
Complexity Classification of Two-Qubit Commuting Hamiltonians

Adam Bouland∗1, Laura Mančinska†2, and Xue Zhang‡1

1Massachusetts Institute of Technology, Cambridge, MA USA
2Centre for Quantum Technologies, National University of Singapore, Singapore

Abstract

We classify two-qubit commuting Hamiltonians in terms of their computational complexity.
Suppose one has a two-qubit commuting Hamiltonian H which one can apply to any pair of
qubits, starting in a computational basis state. We prove a dichotomy theorem: either this model
is efficiently classically simulable or it allows one to sample from probability distributions which
cannot be sampled from classically unless the polynomial hierarchy collapses. Furthermore, the
only simulable Hamiltonians are those which fail to generate entanglement. This shows that
generic two-qubit commuting Hamiltonians can be used to perform computational tasks which
are intractable for classical computers under plausible assumptions. Our proof makes use of new
postselection gadgets and Lie theory.

1 Introduction

Quantum computers hold the promise of performing computational tasks which cannot be simulated
efficiently using classical computers. A hallmark example of this is Shor’s quantum factoring
algorithm [33] for which no classical analog is known. However, proving that quantum computers
hold an advantage over classical ones when it comes to factoring or any other decision problem would
show that P 6= PSPACE, which is well beyond our current reach. Therefore, we aim to establish
quantum advantage under widely accepted complexity assumptions like P 6= NP, non-collapse of
the polynomial hierarchy PH, and others. In this submission we show that generic two-qubit
commuting Hamiltonians can be used to perform computational tasks which are intractable for
classical computers unless PH collapses. Since commuting gate sets allow for easier fault-tolerant
implementation [5], our results offer the possibility to experimentally perform classically intractable
computations even before achieving universal quantum computation.

1.1 Problem statement and results

The evolution of a quantum system is determined by its Hamiltonian, which corresponds to a
Hermitian matrix H. If we apply a Hamiltonian for time t, then this applies the unitary gate eiHt

to the system. The Hamiltonian of a system is governed by its underlying physics, so oftentimes

∗email: adam@csail.mit.edu
†email: laura@locc.la
‡email: lzh@mit.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 39 (2016)

in quantum computing experiments (e.g. in superconducting qubits) it is easy to apply certain
Hamiltonians but not others. From this perspective it is natural to study the computational
power of a fixed Hamiltonian H that can be applied to different ordered subsets of qubits for
arbitrarily chosen amounts of time. Here we consider the model where we have a fixed two-qubit1

Hamiltonian H which we can apply to any ordered pair of qubits, where we initialize our system in
a computational basis state and perform a computational basis measurement at the end. Now it
is natural to ask: What is the computational power of this model for a fixed H? It is known that
almost any choice of H in this model yields universal quantum computation [16, 40, 13, 7], but
the classification of such universal Hamiltonians remains an open problem. Curiously, there exist
subsets of Hamiltonians that do not seem to offer the full power of BQP but nevertheless are hard
to simulate classically under plausible complexity assumptions [32, 10, 30].

We focus on a particular family of Hamiltonians H which, even though incapable of universal
quantum computation, can perform computations that are hard for classical computers and might
offer easier experimental implementation. Specifically, we study Hamiltonians H that can only give
rise to mutually commuting gates, so the order in which the gates are applied is irrelevant:

Definition 1.1. We say that a two-qubit Hamiltonian H is commuting if [H ⊗ I, I ⊗H] = 0 and
[H ⊗ I, I ⊗ (THT)] = 0 and [H,THT] = 0, where T is the gate which exchanges two qubits, and
[A,B] denotes the quantity AB−BA. In other words, H commutes with itself when applied to any
pair of qubits.

We are interested in classifying which commuting two-qubit Hamiltonians H allow us to perform
computational tasks that are hard for classical computers. In particular, we want to understand
when H gives rise to probability distributions which are hard to simulate classically:

Definition 1.2. We say that a family of probability distributions {Dx}x∈{0,1}∗ are hard to sample
from classically if there exists a constant c > 1 such that no BPP machine M can satisfy

1

c
Pr[M(x) outputs y] ≤ Dx(y) ≤ cPr[M(x) outputs y]

for all y in the sample space of Dx.

Clearly, if a commuting H is not capable of creating entanglement from any computational basis
state then the system will remain in a product state, so this model will be efficiently classically
simulable. Surprisingly, we show that in all the remaining cases H can perform sampling tasks
which cannot be simulated classically unless PH collapses.

Theorem 1.1 (Main Result). If a commuting two-qubit Hamiltonian H is capable of creating
entanglement from a computational basis state, then it gives rise to probability distributions that
are hard to sample from classically unless PH collapses.

Additionally, given such anH, our result provides an algorithm which describes the experimental
setup required to sample from these hard distributions.

1One-qubit Hamiltonians cannot create entanglement, so are efficiently classically simulable in this model.

2

Experimental implications. Universal quantum computers have proved challenging to imple-
ment in practice as they require large overheads for fault-tolerance. As a result, some skeptics
have questioned if quantum devices will ever be able to demonstrate an advantage over classical
computers [24, 26].

One response to this challenge is to study weaker models of quantum computation which are
incapable of universal quantum computation, but still demonstrate an advantage over classical
computation [2, 10, 23, 25, 28, 37]. Aliferis et al. [5] have shown that commuting gate sets may
be easier to implement fault-tolerantly with superconducting qubits than universal gate sets, and
provided numerical evidence that they may admit lower fault-tolerance thresholds. Therefore,
commuting computations form a good candidate for providing the first “proof of concept” demon-
stration of quantum supremacy over classical computation [2]. Our Theorem 1.1 says that almost
any commuting Hamiltonian could be used for this demonstration, and additionally provides the
experimentalist with a straightforward criterion to determine whether a commuting Hamiltonian
can be used to sample from hard distributions.

1.2 Proof ideas

Our proof proceeds in several steps. First, we use that fact that any commuting two-qubit Hamil-
tonian H is locally diagonalizable:

Lemma 1.1 ([14] Lemma 33). For any commuting two-qubit Hamiltonian there exists a one-qubit
unitary U and a diagonal matrix D such that H = (U ⊗ U)D(U † ⊗ U †).

The proof of this follows from expanding H in the Pauli basis, and deducing relationships
between the Pauli coefficients.

Next, we use postselection gadgets to construct a family of one-qubit operations L(t) : C2 → C2

for t ∈ R that that can be applied to the input state using postselection. We then show that these
gadgets are universal on a qubit whenever H generates entanglement, so long as H is not some

exceptional subcase. The exceptional subcase is H = X(θ)⊗X(θ) where X(θ) =
(

0 eiθ/2

e−iθ/2 0

)
.

Lemma 1.2. If H is capable of creating entanglement from a computational basis state and H is
not X(θ)⊗X(θ) for some θ, then it is possible to construct any one-qubit gate by taking products
of the L(t) gadgets.

The main difficulty in proving this fact is that the maps L(t) are in general non-unitary. Fur-
thermore since they are generated with postselection, it is unclear how to invert them, so a priori
they might not even form a group. Fortunately, we find new (and somewhat complicated) post-
selection gadgets to construct the L−1 operations, thus allowing us to apply group-theoretic and
Lie-theoretic techniques to address this problem.

The rest of the proof follows from standard techniques in complexity. Since one-qubit gates
plus any entangling Hamiltonian form a universal gate set [17, 9], our model can perform universal
quantum computation under postselection.

Lemma 1.3. If H is capable of creating entanglement from a computational basis state and H is
not X(θ)⊗X(θ) for some θ, then postselected circuits involving H are universal for BQP.

The proof of this statement uses a non-unitary version of the Solovay-Kitaev theorem proven
by Aharonov et al. [4] to show our choice of gate set is irrelevant.

3

Next, a result of Aaronson [1] tells us that postselecting our circuits further enables us to solve
PP-hard problems. It then follows by the complexity arguments put forth by Bremner, Jozsa,
and Shepherd [10] and Aaronson [2] that a randomized classical algorithm cannot sample from the
probability distributions produced by our circuits unless the polynomial hierarchy collapses.

This completes the classification for all cases except the case H = X(θ) ⊗ X(θ). Hardness of
sampling from these Hamiltonians was previously shown by Fefferman, Foss-Feig, and Gorshkov
[18] using a construction which embeds permanents directly in the output distributions of such
Hamiltonians. Hardness then follows from the arguments of Aaronson and Arkhipov [2]. We
provide a summary of their hardness result for completeness.

1.3 Relation to prior work

Our work is inspired by Bremner, Jozsa, and Shepherd [32, 10, 30], who showed that certain
computations with commuting gates are hard to simulate classically unless the polynomial hierarchy
collapses. In particular, they show hardness of simulating the gate set comprised of HZH, (H ⊗
H)(controlled-Z)(H ⊗H), and HPH, where P is the π/8-phase gate. Similarly, Shepherd [31, 30]
considers the power of applying quantum Hamiltonians which are diagonal in the X basis, where
the Hamiltonians can be applied only for discrete amounts of time θ; he describes the values of
θ for which the resulting circuits are efficiently classically simulable or hard to weakly simulate
(that is, to sample from the output probability distribution with a classical computer). Our work
differs from these in several ways. First, We consider Hamiltonians rather than gates, and show
hardness of generic or average-case commuting Hamiltonians, rather than showing hardness for
worst-case commuting operations. Furthermore, we fully classify the computational complexity of
all commuting Hamiltonians, and prove a dichotomy between hardness and classical simulability.

The hardness results we obtain in this paper (as well as those in [10, 31, 30]) are based on
the difficulty of sampling the output probability distribution on all n output qubits. A number of
other works have considered the power of computations with commuting Hamiltonians, where one
only considers the output distribution on a small number of output qubits. For example, Bremner,
Jozsa and Shepherd [10] showed that computing the marginal probability distributions on O(log(n))
qubits of their model is in P. Ni and Van den Nest [29] showed that this holds for arbitrary 2-
local commuting Hamiltonians, but also showed there exist 3-local commuting Hamiltonians for
which this task is hard. Hence the problem of strongly simulating the output distributions (that
is, being able to compute the probability of any event) of arbitrary k-local Hamiltonians is hard
for k ≥ 3. Along a similar line of thought, Takahashi et al. [35] showed that there is a system of
5-local commuting Hamiltonians for which weakly simulating the output on O(log(n)) bits is hard.

Additionally, a number of other authors have also considered “weak” models of quantum com-
putation which can sample from difficult probability distributions. Some examples include the one
clean qubit model [25, 28], the boson sampling model [2], the quantum fourier sampling model
[19], constant depth quantum circuits [37], and temporally unstructured quantum computing [10].
Like many of these models (e.g. [28, 10]), we prove it is difficult for a classical computer to sam-
ple from the distribution output by the quantum device with multiplicative error on every output
probability. For some of these models, the authors prove stronger hardness results for sampling
the output distribution with additive error (as measured in trace distance) [2, 11, 19], but at the
cost of making additional complexity-theoretic assumptions which are not as widely accepted. In
comparison with boson sampling, one clean qubit sampling, and quantum fourier sampling, our
model has the advantage of possibly having lower fault-tolerance thresholds for implementation [5].

4

Finally, other works have addressed the classification of universal two-qubit gates and Hamil-
tonians. Childs, Leung, Mančinska, and Ozols [13] classified the set of two-qubit Hamiltonians
which give rise to SU(4) when acting on two qubits, and are hence universal. Lloyd [27] and others
[16, 40, 13, 7] have shown that a Haar-random two-qubit gate is universal with probability 1. Our
work differs from these in that our Hamiltonians only become universal under postselection. Addi-
tionally, Cubitt and Montanaro [14] previously classified the complexity of two-qubit Hamiltonians
in the Local Hamiltonian Problem setting. Specifically, given a two qubit Hamiltonian H, they
classify the computational complexity of determining the ground state energy of Hamiltonians of
the form

∑
ij cijHij for real coefficients cij . This is incomparable with our classification, since we

are studying the power of the Hamiltonian dynamics (in which the system is not in the ground
state), rather than the complexity of their ground states.

2 Preliminaries and statement of Main Theorem

A two-qubit Hamiltonian H is a 4 × 4 Hermitian matrix. Let T denote the SWAP gate which
exchanges two qubits, i.e.

T =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

so T maps the state a|00〉+ b|01〉+ c|10〉+ d|11〉 to the state a|00〉+ c|01〉+ b|10〉+ d|11〉. Given
H, we assume that one can apply either H or THT to any pair of qubits. In other words, we can
apply the Hamiltonian oriented from qubit i to qubit j, or from qubit j to qubit i. We will use Hij

to denote the Hamiltonian applied from qubit i to qubit j. Additionally, we will assume we can
apply −H as well, i.e., we can perform the inverse Hamiltonian.2

Suppose we are given some input string x ∈ {0, 1}n, and we want to define a distribution on
n′ = poly(n) bits which we can efficiently sample from using H. Suppose we initialize a system
of n′ qubits in a computational basis state |y〉 for y ∈ {0, 1}n′ , apply each Hamiltonian Hij for
time tij ∈ R, and then measure all the qubits in the computational basis. (Here the times tij and
the string y may depend on x.) This will induce some probability distribution Dx over bit strings
of length n′ on the output bits. Intuitively, these are the sorts of distributions one can efficiently
sample from using H, using circuits which start and end in the computational basis.

However, this definition does not quite suffice to capture a realistic model of computation,
because we have not specified how the initial state y and the times tij are chosen. To fix this, we
will require that one could use a classical computer to efficiently calculate the experimental setup
for each n. In other words, we will require that there exists a polynomial-time algorithm which,
given x ∈ {0, 1}∗, computes the values of y and tij used in the experiment. Furthermore, we will
require that the times tij can be represented with polynomially many bits, and that they are all
bounded in magnitude by a polynomial in n. This ensures that as the size of the system grows,
the amount of time one needs to run the Hamiltonian does not grow too quickly. In complexity
theory this is called a uniformity condition. This requirement ensures that any advantage over

2If we had only assumed access to H and positive time evolution, we could always approximate the action of −H;
this follows from compactness of the unitary group and was shown e.g. in Appendix A of [13]. However, here we are
assuming we have exact access to −H; this will be useful when arguing about post-selected versions of these circuits.

5

classical computation arising from this model comes from the power of the quantum computation
performed, not the computation of the experimental setup.

This is stated more formally as follows:

Definition 2.1. Let samp-IQP(H) denote those families of probability distributions {Dx} for which
there exists a classical poly-time algorithm A which, given an input x ∈ {0, 1}n, outputs the speci-
fications for a quantum circuit using H whose output distribution family is {Dx}. In particular, A
specifies a number of qubits n′ = poly(n), a string y ∈ {0, 1}n′ and and a series of times tij ∈ R,
such that running a quantum circuit starting in the state |y〉, applying the operator eitijHij for each
(i, j), and then measuring in the computational basis will yield a sample from Dx. Each tij must
be specifiable with poly(n) bits and be bounded in magnitude by a polynomial in n.

In short, the class samp-IQP(H) captures the set of probability distributions one can efficiently
sample from using H. In our work, we will show that a classical randomized algorithm cannot
sample from this same set of distributions. More precisely, we say that a classical randomized
algorithm “weakly simulates” a quantum circuit if its output distribution is close to the output
distribution of the quantum circuit. To derive our hardness result, we will consider classical circuits
which produce every output with approximately the correct probability, up to multiplicative error:

Definition 2.2. A BPP (bounded-error probabilistic polynomial time) machine M weakly simulates
a family of probability distributions {Px : x ∈ {0, 1}∗}, where Px is a distribution over {0, 1}|x|,
with multiplicative error c ≥ 1 if, for all y ∈ {0, 1}n,

1

c
Pr[M(x) outputs y] ≤ P (x) ≤ cPr[M outputs y].

We can now more precisely state our Main theorem: that our commuting circuits cannot be
weakly simulated unless the polynomial hierarchy PH collapses:

Theorem 2.1 (Main Theorem). If H is capable of generating entanglement from the computational
basis, then BPP machines cannot weakly simulate samp-IQP(H) with multiplicative error c <

√
2

unless PH collapses to the third level.

In other words, there is a dichotomy: either computations which H are efficiently classically
simulable, or else they cannot be efficiently simulated unless the polynomial hierarchy collapses.
As the non-collapse of the polynomial hierarchy is a widely accepted conjecture in computational
complexity, this is strong evidence that samp-IQP(H) circuits are not efficiently classically simulable.

2.1 Complexity Preliminaries

Before proceeding to a proof of the Main Theorem, we will introduce some of the complexity-
theoretic preliminaries necessary to understand our proof. We assume the reader is familiar with
the standard complexity classes such as P, BPP, and NP, as well as oracle notation; for background
we refer the reader to Arora and Barak [6] for details. Those readers already familiar with the
complexity theoretic techniques of Bremner, Jozsa, and Shepherd [10] and Aaronson and Arkhipov
[2] may wish to skip to the proof of the Main Theorem.

In order to reason about the computational complexity of samp-IQP(H) distributions, we will
need to introduce the idea of postselected circuits, which we will relate to classical complexity
classes such as PP. A postselected quantum circuit is a circuit where one specifies the value of

6

some measurement results ahead of time, and discards all runs of the experiment which do not
obtain those measurement outcomes. This is not something one can realistically do in a laboratory
setting, because the measurement outcomes you specify may occur extremely infrequently—in fact,
they may be exponentially unlikely. However, postselection can help you examine the conditional
probabilities found in the output distribution of your circuit. In particular, if you can show that
those conditional probabilities can encode the answers to very difficult computational problems,
then this can provide evidence against the ability to classically simulate such circuits. Therefore,
we will now define what it means for a set of probability distributions to decide a problem under
postselection. The basic idea is that if some of the conditional probabilities of the system encode
the answer to a problem, then we say that problem can be decided by postselected versions of these
probability distributions. We define this more formally below:

Definition 2.3. Let PostIQP(H) be the set of languages L ⊆ {0, 1}∗ for which there exists a family
of samp-IQP(H) circuits {Dx} and a classical poly-time algorithm which, given an input length n,
outputs a subset B of qubits and a string z ∈ {0, 1}|B| such that

� If x ∈ L, then Pr[Dx outputs 1 on its first bit | bits B take value z] ≥ 2/3.

� If x /∈ L, then Pr[Dx outputs 1 on its first bit | bits B take value z] ≤ 1/3.

In other words, there exists a poly-time algorithm which outputs an experimental setup and a
postselection scheme such that the conditional probabilities of Dx encode the answer to the problem.
In general, the choice of constants 1/3 and 2/3 in the above definition might matter. For instance,
when PostIQP(H) is not capable of universal classical computation, it is unclear how to take the
majority vote of many repetitions to amplify the success probability. However, we only consider
the class PostIQP(H) in cases where PostIQP(H) can perform universal classical computation, and
thus the choice of constants 1/3 and 2/3 is arbitrary.

One can likewise define the classes PostBQP and PostBPP3 which capture the power of postse-
lected quantum computation and postselected randomized computation, respectively.

Finally, we introduce the polynomial hierarchy. The ith level of the polynomial hierarchy,

denoted ∆i, is defined as follows: let ∆1 = P, let ∆2 = PNP, let ∆3 = PNPNP
, let ∆4 = PNPNPNP

, and
so on. Here, we write AB to refer to computations that can be performed with an A machine which
has been augmented with the ability to solve problems in B in a single timestep. The polynomial
hierarchy, denoted PH, is defined as PH =

⋃
i∈N ∆i. It is widely conjectured that each level of the

polynomial hierarchy is distinct; in other words, ∆i (∆i+1 for all i ∈ N. This can be seen as a
generalization of the conjecture that P 6= NP.

One of the main technical tools we will use in our proof is the following lemma, which was first
shown by Bremner, Jozsa, and Shepherd [10], but which we will make extensive use of in our paper:

Lemma 2.1. Suppose that PostBQP ⊆ PostIQP(H) for some H. Then BPP machines cannot
weakly simulate samp-IQP(H) with multiplicative error c <

√
2 unless PH collapses to the third

level.

In other words, if postselected commuting Hamiltonian circuits are capable of performing (post-
selected) universal quantum computation, then they cannot be weakly simulated by a classical
computer under plausible complexity assumptions. The fundamental reason this is true is that the

3PostBPP is more commonly known as BPPpath.

7

class PostBQP is substantially more powerful than the class PostBPP. In particular, Aaronson [1]
showed that PostBQP = PP. Here PP (which stands for Probabilistic Polynomial-time) is the set
of languages L decidable by a poly-time randomized algorithm M , such that

� If x ∈ L, then Pr[M(x) accepts] > 1/2;

� otherwise, Pr[M(x) accepts] ≤ 1/2.

In other words, the class PP represents the class of problems solvable by randomized algorithms,
where the probability of acceptance of “yes” and “no” instances is different, but may only differ by
an exponentially small amount4. A famous result in complexity, known as Toda’s Theorem [38],
states that PH ⊆ PPP. In other words, the class PP is nearly as powerful as the entire polynomial
hierarchy.

On the other hand, the class PostBPP is far weaker; it lies in the third level of the polynomial
hierarchy. So if one assumes that PH does not collapse to the third level, then PostBPP 6= PostBQP;
i.e. PostBQP is a stronger complexity class than PostBPP.

From this, we can now state why the inclusion PostBQP ⊆ PostIQP(H) implies there cannot
exist an algorithm to simulate PostIQP(H) circuits. Suppose there were a BPP algorithm to weakly
simulate such circuits. Then, by postselecting this BPP algorithm, we could solve a PostBQP-hard
problem in PostBPP, which would imply the collapse of the polynomial hierarchy. A more formal
statement of this proof is given below:

Proof of Lemma 2.1. The proof of this corollary is given in [10] Theorem 2 and Corollary 1, but
we provide a summary for completeness. Suppose that a BPP machine M can weakly simulate
samp-IQP(H) circuits to multiplicative error c <

√
2. Then for any individual output string x,

we have 1
c Pr[M outputs x] ≤ P (x) ≤ cPr[M outputs x]. Since PostBQP ⊆ PostIQP(H), and

PostBQP = PP [1], this can be shown to imply PP ⊆ PostBPP. But PostBPP ⊆ PostBQP = PP, so
this implies PostBPP = PP. Hence by Toda’s theorem [38], we have PH ⊆ PPP = PPostBPP ⊆ ∆3,
where ∆3 is the third level of the polynomial hierarchy. Hence PH = ∆3 as claimed.

Note that in certain cases, Fujii et al. [20] showed that this hardness of simulation result
could be improved to imply the collapse of PH to the second level rather than the third, using
a different complexity-theoretic argument involving the class NQP. However, their argument is
gate-set dependent, so does not apply to our model for arbitrary commuting Hamiltonians.

We now proceed to a proof of the Main Theorem.

3 Proof of Main Theorem

The basic idea is to use postselection gadgets to show that postselected samp-IQP(H) circuits are
capable of performing universal quantum computation. Hence, adding further postselections allows
one to decide any language in PostBQP. By Lemma 2.1, this proves hardness of weakly simulating
such circuits unless PH collapses.

Proof of Theorem 2.1. Suppose we have a commuting two-qubit Hamiltonian H. The first step in
our proof is to characterize the structure of such H. It is clear that if H is diagonal under a local

4Note the difference is probabilities is always at least 2−poly(n), because a PP algorithm can only make polynomially
many coin flips.

8

change of basis, i.e. H = (U ⊗ U)D(U † ⊗ U †) for some one-qubit U ∈ SU(2) and diagonal matrix
D, then H is commuting. However, it is possible a priori that there exist commuting Hamiltonians
which are not of this form. If T is the gate that swaps two qubits, then the fact that H is commuting
implies that H⊗I, (THT)⊗I, I⊗H, and I⊗(THT) are all simultaneously diagonalizable. However,
it might be that this simultaneous diagonalization can only happen under a non-local change of
basis. Fortunately, it turns out this is not possible - any commuting Hamiltonian must be locally
diagonalizable. This was first shown by Cubitt and Montanaro [14].

Claim 3.1 ([14] Appendix B Lemma 33). If H is a 2-local commuting Hamiltonian, then H =
(U ⊗ U)D(U † ⊗ U †) for some one-qubit U ∈ SU(2) and diagonal matrix D.

We provide a proof of Claim 3.1 in Appendix A, which uses expansion in the Pauli basis. One
can also prove this fact using linear algebra, but the proof becomes complicated in the case of
degenerate eigenvalues. We thank Jacob Taylor for pointing us to this simplified proof, and Ashley
Montanaro for pointing us to the proof in reference [14].

By Claim 3.1, we know that H = (U ⊗ U) diag(a, b, c, d)(U † ⊗ U †) for some one-qubit unitary

U =
(
α −β∗
β α∗

)
and some real parameters a, b, c, d. The trace of H contributes an irrelevant global

phase to the unitary operator it generates, so without loss of generality we can assume H is traceless,
i.e., a+ b+ c+ d = 0.

Note that if a = d = −1, b = c = 1, and |α| = |β|, then we have that H = X(θ)⊗X(θ), where
eiθ = α/β. As mentioned previously, these Hamiltonians are hard to simulate by an independent
hardness result of Fefferman et al. [18], so in the rest of our proof, we will assume we are not in
the case a = d = −1, b = c = 1 and |α| = |β|. For completeness we will provide a summary of their
work at the end of this proof.

We now consider the conditions under which computations with H are efficiently classically
simulable. First, if H is diagonal in the computational basis, then it is obviously classically simu-
lable, because it cannot generate entanglement from the computational basis. This corresponds to
the case that α = 0 or β = 0. So we can assume for the result of the proof that α 6= 0 and β 6= 0.

Another way that H can fail to generate entanglement from the computational basis is if
b+ c = a+d. Since we are assuming the Hamiltonian is traceless this is equivalent to the condition
b+ c = 0. Indeed if H satisfies b+ c = 0, and H is traceless so a+ d = 0, then it is easy to check
that eiHt is nonentangling for all t ∈ R. So we can assume in the rest of the proof that b+ c 6= 0.

We now show that for all remaining H, we have PostBQP ⊆ PostIQP(H). To do so, we break
into two cases. Either b = c, so H = THT and the Hamiltonian is identical when applied from
qubit 1 to 2 vs. from 2 to 1, or b 6= c so H 6= THT . For clarity of presentation, we will prove our
main theorem in the case b = c, as this proof uses simpler notation. An analogous proof holds for
the case b 6= c, which we provide in Appendix D.

Now in the case b = c, consider the rescaled Hamiltonian H ′ = H/b. Since b+ c 6= 0 and b = c
this Hamiltonian is well-defined, and we have H ′ = (U ⊗U) diag(a′, 1, 1, d′)(U †⊗U †) for some real
parameters a′ and d′ which obey a′+ d′ = −2. Now consider the two-qubit unitary V (t) we obtain
from running H ′ for time t ∈ R

V (t) = eitH
′

= (U⊗2)D(t)(U †
⊗2

),

where D(t) , diag(eia
′t, eit, eit, eid

′t). Here we have used the fact that if U is an arbitrary unitary,

then eUH
′U† = UeH

′
U †.

9

A samp-IQP(H) circuit is specified by times tij for all unordered5 pairs of qubits (i, j), as well
as an initial basis state |y〉 for y ∈ {0, 1}poly(n). The circuit consists of applying V (tij) to each pair
of qubits (i, j) to |y〉, and then measuring in the computational basis. This can be easily seen to be
equivalent to the following circuit: Start in the state |y〉, apply U to every qubit, then apply D(tij)
to each pair of qubits; finally, apply U † to every qubit and measure in the computational basis.
(This is true because all factors of U and U † in the circuit cancel except those at the beginning
and end).

We will now show how to make post-selected gates of this form perform universal quantum
computing. The basic idea is that we already have a two-qubit entangling Hamiltonian at our
disposal. Therefore, if we could show how to perform arbitrary one-qubit gates using post-selection,
this would form a universal gate set for quantum computing by the result of Dodd et al. [17] or
Bremner et al. [9]. Following the method of Bremner, Jozsa, and Shepherd [10], we consider the
following post-selection gadget, denoted L(t), which performs an operation on a single qubit state
|ψ〉:

|ψ〉
D(t)

U † 〈0|

|0〉 U |ψ′〉
The postselection is denoted in the circuit by 〈0|. Note that this gadget preserves the property
that every line begins with U |0〉, and ends with U † and a measurement. Hence, if we could use
these postselection gadgets to perform arbitrary single-qubit gates, then we could perform universal
quantum computing under postselection as follows: Given a target quantum circuit to simulate,
compile the circuit out of gates of the form D(t) and single-qubit gates. Additionally, add a UU †

(which is the identity) at the beginning and end of every line, so that each line starts with a U and
ends with a U †. Now this circuit consists of applying a column of U ’s, then a series of diagonal gates
D(t) and one-qubit gates, followed by a column of U †s. This almost has the form of a samp-IQP(H)
circuit, with the exception of the one-qubit gates (note that these include both the gates U † in the
second column and the gates U in the second to last column). Now for each one-qubit gate g,
replace it with its implementation using postselection gadgets L(t). After this transformation, each
line begins with a U , ends with a U †, and contains only diagonal gates D(t) in the interior of the
circuit. However, now we’ve additionally specified some postselection bits, so we have created a
PostIQP(H) circuit which simulates universal quantum computing.

Let us examine what transformation L(t) actually performs on the qubits involved. The gadget
performs some linear transformation on the input state |ψ〉. In particular, it acts on |ψ〉 by

L(t) =
1

|α||β|
√
−2i sin(2t)

(
|α|2eia′t αβ∗eit

α∗βeit |β|2eid′t)

)
.

This is a non-unitary transformation, so it does not preserve the norms of vectors. Since we only
care about how L(t) behaves on the projective Hilbert space of quantum states, we can choose the
overall normalization so that L(t) ∈ SL(2,C). Note that this operator is well-defined only if the
denominator above is non-zero, so we will require that t ∈ (0, π) ∪ (π, 2π).

In addition to being able to perform the transformation L(t) as t ranges over t ∈ (0, π)∪(π, 2π),
we can also perform products of such transformations. In fact, we can perform any operation in
the set

S , 〈{L(t) : t ∈ (0, π) ∪ (π, 2π)}〉.
5This is because we are considering the case b = c i.e. H = THT .

10

Here the angled brackets 〈A〉 denote the set of all matrices obtained by finite products of elements
of A. The bar above 〈A〉 means that we take the closure of this set in SL(2,C); in other words,
we include all matrices that one can obtain by taking limits of sequences of finite products of A,
so long as the limit point belongs to SL(2,C).

If the matrices L(t) were in a compact space such as SU(2), then it would immediately follow
that S contains inverses of all its elements.6 Therefore we would know that S is a group, and we
could apply tools from group theory to categorize S. However, our matrices are in the non-compact
space SL(2,C). Therefore it is not clear whether S is closed under taking inverses, so S might not
be a group! Furthermore, since L is obtained under post-selection, the assumption that we can
perform the inverse of H does not imply we can perform L−1.

To fix this problem, we find additional gadgets which allow us to construct L−1 by adding
additional postselections to our circuit. In particular, we will show that for each L(t), there exists a
postselection gadget of finite size which performs L(t)−1 exactly. An important restriction on this
construction is that this inverse must be efficiently computable. Specifically, for each L(t) the size
of the postselection gadget required to invert L(t) is of constant size. Additionally, the construction
of the postselection gadget will in general contain several time parameters which one needs to set
in order to obtain L(t)−1. We also require that we can set these times so that we obtain L−1 to
accuracy ε in polylog(kL1/ε) time, where kL is a constant which depends on L(t) only. Furthermore,
the amount of time needed to run the Hamiltonians in the inverse gadget are bounded above by
a polynomial. For convenience we will refer to these properties as “the construction is efficiently
computable.”

At first glance it might sound like this definition of “efficiently computable” is too weak, because
the inverses of arbitrary L matrices might require large postselection gadgets. However, later in
our construction we will use the fact that for any fixed Hamiltonian H, we will only need to invert
a finite set of L matrices. Hence for fixed H, the size of the postselection gadgets which appear in
our circuit will be upper bounded by a constant depending on H only, but not on the size of the
problem we are solving under postselection. Furthermore, for fixed H, we can compute the times
in the inversion gadgets to invert the relevant L matrices to exponential accuracy in polynomial
time. This ability to invert the L matrices to exponential precision will later be crucial for our
hardness of sampling result.

Furthermore, note that in the case that H 6= THT , the construction of these gadgets can be
made substantially simpler. In particular, the gadgets to construct L−1(t) are of size 4 for any t, and
the times used in running the Hamiltonians are trivially efficiently computable to polynomial digits
of accuracy. From a practical experimental perspective these circuits would be easier to construct,
and since H 6= THT is the generic case for commuting Hamiltonians, would be applicable for
almost all commuting Hamiltonians. We include this construction in Appendix D.

Claim 3.2. For any given L(t), where t ∈ (0, π) ∪ (π, 2π), it is possible to construct L(t)−1 by
introducing a constant number of postselections and a constant number of ancillas into the circuit.
Furthermore, this construction is efficiently computable in the manner described above.

The proof of Claim 3.2 can be found in Appendix B, and is somewhat involved.

6To see this, take an element s ∈ S. If s has finite order, than its inverse is clearly in S. If s has infinite order,
consider the sequence 1, s, s2, Since the matrices are in a compact space T , the sequence of powers must have a
convergent subsequence, i.e. there must be positive n1, n2, n3 . . . such that n1 < n2 < . . . and sn1 , sn2 , . . . approach
some element t ∈ T . Therefore the sequence sn2−n1 , sn3−n2 , . . . must approach the identity, and the sequence
sn2−n1−1, sn3−n2−1, . . . must approach s−1.

11

We now redefine S so that its base set contains these inverses:

S , 〈{L(t) : t ∈ (0, π) ∪ (π, 2π)} ∪ {L(t)−1 : t ∈ (0, π) ∪ (π, 2π)}〉.

Using this definition, we can now show using standard techniques that S is a Lie group—this is
essentially a consequence of Cartan’s closed subgroup theorem [12] and the fact that inversion is a
continuous operation in the matrix entries on SL(2,C). Once we know that S has the structure of
a Lie group, we can apply the theory of Lie algebras to identify what set of matrices are in S. In
particular, we can show that S generates all of SL(2,C).

Claim 3.3. S = SL(2,C).

The proof of this claim is a tedious but straightforward calculation using Lie algebras and
properties of the exponential map on SL(2,C). The proof uses the fact that we are not in one of
the cases excluded by our theorem (i.e. H does generate entanglement and is not X(θ)⊗X(θ) for
some θ) - in these cases one does not find that S = SL(2,C) as one would expect. In certain special
cases, the gadgets L(t) alone do not generate SL(2,C), specifically when a′ = ±1 or a′ = −3. In
these cases, we show that one can add additional postselection gadgets, which are closed under
taking inverses, which boost the power of the L(t) transformations to cover all of SL(2,C). This
simply reflects that for very particular Hamiltonians, our L matrices need additional help to span
all 1-qubit operations. We include the proof in Appendix C.

Now that we have shown density in SL(2,C), as well as the fact that we can produce inverses
of the gates in our generating set, our proof of yielding PP under postselection follows almost
immediately. In particular, we will invoke the following theorem by Aharanov, Arad, Eban and
Landau [4]:

Theorem 3.1 ([4] Theorem 7.6, adapted to our case). There exists a constant ε0 > 0 such that,
for any G = {g1 . . . gk} ⊂ SL(2,C) which is an ε0-net over B, where B is the set of operations
in SL(2,C) which are 2.1-far from the identity (which in particular contains SU(2)), then for any
unitary U ∈ SU(2,C), there is an algorithm to find an ε-approximation to U using polylog(1/ε)
elements of G and their inverses which runs in polylog(1/ε) time.

In the above theorem, when we say an operation is “ε-far” from another, we are referring to the
operator norm.

From this, we can immediately prove the main theorem. Suppose we wish to compute a language
L0 ∈ PP, and we have a commuting Hamiltonian H of the form promised in Theorem 2.1. By
Aaronson’s result that PP ⊆ PostBQP [1], there is an efficiently computable postselected quantum
circuit C composed of Hadamard and Toffoli gates which computes L. Additionally, by Claim
3.3 there exists a finite set G of products of L’s and L−1’s which form an ε0-net over B (which
can be computed in finite time). Hence by Theorem 3.1 there is a poly-time algorithm which
expresses single-qubit gates as products of elements of G to exponential accuracy. Likewise, since
H is entangling, we can generate some entangling two-qubit gate g, as well as its inverse g−1

(by applying −H). Since g and single-qubit gates are universal [9], by the usual Solovay–Kitaev
theorem [15], we can express the circuit C in terms of g, g−1, and single-qubit gates to exponential
accuracy with polynomial overhead. Combining these, we can express the circuit C as a polynomial
sized product of g’s, g−1’s, L’s, and L−1’s , which we can express as a PostIQP(H) circuit using the
gadgets described previously. Hence this PostIQP(H) circuit decides the language L0.

12

Note that in this construction, it is crucial that we only ever need to invert a finite number of
L(t) matrices. This ensures that the size of the postselection gadgets involved to construct the L−1

operations are upper bounded by a constant depending on the choice of H only. Additionally, it
is important that we can construct the L−1 matrices exponential accuracy. This is crucial because
in order to perform PostBQP under postselection, one needs to be able to simulate Aaronson’s
algorithm to exponential accuracy 7. Fortunately our construction allows us to simulate the al-
gorithm to high accuracy, and hence these Hamiltonians can be used to sample from probability
distributions which are not possible to simulate with a classical computer unless the polynomial
hierarchy collapses.

This completes the proof in all cases except the exceptional case H = X(θ)⊗X(θ). This has a
separate hardness of sampling result which was shown by Fefferman, Foss-Feig, and Gorshkov [18].
In particular, they showed the following:

Theorem 3.2 (Fefferman et al. [18]). If H = X(θ)⊗X(θ) for some θ, then a BPP machine cannot
weakly simulate samp-IQP(H)with any constant multiplicative error unless PH collapses to the third
level.

Their proof makes use of that fact that using such Hamiltonians, for any matrix A ∈ {0,±1}n,
one can perform a unitary U on a system of O(n) qubits such that 〈1n|U |0n〉 = k (Perm(A) + ε),
where k is independent of A and exponentially small in n, Perm(A) denotes the permanent of A,
and ε is a term with norm o(2−n). Note that Perm(A)2 is #P-hard to compute with any constant
multiplicative error [2]. Therefore Theorem 3.2 immediately follows by the techniques of Aaronson
and Arkhipov [2] - because if there were an efficient classical simulation of such circuits, then using

approximate counting [34], one could approximate Perm(A)2 to multiplicative error
(

1 + 1
poly(n)

)
in BPPNP. But BPPNP ⊆ ∆3, so again by Toda’s theorem [38] this implies the collapse of PH to
the third level.

This completes the last remaining case, and hence completes the proof.

4 Open Problems

Our results leave a number of open problems.

1. An interesting open problem is to classify all Hamiltonians in terms of their computational
power under this model. Childs et al. [13] previously classified which two-qubit Hamiltonians
can perform any unitary on two qubits. However, this does not classify which Hamiltonians
are computationally universal for two reasons. First, as Childs et al. point out in their paper,
it is possible that H fails to generate all unitaries on two qubits, but does generate all unitaries
on three qubits (i.e. adding ancillas helps one attain universality). It remains open to classify
which two-qubit H generate all unitaries on sufficiently large systems. Second, even if a
Hamiltonian H does not generate all unitaries, it is still possible that H is computationally
universal. For example, H could be universal on an encoded subspace. Classifying which
Hamiltonians are universal under an encoding seems to be a challenging task. We conjecture
that the power of any two-qubit Hamiltonian obeys a dichotomy: either H is efficiently

7This is because the algorithm postselects on an exponentially unlikely event, so to maintain polynomial accuracy
after postselection we require exponential accuracy prior to postselection.

13

classicaly simulable in this model, or it is universal under postselection and hence cannot be
weakly simulated unless PH collapses. This is true of all known two-qubit Hamiltonians, and
our classification proves this result rigorously in the case of commuting Hamiltonians.

2. In this paper we considered the power of quantum circuits with commuting Hamiltonians.
A more difficult related problem is classify the power of quantum circuits with commuting
gate sets. The challenge in solving this problem would be to classify when a discrete set of
L’s generates a continuum of gates. There are some sufficient conditions under which this
holds (see e.g. Aharonov et al. [4], Corollary 9.1). However, finding necessary and sufficient
conditions under which a finite set of operators densely generates a continuous subgroup of
SL(2,C) seems very difficult, in part because there is no complete, explicit classification of
discrete subgroups of SL(2,C). Indeed, discrete subgroups of SL(2,C) are related to the
theory of Möbius transformations [8], where they are known as “Kleinian subgroups,” and
they are the subject of a deep area of mathematical research.

5 Acknowledgements

We thank Bill Fefferman, Michael Foss-Feig, and Alexey Gorshkov for allowing us to include a
summary of their unpublished work [18]. We also thank Jacob Taylor for pointing us to a simplified
proof of Claim 3.1, Michael Bremner for pointing us to references [30, 31], and Scott Aaronson,
Joseph Fitzsimons and Ashley Montanaro for helpful discussions. A.B. was supported in part
by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374, in
part by the Center for Science of Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370, and in part by Scott Aaronson’s NSF Waterman award.
L.M. was supported by Singapore Ministry of Education (MOE) and National Research Foundation
Singapore, as well as MOE Tier 3 Grant “Random numbers from quantum processes” (MOE2012-
T3-1-009). X.Z. was supported by the MIT UROP program.

References

[1] Scott Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proc.
R. Soc. A, page 0412187, 2005.

[2] Scott Aaronson and Alex Arkhipov. The Computational Complexity of Linear Optics. Theory
of Computing, 9(4):143–252, 2013.

[3] Dorit Aharonov and Itai Arad. The BQP-hardness of approximating the Jones Polynomial.
New J. Phys. 13 035019, 2011.

[4] Dorit Aharonov, Itai Arad, Elad Eban, and Zeph Landau. Polynomial Quantum Algorithms for
Additive approximations of the Potts model and other Points of the Tutte Plane. arxiv:quant-
ph/0702008, 2007.

[5] Panos Aliferis, Frederico Brito, David P. DiVincenzo, John Preskill, Matthias Steffen, and
Barbara M. Terhal. Fault-Tolerant Computing With Biased-Noise Superconducting Qubits.
New J. Phys. 11 013061, 2009.

14

[6] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

[7] Bela Bauer, Claire Levaillant, and Michael Freedman. Universality of single quantum gates.
arXiv:1404.7822v3

[8] Alan F. Beardon. The geometry of discrete groups. Springer-Verlag, Berlin, 1983.

[9] Michael J. Bremner, Christopher M. Dawson, Jennifer L. Dodd, Alexei Gilchrist, Aram W.
Harrow, Duncan Mortimer, Michael A. Nielsen, and Tobias J. Osborne. A practical scheme
for quantum computation with any two-qubit entangling gate. Phys. Rev. Lett. 89, 247902,
2002.

[10] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of commuting
quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. A 467, 459,
2011.

[11] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-case complexity versus
approximate simulation of commuting quantum computations. arXiv:1504.07999, 2015

[12] Élie Cartan. La théorie des groupes finis et continus et l’analysis situs. Mémorial des Sciences
Mathématiques, 42:1–61, 1930.

[13] Andrew M. Childs, Debbie Leung, Laura Mančinska, and Māris Ozols. Characterization of
universal two-qubit Hamiltonians. Quantum Info. Comput. 11, 19-39, 2011.

[14] Toby Cubitt and Ashley Montanaro. Complexity classification of local Hamiltonian problems.
Proc. IEEE FOCS 2014.

[15] Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algorithm. Quantum
Info. Comput., 6(1):81–95, January 2006.

[16] David Deutsch, Adriano Barenco, and Artur Ekert. Universality in quantum computation.
Proc. R. Soc. A:449, 669-677, 1995.

[17] Jennifer L. Dodd, Michael A. Nielsen, Michael J. Bremner, and Robert T. Thew. Universal
quantum computation and simulation using any entangling Hamiltonian and local unitaries.
Phys. Rev. A (Rapid Comm.) 65, 040301(R), 2002.

[18] Bill Fefferman, Michael Foss-Feig and Alexey Gorshkov. Unpublished Manuscript.

[19] Bill Fefferman and Chris Umans. The Power of Quantum Fourier Sampling. arXiv:1507.05592,
2015.

[20] Keisuke Fujii, Hirotada Kobayashi, Tomoyuki Morimae, Harumichi Nishimura, Shuhei Tamate,
and Seiichiro Tani. Impossibility of Classically Simulating One-Clean-Qubit Computation.
arXiv:1409.6777, 2014.

[21] Brian Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.
Springer-Verlag, New York, 2003.

15

[22] Yenjo Han, Lane A. Hemaspaandra, and Thomas Thierauf. Threshold Computation and
Cryptographic Security. SIAM J. Comput., 26(1), 59-78, 1997.

[23] Stephen P. Jordan. Permutational quantum computing. Quantum Info. Comput., 10(5):470–
497, 2010.

[24] Gil Kalai. How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems,
and Noise Accumulation. arXiv:1106.0485, 2011.

[25] Emanuel Knill and Raymond Laflamme. Power of One Bit of Quantum Information. Phys.
Rev. Lett. 81(25):5672–5675, 1998.

[26] Leonid A. Levin. Polynomial time and extravagant models, in The tale of one-way functions.
Problems of Information Transmission, 39(1):92-103, 2003. arXiv:cs.CR/0012023.

[27] Seth Lloyd. Almost any quantum logic gate is universal. Phys. Rev. Lett. 10, 346-349, 1995.

[28] Tomoyuki Morimae, Keisuke Fujii, and Joseph F. Fitzsimons. On the hardness of classically
simulating the one clean qubit model. Phys. Rev. Lett. 112, 130502, 2014.

[29] Xiaotong Ni and Maarten Van den Nest. Commuting quantum circuits: efficient classical
simulations versus hardness results. Quantum Info. Comput. 13:1-2, 0054-0072, 2013.

[30] Dan Shepherd. Quantum Complexity: restrictions on algorithms and architectures. PhD
Thesis, University of Bristol, 2009.

[31] Dan Shepherd. Binary Matroids and Quantum Probability Distributions. arXiv:1005.1744
(2010).

[32] Dan Shepherd and Michael J. Bremner. Temporally unstructured quantum computation. Proc.
R. Soc. A:465, 1413, 2009.

[33] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring Proc.
IEEE FOCS’94, 124-134, 1994.

[34] Larry Stockmeyer. The complexity of approximate counting. Proc. STOC ’83, pp. 118-126,
1983.

[35] Yasuhiro Takahashi, Seiichiro Tani, Takeshi Yamazaki, and Kazuyuki Tanaka. Commuting
Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable. Quantum Inf.
Comp. 16:3&4, pp. 251-270, 2016.

[36] Barbara M. Terhal and David P. DiVincenzo. Classical simulation of noninteracting-fermion
quantum circuits. Phys. Rev. A. 65.032325, 2002.

[37] Barbara M. Terhal and David P. DiVincenzo. Adaptive Quantum Computation, Constant
Depth Quantum Circuits and Arthur-Merlin Games. Quant. Inf. Comp. 4:2, pp. 134-145,
2004.

[38] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comp. 20(5), pp.
865-877, 1991.

16

[39] Leslie Valiant. Quantum circuits that can be simulated classically in polynomial time. SIAM
Journal on Computing, 31(4):1229-1254, 2002.

[40] Nik Weaver. On the universality of almost every quantum logic gate. J. Math. Phys. 41, 240,
2000.

Appendix

A Commuting Hamiltonians are locally diagonalizable

To establish Claim 3.1, we prove the following stronger statement.

Claim A.1. If H is a two-qubit Hamiltonian and [H ⊗ I, I ⊗H] = 0, then (U ⊗ U)H(U ⊗ U)† is
diagonal for some one-qubit unitary U .

This is actually slightly stronger than Lemma 33 of [14], which shows that if [H ⊗ I, I ⊗H] =
[H⊗ I, I⊗THT] = [THT ⊗ I, I⊗H] = 0, then H is locally diagonalizable. Here we merely require
that [H ⊗ I, I ⊗H] = 0.

Proof. As a first step we expand H in Pauli basis and let αAB be the coefficient at A⊗B term for
any A,B ∈ {I,X, Y, Z}. Also, for all A ∈ {I,X, Y, Z}, let

~cA := (αXA, αY A, αZA)T and ~rA := (αAX , αAY , αAZ)T . (1)

Given a vector ~v = (vx, vy, vz)
T ∈ R3, we adopt a commonly used notation and write ~v ·~σ to denote

the linear combination vxX + vyY + vzZ.
Since (H ⊗ I)(I ⊗ H) = (I ⊗ H)(H ⊗ I), we know that both products must have the same

expansion in Pauli basis. Let us fix A,B ∈ {I,X, Y, Z} and consider the terms of the form A⊗ ⊗B
in the Pauli expansion of each of the products.

First, for (H ⊗ I)(I ⊗H) we notice that, when restricted to terms of the form A⊗ ⊗ B, its
Pauli expansion is given by(

A⊗ (αAII + ~rA · ~σ)⊗ I
)(
I ⊗ (αIBI + ~cB · ~σ)⊗B

)
= (2)

A⊗
(
αAIαIBI + (αAI~cB + αIB~rA) · ~σ + (~rA · ~σ)(~cB · ~σ)

)
⊗B = (3)

A⊗
(
(αAIαIB + ~rA · ~cB)I + (αAI~cB + αIB~rA + i(~rA × ~cB)) · ~σ

)
⊗B, (4)

where we have applied the identity (~v · ~σ)(~w · ~σ) = (~v · ~w)I + i(~v × ~w)~σ in the last step.
Next, we consider the product (I ⊗ H)(H ⊗ I) and similarly obtain that, when restricted to

terms of the form A⊗ ⊗B, its the Pauli expansion is given by(
I ⊗ (αIBI + ~cB · ~σ)⊗B

)(
A⊗ (αAII + ~rA · ~σ)⊗ I

)
= (5)

A⊗
(
(αAIαIB + ~cB · ~rA)I + (αAI~cB + αIB~rA + i(~cB × ~rA)) · ~σ

)
⊗B. (6)

Since the coefficients in the Pauli expansions of (H ⊗ I)(I ⊗H) have to coincide with those in the
expansion of (I ⊗H)(H ⊗ I), we know that the difference between expressions (4) and (6) equals
zero. Considering the middle tensor and canceling some therms gives

(~rA × ~cB) · ~σ = (~cB × ~rA) · ~σ. (7)

17

Since ~v× ~w = −~w×~v, we obtain that ~rA×~cB = 0. This further implies that ~rA and ~cB are collinear,
that is, dim(span{~rA,~cB}) ≤ 1. Since we can choose arbitrary A,B ∈ {I,X, Y, Z}, it must be that
all the vectors ~rA and ~cB must lie in the same one-dimensional subspace, i.e.,

dim
(

span
{
~rA,~cB : A,B ∈ {I,X, Y, Z}

})
≤ 1. (8)

Let us now consider a 3×3 matrix M whose rows and columns are indexed by Pauli matrices X,Y
and Z and its entries are defined via MAB = αAB. Then the vectors ~cA are the columns of M and
~rB are its rows. From Equation (8), we see that M has rank at most one. Moreover, the row and
column spaces of M must coincide as

span
(
{~rX , ~rY , ~rZ}

)
= span

(
{~cX ,~cY ,~cZ}

)
. (9)

These two observations imply that M = ~v~vT for some ~v ∈ R3. So we can express our Hamiltonian
H as

H = αIII ⊗ I + (a~v · ~σ)⊗ I + I ⊗ (b~v · ~σ) + (~v · ~σ)⊗ (~v · ~σ), (10)

where a, b ∈ R are such that ~rI = a~v and ~cI = b~v. If we pick a unitary U that diagonalizes ~v · ~σ,
then from Equation (10) we see that U ⊗ U diagonalizes our Hamiltonian H. This concludes the
proof.

B Inverting L matrices using postselection gadgets

We now prove Claim 3.2.

Proof. We will need two additional gadgets for our construction. First, consider a modification of
the gadget for L(t), where we start the qubit in the |1〉 state and postselect on the |1〉 state:

|ψ〉
D(t)

U † 〈1|

|1〉 U |ψ′〉

By a direct calculation, one can show the linear transformation performed on |ψ〉 is given by

M(t) =
1

|α||β|
√
e−2it − e2it

(
|β|2eia′t −αβ∗eit
−α∗βei |α|2eid′t

)
This is tantalizingly close to the inverse of L, which is

L(t)−1 =
1

|α||β|
√
e−2it − e2it

(
|β|2eid′t −αβ∗eit
−α∗βeit |α|2eia′t

)
The only thing that is off is that the phase of the upper left and bottom right entries are

incorrect. We now break into three cases to describe how to correct the phases in each. (Recall
that d′ = −2− a′ as our without loss of generality our Hamiltonian is traceless).

Case 1: a′ = d′ = −1 In this case we already have M(t) = L−1(t), so we have found the inverse.
Case 2: a′ = 1, d′ = −3 OR a′ = −3, d′ = 1
We will prove the case a′ = 1; an analogous proof holds for a′ = −3.

18

To correct the phases in M(t), we need to introduce an additional gadget:

|ψ〉
D(t)

|ψ′〉

|0〉 U U † 〈1|

In other words, instead of using the gate in a teleportation-like protocol, we instead use it to apply
phases to |ψ′〉. This gate performs the following transformation on the input state:

N(t) =
1√

(eit − eia′t)(eid′t − eit)

(
eit − eia′t 0

0 eid
′t − eit

)
In the case that a′ = 1, this gadget becomes singular, and hence it performs the operation(

0 0
0 1

)
In other words, this gadget postselects the qubit involved on the state |1〉. This holds in particular
for t = π/4. (In fact it holds for any t such that e−3it 6= eit, in which case it becomes undefined).

By composing N(π/4) with other gadgets, this now empowers us to create gadgets in which we
postselect on |1〉 on lines which do not end in U †. For instance, we can create the following gadget:

|ψ〉
D(t)

|ψ′〉

|0〉 U 〈1|

Which one can easily check is equivalent to the following circuit, which maintains the property that
every line begins and ends with U and U †.

|ψ〉
D(t)

|ψ′〉

|0〉 U
D(π/4)

U †

|0〉 U U † 〈1|

This is simply composing the gadget with N(π/4). (Here the output of the middle qubit is an
independent sample from measuring the state U †|1〉 in the computational basis).

This gadget performs the following operation on |ψ〉:

P (t) ∝
(
eit 0
0 e−3it

)
∝
(
e2it 0
0 e−2it

)
In other words, the matrix P (t) is a phase gate by phase θ = 2t.

The construction of arbitrary phase gates suffices to correct the diagonal phases of M(t), because

for any matrix

(
a b
c d

)
we have that

(
eiθ/2 0

0 e−iθ/2

)(
a b
c d

)(
eiθ/2 0

0 e−iθ/2

)
=

(
aeiθ b
c de−iθ

)

19

Hence by choosing θ = (d′ − a′)t, and multiplying M(t) by this matrix on both sides, we obtain
L−1(t) as desired. Clearly this construction is efficient, i.e. the postselection gadget is of constant
size, and one can efficiently compute the times to run the Hamiltonians in the gadget to high
precision. This completes the proof.

Case 3: a′ 6= ±1,−3
To correct the phases in M(t), we need to consider the same gadget N(t) which we used in Case

2:
|ψ〉

D(t)
|ψ′〉

|0〉 U U † 〈1|

In other words, instead of using the gate in a teleportation-like protocol, we instead use it to apply
phases to |ψ′〉. This gate performs the following transformation on the input state:

N(t) =
1√

(eit − eia′t)(eid′t − eit)

(
eit − eia′t 0

0 eid
′t − eit

)
Since N is a diagonal matrix, the only physical quantity that matters is the ratio r(t) of its two
entries, which is a complex number given by

r(t) =
eit − eia′t

eid′t − eit
.

If r(t) takes on a certain value, then it immediately follows that N(t) = ±
(√

r 0

0
√
r
−1

)
, because of

our normalization. Furthermore, if we compose N(s)N(t), then the ratio of the resulting diagonal
matrix is r(s)r(t). Note the ±1 term is an irrelevant global phase, so we omit it in the further
calculations.

We will now show that for any complex phase eiθ, where θ 6= 0, π, there exists a finite set of
times t1, t2, ...tk, s1, s2, ...sk′ such that

N(t1)N(t2)...N(tk)N(s1)N(s2)...N(sk′) =

(
eiθ/2 0

0 e−iθ/2

)
As previously mentioned in Case 2, the construction of such matrices suffices to correct the

diagonal phases of M(t), because for any matrix

(
a b
c d

)
we have that

(
eiθ/2 0

0 e−iθ/2

)(
a b
c d

)(
eiθ/2 0

0 e−iθ/2

)
=

(
aeiθ b
c de−iθ

)
Hence by choosing θ = (d′ − a′)t, and multiplying M(t) by this matrix on both sides, we obtain
L−1(t) as desired and this will complete the proof.

To prove this, we will prove two separate facts. First, we will show that given θ, there ex-

ists a sequence t1, t2, ...tk such that N(t1)N(t2)...N(tk) =

(
ceiθ/2 0

0 1
ce
−iθ/2

)
for some c ∈ R+.

Next, we will show that for any c ∈ R, there exists a sequence s1, s2, ...sk′ of times such that

N(s1)N(s2)...N(sk′) =

(
1/c 0
0 c

)
. Together these imply the claim.

20

Moreover, we will show this construction is efficiently computable. More specifically, suppose
you want to find invert L. The for each L the size of the postselection gadget required to invert L
is of constant size. Additionally, the amount of computational time required to compute the values
of ti and si to ensure that we find L−1 to accuracy ε scales as polylog(kL ∗ 1/ε), where kL is a
constant which depends on L. Furthermore, the times ti and si are upper bounded by a constant
which only depends on the value of a′. For convenience we will refer to these properties as ”the
construction is efficiently computable.”

At first glance it might sound like this definition of “efficiently computable” is too weak, because
the inverses of arbitrary L matrices might require large postselection gadgets, or might require a
long time to compute the values of the ti and si to sufficient accuracy. However, later in our
construction we will use the fact that for any fixed Hamiltonian H, we will only need to invert a
fixed number of L matrices. Hence for fixed H, the size of the postselection gadgets which appear
in our circuit will be upper bounded by a constant depending on H only, but not on the size of the
problem we are solving under postselection. Furthermore, for fixed H, we can compute the times
ti, si required to invert the relevant L matrices to exponential accuracy in polylog(1/epsilon) time
(where a hidden constant kL depending on L has been absorbed into the big-O notation).

Claim B.1. For any θ ∈ (0, 2π), there exists a sequence t1, t2, ...tk such that

N(t1)N(t2)...N(tk) =

(
ceiθ/2 0

0 e−uθ/2/c

)
for some c ∈ R+. Furthermore, this construction is computationally efficient.

Proof. To see this, consider the expression for the ratio

r(t) =
eit − eia′t

eid′t − eit
= −1− ei(a′−1)t

1− ei(d′−1)t
.

Let Phase(c) denote the phase of c modulo 2π. Then by direct calculation we have that

Phase(r(t)) = π + Phase

(
1− ei(a′−1)t

1− ei(−3−a′)t

)
= π + Phase

(
1− ei(a′−1)t

)
− Phase

(
1− ei(−3−a′)t

)
= π + Phase

(
1− ei(a′−1)t

)
+ Phase

(
1− ei(3+a′)t

)
=

(
π +

(
(a′ − 1)t

2
mod π

)
+

(
(3 + a′)t

2
mod π

))
mod 2π

=
(
π +

(
t′ mod π

)
+
(
Rt′ mod π

))
mod 2π

Where t′ = (a′ − 1)t/2 and R = (3+a′)
(1−a′) . Since we are in the case that a′ 6= ±1,−3, we are promised

that R is well-defined and R 6= 0, 1. Also note that we cannot have that R = −1 because this would
imply 3 = −1, a contradiction.

Suppose R > 0 (an analogous proof holds for R < 0). Then for t′ ∈ [0,min(π, π/R)], we know
that Phase(r(t′)) = π + (R + 1)t′, because in this range t′ is sufficiently small such that both t′

mod π = t′ and Rt′ mod π = Rt′. Hence using t′ in this interval, we can achieve any phase in

21

(π, π + s) where s = (R + 1) min(π, π/R). For any R 6= 0,−1 this range is of constant size. Thus
by multiplying together 1/s phases in the range (π, π+ s), one can achieve any phase in (0, 2π), as
desired.

Note that this construction is manifestly efficient; the ti’s are upper bounded by a constant
min(π, π/R) which is a function of H only, and computing them to polynomially many digits
requires polynomial time, as it just requires simple addition.

Claim B.2. For any c ∈ R+ − {1}, there exists a finite sequence s1, s2, ...sk such that

N(s1)N(s2)...N(sk) =

(
1/c 0
0 c

)
Proof. Consider products of matrices of the form N(s)N(−s) for s ∈ R+. Let f(s) = r(s)r(−s).
One can check by direct calculation that

f(s) =
1− cos((1− a′)s)
1− cos((3 + a′)s)

In other words, the product of the ratios is real and positive, hence the resulting matrix N(s)N(−s)

is of the form

(
1/` 0
0 `

)
for some ` ∈ R+. Note since we are in the case a′ 6= ±1,−3 this ratio is

well-defined.
If we redefine s′ = s/(1− a′), and set R = (1− a′)/(3 + a′), then this ratio becomes

1− cos s′

1− cosRs′

We know R 6= 0, 1 because we have a′ 6= ±1, 3, and furthermore R 6= −1 as well, since this would
imply 1 = −3, a contradiction.

For clarity of explanation assume R > 0; an analogous proof holds for the case R < 0.
Next we claim that the range of f(s) as s varies over R includes the interval

(min(R−2, R2),max(R−2, R2)).

Since R 6= 1 this is an interval of constant size around 1. To see this, we will break into two cases.
First, assume R > 1. Consider the value of this function when s′ ∈ (0, π/R). The function

f(s′) in continuous in this range. Additionally lims′→0 f(s′) = 1/R2 by L’Hôpital’s rule, and
lims′→π/R = +∞. Hence the range of f covers (R−2,+∞) = (min(R−2, R2),+∞) by the mean
value theorem.

Next, assume 0 < R < 1. Now consider the value of the function when s′ ∈ (0, π). Again the
function is continuous in this range, and we have lims′→0 f(s′) = 1/R2 by L’Hôpital’s rule, and
lims′→π = 0. Hence the range of f covers (0, R−2) = (0,max(R−2, R2)) by the mean value theorem.

Hence in either case, by choosing an appropriate value of s′, we can set f(s) to be any real value
in a finite-length interval containing 1. Hence for any target ratio c2 ∈ R+, one can take a finite
product of O(log(c)) values of f(s) such that f(s1)f(s2)...f(sk) = c2. This implies the claim.

22

Note that this construction is efficient. First, the times si are upper bounded by min(π, π/R),
which is a constant which depends on the Hamiltonian H only. Second, to compute each individual
time si, one simply needs to solve the problem

1− cos s′

1− cosRs′
= k

For some k ∈ (min(R−2, R2),max(R−2, R2)) and s′ in (0,min(π, π/R)). In the region of s where
the value of this function is between min(R−2, R2) and max(R−2, R2)) , the derivatives of this
function are bounded by a function of R only. Furthermore, the derivatives of these terms are
computable to accuracy ε in time polylog(1/ε) time using the Taylor series for sine and cosine.
Hence Newton’s method can be used to solve this problem, and will achieve quadratic convergence,
i.e. for each step you run Newton’s method, the error is squared, and the number of digits of
accuracy achieved doubles. Hence one can compute each time ti to accuracy ε in polylog(1/ε) time
as desired. Furthermore, since inverting any particular L only requires inverting some fixed c ∈ R+

using Claim B.2, an error ε in an individual N(si) matrices contributes cε error to the operator
norm8 of N(s1)...N(sk), and hence cε error to the operator norm of L−1. Hence this construction
is “computationally efficient” for each fixed L as defined previously.

This completes the proof in Case 3 and hence the entire proof.

C Showing density in SL(2,C)

We now prove Claim 3.3.

Proof of Claim 3.3. To show that S = SL(2,C), we will first show that S is a group, and then
show S is a Lie group.

Claim C.1. S is a group.

Proof. Clearly, if we only took finite products of these elements, the resulting set of matrices would
be a group, because we have the inverses of every element in the generating set. So what we need to
show is that taking the closure of this set of matrices still yields a group. To see this, suppose that
some element s ∈ S ⊆ SL(2,C) is the limit of a sequence L1, L2, . . . where each Li is a finite product
of element of the form L(D(t1, t2)), and limi→∞ Li = s. Now consider the sequence L−11 , L−12 ,
We claim that limi→∞ L

−1
i = s−1. To see this, simply note that for a 2×2 matrix

(
a b
c d

)
∈ SL(2,C),

its inverse is given by
(
d −b
−c a

)
. Since the limit point s exists in SL(2,C), the limit of each matrix

entry of the Li’s must converge as well to the entries of s. Hence the entries of the sequence L−1i
converges to the entries of s−1.

Note that it is critical that we’ve taken the closure in SL(2,C); if we took the closure in the set
of 2× 2 complex matrices, this would not necessarily be true.

We have now established that S is a group. Furthermore, S is a closed subgroup of SL(2,C) by
construction, and SL(2,C) is a Lie group. We now invoke a well-known theorem from Lie theory.

8This is because for non-unitary matrices, the norm of the singular values are not one. Hence when considering
the product AB, where λmax is the largest singular value of A, an ε error in B will induce an λmaxε error in AB.

23

Theorem C.1 (Cartan’s Theorem [12] or the Closed Subgroup Theorem). Any closed subgroup of
a Lie group is a Lie group.

Corollary C.1. S is a Lie group.

Now that we know S is a Lie group, we can use facts from Lie theory to show S = SL(2,C).
We will summarize the basics here, but a more complete treatment can be found in e.g. [21] or a
more advanced textbook on Lie groups.

A Lie group is a continuous manifold which is also a group, for which the group operations
are smooth. In this work we will only consider matrix groups, i.e. continuous groups of complex
matrices. For any Lie group G, one can define the Lie algebra of G, denoted Lie(G), to be the
tangent space to the group G at the identity. More concretely, suppose that you have a smooth

path γ(t) : R → G ⊆ GL(n,C) in G, such that γ(0) = I. Then the matrix ∂
∂tγ(t)

∣∣∣
t=0

belongs to

the tangent space of G at the identity. One can show that Lie(G) obeys the following properties
[21]:

1. g is a real vector space, i.e. g1, g2 ∈ g⇒ ag2 + bg2 ∈ g for any a, b ∈ R.

2. g is closed under commutators, i.e. g1, g2 ∈ g⇒ [g1, g2] , g1g2 − g2g1 ∈ g for any a, b ∈ R.

3. Let exp(A) = I +A+ A2

2 + A3

6 + . . .+ An

n! + Then we have that for all g ∈ g, exp(g) ∈ G.
In other words, the function exp maps from the Lie algebra into the Lie group.

4. g is closed under taking commutators with the group G. That is, for any G1 ∈ G and g ∈ g,
we have G1gG

−1
1 ∈ g.

To show that S = SL(2,C), we will consider g , Lie(S). We will then show that g = sl(2,C),
which is the Lie algebra of SL(2,C), which consists of all traceless two by two complex matrices.
By property 3, this implies that exp(sl(2,C)) ⊆ S. From this, we will leverage the following fact:

Claim C.2. exp(sl(2,C)) is dense in SL(2,C).

Proof. It is well known [21] that exp(sl(2,C)) contains all matrices in SL(2,C) except matrices A
for which Tr(A) = −2 and A 6= −I. This implies the claim.

Hence to prove Claim 3.3, it suffices to prove the following claim:

Claim C.3. g , Lie(S) spans sl(2,C), i.e. all 2× 2 traceless matrices.

Proof. Consider elements of the form

M(t, s) , L(t)L(s)−1.

As t, s vary over (0, π) ∪ (π, 2π), these form continuous paths within S. In particular, at the point
where s = t, this path passes through the identity. Now consider

g(v) ,
∂

∂t
[M(t, s)]

∣∣∣
s=t=v

24

These are tangent vectors to paths in S, evaluated as they pass through the identity. Hence we
have that g(v) ∈ g for all v ∈ (0, π) ∪ (π, 2π). By direct calculation, one can show that

g(v) = − 1

2 sin(2v)

(
(a′ + 1)e−2iv α

β (1− a′)ei(1+a′)v
β
α(3 + a′)ei(−1−a

′)v −(a′ + 1)e−2iv

)

where we have simplified using the fact that d′ = −2− a′.
We will now break into cases to show that these matrices span the entire Lie algebra. We

begin with the generic case and then give the special cases. In the special cases, we will also add
additional postselection gadgets to our model in order to get single-qubit transformations which
span all traceless matrices. The gadgets introduced are inherently closed under taking inverses. So
this simply reflects that for very particular Hamiltonians, our L matrices need additional help to
span all 1-qubit operations.

Case 1: a′ 6= ±1,−3
In this case all of the entries of g(v) are non-zero.

g(v) = − 1

2 sin(2v)

(
(a′ + 1)e−2iv α

β (1− a′)ei(1+a′)v
β
α(3 + a′)ei(−1−a

′)v −(a′ + 1)e−2iv

)

We can therefore rewrite g(v) with four non-zero parameters k1 ∈ R, k2, k3 ∈ C, and using a new
parameter v′ = −2v:

g(v) ∝
(

ev
′

k2e
ik1v′

k3e
−ik1v′ −eiv′

)
Here we omit real coefficients as the Lie algebra is closed under scalar multiplication by R. The
fact that a′ 6= ±1,−3 also implies that k4 6= ±1

Now consider the value of g(v′) for small values of v′. In particular, pick a θ << 1. Then we
have that

g(±θ) ∝
(

(A±Bi) k2(C ±Di)
k3(C ∓Di) −(A±Bi)

)
for some nonzero real coefficients A,B,C,D ∈ R. Taking the sum and difference of these matrices,
we see the following are elements of the Lie algebra:(

A k2C
k3C −A

) (
Bi k2Di
−k3Di −Bi

)
Likewise, by considering taking the sum and difference of g(±2θ), we get there exist nonzero
A′, B′, C ′, D′ ∈ R such that the lie algebra contains.(

A′ k2C
′

k3C
′ −A′

) (
B′i k2D

′i
−k3D′i −B′i

)
Furthermore, since sine and cosine are nonlinear, and k1 6= 0,±1, the vectors (A,C) and (A′, C ′)
are linearly independent. Likewise the vectors (B,D) and (B′, D′) are linearly independent. Hence
by taking linear combinations of these matrices, we have that any matrix of the form(

E k2F
k3F

∗ −E

)
25

is in the Lie algebra for any E,F ∈ C. Hence our Lie algebra spans at least these two complex
dimensions. Now we take the closure of such matrices under commutators. Suppose A,B,C,D ∈ C.
We have that[(

A k2B
k3B

∗ −A

)
,

(
C k2D

k3D
∗ C

)]
=

(
k2k3(BD

∗ −B∗D) 2k2(AD −BC)
2k3(B

∗C −AD∗) k2k3(B
∗D −BD∗)

)
Since we previously showed all traceless diagonal matrices are in the Lie algebra, this implies the
following matrices are in the Lie algebra:(

0 2k2(AD −BC)
2k3(B

∗C −AD∗) 0

)
By setting A,D,B,C such that (AD−BC)∗ 6= (B∗C −AD∗), we can see that these matrices span
the remaining two real dimensional space of off-diagonal matrices. Hence our Lie algebra spans all
traceless matrices. This completes the proof in Case 1.

Case 2: a′ = 1 or a′ = −3
We will prove the claim for a′ = 1; an analogous proof holds for a′ = −3. (These are the

Hamiltonians diag(1, 1, 1,−3) and diag(−3, 1, 1, 1), which are identical except the role of 0 and 1 is
switched.).

In this case we have that

g(v) ∝
(

e−2iv 0

2βαe
−2iv −e−2iv

)
By evaluating g(v) at ±θ and ±2θ for some small value of θ, by the same arguments put forth in
Case 1, these matrices span the space of matrices of the form(

A+Bi 0

2βα(A+Bi) −A−Bi

)
Where A,B ∈ R are arbitrary real parameters.

We will now use another postselection gadget, which is inherently closed under taking inverses,
to boost the span of the algebra to all of sl(2,C). This is the same gadget which appears in the
construction of L−1 in appendix B.

|ψ〉
D(t)

|ψ′〉

|0〉 U
D(π/4)

U †

|0〉 U U † 〈1|

This gadget performs the operation

P (t) ∝
(
eit 0
0 e−3it

)
∝
(
e2it 0
0 e−2it

)
Hence its Lie algebra spans the space of traceless diagonal imaginary matrices. Combining this
with the previous result, we see the Lie algebra now spans the space(

A+Bi 0

2βα(A+ Ci) −A−Bi

)

26

Where A,B,C ∈ R are arbitrary real parameters.
Now consider taking commutators of such matrices; one can easily see that for

A,B,C,D,E, F ∈ R,[(
A+Bi 0

2βα(A+ Ci) −A−Bi

)
,

(
D + Ei 0

2βα(D + Fi) −D − Ei

)]
=

(
0 0

4βα(A+ Ci)(D + Ei) 0

)
Hence by appropriate choice of A,C,D,E these commutators span all complex values in the lower
left hand corner. So our Lie algebra now spans(

A+Bi 0
C +Di −A−Bi

)
Where A,B,C,D ∈ R are arbitrary real parameters. In other words we span all traceless lower
triangular matrices.

Next we will use the fact that the Lie algebra is closed under conjugation by the group. Therefore
it must contain all elements of the form

L(t)

(
A 0
B −A

)
L−1(t)

where A,B are now complex parameters
Since we already span lower triangular matrices, the only relevant entry of the above matrix

is the upper-right entry, as we can zero out the other entries by adding lower triangular matrices.
This upper left entry is proportional to

i
(
−2αβ∗|α|2e2itA− α2β∗2e2itB

)
Since α and β are non-zero, and setting B = 0, we can see that by choosing A we can set this value
to be any complex number. Hence our Lie algebra must span

L(t)

(
A C
B −A

)
L−1(t)

Where A,B,C ∈ C, that is all of sl(2,C), as desired. This completes the proof of Claim 2.
Case 3: a′ = −1
In this case we have that

g(v) = − 1

sin(2v)

(
0 α

β
β
α 0

)
Thus the matrices g(v) span a one-dimensional space. Since the Lie algebra is closed under scalar
multiplication by reals, the factor of −1

sin(2v) out front is irrelevant, and we will drop real prefactors
in future calculations.

We will now use the fact the Lie algebra is closed under conjugation by the group. Consider
matrices of the form

T (s, v) = L(s)g(v)L(s)−1 ∝ i

(
|β|4 − |α|4 |α|4 αβ e

−2is − αβ∗|β|2e2is
β
α |β|

4e−2is − α∗β|α|2e2is |α|4 − |β|4

)

27

where the proportionality is over real scalar multiples. Here we have simplified using the fact we
are in the case a′ = d′ = −1. This is well defined for any s and v which are not integer multiples
of π.

Now we break into two subcases:
Subcase A: |α|2 6= |β|2
In this case, the matrix T (s, v) has a nonzero entry on the diagonals. Hence the matrix T (s, v)

has the form

T (s, v) ∝ i
(

k1 k2e
−2is − k3e2is

k4e
−2is − k5e2is −k1

)
Where k1 ∈ R is nonzero, k2, k3, k4, k5 ∈ C are nonzero. One can easily check that the constraint
|α|2 6= |β|2 further implies that k2, k3, k4, k5 have four distinct values, i.e. ki 6= kj for any i 6= j,
i, j ≥ 2. For instance, to see that k2 6= k3, note that if k2 = k3 then |α|4 αβ = αβ∗|β|2, which implies

|α|4 = |β|4, a contradiction.
Furthermore, one can show that there cannot exist a constant9 K such that k2 = Kk4 and

k3 = Kk5, because this would imply |K| = |αβ |
6 = |αβ |

2 which is a contradiction if |α| 6= |β|. Hence
the matrices T (s, v) span matrices of the form(

Ai B + Ci
D + Ei −Ai

)
where A,B,C,D,E ∈ R are arbitrary real parameters. Now taking the closure of such matrices
under commutators, one can easily see this spans all traceless matrices. Hence the Lie algebra
spans sl(2,C) as desired.

Subcase B: |α|2 = |β|2 = 1/2
In this case the Hamiltonians generated are of the form X(θ)⊗X(θ), so are not covered in the

scope of this theorem. Note that the Lie alebgra of the L gadgets here only span a two dimensional
subspace of the form (

0 e−iθ(A+Bi)
eiθ(A+Bi) 0

)
where A,B ∈ R. This is closed under conjugation and does not span sl(2,C).

D Proof of postselected universality when b 6= c

Here we consider the postselected universality of circuits with entangling Hamiltonians for which
H 6= THT . The proof in this case will follow analogously to the main proof. Furthermore, the
construction of the inverse gadgets will have a much cleaner construction than the case H = THT .

Suppose we have a commuting Hamiltonian H such that H 6= THT . By Claim 3.1, we know

that H = (U ⊗U) diag(a, b, c, d)(U † ⊗U †) for some one-qubit unitary U =
(
α −β∗
β α∗

)
and some real

parameters a, b, c, d. The trace of H contributes an irrelevant global phase to the unitary operator

9If this were the case, the matrices T (s, v) would only span matrices of the form

(
Ai B + Ci

K(B + Ci) −Ai

)
. Fortu-

nately this does not happen in this case.

28

it generates, so without loss of generality we can assume H is traceless, i.e., a + b + c + d = 0.
Since H 6= THT we have b 6= c. As before, the fact H can generate entanglement starting from
the computational basis implies α 6= 0, β 6= 0, and b+ c 6= 0.

Now consider the Hamiltonians

H1 =
1

c2 − b2
(cH12 − bH21), H2 =

1

b2 − c2
(bH12 − cH21)

Since we can apply both H, −H, THT , and −THT , this allows us to apply H1 and H2 for
independent amouts of time. Let V (t1, t2) be the two-qubit unitary we obtain from running H1 for
time t1 ∈ R and H2 for time t2 ∈ R. We have

V (t1, t2) = eit1H1eit2H2 = (U⊗2)D(t1, t2)(U
†⊗2),

where D(t1, t2) , diag(eia
′(t1+t2), eit1 , eit2 , eid

′(t1+t2)).
Now following our previous proof, we consider the following postselection gadget:

|ψ〉
D(t1, t2)

U † 〈0|

|0〉 U |ψ′〉

This performs the following transformation on the input state:

L(t1, t2) =
1

|α||β|
√(

e−i(t1+t2) − ei(t1+t2)
) (|α|2eia′(t1+t2) αβ∗eit2

α∗βeit1 |β|2eid′(t1+t2)

)
.

As before, this is a non-unitary transformation, and hence it is unclear how to invert L. For-
tunately, when H 6= THT we have the freedom to apply H1 and H2 for separate times, and this
allows us to make a much simpler postselecting gadget to invert L, as follows:

Claim D.1. Given L(t1, t2), where ti ∈ (0, π) ∪ (π, 2π), it is possible to construct L(t1, t2)
−1

by introducing three postselections into the circuit. Furthermore, this construction is efficiently
computable in the manner described above.

Proof. We will need two additional gadgets for our construction. First, consider a modification of
the gadget for L(t1, t2), where we start the qubit in the |1〉 state and postselect on the |1〉 state:

|ψ〉
D(t1, t2)

U † 〈1|

|1〉 U |ψ′〉

By a direct calculation, one can show the linear transformation performed on |ψ〉 is given by

M(t1, t2) =
1

|α||β|
√(

e−i(t1+t2) − ei(t1+t2)
) (|β|2eia′(t1+t2) −αβ∗eit2

−α∗βeit1 |α|2eid′(t1+t2)

)

This is tantalizingly close to the inverse of L, which is

L(t1, t2)
−1 =

1

|α||β|
√(

e−i(t1+t2) − ei(t1+t2)
) (|β|2eid′(t1+t2) −αβ∗eit2

−α∗βeit1 |α|2eia′(t1+t2)

)

29

The only thing that is off is that the phase of the upper left and bottom right entries are incorrect.
To correct these phases, we need to introduce another gadget:

|ψ〉
D(t1, t2)

|ψ′〉

|0〉 U U † 〈1|

In other words, instead of using the gate in a teleportation-like protocol, we instead use it to apply
phases to |ψ′〉. This gate performs the following transformation on the input state:

N(t1, t2) =
1√

(eit1 − eia′(t1+t2))(eid′(t1+t2) − eit2)

(
eit1 − eia′(t1+t2) 0

0 eid
′(t1+t2) − eit2

)
Since N is a diagonal matrix, the only physical quantity that matters is the ratio r(t1, t2) of its two
entries, which is a complex number given by

r(t1, t2) =
eit1 − eia′(t1+t2)

eid′(t1+t2) − eit2
.

If r = r(t1, t2) takes on a certain value, then it immediately follows that N(t1, t2) =
(√

r 0

0
√
r
−1

)
,

because of our normalization.
We will now show that by setting t1 and t2, we can choose r(t1, t2) to be any complex phase eiθ

that we like. In fact, if a′

d′ is irrational, one can also show that one can choose t1, t2 to approximate
any complex number; however, this will not be necessary for our construction, so we omit this here.

Claim D.2. For any θ ∈ (0, 2π), there exist t1, t2 ∈ R such that r(t1, t2) = eiθ.

Proof. Set t1 = θ and t2 = −θ. We immediately have

r(θ,−θ) =
eiθ − 1

1− e−iθ
=

eiθ − 1

e−iθ(eiθ − 1)
= eiθ.

Note that this only works if eiθ 6= 1 - this is why we have omitted θ = 0 from our range of θ. In
other words, this gadget can be used to perform any diagonal matrix other than the identity.

Putting this all together, we now show how to invert L(t1, t2). Set s1 = i(d′(t1+t2)−a′(t1+t2))
and s2 = −s1. Then we have10

N(s1, s2) =

(
e
i
2
(d′(t1+t2)−a′(t1+t2)) 0

0 e−
i
2
(d′(t1+t2)−a′(t1+t2))

)

Now one can easily check that

L(t1, t2)
−1 = N(s1, s2)M(t1, t2)N(s1, s2)

10This is possible as long as ei(d
′(t1+t2)−a′(t1+t2)) 6= 1. If this quantity is one, then L(t1, t2)−1 = M(t1, t2), so no

additional gadgets are necessary to obtain inverses.

30

And therefore the following gadget performs L(t1, t2)
−1:

|0〉 U
D(s2, s1)

U † 〈1|

|ψ〉
D(t2, t2)

U † 〈1|

|1〉 U
D(s1, s2)

|ψ′〉

|0〉 U U † 〈1|

(Note that s1 and s2 are switched in the first diagonal matrix, as we have switched the usual order
of the qubits.)

Hence using these postselection gadgets, we can generate not only L(t1, t2), but also its inverse.
Furthermore, this construction is manifestly efficient, since s1 and s2 are efficiently computable
given t1 and t2.

We can therefore apply both L(t1, t2) and L(t1, t2)
−1 in our postselected circuits. This once

again allows us to apply Lie theory to determine which subset of transformations can be applied
by taking products of L matrices. Following our proof of the main theorem, we now show the Lie
algebra of the L matrices spans sl(2,C). This completes the proof of postselected universality in
this case in analogy with the main theorem.

Claim D.3. The Lie algebra of the L matrices spans sl(2,C) in the case where T 6= THT .

Proof. Consider elements of the form

M(t1, t2, s1, s2) , L(D(t1, t2))L(D(s1, s2))
−1.

As t1, t2, s1, s2 vary over the set

{t1, t2 : t1 + t2 ∈ (0, π) ∪ (π, 2π)} × {s1, s2 : s1 + s2 ∈ (0, π) ∪ (π, 2π)}

, these form continuous paths within S. In particular, at the point where s1 = t1 and s2 = t2, this
path passes through the identity. Now consider

g(v1, v2) ,
∂

∂t1
[M(t1, t2, s1, s2)]

∣∣∣s1=t1=v1
s2=t2=v2

and

h(v1, v2) ,
∂

∂t2
[M(t1, t2, s1, s2)]

∣∣∣s1=t1=v1
s2=t2=v2

.

These are tangent vectors to paths in S, evaluated as they pass through the identity. Hence we
have that g(v1, v2) and h(v1, v2) ∈ g for all v1, v2 ∈ {v1, v2 : v1 + v2 ∈ (0, π) ∪ (π, 2π)}. By direct
calculation, one can show that

g(v1, v2) = − 1

2 sin(v1 + v2)

(
a′e−i(v1+v2) + cos(v1 + v2) −α

β a
′ei(a

′v1+(a′+1)v2)

β
α(2 + a′)ei((d

′+1)v1+d′v2) −a′e−i(v1+v2) − cos(v1 + v2)

)

31

and

h(v1, v2) = − 1

2 sin(v1 + v2)

(
a′e−i(v1+v2) − i sin(v1 + v2)

α
β (1− a′)ei(a′v1)+(a′+1)v2

β
α(1 + a′)ei((d

′+1)v1+d′v2) −a′e−i(v1+v2) + i sin(t+ 1 + v2)

)

where we have simplified using the fact that d′ = −1 − a′. Now suppose that we evaluate these
matrices at the points where v1 = θ and v2 = π

2 − θ for some real parameter θ; this ensures that
v1, v2 are in the allowed set, and simplifies the above expressions to

g(θ) = −1

2

(
−a′i −α

β a
′ei(−θ+(a′+1)π

2
)

β
α(2 + a′)ei(θ+d

′ π
2
) a′i

)

= −1

2

(
−a′i −α

β a
′eiθ

′

β
α(2 + a′)e−iθ

′
a′i

)
,

here we define θ′ = −θ + (a′ + 1)π2 ; this follows from the fact that d′ = −1− a′. Likewise, we can
consider h(v1, v2) evaluated when v1 = θ and v2 = π

2 − θ; this evaluates to

h(θ) = −1

2

(
−ia′ − i α

β (1− a′)ei(−θ+(a′+1)π
2
)

β
α(1 + a′)ei(θ+d

′ π
2
) ia′ + i

)

= −1

2

(
−i(a′ + 1) α

β (1− a′)eiθ′
β
α(1 + a′)e−iθ

′
i(a′ + 1)

)
.

By setting the value of θ in the range [0, 2π), we can select any values of θ′ we like; hence we will
work with θ′ from this point forward.

For now we will assume that a′ 6= 0 and a′ 6= 1; we will handle the cases a′ = 0 and a′ = −1
separately. The proof of the general case is the most difficult one.

Case 1: a′ 6= 0 and a′ 6= −1.
We know that g(θ′) ∈ g and h(θ′) ∈ g . Furthermore, since g is a real Lie algebra, it is closed

as a vector space over R. Hence we must also have that

j(θ1, θ2) , −2

(
1

a′ + 1
h(θ2)−

1

a′
g(θ1)

)
=

 0 α
β

(
1−a′
1+a′ e

iθ2 + eiθ1
)

β
α

(
e−iθ2 − 2+a′

a′ e
−iθ1

)
0

 ∈ g

Where we have used the assumption that a′ 6= 0 and a′ 6= −1. We will now show that as we vary θ1
and θ2, these elements j(θ1, θ2) span all two by two matrices of the form

(
0 c1
c2 0

)
, where c1, c2 ∈ C.

To prove this, we will break into two subcases. For convenience, define

k =
a′ − 1

a′ + 1
.

Subcase A: a′ > 0, i.e., −1 < k < 1.
In this subcase, consider the matrices

−a′(1 + a′)

4

[
j
(

arcsin k,
π

2

)
+ j

(
π − arcsin k,

π

2

)]
=

(
0 0
β
α i 0

)
(11)

32

1 + a′

4
√
a′

[
j
(

arcsin k,
π

2

)
− j

(
π − arcsin k,

π

2

)]
=

(
0 α

β

−β
α
2+a′

a′ 0

)
(12)

and
a′(1 + a′)

4
[j (arccos k, 0) + j (− arccos k, 0)] =

(
0 0
β
α 0

)
(13)

1 + a′

4
√
a′

[j (arccos k, 0)− j (− arccos k, 0)] =

(
0 α

β i
β
α
2+a′

a′ i 0

)
. (14)

These are well-defined as we have a′ > 0 in this case. Clearly matrices (11) and (13) span the
space of all matrices with a single complex entry in the bottom left hand corner. Hence, when
combined with matrices (12) and (14), they clearly span the space of all matrices with complex
entries in the off diagonal elements.

Subcase B: a′ < 0 and a′ 6= −1, i.e., −1 < 1/k < 1
This subcase follows similarly; consider the matrices

a′(1− a′)
4

[
j

(
π

2
, arcsin

1

k

)
+ j

(
π

2
, π − arcsin

1

k

)]
=

(
0 0
β
α i 0

)
(15)

1 + a′

4
√
−a′

[
j

(
π

2
, arcsin

1

k

)
− j

(
π

2
, π − arcsin

1

k

)]
=

(
0 α

β

−β
α
1+a′

1−a′ 0

)
(16)

and
−a′(1− a′)

4

[
j

(
0, arccos

1

k

)
+ j

(
0,− arccos

1

k

)]
=

(
0 0
β
α 0

)
(17)

1 + a′

4
√
−a′

[
j

(
0, arccos

1

k

)
− j

(
0,− arccos

1

k

)]
=

(
0 α

β i
β
α
1+a′

1−a′ i 0

)
. (18)

These are well-defined as we have a′ < 0 in this case, as well as a′ 6= −1. Again, clearly we
have that (15) and (17) span all matrices with a single complex entry in the bottom left of the
matrix. Hence, adding in (16) and (18), we span all off-diagonal complex matrices, which is what
we wanted to show.

In either subcase, our j matrices span all matrices of the form(
0 A+Bi

C +Di 0

)
where A,B,C,D ∈ R. Additionally, our g and h matrices are also in g, and clearly combining these
with the j matrices increases the span to(

Ei A+Bi
C +Di −Ei

)
where A,B,C,D,E ∈ R. This is a five-dimensional subspace of sl(2,C). Now to show that we
can span all 6 dimensions of sl(2,C), we invoke the fact that g is closed under commutation, so g
contains [(0 1

0 0) , (0 0
1 0)] =

(
1 0
0 −1

)
. Hence g must include all matrices of the form(

F + Ei A+Bi
C +Di −F − Ei

)
33

where A,B,C,D,E, F ∈ R. In other words, g = sl(2,C).
We’ve now shown Claim C.3 in the case where a′ 6= 0 and a′ 6= −1. We now prove the claim in

these remaining two cases.
Case 2: a′ = 0.
In this case we have

g(θ′) = −1

2

(
0 0

β
α2e−iθ

′
0

)
As θ varies these matrices clearly span all matrices a single complex number in the bottom left
entry. Now in this case we also have that

h(θ′) = −1

2

(
−i α

β e
iθ′

β
αe
−iθ′ i

)

Since g is closed under addition and scalar multiplication by R, and applying

h(θ′)− h(θ′′) = −1

2

(
0 α

β (eiθ
′ − eiθ′′)

β
α(e−iθ

′ − eiθ′′) 0

)
∈ g

Now adding in multiples of g, we have that g contains matrices of the form(
0 α

β (eiθ
′ − eiθ′′)

0 0

)
which clearly span all matrices with a complex entry in the upper right corner. Hence we span all off-

diagonal matrices. Now adding in h(θ) for any θ, we span all matrices of the form

(
Ei A+Bi

C +Di −Ei

)
where A,B,C,D,E ∈ R. As discussed in Case 1, by taking the closure of these under commutation
we have that g = sl(2C) as desired, which completes the proof of Case 2.

Case 3: a′ = −1
This case follows very similarly to Case 2. When a′ = −1 we have that

h(θ′) = −1

2

(
0 α

β 2eiθ
′

0 0

)
which clearly span all complex matrices with a single entry in the upper right corner. In this case,
we also have that

g(θ′) = −1

2

(
i −α

β − e
iθ′

β
αe
−iθ′ −i

)
,

By considering the difference g(θ′) − g(θ′′), and noting that we already span matrices with a
single entry in the upper right corner, this shows that we span all off-diagonal matrices. Now

adding in g(θ′) for any θ′ we see that we span all matrices of the form

(
Ei A+Bi

C +Di −Ei

)
where

A,B,C,D,E ∈ R. As discussed in Case 1, by taking the closure of these under commutation we
have that g = sl(2,C) as desired. This completes the proof of Case 3, hence the proof of the
claim.

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

