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Abstract

We strengthen existing evidence for the so-called “algebrization barrier”. Algebrization — short
for algebraic relativization — was introduced by Aaronson and Wigderson (AW) in order to charac-
terize proofs involving arithmetization, simulation, and other “current techniques”. However, unlike
relativization, eligible statements under this notion do not seem to have basic closure properties, making
it conceivable to take two proofs, both with algebrizing conclusions, and combine them to get a proof
without. Further, the notion is undefined for most types of statements, and does not seem to yield a
general criterion by which we can tell, given a proof, whether it algebrizes. In fact the very notion of
an algebrizing proof is never made explicit, and casual attempts to define it are problematic. All these
issues raise the question of what evidence, if any, is obtained by knowing whether some statement does
or does not algebrize.

We reformulate algebrization to handle these shortcomings. We first define a statemedetiviz-
ing if, intuitively, it is insensitive to the choice of a Boolean basis, and therelasivizing affinelyif,
roughly, it relativizes with respect to every affine extension — here an affine extension is the result of
a particular error correcting code applied to the characteristic string of a language. We also define the
notion of aproof to relativize (affinely), while ensuring closure under inference. We show that all state-
ments that AW declare as algebrizing can be derived via an affinely relativizing proof, and that no such
proof exists for any of the statements shown not-algebrizing by AW in the classical computation model.

Our work complements, and goes beyond, the subsequent work by Impagliazzo, Kabanets, and
Kolokolova (IKK), which also proposes a reformulation of algebrization, but falls short of recovering
some key results of AW, most notably regarding NIEXP versusP /poly question.

One consequence of our definitions is a demystified perspective on the extent to which relativizing
techniques view computation as a “black box” and current uses of arithmetization do not. As a bonus,
we give new streamlined proofs BESPACE C IP andNEXP C MIP.
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1 Introduction

The algebrization notion — short for algebraic relativization — was put forth by Aaronson and Wigderson
[1] (AW henceforth) to give evidence that certain complexity-theoretic conjectures are beyond the reach of
“current proof techniques”. Although the name suggests some type of relativization, algebrization lacks two
essential properties of relativization:

Closure under inference.What exactly constitutes a “current technique” may be inherently unclear, but
at a minimum it seems logical inference rules should be included. However, as pointed out in [1, 24, 19],
statements that algebrize in the AW formulation are not known to be closed under inference.

For example, AW show that the statemeéni= NEXP ¢ P /poly does not algebrize, and interpret
this to mean that a certain class of proof techniques, say “algebrizing techniques”, cannap pyete
this does not rule out an approach where, say, one comes up with & dasls showg C NEXP via
algebrizing techniques, then sho@sZ P /poly via algebrizing techniques, and thus derive the very
samey.

Lack of closure under inference thus significantly thins any evidence imparted by a negative al-
gebrization result — as AW obtained fOYEXP versusP /poly and for other questions of structural
complexity — since the class of proofs ruled out by such a result might be much smaller than intended.

This precludes algebrization from having one of the two key virtues of relativization, namely delin-
eating those conjectures within possible reach of a robust family of techniques, from those that are not.
Indeed, some major results in complexity are suggested to have been found using relativization as such
a guide [5, 14].

Universality. A main appeal of relativization is being a universal notion, in the sense that it applies
to every statement in one generic way. Intuitively, a statement relativizes if its truth is insensitive to
broadening the definition of computer, from an ordinary Turing Machine, to one with oracle access to
an arbitrary languag®. (We provide an alternate intuition later in Section 1.1.)

This intuition is so natural that it enables the second key virtue of relativization, namely being a
“litmus test” for weeding out futile endeavours. The idea is that i§ already known to not relativize,
then any strategy for proving, in order to be viable, must somehow be unable to handle arbitrary
extensions of the computer notion, or else it would be a strategy for proving nop juzsit thaty
relativizes. Given the scarcity of such proof strategies in structural complexity — at least forjtthose
involving P-based classes — this idea makes relativization a practical tool for guiding research. (Alas,
we do not have a count on the number of fruitless research hours saved this way.)

For algebrization, however, we have no comparable intuition. This is mainly because algebrization
is a selective notion, in the sense that it is defined only for containnfett® and separations ¢ D,
and moreover, it is applied differently to each side of the containment / separation. Supposing we have
a strategy to prové — and assuming, to begin witly, is of compatible syntax — there is no universal
criterion we can apply, to check if our ideas can be extended to show thlgtebrizes. This calls into
guestion how relevant it is to know thatis non-algebrizing in the first place.

Besides the above problems, algebrization brings back some longstanding ones that are as old as the rela-
tivization notion itself:

Controversial relativizations. A pair of theorems might be derived using seemingly same techniques, yet
only one might be relativizing / algebrizing. For exam@8PACE C IP, as AW show, algebrizes, yet
its cousin,NEXP c MIP, doesnot, as observed by Impagliazzo, Kabanets, and Kolokolova [19] —
except itdoes as AW show, if we restrict oracle access MIEXP to be of polynomial-length.



It is not clear how to interpret such results without further work. Can we justify restricting oracle
access, say by showing that it yields a natural subclass not tied to the Turing machine model? If so,
then which “current technique” eliminates the difference between the two classes, the subclass and the
original, thereby overcoming the limits of algebrizing techniques (whatever they are)?

Relativizing statements vs. proofsA generally accepted (though not uncontested [21]) convention is to
remark that some proof, say ¢f relativizes or algebrizes, with no clear consensus on what that exactly
means.

The typical intent behind such remarks seems to be that the said proof can be transformed into a
proof that « relativizes(or algebrizes). However, as anything can be transformed into anything when
there is no constraint, it is not clear which proofsmiat relativize under such a definition. And even
if some commonsense transformations are tacitly agreed upon — e.g., “give every Turing machine an
oracle for®,” or “bring each statement to its relativized form” — it is unclear whether the transformed
object would always be a valid proof, let alone a valid proof thaelativizes.

Although an early manuscript by Arora, Impagliazzo, and Vazirani [3] (AlV) succeeds in giving a
precise definition of a relativizing proof, the approach taken there is recursion-theoretic and makes no
reference to devices such as Turing machines. Consequently, it seems difficult to tell whether an every-
day statement / proof — involving circuits, Turing machines, etc. — relativizes using their formulation.
For example, itis not clear if “Satisfiability iISP-complete” relativizes in their framework, or has such
a proof, even though “oracle gates” forcan be easily incorporated into a circuit / formula.

Naturally thus the question arises, of whether a simple definition can be given for what constitutes
a relativizing / algebrizing proof, without having to do any hand-tailoring for the computational model
being used, circuits versus machines. Ideally, such a definition should also test the folk belief that
relativizing techniques use computation as a “black box”, and relate that to algebrization.

In this paper, we reformulate relativization and algebrization, in a way that addresses the above problems.

First, we give a simple, combinatorially flavored definition of what it means for a statement / proof to
relativize, that yields the following intuition: a statement / proof relativizes if it is insensitive to enlarging
the standard Boolean basis. This part of our work can be considered an alternative to the recursion-theoretic
approach of Arora, Impagliazzo, and Vazirani [3] mentioned above (see Section 1.2 for a comparison).

Our main contribution is to the algebrization notion. We define a statement / proof as relataffaiedy
if, intuitively, it is insensitive to enlarging the standard Boolean bastis any affine extensior- here affine
extension is the result of a particular error correcting code applied to the characteristic string of a language.
With this definition, we show that every statement that AW declare as relativizing algebraically does rela-
tivize affinely — in fact has groof that relativizes affinely — and that the opposite holds for statements
declared non-algebrizing by AW in the classical motiglBoth require new ideas.) Our formulation in
this sense gives rigorous support to the “algebrization barrier” idea of AW, which can thus be viewed as a
refinement of the classic “relativization barrier” of Baker, Gill, and Solovay [9].

This part of our work complements, and goes beyond, the prior work by Impagliazzo, Kabanets, and
Kolokolova [19] (IKK), which also proposes a relativization-based characterization for algebrization, but
falls short of recovering some of the key results of AW, most notably regardiny 3P versusP /poly
guestion (see Section 1.2 for details).

Affine relativization is a refinement of relativization so as to capture the known useghohetization
a technique for interpolating Boolean formulas into polynomials. Famously used in early 90’s for obtaining
PSPACE c IP and related results, which are false relative to some choices of an d’ddlé, 16, 11],

1 AW state some non-algebrization results for quantum-based complexity classes as well; we do not pursue these.



arithmetization is widely regarded as a counterexample — méybeounterexample — to the rule-of-
thumb that “most known proof techniques relativize” in structural complexity theory. Affine relativization,
to the extent that it captures the known uses of arithmetization — and it does so fairly well, as we argue in
the rest of this section — can be viewed as a step towards reinstating that rule-of-thumb (albeit only a step,
as thePCP theorem is out of scope of this and related work; see open question in Section 5).

As one conceptual consequence, our formulations yield a demystified perspective on the extent to which
relativizing techniques are “black-box” and arithmetization-based techniques are not; see Section 5.

Our formulations also tell something about those “few known proof techniques” that do not seem to
relativize affinely, in particular, aboumcality of computation |t is a longstanding debate whether locality
— that the next step of a computation depends on only a “small” fragment of its current state — plays
any role in current results of complexity, particularly in interactive proofs [15, 3, 14, 19]. On one hand,
NEXP < MIP can be explained away as relativizing algebraically with a convenient, but questionable,
alteration of the oracle access mechanism as mentioned above; on the other hand, locality could provide an
honest explanation of this theorem, as argued by Arora, Impagliazzo, and Vazirani [3], but an incongruent
one to its algebraic nature, especially when its col34RACE C IP, needs no such explanation.

Our results shed some light onto this matter. As we explain in Section 1.3, it is fruitful to put a particular
class betwee®SPACE andIP, and another one betwe®&EXP andMIP, so that each theorem reads as
two containments. The second containment, we argue, captures the real content in each theorem, namely
“gap amplification”; affine relativization can derive every containment except the first obe&fBIP versus
MIP. We conclude that whether or n§EEXP < MIP algebrizes is just a matter of definition, because there
is no application of this theorem (as far as we know) that is sensitive to how it is viewed, gap amplification
versus the common view. Therefore affine relativization can be viewed as a robust proxy, or a candidate
thereof, for the current state of the art.

This is mere interpretation, however, and is not to be confused with the main message of the paper:

Summary of Results. Affinely relativizing proofs, as defined in Section 1.1, have the following properties.
e Each of the following has an affinely relativizing proof

— PSPACE c IP, viewed as gap amplification (Corollary 15)
— NEXP C MIP, viewed as gap amplification (Theorem 17)
— MAEXP ¢ SIZE(2'°8" ") vd (Theorem 25)
— prMA ¢ SIZE(n9),Vd (Theorem 25)
— NP c ZKIP if one-way-functions exist (Theorem 30)
¢ None of the following has an affinely relativizing proof
— NP ¢ P, infactPSPACE ¢ P (Proposition 32)
— NP C P,infactRP C SUBEXP (Corollary 40)
— NP C BPP, infactcoNP C MA (Corollary 39)
— pPNP ~ PP (Corollary 39)
— NEXP ¢ P/poly, in fact NEXP ¢ SIZE(n9), Vd (Theorem 35)

Further, affinely relativizing proofs are closed under inference, and if a statement has an affinely relativizing
proof, then it “affinely relativizes,” i.e., it holds relative to each language that is an affine extension, as
defined in Section 1.1.



1.1 Relativization and Affine Relativization

We now describe our formulation of the relativization and affine relativization notion. We caution that the
notion of an affinely relativizingtatementioes not depend on any peculiarity in the definitions given here.
Readers who are already at ease with some notion of relativization (vague though it may be) can skip this
section and still understand most of the paper — except what affinely relatiyprimgsare and why they

are closed under inference.

Relativization without oracles. Let the standard Boolean basis refer to the{$et, A, &} comprising
four languages (witl) denoting the empty language, viewed as the function mapping all binary strings to
zero, 1 its negation, and with\,® denoting the AND,XOR function on binary strings respectively). We
say that the statemeut holds relative to the languad® iff ) is true when the standard Boolean basis is
extended withD. We sayy relativizes to mean that holds relative to everg.

Some remarks are in order.

e Let us momentarily be more precise. Take the axioms of everyday mathematics, say, the Zermelo-
Fraenkel set theory. Add two new axioms: (i) thHal, equals{0, 1, A,®, O}, and (ii) thatO is
a language. HereB,,; and O are variables that are not previously used, ant, A, @ refer to
corresponding languages. Name the new collection of axi®@iE, for relativized complexity theory.
Now takeRRC7, and add the axiom® is empty (i.e. O equals the languadeof B). Call this set
of axiomsC7, for real-world complexity theory.
Our framework of mathematics &7 . Given a statement (in the language af 7, which is the same
as that ofRCT), we cally relativizing iff it is true in every standard model ®C7 .2

¢ 1) being nonrelativizing per se does not make it interesting or hard to prove; eygbéetthe standard
Boolean basis i$0, 1, A, ®}".

We agree to take the uniform-circuit-based definitiolPpndP-based definitions adiP, NEXP, etc.,
so that extending the standard Boolean basis Witautomatically gives us the®, NP?, etc., without
having to mention oracle access(@o— though we do mention it anyway, for emphasis. An algorithm thus
means to us a uniform family of circuits. So if we “let be a time¢(n) algorithm with oracle access to a
proof stringz”, for example, then we mean to “I&t := {V/,} be a polynomial-time-uniform circuit family
of sizet(n) (or of sizet(n) polylog t(n) — does not matter in this paper) over the bdsig; U 7" for some
languager defined appropriate to the context. The poly-time uniformity can be specified using any notion
of classical computer (Turing machines, pointer machines, etc.) or via a recursion-theoretic approach.

Itis out of the scope of this paper whether our framework can handle classes “liglowthose classes
not definable fronP. (And it is one of the observations of this paper tN&XP with poly-length queries
canbe defined fronP, as0-gap-MIP. Similarly PSPACE can be defined asgap-IP. See Section 1.3.)

1 relativizes vs.y has a proof that relativizes. We call a proof ofy relativizing iff after extending the
standard Boolean basis with an arbitrary langu&gé remains a proof of).
Further remarks are in order.
e Letus again be more precise for a moment. Recall that our framework of mathem@&tics@ven a
proofIl in CT —i.e., a sequence; ..¢,, whereg; either is inC7 or can be inferred fror., .., ¢; 1
— we say thall relativizes iff it is also a proof irRC7T .

2Assuming, as we may here and throughout the paper, that everyday mathematics is consistent, a standard model of set theory
is one where the symbol for set membership is interpreted as the actual “is an element of” relation.

3As mentioned, we do not exploit any peculiarity in this way of defidihgrhe reader who prefers the Turing machine model
can stick to it, provided the machine is defined to have oracle access to every element of the standard Boolean basis.
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In other wordsall proofs inRC7 are relativizing, and no other.

It is immediate that relativizing proofs are closed under inference, since by definition they are exactly
those proofs derivable from a certain set of axioms. Also, if a proof relativizes then so does its
conclusion, as does each intermediate statement; this is just the soundness theorem from logic.

e A relativizing proof ofvy proves more thaw. Indeed, such a proof can be viewed as a family of
proofs, parameterized by every langu&g@ewhere trivial settings o) correspond to proofs af in
real-world complexity theory. The family igniform, in fact. one proof works foeveryextension of
the standard Boolean basis. One might say the proof t@ats a “black box”.

o If we prove (i.e., ifCT proves) thaty relativizes, then it does not follow that there is a relativizing
proof of ¢, e.g., takep to be “Zermelo-Fraenkel set theory is consistent”.
Even if we can, in addition, prove itself — so now we have) andthat relativizes — it is not
clear, to us at least, whether a relativizing proof/oéxists, and unclear still, if furthermore each step
in the proof ofy relativizes. (See open question in Section 5.)

In Section 3, some of the theorems we derive are of the farmdnd« (affinely) relativizes”, or
something to that effect. By the above remarks, such a theorem does not, by itself, implyihata
relativizing proof. Nonetheless, in the process of deriving each of these theorems we end up giving a
relativizing proof of the corresponding. (Of course we do not provide a formal proof®fin first order
logic, just as we do not specify algorithms by implementing them as Boolean circuits.)

So those theorems in Section 3 can be read — and should be, by those who have not skipped this section
— as " has an (affinely) relativizing proof” for somg. To be convinced of such claims, the salient point
that should be checked in their proofs is whether they are uniform in the choice of a basis extension, i.e.,
whether they treat the nonstandard basis elements as (the affine extension of) a black box — and they do.

Affine relativization. TakeRC7 and add the axiomO is the affine extension of some language. That s,
there is a languagg, with f,, denoting its restriction to length-inputs, and withf,, denoting the unique
n-variate polynomial of individual degre€-1 extendingf,, such thatO represents the evaluation ﬁt
over GF(2*), for all k andn. (See Section 2 for a precise definition, and Section 1.3 for a discussion.)

Call the resulting sedC 7T, for affinely relativized complexity theory. Define the notion of a statement
[ proof affinely relativizing similarly toRC7 . It is immediate that affinely relativizing proofs are closed
under inference, as they are exactly those proofs derivable 6.

The empty language is the affine extension of itself. Thus it does not make any difference to add the
same axiom, thab is an affine extension, ©7 as well. Now we have three theori®@€7 ¢ ACT c CT,
each strictly more powerful than the one before, as the results in this paper imply.

Multiple oracles. If ¢ is (affinely) relativizing, or has such a proof, then what happens if the Boolean
basis is extended twice — say withy andO;? For plain relativization the answer is easy; just@db be
their disjoint unionOg [[ Oy : bz — Oy(z), and proceed as before.

For affine relativization, however, a bit more care is needed since we@ambe an affine extension.
If Oy is the affine extension afy, andO; of L, the key observation is that the disjoint uniéi [ O,
of the affine extensions is equivalent, under Cook reductions, to the affine extension of the disjoint union
Lo [] L:. This is spelled out in Proposition 38, but intuitively is true because the disjoint union merely adds
an extra dimension — theh*axis” — and the affine extension acts on each dimension independently (see
equation {) on page 9). So we sé to the affine extension af, [ [ L; and proceed as before, the upshot
being that one affine oracle is just as good as them fork € N+,

“Viewed in the contrapositive, this vindicates the use of casual remarks of the form “this proof does not relativize because this
step of it does not” — provided the said step indeed does not relativize, which by itself is a hairy claim in a casual context.
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1.2 Comparison with Prior Work

Four past works have a direct relation to ours. The main effort in all of them, and in ours, can be viewed as
trying to: (i) formalize the notion of relativizingroof, and / or (ii) refine the relativization notion so as to
capturePSPACE C IP and related results. We now do a comparison with past work, first with respect to
(i) and then (ii).

1.2.1 Efforts to Formalize Relativization

In an unpublished but well-known manuscriprora, Impagliazzo, Vazirani [3] (AIV henceforth) build

on Cobham’s axioms for polynomial-time computation [12] to defi&7, relativized complexity theory,
and argue that the standard models of this theory contain, as a sub-model, “reldiVirethe sense of
Baker-Gill-Solovay [9], i.e.P© for arbitrary®. They then define relativizing proofs as those expressible in
RCT.

A common feature — or flaw, if the reader is logically inclined — of both our definitio®R6fI” and
AlV's is that the axioms for capturing relativization go on top of an existing collection of axioms governing
everyday mathematics. On one hand, this is a feature because relativization is meant to be a guide for the
everyday researcher, who has everyday mathematics at disposal. On the other hand, this is a flaw because
statements such a®“versusNP is independent oRC7" can be easily misunderstood, as the so-called
independence concerns omgenatural way of defining®, NP out of at least two — another one being to
justignore the extra axioms (they do not interfere with everyday math). This is inevitable unlessmves
axioms from mathematics and not add to it, and the quest then becomes to find the “weakest” version of
math that can prove statements suclP8®ACE C IP, as opposed to finding, like we and AlV essentially
set out to do, for the “strongest” version of these statements that can be proven by everyday math.

One difference of our version dRC7 from AlIV’s is its accessibility. AIV use recursion-theoretic
axiomsa la Cobham [12] to create a universe of polynomial-time computable functions that goes beside the
universe of everyday mathematics. While this approach allows AlV to give an elegant and self-contained
axiomatization of® (with only a dozen or so axioms), it also makes cumbersome expressing everyday ideas
such as circuits, oracle access to a proof, etc. Our approach, in contrast, is “naive” in the sense that it does
not attempt at a minimal set of axioms (nor does it spell out every axiom) but in return, it gives a formalism
that is arguably closer to the everyday uses of relativization — e.g., “SatisfiabiNtlyisomplete” is easily
seen to relativize in our framework.

1.2.2 Efforts to Refine Relativization

Although relativization succeeds at explaining the failures of structural complexity until the 90s, it fails at
explaining the successes after, especially those regarding interactive proofs. We now discuss four past pro-
posals to refine relativization. The overarching goal in these is (or so will be our view here) to provide some
model for “known techniques”, which involves meeting two competing objectives: (a) derive all relevant
theorems in the model, and (b) provably fail to derive in the model all relevant conjectures that are evidently
beyond current reach.

We will use Figure 1 to roughly illustrate how each proposal fares with respect to these two objectives (a)
and (b). The take-away message from this micro-survey is that although parts of (a), (b) have been attained
by prior work, ours is the first successful attempt that yields all the critical pieces under one framework.



Figure 1: Attempts at refining relativization

(HC:C’=C>N1FI§)EPA§Z%§§§£ II;OIY) PSPACECIP  PCPthm | NEXPZP/poly pyp g Eg_zpp/poly’“
AlV v v v ? ?
For v v ? ? N
AW ? v ? v v
IKK v v ? ? v
this work v v ? v v

Although the table is less precise than the discussion that follows, it does illustrate some key differences
among prior work. The vertical line in the table is a caricature of the state of the art; to the left of the line
are known theorems / facts, and to the right are conjectures evidently out-of-reach.

The first proposal is from the same paper discussed abovE\by3]. BesidesRCT, there the authors
propose “local checkability” as the key non-relativizing ingredient underl#8@ACE C IP as well as
other results including thBCP theorem. The idea is that a polynomial-time computation should be verifi-
able by inspecting all bits of its transcript in parallel, where each bit depends on only a logarithmic number
of bits elsewhere. For computations with oracle access, however, this property may not hold, although it will
if the oracle itself is checkable. So their approach can be viewed very roughly in terms of ours, as taking
our version ofRC7 and adding the constrain®'is locally checkable”.

The authors call their refined theoB8€7, and point out that althoughC7 implies many known non-
relativizing results, whether it can settle questions such asrsusNP is very hard to know. In fact, they
observe that iP versusNP were shown beyond reach 6€7 in the manner of Baker, Gill, Solovay — by
giving contradictory relativizations with oracles satisfying the theory — th@vould actually be separated
from NP. In this sensefC7 is an unsatisfactory candidate for “current techniques”. (Notice that if all we
want is a theory that can derive the current theorems then we can jdsbleempty.)

In a counterview to the AlV proposal dated around the same fimnow [14] argues that the nonrela-
tivizing ingredient in the proof oPSPACE C IP is of an algebraic nature. We can interpret his key insight
as follows. AlthoughPSPACE c IP does not relativize, it does in a weaker sense:@ekenote the affine
extension ofO, agdefined on page 5. (Strictly speaking Fortnow works @vierstead ofGF(2*).) Then
PSPACE® ¢ IP?, and consequentiPSPACE® C IP® whenever® Cook-reduces t@. Effectively,
then, he defines a theoC7T by taking our version oRC7 and adding the constraiit € P°.

Although Fortnow does not prove any unprovability results for his theory, we can show that his version
of ACT vyields most of AW'’s classification of what algebrizes and what does not (hence& tlsgmbol) —
but not all, as we explain later below.

A decade-and-half after the above two pap&W), [1] introduce algebrization. Their paper finesses the
question of how relativization should be refined, by simply declaring that a stateinent3 relativizes
algebraically ifA© ¢ ]§O for everyO (for a notion ofO similar to our notion of affine extension), and that
A ¢ B algebrizes ifA® ¢ B®. No definition is given for other types of statements, or for proofs.

Since we ultimately care about containments and their negations, the AW approach seems appealing.
There are problems with it, however (page 1), chief among which is that not everything that relativizes can
be said to algebrize. For example, the stateniéfit C € NEXP A C ¢ P/poly) = NEXP ¢ P/poly
is true no matter whaVEXP or P/poly means — it is even true no matter what “is an element of” means
— hence is relativizing, but it cannot be declared as algebrizing by building on the original definitions.

On the positive side, AW succeed in giving containmekts B that do not algebrize, by showing that



an oracle® exists for whichA® ¢ B©. (There are similar examples for negations of containments.) This
is a critical idea upon which subsequent work expands, including ours; we say more about this below.

Soon after the AW papehmpagliazzo, Kabanets, Kolokolova[19] (IKK henceforth) resume the ap-
proach of AlV, and propose an intermediate theory betwREA andLC7 that they callACT, short for
arithmetic checkability theory. (They also define a variatd7 *, but we blur the distinction here.)

We can view IKK’s approach as being along the same line of Forthow’s, by considering the following
task. Given¢ and«, evaluate®(«); here¢ is a Boolean formulag is any fixed low-degree polynomial
interpolatings (such as its arithmetization), amdare inputs fromGF(20("). (Like Fortnow, IKK work
over Z, but both approaches can be adapte@(2*).) Call the decision version of this task — givén
return thei" bit of the result, for example — the languad&', short for arithmetized formula evaluation.

ClearlyAF € P. Indeed, this seems to be an essential feature of arithmetization: it would seem pointless
to interpolate Boolean formulas into polynomials that we cannot evaluate efficiently. Busibver an
arbitrary basis{A, ®, 0}, then it does not seem thatF® € PC since theO-gates withing need to be
extended somehow as well.

Now, in both IKK’s approach and Fortnow’s, we can interpret the starting point as restricting the oracle
O so thatAF® € PO becomes a true statement — in Fortnow’s case via the cons(ADa'thO, and in
IKK’s case, directly viaAF® e P©. The IKK constraint (rather, our interpretation of it) is implied by
Fortnow's; this will be clear in Section 1.3 once we generalize arithmetization. Hence anything provable
from the IKK constraint is automatically provable from Fortnow’s. Although the converse is not known to
hold, it does hold in the following sense. AnythifiK show to beunprovable from the IKK constraint, we
can show is unprovable from Fortnow’s constraint as well; we can do this using our observation on page 5,
that affine extensions respect disjoint unions. So the two approaches currently seem to have the same power.

The key advantage of our approach over IKK’s and Fortnow’s is its avoidance of computational notions
in restricting the oracl®. By giving a direct algebraic restriction, namely tl(faequalsffor some language
f, our approach allows us to expand on one of AW'’s critical ideas: using interpolation to show that certain
statements) do not relativize algebraically (in our case, affinely). In contrast, neither IKK’s approach nor
Fortnow’s is known to allow interpolation. Consequently, although IKK leave it as an open question for their
framework, we can capture a key result of AW, thdEXP ¢ P /poly does not relativize algebraicafly.

Another place where IKK diverges from AW concerns the theolnXP C MIP. As mentioned, AW
showed that this theorem algebrizes under a machine-specific restriction of th¥ El&Es While IKK did
show an analogous result for their framework in the model-theoretic sense, they did not show it in the proof-
theoretic sense; in fact they use a machine-free characterizatSR¥P and cannot directly express the
query restriction of AW, so it is not even clear a priori if the result itself can be expressed in their approach.
Instead, IKK observe that under the proper, unrestricted definitibfiid P, the theorem does not algebrize,
and suggest that there are additional ingredients underlying this theorem besides arithmetization, and point
this out as a point of divergence from the AW thesis that algebrization captures “current techniques” [19,
p.15]. As mentioned in page 3, our formulation of this theorem substantially clarifies the discussion.

Whether our formulation implies IKK’s or Fortnow’s, or vice versa, is not clear; we do not know if
algebrizing in one sense can be shown to imply the other. Whatwsay, however, is that every statement
that IKK show as algebrizing has an affinely relativizing proof, and that the opposite holds for those shown
non-algebrizing by IKK — just as the case for AW. In particular, IKK show various compound statements
to be non-algebrizing; these follow as consequences of results on simpler statements and can be shown in
our framework as well (via what we call the proof theoretic approach in Section 4.3).

5In fact IKK leave open a weaker question: whetliP ¢ P /poly can be shown to not algebrize in their framework [19,
p.15]. The same question automatically applies to Fortnow’s framework, since his constraint implies IKK’s.



1.3 Overview of Ideas and Techniques

Defining affine relativization, and proving that it works, involve a number of observations as well as some
technical ingredients. This section highlights the main ones.

Generalizing arithmetization using affine extensions. Our first observation concerns how the arithmeti-
zation method should be generalized to handle formulas over a generic Boolean basis,&sa$} where

O is an arbitrary language. In its typical description, the method states that the formalathmetizes as

1 — & whered is the arithmetization of; similarly, ¢ A ¢ arithmetizes a® - ¥. Other cases, such &sand

@, are handled by reducing to these two.

We observe that - y is the unique polynomial oveZ, of (individual) degree< 1, that extends the
Boolean functionz, y) — x A y; in other words, it extends an-gate of fan-ir2. Similarly 1 — = extends
a—-gate. We thus make the following generalization: Arithmetization replaces a Booleaf? gaftéan-in
m, with the gateD denoting the unique degreei polynomial

O@):= Y O®)- T (1 =) (1=b)+i-b Q)

be{0,1}™

that extend€) from the Boolean domain t@. We call©O the (multi-)affine extensioof O, and caution that
the notation has nothing to do with Fourier analysis.

For our results we viewt] in fields of the formGF (2¥) only. There are several benefits to this, and
we point them out as we explain our approach in this section. To begin with, we note that extension to
GF(2%) is conceptually cleaner, as it turns a functionsohits into a function om vectors ofk bits each.
Also, in GF(2’“), the arithmetization of @ ) becomes the naturdl + ¥, whereas in other fields, neither
@, nor any other Boolean operator, gets arithmetized td-urther, the equation) gets simplified, as the
product inside becomdq" , (1 + z; + b;). In fact by taking® — + andA — x as the defining rules of
arithmetization, its generalization tp)(can be arrived in another natural way, by first writi@gn its “truth
table form”, i.e., as the exponential-size formula

Ox) = (00" Ax=0")@--- & (O(1") Az =1T)
wherez = b stands fo\; (1®x;®b; ), then arithmetizing, and then gathering the summands usidgate.

Affine Relativization — capturing known uses of arithmetization. Consider a functional view of an
@—gate, as returning bits when each of its inputs come fra@¥ (2¥). In this view, arithmetizing a formula
¢ creates a family of formula§®; }, with each®; redundantly describing the behaviorg@bn the Boolean
domain — the largek, the higher the redundancy (with= 1 corresponding t@ itself).

Now if ¢ is over an arbitrary basis that includ@sgates, then unlike the case for the standard basis, its
arithmetizationd does not seem to allow efficient evaluation, over €43(2°(). Interpreting this to be
the non-relativizing ingredient in proofs ®SPACE cC IP, etc., we take the following approach to refine
relativization.

The formula®, which redundantly encodes is obtained fromp via a “local” transformation acting on
its gates, namely by adding redundancy at the gates. Based on this, our idea is to have the oracle gates of
compute not some arbitra9, but something that contains redundancy already, na@eﬂy an arbitrary
O. The plan being then to show that arithmetization — rather, current uses of it — need not introduce
redundancy at those gates, or, at least do so in a feasible way.

We arrive at our formulation thus: whereas a statement relativizes if it holds relative to every language
O, a statement relativizeadfinely; if it holds relative to every languagé of the formO for some®. More



precisely, A encodes the family of ponnomial{s(’A)m} evaluated oveGF(2F) for all k, whereO is an
arbitrary language an@,,, is its restriction to{0, 1}"*. We also call4 the (multi-)affine extensioof O.

Why was this notion not invented in 1994? Natural though it may seem, affine relativization poses the
following difficulty: the very theorems that it is intended for, eRFPACE C IP, do not appear to relativize
affinely, at least not via a superficial examination of their proofs.

To see the issue, consider a propertgf Boolean formulas — unsatisfiability, say. In provings IP
arithmetization is used asraduction from 7 to some propertyI of arithmetic formulas — e.g., unsatis-
fiability of ¢ reduces, via arithmetization, to deciding if the product bf+ ®(«)), over all binary input
vectorsa, equalsl in GF(2%) for any k.

So each theorem of the forme IP is, in fact, a corollary of a more generic result of the fdrie IP,
that gives an interactive protocol for an arithmetic property. It turns out those generic results can be further
generalized, if we extend the arithmetic basis, from the standagdtes and+--gates — which are really
A- and@-gates, respectively, per the first discussion above — by aIIo@i-r@tes for an arbitrarg). Then
the same protocols that yield € TP work just as well over this extended basis, given oracle access to the

evaluation of0. We may writelT© ¢ IPO wherelI© extenddT to formulas over the extended basis.

Now supposing we have a theorene 1P, let us make a superficial attempt to extend its proof so that
it yields 74 € IP* for some languagel; herer is a property of formulas, say over the bagis @}, and
74 is its extension to the bas(s\, @, .A}. As just explained, the proof of € IP starts with a reduction, of
the Boolean property to an arithmetic propertyl. Now here is the problem: what property do we reduce
74 to? By definition of arithmetization, it would bE+, the extension oflI to formulas over the basis

{x,+, ﬁ}. But then as just explained, we would be placingin P4 — not in IPA.

This seeming circularity —#© € IP?, 7€ € IPY, ... — can be interpreted as the main distraction from
arriving at a natural notion such as ours. Indeed, all previous attempts to capture arithmetization [14, 1, 19],
dating back to the 1994 article of Fortnow [14], can be interpreted as having to make compromises so as to
break out of this circularity. For example, the AW notion of algebrization does this by dectarin@ to
algebrize ifC® ¢ D® holds for every® (for a notion ofO related to ours; there is a similar definition for
C ¢ D). We surveyed their approach and others in Section 1.2.

In contrast, our approach tackles circularity directly. The idea is to avoid the problematlc reduction
7 = T4, and to instead reduce? to 7© by somehow exploitingr wheneverA is of the form© for
someQ. Then the combined reduction® — 7€ — II4 breaks the circularity. This fulfils the plan of the
previous discussion, namely to show that arithmetization, in its current uses, need not extend gates that are
extensions of something already.

Relativizing P C IP. The idea of the previous discussion can be realized whisithe sumr(¢) =

®,¢(x), also known as the languaggSAT. This is because when is a formula over thed-extended
Boolean basis, each occurrencedtvaluates the sunt) over GF(2*%) for somek, and then returns, say,
thes™ bit of the result giveri. Therefore, if we step fror@iF(2¥) to GF(2)*, we can rewrite each occurrence

of A as®,7(y), for some formulay over theO-extended Boolean basis. This becomes the reduction we
want, once we show how to convert formulas involving sums to prenex form, i.e. such that all sums appear
up front. It follows thatbSAT < IP — or equivalently®P C IP — relativizes affinely.

Scaling toPSPACE c IP — a proof sans degree reduction. Our approach fofbP can be adapted to
show thatPSPACE C IP affinely relativizes as well. However, we find a more natural approach which
yields another proof of this theorem; this may be of separate interest because current proofs, as far as we
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know, employ syntactic tricks in order to control the degree of polynomials that arise from arithmetizing
instances of SPACE-complete problem (e.g., [25, 6, 26, 2]).

In contrast we show, directly, that every downward-self-reducible language has an interactive protocol,
by essentially bootstrapping the very fact tidt C IP relativizes affinely. In particular, we make no use
of a specificPSPACE-complete problem; we do not even use any additional arithmetization beyond what
is needed forPSAT. (We emphasize that the new proof is sketched here because it might be of separate
interest. The standard proofs of this theorem can also be adapted to our framework.)

The new proof goes as follows. If is downward-self-reducible, then on inputof lengthn, it can
be expressed asmly(n)-size circuit over the.-extended Boolean basis, of fan-in at mest 1. This
circuit in turn can be expressed as the sp¥(z, y), where¢ is a formula verifying thag represents the
computation of the circuit on input. In notation we may summarize this reduction as

L, — ®SATLn1 (*)

where®SAT/™ is the extension oBSAT to formulas over the-extended Boolean basis, of fan-in at most
m. Repeating+) for L,,_; instead ofL,,, we get

BSAT 1 — GSATEAT ", AT n-2 (x+)

where the first reduction is because extending the basis is functorial in the senge thay implies
®SAT/ — @®SATY, and the second reduction follows by bringing sums to prenex form as mentioned
in the previous discussion. Note that the reduced formula is now of size abfgutthe one in §) is of size
d
n-.
The idea is to tame the growth in the size of the reduced formulas, by using interaction. Building on the

ideas of the previous discussion, it is easy to show a protocol yieldingtdractivereduction
(BSAT/™), 4 — (BSATI™),

that compresses instancesaS AT/ of sizen? down to sizen¢, for an arbitrarily largel and afixedc, for
every languag¢, in particular forf = L. (We sketch the protocol below on page 13.)
Thus we can keep repeatingk to get

L, — ®SATL1 — @SATL»2 — ... — @SATLow

provided we interleave a compression phase whenever the formula size exéeedimce anL-gate of
constant fan-in can be expressed as a constant-size for@Uel o reduces tabSAT. SoL € IP as
desired.

That this proof affinely relativizes is straightforward to show; we enlarge the basis ab3Ad -
instances with an arbitrary affine extensidnand employ the same ideas.

(Interestingly, just as this proof builds on the relativizationdd® C IP, we use the relativization of
PSPACE C IP in turn to give a streamlined proof of ti¢EXP C MIP theorem, that uses no specific
NEXP-complete problem nor any additional arithmetization; see Section 3.3.)

NEXP vs.MIP — the role of locality. As mentioned in the introduction, AW show tHaEXP ¢ MIP
algebrizes only under a restriction, and a questionable one at that, of the oracle access mechanism for
NEXP.% Since we define complexity classes usihgt would be even more artificial to try to express this
restriction in our framework. Instead, we find a natural approach that also sheds some light into the issues
surrounding oracle access.

5\We caution that neither AW, nor we, advocate or assumeN P bealwaysrelativized in this restricted way. It is only for
the purpose of deriving this theorem that this restriction seems inevitable — and this discussion investigates why.
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Consider generalizing the claB3, by replacing in its definition the popular constans with -, so that
if the inputz is supposed to be rejected, then the verifier erroneously aceeyith probability < 1 — ~.
(If z should be accepted, then, as before, itis.) Call this elassp-1P.

It is easy to see, by the classid@bPACE-completeness result of Stockmeyer and Meyer [28], that
0-gap-IP is identical toPSPACE. ThereforePSPACE c IP can be broken into the containments

PSPACE C 0-gap-IP C Q(1)-gap-IP

with the second containment, “gap amplification”, being the actual content of the theorem.
The corresponding case EXP ¢ MIP becomes revealing. Of the containments

NEXP C 0-gap-MIP C Q(1)-gap-MIP

only the second one, gap amplification, affinely relativizes as we show in Section 3.3. So what “current
technique” is it that yields the first containment, that affine relativization cannot capture?

It is locality, more specificallypolyloglocality, which yields the following variant of the Cook-Levin
theorem: A language is iR iff it has circuits that are polylog-time uniform, i.e., iff it is computable by a
family {C,,} of circuits, such that givetwn, i), the task to produce the type of tith gate ofC,,, as well as
the indices of all gates connected to it, can be performegebin log n time. Intuitively, this theorem does
not relativize, even affinely, simply because it restricts the circuits to have polylogarithmic fan-in.

In our framework, we defin® via poly-locality instead of polylog, and ugdeitself to express polylog-
locality (by saying that the above function on pajrsi) is in FP) and call the class thus obtain®g,..,
the subclass dP satisfying the above locality theorem. We then Igg.; to defineNPic.1, NEXPiocal,
etc. Immediately two things fall out of these definitions. First, thhahp-MIP is identical toNEXP,ca,
so locality does capture the first containment above. SecondNth&P,,..; is equivalent to the dubious
version of NEXP with polynomial-length oracle queries (equivalent in the model-theoretic sense), making
it not so dubious after all.

We do not know of any result usiiyEXP c MIP, that would break down iNEXPj,..1 € MIP is
used instead — in fact we do not know of any result us$itgXP C MIP, period. We conclude that locality
arises iINNEXP < MIP only definitionally; it is an ingredient that has not been exploited beyond making
definitions. (It would be interesting to know if the same reasoning could apply tB&lietheorem; see
open problem in Section 5.)

NEXP vs.P/poly — a coding-theoretic interpolation lemma. One of the technical contributions of the
paper is in showing that certain statementdo not relativize affinely. As usual (though not always), this
entails constructing an eligible language — an affine extendiomour case — relative to which is false.

For somey, this task turns out to be straightforward given prior work. Suicire of the fornC C D,
for which AW invented an approach based on communication complexity that also works in our setting.

For othery, however, in particular foNEXP ¢ P/poly, we need new ideas. While AW [1] did
construct aQ such thaNEXP< ¢ PQ/poly, they did this only for a multguadraticextension, i.e., fo@
encoding a family of polynomials where each member has (individual) degPe@istead of degree=1. It
seemed “crucial” [1], in fact, to increase the degree for this purpose. While quadratic extensions suffice for
the AW notion of algebrization, they do not for our notion of affine relativization.

As the key technical ingredient for this purpose, we derive a coding-theoretic ingredient (Lemma 33 and
Theorem 34), stating that knowirighits of a codeword exposes at medtits of its information word, and
this holds for every binary code, including the affine extension (GUf2~)).

AW implicitly proved a weaker form of this fact, involving quadratic polynomials. One of the ideas
that enables us to do better, is to consider a different formulation for what it means to “expose” a bit of the
information word. Whereas the AW approach (implicitly) considers each exposed bit as being completely
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revealed, our approach gives a finer treatment: an exposed bit is one batsen is revealed, but whose
contents may vary as a function of the unexposed bits.

The advantage of this refinement is that it allows us to show, gil@ts of a codeword, that the set of
all codewords agreeing on thesbits form an affine space, of dimension at mbkss than the maximum
possible. In contrast, the AW approach resorts to using indicator polynomials to surgically alter, bit-by-bit,
the codeword whosgbits are revealed; this inevitably raises the degree to quadratic because each indicator
polynomial must also vanish on theoints that are revealed, in addition to all-but-one point of the Boolean
cube.

Compressing®SAT. For the sake of completing the sketch of the alternate prodtSFACE C IP
explained earlier, we now outline the compression protocol mentioned.

The protocol is based on the fact alluded to earlier, ®&AT/ < IP/ for any languagef. This fact
follows from standard considerations: Givenover the f-extended basis, in order to computgo(z),
the verifier: (i) arithmetize® to get®, a formula over thg?-extended arithmetic basis, (ii) engages in a
sumcheck protocol [5], thus reduces the original task to that of evaluativgrGF (2%), with & € O(logn)
being sufficient forp of sizen, and (iii) evaluate®, by using thef-oracle for thef—gates.

The compression protocol also starts out as above. The difference begins in step (iii): instead of calling
thef—oracle, the verifier engages the prover. By using standard interpolation techniques, the verifier reduces
the task of computing the values Efon up ton points, to doing the same on just points or fewer, where
m is the largest fan-in of any-gate in the formula.

Thus the output of step (iii) is a list of at most claims of the form ¥, (z) = v" with m’ < m and
v,z; € GF(2F). Now becausg?m/ is merely the sumi() on page 9, which can be viewed@F(2)* rather
than inGF(2%), it follows that these claims can be expressed as a conjuncti@Bafl/~-instances, of
combined sizgoly(mk). This yields the compressed instance, si®&a\T is closed under conjunction.

2 Definitions, Notation and Conventions

O and A. Unless stated otherwis€) stands for an arbitrary language, addor its affine extension as
defined below.

Well-behaved resource bound. We call a functions : N — N awell-behaved resource bouiifdt is in-

creasing, computable in time polynomial in its input value, and satiéfigén)) C s(O(n)) C s(n)°M) ¢

s(n°M) andn < s(n). Functions of the form?, ndlog n, 20°e™” 247 are well-behaved resource bounds.
The above generalizes ta N> — N if fixing either of the inputs yields a well-behaved resource bound.

Languages as families. We view languaged. : {0,1}* — {0,1} as families of Boolean functions
{Ln:{0,1}" — {0,1}}, cn, though we sometimes specify them as doubly-indexed families of the form
{ fnge : {0,1}30m0) — Lo, 1}}m7keN, wheres : N? — N is a well-behaved resource bound that is polyno-
mially bounded inmk.

It is an elementary fact that a family of the latter kind can be efficiently viewed as one of the former,
by using a pairing function and padding. For the sake of concreteness,{gfiyer}, letm o k£ denote the
Cantor pairing ofn andk, and defing{ L, : {0,1}" — {0,1} }nen @SLn(21..20) 1= fon k(T1-- T 1)) fOr
the largestn ¢ k such thats(m o k,m o k) < n.

RepresentingF,x. We represent each elementlof. by ak-bit Boolean vector, forming the coefficients
of a polynomial in the rindF2[x] mod some irreducibley (z) of degreek. We fix a uniform collection
{pr},cy SO that a deterministic algorithm can prodygen time polynomial ink [27].
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The Boolean versioof ¢ : FJ; — [Fy is, for concreteness, the functidmol(q) mapping(z,i) to
the ™ bit of ¢(x). Our results do not depend on this definition; any other equivalent function (under Cook
reductions) would work.

Affine extensions. (This definition uses all the definitions above.)

Given a total Boolean functiorf,, : {0,1}"* — {0, 1}, we define itsaffine extension polynomials
the uniquem-variate polynomial oveF,, with individual degree< 1, that agrees witty,,, overFs (given
explicitly in () on page 9 .) We denote this polynomial fm

By theaffine extensioof f,,, we mean the family

{hool(7n) } oy

wherefn'i is the function that evaluatef, overlFy.
Given a family F' of functions f,,, for variousm, we define its affine extension (polynomial) as the
family obtained by applying the above definitions to each member.

Boolean bases. We define a Boolean basis inductively, as either thelsgt := {0,1,®, A}, or the set
BuU{f} whereB is a Boolean basis, anfis a (possibly partial) language. We referRg,; asthe standard
Boolean basisand toB U { f} as the basi®? extended witly.

The (partial) language ®SAT/. For every (partial) languagg and Boolean basig, we definedSAT/
as the (partial) language mappiagz) to the evaluation of the mo2l-sum@z¢(d), where¢ denotes a
formula over the basi® extended withf. By defaultB is the standard basis.

We index®SAT/ by n, an upper bound on the number of gates of the formula

®SAT/ is undefined on thosg, and only on those,}hat are undefined on sqﬁn@due to some gate of

¢ receiving inputs out of its domain while evaluating3)). Notice that over the standard basisfifs a
language then so ®SAT/, and the same holds if the standard basis is extended with any language.

(Interactive) Reductions. For (partial) languageg andg, we write

f—y
if there is an interactive protoc®l such that giverx ande, the protocol runs in timgoly(n/c) and ends
with the verifier outputting;, such that ifz € dom f then with probability at least — ¢: (i) y € dom g, and
(i) f(z) = g(y).

We use the same notation evelifuses no interaction, and even when it is deterministic.

3 Positive Relativization Results

This section shows that the famous results on interactive proofs admit affinely relativizing proofs, as do the
circuit lower bounds that build on them. These are tRgheorem of ShamirKSPACE C IP, Section
3.2), theMIP theorem of Babai, Fortnow, and LunWEXP < MIP, Section 3.3), th&KIP theorem
of Goldwasser, Micali, and WigdersoWP C ZKIP if one-way functions exist, Section 3.5), and the
strongest lower bounds known-to-date against general Boolean circuits, by Buhrman, Fortnow, Thireauf,
and by Santhanam (Section 3.4). All of these build on several propert#SAt developed in Section 3.1.

(As explained in Section 1.1, we do not state these results in proof-theoretic terms; e.g., Theorem 2
asserts, among other things, tlE8AT C IP affinely relativizes, rather than that it has such a proof, even
though the latter also holds.)
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3.1 Checking and CompressingpSAT

This section develops two theorems and two proposition®®AT that enable most of the positive rela-
tivization results in the paper.
We first recall some notions from program checking [10].

Definition 1 (Same-length checkableYVe say a language := {L,}, _, is same-length checkabitthere

is an interactive protocol for computinig,, i.e. for deciding the languade, b) — L, (x) = b, wherein the
prover acts as a purported oracle foy. We sayL is checkabléaf the prover is allowed to answer queries
also forL_,,. The verifier in these protocols is calledlaeckerfor L.

The first main result in this section shows (via an affinely relativizing proof) the existencebdf-a
complete language that is same-length checkable.

Theorem 2 (Checking®SAT). @SAT is checkable. In fackpSAT is equivalent, under Karp reductions,
to some language that same-lengtltheckable.
This also holds if we extend the standard Boolean basisijthnd give the checker accessA4o

Theorem 2 is used, from different aspects, in deriving Sharfiit’¢heorem (Section 3.2) and the circuit
lower bounds of Buhrman et al. and of Santhanam (Section 3.4).

The second result gives an interactive compression scherfSiaT ", which cuts the size of a formula
from n? to n¢, for an arbitrary largel and a fixed:, as long as thé-gates have fan-i(n) in the original
formula. (The runtime of the interaction dependsdonThe verifier in the interaction need not have oracle
access td.; in fact L may even be undecidable as far as the verifier is concerned.

Theorem 3(CompressingdSAT). For every languagd. := {L,,}, ., there is an interactive protocol that
reduces instances @iSAT <~ of sizen, to instances oSSAT <~ of sizepoly(m log n) for everym, n.
This also holds if we extend the standard Boolean basisijthnd give the protocol access th

Theorem 3 is used in deriving ShamifB theorem (Section 3.2) with a new proof of that result.

We now give two auxiliary facts that come in handy when proving Theorems 2-3 arié ttneorem.
The first is a consequence of the fact that an arithmetic expression involving binary-valued sums can be
written in prenex form, i.e., so that all the sums appear up front.

Proposition 4. @SAT®AT _, @SAT. The reduction is universal in the choice of a Boolean basis.

The second fact is that extending the Boolean basis is a functor, from the category of all (partial) lan-
guagesf, to the category consisting &fSAT/ for every f, where the morphisms are Karp reductions.

Proposition 5. If f — ¢ via a deterministic reduction, theBSAT/ — @©SATY, for all (partial) languages
fandg. The implied reduction is universal in the choice of a Boolean basis if the assumed reduction is.

Although Proposition 5 concerrBSAT, the fact holds more broadly, e.g., for the languéie-Eval that
evaluates a given circuit (and the latter is what we essentially prove).
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3.1.1 Proofs of Theorems 2-3 and Propositions 4-5

We now proceed to prove the claims made in the previous section — first the propositions then the theorems.
We begin by introducing arithmetic bases.

Definition 6 (Arithmetic basis) For every Boolean basig, define thearithmetic basisB as the set com-
prising all constants iff,. for eachk, andf for eachf € B. Let the standard arithmetic basis Bg,;.

Consider the class of formulas obtained inductively, by first letting in every arithmetic formula, and then
inductively letting inzye{()’l} 1) for everyi already let in and for every variable Let us refer to such
formulas as arithmetic expressions involving binary sums.

We claim that an arithmetic expressidr{x) involving binary sums can be rewritten in prenex form,
i.e., as>,®(z,y) whered is a summation free formula, in time polynomial in the size of the formula.

This is trivial to see if¥'(x) is of the formW; - Wy, and if by recursion?; is already brought to prenex
form X, ®(x,y), and¥; to 2, @y (z, 2): then just make surg andz refer to disjoint sets of variables by
renaming as needed, and writx) = >, . ®1(x,y) - Pa(x, 2).

In caseV = ¥, + U,, after recursing and renaming as before, write

V() = Zb,y,z (‘I’l(%y) b Tz + Po(x,2) - (1-0) - Hiyi)a
whereb is a single variable.

This proves the claim for standard arithmetic operators. More geneFatigy be of the forn@(\Ifl,.., Vo)
in that case, use the definition 6z, ,,) (see () in Section 1.3) to rewritd as

U(@) = 4, Obt,s ) - T+ Wilw) + by), (1)
and then recurse into the product on the right side.
As a special case, we have Proposition 4:

Proof of Proposition 4. Let B be any Boolean basis, say, without loss of generality, the standard basis
extended withD. Given a formula) over the basi$3 extended withbSAT, we want to reduce the task of
computing®, 1 (z) to that of computingb.¢(z), for somegp over the basis3.

Replace each occurrence®8AT in v with the actual sum to be computed. This gives an expression
1)’ of the desired form, except for the occurrencebefjuantifiers within.

Now observe that the above transformation involving arithmetic expressions applies just aswell to
(essentially because a Boolean expression can be viewedFasaaithmetic expression and vice versa, and
because the transformation does not introduce any non-binary constants). This completes the reduiction.

We use Proposition 4 to prove the Proposition 5:

Proof of Proposition 5. Let R be an algorithm realizing the reductign— g, i.e., R := {R,(z,i)} isa
uniform family of circuits such that if; := R, (w,7) thenf(z) = g(y), where|y| € poly(n). Consider an
f-gate, say of fan-im. We can implement this gate with the circyit R,,, i.e. the circuitk,, composed with
a g-gate, and this circuit can in turn be expressed as the®yaiz, y) where¢ is the formula verifying
thaty describes the computation of the circuit on This showsf — ©SATY, and the claim follows by
Proposition 4. O

We now turn to Theorems 2 and 3. We start with defining the language claimed to exist in Theorem 2.

Definition 7 (+ASAT). For every (partial) languag¢ and Boolean basi®3, define+ASAT/ as the
Boolean version of the function mappidg¥) to the evaluation of the suin;®(a); here,a; ranges over
{0,1}, and® is a formula over the arithmetic basisextended withf. By defaultB is the standard basis.

16



We index+ASAT by n and k, and write the corresponding member-asASAT,,, wheren upper
bounds the size of the formudaas measured by the number of nodes, ladénotes the field,» where the
constants ofb reside. For our purposes (to be made clear in the proof of Lemma 10) we régridog n.

We break the proofs of Theorems 2-3 into three common lemmas. The first two give the equivalence of
@®SAT and+ASAT.

Lemma 8 (Arithmetization) ®SAT — +ASAT. The reduction is universal in the choice of a Boolean
basis. In addition, the same reduction givBSAT,, — +,ASAT for somek € O(logn).

Lemma 9 (Booleanization) +ASAT — @®SAT. The reduction is universal in the choice of a Boolean
basis.

We call Lemma 9 Booleanization, as it involves a switch of basis from arithmetic to Boolean.

Proof of Lemma 8 Given ¢ over any Boolean basis, Iét be its arithmetization as defined in Section 1.3.
By the way we represefit,. (Section 2), computing,¢(«) reduces to computing the least significant bit
of the sum>_, ®(«) overFy: for anyk, where eacla; ranges ovef0, 1} in both sums. O

Proof of Lemma 9 Given®(z) and/, we want to express th# bit of > ®(x) as some mod-sume. ¢(z).

We may assume that there is only one nonstandard basis elendersiay/; this is without loss of generality
because whatever we do frgates will apply just as well to any other nonstandard element. Thus we want
¢ to be over the standard Boolean basis extended jvith

To begin with, let us assume that there is figate in®, in other words, tha® is aF,.-polynomial
for somek. By the way we represeifit,. (Section 2), there is a Boolean circdif X ) that takes as input a
k-bit vector X ; corresponding to each inpuf of (), and outputs: bits representing the valug(x). C
is constructible in polynomial-time gived.

Because we want thé bit of the sum>~,®(z), and because addition iy corresponds to componen-
twise addition inF%, we can ignore all output bits @ except the’™ one. Further, because the summation
variablesr; range over binary values, we can fix in eaXhall the bits to0 except the least significant bit,
which we can calk;. So we now have a circu(z) returning the/" bit of ®(x) for everyz from the
Boolean domain.

It follows that the/™ bit 3=, ® () equals®, ,é(z, y), wheres is the formula verifying thay describes
the computation of the circu@’ on inputz. This proves the theorem whédr(z) is a polynomial.

Now suppose thab containsf-gates. Mimicking the above reasoning for the standard basis, we want
to express the evaluation &fas a Boolean circuit withf-gates. Once this is done, the rest would follow as
above.

Perform the process, explained before the proof of Proposition 4, of brirgittgprenex form — a
seemingly useless thing to do ésdoes not involve sums. But notice that as a side effect, the process
transforms the summation-frdgx) into the sum= g ®'(z, B), where eaclf—gate in®’, say thei one, is
“isolated” in the sense that its inputs now come from sdBg .., Bi,, among the variable®, which all
range over Boolean values.

It thus follows, similar to before, that thé bit of ©,®(x) equals®, 5 ,¢'(z, B,y), whereg' is over
the standard basis extended wjthThis finishes the proof. O

The lastlemma we need for proving Theorems 2 and 3, essentially says that claims of the fdrfnf =
v’ are same-length checkable, provided that the checker has oracle access to eacl®géit¢hiere is no
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access for one type of gate, say pﬂgates, then instead of a yes/no answer, it can output a small conjunc-
tion of claims of the form f(z) = w’ where “small” means no more than conjuncts if the fan-in of the
f-gates ind is at mostim.

Lemma 10. For every languagd. := {L,,},, ... there is a same-length checkérthat reducest ASAT”
to the task of verifying, in parallel, multiple claims regarding the affine extensidn of
In particular, +,ASAT < gets reduced to at most claims of the formff (y) = v’ wherei < m.
This also holds if we extend the standard Boolean basisjtand give the checker accessAo

Proof of Lemma 10The checkel is to verify that the/™" bit of >, ®(x) equalsh, given @, ¢, b); here®
has constants il,» and hence the sum is ovEs:. V works as follows:

First, it obtains the rest of thiebits for >, ®(x), so the claim is nowX, ®(z) = «’ for someu € Fyx.

Second, it performs the sumcheck protocol [5] o¥er to get rid of the sum and update the claim to
‘®(y) = v’ for somey, v. Notice that the field size remains the same.

At this point, V' obtains the value of each gate in the evaluatio®@f) — i.e., the evaluation of each
subformula of® ony — and checks all of them except those invoIviBg

Finally, V uses the interpolation technique from the LFKN protocol [22], and combines multiple claims
of the form ‘Ei(z) = w’ into a single one, for each distinét This completes the description of the checker.

By representing each node &f with a string of O(k) bits, we can ensure that the queries made by
the checker remain the same length. The analysis of the protocol is standard, and the requirement that
k > 3logn in the definition of+ASAT ensures soundness. The claim follows. O

Before we finally prove Theorems 2-3, let us note one consequence of Propositions 4-5 and Lemma 9:

Corollary 11. Let© be a language, possibly partial, and lgt be its affine extension. ThepSATA —
®SAT?. The reduction is universal in the choice of a Boolean basis.

Proof. Being the affine extension @, on input(z, ¢), A gives the/!" bit of the valueQ takes atz. In other
words, A computes the-r ASAT? instance(®, ¢) where® is the formula O(z). Thus A — +ASAT®,
and by the Booleanization LemmaASAT® — &SATY. Then by Propositions 5 and 4,

BSATA — @SAT®SAT? _, ogATO
as claimed. O

Proof of Theorem 2. We are to show that there is a langudgehat is equivalent tedSAT under Karp
reductions;K further must be same-length checkable given accesk tie claim thatX := +ASAT?
would do.

We begin by showing thak and®SAT reduce to each other. In one direction we have

K — @SAT® — @SATA,

where the first reduction is given by the Booleanization Lemma, and the second by using Proposition 5 and
the fact thatO reduces to its affine extensich For the other direction, do the same sequence of reductions
in reverse, by first using Corollary 11 and then the Arithmetization Lemma.
Next, the same-length checkability &f given access tol, is immediate from Lemma 10 by settirdg
to the empty language : = — 0.
Finally, that®SAT# is checkable follows from its equivalence &which itself is checkable: On input
x, reduce it to an input’ for K, then simulate the checking protocol f&¥(z’), by reducing each query for
K to one for®SATA. O
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Proof of Theorem 3. Extend the standard Boolean basis withWe are to show that there is an interactive
protocol yielding the reduction
BSAT, =" — @SAT 5" |\
assuming the protocol is given accessto
Let us make a notational convention, and &sAT/9, to refer to either of ®SAT/)9 and(®SATY)f
depending on context, as they are the same (partial) language by definition (Section 2).
We proceed with the proof. We have

BSATALsm — @SATOLsm — 4+ ASATO Ls<m,

where the first reduction is by Corollary 11 and the second by the Arithmetization Lemma. In fact, the same
sequence yields

BSATF<m _, 4, ASATOL<m

for somek € O(logn).

Now, Lemma 10 says that, ASAT?L<m is reducible, via an interactive protocol that has access, to
to the conjunction of at most claims regardingif, i < m, and therefore to the conjunction of at most
mk claims regarding the Boolean versionfnﬁ‘. Altogether these claims can be expressed as one Boolean
formula, hence as on@SAT instance, of sizeoly(mk), over the standard basis extended with the affine
extension ofL<,,. In notation,
L,

O,L<,
+RASATOF<m — @SAT =

where we momentarily overload the notatif)gm to denote the affine extension bt,,.
Finally, Corollary 11 says, with the settifg = L<,,, that

SSAT <m — @SATF<m

and the theorem follows. O

Remark — what is non-relativizing here? Fortnow and Sipser [17] show a langua@eelative to which

coNP C IP fails, and it is easy to extend their argument#8AT C IP. So at least Theorem 2 does

not relativize. Yet, it seems that everything leading up to Theorem 2 above relativizes — Propositions 4-5,
Lemmas 8-10, Corollary 11 — and that the theorem follows by just putting these ingredients together via
inference. Since relativizing statements are closed under inference, it seems Theorem 2 does relativize.

Before clarifying, let us probe further. Can we not consigeerytrue statement as relativizing, by
simply removing all occurrences of “the standard Boolean basis” and explicitly listing all the elements?

In either case, the key point to remember is that we are really interested in a particular way of formalizing
statements. We especially agree (Section 1.1) to défiimesuch a way that in a theorem of the form,"
and this holds when the Boolean basis extended @ifbr .A]” it is superfluous to add “and the algorithms
are given access 10 [or A, resp.]”. If a statement does not follow this convention, then we are not really
interested in whether it relativizes.

Now notice that Lemma 10 does not follow this convention: the basis is extendedJwibut the
algorithm is given access td. We can restate this lemma so that it complies with the convention, and argue
that in its revised form it does not relativize. But we prefer its current form for streamlining the exposition.

The quickest way to settle the issue, given the exposition, is to mentally replace Lemma 10 with its proof
whenever it is invoked, namely in the proofs of Theorems 2-3, instead of viewing it as a separate result.
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3.2 ThelP Theorem

In this section we show that Shamif® theorem,PSPACE C IP, admits an affinely relativizing proof.
As a byproduct we obtain a new proof of this result; see Section 1.3 for an overview and comparison with
previous proofs.

We begin by generalizing the self-reducibility notion to include oracles. Since an algorithm means to us
a uniform-family of circuits (Section 1.2) we automatically have the following definition:

Definition 12 (Self-reducibility w.r.t. a basis)Call a languagd. := {L,},_, downward-self-reducible (d-
s-r) with respect to the Boolean badis(standard by default) if there is a uniform family:= {C,,},_,, of

poly(n)-size circuits over the basiB extended with, such that for every. > 0: (i) C,, computed.,,, and
(i) the occurrences af -gates inC,,, if there are any, are fak,, only.

The proof of Shamir's theorem is a straightforward consequence of the results in Section 3.1, on check-
ing and compressingSAT. We show:

Theorem 13. Every downward-self-reducible language is computable by an interactive protocol.
This also holds if the standard Boolean basis is extendeditind protocols are given access.b

Proof. Extend the standard Boolean basis with Let L := {L,}, _, be downward-self-reducible (with
respect to the extended basis). Then for everhe circuitC,, computingL,, can be (uniformly) expressed
as the sun®,¢(z,y), whereg is the formula verifying thay describes the computation 6fon the input
x. So there is a reduction that yields for a large enough congtant

L, — (®SATL-1) 4, 2

everyn € N. Here and throughout the rest of the pr@fSATL-1 denotesbSAT, L; denotes.<;, andn’
denotes’ + 1.

Combining (2) with Proposition 5, then applying Proposition 4, and then Theorem 3, we get a sequence
of reductions such that for every

(@SATL"*I)nd — (GBSAT@SATL"_Q)nd/ — (EBSATL”*2)nd// — (@SATL"”)nd, (3)

whered, d’',d"” are large enough constants (in particulanust exceed the exponent hidden in they/(-)
notation of Theorem 3).

Now consider the reduction that on inputto L, first applies the reduction in (2), and then for
iterations, applies the reduction sequence in (3). This compound reduction yields

L, — ®SAT,
for everyn € N, in other words, it yieldd, — ©SAT.
By Theorem 2 on checkingSAT, it follows that L is computable by a protocol with access4o [

By the result of Stockmeyer and Meyer [28]SPACE has a complete language that is d-s-r, and the
same holds foPSPACE/ with respect to thef-extended basis, for every languagiein particular for
f = A. We have thus proved Shamir’s theorem, which we now state as a “gap amplification” result, as
discussed on page 11.

Definition 14 (y-gap-IP). Say that a languagg is in v-gap-IP iff there is an interactive protocol fak
with completeness$ and soundness 1 — «. Here~y can be any function fro¥ to [0, 1) C R.

The Stockmeyer-Meyer result can be viewed as saPRBACE C 0-gap-IP, and the latter class by its
very definition has a complete language that is d-s-r (namely the langl@B&"). Hence:
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Corollary 15 (IP theorem) 0-gap-IP C €(1)-gap-IP. This also holds if the standard Boolean basis is
extended with4 and protocols are given accesstb

3.3 TheMIP Theorem

In this section we show that tiEXP < MIP theorem of Babai, Fortnow, and Lund [7] (BFL) admits an
affinely relativizing proof, if it is viewed as a gap amplification result as explained on page 11. We show:

Definition 16 (y-gap-MIP). Say that a languaggis in v-gap-MIP iff there is a multiple-prover interactive
protocol forL with completeness and soundness 1—+. Herey can be any function froi to [0, 1) C R.

Theorem 17(MIP theorem) 0-gap-MIP C Q(1)-gap-MIP. This also holds if the standard Boolean basis
is extended with4, and the protocols are given access4o

The proof becomes a straightforward consequence of Section 3.2, tHat theorem has an affinely
relativizing proof, once two ingredients are introduced. First is a very useful characterization of MIP, and
more generally of-gap-MIP, due to Fortnow, Rompel, and Sipser [14]. We paraphrase their result:

Fact 18. L € MIP iff there is a languager such thatl, € TP™, with a protocol that is robust to its oracle
in the following sense: if some other oraect& is used instead af then no prover strategy can exploit this,
i.e., the verifier cannot be convinced to acceptith probability > 1/3 whenevelL(z) = 0, even if some
otherz* is used as oracle instead of

This equivalence more generally holds MITP” is replaced with “y-gap-MIP”, * IP” with “ ~-gap-IP”,
and “1/3” with * 1 — 4"

The above also holds when all the protocols involved are given (additional) accéss to

The second ingredient in proving Theorem 17, and the key one, is the seminal “multi-linearity test” of
BFL [7]. We paraphrase again, by combining it with a “Booleanness test” from the same paper:

Fact 19. There is an interactive protocolecode, satisfying the following: Given oracle access to a func-
tion 7*, and given input$.X, ), the protocol runs in timgoly (N /c) whereN = | X |, and outputs:
(i) =*(X), if 7* is the affine extension of some Boolean function tits,
(i) f(X), for some fixed affine extensigrihat is nearbyr*, if one exists nearby and if (i) fails
(i) “fail”, otherwise
where the outcome in case (i) happens with certainty and in cases (ii) - (iii) with probability— ¢,

and where being nearby* means agreeing with* on some).99-fraction of inputs, and where the affine
extensions are ovéf,: for somek > clogn, with ¢ being a universal constant.

With Facts 18-19 in hand, we are ready to derive Theorem 17. As mentioned, the proof will use the fact
that Shamir'dP theorem affinely relativizes, so we begin with a preparatory remark about this. The way it
is stated in Corollary 15, namely asgap-IP C IP, this fact is not strong enough for our purposes in this
section. We need the following variant:

Corollary 20 (IP theorem, stronger versian}or every0-gap-IP protocol, there is a corresponding®
protocol that computes the same language. This also holds if the standard Boolean basis is extended with
A; in fact the corresponding protocol does not depend on the choige of
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In contrast, Corollary 15 allows the corresponding protocol to depend.ofo reinforce the difference,
notice that it is not even true in general thati&protocol remains one if its oracle is changed, because the
gap condition can then be violated on some inputs. To be convinced of Corollary 20, one way is to skim
back to Sections 3.1-3.2 and notice, in particular, that Theorems 2-3 reg&fikifj assert that their claims
carry over to an extended basis via Haneprotocols that work for the standard basis. (An alternate way is

to observe that thEP protocol for the languag@QBF is uniform in the choice of4.)

Proof of Theorem 17Let us make a notational convention, and (igéz)| to denote the maximum proba-
bility that a verifierl” accepts its input, over all possible prover strategies in a protocol.

Let . € 0-gap-MIP. By Fact 18,L € 0-gap-IP™ for some language; we may assume is an affine
extension since every language reduces to its affine extension. Pick any protocol rdakzitwgap-1P™,
and let its verifier bd/{,. We know that this protocol is robust to its oraalén the sense of Fact 18.

By Corollary 15,L < IP™.” Therefore, by Fact 18, all that remains to show is that among the protocols
realizingL € IP™, one is robust tar. So pick any protocol realizing € IP™, with verifierV say. We may
assume that the soundness error of this protocal 136 by amplification.

Consider modifying//, so that it performs each of its oracle queries, say (& ), via the protocol of
Fact 23, asDecode™ (X, ), and rejects upon failure; the parametewill be determined later. By Fact
19-(i), this modification does not affect the outcome of the protocol whenused as oracle, so we still
have alP™-protocol forL.

We claim that this new protocol has the desired robustness; in the notation introduced up front,

[VoDec™ ()] < 1/3

for every language™* and everyr such thatl.(x) = 0, whereV o Dec denotes the modified verifier.

To prove this, letr* be an arbitrary language and suppdge) = 0 for a givenz € {0,1}". For
convenience, assume that onthe verifierlV makes oracle queries of one fixed length, so that the same
holds forV o Dec and we may focus ony, for someN depending o, instead ofry,. for variousi.

The proof is trivial in case there is no affine extension nearhyin the sense of Fact 19. Indeed, we
may assume thaf always makes at least one oracle query, even if only to ignore the answer, Szthdt
is invoked at least once by o Dec. Then[V oDec™ ()] < e by Fact 19-(iii).

So suppose there does exist an affine extension nedybystarting from the very first protocol fat,

i.e. the one with the verifie¥y, and going toward the last one with the verifiés Dec, we will now argue
the validity of the implications

Lz)=0 = [V{(z)] <1 = [VoDec! (2)] <1/6 = [VoDec™ ()] < 1/3

for the affine extensiotf of some language, such that is nearbyr?,. This will prove the theorem.

The first two implications hold no matter whts. Indeed, recall thdtj is the verifier of &-gap-1P™-
protocol for L that is robust tar, and we already have the first implication.

For the second implication, we need the strength of Corollary 20. We knowthagrees withl/;” on
« by Corollary 15, but using Corollary 20 we can also say Hatagrees WitH/{)f onz, and hence accepts
x with probability < 1/6. The same holds fdv o Dec? in place ofVV/, by Fact 19-(i).

For the lastimplication, lef(n) be the running time of” onx. Becausery, is nearby an affine extension,
Facts 19-(i)-(ii) imply that there is some fixed affine extensfgnfor which V o Dec/N behaves identical to
VoDec™ onx except with probability< tc. So sett = 1/(6t), and completefy to a language that is
itself an affine extension — a trivial thing to do iixan just be zero on the rest of the inputs. O

"When the Boolean basis is extended withnotice thaD-gap-IP™ really involves two affine oracles not just one. We are still
justified in invoking Corollary 15, however; see the discussion in page 5 titled “multiple oracles”.
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3.3.1 Comparison with the standard view

We now make precise the discussion on page 11, that relates the gap amplification vienM &P theorem,
Theorem 17, to the standard vieNEXP ¢ MIP:

Proposition 21. NEXP c 0-gap-MIP. This doesiot alwayshold if the standard Boolean basis is extended
with A.

In order to make transparent what “current technique” yields it, we prove Proposition 21 in two steps. First,
we characteriz®-gap-MIP as a subclass adfEXP, namely as those languagesNEXP with “strong
locality”. Then we show that the strong Cook-Levin theorem collap8eXP to that subclass.

Definition 22 (strong uniformity) Call a family of circuits{C,, }, _, strongly uniform iff the function that
outputs, given inputn, i), the type of the' gate inC,,, as well as the indices of all gates connected to it, is

in FP.

Definition 23 (NEXPjca1). Let Piocar be the class of all languages with strongly uniform polynomial-
size circuits. Using this class defitdP),..;, and then by padding defif€EXP,..1; in other words let
NEXP.ca1 be the class of all languages with strongly uniform exponential-size nondeterministic circuits.

Proposition 24. 0-gap-MIP = NEXPy,..1. This also holds if the standard Boolean basis is extended with
O, and the protocols are given access®o

Remark.Over an arbitrary basis extensi@dh the classNEXPy,.. corresponds exactly to what we may
denote agvE X POV the Turing-machine-based definition of relativiZéBXP where the oracle queries
are restricted to be of polynomial length. In logical terms (Section 1.1), in every standard motté¥ of
the variableNEXP),.,; gets interpreted as the clas& XY POPoY] for some®, and conversely for everg,
there is some standard model.4€7 in which NEXPy,..; is interpreted as/€ X PPl Proposition 24
thus vindicates the use of poly-length query restriction in previous work; see the discussion on page 11.

We now proceed to prove Propositions 24 & 21.

Proof of Proposition 24.Part(C): Extend the standard Boolean basis with Let L € 0-gap-MIP. By
Fact 18,1 € 0-gap-IP™ for some language. In other words, there is a uniform family of sizely n
circuits V™ := {V.7(z, )}, over the basis extended with(this extension is in addition t®) such that

L(z) = 1iff
/\\/---\/Vn“(x,r)

Ty T2 T"V“

evaluates td, wherer ranges over lengthely n strings (wlog/r| is even) andv = |z|. View this expression
as a circuitD? (z), of sizeO(2/") times the size o¥/", and then as a circui®,, (z, y, ) over thestandard
basis, by replacing eachrgate inD with a y.-gate (we still have? in the basis). Sinc&” is a uniform
family, it follows thatC' := {C,,(x, y-) }» IS a strongly-uniform family. This proves the claim.

Part (O): Extend the standard Boolean basis with Let . € NEXPy,., With a corresponding
strongly uniform circuit family{C,,(z,y)}, of size= s(n) € exppolyn. For everyz € {0,1}" and
i € {0,1}°25(") let n(x,i) be the value of the!" gate inC,,(z,y*) for some fixedy* maximizing the
output of C,,(x, y) over all eligibley. Then in the protocol fol(z), the verifierV (z) simply: (i) picks at
randomi « {0, 1}'°25("); (ii) using the strong uniformity of C,, }, finds out that the" gate is, say, of type
f and is connected, say, to gatesi,,, in that order; and (iii) checks that the transcript is consistent with the
i gate, i.e., that = f(z1..z,,), Wherez stands fotr(z, ) in general, with the special case being when gate
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i is the output gate (then = 1), and wherez;, stands forr(z, i) in general, with the special case being
when gateiy, is an input gate (then;, = x; for an appropriatg). It is easy to see the robustness of this
protocol tor. The claim follows. O

Proof of Proposition 21.P C Pj..1 by the strong Cook-Levin theorem [13], implyinEXP € NEXPjocal
and proving the first claim via Proposition 24.

For the second claim, we want to show a langué@geith its affine extensiomd, such thalNEXP ¢
NEXP.ca relative toA. It actually suffices to show this non-containment relativétinstead ofA. To
see why, recall thatl reduces tabSAT® (Corollary 11), and notic®SAT € EXP),..; as a relativizing
fact; therefore neitheNEXP nor NEXPy,..1 changes if0 is used as the basis extension insteadl of

The claim now follows by a standard diagonalization-style construct that exploits the constraint on the
length of theO-queries INNEXP1gca1. O

3.4 Lower Bounds against General Boolean Circuits

Using thelP theorem and its variants, Buhrman, Fortnow, Thireauf [11] and Santhanam [23] succeeded in
obtaining the strongest lower bounds known-to-date against general Boolean circuits. In both results, the
lower bound is shown for the class of Merlin-Arthur protocols; in the case of Buhrman et al. it is for the
classMA (expn), of protocols running in exponential time, and in Santhanam it isMa«(poly n). For
notational convenience, we us€A (¢(n)) to denote classes of partial languages, and make it explicit when
we talk about the subclass of total languages.

In this section we give an affinely relativizing proof that unifies both results. We prove:

Theorem 25. For every constand,

(i) MA(expn) contains a language that does not have circuits of é)t@‘ogd”).

(i) MA(poly n) contains a partial language that does not have circuits of 6lze?).
This also holds if the Boolean basis is extended witfand protocols are given access.ib

The proof consists of three main ingredients. The first one shows that if the lower bound fails to hold,
then this failure scales ®SAT.

Lemma 26 (Scaling)
(i) If part (i) of Theorem 25 is false, theBSAT has circuits of size?(QIOgd") for somed.
(i) If part (ii) of Theorem 25 is false, the®SAT has circuits of size) (n?) for somed.
This also holds if the Boolean basis is extended with

We defer the proof of this lemma to the end of this section.
To proceed with the rest of the proof it will be convenient to introduce some notation.

Definition 27 (X3SAT). Let X3SAT denote the language mappingr, v, z) — JzVy3z ¢(z,y, z) where
¢ is over the standard Boolean basis by default.

Let £3SAT(¢(n)) denote the set of all languages Karp-reducible in ting to ¥3SAT, wheret(n) is
a well-behaved resource bound.

The second ingredient in proving Theorem 25 is a collapse result: if the conclusion of the Scaling lemma
holds, then the polynomial-time hierarchy collapses. We defer its proof to the end of this section.
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Lemma 28(Collapse) Let s be a well-behaved resource bound.
If ©SAT has circuits of siz€(s(n)), thenX3SAT is computable by a protocol iR[A (s(poly n)).
This also holds if the Boolean basis is extended withnd the protocol is given access.tb

The last ingredient of the proof is a classical result of Kannan [20], showing circuit lower bounds for
Y.3SAT, and more generally fo£;SAT(¢). His proof relativizes.

Fact 29 (Kannan's bound)Let s be a well-behaved resource bound.
¥3SAT(poly s(n)) contains a language that does not have circuits of 6iz&(n)).
This also holds if the Boolean basis is extended @ith

With the three ingredients in hand — Scaling and Collapse lemmas, and Kannan's bound — we can
prove Theorem 25. For part (i), we Iétbe the set of languages MA (expn) and puts(n) = 9log” n: for
part (i), we letC be the set of partial languagesNbA (poly n) and puts(n) = n.

The proof goes by contradiction. We give the argument using notation.

C C SIZE(O(s(n)))
= ®SAT € SIZE(O(s(n))) (by Scaling lemma)
= 335AT € MA(s(polyn)) (by Collapse lemma)
= X3SAT(poly s(n)) € C *
== contradiction (by Kannan’s bound)

where step (*) follows from Definition 27 and the fact thdpoly s(n)) C poly s(n) for the particular
choices ofs(n).
What remains is the proof of Scaling and Collapse lemmas.

Proof of Scaling Lemma There is nothing to prove in part (i), becaus®8AT instance of size: is com-
putable by brute force in deterministic timep n - poly n, which by definition is a protocol iMA (exp n).

For part (ii), we want to show thabSAT has circuits of sizepoly n, if every partial language in
MA (poly n) has circuits of sizeD(n?) for some fixedd. By Theorem 2®SAT reduces to some same-
length checkable languadé, so it suffices to show the claim fdf instead ofBSAT.

So letK beanysame-length checkable language, and suppose towards a contradictiindbas not
have polynomial-size circuits. Let: N — N be such that(n) is the size of the smallest circuit deciding
K on inputs of lengtm, for everyn. By assumptions(n) is super-polynomial, i.es(n) >io. n”* for every
constantc. Note thats(n) might not be well-behaved.

Consider the partial languag€’(zy) := K(z) that is defined only on inputs of the formy where
y € 01* serves as a pad of lengfl = | s(|z|)€ |, for some constant > 0 to be later determined.

Now consider the followindgIA-protocol for K': givenxy, the prover sends the smallest circuit #6r
on inputs of lengthz|, i.e. a circuit of sizes(|z|), and the verifier uses the same-length checkabiliti b
computeK (x), henceK’(zy). This takes, on an input of length| + |y|, timepoly s(|z|) C poly s(|z|)¢ C
poly(|z| + |y|). SOK’ is in MA(poly n), and hence has circuits of siggn?) by assumption. But thei’
has circuits of siz€(n + s(n)?)¢, which is less thar(n) for infinitely manyn whenevee < 1/d because
s(n) is superpolynomial. But this contradict&n) being the smallest circuit size fdr. O

Proof of Collapse LemmaToda famously showed [29]
Y3SAT — @SAT
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via a randomized reduction that is universal in the choice of a Boolean basis. (The same holds in general for
Y SAT for all constantc.) So if ®SAT has circuits of siz&)(s(n)) for formulas of sizer, then theMA-

protocol for computing=3SAT, on a formula of size:, proceeds by the verifier doing the above reduction

to obtain a formula of sizen € poly n, then the prover sending a circuit f&SAT at a large enough input
lengthpoly m, hence a circuit of siz&(s(poly n)), and finally, the verifier running the checker 88AT,,
(Theorem 2) on the circuit, in timgoly(s(poly n)), i.e. in times(poly n) sinces is well-behaved. O

3.5 TheZKIP Theorem

AW made the surprising observation that the famous theorem of Goldreich, Micali, and Wigd€isan,
ZKIP if one-way-functions exist [18], can be proven via the same techniques underlyifg theorem.
This is in contrast to the standard proof of this result involving a graph-based construction, which seems
incompatible with the oracle concept.

IKK turned this idea into a complete proof by devising an indirect commitment scheme for this purpose.
In this section we explain how this AW-IKK proof can be adapted to our framework, yielding an affinely
relativizing proof of theZKIP theorem.

Theorem 30(ZKIP theorem) NP C ZKIP if there is a one-way function iR secure againsBPP.
This also holds if the standard Boolean basis is extendedith

The key idea of AW is that, given a circuit, and a satisfying assignmentf inputs toC', in order to
show thatC' is satisfiable without leaking, an efficient prover commits to a transcript of the computation
of C(z), but redundantly so, as follows. For each fragment of the circuit of the form

20 = f(21,-+, 2n), 4)

meaning gatey is of type f and receives its inputs from gates.., z,, in that order (where somg may
refer to an input gate;), the prover commits not to the values®f z1,.., z,, but to

fot, fot(1), ..., fol(n) (5)
where (i)1..m are distinct non-zero elements in a large enough Hel@) each/(i) is a point on the random
line ¢ passing througli(0) := (z1,.., z,) € F™, and (iii) fo ¢ is the univariate polynomial of degreg i.e.
the coefficients thereof, corresponding to the restrictioﬁmfﬁ.

In order to check the fragment (4), it suffices to check that the information given in (5) consistently
refers to the same polynomial. This consistency check amounts to a system of linear equalities, for which
IKK devised a scheme of indirect commitments, thereby obtained a zero-knowledge protocol for circuit
satisfiability (assuming one-way functions exist).

The make this proof work in our setting, we need to address the case whefrgtte in the fragment
(4) is a non-standard basis element. This is not an issue in the setting of AW or of IKK, because there by
definition f is efficiently computable given accessjtpas explained in Section 1.2. In our case, however, if
[ is anon-standard basis element, tifeis an affine extension of some: {0,1}™ — {0, 1}, hence is of
the formbool(g), which makesf seem not efficiently computable given accesg.to

Our solution to this, is to viewf not as an atomic gate, but instead as a small circuit, consisting of
a g-gate plus the circuitry for computing its decision versibnpl. So in the beginning of the protocol,
both parties already expect to give/receive a transcript involyiggtes as well as the standard gates. For
fragments involving standard gatgs the commitment involves their extensignas above, whereas for
g-gates, no further extension is made and the commitment involveg.sille defer the details to the full
version.
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4 Negative Relativization Results

This section shows that several major conjectures in structural complexity are impossible to settle via an
affinely relativizing proof, mirroring corresponding results of AW.

There are two main approaches to deriving such results: an interpolation approach, used for separations
of the formC ¢ D, and an approach based on communication complexity, used for containfnent3.
Both of these approaches are model theoretic, in the sense that they construct an eligible language relative
to which the statement in question is false.

The main novelty in this section, as explained in Section 1.3, is in the development of the interpolation
approach, which is then used to show tN&XP ¢ P /poly is affinely non-relativizing. This is carried out
in Section 4.1. The communication complexity approach is taken in Section 4.2.

Besides these two approaches there is a third, proof theoretically flavored approach, that is quite con-
venient to use when the situation allows. To show thadmits no proof that affinely relativizes, we find
a statement’ for which this is already known, and then derive the implication—- ¢’ via an affinely
relativizing proof. We thus show that is “no harder” to prove thag, in similar spirit to the use of reduc-
tions in structural complexity. It should be noted that in general, this approach cannot be used for the AW
notion of algebrizing proofs, as it critically relies on the closure of such proofs under inference. Section 4.3
employs this approach.

In preparation for the rest of this section, let us introduce a piece of notation:

Definition 31 (f). Givenf,, : {0,1}™ — {0, 1}, denote its affine extension &, i.e. the Boolean version
of £, with f,.
Given the languag¢ := { f.}

meN?

denote its affine extension, i.e. the family,, }, . ..., with f.

4.1 Interpolation Approach

The classical way to show thé&t ¢ D does not admit a relativizing proof is to construct a languége
relative to whichC C D holds. Such a construction amounts to a balancing act of sorts; the goal, vaguely, is
to haveO give more power t@ than it does t@, so as to mak&® containC in the O-extended basis. This

can be done nonetheless, and sometimes easily so, as can be seen by takd¥PACE, D = P, andO

to be anyPSPACE-complete language. Typically, however, the construction is more involved, and it was
one of the main contributions of AW to develop an approach — the interpolation approach — that enables
such constructions in the algebrization framework.

In this section we develop the interpolation approach within our framework. Our techniques are different
from AW’s; see Section 1.3 for a comparison. Below we develop the crux of the approach, and in Section
4.1.1 we complete the development by applying it todi&XP vs. P /poly question.

Before we proceed let us note, like AW did, that the easy fact regafitACE and P mentioned
above carries over to our setting easily:

Proposition 32. PSPACE ¢ P cannot be derived via an affinely relativizing proof.

Proof. Relative to anyPSPACE-complete languagé®, it is well-known thatPSPACE C P. This con-
tainment also holds relative to the affine extensibof that very®. To see why, recall thatl reduces to
®SAT® (Corollary 11), and notic®SAT € PSPACE as a relativizing fact; therefolSPACE does not
change ifA is used is used as the basis extension insted? of O
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We now move to the interpolation approach. The crux of our development is two coding-theoretic
ingredients. The first one states that knowingits of a binary codeword exposes at mediits of its
information word, and the second scales this result to affine extensions.

Lemma 33 (Interpolation) Let& : FX — FY be linear and injective. Given a “datawordii € FX and a
set of indicesA C [N], consider the collectiol of all datawordsu’ € F£ such that€ (v) and & (v') agree
onA.

There is a set of indiceB C [K], no larger thanA4, such that projecting/ ontoG := [K] \ B gives all
of FS.

Proof. The claim of the lemma ofy is true iff it is true onU™ := U + u. So it suffices to show thdf ™ is
a subspace dfX with dimension at leask — | A].

Now,y € UT iff y +u € U, which is iff £(y + u) and&(u) agree on4, which is iff £(y) vanishes on
A. ThereforeU* is identical to the space of all datawords whose encodings vanigh on

All that is left is to bounddim U™, or equivalently, to boundim £(U™) since€ is injective. The
latter quantity is the dimension of the spate Z, whereC is the image of, and Z is the space of all
N-bit vectors that vanish od. But then by the theorem on the dimension of a sum of subspaces (e.g., [4,
Theorem 1.4])

dim(U") =dim(Z) 4+ dim(C) — dim(Z + C)
=(N—-|A) + K —dim(Z2+0()
which is at leas — |A| becauseZ + C C F. This finishes the proof. O

Theorem 34(Interpolation) Given a languagg’ and a finite set of inputs, consider the collectiaft of
all languagesy such thatf andg agree onA.

There is a seB of inputs, no larger tham, such that every partial Boolean functighdefined outside
B can be extended to somge: F.

Further, in extending/’ to g, the values of at length+ inputs depend only on those gfat lengthn.

Proof. To begin with, consider the special case whdre_ dom(ﬁﬁ) for some fixedk andm. For the
purpose of invoking Lemma 33, I€tbe the map that takes as input the truth table of a Boolean fungtjon
onm bits, and outputs the truth table §f. So€ : FX — FY, whereK = 2™ andN = k2™ (to see the
value of N, recall thafj” (o, y) gives they™ bit of G* (), whereg* is the extension of,,, to F5%)-

Clearly€ is injective; it is also linear because we repredgntwith IF5 where addition is componentwise
(Section 2). Sc& fulfils the conditions of Lemma 33, which in turn yields a g&tC {0, 1}™ that is no
larger thanA, such that every partial Boolean function fiy 1} \ B can be extended to a languagefin
This proves the theorem in the special case. B

To handle the general case, partitidnnto A4,,, , := AN dom(fmk), and use the above special case as
a building block to create a bigger code. In detail, for everynvolved in the partition, defin€,, as the
map sending the truth table gf, to the list comprising the truth tables ﬁ,fj ,aﬁf ;... foreveryA,, ;. in
the partition. Now, take eac$i,, thus obtained, and I€t be their product. In other words, I€ttake as
input a list7,,,, , T5,,, .. whereT,,, is the truth table of some Boolean functigy, onm; bits, and outputs
Emi (Trmy) Emy(Tmy), -- - The theorem now follows from Lemma 33. O

4.1.1 Application —NEXP vs.P/poly

The Interpolation theorem enables us to adapt some of the classical constructions from relativization to
affine relativization. The general idea is to construct a langdagach thaC C D holds relative ta?, i.e.,
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such that® c D©, by taking each algorithm underlyir@)’, say the first. algorithms, and by fixing up
to a certain length, say(n), so as to force the behavior of these algorithms on inputs of lengiWhile
doing so, the goal is fo® to encode those forced behaviors, in a way that can be easily queried by some
algorithm inD©.

This classical idea can be extended to our setting via the Interpolation theorem. Even though the goal
here is to hav€ C D hold not relative ta?, but relative to its affine extensioA, we can proceed almost
as before. This is because thanks to the Interpolation theorem, forcing the behaviof @igorithm by
fixing A bears little extra burden off than does fixing? to force aC® algorithm (though there are some
subtleties).

For details we refer to the proof of the next theorem, which is the main result of this section:

Theorem 35. NEXP ¢ P/poly cannot be derived via an affinely relativizing proof.

Proof. It is a basic fact thaNEXP has polynomial-size circuits ifNE (the linear-exponential version of
NEXP) has circuits of size &ixedpolynomial, and that this relativizes. In notation,

NEXP® ¢ SIZE®(polyn) <= NE© c SIZE®(n¢) for somed € N.
Therefore, to prove Theorem 35, it suffices to show a langyagmisfying

NE! ¢ SIZE? (n%), (6)

for some constant becauseg trivially reduces tof.

So let My, My,.. be a list (repetitions allowed) of all nondeterministic algorithms with access to an
arbitrary languag®, such that/; runs in time< 2nlogn on all inputs of lengt > 7. We construct the
languagef in such a way that whe® = f, the information regarding how eadli; behaves on each large
enough input, is stored byf in a format retrievable by a small circuit. More precisely, we ensure that for
everyn > 1, a sizen? circuit with access tgf can compute the functioh,, : {0, 1}°en) x {0, 1} —

{0, 1} defined as

Lo(i,z) == M (). )

This yields (6), hence the theorem, because each langtiag& E/ corresponds to sorer, and in order
to computek (=) on all but finitely many inputs: (in particular forz € {0, 1}>2%) we can just providéi, z)
to the circuitC/ said to computd. ,, implying K € SIZE/ (n?).

We constructf inductively, as the limit of a sequendgg, f»,.. of Boolean functions wher¢, extends
fn_1. The domain off, will include all of {0,1}<"", plus some additional‘"!°s" strings at most. Set
fi1:4{0,1} — {0}.

At iterationn > 1, proceed to sef,, as follows. Consider all possible ways of extendifig to a
languagef. Out of all suchf, pick one that maximizes (7), i.e., one for which the collection

Sy ={(t,x) : Ly(i,x) =1} (8)
of accepting algorithm-input pairs is maximal.

Now we want to “open up space” ifi by un-defining it at some inputs, the idea being then to encode
the function in (7) in the freed space so that a small circuit can look it up. In doing so, of course, we do not
want to disturb (7), which, by the way we pickgdis equivalent to wanting tha; does not shrink —i.e.,
as we restricf to somef’, no matter how we extenfl back to some languagge we wantS, = Sy.

Consider an accepting algorithm-input pgirz) in Sy. Becausel/; runs in nondeterministig” 108 -
time on inputz € {0,1}", it could issue a great many oracle querieg,tbowever, as far as the membership
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of (i,x) in Sy is concerned, it suffices f(j“rvto honor only those queries @f; alongone acceptingompu-
tation path. So each such péir =) actually forcesfto be fixed at only2"!°¢™ inputs. There are at most
n2" pairs inS;. Thus if we wantS; not to shrink, it suffices to fifat23” logm jnputs. By the Interpolation
theorem, this means we only need to reserve a small set of “bad” iBhuissize< 23712 beyond those
already reserved in previous iterations, i.e., beydéna f,,_1, such that o3 we have no control as to how
f behaves, but on the “good” inpu8, 1}* \ (B Udom f,_1), we can chang¢ arbitrarily. So letf,, be the
restriction off to B U dom f,,_1.

Now that we opened up spacejfinwe are ready to store the information in (7) so that a small circuit can
look it up. That information is the truth table of a function enr- log n bits, so it suffices to have?™ 18"
bits available indom f,, for this purpose. Since there are at md%t'°s™ bad inputs inf,, by the previous
paragraph, and since there are at n@J§t—11s("=1) inputs indom f,_; that are outside0, 1}<=1*
by induction, we know there are at mast'°s™ inputs currently inlom £, that are outsidg0, 1}<m=1",
So there is plenty of space v, 1}”d for storage whenl is large enough. As for how to actually store
the information, initially consider each inp(t x) to L,, as prepended with zeroes until it becomes a string
Y{i,z) Of lengthn?, and then setn(Y(ix)) := Lu(i,z). Of course this may not work as some bad inputs may
coincide with somé/; ., but this can be handled simply by changing the encodirig af) to Y(; .y & Z for

a suitably pickedZ € {0, 1}”d — a counting argument shows that su€lexists. ThisZ can be hardwired
to a circuit of sizen?, as we wanted to do.

To finish, let f,, behave arbitrarily on the rest of the good inputs{in 1}§”d, and then accordingly
adjustf,, on the bad inputs if0, 1}§”d — recall from the Interpolation theorem that on a bad ingitis a
function of how it behaves on non-bad inputs of same length. We have thus consifueedesired. [

4.2 Communication Complexity Approach

AW show that one can take a lower bound from communication complexity, and use it to construct an
eligible language — an algebraic oracle in their case — relative to whighD holds, for an appropriai@
andD depending on the lower bound picked. Therefore, AW conclddg, D cannot have an algebrizing
proof.

In this section we develop this approach of AW for our framework. We start by making a notational
convention involving the classical communication complexity cla®sgINP.., BPP,., etc.

Definition 36 (P VS. Piicc). DefinePy;c. as the class of familieg := { f,,} satisfying the following. (i)
Each f,, is a Boolean function (possibly partial, but not empty) on pair@'ebit strings, (ii) There is a
protocol involving two algorithms\/y, M; such that for alln and all(X,Y) € dom(f,), the two parties
MgE(1™), MY (1™) computef,, (X, Y) in time poly n.

Let P.. denote the relaxation ;.. whereM,, M, are allowed to be non-uniform, and only commu-
nication between{y, M; is counted towards time elapsed.

Use Py to define NPy, BPPyicc, €tc., just as we defin®P, BPP, etc., fromP. Similarly for
NP.., BPP,, etc., versu®..

The notationC;i. is meant to indicate that time is measured on equal grounds with communication.
While D.. admits only languages according to the classical definition [8], Definition 36 makes certain
partial languages eligible as well (namely those that are defined on every input length).

We formalize the high-level idea of AW with the following generic theorem in our framework:
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Theorem 37. If Ci;ec ¢ Dec, thenC C D cannot be derived via an affinely relativizing proof. Hé€eD
range over every class mentioned in the results of Section 4.2.1; in particular both are definabl® using
and are contained i XP.

A key ingredient in arguing Theorem 37 is the observation, mentioned on page 5, that affine extensions
are compatible with disjoint unions in the following sense.

Proposition 38. Let A, .A; be the affine extension of the languadgs O, respectively. Then the disjoint
union Ag [ A; : bx — Au(x) is equivalent, under Cook reductions, to the affine extension of the disjoint
unionOy [[ O1 : bz — Op(x).

Proof. Let O := Oy [ O:. By definition, the affine extension @ is the Boolean version of the function
that evaluates, giveB, X1, .., X,, € F,. for anyk, the polynomial

OBX)= Y O@z) [0+ (BX); + (bx);)
b,x1,..,xn€{0,1}
= (Oo(z) - (1+B) + O1(2) - B) - [[;(1 + Xi + )
= (1+ B) - 0p(X) + B 01(X)
which clearly can be evaluated given accesglgand.A4,, i.e. to.Ay [ A1, and vice versa. O

We now give a generic argument for Theorem 37. Supposing there is gome{ f,,} in Ciicc \ Dee,
we construct a languag@ such that relative to its affine extensiofy the statemenf C D fails. For
concreteness, the reader may téke beNP, say, andD to beBPP.

Extend the standard basis with an arbitrary langu@gend letM;, Ms,... be a list of all polynomial-
time decision algorithms (with access@. SinceD is definable fromP, we can use the list/;, Ms,...
to define a listVy, Vs, ... of algorithms that includes every algorithm fBx. (The list of V;’'s may include
more than every algorithm fdP: it corresponds to the clagsD, the extension ob to partial languages.)

For everyn € N pick an arbitrary(X,,,Y,,) € dom f,, and then initializeO to the disjoint union
Oo [ 01, whereQ is the language with the same truth tableXgsfor everyn, and similarly forO; versus
Y,. Becausef € Ciic, the languagd. that maps every length-input to the value off (X,,,Y,,) satisfies
Lec®. Our objective is to modifyy,0; so thatL remains inC®, and becomes out @4. Then we will
be done.

Fori = 1..00, the plan is to modifyO,, O; at some large enough input length, by picking some
(Xn,, Yn,) € dom f,,, and then modifying the truth table 61y, O; at lengthn; to be X,,.,Y,,, respectively.
Let us denote this operation iy, — X,,,, O1 < Y,,,.

Notice that updating in this way readily maintaing € C©. As for ensuringL ¢ D4, by Proposition
38, DA is the same as the clags'o LI41; hence the plan is to choosg,,, Y;,. so that the™ algorithm
disagrees wittl. on 1" when given oracle access #j, [ | A}, where Aj and A} is the affine extension of
O} := Op«— X,,, andO] := O, <Y, respectively.

So, to pick(X,,, Y5,), consider the following functiop,, for eachn € N. For each X,Y") € dom f,,,
let g,(X,Y") be the output oiN.Af’HA/l(ln), where 4 is the extension o®[, := Oy « X and similarly

Al extendsO] := O; — Y . (It could be thatN; does not “output anything” on input® becauseV;
computes a partial language whith is outside the domain of; in this case lgt be undefined on this
X,Y.) Observe thay := {g,} € D.., as can be seen by considering the protocol where one party is given

access toX and knows0,, whereas the other party is givéhand knows?®;, and where the two parties
simulateN; 0 T4 (1™) by using each other as an oracle #ff or A].

(2
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Now sincef ¢ D.. by assumption, there are infinitely mafiy, Y') on which f andg differ (perhaps by
g being not even defined diX, Y')). Pick any suci{X,Y’) € dom f,,, for n; large enough, say,; double-
exponential inn;_1, which does not disturb previous phases of the construction Sifieeare contained in
EXP. This completes the construction @f and finishes the generic argument for Theorem 37.

4.2.1 Applications

The above generic argument for Theorem 37 allows us to replicate the following negative algebrization
results of AW.

Corollary 39. Neither of the following statements can be derived via an affinely relativizing proof: (i)
coNP C MA, (i) PNP ¢ PP.

Proof sketch.As pointed out by AW, part (i) follows from a result of Klauck on the Disjointness predicate,
implying coNPyicc. ¢ MA,., and part (ii) from a result of Buhrman, Vereshchagin, and de Wolf, implying
(PNP)tiCC ¢ PPcc- O

We can use the same argument to replicate a result of IKK as well.

Corollary 40. RP ¢ SUBEXP cannot be derived via an affinely relativizing préofHere SUBEXP
denotes . DTIME(2"").

Proof sketch.Yao’s classical result on the Equality predicate implies that the partial fung‘méﬁ 17),
defined on allX, Y that is the affine extension ,. of someX,Y : {0,1}™ — {0,1}, and that isl if

X # Y ando if not, satisfiesf ¢ SUBEXP,., for a suitable choice of € ©(logm). By padding inputs

to f so that at each input lengthom f is nonempty, and by the error-correcting properties of the affine
extension, it follows thaf € RPyjcc. O]

4.2.2 Extensions

Refining the AW approach, IKK considerably strengthened a result of AW: they showed that no algebriz-
ing proof (for their notion of algebrization) exists fofP having sub-linear-exponential circuits, even at
infinitely many input lengths. We can extend Theorem 37 to replicate this result in our framework as well.

Theorem 41. NP C i.0.-SIZE(2™) cannot be derived via an affinely relativizing proof for soime 0.

Proof sketch.Similar to the argument for Theorem 37, we consider a list of all 8t2eBoolean circuits on

n-bits, for eacm € N. Similarly again, we define a languagehat encodes, at each input lengtha single
instance of a communication problef(X, Y), with X andY being encoded in the oracle. The difference
here, following IKK, is thatf is the direct product of a Boolean problem instead of a merely Boolean one,
for which we know a much stronger variant ff¢ D.., namely the strengthening of this to average-case
hardness on all input lengths (as opposed to worst-case hardness at infinitely many input lengths). This
allows us to use a randomized process to define the oracle “at once”, thereby obtaining a hardndsst for
holds at every input length. We refer to IKK for details. O

8IKK show the stronger result whe@UBEXP = N.DTIME(2"") is replaced by . DTIME(2"). Using a less modular
argument we can derive this result as well.
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4.3 Proof Theoretic Approach

As mentioned in the beginning of Section 4, sometimes we can get away without constructing oracles, and
still show thaty) admits no proof that relativizes affinely. To do so, we find samavhich we already
know has that status, and then derive the implicatioas=- ' via an affinely relativizing proof. We thus
reduce the task of creating an oracle relative to whicis false, to doing the same far, with the proof
of » = 1’ serving as the reduction. More generally, we reduce the task of showing hatits no
affinely relativizing proof, to doing the same fof.

Using the results of Section 4.1-4.2 we can readily show:

Theorem 42. None of the following statements can be derived via an affinely relativizing prodfP(iy P,
(i) NP ¢ P, (iii) NP c BPP.

Proof. Part (i): Theorem 35 showed that2XP ¢ P /poly cannot have an affinely relativizing proof, and
Theorem 25 showed thafA (exp) ¢ P/poly via an affinely relativizing proof. The claim follows because
NP c P impliesMA c P, which in turn impliesMA (exp) € NEXP, both implications being derivable
via a relativizing (hence affinely relativizing) proof.

Part (ii): Proposition 32 showed thR®SPACE ¢ P cannot have an affinely relativizing proof. The
claim follows sinceNP ¢ PSPACE via a relativizing proof.

Part (iii): Corollary 39 states thabNP C MA does not have an affinely relativizing proof. The claim
follows sinceNP c BPP impliescoNP C MA via a relativizing proof. O

5 Conclusions and Open Problems

Our results counter the folkloric belief that relativizing techniques treat computation only as a “black box”
mapping inputs to outputs (e.g., [1, p. 2]), and that arithmetization, or more generally a circuit-based view
of computation, seems to let us “peer into the guts of it” [2, p. 115], and hence circumvents the limits of
relativizing technigues.

In contrast, according to our definitions, a Boolean formula in the relativizing view, say over the basis
{N, ®, O}, gives complete freedom regarding how thegates behave, and in this sense e@epate is a
black box, of “volume” the size of its truth-table. In the affinely relativizing view, however, €xgate
redundantly encodes a Boolean function, by extending its domain G&{2)", say, toGF(Q’“)”; this
means that the behavior of the gate is determine2’ogntries of a truth table of size rough}”. So each
O-gate has a black-box “core”, carrying on with the metaphor, of volume roughlyoot of its overall
volume; herek must beQ2(log n) for all the results catalogued in this paper, and can be také(lag n)
for a formula of sizeD(n).

So it seems that: (i) circuit-based technigaesrelativizing, if they are insensitive to enlarging the basis
arbitrarily, (ii) arithmetization-based techniqua® also relativizing, only “slightly less” so. To make this
a bit more precise, consider the following question: what can be the circuit complexity, over the standard
basis{0, 1, A, @}, of a sizen circuit over the extended basf§, 1, A, ®, O}? In the relativizing view, i.e.,
in RCT, the answer i2°(") — just consider a singl&®-gate withn — 1 inputs. To see this in the affine-
relativizing view ACT, let us first clean up the definition of affine extension a bit, so thAtisfa Boolean
function onn inputs, then its affine extension involvésF(Q’“) for £ > logn only, instead ok > 1. By
the above discussion, this makes no difference for the results catalogued in this paper, but now the answer is
easily seen to bg@("/10sm)  again via ar®-gate withn — 1 inputs. Dividing byn and taking logarithms, we
get what might be called the “opacity” of each theory, a quantity that ranges(drat the real-world end
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of complexity theory, taD(n) at the fully relativized end, with affine relativization being abavé:!—¢)
for everye > 0, just “slightly less” than relativization.
We finish by listing some suggestions for further research.

A quantitative theory of relativization. Both relativization and affine/algebraic relativization are rigid
notions, in the sense that something either relativizes or does not. However, the discussion just above, on the
various degrees of being opaque, calls for a theory of relativization that is gradual, based on the information
content — or density, so to speak — in an oracle.

Can we associate to each statement a “relativization rank”, so that the algebrization barrier arises as a
guantitative gap, between a lower bound on one hand for the rank of algebrizing statements, and an upper
bound on the other, for the rank of non-algebrizing statements? If so, then we could view the reciprocal of
the rank as a useful complexity measure on theorems and conjectures, just as we have complexity measures
on algorithmic tasks: the larger the reciprocal of the rank, the higher the “relativization sensitivity” of the
statement in hand, indicating more resources — stronger axioms — required to prove it.

New oracles fromold. Section 4.3 showed that sometimes we can evade the task of constructing an oracle,
by reducing the task to another one already done. For example, there is no need to construct an (affine) oracle
refutingNP C P when we already have one refutidgiXP ¢ P/poly, becaus&P ¢ P — NEXP ¢
P /poly via an affinely relativizing proof — meaningP C P is harder to prove thaNEXP ¢ P /poly in
some sense.

Can we use this idea to simplify the landscape of oracle constructions? For example, many of the
statements shown not affinely relativizing in Section 4.2 are containments of theCfarnD for which
various circuit lower bound consequences are known. This suggests that a handful of oracles, each refuting
some circuit lower bound, may yield a rich collection of statements getting indirectly refuted via reductions
of the form given in the above example.

Weaker theories for arithmetization. As asserted in Section 1.2, we can replicate all the classification
given by IKK (as well as by AW) for what algebrizes and what does not, however, we do not know if
algebrization in the IKK sense implies affine relativization, or vice vé&r3is suggests that there should
be a weaker characterization of arithmetization-based techniques that subsumes both notions.

Is there a constraint that we can place(@rbesides that it is a language, so that the resulting theory is a
consequence of both versions.4€7, ours and IKKs, and still derives all the theorems shown algebrizing
by AW? (Notice that such a theory would automatically be unable to prove anything unprovaldlgZy
hence all the non-algebrizing statements of AW.)

Of course, the weakest axiom deriving a theorem is the theorem itself, so there is a trivial answer to the
guestion the way stated above: just take the conjunction of all the algebrizing statefd¢htgrem MIP
theorem, etc., and add it as an axiom. This kind of “overfitting” clearly lacks the succinctness desired in a
theory, so we need to amend the question a bit. Say that a proof is nontrivial if the proof remains valid when
viewed in the theoryRC7 U {O is empty}. Then we want a theory that is a consequence of both versions
of ACT, and thanontrivially derives all theorems shown algebrizing by AW.

The PCP theorem. Section 1.3 explained that both the theorem and th&IIP theorem can be naturally
viewed as a gap-amplification result, and from that point of view both theorems have affinely relativizing
proofs. Can we extend this reasoning to EHeP theorem? If so, this would bolster the candidacy of affine
relativization as a proxy for arithmetization-based techniques.

9The IKK approach is oveF but can be adapted 6F (2*), so this is not the issue. Also, the IKK approach builds on the AIV
formulation of RC7, but it can also use our version ®C7, so again this is not the issue.
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A completeness theorem for oracles. If we can provey, and that) relativizes, then is there a relativizing
proof of? It is consistent with experience that such a “completeness” phenomenon holds. Confirming this
would allow us to focus solely on proving facts about statements, and not on how we prove those facts.
Along the same lines, what if each statement in a proof relativizes — then does the proof itself relativize?
If so, then we could say that a proof relativizes if and only if each of its intermediate statements does. (The
“only if” direction is already true by the way we defined things in Section 1.1; the non-trivial part is to make
the jump from the semantic fact that each step relativizes, to the syntactic one that the proof relativizes.)

A genuine independence result. Be it in our version ofRC7 and AC7T, or in AlVs and IKKs, Section 1.2
pointed out that the axioms go on top of an existing collection of axioms governing everyday mathematics.
Another approach to formalizing these barriers, would be to propesbsetof axioms governing every-

day math, the idea being to find the “weakest” version of everyday math that can derive each algebrizing
statement, and then to show that no non-algebrizing statement can be derived by that much of mathematics.
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