
Affine Relativization:
Unifying the Algebrization and Relativization Barriers

Barış Aydınlıŏglu ∗ Eric Bach†

March 15, 2016

Abstract

We strengthen existing evidence for the so-called “algebrization barrier”. Algebrization — short
for algebraic relativization — was introduced by Aaronson and Wigderson (AW) in order to charac-
terize proofs involving arithmetization, simulation, and other “current techniques”. However, unlike
relativization, eligible statements under this notion do not seem to have basic closure properties, making
it conceivable to take two proofs, both with algebrizing conclusions, and combine them to get a proof
without. Further, the notion is undefined for most types of statements, and does not seem to yield a
general criterion by which we can tell, given a proof, whether it algebrizes. In fact the very notion of
an algebrizing proof is never made explicit, and casual attempts to define it are problematic. All these
issues raise the question of what evidence, if any, is obtained by knowing whether some statement does
or does not algebrize.

We reformulate algebrization to handle these shortcomings. We first define a statement asrelativiz-
ing if, intuitively, it is insensitive to the choice of a Boolean basis, and then asrelativizing affinelyif,
roughly, it relativizes with respect to every affine extension — here an affine extension is the result of
a particular error correcting code applied to the characteristic string of a language. We also define the
notion of aproof to relativize (affinely), while ensuring closure under inference. We show that all state-
ments that AW declare as algebrizing can be derived via an affinely relativizing proof, and that no such
proof exists for any of the statements shown not-algebrizing by AW in the classical computation model.

Our work complements, and goes beyond, the subsequent work by Impagliazzo, Kabanets, and
Kolokolova (IKK), which also proposes a reformulation of algebrization, but falls short of recovering
some key results of AW, most notably regarding theNEXP versusP/poly question.

One consequence of our definitions is a demystified perspective on the extent to which relativizing
techniques view computation as a “black box” and current uses of arithmetization do not. As a bonus,
we give new streamlined proofs ofPSPACE ⊂ IP andNEXP ⊂ MIP.

∗University of Wisconsin-Madison;baris@cs.wisc.edu.
†University of Wisconsin-Madison;bach@cs.wisc.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 40 (2016)

Contents

1 Introduction 1
1.1 Relativization and Affine Relativization . 4
1.2 Comparison with Prior Work . 6
1.3 Overview of Ideas and Techniques . 9

2 Definitions, Notation and Conventions 13

3 Positive Relativization Results 14
3.1 Checking and Compressing�SAT . 15
3.2 TheIP Theorem . 20
3.3 TheMIP Theorem . 21
3.4 Lower Bounds against General Boolean Circuits . 24
3.5 TheZKIP Theorem . 26

4 Negative Relativization Results 27
4.1 Interpolation Approach . 27
4.2 Communication Complexity Approach . 30
4.3 Proof Theoretic Approach . 33

5 Conclusions and Open Problems 33

Bibliography 35

1 Introduction

The algebrization notion — short for algebraic relativization — was put forth by Aaronson and Wigderson
[1] (AW henceforth) to give evidence that certain complexity-theoretic conjectures are beyond the reach of
“current proof techniques”. Although the name suggests some type of relativization, algebrization lacks two
essential properties of relativization:

Closure under inference.What exactly constitutes a “current technique” may be inherently unclear, but
at a minimum it seems logical inference rules should be included. However, as pointed out in [1, 24, 19],
statements that algebrize in the AW formulation are not known to be closed under inference.

For example, AW show that the statementψ := NEXP 6⊂ P/poly does not algebrize, and interpret
this to mean that a certain class of proof techniques, say “algebrizing techniques”, cannot proveψ. Yet,
this does not rule out an approach where, say, one comes up with a classC and, showsC ⊂ NEXP via
algebrizing techniques, then showsC 6⊂ P/poly via algebrizing techniques, and thus derive the very
sameψ.

Lack of closure under inference thus significantly thins any evidence imparted by a negative al-
gebrization result — as AW obtained forNEXP versusP/poly and for other questions of structural
complexity — since the class of proofs ruled out by such a result might be much smaller than intended.

This precludes algebrization from having one of the two key virtues of relativization, namely delin-
eating those conjectures within possible reach of a robust family of techniques, from those that are not.
Indeed, some major results in complexity are suggested to have been found using relativization as such
a guide [5, 14].

Universality. A main appeal of relativization is being a universal notion, in the sense that it applies
to every statement in one generic way. Intuitively, a statement relativizes if its truth is insensitive to
broadening the definition of computer, from an ordinary Turing Machine, to one with oracle access to
an arbitrary languageO. (We provide an alternate intuition later in Section 1.1.)

This intuition is so natural that it enables the second key virtue of relativization, namely being a
“litmus test” for weeding out futile endeavours. The idea is that ifψ is already known to not relativize,
then any strategy for provingψ, in order to be viable, must somehow be unable to handle arbitrary
extensions of the computer notion, or else it would be a strategy for proving not justψ, but thatψ
relativizes. Given the scarcity of such proof strategies in structural complexity — at least for thoseψ
involving P-based classes — this idea makes relativization a practical tool for guiding research. (Alas,
we do not have a count on the number of fruitless research hours saved this way.)

For algebrization, however, we have no comparable intuition. This is mainly because algebrization
is a selective notion, in the sense that it is defined only for containmentsC ⊂ D and separationsC 6⊂ D,
and moreover, it is applied differently to each side of the containment / separation. Supposing we have
a strategy to proveψ — and assuming, to begin with,ψ is of compatible syntax — there is no universal
criterion we can apply, to check if our ideas can be extended to show thatψ algebrizes. This calls into
question how relevant it is to know thatψ is non-algebrizing in the first place.

Besides the above problems, algebrization brings back some longstanding ones that are as old as the rela-
tivization notion itself:

Controversial relativizations. A pair of theorems might be derived using seemingly same techniques, yet
only one might be relativizing / algebrizing. For example,PSPACE ⊂ IP, as AW show, algebrizes, yet
its cousin,NEXP ⊂ MIP, doesnot, as observed by Impagliazzo, Kabanets, and Kolokolova [19] —
except itdoes, as AW show, if we restrict oracle access forNEXP to be of polynomial-length.

1

It is not clear how to interpret such results without further work. Can we justify restricting oracle
access, say by showing that it yields a natural subclass not tied to the Turing machine model? If so,
then which “current technique” eliminates the difference between the two classes, the subclass and the
original, thereby overcoming the limits of algebrizing techniques (whatever they are)?

Relativizing statements vs. proofs.A generally accepted (though not uncontested [21]) convention is to
remark that some proof, say ofψ, relativizes or algebrizes, with no clear consensus on what that exactly
means.

The typical intent behind such remarks seems to be that the said proof can be transformed into a
proof that ψ relativizes(or algebrizes). However, as anything can be transformed into anything when
there is no constraint, it is not clear which proofs donot relativize under such a definition. And even
if some commonsense transformations are tacitly agreed upon — e.g., “give every Turing machine an
oracle forO,” or “bring each statement to its relativized form” — it is unclear whether the transformed
object would always be a valid proof, let alone a valid proof thatψ relativizes.

Although an early manuscript by Arora, Impagliazzo, and Vazirani [3] (AIV) succeeds in giving a
precise definition of a relativizing proof, the approach taken there is recursion-theoretic and makes no
reference to devices such as Turing machines. Consequently, it seems difficult to tell whether an every-
day statement / proof — involving circuits, Turing machines, etc. — relativizes using their formulation.
For example, it is not clear if “Satisfiability isNP-complete” relativizes in their framework, or has such
a proof, even though “oracle gates” forO can be easily incorporated into a circuit / formula.

Naturally thus the question arises, of whether a simple definition can be given for what constitutes
a relativizing / algebrizing proof, without having to do any hand-tailoring for the computational model
being used, circuits versus machines. Ideally, such a definition should also test the folk belief that
relativizing techniques use computation as a “black box”, and relate that to algebrization.

In this paper, we reformulate relativization and algebrization, in a way that addresses the above problems.
First, we give a simple, combinatorially flavored definition of what it means for a statement / proof to

relativize, that yields the following intuition: a statement / proof relativizes if it is insensitive to enlarging
the standard Boolean basis. This part of our work can be considered an alternative to the recursion-theoretic
approach of Arora, Impagliazzo, and Vazirani [3] mentioned above (see Section 1.2 for a comparison).

Our main contribution is to the algebrization notion. We define a statement / proof as relativizingaffinely
if, intuitively, it is insensitive to enlarging the standard Boolean basiswith any affine extension— here affine
extension is the result of a particular error correcting code applied to the characteristic string of a language.
With this definition, we show that every statement that AW declare as relativizing algebraically does rela-
tivize affinely — in fact has aproof that relativizes affinely — and that the opposite holds for statements
declared non-algebrizing by AW in the classical model.1 (Both require new ideas.) Our formulation in
this sense gives rigorous support to the “algebrization barrier” idea of AW, which can thus be viewed as a
refinement of the classic “relativization barrier” of Baker, Gill, and Solovay [9].

This part of our work complements, and goes beyond, the prior work by Impagliazzo, Kabanets, and
Kolokolova [19] (IKK), which also proposes a relativization-based characterization for algebrization, but
falls short of recovering some of the key results of AW, most notably regarding theNEXP versusP/poly
question (see Section 1.2 for details).

Affine relativization is a refinement of relativization so as to capture the known uses ofarithmetization,
a technique for interpolating Boolean formulas into polynomials. Famously used in early 90’s for obtaining
PSPACE ⊂ IP and related results, which are false relative to some choices of an oracleO [17, 16, 11],

1 AW state some non-algebrization results for quantum-based complexity classes as well; we do not pursue these.

2

arithmetization is widely regarded as a counterexample — maybethe counterexample — to the rule-of-
thumb that “most known proof techniques relativize” in structural complexity theory. Affine relativization,
to the extent that it captures the known uses of arithmetization — and it does so fairly well, as we argue in
the rest of this section — can be viewed as a step towards reinstating that rule-of-thumb (albeit only a step,
as thePCP theorem is out of scope of this and related work; see open question in Section 5).

As one conceptual consequence, our formulations yield a demystified perspective on the extent to which
relativizing techniques are “black-box” and arithmetization-based techniques are not; see Section 5.

Our formulations also tell something about those “few known proof techniques” that do not seem to
relativize affinely, in particular, aboutlocality of computation. It is a longstanding debate whether locality
— that the next step of a computation depends on only a “small” fragment of its current state — plays
any role in current results of complexity, particularly in interactive proofs [15, 3, 14, 19]. On one hand,
NEXP ⊂ MIP can be explained away as relativizing algebraically with a convenient, but questionable,
alteration of the oracle access mechanism as mentioned above; on the other hand, locality could provide an
honest explanation of this theorem, as argued by Arora, Impagliazzo, and Vazirani [3], but an incongruent
one to its algebraic nature, especially when its cousin,PSPACE ⊂ IP, needs no such explanation.

Our results shed some light onto this matter. As we explain in Section 1.3, it is fruitful to put a particular
class betweenPSPACE andIP, and another one betweenNEXP andMIP, so that each theorem reads as
two containments. The second containment, we argue, captures the real content in each theorem, namely
“gap amplification”; affine relativization can derive every containment except the first one forNEXP versus
MIP. We conclude that whether or notNEXP ⊂ MIP algebrizes is just a matter of definition, because there
is no application of this theorem (as far as we know) that is sensitive to how it is viewed, gap amplification
versus the common view. Therefore affine relativization can be viewed as a robust proxy, or a candidate
thereof, for the current state of the art.

This is mere interpretation, however, and is not to be confused with the main message of the paper:

Summary of Results. Affinely relativizing proofs, as defined in Section 1.1, have the following properties.

• Each of the following has an affinely relativizing proof

– PSPACE ⊂ IP, viewed as gap amplification (Corollary 15)

– NEXP ⊂ MIP, viewed as gap amplification (Theorem 17)

– MAEXP 6⊂ SIZE(2logd n), ∀d (Theorem 25)

– prMA 6⊂ SIZE(nd), ∀d (Theorem 25)

– NP ⊂ ZKIP if one-way-functions exist (Theorem 30)

• None of the following has an affinely relativizing proof

– NP 6⊂ P, in factPSPACE 6⊂ P (Proposition 32)

– NP ⊂ P, in factRP ⊂ SUBEXP (Corollary 40)

– NP ⊂ BPP, in factcoNP ⊂ MA (Corollary 39)

– PNP ⊂ PP (Corollary 39)

– NEXP 6⊂ P/poly, in factNEXP 6⊂ SIZE(nd), ∀d (Theorem 35)

Further, affinely relativizing proofs are closed under inference, and if a statement has an affinely relativizing
proof, then it “affinely relativizes,” i.e., it holds relative to each language that is an affine extension, as
defined in Section 1.1.

3

1.1 Relativization and Affine Relativization

We now describe our formulation of the relativization and affine relativization notion. We caution that the
notion of an affinely relativizingstatementdoes not depend on any peculiarity in the definitions given here.
Readers who are already at ease with some notion of relativization (vague though it may be) can skip this
section and still understand most of the paper — except what affinely relativizingproofsare and why they
are closed under inference.

Relativization without oracles. Let the standard Boolean basis refer to the set{0, 1,∧,⊕} comprising
four languages (with0 denoting the empty language, viewed as the function mapping all binary strings to
zero,1 its negation, and with∧,⊕ denoting the AND,XOR function on binary strings respectively). We
say that the statementψ holds relative to the languageO iff ψ is true when the standard Boolean basis is
extended withO. We sayψ relativizes to mean thatψ holds relative to everyO.

Some remarks are in order.

• Let us momentarily be more precise. Take the axioms of everyday mathematics, say, the Zermelo-
Fraenkel set theory. Add two new axioms: (i) thatBstd equals{0, 1,∧,⊕,O}, and (ii) thatO is
a language. Here,Bstd andO are variables that are not previously used, and0, 1,∧,⊕ refer to
corresponding languages. Name the new collection of axiomsRCT , for relativized complexity theory.

Now takeRCT , and add the axiom:O is empty (i.e.,O equals the language0 of Bstd). Call this set
of axiomsCT , for real-world complexity theory.

Our framework of mathematics isCT . Given a statementψ (in the language ofCT , which is the same
as that ofRCT), we callψ relativizing iff it is true in every standard model ofRCT .2

• ψ being nonrelativizing per se does not make it interesting or hard to prove; e.g. letψ be “the standard
Boolean basis is{0, 1,∧,⊕}”.

We agree to take the uniform-circuit-based definition ofP, andP-based definitions ofNP, NEXP, etc.,
so that extending the standard Boolean basis withO automatically gives us thePO, NPO, etc., without
having to mention oracle access toO— though we do mention it anyway, for emphasis. An algorithm thus
means to us a uniform family of circuits. So if we “letV be a time-t(n) algorithm with oracle access to a
proof stringπ”, for example, then we mean to “letV := {Vn} be a polynomial-time-uniform circuit family
of sizet(n) (or of sizet(n) polylog t(n) — does not matter in this paper) over the basisBstd ∪ π” for some
languageπ defined appropriate to the context. The poly-time uniformity can be specified using any notion
of classical computer (Turing machines, pointer machines, etc.) or via a recursion-theoretic approach.3

It is out of the scope of this paper whether our framework can handle classes “below”P, or those classes
not definable fromP. (And it is one of the observations of this paper thatNEXP with poly-length queries
canbe defined fromP, as0-gap-MIP. Similarly PSPACE can be defined as0-gap-IP. See Section 1.3.)

ψ relativizes vs.ψ has a proof that relativizes. We call a proof ofψ relativizing iff after extending the
standard Boolean basis with an arbitrary languageO, it remains a proof ofψ.

Further remarks are in order.

• Let us again be more precise for a moment. Recall that our framework of mathematics isCT . Given a
proofΠ in CT — i.e., a sequenceφ1..φn whereφi either is inCT or can be inferred fromφ1, .., φi−1

— we say thatΠ relativizes iff it is also a proof inRCT .
2Assuming, as we may here and throughout the paper, that everyday mathematics is consistent, a standard model of set theory

is one where the symbol for set membership is interpreted as the actual “is an element of” relation.
3As mentioned, we do not exploit any peculiarity in this way of definingP. The reader who prefers the Turing machine model

can stick to it, provided the machine is defined to have oracle access to every element of the standard Boolean basis.

4

In other words,all proofs inRCT are relativizing, and no other.
It is immediate that relativizing proofs are closed under inference, since by definition they are exactly
those proofs derivable from a certain set of axioms. Also, if a proof relativizes then so does its
conclusion, as does each intermediate statement; this is just the soundness theorem from logic.4

• A relativizing proof ofψ proves more thanψ. Indeed, such a proof can be viewed as a family of
proofs, parameterized by every languageO, where trivial settings ofO correspond to proofs ofψ in
real-world complexity theory. The family isuniform, in fact: one proof works foreveryextension of
the standard Boolean basis. One might say the proof treatsO as a “black box”.

• If we prove (i.e., ifCT proves) thatψ relativizes, then it does not follow that there is a relativizing
proof ofψ, e.g., takeψ to be “Zermelo-Fraenkel set theory is consistent”.
Even if we can, in addition, proveψ itself — so now we haveψ and that ψ relativizes — it is not
clear, to us at least, whether a relativizing proof ofψ exists, and unclear still, if furthermore each step
in the proof ofψ relativizes. (See open question in Section 5.)

In Section 3, some of the theorems we derive are of the form “ψ, andψ (affinely) relativizes”, or
something to that effect. By the above remarks, such a theorem does not, by itself, imply thatψ has a
relativizing proof. Nonetheless, in the process of deriving each of these theorems we end up giving a
relativizing proof of the correspondingψ. (Of course we do not provide a formal proof ofψ in first order
logic, just as we do not specify algorithms by implementing them as Boolean circuits.)

So those theorems in Section 3 can be read — and should be, by those who have not skipped this section
— as “ψ has an (affinely) relativizing proof” for someψ. To be convinced of such claims, the salient point
that should be checked in their proofs is whether they are uniform in the choice of a basis extension, i.e.,
whether they treat the nonstandard basis elements as (the affine extension of) a black box — and they do.

Affine relativization. TakeRCT and add the axiom:O is the affine extension of some language. That is,
there is a languagef , with fn denoting its restriction to length-n inputs, and withf̂n denoting the unique
n-variate polynomial of individual degree-≤ 1 extendingfn, such thatO represents the evaluation of̂fn

overGF(2k), for all k andn. (See Section 2 for a precise definition, and Section 1.3 for a discussion.)
Call the resulting setACT , for affinely relativized complexity theory. Define the notion of a statement

/ proof affinely relativizing similarly toRCT . It is immediate that affinely relativizing proofs are closed
under inference, as they are exactly those proofs derivable fromACT .

The empty language is the affine extension of itself. Thus it does not make any difference to add the
same axiom, thatO is an affine extension, toCT as well. Now we have three theoriesRCT ⊂ ACT ⊂ CT ,
each strictly more powerful than the one before, as the results in this paper imply.

Multiple oracles. If ψ is (affinely) relativizing, or has such a proof, then what happens if the Boolean
basis is extended twice — say withO0 andO1? For plain relativization the answer is easy; just setO to be
their disjoint union,O0

∐
O1 : bx 7→ Ob(x), and proceed as before.

For affine relativization, however, a bit more care is needed since we wantO to be an affine extension.
If O0 is the affine extension ofL0, andO1 of L1, the key observation is that the disjoint unionO0

∐
O1

of the affine extensions is equivalent, under Cook reductions, to the affine extension of the disjoint union
L0
∐

L1. This is spelled out in Proposition 38, but intuitively is true because the disjoint union merely adds
an extra dimension — the “b-axis” — and the affine extension acts on each dimension independently (see
equation (†) on page 9). So we setO to the affine extension ofL0

∐
L1 and proceed as before, the upshot

being that one affine oracle is just as good ask of them fork ∈ N+.
4Viewed in the contrapositive, this vindicates the use of casual remarks of the form “this proof does not relativize because this

step of it does not” — provided the said step indeed does not relativize, which by itself is a hairy claim in a casual context.

5

1.2 Comparison with Prior Work

Four past works have a direct relation to ours. The main effort in all of them, and in ours, can be viewed as
trying to: (i) formalize the notion of relativizingproof, and / or (ii) refine the relativization notion so as to
capturePSPACE ⊂ IP and related results. We now do a comparison with past work, first with respect to
(i) and then (ii).

1.2.1 Efforts to Formalize Relativization

In an unpublished but well-known manuscript,Arora, Impagliazzo, Vazirani [3] (AIV henceforth) build
on Cobham’s axioms for polynomial-time computation [12] to defineRCT , relativized complexity theory,
and argue that the standard models of this theory contain, as a sub-model, “relativizedP” in the sense of
Baker-Gill-Solovay [9], i.e.,PO for arbitraryO. They then define relativizing proofs as those expressible in
RCT .

A common feature — or flaw, if the reader is logically inclined — of both our definition ofRCT and
AIV’s is that the axioms for capturing relativization go on top of an existing collection of axioms governing
everyday mathematics. On one hand, this is a feature because relativization is meant to be a guide for the
everyday researcher, who has everyday mathematics at disposal. On the other hand, this is a flaw because
statements such as “P versusNP is independent ofRCT ” can be easily misunderstood, as the so-called
independence concerns onlyonenatural way of definingP, NP out of at least two — another one being to
just ignore the extra axioms (they do not interfere with everyday math). This is inevitable unless oneremoves
axioms from mathematics and not add to it, and the quest then becomes to find the “weakest” version of
math that can prove statements such asPSPACE ⊂ IP, as opposed to finding, like we and AIV essentially
set out to do, for the “strongest” version of these statements that can be proven by everyday math.

One difference of our version ofRCT from AIV’s is its accessibility. AIV use recursion-theoretic
axiomsà la Cobham [12] to create a universe of polynomial-time computable functions that goes beside the
universe of everyday mathematics. While this approach allows AIV to give an elegant and self-contained
axiomatization ofP (with only a dozen or so axioms), it also makes cumbersome expressing everyday ideas
such as circuits, oracle access to a proof, etc. Our approach, in contrast, is “naive” in the sense that it does
not attempt at a minimal set of axioms (nor does it spell out every axiom) but in return, it gives a formalism
that is arguably closer to the everyday uses of relativization — e.g., “Satisfiability isNP-complete” is easily
seen to relativize in our framework.

1.2.2 Efforts to Refine Relativization

Although relativization succeeds at explaining the failures of structural complexity until the 90s, it fails at
explaining the successes after, especially those regarding interactive proofs. We now discuss four past pro-
posals to refine relativization. The overarching goal in these is (or so will be our view here) to provide some
model for “known techniques”, which involves meeting two competing objectives: (a) derive all relevant
theorems in the model, and (b) provably fail to derive in the model all relevant conjectures that are evidently
beyond current reach.

We will use Figure 1 to roughly illustrate how each proposal fares with respect to these two objectives (a)
and (b). The take-away message from this micro-survey is that although parts of (a), (b) have been attained
by prior work, ours is the first successful attempt that yields all the critical pieces under one framework.

6

Figure 1: Attempts at refining relativization

(∃C:C⊂NEXP ∧ C6⊂P/poly)
=⇒ NEXP 6⊂P/poly

PSPACE⊂IP PCP thm NEXP 6⊂P/poly
NP 6⊂P,

EXP 6⊂i.o.-P/poly,..

AIV X X X ? ?
For X X ? ? Xrrr

AW ? X ? X X
IKK X X ? ? X

this work X X ? X X

Although the table is less precise than the discussion that follows, it does illustrate some key differences
among prior work. The vertical line in the table is a caricature of the state of the art; to the left of the line
are known theorems / facts, and to the right are conjectures evidently out-of-reach.

The first proposal is from the same paper discussed above, byAIV [3]. BesidesRCT , there the authors
propose “local checkability” as the key non-relativizing ingredient underlyingPSPACE ⊂ IP as well as
other results including thePCP theorem. The idea is that a polynomial-time computation should be verifi-
able by inspecting all bits of its transcript in parallel, where each bit depends on only a logarithmic number
of bits elsewhere. For computations with oracle access, however, this property may not hold, although it will
if the oracle itself is checkable. So their approach can be viewed very roughly in terms of ours, as taking
our version ofRCT and adding the constraint “O is locally checkable”.

The authors call their refined theoryLCT , and point out that althoughLCT implies many known non-
relativizing results, whether it can settle questions such asP versusNP is very hard to know. In fact, they
observe that ifP versusNP were shown beyond reach ofLCT in the manner of Baker, Gill, Solovay — by
giving contradictory relativizations with oracles satisfying the theory — thenP would actually be separated
from NP. In this sense,LCT is an unsatisfactory candidate for “current techniques”. (Notice that if all we
want is a theory that can derive the current theorems then we can just letO be empty.)

In a counterview to the AIV proposal dated around the same time,Fortnow [14] argues that the nonrela-
tivizing ingredient in the proof ofPSPACE ⊂ IP is of an algebraic nature. We can interpret his key insight
as follows. AlthoughPSPACE ⊂ IP does not relativize, it does in a weaker sense: LetÔ denote the affine
extension ofO, as defined on page 5. (Strictly speaking Fortnow works overZ instead ofGF(2k).) Then

PSPACEO ⊂ IPÔ, and consequently,PSPACEO ⊆ IPO wheneverÔ Cook-reduces toO. Effectively,
then, he defines a theoryACT by taking our version ofRCT and adding the constraint̂O ∈ PO.

Although Fortnow does not prove any unprovability results for his theory, we can show that his version
ofACT yields most of AW’s classification of what algebrizes and what does not (hence the ‘Xrrr ’ symbol) —
but not all, as we explain later below.

A decade-and-half after the above two papers,AW [1] introduce algebrization. Their paper finesses the
question of how relativization should be refined, by simply declaring that a statementA ⊂ B relativizes
algebraically ifAO ⊂ BÔ for everyO (for a notion ofÔ similar to our notion of affine extension), and that
A 6⊂ B algebrizes ifAÔ 6⊂ BO. No definition is given for other types of statements, or for proofs.

Since we ultimately care about containments and their negations, the AW approach seems appealing.
There are problems with it, however (page 1), chief among which is that not everything that relativizes can
be said to algebrize. For example, the statement(∃C : C ⊂ NEXP ∧ C 6⊂ P/poly) =⇒ NEXP 6⊂ P/poly
is true no matter whatNEXP or P/poly means — it is even true no matter what “is an element of” means
— hence is relativizing, but it cannot be declared as algebrizing by building on the original definitions.

On the positive side, AW succeed in giving containmentsA ⊂ B that do not algebrize, by showing that

7

an oracleO exists for whichAO 6⊂ BÔ. (There are similar examples for negations of containments.) This
is a critical idea upon which subsequent work expands, including ours; we say more about this below.

Soon after the AW paper,Impagliazzo, Kabanets, Kolokolova[19] (IKK henceforth) resume the ap-
proach of AIV, and propose an intermediate theory betweenRCT andLCT that they callACT , short for
arithmetic checkability theory. (They also define a variant,ACT ∗, but we blur the distinction here.)

We can view IKK’s approach as being along the same line of Fortnow’s, by considering the following
task. Givenφ andα, evaluateΦ(α); hereφ is a Boolean formula,Φ is any fixed low-degree polynomial
interpolatingφ (such as its arithmetization), andα are inputs fromGF(2O(n)). (Like Fortnow, IKK work
overZ, but both approaches can be adapted toGF(2k).) Call the decision version of this task — giveni
return theith bit of the result, for example — the languageAF, short for arithmetized formula evaluation.

ClearlyAF ∈ P. Indeed, this seems to be an essential feature of arithmetization: it would seem pointless
to interpolate Boolean formulas into polynomials that we cannot evaluate efficiently. But ifφ is over an
arbitrary basis{∧,⊕,O}, then it does not seem thatAFO ∈ PO since theO-gates withinφ need to be
extended somehow as well.

Now, in both IKK’s approach and Fortnow’s, we can interpret the starting point as restricting the oracle
O so thatAFO ∈ PO becomes a true statement — in Fortnow’s case via the constraintÔ ∈ PO, and in
IKK’s case, directly viaAFO ∈ PO. The IKK constraint (rather, our interpretation of it) is implied by
Fortnow’s; this will be clear in Section 1.3 once we generalize arithmetization. Hence anything provable
from the IKK constraint is automatically provable from Fortnow’s. Although the converse is not known to
hold, it does hold in the following sense. AnythingIKK show to beunprovable from the IKK constraint, we
can show is unprovable from Fortnow’s constraint as well; we can do this using our observation on page 5,
that affine extensions respect disjoint unions. So the two approaches currently seem to have the same power.

The key advantage of our approach over IKK’s and Fortnow’s is its avoidance of computational notions
in restricting the oracleO. By giving a direct algebraic restriction, namely thatO equalsf̂ for some language
f , our approach allows us to expand on one of AW’s critical ideas: using interpolation to show that certain
statementsψ do not relativize algebraically (in our case, affinely). In contrast, neither IKK’s approach nor
Fortnow’s is known to allow interpolation. Consequently, although IKK leave it as an open question for their
framework, we can capture a key result of AW, thatNEXP 6⊂ P/poly does not relativize algebraically.5

Another place where IKK diverges from AW concerns the theoremNEXP ⊂ MIP. As mentioned, AW
showed that this theorem algebrizes under a machine-specific restriction of the classNEXP. While IKK did
show an analogous result for their framework in the model-theoretic sense, they did not show it in the proof-
theoretic sense; in fact they use a machine-free characterization ofNEXP and cannot directly express the
query restriction of AW, so it is not even clear a priori if the result itself can be expressed in their approach.
Instead, IKK observe that under the proper, unrestricted definition ofNEXP, the theorem does not algebrize,
and suggest that there are additional ingredients underlying this theorem besides arithmetization, and point
this out as a point of divergence from the AW thesis that algebrization captures “current techniques” [19,
p.15]. As mentioned in page 3, our formulation of this theorem substantially clarifies the discussion.

Whether our formulation implies IKK’s or Fortnow’s, or vice versa, is not clear; we do not know if
algebrizing in one sense can be shown to imply the other. What wecansay, however, is that every statement
that IKK show as algebrizing has an affinely relativizing proof, and that the opposite holds for those shown
non-algebrizing by IKK — just as the case for AW. In particular, IKK show various compound statements
to be non-algebrizing; these follow as consequences of results on simpler statements and can be shown in
our framework as well (via what we call the proof theoretic approach in Section 4.3).

5In fact IKK leave open a weaker question: whetherEXP 6⊂ P/poly can be shown to not algebrize in their framework [19,
p.15]. The same question automatically applies to Fortnow’s framework, since his constraint implies IKK’s.

8

1.3 Overview of Ideas and Techniques

Defining affine relativization, and proving that it works, involve a number of observations as well as some
technical ingredients. This section highlights the main ones.

Generalizing arithmetization using affine extensions. Our first observation concerns how the arithmeti-
zation method should be generalized to handle formulas over a generic Boolean basis, say{∧,⊕,O} where
O is an arbitrary language. In its typical description, the method states that the formula¬φ arithmetizes as
1−Φ whereΦ is the arithmetization ofφ; similarly, φ∧ψ arithmetizes asΦ ∙Ψ. Other cases, such as∨ and
⊕, are handled by reducing to these two.

We observe thatx ∙ y is the unique polynomial overZ, of (individual) degree≤ 1, that extends the
Boolean function(x, y) 7→ x ∧ y; in other words, it extends an∧-gate of fan-in2. Similarly 1− x extends
a¬-gate. We thus make the following generalization: Arithmetization replaces a Boolean gateO, of fan-in
m, with the gateÔ denoting the unique degree-≤1 polynomial

Ô(x) :=
∑

b∈{0,1}m

O(b) ∙
∏m

i=1(1− xi) ∙ (1− bi) + xi ∙ bi (†)

that extendsO from the Boolean domain toZ. We callÔ the (multi-)affine extensionof O, and caution that
the notation has nothing to do with Fourier analysis.

For our results we view (†) in fields of the formGF(2k) only. There are several benefits to this, and
we point them out as we explain our approach in this section. To begin with, we note that extension to
GF(2k) is conceptually cleaner, as it turns a function onn bits into a function onn vectors ofk bits each.
Also, in GF(2k), the arithmetization ofφ ⊕ ψ becomes the naturalΦ + Ψ, whereas in other fields, neither
⊕, nor any other Boolean operator, gets arithmetized to+. Further, the equation (†) gets simplified, as the
product inside becomes

∏m
i=1(1 + xi + bi). In fact by taking⊕ 7→ + and∧ 7→ × as the defining rules of

arithmetization, its generalization to (†) can be arrived in another natural way, by first writingO in its “truth
table form”, i.e., as the exponential-size formula

O(x) = (O(0m) ∧ x ≡ 0m)⊕ ∙ ∙ ∙ ⊕ (O(1m) ∧ x ≡ 1m)

wherex ≡ b stands for
∧

i(1⊕xi⊕bi), then arithmetizing, and then gathering the summands using anO-gate.

Affine Relativization — capturing known uses of arithmetization. Consider a functional view of an
Ô-gate, as returningk bits when each of its inputs come fromGF(2k). In this view, arithmetizing a formula
φ creates a family of formulas{Φk}, with eachΦk redundantly describing the behavior ofφ on the Boolean
domain — the largerk, the higher the redundancy (withk = 1 corresponding toφ itself).

Now if φ is over an arbitrary basis that includesO-gates, then unlike the case for the standard basis, its
arithmetizationΦ does not seem to allow efficient evaluation, over sayGF(2O(n)). Interpreting this to be
the non-relativizing ingredient in proofs ofPSPACE ⊂ IP, etc., we take the following approach to refine
relativization.

The formulaΦ, which redundantly encodesφ, is obtained fromφ via a “local” transformation acting on
its gates, namely by adding redundancy at the gates. Based on this, our idea is to have the oracle gates ofφ
compute not some arbitraryO, but something that contains redundancy already, namelyÔ for an arbitrary
O. The plan being then to show that arithmetization — rather, current uses of it — need not introduce
redundancy at those gates, or, at least do so in a feasible way.

We arrive at our formulation thus: whereas a statement relativizes if it holds relative to every language
O, a statement relativizesaffinely, if it holds relative to every languageA of the formÔ for someO. More

9

precisely,A encodes the family of polynomials{Ôm} evaluated overGF(2k) for all k, whereO is an
arbitrary language andOm is its restriction to{0, 1}m. We also callA the(multi-)affine extensionof O.

Why was this notion not invented in 1994? Natural though it may seem, affine relativization poses the
following difficulty: the very theorems that it is intended for, e.g.PSPACE ⊂ IP, do not appear to relativize
affinely, at least not via a superficial examination of their proofs.

To see the issue, consider a propertyπ of Boolean formulas — unsatisfiability, say. In provingπ ∈ IP
arithmetization is used as areduction, from π to some propertyΠ of arithmetic formulas — e.g., unsatis-
fiability of φ reduces, via arithmetization, to deciding if the product of(1 + Φ(α)), over all binary input
vectorsα, equals1 in GF(2k) for anyk.

So each theorem of the formπ ∈ IP is, in fact, a corollary of a more generic result of the formΠ ∈ IP,
that gives an interactive protocol for an arithmetic property. It turns out those generic results can be further
generalized, if we extend the arithmetic basis, from the standard×-gates and+-gates — which are really
∧̂- and⊕̂-gates, respectively, per the first discussion above — by allowingÔ-gates for an arbitraryO. Then
the same protocols that yieldΠ ∈ IP work just as well over this extended basis, given oracle access to the

evaluation ofÔ. We may writeΠÔ ∈ IPÔ, whereΠÔ extendsΠ to formulas over the extended basis.
Now supposing we have a theoremπ ∈ IP, let us make a superficial attempt to extend its proof so that

it yields πA ∈ IPA for some languageA; hereπ is a property of formulas, say over the basis{∧,⊕}, and
πA is its extension to the basis{∧,⊕,A}. As just explained, the proof ofπ ∈ IP starts with a reduction, of
the Boolean propertyπ to an arithmetic propertyΠ. Now here is the problem: what property do we reduce
πA to? By definition of arithmetization, it would beΠÂ, the extension ofΠ to formulas over the basis

{×, +, Â}. But then as just explained, we would be placingπA in IPÂ — not in IPA.

This seeming circularity —πO ∈ IPÔ, πÔ ∈ IP
̂̂O, ... — can be interpreted as the main distraction from

arriving at a natural notion such as ours. Indeed, all previous attempts to capture arithmetization [14, 1, 19],
dating back to the 1994 article of Fortnow [14], can be interpreted as having to make compromises so as to
break out of this circularity. For example, the AW notion of algebrization does this by declaringC ⊂ D to
algebrize ifCO ⊂ DÔ holds for everyO (for a notion ofÔ related to ours; there is a similar definition for
C 6⊂ D). We surveyed their approach and others in Section 1.2.

In contrast, our approach tackles circularity directly. The idea is to avoid the problematic reduction
πA → ΠÂ, and to instead reduceπA to πO by somehow exploitingπ wheneverA is of the formÔ for
someO. Then the combined reductionπA → πO → ΠA breaks the circularity. This fulfils the plan of the
previous discussion, namely to show that arithmetization, in its current uses, need not extend gates that are
extensions of something already.

Relativizing �P ⊂ IP. The idea of the previous discussion can be realized whenπ is the sumπ(φ) :=
�xφ(x), also known as the language�SAT. This is because whenφ is a formula over theA-extended
Boolean basis, each occurrence ofA evaluates the sum (†) overGF(2k) for somek, and then returns, say,
theith bit of the result giveni. Therefore, if we step fromGF(2k) toGF(2)k, we can rewrite each occurrence
of A as�yγ(y), for some formulaγ over theO-extended Boolean basis. This becomes the reduction we
want, once we show how to convert formulas involving sums to prenex form, i.e. such that all sums appear
up front. It follows that�SAT ∈ IP — or equivalently,�P ⊂ IP — relativizes affinely.

Scaling toPSPACE ⊂ IP — a proof sans degree reduction. Our approach for�P can be adapted to
show thatPSPACE ⊂ IP affinely relativizes as well. However, we find a more natural approach which
yields another proof of this theorem; this may be of separate interest because current proofs, as far as we

10

know, employ syntactic tricks in order to control the degree of polynomials that arise from arithmetizing
instances of aPSPACE-complete problem (e.g., [25, 6, 26, 2]).

In contrast we show, directly, that every downward-self-reducible language has an interactive protocol,
by essentially bootstrapping the very fact that�P ⊂ IP relativizes affinely. In particular, we make no use
of a specificPSPACE-complete problem; we do not even use any additional arithmetization beyond what
is needed for�SAT. (We emphasize that the new proof is sketched here because it might be of separate
interest. The standard proofs of this theorem can also be adapted to our framework.)

The new proof goes as follows. IfL is downward-self-reducible, then on inputsx of lengthn, it can
be expressed as apoly(n)-size circuit over theL-extended Boolean basis, of fan-in at mostn − 1. This
circuit in turn can be expressed as the sum�yφ(x, y), whereφ is a formula verifying thaty represents the
computation of the circuit on inputx. In notation we may summarize this reduction as

Ln → �SATLn−1 (∗)

where�SATfm is the extension of�SAT to formulas over thef -extended Boolean basis, of fan-in at most
m. Repeating (∗) for Ln−1 instead ofLn, we get

�SATLn−1 → �SAT�SATLn−2
→ �SATLn−2 (∗∗)

where the first reduction is because extending the basis is functorial in the sense thatf → g implies
�SATf → �SATg, and the second reduction follows by bringing sums to prenex form as mentioned
in the previous discussion. Note that the reduced formula is now of size aboutn2d, if the one in (∗) is of size
nd.

The idea is to tame the growth in the size of the reduced formulas, by using interaction. Building on the
ideas of the previous discussion, it is easy to show a protocol yielding theinteractivereduction

(�SATfm)nd → (�SATfm)nc

that compresses instances to�SATfm of sizend down to sizenc, for an arbitrarily larged and afixedc, for
every languagef , in particular forf = L. (We sketch the protocol below on page 13.)

Thus we can keep repeating (∗∗) to get

Ln → �SATLn−1 → �SATLn−2 → ∙ ∙ ∙ → �SATLO(1)

provided we interleave a compression phase whenever the formula size exceedsnc. Since anL-gate of
constant fan-in can be expressed as a constant-size formula,�SATLO(1) reduces to�SAT. SoL ∈ IP as
desired.

That this proof affinely relativizes is straightforward to show; we enlarge the basis of the�SAT-
instances with an arbitrary affine extensionA, and employ the same ideas.

(Interestingly, just as this proof builds on the relativization of�P ⊂ IP, we use the relativization of
PSPACE ⊂ IP in turn to give a streamlined proof of theNEXP ⊂ MIP theorem, that uses no specific
NEXP-complete problem nor any additional arithmetization; see Section 3.3.)

NEXP vs.MIP — the role of locality. As mentioned in the introduction, AW show thatNEXP ⊂ MIP
algebrizes only under a restriction, and a questionable one at that, of the oracle access mechanism for
NEXP.6 Since we define complexity classes usingP, it would be even more artificial to try to express this
restriction in our framework. Instead, we find a natural approach that also sheds some light into the issues
surrounding oracle access.

6We caution that neither AW, nor we, advocate or assume thatNEXP bealwaysrelativized in this restricted way. It is only for
the purpose of deriving this theorem that this restriction seems inevitable — and this discussion investigates why.

11

Consider generalizing the classIP, by replacing in its definition the popular constant2/3 with γ, so that
if the inputx is supposed to be rejected, then the verifier erroneously acceptsx with probability< 1 − γ.
(If x should be accepted, then, as before, it is.) Call this classγ-gap-IP.

It is easy to see, by the classicalPSPACE-completeness result of Stockmeyer and Meyer [28], that
0-gap-IP is identical toPSPACE. ThereforePSPACE ⊂ IP can be broken into the containments

PSPACE ⊂ 0-gap-IP ⊂ Ω(1)-gap-IP

with the second containment, “gap amplification”, being the actual content of the theorem.
The corresponding case forNEXP ⊂ MIP becomes revealing. Of the containments

NEXP ⊂ 0-gap-MIP ⊂ Ω(1)-gap-MIP

only the second one, gap amplification, affinely relativizes as we show in Section 3.3. So what “current
technique” is it that yields the first containment, that affine relativization cannot capture?

It is locality, more specifically,polylog-locality, which yields the following variant of the Cook-Levin
theorem: A language is inP iff it has circuits that are polylog-time uniform, i.e., iff it is computable by a
family {Cn} of circuits, such that given(n, i), the task to produce the type of theith gate ofCn, as well as
the indices of all gates connected to it, can be performed inpoly log n time. Intuitively, this theorem does
not relativize, even affinely, simply because it restricts the circuits to have polylogarithmic fan-in.

In our framework, we defineP via poly-locality instead of polylog, and useP itself to express polylog-
locality (by saying that the above function on pairs(n, i) is in FP) and call the class thus obtainedPlocal,
the subclass ofP satisfying the above locality theorem. We then usePlocal to defineNPlocal, NEXPlocal,
etc. Immediately two things fall out of these definitions. First, that0-gap-MIP is identical toNEXPlocal,
so locality does capture the first containment above. Second, thatNEXPlocal is equivalent to the dubious
version ofNEXP with polynomial-length oracle queries (equivalent in the model-theoretic sense), making
it not so dubious after all.

We do not know of any result usingNEXP ⊂ MIP, that would break down ifNEXPlocal ⊂ MIP is
used instead — in fact we do not know of any result usingNEXP ⊂ MIP, period. We conclude that locality
arises inNEXP ⊂ MIP only definitionally; it is an ingredient that has not been exploited beyond making
definitions. (It would be interesting to know if the same reasoning could apply to thePCP theorem; see
open problem in Section 5.)

NEXP vs.P/poly — a coding-theoretic interpolation lemma. One of the technical contributions of the
paper is in showing that certain statementsψ do not relativize affinely. As usual (though not always), this
entails constructing an eligible language — an affine extensionA in our case — relative to whichψ is false.

For someψ, this task turns out to be straightforward given prior work. Suchψ are of the formC ⊂ D,
for which AW invented an approach based on communication complexity that also works in our setting.

For otherψ, however, in particular forNEXP 6⊂ P/poly, we need new ideas. While AW [1] did
construct aQ such thatNEXPQ ⊂ PQ/poly, they did this only for a multi-quadraticextension, i.e., forQ
encoding a family of polynomials where each member has (individual) degree-≤2, instead of degree-≤1. It
seemed “crucial” [1], in fact, to increase the degree for this purpose. While quadratic extensions suffice for
the AW notion of algebrization, they do not for our notion of affine relativization.

As the key technical ingredient for this purpose, we derive a coding-theoretic ingredient (Lemma 33 and
Theorem 34), stating that knowingt bits of a codeword exposes at mostt bits of its information word, and
this holds for every binary code, including the affine extension (overGF(2k)).

AW implicitly proved a weaker form of this fact, involving quadratic polynomials. One of the ideas
that enables us to do better, is to consider a different formulation for what it means to “expose” a bit of the
information word. Whereas the AW approach (implicitly) considers each exposed bit as being completely

12

revealed, our approach gives a finer treatment: an exposed bit is one whoselocation is revealed, but whose
contents may vary as a function of the unexposed bits.

The advantage of this refinement is that it allows us to show, givent bits of a codeword, that the set of
all codewords agreeing on theset bits form an affine space, of dimension at mostt less than the maximum
possible. In contrast, the AW approach resorts to using indicator polynomials to surgically alter, bit-by-bit,
the codeword whoset bits are revealed; this inevitably raises the degree to quadratic because each indicator
polynomial must also vanish on thet points that are revealed, in addition to all-but-one point of the Boolean
cube.

Compressing�SAT. For the sake of completing the sketch of the alternate proof ofPSPACE ⊂ IP
explained earlier, we now outline the compression protocol mentioned.

The protocol is based on the fact alluded to earlier, that�SATf ∈ IPf̂ for any languagef . This fact
follows from standard considerations: Givenφ over thef -extended basis, in order to compute�zφ(z),
the verifier: (i) arithmetizesφ to getΦ, a formula over thêf -extended arithmetic basis, (ii) engages in a
sumcheck protocol [5], thus reduces the original task to that of evaluatingΦ overGF(2k), with k ∈ O(log n)
being sufficient forφ of sizen, and (iii) evaluatesΦ, by using thef̂ -oracle for thef̂ -gates.

The compression protocol also starts out as above. The difference begins in step (iii): instead of calling
thef̂ -oracle, the verifier engages the prover. By using standard interpolation techniques, the verifier reduces
the task of computing the values of̂f on up ton points, to doing the same on justm points or fewer, where
m is the largest fan-in of anyf -gate in the formulaφ.

Thus the output of step (iii) is a list of at mostm claims of the form “̂fm′(x) = v” with m′ ≤ m and
v, xi ∈ GF(2k). Now becausêfm′ is merely the sum (†) on page 9, which can be viewed inGF(2)k rather
than inGF(2k), it follows that these claims can be expressed as a conjunction of�SATfm-instances, of
combined sizepoly(mk). This yields the compressed instance, since�SAT is closed under conjunction.

2 Definitions, Notation and Conventions

O and A. Unless stated otherwise,O stands for an arbitrary language, andA for its affine extension as
defined below.

Well-behaved resource bound. We call a functions : N → N a well-behaved resource boundif it is in-
creasing, computable in time polynomial in its input value, and satisfiesO(s(n)) ⊂ s(O(n)) ⊂ s(n)O(1) ⊂
s(nO(1)) andn ≤ s(n). Functions of the formnd, nd log n, 2(log n)d

, 2dn are well-behaved resource bounds.
The above generalizes tos : N2 → N if fixing either of the inputs yields a well-behaved resource bound.

Languages as families. We view languagesL : {0, 1}∗ → {0, 1} as families of Boolean functions
{Ln : {0, 1}n → {0, 1}}n∈N, though we sometimes specify them as doubly-indexed families of the form{
fm,k : {0, 1}s(m,k) → {0, 1}

}
m,k∈N, wheres : N2 → N is a well-behaved resource bound that is polyno-

mially bounded inmk.
It is an elementary fact that a family of the latter kind can be efficiently viewed as one of the former,

by using a pairing function and padding. For the sake of concreteness, given{fm,k}, let m � k denote the
Cantor pairing ofm andk, and define{Ln : {0, 1}n → {0, 1}}n∈N asLn(x1..xn) := fm,k(x1..xs(m,k)) for
the largestm � k such thats(m � k,m � k) ≤ n.

RepresentingF2k . We represent each element ofF2k by ak-bit Boolean vector, forming the coefficients
of a polynomial in the ringF2[x] mod some irreduciblepk(x) of degreek. We fix a uniform collection
{pk}k∈N so that a deterministic algorithm can producepk in time polynomial ink [27].

13

The Boolean versionof q : Fm
2k → F2k is, for concreteness, the functionbool(q) mapping(x, i) to

the ith bit of q(x). Our results do not depend on this definition; any other equivalent function (under Cook
reductions) would work.

Affine extensions. (This definition uses all the definitions above.)
Given a total Boolean functionfm : {0, 1}m → {0, 1}, we define itsaffine extension polynomialas

the uniquem-variate polynomial overF2, with individual degree≤ 1, that agrees withfm overF2 (given
explicitly in (†) on page 9 .) We denote this polynomial byf̂m.

By theaffine extensionof fm we mean the family
{

bool
(
f̂

k

m

)}

k∈N

wheref̂
k

m is the function that evaluateŝfm overF2k .
Given a familyF of functionsfm for variousm, we define its affine extension (polynomial) as the

family obtained by applying the above definitions to each member.

Boolean bases. We define a Boolean basis inductively, as either the setBstd := {0, 1,⊕,∧}, or the set
B∪{f} whereB is a Boolean basis, andf is a (possibly partial) language. We refer toBstd asthe standard
Boolean basis, and toB ∪ {f} as the basisB extended withf .

The (partial) language�SATf . For every (partial) languagef and Boolean basisB, we define�SATf

as the (partial) language mappingφ(~x) to the evaluation of the mod-2 sum�~αφ(~α), whereφ denotes a
formula over the basisB extended withf . By defaultB is the standard basis.

We index�SATf by n, an upper bound on the number of gates of the formulaφ.
�SATf is undefined on thoseφ, and only on those, that are undefined on some~β (due to some gate of

φ receiving inputs out of its domain while evaluatingφ(~β)). Notice that over the standard basis, iff is a
language then so is�SATf , and the same holds if the standard basis is extended with any language.

(Interactive) Reductions. For (partial) languagesf andg, we write

f → g

if there is an interactive protocolΠ such that givenx andε, the protocol runs in timepoly(n/ε) and ends
with the verifier outputtingy, such that ifx ∈ dom f then with probability at least1− ε: (i) y ∈ dom g, and
(ii) f(x) = g(y).

We use the same notation even ifΠ uses no interaction, and even when it is deterministic.

3 Positive Relativization Results

This section shows that the famous results on interactive proofs admit affinely relativizing proofs, as do the
circuit lower bounds that build on them. These are theIP theorem of Shamir (PSPACE ⊂ IP, Section
3.2), theMIP theorem of Babai, Fortnow, and Lund (NEXP ⊂ MIP, Section 3.3), theZKIP theorem
of Goldwasser, Micali, and Wigderson (NP ⊂ ZKIP if one-way functions exist, Section 3.5), and the
strongest lower bounds known-to-date against general Boolean circuits, by Buhrman, Fortnow, Thireauf,
and by Santhanam (Section 3.4). All of these build on several properties of�SAT developed in Section 3.1.

(As explained in Section 1.1, we do not state these results in proof-theoretic terms; e.g., Theorem 2
asserts, among other things, that�SAT ⊂ IP affinely relativizes, rather than that it has such a proof, even
though the latter also holds.)

14

3.1 Checking and Compressing�SAT

This section develops two theorems and two propositions on�SAT that enable most of the positive rela-
tivization results in the paper.

We first recall some notions from program checking [10].

Definition 1 (Same-length checkable). We say a languageL := {Ln}n∈N is same-length checkableif there
is an interactive protocol for computingLn, i.e. for deciding the language(x, b) 7→ Ln(x) ≡ b, wherein the
prover acts as a purported oracle forLn. We sayL is checkableif the prover is allowed to answer queries
also forL 6=n. The verifier in these protocols is called acheckerfor L.

The first main result in this section shows (via an affinely relativizing proof) the existence of a�P-
complete language that is same-length checkable.

Theorem 2 (Checking�SAT). �SAT is checkable. In fact,�SAT is equivalent, under Karp reductions,
to some language that issame-lengthcheckable.

This also holds if we extend the standard Boolean basis withA, and give the checker access toA.

Theorem 2 is used, from different aspects, in deriving Shamir’sIP theorem (Section 3.2) and the circuit
lower bounds of Buhrman et al. and of Santhanam (Section 3.4).

The second result gives an interactive compression scheme for�SATL, which cuts the size of a formula
from nd to nc, for an arbitrary larged and a fixedc, as long as theL-gates have fan-inO(n) in the original
formula. (The runtime of the interaction depends ond.) The verifier in the interaction need not have oracle
access toL; in factL may even be undecidable as far as the verifier is concerned.

Theorem 3(Compressing�SAT). For every languageL := {Lm}m∈N , there is an interactive protocol that
reduces instances of�SATL≤m of sizen, to instances of�SATL≤m of sizepoly(m log n) for everym,n.

This also holds if we extend the standard Boolean basis withA, and give the protocol access toA.

Theorem 3 is used in deriving Shamir’sIP theorem (Section 3.2) with a new proof of that result.
We now give two auxiliary facts that come in handy when proving Theorems 2-3 and theIP theorem.

The first is a consequence of the fact that an arithmetic expression involving binary-valued sums can be
written in prenex form, i.e., so that all the sums appear up front.

Proposition 4. �SAT�SAT → �SAT. The reduction is universal in the choice of a Boolean basis.

The second fact is that extending the Boolean basis is a functor, from the category of all (partial) lan-
guagesf , to the category consisting of�SATf for everyf , where the morphisms are Karp reductions.

Proposition 5. If f → g via a deterministic reduction, then�SATf → �SATg, for all (partial) languages
f andg. The implied reduction is universal in the choice of a Boolean basis if the assumed reduction is.

Although Proposition 5 concerns�SAT, the fact holds more broadly, e.g., for the languageCircEval that
evaluates a given circuit (and the latter is what we essentially prove).

15

3.1.1 Proofs of Theorems 2-3 and Propositions 4-5

We now proceed to prove the claims made in the previous section — first the propositions then the theorems.
We begin by introducing arithmetic bases.

Definition 6 (Arithmetic basis). For every Boolean basisB, define thearithmetic basisB̂ as the set com-
prising all constants inF2k for eachk, andf̂ for eachf ∈ B. Let the standard arithmetic basis beB̂std.

Consider the class of formulas obtained inductively, by first letting in every arithmetic formula, and then
inductively letting in

∑
y∈{0,1} ψ for everyψ already let in and for every variabley. Let us refer to such

formulas as arithmetic expressions involving binary sums.
We claim that an arithmetic expressionΨ(x) involving binary sums can be rewritten in prenex form,

i.e., as
∑

yΦ(x, y) whereΦ is a summation free formula, in time polynomial in the size of the formula.
This is trivial to see ifΨ(x) is of the formΨ1 ∙Ψ2, and if by recursionΨ1 is already brought to prenex

form
∑

yΦ1(x, y), andΨ2 to
∑

zΦ2(x, z): then just make surey andz refer to disjoint sets of variables by
renaming as needed, and writeΨ(x) =

∑
y,zΦ1(x, y) ∙ Φ2(x, z).

In caseΨ = Ψ1 + Ψ2, after recursing and renaming as before, write

Ψ(x) =
∑

b,y,z

(
Φ1(x, y) ∙ b ∙

∏
izi + Φ2(x, z) ∙ (1− b) ∙

∏
iyi

)
,

whereb is a single variable.
This proves the claim for standard arithmetic operators. More generally,Ψ may be of the form̂O(Ψ1,.., Ψm);

in that case, use the definition of̂O(x1..m) (see (†) in Section 1.3) to rewriteΨ as

Ψ(x) =
∑

b1..bm
Ô(b1,.., bm) ∙

∏
i(1 + Ψi(x) + bi), (1)

and then recurse into the product on the right side.
As a special case, we have Proposition 4:

Proof of Proposition 4. Let B be any Boolean basis, say, without loss of generality, the standard basis
extended withO. Given a formulaψ over the basisB extended with�SAT, we want to reduce the task of
computing�xψ(x) to that of computing�zφ(z), for someφ over the basisB.

Replace each occurrence of�SAT in ψ with the actual sum to be computed. This gives an expression
ψ′ of the desired form, except for the occurrence of�-quantifiers within.

Now observe that the above transformation involving arithmetic expressions applies just as well toψ′

(essentially because a Boolean expression can be viewed as anF2-arithmetic expression and vice versa, and
because the transformation does not introduce any non-binary constants). This completes the reduction.

We use Proposition 4 to prove the Proposition 5:

Proof of Proposition 5. Let R be an algorithm realizing the reductionf → g, i.e.,R := {Rn(x, i)} is a
uniform family of circuits such that ifyi := R|x|(x, i) thenf(x) = g(y), where|y| ∈ poly(n). Consider an
f -gate, say of fan-inn. We can implement this gate with the circuitg◦Rn, i.e. the circuitRn composed with
a g-gate, and this circuit can in turn be expressed as the sum�yφ(x, y) whereφ is the formula verifying
that y describes the computation of the circuit onx. This showsf → �SATg, and the claim follows by
Proposition 4.

We now turn to Theorems 2 and 3. We start with defining the language claimed to exist in Theorem 2.

Definition 7 (+ASAT). For every (partial) languagef and Boolean basisB, define+ASATf as the
Boolean version of the function mappingΦ(~x) to the evaluation of the sum

∑
~αΦ(~α); here,αi ranges over

{0, 1}, andΦ is a formula over the arithmetic basiŝB extended withf̂ . By defaultB is the standard basis.

16

We index+ASAT by n andk, and write the corresponding member as+kASATn, wheren upper
bounds the size of the formulaΦ as measured by the number of nodes, andk denotes the fieldF2k where the
constants ofΦ reside. For our purposes (to be made clear in the proof of Lemma 10) we requirek ≥ 3 log n.

We break the proofs of Theorems 2-3 into three common lemmas. The first two give the equivalence of
�SAT and+ASAT.

Lemma 8 (Arithmetization). �SAT → +ASAT. The reduction is universal in the choice of a Boolean
basis. In addition, the same reduction gives�SATn → +kASAT for somek ∈ O(log n).

Lemma 9 (Booleanization). +ASAT → �SAT. The reduction is universal in the choice of a Boolean
basis.

We call Lemma 9 Booleanization, as it involves a switch of basis from arithmetic to Boolean.

Proof of Lemma 8.Givenφ over any Boolean basis, letΦ be its arithmetization as defined in Section 1.3.
By the way we representF2k (Section 2), computing⊕αφ(α) reduces to computing the least significant bit
of the sum

∑
αΦ(α) overF2k for anyk, where eachαi ranges over{0, 1} in both sums.

Proof of Lemma 9.GivenΦ(x) and`, we want to express thèth bit of
∑

xΦ(x) as some mod-2 sum�zφ(z).
We may assume that there is only one nonstandard basis element inΦ, sayf̂ ; this is without loss of generality
because whatever we do for̂f -gates will apply just as well to any other nonstandard element. Thus we want
φ to be over the standard Boolean basis extended withf .

To begin with, let us assume that there is nof̂ -gate inΦ, in other words, thatΦ is aF2k -polynomial
for somek. By the way we representF2k (Section 2), there is a Boolean circuitC(X) that takes as input a
k-bit vectorXj corresponding to each inputxj of Φ(x), and outputsk bits representing the valueΦ(x). C
is constructible in polynomial-time givenΦ.

Because we want thèth bit of the sum
∑

xΦ(x), and because addition inF2k corresponds to componen-
twise addition inFk

2, we can ignore all output bits ofC except thè th one. Further, because the summation
variablesxi range over binary values, we can fix in eachXi all the bits to0 except the least significant bit,
which we can callxi. So we now have a circuitC(x) returning thè th bit of Φ(x) for everyx from the
Boolean domain.

It follows that the`th bit
∑

xΦ(x) equals�x,yφ(x, y), whereφ is the formula verifying thaty describes
the computation of the circuitC on inputx. This proves the theorem whenΦ(x) is a polynomial.

Now suppose thatΦ containsf̂ -gates. Mimicking the above reasoning for the standard basis, we want
to express the evaluation ofΦ as a Boolean circuit withf -gates. Once this is done, the rest would follow as
above.

Perform the process, explained before the proof of Proposition 4, of bringingΦ to prenex form — a
seemingly useless thing to do asΦ does not involve sums. But notice that as a side effect, the process
transforms the summation-freeΦ(x) into the sum

∑
B Φ′(x,B), where eacĥf -gate inΦ′, say theith one, is

“isolated” in the sense that its inputs now come from someBi1, .., Bimi among the variablesB, which all
range over Boolean values.

It thus follows, similar to before, that thèth bit of
∑

xΦ(x) equals�x,B,yφ
′(x,B, y), whereφ′ is over

the standard basis extended withf . This finishes the proof.

The last lemma we need for proving Theorems 2 and 3, essentially says that claims of the form ‘
∑

xΦ(x) =
v’ are same-length checkable, provided that the checker has oracle access to each gate inΦ. If there is no

17

access for one type of gate, say thef̂ -gates, then instead of a yes/no answer, it can output a small conjunc-
tion of claims of the form ‘̂f(z) = w’ where “small” means no more thanm conjuncts if the fan-in of the
f̂ -gates inΦ is at mostm.

Lemma 10. For every languageL := {Lm}m∈N , there is a same-length checkerV that reduces+ASATL

to the task of verifying, in parallel, multiple claims regarding the affine extension ofL.
In particular, +kASATL≤m gets reduced to at mostm claims of the form ‘̂L

k

i (y) = v’ wherei ≤ m.
This also holds if we extend the standard Boolean basis withO, and give the checker access toA.

Proof of Lemma 10.The checkerV is to verify that thè th bit of
∑

xΦ(x) equalsb, given (Φ, `, b); hereΦ
has constants inF2k and hence the sum is overF2k . V works as follows:

First, it obtains the rest of thek bits for
∑

xΦ(x), so the claim is now ‘
∑

xΦ(x) = u’ for someu ∈ F2k .
Second, it performs the sumcheck protocol [5] overF2k to get rid of the sum and update the claim to

‘Φ(y) = v’ for somey, v. Notice that the field size remains the same.
At this point,V obtains the value of each gate in the evaluation ofΦ(y) — i.e., the evaluation of each

subformula ofΦ ony — and checks all of them except those involvingL̂.
Finally, V uses the interpolation technique from the LFKN protocol [22], and combines multiple claims

of the form ‘L̂i(z) = w’ into a single one, for each distincti. This completes the description of the checker.
By representing each node ofΦ with a string ofO(k) bits, we can ensure that the queries made by

the checker remain the same length. The analysis of the protocol is standard, and the requirement that
k ≥ 3 log n in the definition of+ASAT ensures soundness. The claim follows.

Before we finally prove Theorems 2-3, let us note one consequence of Propositions 4-5 and Lemma 9:

Corollary 11. LetO be a language, possibly partial, and letA be its affine extension. Then�SATA →
�SATO. The reduction is universal in the choice of a Boolean basis.

Proof. Being the affine extension ofO, on input(x, `),A gives thè th bit of the valueÔ takes atx. In other
words,A computes the+ASATO instance(Φ, `) whereΦ is the formula ‘̂O(x)’. ThusA → +ASATO,
and by the Booleanization Lemma,+ASATO → �SATO. Then by Propositions 5 and 4,

�SATA → �SAT�SATO
→ �SATO

as claimed.

Proof of Theorem 2. We are to show that there is a languageK that is equivalent to�SATA under Karp
reductions;K further must be same-length checkable given access toA. We claim thatK := +ASATO

would do.
We begin by showing thatK and�SATA reduce to each other. In one direction we have

K → �SATO → �SATA,

where the first reduction is given by the Booleanization Lemma, and the second by using Proposition 5 and
the fact thatO reduces to its affine extensionA. For the other direction, do the same sequence of reductions
in reverse, by first using Corollary 11 and then the Arithmetization Lemma.

Next, the same-length checkability ofK given access toA, is immediate from Lemma 10 by settingL
to the empty languageL : x 7→ 0.

Finally, that�SATA is checkable follows from its equivalence toK which itself is checkable: On input
x, reduce it to an inputx′ for K, then simulate the checking protocol forK(x′), by reducing each query for
K to one for�SATA.

18

Proof of Theorem 3. Extend the standard Boolean basis withA. We are to show that there is an interactive
protocol yielding the reduction

�SAT
L≤m
n → �SAT

L≤m

poly(m log n),

assuming the protocol is given access toA.
Let us make a notational convention, and use�SATf,g, to refer to either of(�SATf)g and(�SATg)f

depending on context, as they are the same (partial) language by definition (Section 2).
We proceed with the proof. We have

�SATA,L≤m → �SATO,L≤m → +ASATO,L≤m ,

where the first reduction is by Corollary 11 and the second by the Arithmetization Lemma. In fact, the same
sequence yields

�SAT
A,L≤m
n → +kASATO,L≤m ,

for somek ∈ O(log n).
Now, Lemma 10 says that+kASATO,L≤m is reducible, via an interactive protocol that has access toA,

to the conjunction of at mostm claims regardinĝL
k

i , i ≤ m, and therefore to the conjunction of at most
mk claims regarding the Boolean version ofL̂

k

i . Altogether these claims can be expressed as one Boolean
formula, hence as one�SAT instance, of sizepoly(mk), over the standard basis extended with the affine
extension ofL≤m. In notation,

+kASATO,L≤m → �SAT
L̂≤m

poly(mk)

where we momentarily overload the notationL̂≤m to denote the affine extension ofL≤m.
Finally, Corollary 11 says, with the settingO = L≤m, that

�SATL̂≤m → �SATL≤m

and the theorem follows.

Remark — what is non-relativizing here? Fortnow and Sipser [17] show a languageO relative to which
coNP ⊂ IP fails, and it is easy to extend their argument to�SAT ⊂ IP. So at least Theorem 2 does
not relativize. Yet, it seems that everything leading up to Theorem 2 above relativizes — Propositions 4-5,
Lemmas 8-10, Corollary 11 — and that the theorem follows by just putting these ingredients together via
inference. Since relativizing statements are closed under inference, it seems Theorem 2 does relativize.

Before clarifying, let us probe further. Can we not considereverytrue statement as relativizing, by
simply removing all occurrences of “the standard Boolean basis” and explicitly listing all the elements?

In either case, the key point to remember is that we are really interested in a particular way of formalizing
statements. We especially agree (Section 1.1) to defineP in such a way that in a theorem of the form “ψ,
and this holds when the Boolean basis extended withO [or A]” it is superfluous to add “and the algorithms
are given access toO [or A, resp.]”. If a statement does not follow this convention, then we are not really
interested in whether it relativizes.

Now notice that Lemma 10 does not follow this convention: the basis is extended withO, but the
algorithm is given access toA. We can restate this lemma so that it complies with the convention, and argue
that in its revised form it does not relativize. But we prefer its current form for streamlining the exposition.

The quickest way to settle the issue, given the exposition, is to mentally replace Lemma 10 with its proof
whenever it is invoked, namely in the proofs of Theorems 2-3, instead of viewing it as a separate result.

19

3.2 TheIP Theorem

In this section we show that Shamir’sIP theorem,PSPACE ⊂ IP, admits an affinely relativizing proof.
As a byproduct we obtain a new proof of this result; see Section 1.3 for an overview and comparison with
previous proofs.

We begin by generalizing the self-reducibility notion to include oracles. Since an algorithm means to us
a uniform-family of circuits (Section 1.2) we automatically have the following definition:

Definition 12 (Self-reducibility w.r.t. a basis). Call a languageL := {Ln}n∈N downward-self-reducible (d-
s-r) with respect to the Boolean basisB (standard by default) if there is a uniform familyC := {Cn}n∈N of
poly(n)-size circuits over the basisB extended withL, such that for everyn ≥ 0: (i) Cn computesLn, and
(ii) the occurrences ofL-gates inCn, if there are any, are forL<n only.

The proof of Shamir’s theorem is a straightforward consequence of the results in Section 3.1, on check-
ing and compressing�SAT. We show:

Theorem 13. Every downward-self-reducible language is computable by an interactive protocol.
This also holds if the standard Boolean basis is extended withA and protocols are given access toA.

Proof. Extend the standard Boolean basis withA. Let L := {Ln}n∈N be downward-self-reducible (with
respect to the extended basis). Then for everyn, the circuitCn computingLn can be (uniformly) expressed
as the sum�yφ(x, y), whereφ is the formula verifying thaty describes the computation ofC on the input
x. So there is a reduction that yields for a large enough constantd

Ln → (�SATLn−1)nd , (2)

everyn ∈ N. Here and throughout the rest of the proof,�SATL−1 denotes�SAT, Li denotesL≤i, andni

denotesni + i.
Combining (2) with Proposition 5, then applying Proposition 4, and then Theorem 3, we get a sequence

of reductions such that for everyn,

(�SATLn−1)nd → (�SAT�SATLn−2
)nd′ → (�SATLn−2)nd′′ → (�SATLn−2)nd , (3)

whered, d′, d′′ are large enough constants (in particulard must exceed the exponent hidden in thepoly(∙)
notation of Theorem 3).

Now consider the reduction that on inputx to Ln, first applies the reduction in (2), and then forn
iterations, applies the reduction sequence in (3). This compound reduction yields

Ln → �SAT,

for everyn ∈ N, in other words, it yieldsL→ �SAT.
By Theorem 2 on checking�SAT, it follows thatL is computable by a protocol with access toA.

By the result of Stockmeyer and Meyer [28],PSPACE has a complete language that is d-s-r, and the
same holds forPSPACEf with respect to thef -extended basis, for every languagef , in particular for
f = A. We have thus proved Shamir’s theorem, which we now state as a “gap amplification” result, as
discussed on page 11.

Definition 14 (γ-gap-IP). Say that a languageL is in γ-gap-IP iff there is an interactive protocol forL
with completeness1 and soundness< 1− γ. Hereγ can be any function fromN to [0, 1) ⊂ R.

The Stockmeyer-Meyer result can be viewed as sayingPSPACE ⊂ 0-gap-IP, and the latter class by its
very definition has a complete language that is d-s-r (namely the languageTQBF). Hence:

20

Corollary 15 (IP theorem). 0-gap-IP ⊂ Ω(1)-gap-IP. This also holds if the standard Boolean basis is
extended withA and protocols are given access toA.

3.3 TheMIP Theorem

In this section we show that theNEXP ⊂ MIP theorem of Babai, Fortnow, and Lund [7] (BFL) admits an
affinely relativizing proof, if it is viewed as a gap amplification result as explained on page 11. We show:

Definition 16 (γ-gap-MIP). Say that a languageL is in γ-gap-MIP iff there is a multiple-prover interactive
protocol forL with completeness1 and soundness< 1−γ. Hereγ can be any function fromN to [0, 1) ⊂ R.

Theorem 17(MIP theorem). 0-gap-MIP ⊂ Ω(1)-gap-MIP. This also holds if the standard Boolean basis
is extended withA, and the protocols are given access toA.

The proof becomes a straightforward consequence of Section 3.2, that theIP theorem has an affinely
relativizing proof, once two ingredients are introduced. First is a very useful characterization of MIP, and
more generally ofγ-gap-MIP, due to Fortnow, Rompel, and Sipser [14]. We paraphrase their result:

Fact 18. L ∈ MIP iff there is a languageπ such thatL ∈ IPπ, with a protocol that is robust to its oracleπ
in the following sense: if some other oracleπ∗ is used instead ofπ then no prover strategy can exploit this,
i.e., the verifier cannot be convinced to acceptx with probability≥ 1/3 wheneverL(x) = 0, even if some
otherπ∗ is used as oracle instead ofπ.

This equivalence more generally holds if “MIP” is replaced with “γ-gap-MIP”, “ IP” with “ γ-gap-IP”,
and “1/3” with “ 1− γ”.

The above also holds when all the protocols involved are given (additional) access toO.

The second ingredient in proving Theorem 17, and the key one, is the seminal “multi-linearity test” of
BFL [7]. We paraphrase again, by combining it with a “Booleanness test” from the same paper:

Fact 19. There is an interactive protocol,Decode, satisfying the following: Given oracle access to a func-
tion π∗, and given inputs(X, ε), the protocol runs in timepoly(N/ε) whereN = |X|, and outputs:

(i) π∗(X), if π∗ is the affine extension of some Boolean function onn bits,

(ii) f(X), for some fixed affine extensionf that is nearbyπ∗, if one exists nearby and if (i) fails

(iii) “fail”, otherwise

where the outcome in case (i) happens with certainty and in cases (ii) - (iii) with probability≥ 1 − ε,
and where being nearbyπ∗ means agreeing withπ∗ on some0.99-fraction of inputs, and where the affine
extensions are overF2k for somek ≥ c log n, with c being a universal constant.

With Facts 18-19 in hand, we are ready to derive Theorem 17. As mentioned, the proof will use the fact
that Shamir’sIP theorem affinely relativizes, so we begin with a preparatory remark about this. The way it
is stated in Corollary 15, namely as0-gap-IP ⊂ IP, this fact is not strong enough for our purposes in this
section. We need the following variant:

Corollary 20 (IP theorem, stronger version). For every0-gap-IP protocol, there is a correspondingIP
protocol that computes the same language. This also holds if the standard Boolean basis is extended with
A; in fact the corresponding protocol does not depend on the choice ofA.

21

In contrast, Corollary 15 allows the corresponding protocol to depend onA. To reinforce the difference,
notice that it is not even true in general that anIP protocol remains one if its oracle is changed, because the
gap condition can then be violated on some inputs. To be convinced of Corollary 20, one way is to skim
back to Sections 3.1-3.2 and notice, in particular, that Theorems 2-3 regarding�SAT assert that their claims
carry over to an extended basis via thesameprotocols that work for the standard basis. (An alternate way is
to observe that theIP protocol for the languageTQBF is uniform in the choice ofA.)

Proof of Theorem 17.Let us make a notational convention, and use[V (x)] to denote the maximum proba-
bility that a verifierV accepts its inputx, over all possible prover strategies in a protocol.

Let L ∈ 0-gap-MIP. By Fact 18,L ∈ 0-gap-IPπ for some languageπ; we may assumeπ is an affine
extension since every language reduces to its affine extension. Pick any protocol realizingL ∈ 0-gap-IPπ,
and let its verifier beV0. We know that this protocol is robust to its oracleπ in the sense of Fact 18.

By Corollary 15,L ∈ IPπ.7 Therefore, by Fact 18, all that remains to show is that among the protocols
realizingL ∈ IPπ, one is robust toπ. So pick any protocol realizingL ∈ IPπ, with verifierV say. We may
assume that the soundness error of this protocol is< 1/6 by amplification.

Consider modifyingV , so that it performs each of its oracle queries, say toπ(X), via the protocol of
Fact 23, asDecodeπ(X, ε), and rejects upon failure; the parameterε will be determined later. By Fact
19-(i), this modification does not affect the outcome of the protocol whenπ is used as oracle, so we still
have aIPπ-protocol forL.

We claim that this new protocol has the desired robustness; in the notation introduced up front,

[V ◦Decπ∗
(x)] < 1/3

for every languageπ∗ and everyx such thatL(x) = 0, whereV ◦Dec denotes the modified verifier.
To prove this, letπ∗ be an arbitrary language and supposeL(x) = 0 for a givenx ∈ {0, 1}n. For

convenience, assume that onx, the verifierV makes oracle queries of one fixed length, so that the same
holds forV ◦Dec and we may focus onπ∗

N for someN depending onx, instead ofπ∗
Ni

for variousi.
The proof is trivial in case there is no affine extension nearbyπ∗

N in the sense of Fact 19. Indeed, we
may assume thatV always makes at least one oracle query, even if only to ignore the answer, so thatDecode
is invoked at least once byV ◦Dec. Then[V ◦Decπ∗

(x)] ≤ ε by Fact 19-(iii).
So suppose there does exist an affine extension nearbyπ∗

N . Starting from the very first protocol forL,
i.e. the one with the verifierV0, and going toward the last one with the verifierV ◦Dec, we will now argue
the validity of the implications

L(x) = 0 =⇒ [V f
0 (x)] < 1 =⇒ [V ◦Decf (x)] < 1/6 =⇒ [V ◦Decπ∗

(x)] < 1/3

for the affine extensionf of some language, such thatfN is nearbyπ∗
N . This will prove the theorem.

The first two implications hold no matter whatf is. Indeed, recall thatV0 is the verifier of a0-gap-IPπ-
protocol forL that is robust toπ, and we already have the first implication.

For the second implication, we need the strength of Corollary 20. We know thatV π agrees withV π
0 on

x by Corollary 15, but using Corollary 20 we can also say thatV f agrees withV f
0 onx, and hence accepts

x with probability< 1/6. The same holds forV ◦Decf in place ofV f , by Fact 19-(i).
For the last implication, lett(n) be the running time ofV onx. Becauseπ∗

N is nearby an affine extension,
Facts 19-(i)-(ii) imply that there is some fixed affine extensionfN for whichV ◦DecfN behaves identical to
V ◦Decπ∗

N on x except with probability≤ tε. So setε = 1/(6t), and completefN to a languagef that is
itself an affine extension — a trivial thing to do asf can just be zero on the rest of the inputs.

7When the Boolean basis is extended withA, notice that0-gap-IPπ really involves two affine oracles not just one. We are still
justified in invoking Corollary 15, however; see the discussion in page 5 titled “multiple oracles”.

22

3.3.1 Comparison with the standard view

We now make precise the discussion on page 11, that relates the gap amplification view of theMIP theorem,
Theorem 17, to the standard view,NEXP ⊂ MIP:

Proposition 21. NEXP ⊂ 0-gap-MIP. This doesnot alwayshold if the standard Boolean basis is extended
withA.

In order to make transparent what “current technique” yields it, we prove Proposition 21 in two steps. First,
we characterize0-gap-MIP as a subclass ofNEXP, namely as those languages inNEXP with “strong
locality”. Then we show that the strong Cook-Levin theorem collapsesNEXP to that subclass.

Definition 22 (strong uniformity). Call a family of circuits{Cn}n∈N strongly uniform iff the function that
outputs, given input(n, i), the type of theith gate inCn, as well as the indices of all gates connected to it, is
in FP.

Definition 23 (NEXPlocal). Let Plocal be the class of all languages with strongly uniform polynomial-
size circuits. Using this class defineNPlocal, and then by padding defineNEXPlocal; in other words let
NEXPlocal be the class of all languages with strongly uniform exponential-size nondeterministic circuits.

Proposition 24. 0-gap-MIP = NEXPlocal. This also holds if the standard Boolean basis is extended with
O, and the protocols are given access toO.

Remark.Over an arbitrary basis extensionO, the classNEXPlocal corresponds exactly to what we may
denote asNEXPO[poly], the Turing-machine-based definition of relativizedNEXP where the oracle queries
are restricted to be of polynomial length. In logical terms (Section 1.1), in every standard model ofACT ,
the variableNEXPlocal gets interpreted as the classNEXPO[poly] for someO, and conversely for everyO,
there is some standard model ofACT in whichNEXPlocal is interpreted asNEXPO[poly]. Proposition 24
thus vindicates the use of poly-length query restriction in previous work; see the discussion on page 11.

We now proceed to prove Propositions 24 & 21.

Proof of Proposition 24.Part(⊂): Extend the standard Boolean basis withO. Let L ∈ 0-gap-MIP. By
Fact 18,L ∈ 0-gap-IPπ for some languageπ. In other words, there is a uniform family of size-poly n
circuitsV π := {V π

n (x, r)}n over the basis extended withπ (this extension is in addition toO) such that
L(x) = 1 iff

∧

r1

∨

r2

∙ ∙ ∙
∨

r|r|

V π
n (x, r)

evaluates to1, wherer ranges over length-poly n strings (wlog|r| is even) andn = |x|. View this expression
as a circuitDπ

n(x), of sizeO(2|r|) times the size ofV π
n , and then as a circuitCn(x, yπ) over thestandard

basis, by replacing eachπ-gate inD with a yπ-gate (we still haveO in the basis). SinceV is a uniform
family, it follows thatC := {Cn(x, yπ)}n is a strongly-uniform family. This proves the claim.

Part (⊃): Extend the standard Boolean basis withO. Let L ∈ NEXPlocal with a corresponding
strongly uniform circuit family{Cn(x, y)}n of size= s(n) ∈ exp poly n. For everyx ∈ {0, 1}n and
i ∈ {0, 1}log s(n), let π(x, i) be the value of theith gate inCn(x, y∗) for some fixedy∗ maximizing the
output ofCn(x, y) over all eligibley. Then in the protocol forL(x), the verifierV (x) simply: (i) picks at
randomi← {0, 1}log s(n); (ii) using the strong uniformity of{Cn}, finds out that theith gate is, say, of type
f and is connected, say, to gatesi1..im in that order; and (iii) checks that the transcript is consistent with the
ith gate, i.e., thatz = f(z1..zm), wherez stands forπ(x, i) in general, with the special case being when gate

23

i is the output gate (thenz = 1), and wherezk stands forπ(x, ik) in general, with the special case being
when gateik is an input gate (thenzk = xj for an appropriatej). It is easy to see the robustness of this
protocol toπ. The claim follows.

Proof of Proposition 21.P ⊂ Plocal by the strong Cook-Levin theorem [13], implyingNEXP ⊂ NEXPlocal

and proving the first claim via Proposition 24.
For the second claim, we want to show a languageO with its affine extensionA, such thatNEXP 6⊂

NEXPlocal relative toA. It actually suffices to show this non-containment relative toO instead ofA. To
see why, recall thatA reduces to�SATO (Corollary 11), and notice�SAT ∈ EXPlocal as a relativizing
fact; therefore neitherNEXP norNEXPlocal changes ifO is used as the basis extension instead ofA.

The claim now follows by a standard diagonalization-style construct that exploits the constraint on the
length of theO-queries inNEXPlocal.

3.4 Lower Bounds against General Boolean Circuits

Using theIP theorem and its variants, Buhrman, Fortnow, Thireauf [11] and Santhanam [23] succeeded in
obtaining the strongest lower bounds known-to-date against general Boolean circuits. In both results, the
lower bound is shown for the class of Merlin-Arthur protocols; in the case of Buhrman et al. it is for the
classMA(exp n), of protocols running in exponential time, and in Santhanam it is forMA(poly n). For
notational convenience, we useMA(t(n)) to denote classes of partial languages, and make it explicit when
we talk about the subclass of total languages.

In this section we give an affinely relativizing proof that unifies both results. We prove:

Theorem 25. For every constantd,

(i) MA(exp n) contains a language that does not have circuits of sizeO(2logd n).

(ii) MA(poly n) contains a partial language that does not have circuits of sizeO(nd).

This also holds if the Boolean basis is extended withA, and protocols are given access toA.

The proof consists of three main ingredients. The first one shows that if the lower bound fails to hold,
then this failure scales to�SAT.

Lemma 26(Scaling).

(i) If part (i) of Theorem 25 is false, then�SAT has circuits of sizeO(2logd n) for somed.

(ii) If part (ii) of Theorem 25 is false, then�SAT has circuits of sizeO(nd) for somed.

This also holds if the Boolean basis is extended withA.

We defer the proof of this lemma to the end of this section.
To proceed with the rest of the proof it will be convenient to introduce some notation.

Definition 27 (Σ3SAT). Let Σ3SAT denote the language mappingφ(x, y, z) 7→ ∃x∀y∃z φ(x, y, z) where
φ is over the standard Boolean basis by default.

Let Σ3SAT(t(n)) denote the set of all languages Karp-reducible in timet(n) to Σ3SAT, wheret(n) is
a well-behaved resource bound.

The second ingredient in proving Theorem 25 is a collapse result: if the conclusion of the Scaling lemma
holds, then the polynomial-time hierarchy collapses. We defer its proof to the end of this section.

24

Lemma 28(Collapse). Lets be a well-behaved resource bound.
If �SAT has circuits of sizeO(s(n)), thenΣ3SAT is computable by a protocol inMA(s(poly n)).
This also holds if the Boolean basis is extended withA and the protocol is given access toA.

The last ingredient of the proof is a classical result of Kannan [20], showing circuit lower bounds for
Σ3SAT, and more generally forΣ3SAT(t). His proof relativizes.

Fact 29(Kannan’s bound). Lets be a well-behaved resource bound.
Σ3SAT(poly s(n)) contains a language that does not have circuits of sizeO(s(n)).
This also holds if the Boolean basis is extended withO.

With the three ingredients in hand — Scaling and Collapse lemmas, and Kannan’s bound — we can
prove Theorem 25. For part (i), we letC be the set of languages inMA(exp n) and puts(n) = 2logd n; for
part (ii), we letC be the set of partial languages inMA(poly n) and puts(n) = nd.

The proof goes by contradiction. We give the argument using notation.

C ⊂ SIZE(O(s(n)))

=⇒ �SAT ∈ SIZE(O(s(n))) (by Scaling lemma)

=⇒ Σ3SAT ∈ MA(s(poly n)) (by Collapse lemma)

=⇒ Σ3SAT(poly s(n)) ∈ C (*)

=⇒ contradiction (by Kannan’s bound)

where step (*) follows from Definition 27 and the fact thats(poly s(n)) ⊂ poly s(n) for the particular
choices ofs(n).

What remains is the proof of Scaling and Collapse lemmas.

Proof of Scaling Lemma .There is nothing to prove in part (i), because a�SAT instance of sizen is com-
putable by brute force in deterministic timeexp n ∙ poly n, which by definition is a protocol inMA(exp n).

For part (ii), we want to show that�SAT has circuits of sizepoly n, if every partial language in
MA(poly n) has circuits of sizeO(nd) for some fixedd. By Theorem 2,�SAT reduces to some same-
length checkable languageK, so it suffices to show the claim forK instead of�SAT.

So letK beanysame-length checkable language, and suppose towards a contradiction thatK does not
have polynomial-size circuits. Lets : N → N be such thats(n) is the size of the smallest circuit deciding
K on inputs of lengthn, for everyn. By assumption,s(n) is super-polynomial, i.e.,s(n) >i.o. nk for every
constantk. Note thats(n) might not be well-behaved.

Consider the partial languageK ′(xy) := K(x) that is defined only on inputs of the formxy where
y ∈ 01∗ serves as a pad of length|y| = bs(|x|)ε c, for some constantε > 0 to be later determined.

Now consider the followingMA-protocol forK ′: givenxy, the prover sends the smallest circuit forK
on inputs of length|x|, i.e. a circuit of sizes(|x|), and the verifier uses the same-length checkability ofK to
computeK(x), henceK ′(xy). This takes, on an input of length|x|+ |y|, timepoly s(|x|) ⊂ poly s(|x|)ε ⊂
poly(|x|+ |y|). SoK ′ is in MA(poly n), and hence has circuits of sizeO(nd) by assumption. But thenK
has circuits of sizeO(n + s(n)ε)d, which is less thans(n) for infinitely manyn wheneverε < 1/d because
s(n) is superpolynomial. But this contradictss(n) being the smallest circuit size forK.

Proof of Collapse Lemma.Toda famously showed [29]

Σ3SAT→ �SAT

25

via a randomized reduction that is universal in the choice of a Boolean basis. (The same holds in general for
ΣkSAT for all constantk.) So if�SAT has circuits of sizeO(s(n)) for formulas of sizen, then theMA-
protocol for computingΣ3SAT, on a formula of sizen, proceeds by the verifier doing the above reduction
to obtain a formula of sizem ∈ poly n, then the prover sending a circuit for�SAT at a large enough input
lengthpoly m, hence a circuit of sizeO(s(poly n)), and finally, the verifier running the checker for�SATm

(Theorem 2) on the circuit, in timepoly(s(poly n)), i.e. in times(poly n) sinces is well-behaved.

3.5 TheZKIP Theorem

AW made the surprising observation that the famous theorem of Goldreich, Micali, and Wigderson,NP ⊂
ZKIP if one-way-functions exist [18], can be proven via the same techniques underlying theIP theorem.
This is in contrast to the standard proof of this result involving a graph-based construction, which seems
incompatible with the oracle concept.

IKK turned this idea into a complete proof by devising an indirect commitment scheme for this purpose.
In this section we explain how this AW-IKK proof can be adapted to our framework, yielding an affinely
relativizing proof of theZKIP theorem.

Theorem 30(ZKIP theorem). NP ⊂ ZKIP if there is a one-way function inP secure againstBPP.
This also holds if the standard Boolean basis is extended withA.

The key idea of AW is that, given a circuitC, and a satisfying assignmentx of inputs toC, in order to
show thatC is satisfiable without leakingx, an efficient prover commits to a transcript of the computation
of C(x), but redundantly so, as follows. For each fragment of the circuit of the form

z0 = f(z1,.., zn), (4)

meaning gatez0 is of typef and receives its inputs from gatesz1,.., zn in that order (where somezi may
refer to an input gatexj), the prover commits not to the values ofz0, z1,.., zn, but to

f̂◦`, f̂◦`(1), . . . , f̂◦`(n) (5)

where (i)1..m are distinct non-zero elements in a large enough fieldF, (ii) each`(i) is a point on the random
line ` passing through̀(0) := (z1,.., zn) ∈ Fn , and (iii) f̂ ◦ ` is the univariate polynomial of degreen, i.e.
the coefficients thereof, corresponding to the restriction off̂ to `.

In order to check the fragment (4), it suffices to check that the information given in (5) consistently
refers to the same polynomial. This consistency check amounts to a system of linear equalities, for which
IKK devised a scheme of indirect commitments, thereby obtained a zero-knowledge protocol for circuit
satisfiability (assuming one-way functions exist).

The make this proof work in our setting, we need to address the case where thef -gate in the fragment
(4) is a non-standard basis element. This is not an issue in the setting of AW or of IKK, because there by
definitionf̂ is efficiently computable given access tof , as explained in Section 1.2. In our case, however, if
f is a non-standard basis element, thenf is an affine extension of someg : {0, 1}m → {0, 1}, hence is of
the formbool(ĝ), which makeŝf seem not efficiently computable given access tof .

Our solution to this, is to viewf not as an atomic gate, but instead as a small circuit, consisting of
a ĝ-gate plus the circuitry for computing its decision version,bool. So in the beginning of the protocol,
both parties already expect to give/receive a transcript involvingĝ-gates as well as the standard gates. For
fragments involving standard gatesf , the commitment involves their extension̂f as above, whereas for
ĝ-gates, no further extension is made and the commitment involves stillĝ. We defer the details to the full
version.

26

4 Negative Relativization Results

This section shows that several major conjectures in structural complexity are impossible to settle via an
affinely relativizing proof, mirroring corresponding results of AW.

There are two main approaches to deriving such results: an interpolation approach, used for separations
of the formC 6⊂ D, and an approach based on communication complexity, used for containmentsC ⊂ D.
Both of these approaches are model theoretic, in the sense that they construct an eligible language relative
to which the statement in question is false.

The main novelty in this section, as explained in Section 1.3, is in the development of the interpolation
approach, which is then used to show thatNEXP 6⊂ P/poly is affinely non-relativizing. This is carried out
in Section 4.1. The communication complexity approach is taken in Section 4.2.

Besides these two approaches there is a third, proof theoretically flavored approach, that is quite con-
venient to use when the situation allows. To show thatψ admits no proof that affinely relativizes, we find
a statementψ′ for which this is already known, and then derive the implicationψ =⇒ ψ′ via an affinely
relativizing proof. We thus show thatψ′ is “no harder” to prove thanψ, in similar spirit to the use of reduc-
tions in structural complexity. It should be noted that in general, this approach cannot be used for the AW
notion of algebrizing proofs, as it critically relies on the closure of such proofs under inference. Section 4.3
employs this approach.

In preparation for the rest of this section, let us introduce a piece of notation:

Definition 31 (f̃). Givenfm : {0, 1}m → {0, 1}, denote its affine extension toF2k , i.e. the Boolean version
of f̂

k

m , with f̃
k

m .
Given the languagef := {fm}m∈N , denote its affine extension, i.e. the family{f̃

k

m}k,m∈N , with f̃ .

4.1 Interpolation Approach

The classical way to show thatC 6⊂ D does not admit a relativizing proof is to construct a languageO
relative to whichC ⊂ D holds. Such a construction amounts to a balancing act of sorts; the goal, vaguely, is
to haveO give more power toD than it does toC, so as to makeD containC in theO-extended basis. This
can be done nonetheless, and sometimes easily so, as can be seen by takingC = PSPACE, D = P, andO
to be anyPSPACE-complete language. Typically, however, the construction is more involved, and it was
one of the main contributions of AW to develop an approach — the interpolation approach — that enables
such constructions in the algebrization framework.

In this section we develop the interpolation approach within our framework. Our techniques are different
from AW’s; see Section 1.3 for a comparison. Below we develop the crux of the approach, and in Section
4.1.1 we complete the development by applying it to theNEXP vs.P/poly question.

Before we proceed let us note, like AW did, that the easy fact regardingPSPACE andP mentioned
above carries over to our setting easily:

Proposition 32. PSPACE 6⊂ P cannot be derived via an affinely relativizing proof.

Proof. Relative to anyPSPACE-complete languageO, it is well-known thatPSPACE ⊂ P. This con-
tainment also holds relative to the affine extensionA of that veryO. To see why, recall thatA reduces to
�SATO (Corollary 11), and notice�SAT ∈ PSPACE as a relativizing fact; thereforePSPACE does not
change ifA is used is used as the basis extension instead ofO.

27

We now move to the interpolation approach. The crux of our development is two coding-theoretic
ingredients. The first one states that knowingt bits of a binary codeword exposes at mostt bits of its
information word, and the second scales this result to affine extensions.

Lemma 33(Interpolation). LetE : FK
2 → FN

2 be linear and injective. Given a “dataword”u ∈ FK
2 and a

set of indicesA ⊆ [N], consider the collectionU of all datawordsu′ ∈ FK
2 such thatE(u) andE(u′) agree

onA.
There is a set of indicesB ⊆ [K], no larger thanA, such that projectingU ontoG := [K] \B gives all

of FG
2 .

Proof. The claim of the lemma onU is true iff it is true onU+ := U + u. So it suffices to show thatU+ is
a subspace ofFK

2 with dimension at leastK − |A|.
Now, y ∈ U+ iff y + u ∈ U , which is iff E(y + u) andE(u) agree onA, which is iff E(y) vanishes on

A. ThereforeU+ is identical to the space of all datawords whose encodings vanish onA.
All that is left is to bounddim U+, or equivalently, to bounddim E(U+) sinceE is injective. The

latter quantity is the dimension of the spaceC ∩ Z , whereC is the image ofE , andZ is the space of all
N -bit vectors that vanish onA. But then by the theorem on the dimension of a sum of subspaces (e.g., [4,
Theorem 1.4])

dim(U+) = dim(Z) + dim(C)− dim(Z + C)

= (N − |A|) + K − dim(Z + C)

which is at leastK − |A| becauseZ + C ⊆ FN
2 . This finishes the proof.

Theorem 34(Interpolation). Given a languagef and a finite setA of inputs, consider the collectionF of
all languagesg such thatf̃ and g̃ agree onA.

There is a setB of inputs, no larger thanA, such that every partial Boolean functiong′ defined outside
B can be extended to someg ∈ F .

Further, in extendingg′ to g, the values ofg at length-n inputs depend only on those ofg′ at lengthn.

Proof. To begin with, consider the special case whereA ⊆ dom(f̃
k

m) for some fixedk andm. For the
purpose of invoking Lemma 33, letE be the map that takes as input the truth table of a Boolean functiongm

on m bits, and outputs the truth table ofg̃ k

m. SoE : FK
2 → FN

2 , whereK = 2m andN = k2km (to see the
value ofN , recall that̃g k

m(α, y) gives theyth bit of ĝ k
m(α), whereĝ k

m is the extension ofgm to Fm
2k).

ClearlyE is injective; it is also linear because we representF2k with Fk
2 where addition is componentwise

(Section 2). SoE fulfils the conditions of Lemma 33, which in turn yields a setB ⊆ {0, 1}m that is no
larger thanA, such that every partial Boolean function on{0, 1}m \B can be extended to a language inF .
This proves the theorem in the special case.

To handle the general case, partitionA into Am,k := A ∩ dom(f̃
k

m), and use the above special case as
a building block to create a bigger code. In detail, for everym involved in the partition, defineEm as the
map sending the truth table ofgm to the list comprising the truth tables ofg̃

k1

m , g̃
k2

m , . . . for everyAm,kj
in

the partition. Now, take eachEm thus obtained, and letE be their product. In other words, letE take as
input a listTm1 , Tm2 , .. whereTmi is the truth table of some Boolean functiongmi on mi bits, and outputs
Em1(Tm1), Em2(Tm2), .. . The theorem now follows from Lemma 33.

4.1.1 Application —NEXP vs.P/poly

The Interpolation theorem enables us to adapt some of the classical constructions from relativization to
affine relativization. The general idea is to construct a languageO such thatC ⊂ D holds relative toO, i.e.,

28

such thatCO ⊂ DO, by taking each algorithm underlyingCO, say the firstn algorithms, and by fixingO up
to a certain length, saym(n), so as to force the behavior of these algorithms on inputs of lengthn. While
doing so, the goal is forO to encode those forced behaviors, in a way that can be easily queried by some
algorithm inDO.

This classical idea can be extended to our setting via the Interpolation theorem. Even though the goal
here is to haveC ⊂ D hold not relative toO, but relative to its affine extensionA, we can proceed almost
as before. This is because thanks to the Interpolation theorem, forcing the behavior of aCA algorithm by
fixing A bears little extra burden onO than does fixingO to force aCO algorithm (though there are some
subtleties).

For details we refer to the proof of the next theorem, which is the main result of this section:

Theorem 35. NEXP 6⊂ P/poly cannot be derived via an affinely relativizing proof.

Proof. It is a basic fact thatNEXP has polynomial-size circuits iffNE (the linear-exponential version of
NEXP) has circuits of size afixedpolynomial, and that this relativizes. In notation,

NEXPO ⊂ SIZEO(poly n) ⇐⇒ NEO ⊂ SIZEO(nd) for somed ∈ N.

Therefore, to prove Theorem 35, it suffices to show a languagef satisfying

NEf̃ ⊂ SIZEf (nd), (6)

for some constantd becausef trivially reduces tof̃ .
So let M0,M1,.. be a list (repetitions allowed) of all nondeterministic algorithms with access to an

arbitrary languageO, such thatMi runs in time≤ 2n log n on all inputs of lengthn > i. We construct the
languagef in such a way that whenO = f̃ , the information regarding how eachMi behaves on each large
enough inputx, is stored byf in a format retrievable by a small circuit. More precisely, we ensure that for
everyn > 1, a size-nd circuit with access tof can compute the functionLn : {0, 1}blog nc × {0, 1}n →
{0, 1} defined as

Ln(i, x) := M f̃
i (x). (7)

This yields (6), hence the theorem, because each languageK ∈ NEf̃ corresponds to someM f̃
i , and in order

to computeK(x) on all but finitely many inputsx (in particular forx ∈ {0, 1}>2i) we can just provide(i, x)
to the circuitCf said to computeL|x|, implying K ∈ SIZEf (nd).

We constructf inductively, as the limit of a sequencef1, f2,.. of Boolean functions wherefn extends
fn−1. The domain offn will include all of {0, 1}≤nd

, plus some additional24n log n strings at most. Set
f1 : {0, 1} → {0}.

At iteration n > 1, proceed to setfn as follows. Consider all possible ways of extendingfn−1 to a
languagef . Out of all suchf , pick one that maximizes (7), i.e., one for which the collection

Sf := {(i, x) : Ln(i, x) = 1} (8)

of accepting algorithm-input pairs is maximal.
Now we want to “open up space” inf by un-defining it at some inputs, the idea being then to encode

the function in (7) in the freed space so that a small circuit can look it up. In doing so, of course, we do not
want to disturb (7), which, by the way we pickedf , is equivalent to wanting thatSf does not shrink — i.e.,
as we restrictf to somef ′, no matter how we extendf ′ back to some languageg, we wantSg = Sf .

Consider an accepting algorithm-input pair(i, x) in Sf . BecauseMi runs in nondeterministic2n log n-
time on inputx ∈ {0, 1}n, it could issue a great many oracle queries tof̃ , however, as far as the membership

29

of (i, x) in Sf is concerned, it suffices for̃f to honor only those queries ofMi alongone acceptingcompu-
tation path. So each such pair(i, x) actually forcesf̃ to be fixed at only2n log n inputs. There are at most
n2n pairs inSf . Thus if we wantSf not to shrink, it suffices to fix̃f at23n log n inputs. By the Interpolation
theorem, this means we only need to reserve a small set of “bad” inputsB, of size≤ 23n log n, beyond those
already reserved in previous iterations, i.e., beyonddom fn−1, such that onB we have no control as to how
f behaves, but on the “good” inputs{0, 1}∗ \ (B ∪ dom fn−1), we can changef arbitrarily. So letfn be the
restriction off to B ∪ dom fn−1.

Now that we opened up space inf , we are ready to store the information in (7) so that a small circuit can
look it up. That information is the truth table of a function onn + log n bits, so it suffices to have22n log n

bits available indom fn for this purpose. Since there are at most23n log n bad inputs infn by the previous
paragraph, and since there are at most24(n−1) log(n−1) inputs indom fn−1 that are outside{0, 1}≤(n−1)d

by induction, we know there are at most24n log n inputs currently indom fn that are outside{0, 1}≤(n−1)d
.

So there is plenty of space in{0, 1}n
d

for storage whend is large enough. As for how to actually store
the information, initially consider each input(i, x) to Ln as prepended with zeroes until it becomes a string
Y(i,x) of lengthnd, and then setfn(Y(i,x)) := Ln(i, x). Of course this may not work as some bad inputs may
coincide with someY(i,x), but this can be handled simply by changing the encoding of(i, x) to Y(i,x)⊕Z for

a suitably pickedZ ∈ {0, 1}n
d

— a counting argument shows that suchZ exists. ThisZ can be hardwired
to a circuit of sizend, as we wanted to do.

To finish, letfn behave arbitrarily on the rest of the good inputs in{0, 1}≤nd
, and then accordingly

adjustfn on the bad inputs in{0, 1}≤nd
— recall from the Interpolation theorem that on a bad input,fn is a

function of how it behaves on non-bad inputs of same length. We have thus constructedfn as desired.

4.2 Communication Complexity Approach

AW show that one can take a lower bound from communication complexity, and use it to construct an
eligible language — an algebraic oracle in their case — relative to whichC 6⊂ D holds, for an appropriateC
andD depending on the lower bound picked. Therefore, AW conclude,C ⊂ D cannot have an algebrizing
proof.

In this section we develop this approach of AW for our framework. We start by making a notational
convention involving the classical communication complexity classesPcc, NPcc, BPPcc, etc.

Definition 36 (Pcc vs. Pticc). DefinePticc as the class of familiesf := {fn} satisfying the following. (i)
Eachfn is a Boolean function (possibly partial, but not empty) on pairs of2n-bit strings, (ii) There is a
protocol involving two algorithmsM0,M1 such that for alln and all(X,Y) ∈ dom(fn), the two parties
MX

0 (1n),MY
1 (1n) computefn(X,Y) in timepoly n.

Let Pcc denote the relaxation ofPticc whereM0,M1 are allowed to be non-uniform, and only commu-
nication betweenM0,M1 is counted towards time elapsed.

Use Pticc to defineNPticc, BPPticc, etc., just as we defineNP, BPP, etc., fromP. Similarly for
NPcc, BPPcc, etc., versusPcc.

The notationCticc is meant to indicate that time is measured on equal grounds with communication.
While Dcc admits only languages according to the classical definition [8], Definition 36 makes certain
partial languages eligible as well (namely those that are defined on every input length).

We formalize the high-level idea of AW with the following generic theorem in our framework:

30

Theorem 37. If Cticc 6⊂ Dcc, thenC ⊂ D cannot be derived via an affinely relativizing proof. HereC,D
range over every class mentioned in the results of Section 4.2.1; in particular both are definable usingP
and are contained inEXP.

A key ingredient in arguing Theorem 37 is the observation, mentioned on page 5, that affine extensions
are compatible with disjoint unions in the following sense.

Proposition 38. LetA0,A1 be the affine extension of the languagesO0,O1 respectively. Then the disjoint
unionA0

∐
A1 : bx 7→ Ab(x) is equivalent, under Cook reductions, to the affine extension of the disjoint

unionO0
∐
O1 : bx 7→ Ob(x).

Proof. LetO := O0
∐
O1. By definition, the affine extension ofO is the Boolean version of the function

that evaluates, givenB,X1, .., Xn ∈ F2k for anyk, the polynomial

Ô(BX) =
∑

b,x1,..,xn∈{0,1}

O(bx) ∙
∏

i(1 + (BX)i + (bx)i)

= (O0(x) ∙ (1 + B) +O1(x) ∙B) ∙
∏

i(1 + Xi + xi)

= (1 + B) ∙ Ô0(X) + B ∙ Ô1(X)

which clearly can be evaluated given access toA0 andA1, i.e. toA0
∐
A1, and vice versa.

We now give a generic argument for Theorem 37. Supposing there is somef := {fn} in Cticc \ Dcc,
we construct a languageO such that relative to its affine extensionA, the statementC ⊂ D fails. For
concreteness, the reader may takeC to beNP, say, andD to beBPP.

Extend the standard basis with an arbitrary languageO, and letM1,M2,... be a list of all polynomial-
time decision algorithms (with access toO). SinceD is definable fromP, we can use the listM1,M2,...
to define a listN1, N2, ... of algorithms that includes every algorithm forD. (The list ofNi’s may include
more than every algorithm forD: it corresponds to the classprD, the extension ofD to partial languages.)

For everyn ∈ N pick an arbitrary(Xn, Yn) ∈ dom fn, and then initializeO to the disjoint union
O0
∐
O1, whereO0 is the language with the same truth table asXn for everyn, and similarly forO1 versus

Yn. Becausef ∈ Cticc, the languageL that maps every length-n input to the value off(Xn, Yn) satisfies
L ∈ CO. Our objective is to modifyO0,O1 so thatL remains inCO, and becomes out ofDA. Then we will
be done.

For i = 1..∞, the plan is to modifyO0,O1 at some large enough input lengthni, by picking some
(Xni , Yni) ∈ dom fni and then modifying the truth table ofO0,O1 at lengthni to beXni , Yni respectively.
Let us denote this operation byO0←Xni ,O1←Yni .

Notice that updatingO in this way readily maintainsL ∈ CO. As for ensuringL /∈ DA, by Proposition
38,DA is the same as the classDA0

∐
A1 ; hence the plan is to chooseXni , Yni so that theith algorithmNi

disagrees withL on 1ni when given oracle access toA′
0

∐
A′

1, whereA′
0 andA′

1 is the affine extension of
O′

0 := O0←Xni andO′
1 := O1←Yni respectively.

So, to pick(Xni , Yni), consider the following functiongn for eachn ∈ N. For each(X,Y) ∈ dom fn,

let gn(X,Y) be the output ofN
A′

0

∐
A′

1
i (1n), whereA′

0 is the extension ofO′
0 := O0←X and similarly

A′
1 extendsO′

1 := O1 ← Y . (It could be thatNi does not “output anything” on input1n becauseNi

computes a partial language which1n is outside the domain of; in this case letgn be undefined on this
X,Y .) Observe thatg := {gn} ∈ Dcc, as can be seen by considering the protocol where one party is given
access toX and knowsO0, whereas the other party is givenY and knowsO1, and where the two parties

simulateN
A′

0

∐
A′

1
i (1n) by using each other as an oracle forA′

0 orA′
1.

31

Now sincef /∈ Dcc by assumption, there are infinitely many(X,Y) on whichf andg differ (perhaps by
g being not even defined on(X,Y)). Pick any such(X,Y) ∈ dom fni for ni large enough, say,ni double-
exponential inni−1, which does not disturb previous phases of the construction sinceC,D are contained in
EXP. This completes the construction ofO, and finishes the generic argument for Theorem 37.

4.2.1 Applications

The above generic argument for Theorem 37 allows us to replicate the following negative algebrization
results of AW.

Corollary 39. Neither of the following statements can be derived via an affinely relativizing proof: (i)
coNP ⊂ MA, (ii) PNP ⊂ PP.

Proof sketch.As pointed out by AW, part (i) follows from a result of Klauck on the Disjointness predicate,
implying coNPticc 6⊂ MAcc, and part (ii) from a result of Buhrman, Vereshchagin, and de Wolf, implying
(PNP)ticc 6⊂ PPcc.

We can use the same argument to replicate a result of IKK as well.

Corollary 40. RP ⊂ SUBEXP cannot be derived via an affinely relativizing proof.8 Here SUBEXP
denotes∩εDTIME(2nε

).

Proof sketch.Yao’s classical result on the Equality predicate implies that the partial functionf(X̃, Ỹ),
defined on allX̃, Ỹ that is the affine extension toF2k of someX,Y : {0, 1}m → {0, 1}, and that is1 if
X̃ 6= Ỹ and0 if not, satisfiesf /∈ SUBEXPcc, for a suitable choice ofk ∈ Θ(log m). By padding inputs
to f so that at each input lengthdom f is nonempty, and by the error-correcting properties of the affine
extension, it follows thatf ∈ RPticc.

4.2.2 Extensions

Refining the AW approach, IKK considerably strengthened a result of AW: they showed that no algebriz-
ing proof (for their notion of algebrization) exists forNP having sub-linear-exponential circuits, even at
infinitely many input lengths. We can extend Theorem 37 to replicate this result in our framework as well.

Theorem 41. NP ⊂ i.o.-SIZE(2εn) cannot be derived via an affinely relativizing proof for someε > 0.

Proof sketch.Similar to the argument for Theorem 37, we consider a list of all size-2εn Boolean circuits on
n-bits, for eachn ∈ N. Similarly again, we define a languageL that encodes, at each input lengthn, a single
instance of a communication problemf(X,Y), with X andY being encoded in the oracle. The difference
here, following IKK, is thatf is the direct product of a Boolean problem instead of a merely Boolean one,
for which we know a much stronger variant off /∈ Dcc, namely the strengthening of this to average-case
hardness on all input lengths (as opposed to worst-case hardness at infinitely many input lengths). This
allows us to use a randomized process to define the oracle “at once”, thereby obtaining a hardness forL that
holds at every input length. We refer to IKK for details.

8IKK show the stronger result whereSUBEXP = ∩εDTIME(2nε

) is replaced by∩εDTIME(2εn). Using a less modular
argument we can derive this result as well.

32

4.3 Proof Theoretic Approach

As mentioned in the beginning of Section 4, sometimes we can get away without constructing oracles, and
still show thatψ admits no proof that relativizes affinely. To do so, we find someψ′ which we already
know has that status, and then derive the implicationψ =⇒ ψ′ via an affinely relativizing proof. We thus
reduce the task of creating an oracle relative to whichψ is false, to doing the same forψ′, with the proof
of ψ =⇒ ψ′ serving as the reduction. More generally, we reduce the task of showing thatψ admits no
affinely relativizing proof, to doing the same forψ′.

Using the results of Section 4.1-4.2 we can readily show:

Theorem 42.None of the following statements can be derived via an affinely relativizing proof: (i)NP ⊂ P,
(ii) NP 6⊂ P, (iii) NP ⊂ BPP.

Proof. Part (i): Theorem 35 showed thatNEXP 6⊂ P/poly cannot have an affinely relativizing proof, and
Theorem 25 showed thatMA(exp) 6⊂ P/poly via an affinely relativizing proof. The claim follows because
NP ⊂ P impliesMA ⊂ P, which in turn impliesMA(exp) ⊂ NEXP, both implications being derivable
via a relativizing (hence affinely relativizing) proof.

Part (ii): Proposition 32 showed thatPSPACE 6⊂ P cannot have an affinely relativizing proof. The
claim follows sinceNP ⊂ PSPACE via a relativizing proof.

Part (iii): Corollary 39 states thatcoNP ⊂ MA does not have an affinely relativizing proof. The claim
follows sinceNP ⊂ BPP impliescoNP ⊂ MA via a relativizing proof.

5 Conclusions and Open Problems

Our results counter the folkloric belief that relativizing techniques treat computation only as a “black box”
mapping inputs to outputs (e.g., [1, p. 2]), and that arithmetization, or more generally a circuit-based view
of computation, seems to let us “peer into the guts of it” [2, p. 115], and hence circumvents the limits of
relativizing techniques.

In contrast, according to our definitions, a Boolean formula in the relativizing view, say over the basis
{∧,⊕,O}, gives complete freedom regarding how theO-gates behave, and in this sense eachO-gate is a
black box, of “volume” the size of its truth-table. In the affinely relativizing view, however, eachO-gate
redundantly encodes a Boolean function, by extending its domain fromGF(2)n, say, toGF(2k)n; this
means that the behavior of the gate is determined by2n entries of a truth table of size roughly2kn. So each
O-gate has a black-box “core”, carrying on with the metaphor, of volume roughlykth root of its overall
volume; herek must beΩ(log n) for all the results catalogued in this paper, and can be taken asΘ(log n)
for a formula of sizeO(n).

So it seems that: (i) circuit-based techniquesare relativizing, if they are insensitive to enlarging the basis
arbitrarily, (ii) arithmetization-based techniquesare also relativizing, only “slightly less” so. To make this
a bit more precise, consider the following question: what can be the circuit complexity, over the standard
basis{0, 1,∧,⊕}, of a size-n circuit over the extended basis{0, 1,∧,⊕,O}? In the relativizing view, i.e.,
in RCT , the answer is2O(n) — just consider a singleO-gate withn − 1 inputs. To see this in the affine-
relativizing viewACT , let us first clean up the definition of affine extension a bit, so that iff is a Boolean
function onn inputs, then its affine extension involvesGF(2k) for k ≥ log n only, instead ofk ≥ 1. By
the above discussion, this makes no difference for the results catalogued in this paper, but now the answer is
easily seen to be2O(n/ log n), again via anO-gate withn−1 inputs. Dividing byn and taking logarithms, we
get what might be called the “opacity” of each theory, a quantity that ranges fromO(1) at the real-world end

33

of complexity theory, toO(n) at the fully relativized end, with affine relativization being aboveO(n1−ε)
for everyε > 0, just “slightly less” than relativization.

We finish by listing some suggestions for further research.

A quantitative theory of relativization. Both relativization and affine/algebraic relativization are rigid
notions, in the sense that something either relativizes or does not. However, the discussion just above, on the
various degrees of being opaque, calls for a theory of relativization that is gradual, based on the information
content — or density, so to speak — in an oracle.

Can we associate to each statement a “relativization rank”, so that the algebrization barrier arises as a
quantitative gap, between a lower bound on one hand for the rank of algebrizing statements, and an upper
bound on the other, for the rank of non-algebrizing statements? If so, then we could view the reciprocal of
the rank as a useful complexity measure on theorems and conjectures, just as we have complexity measures
on algorithmic tasks: the larger the reciprocal of the rank, the higher the “relativization sensitivity” of the
statement in hand, indicating more resources — stronger axioms — required to prove it.

New oracles from old. Section 4.3 showed that sometimes we can evade the task of constructing an oracle,
by reducing the task to another one already done. For example, there is no need to construct an (affine) oracle
refutingNP ⊂ P when we already have one refutingNEXP 6⊂ P/poly, becauseNP ⊂ P =⇒ NEXP 6⊂
P/poly via an affinely relativizing proof — meaningNP ⊂ P is harder to prove thanNEXP 6⊂ P/poly in
some sense.

Can we use this idea to simplify the landscape of oracle constructions? For example, many of the
statements shown not affinely relativizing in Section 4.2 are containments of the formC ⊂ D for which
various circuit lower bound consequences are known. This suggests that a handful of oracles, each refuting
some circuit lower bound, may yield a rich collection of statements getting indirectly refuted via reductions
of the form given in the above example.

Weaker theories for arithmetization. As asserted in Section 1.2, we can replicate all the classification
given by IKK (as well as by AW) for what algebrizes and what does not, however, we do not know if
algebrization in the IKK sense implies affine relativization, or vice versa.9 This suggests that there should
be a weaker characterization of arithmetization-based techniques that subsumes both notions.

Is there a constraint that we can place onO, besides that it is a language, so that the resulting theory is a
consequence of both versions ofACT , ours and IKKs, and still derives all the theorems shown algebrizing
by AW? (Notice that such a theory would automatically be unable to prove anything unprovable byACT ,
hence all the non-algebrizing statements of AW.)

Of course, the weakest axiom deriving a theorem is the theorem itself, so there is a trivial answer to the
question the way stated above: just take the conjunction of all the algebrizing statements,IP theorem,MIP
theorem, etc., and add it as an axiom. This kind of “overfitting” clearly lacks the succinctness desired in a
theory, so we need to amend the question a bit. Say that a proof is nontrivial if the proof remains valid when
viewed in the theoryRCT ∪ {O is empty}. Then we want a theory that is a consequence of both versions
of ACT , and thatnontrivially derives all theorems shown algebrizing by AW.

The PCP theorem. Section 1.3 explained that both theIP theorem and theMIP theorem can be naturally
viewed as a gap-amplification result, and from that point of view both theorems have affinely relativizing
proofs. Can we extend this reasoning to thePCP theorem? If so, this would bolster the candidacy of affine
relativization as a proxy for arithmetization-based techniques.

9The IKK approach is overZ but can be adapted toGF(2k), so this is not the issue. Also, the IKK approach builds on the AIV
formulation ofRCT , but it can also use our version ofRCT , so again this is not the issue.

34

A completeness theorem for oracles. If we can proveψ, and thatψ relativizes, then is there a relativizing
proof ofψ? It is consistent with experience that such a “completeness” phenomenon holds. Confirming this
would allow us to focus solely on proving facts about statements, and not on how we prove those facts.

Along the same lines, what if each statement in a proof relativizes — then does the proof itself relativize?
If so, then we could say that a proof relativizes if and only if each of its intermediate statements does. (The
“only if” direction is already true by the way we defined things in Section 1.1; the non-trivial part is to make
the jump from the semantic fact that each step relativizes, to the syntactic one that the proof relativizes.)

A genuine independence result. Be it in our version ofRCT andACT , or in AIVs and IKKs, Section 1.2
pointed out that the axioms go on top of an existing collection of axioms governing everyday mathematics.
Another approach to formalizing these barriers, would be to propose asubsetof axioms governing every-
day math, the idea being to find the “weakest” version of everyday math that can derive each algebrizing
statement, and then to show that no non-algebrizing statement can be derived by that much of mathematics.

Acknowledgements

We thank Scott Aaronson and Eric Allender for their helpful comments. This research was supported by
NSF Grant CCF-1420750, and by the Graduate School and the Office of the Vice Chancellor for Research
and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni
Research Foundation.

Bibliography

[1] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.ACM Transactions on
Computation Theory, 1(1), 2009.

[2] Sanjeev Arora and Boaz Barak.Computational Complexity: A Modern Approach. Cambridge University Press,
2009.

[3] Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus nonrelativizing techniques: the
role of local checkability. Manuscript retrieved from http://cseweb.ucsd.edu/ russell/ias.ps, 1992.

[4] Emil Artin. Geometric Algebra. John Wiley & Sons, 1957.

[5] Lászĺo Babai. E-mail and the unexpected power of interaction. InProceedings of the Structure in Complexity
Theory Conference, pages 30–44, 1990.

[6] Lászĺo Babai and Lance Fortnow. Arithmetization: A new method in structural complexity theory.Computa-
tional Complexity, 1:41–66, 1991.

[7] Lászĺo Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover interactive
protocols.Computational Complexity, 1:3–40, 1991.

[8] Lászĺo Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory (pre-
liminary version). InProceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages
337–347, 1986.

[9] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP question.SIAM Journal on
Computing, 4(4):431–442, 1975.

[10] Manuel Blum and Sampath Kannan. Designing programs that check their work.Journal of the ACM, 42(1):269–
291, 1995.

[11] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. InProceedings of the IEEE
Conference on Computational Complexity, pages 8–12, 1998.

35

[12] Alan Cobham. The intrinsic computational difficulty of functions. InProceedings of the International Conggress
for Logic, Methodology, and Philosophy of Science II, pages 24–30, 1964.

[13] Stephen A. Cook. Short propositional formulas represent nondeterministic computations.Information Process-
ing Letters, 26(5):269–270, 1988.

[14] Lance Fortnow. The role of relativization in complexity theory.Bulletin of the EATCS, 52:229–243, 1994.

[15] Lance Fortnow. [Blog post: The great oracle debate of 1993]. Retrieved from
http://blog.computationalcomplexity.org/2009/06/great-oracle-debate-of-1993.html, 2016.

[16] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive protocols.Theoret-
ical Computer Science, 134(2):545–557, 1994.

[17] Lance Fortnow and Michael Sipser. Are there interactive protocols for co-NP languages?Information Processing
Letters, 28(5):249–251, 1988.

[18] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all languages
in NP have zero-knowledge proof systems.Journal of the ACM, 38(3):691–729, 1991.

[19] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic approach to algebrization. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 695–704, 2009.

[20] Ravi Kannan. Circuit-size lower bounds and nonreducibility to sparse sets.Information and Control, 55(1):40–
56, 1982.

[21] Richard Lipton. [Blog post: I hate oracle results]. Retrieved from http://rjlipton.wordpress.com/2009/05/21/i-
hate-oracle-results, 2016.

[22] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof
systems.Journal of the ACM, 39(4):859–868, 1992.

[23] Rahul Santhanam. Circuit lower bounds for Merlin-Arthur classes.SIAM Journal on Computing, 39(3):1038–
1061, 2009.

[24] Rahul Santhanam. [Comment to blog post: Barriers to proving P!=NP]. Retrieved from
http://www.scottaaronson.com/blog/?p=272#comment-7634, 2016.

[25] Adi Shamir. IP = PSPACE.Journal of the ACM, 39(4):869–877, 1992.

[26] Alexander Shen. IP = PSPACE: simplified proof.Journal of the ACM, 39(4):878–880, 1992.

[27] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields.Mathematics of Computa-
tion, 54(189):435–447, 1990.

[28] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Preliminary report. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 1–9, 1973.

[29] Seinosuke Toda. On the computational power of PP and +P. InProceedings of the IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 514–519, 1989.

36

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

