈A

p(r)(ar − br) > max((eε − 1)b, ρ− b)−
∑
r∈B

p(r)(ar − br)−
∑
r∈C

p(r)(ar − br).

Since
∑
r∈B p(r)(ar − br) ≤ ρ′ and

∑
r∈C p(r)(ar − br) ≤ (eε′ − 1)b we conclude∑

r∈A
p(r) > max((eε − eε′)b− ρ′, ρ− eε′b− ρ′).

If b < 0.25ρ then ρ− eε′b− ρ′ > ρ(1− e/4− 1/10) > 0.22ρ. If b ≥ 0.25ρ then (eε− eε′)b− ρ′ > (0.9 ·
0.25 − 0.1)ερ = 0.125ερ. So we can conclude that Pr[R ∈ G] =

∑
r∈G p(r) ≥

∑
r∈A p(r) > 0.125ερ

since A ⊆ G.

5 Derandomization of poly-time randomized algorithms with a
large error

In this section we prove construct the low-error HSG of Theorem 1.8 and show how to extend the
argument to handle two-sided error algorithms, proving Theorem 1.14.

5.1 An HSG for low error

We first consider the case of one-sided error algorithms which can be derandomized using hitting-
set generators. The following theorem gives a construction of HSGs and implies Theorem 1.8 and
Theorem 1.9.

Theorem 5.1 (HSG with seed length log(1/ε) + O(logn)). Let b > 1 be a constant, and let
ε = ε(n) ≥ 2−(n−1). Assume that E is hard for exponential size nondeterministic circuits. Let G be
the function constructed in Figure 1, with the parameters chosen there. Then there exists a constant
c > 1 such that for every sufficiently large n, G : {0, 1}log(1/ε)+c logn → {0, 1}n is an ε-HSG for size
nb circuits. Furthermore, G is computable in time poly(nb).

17

Figure 1: An HSG for low error

Goal: Construct a poly(n)-time computable ε-HSG, G : {0, 1}r → {0, 1}n for circuits of size nb with
r = 1 · log(1/ε) +O(b · log(·n)).

Assumption: E is hard for exponential size nondeterministic circuits.

Parameters:

• b, n - We are shooting to fool circuits of size nb.
• ε ≥ 2−(n−1) - the required error.

Ingredients:

• We make use of a 1
2 -HSG for nondeterministic circuits. Specifically, let b′ = a · b for a

constant a > 1 to be chosen later. By Theorem 1.7, there exists a constant c > 1 such that
the assumption that E is hard for exponential size nondeterministic circuits, implies that for
every sufficiently large n, there is a poly(n)-time computable G′ : {0, 1}c logn → {0, 1}2n that
is a 1

2 -HSG for size nb′ nondeterministic circuits.

• A hitter, that is a function hitter : {0, 1}2n → ({0, 1}n)4/ε such that for every B ⊆ {0, 1}n,
PrZ←U2n [∃i : hitter(Z)i ∈ B] ≥ 2

3 . It is standard that this is achieved by the “pair-wise
independent hitter” that uses its 2n bit input to sample 4/ε pairwise independent n bit
variables, (see e.g., [Gol11]). Moreover, given (z, i), hitter(z)i can be computed in time
poly(n).

The HSG: Define G : {0, 1}c logn+log(4/ε) → {0, 1}n by G(x, i) = hitter(G′(x))i.

Proof. Let D : {0, 1}n → {0, 1} be a size nb circuit, let B = {y : D(y) = 1}, and assume that
|B| ≥ ε · 2n. Let T =

{
z ∈ {0, 1}2n : ∃i : hitter(z)i ∈ B

}
. By the properties of hitter |T | ≥ 2

3 · 2
2n.

Note that by the definition of T , there exists a nondeterministic circuit C : {0, 1}2n → {0, 1} of size
poly(n) + nb such that C(z) = 1 iff z ∈ T . We can choose the constant a to be sufficiently large
so that nb′ = na·b is larger than the size of C. It follows that G′ fools C and in particular, there
exists x ∈ {0, 1}c logn such that C(G′(x)) = 1 which implies D(G(x, i)) = D(hitter(G′(x)i) = 1 as
required.

5.2 Extending the argument to 2-sided error randomized algorithms

In this section we prove Theorem 1.14. Our first step is to modify the construction in Figure 1 to
use a PRG instead of an HSG and an averaging sampler instead of a hitter. Specifically, we replace
hitter : {0, 1}2n → ({0, 1}n)4/ε with a function samp : {0, 1}2n → ({0, 1}n)t for t = O(1/ε2). that
has the property that for every B ⊆ {0, 1}n with |B| ≥ 2

3 · 2
n,

Pr
Z←U2n

[∣∣∣∣ | {i : samp(Z)i ∈ B} |
t

− |B|2n

∣∣∣∣ ≥ ε

10

]
≤ 1

10

It is standard that this is achieved by the “pair-wise independent sampler” that uses its 2n bit input
to sample t = O(1/ε)2 pairwise independent n bit variables, (see e.g., [Gol11]). We also require
that G′ is a 1/10-PRG for Σ1-circuits of size nb′ (rather than a 1

2 -HSG for nondeterministic circuits

18

of size nb′). This follows just the same from Theorem 1.7, if we strengthen the assumption, and
assume that E is hard for exponential size Σ1-circuits. We repeat the construction of Figure 1 with
these choices, and let G denote the final function G obtained in Figure 1 with the modifications
above. We prove the following extension of Theorem 5.1.

Theorem 5.2. Let b > 1 be a constant, and let ε = ε(n) ≥ 2−n/2. Assume that E is hard for
exponential size Σ1-circuits. Let G be the function constructed in Figure 1, with the parameters
chosen there and the modifications explained above. Then there exists a constant c > 1 such that
for every sufficiently large n, G : {0, 1}c logn × {0, 1}log t → {0, 1}n satisfies that for every size nb
circuit D : {0, 1}n → {0, 1}:

• If Pr[D(Un) = 1] ≥ 2 · ε then PrX←Uc logn

[
|{i:D(G(X,i))=1}|

t ≥ 3
2 · ε

]
≥ 4

5 .

• If Pr[D(Un) = 1] ≤ ε then PrX←Uc logn

[
|{i:D(G(X,i))=1}|

t ≥ 3
2 · ε

]
≤ 1

5 .

Furthermore, G is computable in time poly(nb).

By the discussion in Section 1.8 we cannot use black-box techniques to construct poly-time
computable PRGs with low error under the assumption of Theorem 5.2. Theorem 5.2 does not
contradict the discussion as the constructed object G is not a PRG. It is not the case that G(Ur)
indistinguishable from uniform with very low error. Nevertheless, the guarantee on G suffices for
derandomization in time exponential in the seed length (as is the case in PRGs).

Proof. (of Theorem 5.2) Let D : {0, 1}n → {0, 1} be a size nb circuit, let B = {y : D(y) = 1}. Let

T =
{
z ∈ {0, 1}2n :

∣∣∣∣ | {i : samp(z)i ∈ B} |
t

− |B|2n

∣∣∣∣ ≤ ε

10

}
.

By the properties of samp, |T | ≥ 9
10 · 2

2n. It follows that:

• If Pr[D(Un) = 1] ≥ 2 · ε then PrZ←U2n

[
|{i:D(samp(Z)i)=1}|

t ≥ 7
4 · ε

]
≥ 9

10 .

• If Pr[D(Un) = 1] ≤ ε then PrZ←U2n

[
|{i:D(samp(Z)i)=1}|

t ≤ 5
4 · ε

]
≥ 9

10 .

Consider the Σ1-circuit C : {0, 1}2n → {0, 1} that works as follows: given input z ∈ {0, 1}2n, C
uses Theorem 4.2 to compute an η-relative approximation p′ of p = | {i ∈ [t] : D(samp(z)i) = 1} |,
for η = 1/100. The circuit C accepts iff p′ ≥ t · 32 ·ε. It follows that C is a Σ1-circuit of size poly(nb).
The quality of approximation is sufficient to distinguish the case that p ≥ 7

4 · ε and p ≤ 5
4 · ε.

We can choose the constant a to be sufficiently large so that nb′ = na·b is larger than the size
of C. It follows that G′ fools C, and the theorem follows.10

We are now ready to prove Theorem 1.14.
10Note that the circuit C uses its oracle only to perform approximate counting. It can be verified that this can be

done by a circuit C that makes nonadaptive queries to its oracle. This means that for this argument it is sufficient
that G′ fools circuits of this type, and by the “downward collapse theorem” of Shaltiel and Umans [SU06], coupled
with Theorem 1.7, such PRGs follow under the seemingly weaker assumption that E is hard for exponential size
nondeterministic circuits.

19

Proof. (of Theorem 1.14) Let T (n) ≥ n be a bound on the running time of A. Given an input
x ∈ {0, 1}n, we consider the circuit Dx : {0, 1}T (n) → {0, 1}, which given y simulates A(x) using y
as random coins. We apply Theorem 5.2 to obtain a constant c and a function

G : {0, 1}c log T (n) × {0, 1}log t(n) → {0, 1}T (n),

where t(n) = O(1/ε(n)2). By applying the guarantee of Theorem 5.2 on Dx we get that

• x ∈ L ⇒ Pr[Dx(Un) = 1] ≥ 2 · ε] ⇒ PrS←Uc logT (n)

[
|{i:Dx(G(S,i))=1}|

t(n) ≥ 3
2 · ε(n)

]
≥ 4

5 .

• x 6∈ L ⇒ If Pr[D(Un) = 1] ≤ ε] ⇒ PrS←Uc logT (n)

[
|{i:Dx(G(S,i))=1}|

t(n) ≥ 3
2 · ε(n)

]
≤ 1

5 .

The deterministic algorithm works as follows: We go over all s ∈ {0, 1}c log T (n). For each one we
count the number of i ∈ [t(n)] for which Dx accepts G(s, i). If the fraction of s, such that

| {i : Dx(G(s, i)) = 1} |
t(n) ≥ 3

2 · ε(n)

is larger than 4
5 , we accept. The correctness of this simulation follows. The running time is

t(n) · poly(T (n)) = poly(T (n))/ε(n)2.

6 On minimal hardness assumptions for HSGs with low error

We are using hardness for nondeterministic circuits in Theorem 1.8 which constructs an ε-HSG
with very low error. Is this assumption necessary?

In this section we address this question. We will consider a natural intermediate model of
circuits that are stronger than deterministic circuits, and weaker than nondeterministic circuits,
namely nondeterministic circuits that use k ≤ n nondeterministic bits (as defined in Definition 1.4).

6.1 1
2-HSGs for nondeterministic circuits with few nondeterministic bits

An inspection of our construction of HSG in Figure 1 reveals that the assumption that E is hard
for exponential size nondeterministic circuits was only used to obtain a 1

2 -HSG for nondeterministic
circuits with a number of nondeterministic bits that is roughly k = log(1/ε). More precisely, our
construction gives the following general conversion.

Theorem 6.1. For every constant b > 1 there is a constant b′ > b such that for every sufficiently
large n, if G : {0, 1}r → {0, 1}2n is a 1

2 -HSG for size nb′ nondeterministic circuits that use k =
log(1/ε) + O(1) nondeterministic bits, then there is a function G′ : {0, 1}r+k → {0, 1}n that is an
ε-HSG for circuits of size nb. Furthermore, G can be computed in time poly(n) with one oracle call
to G.

We can show the following partial converse:

Lemma 6.2. Let G : {0, 1}r → {0, 1}n be an ε-HSG for circuits of size s, and let G′ : {0, 1}r →
{0, 1}n−k be G′(x) = G(x)|1,...,n−k for k = log(1/ε)− 1. G′ is a 1

2 -HSG for size s nondeterministic
circuits with k nondeterministic bits.

20

Proof. Let C : {0, 1}n−k → {0, 1} be a size s nondeterministic circuit with k nondeterministic
bits, which accepts at least half of its inputs. That is, there exists a deterministic circuit D :
{0, 1}n−k × {0, 1}k → {0, 1} of size s such that: for every x ∈ {0, 1}n−k,

C(x) = 1 ⇔ ∃y ∈ {0, 1}k s.t. D(x, y) = 1,

and Pr[C(Un−k) = 1] ≥ 1
2 . It follows that Pr[D(Un) = 1] ≥ 1

2 · 2
−k = ε (here we view D as a

circuit with n input bits). Thus, by the guarantee of the HSG, there exists an s′ ∈ {0, 1}r such
that D(G(s′)) = 1. Denote G(s′) = (x′, y′) so that G′(s′) = x′. It follows that D(x′, y′) = 1 which
implies that C(x′) = 1, and we have that C(G′(s′)) = 1.

This means that in the case that r = Ω(log(1/ε)) the notions of 1
2 -HSG for nondeterministic

circuits with k = log(1/ε) bits of nondeterminism, and the notion of ε-HSGs for standard circuits
are essentially equivalent (in the sense that conversions between them incur only slight penalties in
seed length and circuit size).

Consequently, if we are interested in low error HSGs for deterministic circuits that have polyno-
mial stretch, we should be interested in HSGs against the class of polynomial size nondeterministic
circuits on n bits with γ · n nondeterministic bits, for a small γ > 0.

6.2 Hardness assumptions that imply HSGs for circuits with weak nondeter-
minism

How hard is it to construct 1
2 -HSGs for poly-size nondeterministic circuits with γ·n nondeterministic

bits? Given the success of the hardness versus randomness paradigm exhibited in Theorems 1.3 and
Theorem 1.7, we can hope that hardness for this circuit class, translates into pseudorandomness
for this circuit class. If this is the case, we can start from the assumption that there exists a γ > 0
such that E is hard for exponential size nondeterministic circuits that use γn nondeterministic bits.

An inspection of the hardness versus randomness tradeoffs in the literature reveal that they do
not give such a result. Loosely speaking, because of the need for a hybrid argument, the reductions
need to “perform decoding” from error less than 1/n and make a super-linear number queries
to the distinguisher circuit. This overall means that we require hardness against circuits with a
super-linear number of nondeterministic bits.

This is a pity because it trivially follows that nondeterministic circuits of size s with k nonde-
terministic bits can be simulated by deterministic circuits of size s · 2k, and this implies that:

Fact 6.3. If E is hard for exponential size circuits, then there exists a γ > 0 such that E is hard
for exponential size nondeterministic circuits that use γn nondeterministic bits.

Consequently, a hardness versus randomness tradeoff of the form we hope for, would be able
to start from the assumption that E is hard for exponential size circuits. By the discussion in the
introduction, such hardness versus randomness tradeoffs cannot have black-box proofs.

6.3 Hardness assumptions implied by HSGs with low error

In the previous section we observed that it is unlikely that we can prove that hardness for nondeter-
ministic circuits with few nondeterministic bits implies HSGs with low error against deterministic
circuits. We are able to prove the other direction. Specifically, we show that HSGs with low error
and polynomial stretch, that run in time exponential in their seed length, imply that E is hard for

21

polynomial size nondeterministic circuits with Ω(n) nondeterministic bits on inputs of length n.
The following is a restatement of Theorem 1.11

Theorem 6.4. Let δ > 0 be a constant. Assume that for every sufficiently large n, there is a
2−nδ -HSG H : {0, 1}O(nδ) → {0, 1}n for size s ≥ n circuits, and furthermore that the family of
functions H = {Hn} is computable in time exponential in the seed length, that is time 2O(nδ).
Then, there exists a constant γ > 0, and a problem L ∈ E such that for every sufficiently large
n′, nondeterministic circuits of size (γn′)1/δ with γ · n′ nondeterministic bits fail to compute the
characteristic function of L on inputs of length n′.

Our current state of knowledge doesn’t give us any reason to think that HSGs with ε = 1/n
imply the same conclusion.

We use the following simple argument from [ISW99] to prove the following:

Theorem 6.5. Let H : {0, 1}r → {0, 1}n be a 1
2 -HSG for size s nondeterministic circuits that use

k bits. Let f : {0, 1}r+2 → {0, 1} be the function

f(y) = 0 ⇔ ∃z ∈ {0, 1}n−(r+2), ∃x ∈ {0, 1}n s.t. H(x) = y ◦ z

where “◦” denotes concatenation. f cannot be computed by size s-circuits that use k bits of nonde-
terminism.

Proof. A circuit C : {0, 1}r+2 → {0, 1} computing f , can be thought of a circuit C : {0, 1}n → {0, 1}
(that only looks at the r + 2 prefix of its input). It is immediate that Pr[C(Un) = 1] ≥ 3

4 and yet
C answers zero on all outputs of G.

Theorem 6.4 now follows by converting the low error HSG into a 1
2 -HSG for nondeterministic

circuits with few nondeterministic bits, and then using Theorem 6.5 to convert the HSG into a
hard function.

Proof. (of Theorem 6.4) Let c be the constant hidden in the seed length of H, and let n be
sufficiently large. By Lemma 6.2 we have that H ′ : {0, 1}r → {0, 1}n−k is a 1

2 -HSG for size s ≥ n,
nondeterministic circuits with k bits of nondeterminism, for k = nδ − 1. Let n′ = c · nδ + 2,
and let f : {0, 1}n′ → {0, 1} be the function obtained by applying Theorem 6.5 on H ′. We
have that f cannot be computed by size s-circuits that use k bits of nondeterminism. Note that
s ≥ n ≥ Ω(n′)1/δ, and k ≥ Ω(n′). Let L be the language of the decision problem f . It follows that
L ∈ E as f can be computed by running over all 2O(nδ) seeds of G and computing G, and this takes
time 2O(nδ) = 2O(n′).

7 A construction of an re-PRG

In this section we construct re-PRGs and prove Theorem 1.17. We will actually construct rt-PRGs
which are in particular re-PRGs. We begin by constructing a poly(n)-time computable function
g : {0, 1}n → {0, 1}, such that the function G : {0, 1}n → {0, 1}n+1 defined by G(x) = (x, g(x)) is an
(1/poly(n), 2−Ω(n))-rt-PRG for fixed polynomial size circuits. This construction is given in Section
7.1 and builds on ideas from [TV00, AASY15]. In order to obtain an re-PRG with polynomial
stretch we apply the Nisan-Wigderson generator [NW94] where the function g plays the role of the
hard function. The analysis of the NW-generator can be used (with some modifications) to argue
that this yields an rt-PRG.

22

7.1 rt-PRGs with one bit stretch

7.1.1 The construction

We use the following result by Trevisan and Vadhan [TV00].

Theorem 7.1 ([TV00]). Let i ≥ 0. If E is hard for exponential size Σi+1-circuits, then for every
constant b > 1, there exists some constant α > 0 such that for every sufficiently large n, there is
a function f : {0, 1}n → {0, 1}m=α·n such that for every size nb, Σi-circuit A, PrX←Un [A(X) =
f(X)] ≤ 2−m/3. Furthermore, f is computable in time poly(nb).

Figure 2: An rt-PRG with one bit stretch

Goal: Construct a poly(n)-time computable (n−b, 2−Ω(n))-rt-PRG, G : {0, 1}n → {0, 1}n+1 for Σi-
circuits of size nb.

Assumption: E is hard for exponential size Σi+3-circuits.

Parameters:

• i, b, n - We are shooting to fool Σi-circuits of size nb.
• We set ρ = 2−µn for a constant 0 < µ < 1

2 to be specified later.
• We set t = νn for a constant ν > 1

2 to be specified later.

Ingredients:

• We make use of an exponentially hard on average function due to Trevisan and Vadhan
[TV00]. Specifically, let b′ = a · b for a constant a > 1 to be chosen later. By Theorem 7.1,
there exists a constant α > 0 such that under the assumption that E is hard for exponential
size Σi+3-circuits, for every sufficiently large n, there is a polynomial time computable function
f : {0, 1}t → {0, 1}t′=α·t such that for every size nb′ , Σi+2-circuit A, PrX←Ut [A(X) = f(X)] ≤
2−t′/3.

• A strong (k = O(log(1/ρ)), ρ/2000)-extractor, E : {0, 1}t′ × {0, 1}d → {0, 1}, with seed
length d = O(log(1/ρ)). There are constructions of polynomial time computable extractors
with these parameters [GUV09]. (In fact, such extractors immediately follow from binary
poly-time (1/2 − Ω(ρ),poly(1/ρ))-list-decodable codes with rate poly(ρ) [Tre01]. We have
that d = O(log(1/ρ) = e ·µ ·n for some constant e > 1. We now specify the constant ν (which
was used to define t = ν · n) so that the equality n = t+ d holds, we will later choose µ > 0
to be sufficiently small so that we indeed have that ν > 1/2 as promised.

The rt-PRG: Define g : {0, 1}t × {0, 1}d → {0, 1}, by g(v, y) = E(f(v), y). The final generator G :
{0, 1}n → {0, 1}n+1 is given by G(v, y) = (v, y, g(v, y)).

Remark 7.2. Theorem 7.1 is not stated in this form in [TV00]. Nevertheless, it is implicit in the
work of [TV00] as we now explain.

Lemma 5.1 in [TV00] states that if a circuit C computes a degree d multivariate polynomial
p : Ft → F (over a field F of size q) correctly on an ε fraction of its inputs (and if certain conditions
on the parameters t, d, q and ε are met) then there exists a Σj-circuit C ′ that computes p correctly

23

on all inputs, and the size of C ′ is polynomial in the size of C and in t, d, log q (but does not depend
on ε). The lemma claims this for j = 2, but we will later observe that this holds also for j = 1.

The parameters in the lemma allow ε which is roughly
√
d/q and thinking of p as a boolean

function outputting log q bits, this allows ε to approach 2−
1
2 ·log q if d� q.

By using the “low degree extension” it is standard that E has complete problems that can be
represented as such low degree polynomials. More precisely, given an input length n, we consider
a restriction of an E complete problem to inputs of length ` = c logn and perform the low degree
extension with d = 2γ·`, where γ > 0 is a small constant, t = O(1/γ) and huge field size q = 2n/t
so that the input length of p (in bits) is t log q = n and the output length is log q = Ω(n). It follows
that p can be computed in time 2O(c`) = nO(c) and if we assume that E is hard for Σj-circuits then
p cannot be computed by circuits of size 2β·` = nβc, which we can control by choosing c. The reader
can also find this argument in the proof of Theorem 5.5 in [TV00].

From this, Lemma 5.1 in [TV00] gives that p (interpreted as a function with boolean input and
output) is a function that is hard on average. This proves a version of Theorem 7.1 in which Σ1
is replaced by Σ2. The stronger statement (for Σ1) follows because Lemma 5.1 in [TV00] also
holds for j = 1. This was stated in an earlier version of [TV00] and follows by a more efficient
implementation of the proof.

More specifically, the proof of Lemma 5.1 constructs the circuit C ′ by first specifying a random-
ized procedure which for every input x ∈ Ft computes p(x) correctly with probability say 2/3. The
procedure requires “nonuniform advice” about p in the form of a point z ∈ Ft and its evaluation p(z)
(the existence of a “good point” z is shown in the proof). The computation of the procedure can be
expressed in the following form: Given x, the procedure nondeterministically guesses polynomially
many strings h1, . . . , h` of polynomial length. For each one it prepares a circuit Ti which depends on
hi (and also on x, z, p(z)). The procedure then uses approximate counting to verify that sufficiently
many of the Ti’s accept more than a fixed number of inputs.

Indeed, such a computation can be described (after removing the random coins) by a nonde-
terministic circuit that uses an NP-oracle to perform approximate counting. Overall, this gives a
Σ2-circuit.

However, approximate counting is only used to check that a given circuit accepts more than a
fixed number of inputs. The problem of checking that the number of accepting inputs is larger than
a fixed quantity is easier than approximating the number of accepting inputs: it can be solved by an
Arthur-Merlin protocol as shown by Goldwasser and Sipser [GS86]. With this implementation, the
entire procedure can be seen (after removing the randomness) as a Σ1-circuit.

Our construction is given in Figure 2. Note that an intuitive overview is given in Section 2.

Theorem 7.3 (rt-PRG with one bit stretch). Let i ≥ 0, b > 1 be constants. Assume that E is
hard for exponential size Σi+3 circuits. Let g,G be the functions constructed in Figure 2, with the
parameters chosen there. Then there exists a constant µ > 0 such that for every sufficiently large
n, G(x) = (x, g(x)) is an (n−b, ρ)-rt-PRG for size nb, Σi-circuits, for ρ = 2−µ·n. Furthermore, g is
computable in time poly(nb).

7.1.2 Proof of Theorem 7.3

We start by proving the following lemma (which captures the role that strong seeded extractors
play in the proof).

24

Lemma 7.4. Let E : {0, 1}n × {0, 1}d → {0, 1} be a (k, ρ)-strong extractor, and let T : {0, 1}d ×
{0, 1} → {0, 1} be a function. Let

Z =
{
z : Pr

Y←Ud
[T (Y,E(z, Y)) = 1]

ad
6∼ρ Pr

Y←Ud,W←U1
[T (Y,W) = 1]

}
.

Then |Z| ≤ 2 · 2k.

Proof. We can partition Z into two sets according to which of the two terms in the definition of Z
is the maximal one. If |Z| > 2 · 2k then we can assume w.l.o.g

|{z : Pr
Y←Ud

[T (Y,E(z, Y)) = 1]− Pr
Y←Ud,W←U1

[T (Y,W) = 1] > ρ}| > 2k.

Let X be a random variable that is uniformly distributed over Z and note that H∞(X) > k. E
is a (k, ρ)-strong extractor which implies that (Y,E(X,Y)) is ρ-close to (Y,W). This implies that
|Pr[T (Y,E(X,Y)) = 1]− Pr[T (Y,W) = 1]| ≤ ρ, and we get a contradiction.

We are now ready to prove Theorem 7.3. We assume (for contradiction) that G is not a (n−b, ρ)-
rt-PRG for size nb Σi-circuits, and our goal is to show that there is a Σi+2-circuit A of size nb′ such
that PrX←Ut [A(X) = f(X)] > 2−t′/3.

Our assumption says that there exists a size nb Σi-circuit C such that Pr[C(G(Un)) = 1]
rt
6∼(n−b,ρ)

Pr[C(Un+1) = 1]. For the remainder of the proof, let us consider a probability space that consists
of three independent random variables: V ← Ut, Y ← Ud and U ← U1. By the construction of G
we have that:

Pr[C(V, Y,E(f(V), Y)) = 1]
rt
6∼(n−b,ρ) Pr[C(V, Y, U) = 1]

We now apply Lemma 4.10. For this purpose we set R = V , W = (Y, U). We use the notation
W1 = Y and W2 = U . Let ψ1(r, w) = C(r, w1, E(f(r), w1)) and ψ2(r, w) = C(r, w1, w2). We apply
the lemma and obtain that:

Claim 7.5. Let ε′ = n−b/10, ρ′ = ρ · n−b/10 and let

G =
{
v ∈ {0, 1}t : Pr[C(v, Y,E(f(v), Y)) = 1]

rt
6∼(ε′,ρ′) Pr[C(v, Y, U) = 1]

}
.

It follows that Pr[V ∈ G] ≥ ρ · n−b/10.

Recall that our goal is to contradict the hardness of f by showing the existence of a suitable cir-
cuit A that compute f(v) too well given a random v. For every v ∈ G, we define Tv(y, b) = C(v, y, b)
so that Tv distinguishes (Y,E(f(v), Y)) from (Y,U) in the sense that Pr[Tv(Y,E(f(v), Y)) =

1]
rt
6∼(ε′,ρ′) Pr[Tv(Y,U) = 1]. By Lemma 4.5, this implies that Pr[Tv(Y,E(f(v), Y)) = 1]

ad
6∼ρ′·ε′/3

Pr[Tv(Y,U) = 1]. This is helpful because by Lemma 7.4 there aren’t that many z ∈ {0, 1}t′ for
which Tv distinguishes (Y,E(z, Y)) from (Y, U), and yet z∗ = f(v) is one of those z’s. We will use
this property to construct a small Σi+2 circuit A that given a v ∈ G, produces f(v) with probability
ρO(1), and this will be a contradiction. The description of A appears in Figure 3. We first present
A as a randomized circuit that tosses coins, and will later fix its coins to give a circuit that does
not toss coins. The correctness of A will follow from the following claims.

25

Figure 3: Circuit A: A Σi+2-circuit that computes f correctly with noticeable probability.

Goal: A size nb′ Σi+2-circuit C that computes f with probability 2−t′/3.

Description: On input v ∈ {0, 1}t, A computes as follows:

• Prepare the Σi-circuit Tv(y, b) = C(v, y, b)
• Prepare the Σi+1-circuit Bv, defined as follows:

– On input z ∈ {0, 1}t′ , Bv computes as follows:
– Bv prepares the circuits Dv

1 : {0, 1}d → {0, 1} and Dv
2 : {0, 1}d+1 → {0, 1} defined

by D1(y) = Tv(y,E(z, y)) and D2(y, b) = Tv(y, b). Note that these are circuits of size
poly(nb).

– Let p1, p2 be the number of accepting inputs of Dv
1 , D

v
2 respectively. Let η = ε′/10 =

n−b/100. B uses Theorem 4.2 to compute η-relative approximations p′1, p′2 to p1, p2.
Note that by Theorem 4.2, this can be done in a size poly(nb) Σi+1-circuit.

– Bv accepts z if max(p′1, p′2) ≥ ρ′e−η and max(p′1, p′2)/min(p′1, p′2) ≥ eε
′−2η. This choice

is made so that by Lemma 4.9:

∗ p1
rt

6∼(ε′,ρ′) p2 ⇒ Bv accepts z, and

∗ Bv accepts z ⇒ p1
rt

6∼(ε′′,ρ′′) p2, where ε′′ = ε′ − 4η ≥ ε′/2 and ρ′′ = ρ′ · e−2η ≥ ρ′/2.
• The circuit A uses Theorem 4.3 to sample an accepting input z of Bv (with error δ = 2−n).

Note that this can be done with a size poly(nb) Σi+2-circuit. Overall, the size of A is poly(nb).
Recall that in Figure 2 we have chosen b′ = a · b for an unspecified constant a. Note that A
is indeed a Σi+2-circuit, and we can now choose a to be sufficiently large so that the size of
A is poly(nb) = na·b = nb

′ .
• Finally, the circuit A outputs z.

Claim 7.6. For every v ∈ G, Bv accepts f(v).

Proof. Fix some v ∈ G. By Claim 7.5 and the definition of Tv,

Pr[Tv(Y,E(f(v), Y)) = 1]
rt
6∼(ε′,ρ′) Pr[Tv(Y, U) = 1].

When Bv receives z = f(v) as input, it prepares the circuitD1(y) = Tv(y,E(f(v), y)) andD2(y, b) =
Tv(y, b). Recall that p1, p2 are the number of accepting inputs of these two circuits. Therefore, we

have that p1
rt
6∼(ε′,ρ′) p2, and by construction, Bv accepts z.

Claim 7.7. For every v ∈ G, Bv accepts at most 2k+1 = (1
ρ)O(1) inputs.

Proof. By construction, if Bv accepts an input z, then the quantities p1, p2 in Figure 3, satisfy

p1
rt
6∼(ε′−4η,ρ′·e−2η) p2. By Lemma 4.5, this implies that p1

ad
6∼ε′′·ρ′′/3 p2, and note that

ε′′ · ρ′′/3 ≥ ε′ · ρ′/12 ≥ n−2b · ρ/1200 ≥ ρ/2000.

Therefore, if Bv accepts z, then Pr[Tv(Y,E(z, Y)) = 1]
ad
6∼ρ/2000 Pr[Tv(Y, U) = 1] and by Lemma

7.4, there are at most 2 · 2k = poly(1/ρ) such strings z.

26

The two claims above give that

Claim 7.8. For every v ∈ G, Pr[A(v) = f(v)] ≥ 2−(k+1) = ρO(1) (where the probability is over the
coin tosses of A).

It follows that

Pr[A(V) = f(V)] ≥ Pr[V ∈ G] · Pr[A(V) = f(V)|V ∈ G] ≥
ρ · n−b/10 · ρO(1) = ρO(1) = 2−O(µ·n) ≥ 2−t′/3,

where the last step follows because we can choose µ > 0 to be sufficiently small so that

t′/3 = α · t/3 = α · ν · n/3 ≥ α · n/6 ≥ O(µn).

Finally, by an averaging argument, we can hardwire the random coins of A to produce a non-
randomized circuit with the same success probability. Thus, the circuit A contradicts the assump-
tion that f is 2−t′/3-incomputable by Σi+2-circuits of size nb′ .

7.2 rt-PRGs with polynomial stretch

We now use the NW-generator to transform the 1-bit stretch rt-PRG into an rt-PRG with polyno-
mial stretch.

7.2.1 Using the NW-generator

We review the construction of the NW-generator.

Definition 7.9 (Design). A collection ∆ = (S1, . . . , Sn) of subsets of [r] is an (r, `, u)-design if

• For every i ∈ [n], |Si| = `.

• For every distinct i, j ∈ [n], |Si ∩ Sj | ≤ u.

Definition 7.10 (NW-generator). Let ∆ = (S1, . . . , Sn) be an (r, `, u)-design, and let g : {0, 1}` →
{0, 1} be a function. For y ∈ {0, 1}r, we define xi(y) = y|Si and zi(y) = g(xi(y)). Let,

NW∆
g (y) = z1(y), . . . , zn(y).

Theorem 1.17 follows from the next theorem.

Theorem 7.11. Let ∆ be an (r, `, u)-design with u = c · logn. If G(x) = (x, g(x)) is an (ε
20n ,

ρ·ε
30n)-

rt-PRG for size nc+1 + nb + O(n) circuits, then NW∆
g : {0, 1}r → {0, 1}n is an (ε, ρ)-rt-PRG for

size nb circuits.

We need the following notation for the proof.

Definition 7.12. Given x ∈ {0, 1}`, v ∈ {0, 1}r−` and i ∈ [n] let y(i)(x, v) denote the r-bit string
y obtained by “placing” the bits of x in the ` indices of y that are in Si, and using v to fill the
remaining r − ` positions.

27

Proof. (of Theorem 7.11) In this proof g and ∆ are fixed, and so, to avoid clutter we write NW
instead of NW∆

g . Assume for contradiction that NW is not an (ε, ρ)-rt-PRG for size nb circuits.
That is, that there exists a circuit D of size nb such that

Pr[D(NW(Ur)) = 1]
rt
6∼(ε,ρ) Pr[D(Un) = 1].

Claim 7.13 (“Relative error hybrid argument”). Consider a probability space consisting of inde-
pendent random variables Y ← Ur and B1, . . . , Bn ← U1, and define

Hi = z1(Y), . . . , zi(Y), Bi+1, . . . , Bn,

so that H0 = Un and Hn = NW(Y). There exists 0 ≤ i < n such that

Pr[D(Hi) = 1]
rt
6∼(ε/2n,ρ·e−ε/2) Pr[D(Hi+1) = 1]

Proof. Let pi = Pr[D(Hi) = 1]. We have that p0
rt
6∼(ε,ρ) pn which indeed implies that there exists

an i such that pi
rt
6∼(ε/2n,ρ·e−ε/2) pi+1.

We have that

Pr[D(z1(Y), . . . , zi(Y), Bi+1, . . . , Bn) = 1]
rt
6∼(ε/2n,ρ·e−ε/2)

Pr[D(z1(Y), . . . , zi+1(Y), Bi+2, . . . , Bn) = 1

We can imagine that the experiment of choosing Y ← Ur is performed by choosing independently
X ← U` and V ← Ur and setting Y = y(i+1)(X,V). We now apply Lemma 4.10 setting R =
(V,Bi+2, . . . , Bn) and W = (X,Bi+1). We conclude that there exists a fixing (v, bi+2, . . . , bn) for R
such that

Pr[D(z1(y(i+1)(X, v)), . . . , zi(y(i+1)(X, v)), Bi+1, bi+2, . . . , bn) = 1]
rt
6∼(ε/20n,ρ·e−ε·ε/20n)

Pr[D(z1(y(i+1)(X, v)), . . . , zi+1(y(i+1)(X, v)), bi+2, . . . , bn) = 1].

Note that by definition, zi+1(y(i+1)(X, v)) = g(X). Furthermore, note that as ∆ is a (r, `, u)-
design, for j ≤ i, zj(y(i+1)(X, v) depends only on u bits of X, and therefore, can be computed by
a circuit Cj(X) of size 2u. We now define a circuit C as follows:

C(x, b) = D(C1(x), . . . , Ci(x), b, bi+2, . . . , bn).

Substituting in the expression above, we have that:

Pr[C(X, g(X)) = 1]
rt
6∼(ε/20n,ρ·e−ε·ε/20n) Pr[C(X,Bi+1) = 1]

Note that C is of size n · 2u +nb +O(n) = nc+1 +nb +O(n) and that ρ · e−ε · ε/20n ≥ ρ · ε/30n.

28

7.2.2 Putting it together: Proof of Theorem 1.17

We assume that E is hard for exponential size Σi+3-circuits. Let e, b > 1 be some constants.
Nisan and Wigderson [NW94] showed that there exists a constant c > 1 such that for every
sufficiently large n, there is an (r, `, u) design with n = re sets, that has r = O(`2) and u = c logn.
Note that n = O(`2e) and so, by Theorem 7.3 there are polynomial time computable functions
g : {0, 1}` → {0, 1} and G(x) = (x, g(x)) such that G is a (n−b′ , ρ)-rt-PRG for size nb′ Σi-circuits,
where b′ is a constant that we choose later, and ρ = 2−Ω(`) = 2−Ω(

√
r). We can choose the constant

b′ to be sufficiently large so that by Theorem 7.11 we have that NW∆
g is an (ε′, ρ′)-rt-PRG for size

nb Σi-circuits, with ε′ = n−b
′ · 20n ≤ n−b and ρ′ = ρ · 30n/n−b′ = ρΩ(1) = 2−Ω(

√
r) for sufficiently

large n. This gives a re-PRG with the same parameters.

8 A construction of re-nb-PRGs

In this section we construct rt-nb-PRGs which imply re-nb-PRGs.

8.1 rt-PRGs for Σ1-circuits are rt-nb-PRGs

We first show that sufficiently strong rt-PRGs for Σ1-circuits are rt-nb-PRGs. More specifically
that (ε, ρ)-rt-PRGs with ρ = O(2−` · ρ′ · ε) for Σ1-circuits are (`, O(ε), ρ′)-rt-nb-PRGs (for standard
circuits).

Lemma 8.1. There exists a constant c > 1 such that for every constant b > 1, and for every
sufficiently large n, if G : {0, 1}r → {0, 1}n is an (ε, ρ)-rt-PRG for Σ1-circuits of size nbc with
ρ ≤ 2−(`+t) then G is a (`, 4 · ε, ρ′)-rt-nb-PRG for circuits of size nb for ρ′ = O(2−t/ε).

Proof. Let C : {0, 1}n → {0, 1}` be a size nb circuit. We consider the circuit A : {0, 1}` → {0, 1}
that on input z ∈ {0, 1}` computes a 1/10-relative approximation to the quantity Pr[C(Un) = z] and
accepts if and only if the approximation is smaller than 2ρ. By theorem 4.2, A can be implemented
by a Σ1-circuit of size poly(nb). We use A also to denote the set of inputs accepted by A. Note
that for every z ∈ A, Pr[C(Un) = z] < 4ρ. It follows that Pr[C(Un) ∈ A] ≤ 2` · 4ρ = 2−(t−2). By
the pseudorandomness of G, this implies that Pr[C(G(Ur)) ∈ A] ≤ eε2−(t−2).

Let H = {z : Pr[C(Un) = z] ≥ 4ρ}. We have that H ∩ A = ∅. For every z ∈ {0, 1}`, we can
consider the circuit Tz(x) which accepts iff C(x) = z. This circuit is fooled by G. For z 6∈ A,
Pr[C(Un) = z] ≥ ρ, and we have that Pr[C(Un) = z] rt∼(ε,0) Pr[C(G(Ur)) = z]. This in turn implies
that for every T such that T ∩A = ∅, Pr[C(Un) ∈ T] rt∼(ε,0) Pr[C(G(Ur)) ∈ T]. We will show that:

Claim 8.2. For every D ⊆ {0, 1}`, Pr[C(Un) ∈ D] re∼(ε,δ) Pr[C(G(Ur)) ∈ D] for δ = 2−(t−2).

Proof. We have that:

Pr[C(Un) ∈ D] = Pr[C(Un) ∈ D \H] + Pr[C(Un) ∈ D ∩H]
≤ 4ρ · 2` + eε · Pr[C(G(Ur)) ∈ D ∩H]
≤ 2−(t−2) + eε · Pr[C(G(Ur)) ∈ D ∩H]

29

We also have that:

Pr[C(Un) ∈ D] ≥ Pr[C(Un) ∈ D \A]
≥ e−ε · Pr[C(G(Ur)) ∈ D \A]
= e−ε · (Pr[C(G(Ur)) ∈ D]− Pr[C(G(Ur)) ∈ D ∩A])
≥ e−ε · (Pr[C(G(Ur)) ∈ D]− eε · 2−(t−2))
= e−ε · Pr[C(G(Ur)) ∈ D]− 2−(t−2)

The lemma now follows because by Lemma 4.5 for ε ≤ 1
2 , p1

re∼(ε,δ) p2 ⇒ p1
rt∼(4ε,4δ/ε) p2.

Using the rt-PRG of Theorem 1.17 we obtain the following rt-nb-PRG.

Theorem 8.3. Let b, e > 1 be constants, and ` = `(n) ≤ n, ρ = ρ(n) be functions. If E is hard
for exponential size Σ4-circuits, then there is a polynomial time computable G : {0, 1}r → {0, 1}n,
such that for every sufficiently large n, G is an (`, n−b, ρ)-rt-nb-PRG for circuits of size nb, with
r = O((`+ log(1/ρ))2).

This is disappointing as previous work on (non-relative) nb-PRGs achieves a better dependence on
` in the form of r = O(`). We would like to also achieve a linear dependence of r on `.

8.2 An rt-nb-PRG with seed length r = `+O(log(1/ρ))2

We will use the approach of Theorem 1.18 to achieve a construction with shorter seed length.
Specifically, we design a poly(n) time randomized procedure P that produces circuit that is with
high probability an rt-PRG for Σ1-circuits that has excellent seed length. We then show that
checking whether a given circuit is an rt-PRG for Σ1-circuits can be done in the polynomial time
hierarchy. This means that our rt-PRG G′ of the earlier section can be used to produce a circuit h
that with high probability is an rt-PRG for Σ1-circuits. This in turn implies that it is an rt-nb-PRG
for standard circuits. Our final rt-PRGs takes two seeds, x1, x2. It first constructs h by applying
P (G′(x1)) and then outputs h(x2).

8.2.1 A random hash function is an rt-PRG

We use the following standard construction of t-wise independent hash functions (that is based on
degree t− 1 polynomials).

Theorem 8.4 (t-wise independent hash functions). For every n,m, t there is a family Htn,m of
at most 2d=t·max(n,m) functions from n bits to m bits, such that for every distinct x1, . . . , xt ∈
{0, 1}n, the random variables h(x1), . . . , h(xt) defined over the experiment h← Htn,m are uniformly
distributed and t-wise independent. Furthermore, there is a polynomial time algorithm that given
the d bit description s of a hash function hs ∈ Htn,m, and an input x ∈ {0, 1}n, computes hs(x).

A standard probabilistic argument shows that for any class C with 2k functions, a random
function G : {0, 1}r → {0, 1}n is w.h.p. a PRG for C with r ≈ log k. In the theorem below, we
repeat this argument and show that it also applies for rt-PRGs and achieves an excellent dependence
on ρ.

30

Theorem 8.5. Let C be a family of at most 2k boolean functions on n bits. Let t = 2(k + 3) + 2n
and r = log k + logn+ 2 log(1/ε) + log(1/ρ) + c for a sufficiently large universal constant c. With
probability at least 1 − 2−n over h ← Htr,n, we obtain a function h : {0, 1}r → {0, 1}n that is an
(ε, ρ)-rt-PRG for C.

Proof. Let C : {0, 1}n → {0, 1} be a function in C, and let µ = Pr[C(Un) = 1]. Let XC be
the random variable that counts the number of s ∈ {0, 1}r such that C(h(s)) = 1. The random
variable XC is a sum of 2r, t-wise independent variables. We have that E(XC) = 2r · µ. By the
t-wise independent “Chernoff style” bound of Bellare and Rompel [BR94] we have that for even t,

Pr[|XC − E(XC)| ≥ A] ≤ 8 ·
(
t · E(XC) + t2

A2

)t/2

Let A = 1
3 ·ε·2

r ·max(µ, ρ). This choice is made so that XC
2r

rt
6∼(ε,ρ) µ implies that |XC−E(XC)| ≥ A.

By our choice of parameters it follows that:

t · E(XC) + t2

A2 ≤ t · µ · 2r + t2

1
9 · ε2 · 22r ·max(µ, ρ)2 ≤

t
1
9 · ε2 · 2r · ρ

+
(

t
1
3 · ε · 2r · ρ

)2

≤ 1
2

where the last inequality follows for a sufficiently large constant c in the definition of r, and using
our choice of parameters. It follows that

Pr[XC

2r
rt
6∼(ε,ρ) µ] ≤ 8 ·

(
t · E(XC) + t2

A2

)t/2

≤ 8 ·
(1

2

)t/2
≤ 2−n · 2−k

where the last inequality follows by our choice of t. By a union bound over all 2k functions C in C
we have that with probability 1− 2−n we obtain an rt-PRG.

Corollary 8.6. For every b > 1, and for every sufficiently large n, and every ε, ρ ≥ 2−n, there is
a randomized Turing Machine P running in time poly(nb) that with probability 1− 2−n produces a
circuit h : {0, 1}r → {0, 1}n that is an (ε, ρ)-rt-PRG for Σ1-circuits of size nb, with r = O(b logn)+
2 log(1/ε) + log(1/ρ).

8.2.2 The complexity of checking if a given circuit is an rt-PRG

We consider the problem of checking whether a given circuit is an rt-PRG. We would like to show
that this problem is in the polynomial time hierarchy. The following formulation as a promise
problem makes this possible, and will suffice for our needs.

Definition 8.7. Let DCi,s,s′ε,ρ denote the following promise problem:

Input: a circuit G : {0, 1}r → {0, 1}n of size s.

Yes instances: G is not an (ε, ρ)-rt-PRG for Σi-circuits of size s′.

31

No instances: G is an (ε/2, ρ · (1− ε))-rt-PRG for Σi-circuits of size s′.

Theorem 8.8. For every i ≥ 0, 0 < ε, ρ ≤ 1, and r ≤ n ≤ s′ ≤ s there is a nondeterministic
Σi+2-circuit of size poly(r, n, s, 1/ε) which solves DCi,s,s′ε,ρ .

Proof. We consider the following nondeterministic Σi+1-circuit A: when given the circuit G as
input, the circuit A guesses a Σi-circuit C : {0, 1}n → {0, 1} of size s′. Let η = ε/10. Using
Theorem 4.2, A computes η-relative approximations p′1, p′2 of the quantities of p1 = Pr[C(Un) = 1]
and p2 = Pr[C(G(Un) = 1]. A then applies the test T (p′1, p′2) of Lemma 4.9 and outputs its outcome.
By Lemma 4.9:

• p1
rt
6∼(ε,ρ) p2 ⇒ T (p′1, p′2) accepts.

• T (p′1, p′2) accepts ⇒ p1
rt
6∼(ε−4η,ρ·e−2η) p2.

The theorem follows by our choice of η.

The key is that the size of the circuit above does not depend on ρ, and note that if the circuit
rejects G, then G is an (ε, ρ)-rt-PRG.

8.3 rt-nb-PRGs with small seed length

The following Theorem implies Theorem 1.21.

Theorem 8.9 (rt-nb-PRG with seed length 1 · `+O(log(1/ρ))2). Let b > 1 and α > 0 be constants
and ` = `(n) ≤ n, ρ = ρ(n) ≤ 2−nα. Assume that E is hard for exponential size Σ6-circuits. Let G
be the function constructed in Figure 4, with the parameters chosen there. Then for every sufficiently
large n, there is a polynomial time computable (`, n−b, ρ)-rt-nb-PRG G : {0, 1}r → {0, 1}n for size
nb circuits, with r = `+O(log(1/ρ))2.

Proof. (of Theorem 8.9) We first argue, that when G applies P to obtain a circuit h, then w.h.p.
it obtains an rt-PRG. Specifically,

Claim 8.10. With probability 1− 2ρ′ over x2 ← Ur2, the circuit h : {0, 1}r1 → {0, 1}n obtained by
P (G′(x2)) is a (n−b′ , ρ′)-rt-PRG for size nb′ Σ1-circuits.

Proof. (of claim) Let s′ = nb
′ and s = poly(nb′) be a bound on the size of h. By Theorem 8.3

we have that the promise problem DC1,s,s′
n−2b′ ,ρ′

is solved by a nondeterministic Σ3-circuit T of size
poly(nb′). Recall that if T rejects a given circuit, then this circuit is a (n−2b′ , ρ′)-rt-PRG for Σ1-
circuits of size s′ = nb

′ . Let D(z) = T (P (z)) and note that D can be implemented by a Σ3-circuit of
size poly(nb′). The parameters of the generator G′ were chosen so that it fools D. More specifically,
by choosing a to be sufficiently large we have that the size of D is smaller than nb′′ = na·b

′ . By the
guarantee on P , we know that the probability that D accepts a uniform input is at most 2−n. As
G′ is a (1

2 , ρ
′)-PRG it follows that the probability that D accepts G′(Ur2) is at most e

1
2 · ρ′ ≤ 2ρ′.

The claim follows.

32

Figure 4: An rt-nb-PRG with seed length ≈ 1 · `.

Goal: Construct a poly(n)-time computable (`, n−b, ρ)-rt-nb-PRG, G : {0, 1}r → {0, 1}n for circuits
C : {0, 1}n → {0, 1}` of size nb.

Assumption: E is hard for exponential size Σ6-circuits.

Parameters:

• `, b, n - We are shooting to fool circuits C : {0, 1}n → {0, 1}` of size nb.
• We require that ρ ≤ 2−nα for some constant α > 0. (This is done to simplify the presentation).

Ingredients:

• We make use of the Turing Machine P of Corollary 8.6. Specifically, let b′ = a · b for a
sufficiently large constant a > 1 to be chosen later. By Corollary 8.6 there is a randomized
Turing Machine P running in time poly(nb′) which produces a circuit h : {0, 1}r → {0, 1}n,
that with probability 1 − 2−n is an (n−b′

, ρ′ = 2−` · ρ · n−3b′)-rt-PRG for Σ1-circuits of size
nb

′ , and r1 = `+O(b′ · logn) + log(1/ρ).
• We also make use of the rt-PRG of Theorem 1.17. Specifically, let b′′ = a · b′ and recall

that a sufficiently large constant a > 1 will be chosen later. By Theorem 1.17 the hardness
assumption that E is hard for exponential size Σ6-circuits implies that there is a poly(nb′′)
computable (1

2 , ρ
′)-rt-PRG G′ : {0, 1}r2 → {0, 1}nb

′′

for size nb
′′ Σ3-circuits, with r2 =

O(1/ρ))2. (Here we use the fact that ρ ≤ 2−nα so that log(1/ρ) ≥ nα).

The rt-nb-PRG:

• Let r = r1 + r2 = ` + O(b′ · logn) + O(log(1/ρ))2 = ` + O(log(1/ρ))2. Given x ∈ {0, 1}r
interpret it as (x1, x2) ∈ {0, 1}r1 × {0, 1}r2 .

• Run the procedure P using the string G′(x2) as random coins. (Note that we can choose
the constant a to be sufficiently large so that nb′′ = nab

′ is larger than the number of coins
required by P). The procedure P produces a circuit h : {0, 1}r1 → {0, 1}n.

• G(x) outputs h(x1).

We have that with probability 1 − 2ρ′ over the choice of x2, G output h(Ur1) for h that is a
(n−b′ , ρ′)-rt-PRG for Σ1-circuits of size nb′ . This implies that G is a (O(n−b′), O(ρ′/n−b′))-rt-PRG
for size nb′ Σ1-circuits. A trivial (albeit somewhat wasteful) way to see this is to use Lemma 4.5
to transform the guarantee on rt∼(,) to re∼(,) which makes the calculation straightforward, and then
transform back. This is why we have n−b′ in the denominator.

Finally, we choose a to be sufficiently large so that by Lemma 8.1 an rt-PRG against Σ1-circuits
of size nb′ = nab is a rt-nb-PRG for circuits of size nb. Applying the lemma, we get that G is an
(O(n−b′), O(ρ′/n−2b′))-rt-nb-PRG for circuits of size nb. The Theorem follows as by our choice of
parameters O(n−b′) can be made smaller than n−b and O(ρ′/n−2b′) is smaller than ρ.

33

9 Open Problems

Theorem 1.8 is the first hardness versus randomness tradeoff that is applicable to randomized
algorithm solving NP complete problem. It is interesting to find more instances where this approach
can be used to efficiently derandomize algorithms for other NP complete problems. Is it possible
to give hardness versus randomness tradeoffs for general randomized algorithms (that are not
necessarily OPP)?

The dependence of the seed length on the parameter δ in Theorem 1.17 is additive in log(1/δ)2

can this be reduced to log(1/δ)? As explained in the introduction, this will give improvements in
applications of the Theorem.

Can we find more applications of re-PRGS and re-nb-PRGs? It will be especially interesting to
find cryptographic applications in computational settings as discussed in Section 1.14.

Acknowledgement

This work was done in part while the last three authors were visiting Simons Institute for the
Theory of Computing. We are grateful to anonymous referees for helpful comments.

References

[AASY15] Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompress-
ible functions, relative-error extractors, and the power of nondeterministic reductions
(extended abstract). In Conference on Computational Complexity, volume 33 of LIPIcs,
pages 582–600. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[AS14a] Sergei Artemenko and Ronen Shaltiel. Lower bounds on the query complexity of non-
uniform and adaptive reductions showing hardness amplification. Computational Com-
plexity, 23(1):43–83, 2014.

[AS14b] Sergei Artemenko and Ronen Shaltiel. Pseudorandom generators with optimal seed
length for non-boolean poly-size circuits. In STOC, pages 99–108. ACM, 2014.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856,
1995.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307–318, 1993.

[BGP00] Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of np-witnesses
using an np-oracle. Inf. Comput., 163(2):510–526, 2000.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography.
SIAM J. Comput., 37(2):380–400, 2007.

34

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In FOCS,
pages 276–287. IEEE Computer Society, 1994.

[DI06] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling. In
STOC, pages 711–720. ACM, 2006.

[Dru13] Andrew Drucker. Nondeterministic direct product reductions and the success proba-
bility of SAT solvers. In FOCS, pages 736–745. IEEE Computer Society, 2013.

[FL97] Uriel Feige and Carsten Lund. On the hardness of computing the permanent of random
matrices. Computational Complexity, 6(2):101–132, 1997.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In STOC, pages 25–32. ACM, 1989.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective on sampling. In
Studies in Complexity and Cryptography, volume 6650 of Lecture Notes in Computer
Science, pages 302–332. Springer, 2011.

[GR08] Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In
APPROX-RANDOM, volume 5171 of Lecture Notes in Computer Science, pages 455–
468. Springer, 2008.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In STOC, pages 59–68. ACM, 1986.

[GST03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus ran-
domness tradeoffs for arthur-merlin games. Computational Complexity, 12(3-4):85–130,
2003.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh–vardy codes. J. ACM, 56(4), 2009.

[GW02] Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short
advice that is typically good. In RANDOM, volume 2483 of Lecture Notes in Computer
Science, pages 209–223. Springer, 2002.

[HHT97] Yenjo Han, Lane A. Hemaspaandra, and Thomas Thierauf. Threshold computation
and cryptographic security. SIAM J. Comput., 26(1):59–78, 1997.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS,
pages 538–545. IEEE Computer Society, 1995.

[IMP12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algo-
rithm for ac0. In SODA, pages 961–972. SIAM, 2012.

[ISW99] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Near-optimal conversion of
hardness into pseudo-randomness. In FOCS, pages 181–190. IEEE Computer Society,
1999.

35

[ISW06] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Reducing the seed length in
the nisan-wigderson generator. Combinatorica, 26(6):647–681, 2006.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In STOC, pages 220–229. ACM, 1997.

[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of com-
binatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169–188,
1986.

[KvM02] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponen-
tial size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput.,
31(5):1501–1526, 2002.

[MV05] Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games
using hitting sets. Computational Complexity, 14(3):256–279, 2005.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[PP10] Ramamohan Paturi and Pavel Pudlák. On the complexity of circuit satisfiability. In
STOC, pages 241–250. ACM, 2010.

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337–364, 2005.

[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma.
Chicago J. Theor. Comput. Sci., 1999, 1999.

[San10] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and
QBF satisfiability. In FOCS, pages 183–192. IEEE Computer Society, 2010.

[Sch99] Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems.
In FOCS, pages 410–414. IEEE Computer Society, 1999.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages
330–335. ACM, 1983.

[Sto83] Larry J. Stockmeyer. The complexity of approximate counting (preliminary version).
In STOC, pages 118–126. ACM, 1983.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a
new pseudorandom generator. J. ACM, 52(2):172–216, 2005.

[SU06] Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting
and sampling. Computational Complexity, 15(4):298–341, 2006.

[SU09] Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness
tradeoffs for AM. SIAM J. Comput., 39(3):1006–1037, 2009.

36

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority.
SIAM J. Comput., 39(7):3122–3154, 2010.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879,
2001.

[TV00] Luca Trevisan and Salil P. Vadhan. Extracting randomness from samplable distribu-
tions. In FOCS, pages 32–42. IEEE Computer Society, 2000.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst.
Sci., 67(2):419–440, 2003.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In FOCS, pages 80–91. IEEE Computer Society, 1982.

37

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

