Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 40 (2016)

Affine Relativization:
Unifying the Algebrization and Relativization Barriers

Baris Aydinha@lu * Eric Bachf
June 9, 2016

Abstract

We strengthen existing evidence for the so-called “algebrization barrier”. Algebrization — short
for algebraic relativization — was introduced by Aaronson and Wigderson (AW) (STOC 2008) in order
to characterize proofs involving arithmetization, simulation, and other “current techniques”. However,
unlike relativization, eligible statements under this notion do not seem to have basic closure properties,
making it conceivable to take two proofs, both with algebrizing conclusions, and combine them to get a
proof without. Further, the notion is undefined for most types of statements, and does not seem to yield
a general criterion by which we can tell, given a proof, whether it algebrizes. In fact the very notion of
an algebrizing proof is never made explicit, and casual attempts to define it are problematic. All these
issues raise the question of what evidence, if any, is obtained by knowing whether some statement does
or does not algebrize.

We reformulate algebrization to handle these shortcomings. We first define a statemedetiviz-
ing if, intuitively, it is insensitive to the choice of a Boolean basis, and therelasivizing affinelyif,
roughly, it relativizes with respect to every affine extension — here an affine extension is the result of
a particular error correcting code applied to the characteristic string of a language. We also define the
notion of aproof to relativize (affinely), while ensuring closure under inference. We show that all state-
ments that AW declare as algebrizing can be derived via an affinely relativizing proof, and that no such
proof exists for any of the statements shown not-algebrizing by AW in the classical computation model.

Our work complements, and goes beyond, the subsequent work by Impagliazzo, Kabanets, and
Kolokolova (STOC 2009), which also proposes a reformulation of algebrization, but falls short of recov-
ering some key results of AW, most notably regarding¥igXP versusP /poly question.

One consequence of our definitions is a demystified perspective on the extent to which relativiz-
ing techniques view computation as a “black box” and current uses of arithmetization do not. As an-
other consequence, we give new streamlined proofs of several classic results in complexity, including
PSPACE C 1P andNEXP C MIP.

*University of Wisconsin-Madisorsaris@cs.wisc.edu.
fUniversity of Wisconsin-Madisorsach@cs . wisc.edu

ISSN 1433-8092

Contents

1 Introduction 1
1.1 Relativization and Affine Relativization 4
1.2 Comparisonwith PriorWork 6
1.3 Overview of Ideas and Techniques 10
2 Definitions, Notation and Conventions 14
3 Positive Relativization Results 17
3.1 Checkingand CompressigAT 17
3.2 ThelP Theorem e e e e 24
3.3 TheMIP Theorem o e e 25
3.4 Lower Bounds against General Boolean Circuits 31
3.5 TheZKIP Theorem o o o e s s e e e e e 33
4 Negative Relativization Results 36
4.1 Interpolation Approach 37
4.2 Communication Complexity Approach, 40
4.3 Proof Theoretic Approach 43
5 Conclusions and Open Problems 43

Bibliography 45

1 Introduction

Motivation. The algebrization notion — short for algebraic relativization — was put forth by Aaronson
and Wigderson [1] (AW henceforth) to give evidence that certain complexity-theoretic conjectures are be-
yond the reach of “current proof techniques”. Although the name suggests some type of relativization,
algebrization lacks two essential properties of relativization:

Closure under inference.What exactly constitutes a “current technique” may be inherently unclear, but
at a minimum it seems logical inference rules should be included. However, as pointed out in [1, 29, 22],
statements that algebrize in the AW formulation are not known to be closed under inference.

For example, AW show that the statemeéni= NEXP ¢ P /poly does not algebrize, and interpret
this to mean that a certain class of proof techniques, say “algebrizing techniques”, cannap pyete
this does not rule out an approach where, say, one comes up with & dasls showg C NEXP via
algebrizing techniques, then sho@sZ P /poly via algebrizing techniques, and thus derive the very
samey.

Lack of closure under inference thus significantly thins any evidence imparted by a negative al-
gebrization result — as AW obtained fOYEXP versusP /poly and for other questions of structural
complexity — since the class of proofs ruled out by such a result might be much smaller than intended.

This precludes algebrization from having one of the two key virtues of relativization, namely delin-
eating those conjectures within possible reach of a robust family of techniques, from those that are not.
Indeed, some major results in complexity are suggested to have been found using relativization as such
a guide [6, 17].

Universality. A main appeal of relativization is being a universal notion, in the sense that it applies
to every statement in one generic way. Intuitively, a statement relativizes if its truth is insensitive to
broadening the definition of computer, from an ordinary Turing Machine, to one with oracle access to
an arbitrary languag®. (We provide an alternate intuition later in Section 1.1.)

This intuition is so natural that it enables the second key virtue of relativization, namely being a
“litmus test” for weeding out futile endeavours. The idea is that i§ already known to not relativize,
then any strategy for proving, in order to be viable, must somehow be unable to handle arbitrary
extensions of the computer notion, or else it would be a strategy for proving nop juzsit thaty
relativizes. Given the scarcity of such proof strategies in structural complexity — at least forjtthose
involving P-based classes — this idea makes relativization a practical tool for guiding research. (Alas,
we do not have a count on the number of fruitless research hours saved this way.)

For algebrization, however, we have no comparable intuition. This is mainly because algebrization
is a selective notion, in the sense that it is defined only for containnfett® and separations ¢ D,
and moreover, it is applied differently to each side of the containment / separation. Supposing we have
a strategy to prové — and assuming, to begin witly, is of compatible syntax — there is no universal
criterion we can apply, to check if our ideas can be extended to show thlgtebrizes. This calls into
guestion how relevant it is to know thatis non-algebrizing in the first place.

Besides the above problems, algebrization brings back some longstanding ones that are as old as the rela-
tivization notion itself:

Controversial relativizations. A pair of theorems might be derived using seemingly same techniques, yet
only one might be relativizing / algebrizing. For exam@8PACE C IP, as AW show, algebrizes, yet
its cousin,NEXP c MIP, doesnot, as observed by Impagliazzo, Kabanets, and Kolokolova [22] —
except itdoes as AW show, if we restrict oracle access MIEXP to be of polynomial-length.

It is not clear how to interpret such results without further work. Can we justify restricting oracle
access, say by showing that it yields a natural subclass not tied to the Turing machine model? If so,
then which “current technique” eliminates the difference between the two classes, the subclass and the
original, thereby overcoming the limits of algebrizing techniques (whatever they are)?

Relativizing statements vs. proofsA generally accepted (though not uncontested [25]) convention is to
remark that some proof, say ¢f relativizes or algebrizes, with no clear consensus on what that exactly
means.

The typical intent behind such remarks seems to be that the said proof can be transformed into a
proof that « relativizes(or algebrizes). However, as anything can be transformed into anything when
there is no constraint, it is not clear which proofsmiat relativize under such a definition. And even
if some commonsense transformations are tacitly agreed upon — e.g., “give every Turing machine an
oracle for®,” or “bring each statement to its relativized form” — it is unclear whether the transformed
object would always be a valid proof, let alone a valid proof thaelativizes.

Naturally thus the question arises, of whether precise definitions can be given for what constitutes a
relativizing / algebrizing statement / proof. Ideally, the definitions should capture the everyday intuition
for these notions, as well as test the folkloric belief that relativizing techniques (whatever they are) view
computation as a “black box”, and relate that to algebrizing techniques.

Prior Work. Although an early draft by Arora, Impagliazzo, and Vazirani [3] (AlV) succeeds in giving
a precise definition of a relativizing proof, it is not clear if their approach captures the everyday intuitions
for the concept. For one thing, no distinction is made there between a staténtenmtlativize, versus
1 to have a relativizingoroof, although such a distinction seems essential to capture the everyday uses;
see Section 1.2 for more explanation. Further, the approach is recursion theoretic and makes no reference
to computational devices such as circuits or Turing machines, and consequently it is difficult to tell, for
example, that “Satisfiability iSNP-complete” relativizes in their framework, or has such a proof, even though
“oracle gates” foiO can be easily incorporated into a circuit / formula. See Section 1.2 for more discussion.
Building on the AlV approach to relativization, Impagliazzo, Kabanets, and Kolokolova [22] develop an
analogous approach for algebrization. However, that approach falls short of recovering some key results of
AW, most notably regarding tlie§EXP versusP /poly question. Again, see Section 1.2 for details.

Our Results. In this paper, we reformulate relativization and algebrization, in a way that addresses all the
problems raised in the first section.

We give a simple definition of what it means for a statement / proof to relativize, that yields the following
intuition: a statement / proof relativizes iff it is insensitive to enlarging the standard Boolean basis. Our work
delineates the notions of a statemertb relativize versus proof of ¢ to relativize (as well as other notions
in between). As we argue in Section 1.2, this distinction is essential if we want to model the intuition behind
the casual uses of these terms.

Our main contribution is to the algebrization notion. We define a statement/ proof as relataffanedy
if, intuitively, it is insensitive to enlarging the standard Boolean badtis any affine extension- here affine
extension is the result of a particular error correcting code applied to the characteristic string of a language.
With this definition, we show that every statement that AW declare as relativizing algebraically does rela-
tivize affinely — in fact has groof that relativizes affinely — and that the opposite holds for statements
declared non-algebrizing by AW in the classical motglBoth require new ideas.) Our formulation in
this sense gives rigorous support to the “algebrization barrier” idea of AW, which can thus be viewed as a
refinement of the classic “relativization barrier” of Baker, Gill, and Solovay [10].

1 AW state some non-algebrization results for quantum-based complexity classes as well; we do not pursue these.

2

Affine relativization is a refinement of relativization so as to capture the known usegtohetization
a technique for interpolating Boolean formulas into polynomials. Famously used in early 90’s for obtaining
PSPACE c IP and related results, which are false relative to some choices of an ddae, 19, 12],
arithmetization is widely regarded as a counterexample — mé#ybeounterexample — to the rule-of-
thumb that “most known proof techniques relativize” in structural complexity theory. Affine relativization,
to the extent that it captures the known uses of arithmetization — and it does so fairly well, as we argue in
the rest of this section — can be viewed as a step towards reinstating that rule-of-thumb (albeit only a step,
as thePCP theorem is out of scope of this and related work; see open question in Section 5).

As one conceptual consequence, our formulations yield a demystified perspective on the extent to which
relativizing techniques are “black-box” and arithmetization-based techniques are not; see Section 5.

Our formulations also tell something about those “few known proof techniques” that do not seem to
relativize affinely, in particular, aboubcality of computation It is a longstanding debate whether locality
— that the next step of a computation depends on only a “small” fragment of its current state — plays
any role in current results of complexity, particularly in interactive proofs [18, 3, 17, 22]. On one hand,
NEXP < MIP can be explained away as relativizing algebraically with a convenient, but questionable,
alteration of the oracle access mechanism as mentioned above; on the other hand, locality could provide an
honest explanation of this theorem, as argued by Arora, Impagliazzo, and Vazirani [3], but an incongruent
one to its algebraic nature, especially when its cold#?ACE C IP, needs no such explanation.

Our results shed some light onto this matter. As we explain in Section 1.3, it is fruitful to put a particular
class betwee®SPACE andIP, and another one betwe&EXP andMIP, so that each theorem reads as
two containments. The second containment, we argue, captures the real content in each theorem, namely
“gap amplification”; affine relativization can derive every containment except the first ohEBIP versus
MIP. We conclude that whether or n§EEXP C MIP algebrizes is just a matter of definition, because there
is no application of this theorem (as far as we know) that is sensitive to how it is viewed, gap amplification
versus the common view. Therefore affine relativization can be viewed as a robust proxy, or a candidate
thereof, for the current state of the art.

This is mere interpretation, however, and is not to be confused with the main message of the paper:

Summary of Results. Affinely relativizing proofs, as defined in Section 1.1, have the following properties.
e Each of the following has an affinely relativizing proof

— PSPACE cC IP, viewed as gap amplification (Corollary 21)
— NEXP C MIP, viewed as gap amplification (Theorem 23)
~ MAExP ¢ SIZE(2'8" "), vd (Theorem 30)
— prMA ¢ SIZE(n%),Vd (Theorem 30)
— NP ¢ ZKIP if one-way-functions exist (Theorem 35)
¢ None of the following has an affinely relativizing proof
— NP ¢ P, infactPSPACE ¢ P (Proposition 36)
— NP c P,infactRP C SUBEXP (Corollary 44)
— NP c BPP, in factcoNP € MA (Corollary 43)
— pNP - pp (Corollary 43)
— NEXP ¢ P/poly, infactNEXP ¢ SIZE(n?),Vd (Theorem 39)

Further, affinely relativizing proofs are closed under inference, and if a statement has an affinely relativizing
proof, then it “affinely relativizes,” i.e., it holds relative to each language that is an affine extension, as
defined in Section 1.1.

Organization. We describe our formulation next in Section 1.1 and compare it to prior work in Section
1.2. We give an overview of the ideas and techniques in Section 1.3. The technical development starts from
Section 2 and is self-contained from thereon.

1.1 Relativization and Affine Relativization

We now describe our formulation of the relativization and affine relativization notion.

Relativization without oracles. Let the standard Boolean basis refer to the{$etl, A, &} comprising
four languages (witl) denoting the empty language, viewed as the function mapping all binary strings to
zero, 1 its negation, and witl\,® denoting the AND,XOR function on binary strings respectively). We
say that the statemeut holds relative to the languad® iff v is true when the standard Boolean basis is
extended withD. We sayy) relativizes to mean that holds relative to everg.

Some remarks are in order.

e Letus momentarily be more precise. We will work in the first order language with sigriaure;, } .
The symbol9, 1, A, @ are introduced with definitions, and are not officially part of the signature.
(Similar to the idea that first order number theory doesn't have any numerals b&sitlesr numerals
are abbreviations fa$(0), S5(0), etc.)

Take the axioms of everyday set theory, g8C, and add two new axioms: (i) th&,;,; includes
{0,1,A,®} (i.e.,0 € Bgg andl € Bgy and so on), (ii) thafBy, is included in{0, 1, A, &, O} for
some languag®. Name the new collection of axiom®C7, for relativized complexity theory.

Now takeRC7 and add the axiom: (iiiBs is included in{0, 1, A, @}. Call this set of axiomg§7,
for real-world complexity theory. (Note (iii) implies (ii) a8 need not be a distinct fifth element.)

Given a statemenp (in the language with signatures, B4 }), we callv relativizing iff it is true

in everystandardmodel of RC7. Assuming, as we may here and throughout the paper, that every-
day mathematics is consistents&@ndard model of set theoig one where the symbokE’ for set
membership is interpreted as the actual “is an element of” relation.

e 1) being nonrelativizing per se does not make it interesting or hard to prove; eygbéeithe standard
Boolean basis i$0, 1, A, &}
Conversely, relativizing statements can be nontrivial; inéaetrytrue statement that does not mention
the standard Boolean basis (i.e., evergver the signaturéc} that holds in the standard models of
ZFC) is by definition relativizing

¢ Relativizing statements are closed under inference, singg,if is a consequence @, .., ¢, then
¢n+1 IS true wheneves, .., ¢, are, which makes,, . relativizing assuming., .., ¢,, already are.

We agree to take the uniform-circuit-based definitiofPpindP-based definitions dP, NEXP, etc.,
so that extending the standard Boolean basis Witiutomatically gives u®, NP, etc., without having
to mention oracle access at all — though we do mention it anyway, for emphasis. An algorithm thus
means to us a uniform family of circuits. So if we “lét be a timet(n) algorithm with oracle access to a
proof stringz”, for example, then unless otherwise stated, we mean td”let {V,,} be a uniform circuit
family of sizet(n) (or of sizet(n) polylog t(n) — does not matter in this paper) over the basig; U 7"
for some language defined appropriate to the context.

The uniformity in the above paragraph can be specified using any notion of classical computer running
in polynomial-time, be it Turing machines or pointer machines or anything else; we pick Turing machines

’this agrees with intuition: ify does not mention a Boolean basis, then its truth is insensitive to the choice of such basis.

4

to get the following fact for free: for ever§ € P, there isf; € FP describing a circuit family' := {C,,}
for L, say via the map

(1",1%) — the type of the'™" gate inC,, and the indices of all gates connected toidAgate.

We caution that we do not exploit any peculiarity in this way of defidhd he reader who prefers the
Turing machine model can stick to it, provided the Turing machine is defined to have oracle access to every
element of the standard Boolean basis, so that the above definitions make sense.

Itis out of the scope of this paper whether our framework can handle classes “lglonthose classes
not definable fronP. (And it is an observation of this paper tRaEXP with poly-length oracle queriesan
be defined fronP, as0-gap-MIP. Similarly PSPACE can be defined &&gap-IP. See Section 1.3.)

1 relativizes vs.y has a proof that relativizes. Given a proofll of v — i.e., a sequence;..¢,, where

on = 1, and eachy; is either taken for granted or is a consequencg;of., ¢; 1 — we callII relativizing

iff after extending the standard Boolean basis with an arbitrary lang@ageemains a proof of).
Further remarks are in order.

e Let us again be more precise for a moment. Take any Hilbert-style system of proof, e.g., the one in
[16, section 2.4]. Let) be a statement in the language with signafweB;,}. We call a proof ofy
(from CT) relativizing iff it is a proof fromRC7T .

¢ 1 being relativizing per se does not meahas a relativizing proof; e.g. let be “ZFC is consistent”.

¢ Relativizing proofs are closed under inference. (This is immediate from the precise definition, since
they are exactly those proofs derivable from a certain set of axioms.) This is becaysg ik a
consequence afy, .., ¢,, then it remains so no matter what, in particular no matter how the standard
Boolean basis is extended, which makgs¢,, ¢, a relativizing proof assuming; ..¢,, already is>

¢ A relativizing proof ofy yields a proof that) and that relativizes. (Precisely speaking this is by
the soundness theorem for first order logic). The converse is not clear; see open question in Section 5.

We emphasize that relativization of statementssgmantiacconcept, and of proofs issyntacticone.

In Section 3, many theorems we derive are of the formand (affinely) relativizes”, or something to
that effect. As remarked just above, itis not clear if such a theorem implies, by itself; bi@ata relativizing
proof. Nonetheless, in the process of deriving each of these theorems we end up giving a relativizing proof
of the corresponding. (Of course we do not provide a formal proof#fin first order logic, just as we do
not specify algorithms by implementing them as Boolean circuits.)

So those theorems in Section 3 should really be read d=$% an (affinely) relativizing proof” for some
1. To be convinced of such claims, the salient point to be checked in their proofs is whether they account
for the standard Boolean basis to be extended with some arbitrary (affine) lar@uagand they do.

Affine relativization. TakeRC7 and add the axiomBy, is included in{0, 1, A, ®, O} for some affine
extension?. That is, there is a language with f,, denoting its restriction to length-inputs, and withfn
denoting the unique-variate polynomial of individual degre€-1 extendingf,,, such thatD represents the
evaluation ofﬁl over GF(2%), for all k andn. (See Section 2 for a precise definition, and Section 1.3 for a
motivation.)

Call the resulting sedC7T, for affinely relativized complexity theory. Define the notion of a statement
/ proof affinely relativizing similarly tdRC7 . (Precisely, a statemetitis affinely relativizing iff it holds in
every standard model o4C7, and a proof ot} is affinely relativizing iff it is a proof fromAC7.) It follows
just as in the case fARC7 above that affinely relativizing statements / proofs are closed under inference.

3A relativizing proof can in one step be turned into a proof that is non-relativizing — but not via an inference step.

5

The empty language is the affine extension of itself. Thus it does not make any difference to add the
same axiom, thaD is an affine extension, ©7 as well. Now we have three theoriR€7T C ACT C CT,
each strictly more powerful than the one before, as the results in this paper imply.

Multiple oracles. If v is (affinely) relativizing, or has such a proof, then what happens if we want to
extend the standard Boolean basis twice — say WigtandO,? For plain relativization the answer is easy;
just setO to be their disjoint unionQy [[O; : bz — Oy(x), and proceed as before.

For affine relativization, however, a bit more care is needed since we@ambe an affine extension.
If Oy is the affine extension afy, andO; of L, the key observation is that the disjoint uniéh [O,
of the affine extensions is equivalent, under Cook reductions, to the affine extension of the disjoint union
Lo [] L:. This is spelled out in Proposition 42, but intuitively is true because the disjoint union merely adds
an extra dimension — the*axis” — and the affine extension acts on each dimension independently (see
equation {) on page 10). So we sét to the affine extension df, [| L; and proceed as before, the upshot
being that one affine oracle is just as goodad them fork > 1.

1.2 Comparison with Prior Work

Four past works have a direct relation to ours. The main effort in all of them, and in ours, can be viewed as
trying to: (i) formalize the relativization notion, and / or (i) refine the notion so as to capsiPACE C 1P
and related results. We now do a comparison with past work, first with respect to (i) and then (ii).

1.2.1 Efforts to Formalize Relativization

In a widely-known manuscript\rora, Impagliazzo, Vazirani [3] (AlIV henceforth) build on Cobham’s
axioms for polynomial-time computation [14] to defiR& 7, relativized complexity theory, and argue that
derivations fromRC7 can be translated to and from relativizing proofs in our sense (which they refer to
informally, as proofs in a “relativized normal math” system).

A common feature — or flaw, if the reader is logically inclined — of both our definitio®6f7” and
AlV’s is that the axioms for capturing relativization go on top of an existing collection of axioms governing
everyday mathematics. On one hand, this is a feature because relativization is meant to be a guide for the
everyday researcher, who has everyday mathematics at disposal. On the other hand, this is a flaw because
statements such a®“versusNP is independent oRC7” can be easily misunderstood, as the so-called
independence concerns orgenatural way of defining®, NP out of at least two — another one being to
justignore the extra axioms (they do not interfere with everyday math). This is inevitable unlesshaves
axioms from mathematics and not add to it, and the quest then becomes to find the “weakest” version of
math that can prove statements suclt8®ACE C IP, as opposed to finding, like we and AlV essentially
set out to do, for the “strongest” version of these statements that can be proven by everyday math.

One difference of our version qRC7 from AlV’s is its accessibility. While AlV’s approack la
Cobham [14] gives an elegant axiomatization of relativize@with only a dozen or so axioms), it also
avoids devices such as circuits, Turing machines, etc., making it difficult for a casual user to tell whether
s/he is really working with their proposed definition. Our approach, in contrast, is “naive” in the sense that
it does not attempt at a minimal set of axioms (nor does it spell out every axiom) but in return, it gives a
formalism that is arguably closer to the everyday uses of relativization — e.g., unlike in AlV's approach,
“Satisfiability isNP-complete” is easily seen to have a relativizing proof in our frameviork.

40One can derive the same result in the AIV framework by first showing that their definition is equivalent to a device-based
definition, but that would amount to not using their definition.

Our work identifies a distinction betweerstatement) to relativize and groof of ¢ to relativize. By
mapping the former notion to a semantic concept, and the latter to a syntactic one, our formulation yields,
as a byproduct, that

(i) v is a statement that can be proven to relativize, and

(i) o is arelativizing statement that can be proven,

are distinct notions, as is their combination (i)&(ii); none are known to be equivalent, some are not equiva-
lent, and all are implied by
(iii) + has a relativizing proof.
In contrast, AlV use all of (i),(ii),(iii) synonymously in [3.

We consider this separate treatment, of statements and proofs, essential in formalizing the casual uses of
relativization. Indeed, in the casual sengeglativizes if it is true no matter what oraaf@ we incorporate
into the definition of a Turing machine — meaningyifis true and does not mention any Turing machines,
then it should relativize automatically. So4 1 = 2” should relativize, as shouldZFC is consistent”. But
this last statement dashes any hope of formalizing relativization solely with proofs.

It is tempting to get around this issue by saying thatl = 2 is an “uninteresting” statement. Indeed, in
their sequel to the AlV paper, Impagliazzo, Kabanets, and Kolokolova [22] can be interpreted as taking this
position when they claim “a complexity statement abBUtelativizes iff it is provable from AIV'SRCT .
Notice, however, that it is unclear what such a statement colfid Besides, it disagrees with everyday
usage to say, e.g., that whethérc B A B C C = A C C relativizes depends on whdl, B, C are.

Our interpretation of the everyday usage of relativization for a statethisrthis: — that) does relativize
as a casual claim is really a claim thathas a relativizing proof, — that does not relativize as a casual
claim is really a claim that) does not relativize. Notice that the two cases sound complementary in casual
use, but when made precise (under our interpretation) they are merely mutually exclusive: the former is
syntactic and the latter semantic, justifying once again our separate treatment of statements and proofs.

1.2.2 Efforts to Refine Relativization

Although relativization succeeds at explaining the failures of structural complexity until the 90s, it fails at
explaining the successes after, especially those regarding interactive proofs. We now discuss four past pro-
posals to refine relativization. The overarching goal in them is (or so will be our view here) to provide some
model for “known techniques”, which involves meeting two competing objectives: (a) derive all relevant
theorems in the model, and (b) provably fail to derive in the model all relevant conjectures that are evidently
beyond current reach.

We will use Figure 1 to roughly illustrate how each proposal fares with respect to these two objectives (a)
and (b). The take-away message from this micro-survey is that although parts of (a), (b) have been attained
by prior work, ours is the first successful attempt that yields all the critical pieces under one framework.

Although the table is less precise than the discussion that follows, it does illustrate some key differences
among prior work. The solid vertical line in the table is a caricature of the state of the art; to the left of the
line are facts, and to the right are conjectures evidently out-of-reach. The dashed vertical line is where we
would have drawn the solid vertical line had this been year 1985; it represents the relativization “barrier”.
(The reader should be able to visualize the title of this paper, if not now then by the end of this section.)

The first proposal is from the same paper discussed abov&E\by3]. BesidesRCT, there the authors
propose “local checkability” as the key non-relativizing ingredient underl@8§ACE C IP as well as

Sfor usage in the sense of (i) see p.4 first par., for (i) see p.7 last par. and p.8 second par., for (iii) see p.8 first par.
®for example, even defininy P usingP would involve variables from the mathematical universe

7

Figure 1: Attempts at refining relativization

(EC:C:iNgg}lzPAgZ%pP({ 1‘;"13’) | PSPACECIP PCPthm | NEXPZP/poly pyp éj E.?é’poly’“
AV v v 7 7 7
For v 1 v ? ? S
AW ? | v ? v v
IKK v ! v ? ? v
this work v LY ? v v

other results including thBCP theorem. The idea is that a polynomial-time computation should be verifi-
able by inspecting all bits of its transcript in parallel, where each bit depends on only a logarithmic number
of bits elsewhere. For computations with oracle access, however, this property may not hold, although it will
if the oracle itself is checkable. So their approach can be viewed very roughly in terms of ours, as taking
our version ofRC7T and adding the constrainBy, is included in{0, 1, A, ®, O} for someO that is locally
checkable”, in other words, that any oracdeadded to the standard basis must be locally checkable.

The authors call their refined theo€ 7, and point out that althoughC7 implies many known non-
relativizing results, whether it can settle questions such asrsusNP is very hard to know. In fact, they
observe that iP versusNP were shown beyond reach 6€7 in the manner of Baker, Gill, Solovay — by
giving contradictory relativizations with oracles satisfying the theory — fh@vould actually be separated
from NP. In this sensefC7 is an unsatisfactory candidate for “current techniques”. (Notice that if all we
want is a theory that can derive the current theorems then we can jusgjdte {0, 1, A, ©}.)

In a counterview to the AIV proposal dated around the same #menow [17] argues that the nonrela-
tivizing ingredient in the proof oPSPACE C IP is of an algebraic nature. We can interpret his key insight
as follows. AlthouglPSPACE c IP does not relativize, it does in a weaker sense:@elenote the affine
extension of0, as defined on page 5. (Strictly speaking Fortnow works @vieistead ofGF (2¥).) Then

PSPACE® ¢ IP?, and consequentiPSPACE® C IP® whenever® Cook-reduces t@. Effectively,
then, he defines a theoC7T by taking our version oRC7 and adding the constraint that any addition to
the standard Boolean basis must be some ox@dter which © € P©.

Although Fortnow does not prove any unprovability results for his theory, we can show that his version
of ACT yields most of AW’s classification of what algebrizes and what does not (hence tisgmbol) —
but not all, as we explain later below.

A decade-and-half after the above two pap&W, [1] introduce algebrization. Their paper finesses the
question of how relativization should be refined, by simply declaring that a stateinent3 relativizes
algebraically ifA© ¢ I}O for everyQO (for a notion of© similar to our notion of affine extension), and that
A ¢ B algebrizes ifA® ¢ B®. No definition is given for other types of statements, or for proofs.

Since we ultimately care about containments and their negations, the AW approach seems appealing.
There are problems with it, however (page 1), chief among which is that not everything that relativizes can
be said to algebrize. For example, the stateniéfit C € NEXP A C ¢ P/poly) = NEXP ¢ P /poly
is true no matter wha¥EXP or P /poly means — it is even true no matter what “is an element of” means
— hence is relativizing, but it cannot be declared as algebrizing by building on the original definitions.
Consequently, showing thAtEXP ¢ P /poly is non-algebrizing, as AW did, does not rule out whether we
can provedC : C € NEXP A C ¢ P/poly by using solely “algebrizing techniques” [§10.1].

On the positive side, AW succeed in giving containmeits B that do not algebrize, by showing that
an oracle® exists for whichA® ¢ B©. (There are similar examples for negations of containments.) This

is a critical idea upon which subsequent work expands, including ours; we say more about this below.

Soon after the AW papehmpagliazzo, Kabanets, Kolokolova[22] (IKK henceforth) resume the ap-
proach of AlV, and propose an intermediate theory betwREA and LC7 that they callACT, short for
arithmetic checkability theory. (They also define a variatd,7 *, but we blur the distinction here.)

We can view IKK’s approach as being along the same line of Forthow’s, by considering the following
task. Given¢ and«, evaluate®(«); here¢ is a Boolean formula® is any fixed low-degree polynomial
interpolatinge (such as its arithmetization), amdare inputs fromGF(29("). (Like Fortnow, IKK work
over Z, but both approaches can be adapte@#(2*).) Call the decision version of this task — given
return thei!" bit of the result, for example — the languad®', short for arithmetized formula evaluation.

ClearlyAF € P. Indeed, this seems to be an essential feature of arithmetization: it would seem pointless
to interpolate Boolean formulas into polynomials that we cannot evaluate efficiently. Busibver an
arbitrary basis{A, @, O}, then it does not seem thatr® e PO since the®-gates withing need to be
interpolated somehow as well.

Now, in both IKK’s approach and Fortnow’s, we can interpret the starting point as restricting the oracle
O so thatAF® € PO becomes a true statement — in Fortnow’s case via the constaintP?, and in
IKK’s case, directly viaAF® e P©. The IKK constraint (rather, our interpretation of it) is implied by
Fortnow’s; this will be clear in Section 1.3 once we generalize arithmetization. Hence anything provable
from the IKK constraint is automatically provable from Fortnow’s. Although the converse is not known to
hold, it does hold in the following sense. AnythifiK show to beunprovable from the IKK constraint, we
can show is unprovable from Fortnow’s constraint as well; we can do this using our observation on page 6,
that affine extensions respect disjoint unions. So the two approaches currently seem to have the same power.

The key advantage of our approach over IKK’s and Fortnow’s is its avoidance of computational notions
in restricting the oracl®. By giving a direct algebraic restriction, namely tiddaequalsf for some language
£, our approach allows us to expand on one of AW'’s critical ideas: using interpolation to show that certain
statementg) do not relativize algebraically (in our case, affinely). In contrast, neither IKK’s approach nor
Fortnow’s is known to allow interpolation. Consequently, although IKK pose it as an open question for their
framework, we can capture a key result of AW, tha&XP ¢ P /poly does not relativize algebraicalfy.

Another place where IKK diverges from AW concerns the theoNaXP C MIP. As mentioned, AW
showed that this theorem algebrizes under a machine-specific restriction of thiNER&Es While IKK did
show an analogous result for their framework in the model-theoretic sense, they did not show it in the proof-
theoretic sense; in fact they use a machine-free characterizatSR¥P and cannot directly express the
guery restriction of AW, so it is not even clear a priori if the result itself can be expressed in their approach.
Instead, IKK observe that under the proper, unrestricted definitibEX P, the theorem does not algebrize,
and suggest that there are additional ingredients underlying this theorem besides arithmetization, and point
this out as a point of divergence from the AW thesis that algebrization captures “current techniques” [22,
p.15]. As mentioned in page 3, our formulation of this theorem substantially clarifies the discussion.

Whether our definitions implies IKK’s or Fortnow’s, or vice versa, is hot clear; we do not know if
algebrizing in one sense can be shown to imply the other. Whatwsay, however, is that every statement
that IKK show as algebrizing has an affinely relativizing proof, and that the opposite holds for those shown
non-algebrizing by IKK — just as the case for AW. In particular, IKK show various compound statements
to be non-algebrizing; these follow as consequences of results on simpler statements and can be shown in
our framework as well (via what we call the proof theoretic approach in Section 4.3).

’In fact IKK ask a weaker question: whethBXP ¢ P /poly can be shown to not algebrize in their framework [22, p.15].
The same question automatically applies to Fortnow’s framework, since his constraint implies IKK'’s.

1.3 Overview of Ideas and Techniques

Defining affine relativization, and proving that it works, involve a number of observations as well as some
technical ingredients. This section highlights the main ones.

Generalizing arithmetization using affine extensions. Our first observation concerns how the arithmeti-
zation method should be generalized to handle formulas over a generic Boolean basis,&sa$} where

O is an arbitrary language. In its typical description, the method states that the formalathmetizes as

1 — & whered is the arithmetization of; similarly, ¢ A ¢ arithmetizes a® - ¥. Other cases, such &sand

@, are handled by reducing to these two.

We observe that - y is the unique polynomial oveZ, of (individual) degree< 1, that extends the
Boolean functionz, y) — x A y; in other words, it extends an-gate of fan-ir2. Similarly 1 — = extends
a—-gate. We thus make the following generalization: Arithmetization replaces a Booleaf? gaftéan-in
m, with the gateD denoting the unique degreei polynomial

O@):= Y O®)- T (1 =) (1=b)+i-b Q)

be{0,1}™

that extend€) from the Boolean domain t@. We call©O the (multi-)affine extensioof O, and caution that
the notation has nothing to do with Fourier analysis.

For our results we viewt] in fields of the formGF (2¥) only. There are several benefits to this, and we
point them out as we explain our approach in this section. To begin with, we note that exterGiB(2to
is conceptually cleaner, as it turns a function/ohits into a function om vectors ofk bits each. Also, in
GF(2’“), the arithmetization o @ ¢ becomes the naturdl + ¥, whereas in other fields, neither, nor
any other Boolean operator, gets arithmetizedto

Affine Relativization — capturing known uses of arithmetization. Consider a functional view of an
@—gate, as returning bits when each of its inputs come fra@¥ (2*). In this view, arithmetizing a formula
¢ creates a family of formulag®,, }, with each®;, redundantly describing the behaviorgbn the Boolean
domain — the largek;, the higher the redundancy (with= 1 corresponding t@ itself).

Now if ¢ is over an arbitrary basis that includ@sgates, then unlike the case for the standard basis, its
arithmetizationd does not seem to allow efficient evaluation, over €43(2°(). Interpreting this to be
the non-relativizing ingredient in proofs ®SPACE cC IP, etc., we take the following approach to refine
relativization.

The formula®, which redundantly encodes is obtained fromp via a “local” transformation acting on
its gates, namely by adding redundancy at the gates. Based on this, our idea is to have the oracle gates of
compute not some arbitrar9, but something that contains redundancy already, nafﬁeﬂyr an arbitrary
O. The plan being then to show that arithmetization — rather, current uses of it — need not introduce
redundancy at those gates, or, at least do so in a feasible way.

We arrive at our formulation thus: whereas a statement relativizes if it holds relative to every language
O, a statement relativizeaffinely, if it holds relative to every languagé of the form® for some®. More
precisely,.A encodes the family of polynomial0,,} evaluated oveGF(2%) for all k, where© is an
arbitrary language an@,,, is its restriction to{0, 1}"*. We also call4 the (multi-)affine extensioof O.

Why was this notion not invented in 1994? Natural though it may seem, affine relativization poses the
following difficulty: the very theorems thatit is intended for, eRR PACE C IP, do not appear to relativize
affinely, at least not via a superficial examination of their proofs.

10

To see the issue, consider a propertgf Boolean formulas — unsatisfiability, say. In provinge IP
arithmetization is used asraduction from 7 to some propertyI of arithmetic formulas — e.g., unsatis-
fiability of ¢ reduces, via arithmetization, to deciding if the produc{bft ®(«)), over all binary input
vectorsa, equalsl in GF(2F) for any k.

So each theorem of the forme IP is, in fact, a corollary of a more generic result of the fdie 1P,
that gives an interactive protocol for an arithmetic property. It turns out those generic results can be further
generallzed if we extend the arithmetic basis, from the standagdtes andt+-gates — which are really
A- and@-gates, respectively, per the first discussion above — by allom-@tes for an arbitrarg). Then
the same protocols that yield € TP work just as well over this extended basis, given oracle access to the

evaluation of0. We may writelT© ¢ IPO wherelI© extenddT to formulas over the extended basis.

Now supposing we have a theorene IP, let us make a superficial attempt to extend its proof so that
it yields 74 € IP* for some languagel; herer is a property of formulas, say over the bagis @}, and
74 is its extension to the bas(s\, @, .A}. As just explained, the proof of € IP starts with a reduction, of
the Boolean property to an arithmetic propertyl. Now here is the problem: what property do we reduce
74 to? By definition of arithmetization, it would bE+, the extension ofI to formulas over the basis

{x,+, ﬁ}. But then as just explained, we would be placingin IPA — not in IPA.

This seeming circularity —=© € IP®, 7€ € IPY, ... — can be interpreted as the main distraction from
arriving at a natural notion such as ours. Indeed, all previous attempts to capture arithmetization [17, 1, 22],
dating back to the 1994 article of Forthow [17], can be interpreted as having to make compromises so as to
break out of this circularity. For example, the AW notion of algebrization does this by dectarin@ to
algebrize ifc® ¢ D° holds for every® (for a notion ofO related to ours; there is a similar definition for
C ¢ D). We surveyed their approach and others in Section 1.2.

In contrast, our approach tackles circularity directly. The idea is to avoid the problematlc reduction
74 — T4, and to instead reduce? to 7€ by somehow exploitingr wheneverA is of the formO© for
some(. Then the combined reduction® — 7€ — II4 breaks the circularity. This fulfils the plan of the
previous discussion, namely to show that arithmetization, in its current uses, need not extend gates that are
extensions of something already.

Relativizing P C IP. The idea of the previous discussion can be realized whisnthe sumr(¢) :=

®,¢(x), also known as the languaggSAT. This is because whes is a formula over thed-extended
Boolean basis, each occurrencedtvaluates the sunt) over GF(2*) for somek, and then returns, say,
thes™ bit of the result giveri. Therefore, if we step froriF(2¥) to GF(2)*, we can rewrite each occurrence

of Aas®,7(y), for some formulay over theO-extended Boolean basis. This becomes the reduction we
want, once we show how to convert formulas involving sums to prenex form, i.e. such that all sums appear
up front. It follows thatbSAT < IP — or equivalently®P C IP — relativizes affinely.

Scaling toPSPACE C IP — a proof sans degree reduction. Our approach folbP can be adapted to
show thatPSPACE c IP affinely relativizes as well. However, we find a more natural approach which
yields another proof of this theorem; this may be of separate interest because current proofs, as far as we
know, employ syntactic tricks in order to control the degree of polynomials that arise from arithmetizing
instances of #SPACE-complete problem (e.g., [30, 7, 31, 2]).

In contrast we show, directly, that every downward-self-reducible language has an interactive protocol,
by essentially bootstrapping the very fact tkdt C IP relativizes affinely. In particular, we make no use
of a specificPSPACE-complete problem; we do not even use any additional arithmetization beyond what
is needed forBSAT. (We emphasize that the new proof is sketched here because it might be of separate
interest. The standard proofs of this theorem can also be adapted to our framework.)

11

The new proof goes as follows. If is downward-self-reducible, then on inputf lengthn, it can
be expressed asly(n)-size circuit over the.-extended Boolean basis, of fan-in at mest 1. This
circuit in turn can be expressed as the sbp¥(z, y), whereg is a formula verifying tha represents the
computation of the circuit on input. In notation we may summarize this reduction as

L, — ®SATLn-1 (*)

where®SAT/™ is the extension oBSAT to formulas over the-extended Boolean basis, of fan-in at most
m. Repeating«) for L,,_; instead ofL,,, we get

GSATLn 1 — @SATOSNT "™ _, @A -2 ()

where the first reduction is because extending the basis is functorial in the senge thay implies
®SAT/ — @®SATY, and the second reduction follows by bringing sums to prenex form as mentioned
in the previous discussion. Note that the reduced formula is now of size abfgutthe one in §) is of size
d
n-.
The idea is to tame the growth in the size of the reduced formulas, by using interaction. Building on the

ideas of the previous discussion, it is easy to show a protocol yieldingtimctivereduction
(@SATf'm)nd N (@SATf"L)nC

that compresses instances#SAT/ of sizen® down to sizen®, for an arbitrarily largel and afixedc, for
every languag¢, in particular forf = L, whenevem € O(n). We sketch this protocol later on page 14.
Thus we can keep repeating«j to get

L, — ®SATL1 — @SATL»2 — ... — @SAT oW

provided we interleave a compression phase whenever the formula size ex€eedisice anlL-gate of
constant fan-in can be expressed as a constant-size for@Uel o reduces tabSAT. SoL < IP as
desired.

That this proof affinely relativizes becomes obvious, once we carry over the resuliS A to the
A-extended Boolean basis, for an arbitrary affine extengion

(Interestingly, just as this proof builds on the relativizationdd C IP, we use the relativization of
PSPACE c IP in turn to give a streamlined proof of tieéEXP < MIP theorem, that uses no specific
NEXP-complete problem nor any additional arithmetization; see Section 3.3.)

NEXP vs.MIP — the role of locality. As mentioned in the introduction, AW show tHsEXP ¢ MIP
algebrizes only under a restriction, and a questionable one at that, of the oracle access mechanism for
NEXP.8 Since we define complexity classes uslhgt would be even more artificial to try to express this
restriction in our framework. Instead, we find a natural approach that also sheds some light into the issues
surrounding oracle access.

Consider generalizing the claB, by replacing in its definition the popular constas with -y, so that
if the inputz is supposed to be rejected, then the verifier erroneously aceeyth probability < 1 — ~.
(If 2 should be accepted, then, as before, it is.) Call this clagsp-IP.

It is easy to see, by the classid@bPACE-completeness result of Stockmeyer and Meyer [33], that
0-gap-IP is identical toPSPACE. ThereforePSPACE C IP can be broken into the containments

PSPACE C 0-gap-IP C Q(1)-gap-IP

with the second containment, “gap amplification”, being the actual content of the theorem.

8We caution that neither AW, nor we, advocate or assumeNRA(P bealwaysrelativized in this restricted way. It is only for
the purpose of deriving this theorem that this restriction seems inevitable — and this discussion investigates why.

12

The corresponding case fdIEXP ¢ MIP becomes revealing. Of the containments
NEXP C 0-gap-MIP C Q(1)-gap-MIP

only the second one, gap amplification, affinely relativizes as we show in Section 3.3. So what “current
technique” is it that yields the first containment, that affine relativization cannot capture?

It is locality, more specificallypolyloglocality, which yields the following variant of the Cook-Levin
theorem: A language is iR iff it has circuits that are polylog-time uniform, i.e., iff it is computable by a
family {C,,} of circuits, such that givefn, i), the task to produce the type of tita gate ofC,,, as well as
the indices of all gates connected to it, can be performegebin log n time. Intuitively, this theorem does
not relativize, even affinely, simply because it restricts the circuits to have polylogarithmic fan-in.

In our framework, we defin® so that it satisfiepoly-locality instead of polylog, and uge itself to
express polylog-locality (by saying that the above function on gair$) is in FP) and call the class thus
obtainedP)...1, the subclass d? satisfying the above locality theorem. We then Bgg,; to defineNP, .,
NEXP.cal, €tc. Immediately two things fall out of these definitions. First, thatp-MIP is identical to
NEXPioca1, SO locality does capture the first containment above. SecondNih&EP,,.,; is equivalent to
the dubious version afEXP with polynomial-length oracle queries, making it not so dubious after all.

We do not know of any result usil§EXP ¢ MIP, that would break down iINEXPy,..; € MIP is
used instead — in fact we do not know of any result u$iittXP c MIP, period. We conclude that locality
arises iNNEXP C MIP only definitionally; it is an ingredient that has not been exploited beyond making
definitions. (It would be interesting to know if the same reasoning could apply tB@ietheorem; see
open problem in Section 5.)

NEXP vs.P/poly — a coding-theoretic interpolation lemma. One of the technical contributions of this
paper is in showing that certain statementdo not relativize affinely. As usual (though not always), this
entails constructing an eligible language — an affine extendiomour case — relative to which is false.

For somey), this task turns out to be relatively easy given prior work. Sucare of the formC C
D, for which AW invented an approach based on communication complexity. Our observation that affine
extensions respect disjoint unions (see Section 1.1, multiple oracles) enables us to import their approach.

For other), however, in particular foNEXP ¢ P /poly, we need more substantial ideas. While AW [1]

did construct & such thalNEXP< ¢ P</poly, they did this only for a multguadraticextension, i.e., for

Q encoding a family of polynomials where each member has (individual) dege@istead of degree:1.

It seemed “crucial” [1], in fact, to increase the degree for this purpose. While quadratic extensions suffice
for the AW notion of algebrization, they do not for our notion of affine relativization.

As the key technical step for this purpose, we derive a coding-theoretic ingredient (Lemma 37 and
Theorem 38), stating that knowirighits of a codeword exposes at modtits of its information word, and
this holds for every binary code, including the affine extension (GU&f2~)).

AW implicitly proved a weaker form of this fact, involving quadratic polynomials. One of the ideas
that enables us to do better, is to consider a different formulation for what it means to “expose” a bit of the
information word. Whereas the AW approach (implicitly) considers each exposed bit as being completely
revealed, our approach gives a finer treatment: an exposed bit is one wbatéenis revealed, but whose
contents may vary as a function of the unexposed bits.

The advantage of this refinement is that it allows us to show, gilets of a codeword, that the set of
all codewords agreeing on thesbits form an affine space, of dimension at mbkss than the maximum
possible. In contrast, the AW approach resorts to using indicator polynomials to surgically alter, bit-by-bit,
the codeword whosebits are revealed; this inevitably raises the degree to quadratic because each indicator

13

polynomial must also vanish on th@oints that are revealed, in addition to all-but-one point of the Boolean
cube.

Compressing®SAT. For the sake of completing the sketch of the alternate prodtS®*ACE C IP
explained earlier, we now outline the compression protocol mentioned.

The protocol is based on the fact alluded to earlier, AT/ e IP/ for any languagef. This fact
follows from standard considerations: Givenover the f-extended basis, in order to computgg(z),
the verifier: (i) arithmetize® to get®, a formula over thef-extended arithmetic basis, (ii) engages in a
sumcheck protocol, thus reduces the original task to that of evaluvatmgarGFQ’“), with & € O(logn)
being sufficient fors of sizen, and (iii) evaluate®, by using thef-oracle for thef-gates.

The compression protocol also starts out as above. The difference begins in step (iii): instead of calling
the f-oracle, the verifier engages the prover. By using standard interpolation techniques, the verifier reduces
the task of computing the values ffon up ton points, to doing the same on just points or fewer, where
m is the largest fan-in of any-gate in the formula.

Thus the output of step (iii) is a list of at most claims of the form fm/() = v” with m’ < m and
v,z; € GF(2%). Now becausg-"m is merely the sumf(on page 10, which can be viewed@¥(2)* rather
than inGF(2%), it follows that these claims can be expressed as a conjuncti@Bafl/~-instances, of
combined sizeoly(mk). This yields the compressed instance, si®Sa\T is closed under conjunction.

2 Definitions, Notation and Conventions

O and A. Unless stated otherwis€) stands for an arbitrary language, addor its affine extension as
defined later in this section.

Well-behaved resource bound. We call a functions : N — N a well-behaved resource bouriflit

is increasing, satisfie®(s(n)) C s(0(n)) C s(n)°M c s(n®M) andn < s(n), and if the function

n — s(n) is in FP. Functions of the form?, (n?logn)?, 2(esm)? 2dn are well-behaved resource bounds.
The above generalizes ta N> — N if fixing either of the inputs yields a well-behaved resource bound.

Languages as families. We view languaged. : {0,1}* — {0,1} as families of Boolean functions
{Ln : {0,1}" — {0,1}}, oy, though we sometimes specify them @4, : {0,1}(™) — {0,1}} _, or
as{ fmr : {0, 1}s(mk) s 10, 1}} keN for some well-behaved resource bourthat is bounded by a poly-
nomial (respectively, imn or in mk)

It is an elementary fact that a family of the forff,,, } or { f,, .} as above can be efficiently viewed as a
language of the forrj L,,} as above, and vice versa. For concreteness; letc denote the Cantor pairing
of m andk. Then given{ f,, }, define{L,} asL,(z) := fu x(T1 sm,)) for the largestn o k such that
s(mok,mok) <n. Conversely, giveq L, }, define{ f,,, .} as fm r(z) := L, (z0P), wherep is set so that
the input toL is of length exacthyn = s(m o k,m o k).

RepresentingF,:. We represent each elementldfi by ak-bit Boolean string, forming the coefficients
of a polynomial in the ringf2[z] mod some irreducible; (x) of degreek. We fix a uniform collection
{Pk }rcn SO that a deterministic algorithm can prodygen time polynomial ink [32].

The Boolean versionof a functiong : F;, — Ty is, for concreteness, the functibool(q) mapping
(z,y) to they™ bit of ¢(z). (Our results do not depend on this definition; any other equivalent function
under Cook reductions would work.)

Affine extensions. (This definition uses all the definitions above.)

14

Given f,, : {0,1}™ — {0, 1}, we define itsaffine extension polynomiak the uniquen-variate poly-
nomial overFq, with individual degree< 1, that agrees witlf,, overF,. for all &, i.e., as

J?m(x) = Zbe{o,l}m Jm(b) - H;L(l +z; + b;)

By theaffine extensionf f,, : {0,1}™ — {0, 1}, we mean the family

Jm 1= {fmk}keN

Wheref denotes the function that evaluapé@ overFy, andf denotes the Boolean versmnﬁﬁ
Given a familyf := {f,,} we define its affine extensmf](or its affine extension polynomlg‘l) as the
family obtained by applying the above definitions to each member. In particular, for the language

0= {Om : {07 1}m - {07 1}}m€N
its affine extensio®, which we denote by, is
— . mk+[log k|
A {Am,k - {0,1} - {0, 1}}k7m€N
Amie : (y1-ymz) — 27 bit of Op(y1, .., Ym)
where eachy; is interpreted as a memberB§:. (By the previous definitions4 can be efficiently viewed

as a family of the forr{ A,, : {0,1}" — {0, 1} },en, and vice versa.)
By anaffine extension languagee mean the affine extension of a language.

(Affine) Relativization. For succinctness we summarize the discussion in Section 1.1 here. Working in
the first order language with signatufe, B}, define

1. RCT :=ZFC +“{0,1,A\,®} C Bgy" +"“ Bgq C {0,1, A, ®, O} for some languag®”

2. ACT := RCT +"“Bgq C {0,1, A, ®, A} for some affine extension languagé

3.CT := ACT +“Bgqy C {0,1,A, ®}"
whereZFC is the axioms of everyday set theory, angd,0,1 is shorthand for the AND/XOR/constant
0/constantl function on binary strings. The statements in quotes are to be formalized in the obvious way.

We sayi) has a proof ifiC7T F 1, has a relativizing proof iffRC7T I 1, and has an affinely relativizing
proof iff ACT F 1. We sayy relativizes iff RCT |5, v, shorthand for) being true in all standard models
of RCT. We sayy affinely relativizes iffACT |5, .

We do not know ifC7 + ¢ andRCT |5, ¢ together implyRCT I ¢ (the converse is immediate), but
in the sequel, all theorems of the formp,“and this also holds if the standard Boolean basis is extended with
O are derived by proving thaRC7 F 1. Similarly, “y, and this also holds if the standard Boolean basis is
extended withA4” is derived by proving thatAC7 F .

P and the Cook-Levin Theorem. For a family of circuitsC' := {C,, },, over By, define
(@) Desce : (1™, 1%) — the type of the™ gate inC,, and the indices of all gates connected todAgate.
(b) StrongDesc : (n,i) +— Descc (17, 1°)
We defineP as the set of languagds computable by a polynomial-size famiy;, for which Descc, is
computable by a polynomial-time Turing machine. Of the two statements

(i) everyL € P is computable by a polynomial-size circuit famiy, for which Descc, is in FP.

(i) everyL € P is computable by a polynomial-size circuit famiy;, for which StrongDesc, isinFP.

we call (i) the Cook-Levin theorem, and (ii) the strong Cook-Levin theorem. We take for grantgdiat
proves (i), andC7 proves (ii) [15]. (It is a consequence of Proposition 26 tH&7 does not prove (ii).)

15

In fact, RCT proves thaDescc, is in “unrelativized”FP, i.e., thatC’DeSCcL is over the basig0, 1, ®, A}.
(Similarly for CT andStrongDesc, , but we do not use this.)
By a polynomial-time algorithm we mean the circuit famdly, for the decision versiof of a function
f € FP.
Partial languages. We call f a partial language if it is a language or can be extended to a language.
In particular, for a languagé := {L,},_, we useL<, to denote the partial languagé; } ;<.

Boolean bases. We define a Boolean basis inductively, as either the[8gt, ©, A}, or the setB U {f}
whereB is a Boolean basis anflis a partial language for whicfiis defined (in particularf is defined on
either all lengthn strings or none, for every). HereA,®,0,1 is shorthand for the AND / XOR / constait
/ constantl function on binary strings respectively.

By the standard Boolean basiwe mean the sef0, 1, ®, A}, and by the basi® extended withf we
meanB U { f}. (Caution: extending the standard basis changes only whateeaby the standard basis.)

The (partial) language ®SAT/. For every Boolean basiB and eligible partial languagg, we define
®SAT/ as the partial language mapping?z) to the evaluation of the moglsumas¢(d), whereg denotes
a formula over the basiB® extended withf. By defaultB is the standard basis arfdis the trivial map
z — 0.

®SAT/ is undefined on those¢, and only on those, that are undefined on some inp(due to some
gate of¢ receiving an input out of its domain while evaluating?)). So over the standard basis fifis a
language then so ®SAT/, and the same holds if the standard basis is extended with any language.

We index®SAT by n, any upper bound on the number of gates of the formguld hat is, we view
©SAT as{®SAT,} _ ,where®SAT), is defined on lengti{n) strings for some fixed(n) € poly(n),
with each such string representing a formglaf at mostn gates.

Since(®SAT/)¢ is equivalent tq®SATY)/ under Karp reductions, we writtSAT/*9 to mean either.

(Interactive) Reductions. For partial languageg andg, we write
f—y
if there is an interactive protocol satisfying the following. L&Y denote the maximum probability that the

eventE occurs, over all possible prover strategies in the protocol. Then givek0, 1}", the protocol runs
in time poly(n) and outputg, such that:
(i) if x € dom f then[y € domg andf(x) = g(y)] > 1 —¢,
(ii) if z € dom f then[y ¢ domg U {'fail' }] < e
for a negligible functiore € (1/n)“(),
Since the verifier in an interactive protocol may ignore the prover, and/or ignore its coin flips, we use

the same notatiofi — ¢ for randomized reductions, as well as for Karp reductions.
By default, f — ¢ denotes a Karp reduction.

Cook reductions. For partial languagefgandg, we sayf Cook-reduces tg, if there is a functior’/ € FP
that behaves as follows. On inplt, a), intuitively, V' consumes: bit-by-bit, interpreting each bit as the
response to its next query for if a is of length exactly’(|x|), say, thenl” computesf(z), otherwisel’
computes the next query fgr— here/ is a well-behaved size boundjily (). More precisely,

o V(z,a) € domgif z € dom f and|a| < ¢(|z|) anda; = g(V(x,a1.;—1)) fori = 1..|al,

e V(z,a) = f(x)if x € dom f and|a| = ¢(|z|) anda; = g(V (x,a1.-1)) fori = 1..|al.

16

3 Positive Relativization Results

This section shows that the famous results on interactive proofs admit affinely relativizing proofs, as do the
circuit lower bounds that build on them. These arelth¢heorem of ShamirfSPACE C IP, Section 3.2),
the MIP theorem of Babai, Fortnow, and LUnNEXP ¢ MIP, Section 3.3), th& KIP theorem of Goldre-
ich, Micali, and WigdersonNP c ZKIP if one-way functions exist, Section 3.5), and the strongest lower
bounds known-to-date against general Boolean circuits, by Buhrman, Fortnow, Thireauf, and by Santhanam
(Section 3.4). All of these build on several propertie8fAT developed in Section 3.1.

(As explained in Section 1.1, we do not state these results in proof-theoretic terms; e.g., Theorem 2
asserts, among other things, tE8AT C IP affinely relativizes, rather than that it has such a proof, even
though the latter also holds.)

3.1 Checking and CompressingpSAT

This section develops three results ®8AT that enable most of the positive relativization results in the
paper.
We first recall some notions from program checking [11].

Definition 1 (Same-length checkableyVe say a language := {L,,}, _,, is same-length checkabitthere

is an interactive protocol for computing, i.e. for deciding the language;, b) — L(z) = b, wherein the
prover acts as a purported oracle fgr. We sayL is checkablef the prover is allowed to answer queries
also for L ,. We refer to the verifier algorithm in these protocols aheckerfor L.

The first main result in this section shows (via an affinely relativizing proof) the existencebdf-a
complete language that is same-length checkable.

Theorem 2 (Checking®SAT). @SAT is checkable. In fackpSAT is equivalent, under Karp reductions,
to some language that &ame-lengtltheckable.

This also holds if the standard Boolean basis is extended Mijthia a checker that has access.tb
Neither the checker nor any of the reductions depend on the choide of

Theorem 2 is used, from different aspects, in deriving Sharfi’'sheorem (Section 3.2) and the circuit
lower bounds of Buhrman et al. and of Santhanam (Section 3.4).

The second result gives an interactive compression scherdSti”, which cuts the size of a formula
from n? to n¢, for an arbitrary largel and a fixed:, as long as thé.-gates have fan-iv(n) in the original
formula. (The runtime of the interaction dependsdonThe verifier in the interaction need not have oracle
access td.; in fact L may even be undecidable as far as the verifier is concerned.

Theorem 3(CompressingpSAT). For every languagd. := {L,,},, ., there is an interactive protocol that
reduces instances @iSAT<m of sizen, to instances oSSAT<m of sizepoly(m logn) for everym, n.

This also holds if the standard Boolean basis is extended Mijthia a protocol that has access 4.
The protocol does not depend on the choicelof

Theorem 3 is used in deriving Shamild theorem (Section 3.2) with a new streamlined proof of that result.
We also derive an auxiliary fact that comes in handy when proving Theorems 2-3 aitittieorem:

Proposition 4. ®SAT/ — @SATY wheneverf Cook-reduces tg. The reduction works over any basis for
formulas, and depends only on the Cook-reduction ffoim g.

Remark.Throughout this section, “reduction” disambiguates todlgorithmthat yields the reduction.

17

3.1.1 Proofs of Theorems 2-3 and Proposition 4

We now prove the claims made in the previous section. We do this in three steps: In the first step we
generalizebSAT, from formulas to expressions involving sums. In the second step, we define arithmetic
analogues ofbSAT and of its generalization. We derive some key facts about these functions, right after
defining them. In the last step we put everything together and prove Theorems 2-3 and Proposition 4.

— Step 1: Generalizing®SAT to &*SAT —

Definition 5 (bbs) For every Boolean basiB, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f (¢1..4m,) for everyy, ..,ib,, already let in, for every elemertin the
basisB of arity m, for everym € N; (iii) &, for every already letin, for every free variabjeof +). Call

this the set oBoolean expressions involving binary sufbbs) over the basiB.

Definition 6 (&*SAT). Define@®*SAT/ over the basisB as the map)(#) — @4 (a) wherey is a bbs
over B U {f}, with input variablesr. By defaultB is the standard basis arfds the trivial mapr — 0.

In this section we derive two facts relati®gp AT to &*SAT:

Lemma 7. ®SAT/ — @&*SATY wheneverf Cook-reduces tg. The reduction works over any basis for
formulas, and depends only on the Cook-reduction ffoim g.

Lemma 8. ®SAT®SAT _, @*SAT. The reduction works over any basis for formulas.
Lemma 7 is a weaker version of Proposition 4. Lemma 8 is what one would expect. We prove these next.

Proof of Lemma 7Let V' € FP be the function realizing the Cook-reduction frofrto g, as defined in
Section 2. By applying the Cook-Levin theoremito we get a well-behaved size boufd poly(n), and
a function inFP that on inputl™, produces a sequenceftf.) + 1 circuitsC1, .., Cy(,,), C, such that

e C;:{0,1}" x {0,1}""1 — {0,1}*)

C, : {0,1}" x {0,1}¥™ — {0,1}

e Ci(xz,a) € domg, ifz € dom fanda; = g(Cl(z,a1.;—1)) fori € 1..]al,

o C.(x,a) = f(z), ifz € dom fanda; = g(C/(z,a;.;—1)) fori € 1..]al,
whereC! indicates that thé-bit output ofC; is to be trimmed off excess bits before being fed intihere
¢ upper bounds the “running time” df hence the length of each “query” made By. More precisely,
Ci(z) == (Ci(2))1..p,(») WhereD; is a circuit that computes the number of valid output bit&’g(z).

Thereforef (x), which can be written as

V(z,a), wherea; =g(V(z,a1.;-1))and|a| =¢
can also be written as
P Cula,a) A Aisy (@i = 9(Ci(z, a1.5-1))
ac{0,1}¢

for everyz € dom f N {0,1}", by some function irfP. The same function can view the expression
inside the sum as a circuit over theextended basis, say &5z, a), and rewrite it as the formul@(x, a, v)
checking that describes the computation éfon its input.

It follows that there is a function iR'P that given inputl™, outputs a formulg such that

f(.%‘) = @a,v 5(.7}, a, U)

18

for everyz € dom f N {0,1}". Consequently, there is a functionit® that given a formula, takes each
occurrence of a subformula of the forfil¢;..¢,,), and performs the replacement

f(¢1¢n) = @a,v €(¢1¢m a, U).

proving that®SAT/ — @*SATY. The reduction depends only on the Cook-reduction frbmo g, and
works over any choice of a basis for formulas. O

Proof of Lemma 8Let B be a Boolean basis for formulas. Given a formula) over B extended with
@SAT, we want a reduction from the task of computidge () to that of computingb.v (=), for some bbs
1 (z) over B. We want the reduction to work for every choice®f

The reduction proceeds by simply replacing each occurren@SafT in ¢(x) with the actual sum to
be computed. More precisely, [BérmulaEval be the partial language that, on ingutu), interprets as a
formular over the basi$3, and outputs(u), the evaluation of onw. (In caser has fewer inputs thaju/|,
let FormulaEval outputr(u) only if the extra bits inu are set to zero, else let it output zero.)

Each subformula i of form

SSAT(¢1.-Pm) 1)
can be viewed as the sum
@y 0,1y FormulaEval(é1..¢m, u)

for each setting ofr, since the subformulag;(x), .., ¢,,(z) describe a Boolean formulg, with < m
input variables. And sinc€ormulaEval Cook-reduces to the basi$ — more precisely, to the function
(i,z) — B;(x) whereB; is theith element of the basiB — the same reasoning in the proof of Lemma 7
gives a formul& over the basi€3 such that

FormulaEval(z) = @, , {(z,a,v)

for every inputz € {0,1}". Here{ can be produced by some functiorfii® from the inputl™. Hence there
is a function inFP that takes each occurrence of a subformula of the form (1), and performs the replacement

BSAT(¢1--¢m) = DBy g0 E(P1--Pms 4, 0, 0)

proving thatbSAT®SAT —, &*SAT. The reduction works over any choice of a basis for formulas. [

— Step 2: Arithmetic analogues ofSAT and &*SAT —

In order to proceed towards Proposition 4 and Theorems 2-3, we need to define the arithmetic analogues of
@SSAT and®*SAT. We begin by introducing arithmetic bases.

Definition 9 (Arithmetic basis) For every Boolean basi8, define thearithmetic basis3 as the set com-
prising all constants iff,x for eachk, and f for eachf € B. By the standard arithmetic basis we mdan
whereB is the standard Boolean basis.

The following two definitions are very analogous to Definitions 5-6 (b8SAT).

Definition 10 (abs) For every arithmetic basid, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f(V,..V,,) for every ¥, ...V, already let in, for every element iA
defined onm variables, for everyn € N; (iii) Zye{m} U for every ¥ already let in, for every free variable

y of ¥, Call this the set orithmetic expressions involving binary sufaps) over the basig.

19

Definition 11 (+*ASAT, +ASAT). Define+*ASAT/ over the basis! as the Boolean version (as defined
in Section 2) of the maf (z) — >X5¥(d); hereV is an abs oved U { f} with input variablest, and each
«; ranges ovef0, 1}. By default, A is the standard arithmetic basis afds the trivial mapz — 0..

Define+ASAT/ as the special case ef ASAT/ where¥ (Z) is in fact a formula over.

We index+ASAT by n andk, and write the corresponding memberigsASAT,,; heren upper bounds
the number of nodes in formufh, andk denotes the fiel@,x where the constants df reside.

For our purposes (to be made clear in Step 3) we require that each instang@®AT,,, say involving
the formula®, is represented such that each input node tdkes up> k bits. We also requiré > log? n.

In this section we derive four facts relatifg ASAT, +ASAT, @ SAT, ©SAT:

Lemma 12 (Arithmetization) &*SAT — +*ASAT. The reduction works over any Boolean basis for
formulas and its corresponding arithmetic basis.
In addition, the same reduction yieldsS AT, — +,ASAT for somek € poly log n.

Lemma 13(Prenex) +*ASAT — +ASAT. The reduction works over any basis for formulas.

Lemma 14(Booleanization) +ASAT — @SAT. The reduction works over any Boolean basis for formulas
and its corresponding arithmetic basis.

Corollary 15. &*SAT — @SAT. The reduction works over any basis for formulas.

Proof of Lemma 12Given a bbsp over any Boolean basiB, let ¢ be its arithmetization as defined in
Section 1.3, i.e.{ is obtained by replacing each non-input g#tie ¢ with its affine extension polynomial
f, and by replacing each matisum with a generic sum so that a subexpressianaffthe forme, ¢ o 1, ¢’
becomes_ ¢ (o139’

Becausef agrees withf on Boolean settings of its inputs by definition (Section 2), it follows that
agrees withb on every Boolean input. And because we repreBentask-bit vectors (Section 2), computing
dg¢(a) reduces to computing the least significant bikpf® (&) overF,. for anyk, where eaclw; ranges
over{0, 1} in both sums. The reduction works over any choice of a basis for formulas. O]

Proof of Lemma 13Given an absV over any arithmetic basigl, we give a reduction that produces a
(summation-free) formulé& over A satisfying, for every setting of inputsof ¥ overF,. for everyk,

U(z) =2,P(z,y).

There is nothing to do i is just a variable or constant, so suppose not.

If U(x)is of the form¥, - W5, and if by recursion?; is already brought to the desired fodt, @1 (z, y),
and ¥, to >, Ps(z, 2), then the rest is easy: just make syrand z refer to disjoint sets of variables by
renaming as needed, and writx) = >, . P (x,y) - Pa(x, 2).

In casel = ¥, + Uy, after recursing and renaming as before, write

U(x) =3, . (P1(z,y) - b-Thizi + Po(z,2) - (1 -b) - Thyi),

whereb is a single variable. R
In caseV is of the formf(¥,.., ¥,,), wheref is a nonstandard basis element, use the definitiofy,of
(Section 2) to rewritel as

() = 2, by (0100 bm) - Tlicy (1 + Vi) + b2), (2)

then recurse into the product on the right side, and then finish by going to the firstcasg,; - V.
The reduction works over any choice of a Boolean basis for formulas and its corresponding arithmetic
basis. 0

20

Proof of Lemma 14Given an arithmetic formulé@(z) and giver¢, we give a reduction from finding th&'
bit of >, ®(x), to evaluating the mod@-suma . ¢(z) for some Boolean formula.

To begin with, let us assume that there are no nonstanﬁ{gzaies in®, in other words, that is a
F,x-polynomial for somek. By the way we represeiit,. (Section 2), there is a Boolean circdi{ X) that
takes as input &-bit vector X ; corresponding to each inpuj of ®(x), and outputs: bits representing the
value®(z). C'is constructible in polynomial-time gived, independent of the choice of a basis.

Because the original task is to find tH bit of the sum>,®(z), and because addition i, corre-
sponds to componentwise additionlij, we can ignore all output bits af' except the/ one. Further,
because the summation variablggange over binary values, we can fix in eaXhall the bits to0 except
the least significant bit, which we can call. So we now have a circu(z) returning the/!" bit of ®(x)
for everyz from the Boolean domain.

It follows that the/™ bit > & (z) equalsd, ,¢(x,y), whereg is the formula verifying thay describes
the computation of the circu® on inputz. This proves the lemma whel(x) is a polynomial.

Now suppose thab containsf—gates for an arbitrary. Mimicking the above reasoning for the standard
basis, we want to express the evaluationbods a Boolean circui€’ over the f-extended Boolean basis.
Once this is done, the rest follows as in the earlier case Witﬁgates.

Perform the process, explained in the proof of Lemma 13 just above, of bridgingprenex form —
a seemingly useless thing to do @sdoes not involve sums. But notice that as a side effect, the process
transforms the summation-frdgx) into the sum=g ®'(z, B), where eacly-gate in®’, say thei™ one, is
“isolated” in the sense that its inputs now come from sdsjg .., By, among the variable®, which all
range over Boolean values. Sinﬁagrees withf on Boolean inputs, now thi-gates can be replaced with
f-gates.

It thus follows, with the same reasoning as earlier, that/thdit of > ,®(x) — which is the same
as the/™ bit of ©,, 5 ®/(z, B) — equals®, g ,¢'(z, B,y), where¢' is a formula over the Boolean basis
corresponding to the basis ®f The reduction works over any choice of a basisdor O

— Step 3: Putting things together —
We now proceed to prove Theorems 2-3 and Proposition 4, beginning with the proposition.
Proof of Proposition 4. Immediate from Lemma 7 and Corollary 15. Ol

Both Theorem 2 and Theorem 3 involve interactive proofs. For shortening the exposition, we now give
a generic lemma that provides this ingredient to both results. It says that claims of théJpdr(n/) = v’
are same-length checkable, provided that the checker has oracle access to eacl®gdtehere is no
access for one type of gate, say ﬁﬁgates, then instead of a yes/no answer, the checker can output a small
conjunction of claims of the formf(z) = w’ where “small” means no more than conjuncts if the fan-in
of the f—gates in® is at mostm.

Lemma 16 (Same-length Checkingfor every languagd. := {L,,} .., there is a same-length checkér
that reduces- ASAT to the task of verifying, in parallel, multiple claims regardifig
In particular, +,ASAT <~ gets reduced to at mosi claims of the formff (y) = v wherei < m.
This also holds if we extend the standard Boolean basis @jtand give the checker accessAo The
checker does not depend on the choicglof

Proof. The checkel is to verify that the/™ bit of >,®(z) equalsh, given @, ¢,b); here® has all its
constants iffy» and hence the sum is ovég.. V works as follows:

21

First, it obtains the claimed values for the rest of theits for >,®(x), so that the claim becomes
‘3 ®(x) = u’ for someu € Fyr.

Second, it performs the sumcheck protocol [8, Section 3.2] Byeto get rid of the sum and update the
claim to ‘®(y) = v’ for somey, v over the same range as thatof:. (Note: field remains the same.)

At this point, V' obtains the value of each gate in the evaluationb¢f) — i.e., the value of each
subformula of®, when evaluating ony — and checks all of them except those for

Finally, V uses the interpolation technique from the LFKN protocol [26], and combines multiple claims
of the form ‘Ei(z) = w’ into a single one, for each distinttMore precisely, to merge two cIaimi;‘(o?) =
v and “L;(5) = w”, consider the line passing through’ and3 (i. e.,t(x) = d+ (f - d)z € Fiy[z]), and
rewrite the claims to be merged aﬁé‘t(0) = v"and “Lot() = w". The checker obtains the univariate
polynomlaILot — or rather the ponnom|aLot purported to beLot — and sets the merged claim as
“L; (v) = y" wherey = t(p) andy = M() for a randomly chosep € F,x.

The analysis of the protocol is standard: if the original claim, that/theit of >, ®(z) equalsb, is
false, whered has<n nodes, then the sumcheck stage erroneously yields a true claim with probability at
most

of rounds- deg @ / size of the field

which grows slower than /n¢ for any d, due to the requiremertt > log? n in the definition of+ASAT
(Definition 11). Similarly, given< n claims of the form £;(z) = w’, if one of them is false, then the
merging stage erroneously yields a correct conjunction of claims with probability at most

of merges deg R / size of the field

which again grows slower thaiy/n? for anyd.

Since each input node df is represented with a string of length k& (Definition 11), the checker can
maintain its queries to be of the same length.

Finally, the checker does not depend on the choicd.of his finishes the proof. O

Before we finally prove Theorems 2-3, let us note one consequence of what is done in Steps 1-2:

Corollary 17 (Extension CIosure)EBSATf — @SAT/. The reduction works over any basis for formulas.

Proof. Being the affine extension gf, by the definitions in Section 2, on inpuf f gives thezth bit of the

valuef takes aty, wherey andz are computable in polynomial-time out of In other wordsf gives the
+ASATf instanceg @, z) where® is the formula f(Y. Thus f — +ASAT/. Combining with Lemma 14
givesf — @SAT/. Therefore,

SSATS — @SAT®SAT _, gSATS — @SAT/

by Proposition 4, Lemma 8, and Corollary 15, respectively. O

Proof of Theorem 2. Extend the standard Boolean basis withWe are to show that there is a language
K that is equivalent t@SAT under Karp reductions. Furthek’ must be same-length checkable given
access tod, and neither the checker nor the reductions to and f&AT can depend on the choice 4f
Recall that®SAT with respect to the (now-extended) standard basis is the sar®&A$- with re-
spect to the basi§0, 1, A, @}. In the rest of the proof we will work in the latter basis #06AT, and its
corresponding arithmetic basis férASAT.
We claim thatk := +ASAT? is a language as desired.

22

We begin by showing thak and®SAT reduce to each other. In one direction we have
K — @SAT® — @SATA,

where the first reduction is by Lemma 14 (with teextended basis fabSAT), and the second by using
Proposition 4 and the fact thé Karp-reduces to its affine extensioh For the other direction, do the
same sequence of reductions in reverse, by using first Corollary 17 and then Lemma 12 (again @ith the
extended basis for Boolean formulas). Since none of the reductions used depend on the choice of a Boolean
basis, neither does their composition in either direction.

Next, the same-length checkability &f given access tol, is immediate from Lemma 16 by settirdg
to the empty languagé : x — 0 and the basis fot-ASAT to be the standard arithmetic basis. By the same
lemma, the checker does not depend on the choicé of

Finally, ®SAT# is checkable: On input, reduce it to an input’ for K, then simulate the checking
protocol for K (2), by reducing each query fdk to one for®SATA. Because the reductions in either
direction do not depend on the choice of a Boolean basis, and because the cheékelokes not depend
on the choice of4, the same holds for the checker f8BAT4. O

Proof of Theorem 3. Extend the standard Boolean basis with Let L be a language. We are to show
that there is an interactive protocol yielding the reduction

BSAT, =" — @SAT 5" |\
for everyn, m. The protocol will have access t but will not depend on the choice of.

Recall that®bSAT with respect to the (now-extended) standard basis is the samd& A% with re-
spect to the basi§0, 1, A, ®}. In the rest of the proof we will work in the latter basis #86AT, and its
corresponding arithmetic basis f&tASAT.

Also recall that we us@®SAT/ to refer to either of ®SAT/)? and (®SATY)! depending on context,
as they are equivalent under Karp reductions.

We proceed with the proof. We have

@®SATAL<m — @SATOL<m — + ASATO <,

where the first reduction is by Corollary 17 (with tlie,,,-extended basis fobSAT) and the second by
Lemma 12 (with theD- and L<,,,-extended basis fabSAT)). In fact, the same sequence yields

BSAT;, =" — + ASATO Lsm,

for somek € poly log n.

Now, Lemma 16 says (with th@-extended basis) that, ASAT?<m is reducible, via an interactive
protocol that has access t#, to the conjunction of at most claims regardingff, 7 < m, and therefore
to the conjunction of at mostk claims regardini';, the Boolean version off Altogether these claims
can be expressed as one Boolean formula, hence a®®A& instance, of sizeoly(mk), over the basis
extended with the affine extension bg,,. In notation,

O,L<m L<m
+FRASATTF=m — @SAT S0 L

Finally, Corollary 17 says, with the settir@® = L<,,, that

SSATL<m _ @SATE<m

completing the desired reduction.
All the Karp reductions above work over any choice of basis, in particula#, ahdm. The interactive
reduction of Lemma 16 also does not depend on the choigeafdm. This completes the proof. O

23

3.2 ThelP Theorem

In this section we show that ShamifB theorem PSPACE C IP, admits an affinely relativizing proof. As
a byproduct we obtain a new streamlined proof of this result; see Section 1.3 for an overview and comparison
with previous proofs.

The proof is a straightforward consequence of the results in Section IS Al'. We show:

Theorem 18. Every downward-self-reducible language is computable by an interactive protocol.
This also holds if the standard Boolean basis is extended Mijthia a protocol that has access 4.
The protocol does not depend on the choiceldf the self-reduction does not.

Proof. Extend the standard Boolean basis withLet L := {L,} _, be downward-self-reducible, so that
there is a function i'P that induces the Cook-reduction fraby to L<,,_; for everyn > 0. By Proposition
4, there is a function il P that induces the reduction

SSATE — @SATLn—1

for everyn € N; here and throughout the rest of the pro@SATL-1 denotesPSAT, andL; denotes.<;.
Iterating this and combining it with Theorem 3, we get a functioiiihand an interactive protocol that
together induce the two-step reduction

(BSATE 1) 4 — (BSATE -2) o — (®SATLm-2) 4, (3)
for everyn, for some large enough constandts!’ wheren’ denotes:’ + i (in particulard must exceed the
exponent hidden in thpoly (-) notation of Theorem 3). We also have the trivial reduction

L, — ®SATE» (4)
since the task of computing(«) reduces to the task of evaluating the formulac)’.

Now consider the reduction that on inputto L,,, first applies the reduction in (4), and then for
iterations, applies the reduction sequence in (3). This compound reduction yields

L, — @SAT

for everyn € N, in other words, it yieldd, — ®SAT.
By Theorem 2 on checkingSAT, it follows that L. is computable by a protocol that has accesslto
but does not depend on the choicef O

We now state Shamir’'s theorem as a gap-amplification result, as explained on page 12.

Definition 19 (y-gap-IP). Say that a languagg is in «-gap-IP iff there is an interactive protocol fak
with completeness and soundness 1 — ~. Here~y can be any function fro¥ to [0, 1) C R.

By its very definition, the clas8-gap-IP hasTQBF as a complete language, because the interaction
between the verifier and prover irhagap-IP protocol can be expressed a$'@BF instance. Hence:

Proposition 20. There is a downward-self-reducible language that is complet@{gsp-IP. This also
holds if the standard Boolean basis is extended @itirhe reductions do not depend on the choic®of

Remark.Let PSP.ACE be the class polynomial-space defined in the classical sense using Turing machines,
and letPSPACE® be its relativized variant in the sense of Baker-Gill-Solovay. The well-known result of
Stockmeyer and Meyer [33], showing that the languagEF is complete forPSP.ACE, in fact can be
restated as saying thBSP.ACE C 0-gap-IP. More generallyPSP.ACE® c 0-gap-IP with respect to the
O-extended Boolean basis.

24

Corollary 21 (IP theorem) 0-gap-IP C Q(1)-gap-IP. This also holds if the standard Boolean basis
is extended with4d. The correspondence between thegap-IP and theQ2(1)-gap-IP protocols does not
depend on the choice of.

So for every0-gap-IP-protocolll, under thed-extended basis, there iSH1)-gap-IP-protocolllq) that
not only computes the same languagédlgsbut continues to do so even.f is changed to be some other
affine extension language.

3.3 TheMIP Theorem

In this section we show that tiéEXP C MIP theorem of Babai, Fortnow, and Lund [8] admits an affinely
relativizing proof, if it is viewed as a gap amplification result as explained on page 12. We show:

Definition 22 (v-gap-MIP). Say that a languaggis in v-gap-MIP iff there is a multiple-prover interactive
protocol for L with completeness and soundness 1—+. Herey can be any function froito [0,1) C R.

Theorem 23(MIP theorem) 0-gap-MIP C (1)-gap-MIP. This also holds if the standard Boolean basis
is extended with4, via protocols with access td.

The proof becomes a straightforward consequence of Section 3.2, thiBtttteorem affinely relativizes,
once two ingredients are introduced. First is a very useful characterizatidildfand more generally of
~v-gap-MIP, due to Fortnow, Rompel, and Sipser [14]. We paraphrase their result:

Fact 24. L € MIP iff there is a languager such that, € IP™, with a protocol that is robust to its oracle
in the following sense: if some other oracté is used instead af then no prover strategy can exploit this,
i.e., the verifier cannot be convinced to acceptith probability > 1/3 whenever(z) = 0, even if some
otherz* is used as oracle instead of

This equivalence more generally holdsMITP” is replaced with “y-gap-MIP”, “ IP” with “ v-gap-IP”,
and “1/3"with“ 1 —~".

The above also holds when the standard Boolean basis is extended vaitial all the protocols involved
are given (additional) access 0.

The second ingredient in proving Theorem 23, and the key one, is the seminal “multi-linearity test” of
Babai, Fortnow, Lund [8, Thm 5.13]. We combine it with a “Booleanness test” from the same paper [8,
§7.1] and a standard decoding procedure for low-degree polynomials (e &,44)]):

Proposition 25. There is an interactive protocaolDecode, for which the following holds. Lé€]| denote the
maximum probability that eveétoccurs, over all possible prover strategies in the protocol.

For every languagéd’ and every numbelN € N, there is some affine extension langu&gsuch that:
given inputs(z,e, N) where|z| < N ande < 1/2, and given oracle access #®, Decode runs in time
poly(N/e), and outputs a valueutput such that:

(i) if Fis an affine extension, theoutput = F(x)] = 1,
(i) if Fis an affine extension, théoutput ¢ {F(z), fail’ }] =0,
(iii) otherwise,[output ¢ {G(z), fail' }] < e.

We defer the proof to the end of this secti@B.3.2) and proceed to derive Theorem 23.

25

Proof of Theorem 23Let us adopt the notation of Proposition 25, and ier)| to denote the maximum
probability that a verifiel” accepts its input, over all possible prover strategies in a protocol.

Extend the standard Boolean basis withLet L € 0-gap-MIP. By Fact 24,L € 0-gap-IP™ for some
languager; we may assume is an affine extension since every language reduces to its affine extension.
Pick any protocol realizind. € 0-gap-IP™, and let its verifier bd{. We know that this protocol is robust
to its oracler in the sense of Fact 24.

By Corollary 21,L € IP™.° Therefore, by Fact 24, all that remains to show is that among the protocols
realizingL € IP™, one is robust tar. So pick any protocol realizing € IP™, with verifierV say. We may
assume that the soundness error of this protocal 196 by amplification.

Consider modifying/, so that it performs each of its oracle queries, say(t&), via the protocol of
Proposition 25, a®ecode™ (X, ¢, t), and rejects upon failure; hete= ¢(|x|) is the total running time of
on an input of lengthz|, ande will be worked out later. By Proposition 25-(i)-(ii), and by the assumption
thatr is an affine extension, this modification does not affect the outcome of the protocolvibesed as
oracle, so we still have B -protocol for L.

We claim that this new protocol has the desired robustness; in the notation introduced up front,

[VoDec™ ()] <1/3)

for every language™* and everyr such thatL(z) = 0, whereV o Dec denotes the modified verifier.

To see this, lef.(x) = 0 and let7* be any language. Depending on whether or 1iois an affine
extension, respectively, |éf denote either™, or the languagé: obtained from Proposition 25 by putting
F.=x*

Starting from the very first protocol we mentioned fbri.e. the one with the verifiev,, and going
toward the last one with the verifi®fo Dec, we will now argue the validity of four implications

Liz)=0 = [Vii(2)] <1 = [VH(2)] <1/6 = [VoDecH(2)] <1/6 = ()

which will prove the theorem.

The first implication holds no matter whaf is, becausé/ is the verifier of a)-gap-IP™-protocol for
L that is robust tor in the sense of Fact 24.

For the second implication, we know thif" agrees with/j" on = by Corollary 21. Moreover, by the
second part of by Corollary 21, agrees with/j? onz, and hence accepiswith probability < 1/6.

The third implication is byH being an affine extension, and hencelbycode!” working the same as
H, by Proposition 25-(i)-(ii).

The lastimplication is trivial ifH = 7*, so suppose not. Then by Proposition 25, except with probability
< ¢, Decode™ returns eithe or ‘fail’. This means, recalling that bounds the running time df on z,
except with probability< te, VoDec™ either works the same a%o Dec’?, or it rejects becausBecode™
returns “fail” at some point. Therefor§/oDec™ ()] < [VoDecH (x)] + te. To finish, set < 1/(6t). O

3.3.1 Comparison with the standard view

We now take up the discussion on page 12, that relates the gap amplification viewhdfRhéheorem,
Theorem 23, to the standard vieNEXP ¢ MIP:

Proposition 26. NEXP C 0-gap-MIP. This doesiot alwayshold if the standard Boolean basis is extended
with someA.

SWhen the Boolean basis is extended withnotice thaD-gap-IP™ really involves two affine oracles not just one. We are still
justified in invoking Corollary 21, however; see the discussion in page 6 titled “multiple oracles”.

26

In order to make transparent what “current technique” yields it, we prove Proposition 26 in two steps. First,
we characteriz®-gap-MIP as a subclass dfEXP, namely as those languagesNEXP with “strong
locality”. Then we show that the strong Cook-Levin theorem collap8eXP to that subclass.

Definition 27 (strong uniformity) Call a family of circuits{C,, }, _, strongly uniform iff the function that
outputs, given inputn, i), the type of the'" gate inC,,, as well as the indices of all gates connected to it, is

in FP.

Definition 28 (NEXPjca1). Let Piocar be the class of all languages with strongly uniform polynomial-
size circuits. Using this class defitddP),..;, and then by padding defif€EXP),..1; in other words let
NEXP).ca1 be the class of all languages with strongly uniform exponential-size nondeterministic circuits.

Proposition 29. 0-gap-MIP = NEXP)...1. This also holds if the standard Boolean basis is extended with
O, and the protocols are given access®o

Remark.Over an arbitrary basis extensi@dh the classNEXPy... corresponds exactly to what we may
denote agvE X POV the Turing-machine-based definition of relativiZéBX P where the oracle queries
are restricted to be of polynomial length. In logical terms (Section 1.1), in every standard motté¥ of
the variableNEXP).. gets interpreted as the clas& X POPN] for some®, and conversely for everg,
there is some standard model.4€7 in which NEXPy,..; is interpreted as/&X POl Proposition 29
thus vindicates the use of poly-length query restriction in previous work; see the discussion on page 12.

We now proceed to prove Propositions 29 & 26.

Proof of Proposition 29.Part(C): Extend the standard Boolean basis with Let L € 0-gap-MIP. By
Fact 24,1 € 0-gap-IP™ for some language. In other words, there is a family of sizesly n circuits
V™ .= {V(z,r)}, over ther-extended basis (this extension is in additioXpsuch thatl(z) = 1 iff

ARVERRAVASICRY (5)

L T2 "'\r\

evaluates td, where each; ranges ovef0, 1}, |r| € poly n (wlog |r| is even), anch = |z|.

View (5) as a circuitD? (z), of sizeO(2!"!) times the size of/,7. Now view DT as a circuitC,, (z, y)
over thestandardbasis (we still have in the basis), by replacing eaahgate inD with ay,-gate.

V™ is a uniform family, i.e., there is a function P that outputs, given inpyti™, 1%), information about
the i gate of V™ in the sense of Definition 27. It follows th&t := {C,,(z,yx)}» iS a strongly-uniform
family. This proves the first part.

Part(D): Extend the standard Boolean basis withLet L. € NEXP),.,; with a corresponding strongly
uniform circuit family {C,, (, y) },, of sizes(n) € exp poly n. For everyz € {0,1}™ andi € {0, 1}°85("),
let(z, i) be the value of thé" gate inC,, (x, y*) for some fixed,* maximizing the output of’,, (, y) over
all eligibley. Then in the protocol fo(x), the verifierV” simply: (i) picks at random € {0, 1}°%(™); (ii)
using the strong uniformity ofC,, }, finds out that the!" gate is, say, of typg and is connected, say, to gates
i1..i, in that order; and (iii) checks that the transcript is consistent With“ﬂgﬁte, i.e., that = f(z1..2m),
wherez stands forr(x, 7) in general, with the special case being when gésehe output gate (then= 1),
and wherez;, stands forr(z, i) in general, with the special case being when datis an input gate (then
z, = x; for an appropriatg). It is easy to see the robustness of this protocal.tdhe claim follows. [

Proof of Proposition 26.P C Pj,c. by the strong Cook-Levin theorem (Section 2), implyiNgEXP C
NEXP,ca1 and proving the first claim via Proposition 29.

27

For the second claim, we want to show a languéheith its affine extensiom, such thalNEXP ¢
NEXPi,.a With respect to thed-extended basis. It actually suffices to show this non-containment with
respect to the&-extended basis, becausgereduces tabSAT® by Corollary 17, and becauseSAT can
be computed brute-force REXP,..1, the latter holding also under tif2-extended basis. (To see this, let
FmlaEval(¢, z) be the language that interpreisas a formula and evaluatesat z. Then®SAT(¢(x)) =
®,C(¢,), whereC'is the circuit forFmlaEval at the appropriate input length. Vie® as a circuitD of
size2l*l times the size of'. Because&” is uniform, D is strongly uniform, sS@®SAT € EXPjyc, in fact.)

ThusNEXP),.. does not become smaller@ is used as the basis extension insteadiof it does
not matter whetheNEXP does — and what remains is to constrdZt But this is an easy matter: let
My, Ms, Ms.. be a list (repetitions allowed) of all nondeterministic algorithms with access to an arbitrary
language?, such thatV; runs in time< 27" on all inputs of lengtn > 4, and such that all queries ©
are of length< n'°2™, Now fori = 1..00, update® at a large enough input, say ®#, to the output of\/;
on1°. Every language ilNEXP),., With respect to th&-extended basis is computed by soMgin the
list, yet the language mapping — —O(1?") is clearly not, provinge ¢ NEXP),..; with respect to that
0. O

3.3.2 Proof of Proposition 25
We complete Section 3.3 by providing the deferred proof of Proposition 25.

— Proof of Proposition 25 : The protocol Decode —

Let L be a language. Being the affine extensiorL.pby the definitions in Section 2, on inpute {0,1}",
L gives thez!" bit of the valueL takes aty € Fon,ie.,

=~k
(Znw). (6)
wherey, z, m, k are all computable in polynomial-time out af and are all< n. Conversely, given
(y, z,m, k), an inputr for which this holds is also computable in polynomial-time.
The protocolDecode interprets its input: as though it were for somg, and extracty, z, m, k. Since

k denotes the field size, or the logarithm thereof, and singecan be efficiently identified if¥,>x, and
moreover, sincé < n < N, (6) can be viewed as

~N
(Znm), (7)
whereY denoteg identified inF7},, andZ denotes the accordingly updated
Owing to this, Decode overrides(y, z, m, k) with (Y, Z, m, N), andz with someX corresponding to
the latter tuple. For notational convenience, we will not capitatizend Z because they represent the same
information agy andz. Also, we will assume thalV > 10log 2m; this is without loss of generality as we

can always hav®ecode increaseV before overridingy, z, m, k).
After this initial adjustment phasé)ecode proceeds into the main phase consisting of three steps:

Step 1. Testiff}, n is (multi-)affine:

- Pick at random an axis-parallel line, and three points on this line.
- Check if the valued,, y takes on the three points are collinear.

Step 2. TestifF,,, v is an affineextensioni.e., if F,, y is Boolean on Boolean inputs:
- Pick at random up ten Boolean vectorsy, .., v; € FJy.

28

- Do a sumcheck protocol on the claiim= 3, 1 13 Q(b) where

Q) = Fnn ()1 + Fnn () [Tz (1 + (y,05)) (8)
with (y,w) denoting the inner produdt , y,w;.
- Save the poing’ at which() is evaluated at the last round of sumcheck.
Step 3. Test for consistency:

Pick at random a liné originating aty, i.e., let/(t) := y + th for a randomh € F}, \ {0}.
Letting (1), .., (m+1) be a canonical choice afi+1 distinct nonzero elements ¥~
interpolate into a polynomiaj(t) the values of,, y at¢((1)),..,¢((m + 1))

- Check if F},, n(y) = ¢(0). Also checkF), v (y«) = q(t,) for a randomt, andy, := ¢(t).
- Repeat Step 3 also for the poigitsaved in Step 2, in place ¢f

We refer to [8,53.2 and§5] for explanations of the terms ‘axis parallel line’, ‘'sumcheck protocol’, etc.

If any of the checks fails, the®ecode outputs ‘fail’; otherwise, it repeats Step 1 - 3. This goes on
for T times, after which poinDecode outputsF(X), i.e., thez™" bit of F,, x(y). With foresight, we set
T :=cm%In % wherec = 8100. This completes the description of the protocol.

— Proof of Proposition 25 : Analysis of Decode —

To begin with, note that the protocol never outputs something besid&s or ‘fail’. Thus
for every prover,Prloutput ¢ {F(X), fail' }] = 0. 9)

Parts (i) and (ii) of the claim are fairly immediate. Indeed, suppdse L for some languagé. Then
all steps succeed with certainty, provided the prover acts honestly in Step 2. Thus

for some proverPrloutput = F(X)] = 1.
Also, F'(z) = F(X) in this case, because

F(x) = L&) = Ly, (y2) = L, (y2) = L(X) = F(X).
Putting together with (9), we get claims (i)-(ii).
To proceed with part (iii), let us introduce a piece of notation. For functiingwith the same finite
domain, sayf is nearbyg, and writef ~ ¢, to mean

Pry[f(y) # g(y)] <

over the uniform choice af from dom f = dom g. With foresight, we sef := 155—.

Also, let us call a functionP : Foy — Fon affine, orm-affine, if it is the evaluation irF,~ of an
m-variate polynomial ovef,~ with individual degree< 1.

For all functionsf : Fjy, — Fy~ and allm, there can be at most one affine function neafbglue to
the Schwartz-Zippel Lemma (see, e.g., [4, Lemma 4.2]) and the factitkatV.

We now define the languagde claimed to satisfy part (iii). For every: € N, consider whether there
exists a Boolean functioh,,, : {0,1}"™ — {0, 1} such thati,flV is nearbyF,,, y. If yes, thenL,, is unique
by the previous paragraph; if not, then Igt, be arbitrary, say the mape {0,1}™ — 0. Then seG := L.

Now consider three cases:

29

case i.Fy, v is not nearby any affine functiaf : F7}, — Fynv. Inthis case, by [8, Thm 5.13 aff@.1] 1o
Pr[Step 1 passés< 1 — 1/(8100m°). (i)

caseii. Fj, n Is nearbyf,g. Supposér, y disagrees Witin];j ony. Then by [4, Proposition 7.2.2.1},
Pr[Step 3 passés
< Prthe interpolated value df,,, y agrees withF,, v aty., but disagrees witiinjlV aty|
<27 +m/(2N —1) < 2/(9m). (ii)
Now supposé;,, y does agree witlﬁ;V ony. ThenF(X) = G(X) by the way we defined;. Further,
G(X) = G(x) since
G(x) = L(2) = Ly, (y2) = Ly, (y2) = L(X) = G(X).
Putting together with (9) we get, for every prover,
Prloutput ¢ {G(z), fail' }] = 0. (i)
case iii. F;,, y is not nearbyfnf, but is nearby some affine functiéh: F7;, — Fy:. In this case, by the
way we defined.,,,, we know thatP is not Boolean on all Boolean inputs, i.&(F5") ¢ Fa.
Consider Step 2, in particular, the randomly picked pging F7} on which the expressio in

(8) is evaluated at the end of the sumcheck protocol fLie¢ the event thak,,, n agrees with” on this
pointy’. Then just as in case ii., by [4, Proposition 7.2.2.1],

Pr[Step 3 passes—¢&]

< Pr[the interpolated value df;,, y agrees with¥,,, x aty,, but disagrees witt aty/']

<2/(9m).
On the other hand, suppo&e Then at the end of sumcheck, the final claim, of the form

'v=Q(y) where Q(y) = Fun(y)(1+ Fnn®) -1+ (¥, v;))
for somev € Fyn, can be alternately written as
'v=Qp(y) where Qp(y):=Py)1+P)) 111+ (¥.v5)
Therefore, for every prover,
Pr[Step 2 passest] < Pr['v = Q(y')' is a correct claim| £]
= Pr['v = Qp(y') is a correct claim| £] = (*)

where we just switched from a sumcheck involving the initial claim=), Q(b)’ to one involving
the initial claim 0 = >~, Qp(b)’. We are justified in this transition becausés a function purely of/’
and the prover, with “the prover” being just a function fr@h™ to the univariate polynomials ovér
of degreeleg), that has nothing to do with the particulars@f Therefore

(x) < Pr[penultimate claim in the sumcheck fér= >, Qp(b)’ is correct

°To invoke [8, Theorem 5.13] we set= 1/(900m*), § = 1/(900m*), and uséF,~| > 900m*. In return we get an axis
1 € {1..m} along which> e-fraction of lines would fail the test in Step 1 withJ-chance, provided thdt,,, x differs from every
affine function on> ¢'-fraction of inputs, where’ < 1/(100m?).

o invoke [4, Proposition 7.2.2.1], we let := F,, n, andB be the function that givefy, »), outputs the polynomiaj(t)
as described in the protocol. In return, we get that if there is a polynamh@fldegreed such thatPr,[f(y) # P(y)] = ¢, then
Py, ¢, [A(y) # ¢(0) yetA(£(t.)) = q(t.)] < 2VE + iy

30

+ Pr[last sumcheck round erfs
< Prlthe firstclaim 0 = >, Qp(b)’ is correct + mp

where we dropped by independence, and where an erroneous round is one that takes an incorrect claim
and produces a correct one, withdenoting the probability of such a round taking place anteing

the number of rounds. Because each round involves evaluating a given univariate polynomial of degree
< deg at a random point ity ,

p < degQ/2N < m(m + 2)/20082m < 1/(500m?).
Now, applying Rabin’s Isolation Lemma [35, Theorem 2.4] to thelset Fy* : P(B) ¢ Fy, we get
Pr(the first claim 0 = >, Qp(b)" is correct < 1 — 1/(4m),
and putting together we get, for every prover,
Pr[all steps pags< min(Pr[Step 2 passes€], Pr[Step 3 passes—€]) < 1 —1/10m. (iii)
This concludes the case analysis. Step 1 through Step 3 are refietiteds, which for our choice df’
makes all of (i), (ii), and (iii) at most, thus
Prloutput ¢ {G(z),fail' }] < (max{(i),(ii),(iii) })7 + (i) <e
as claimed. n

3.4 Lower Bounds against General Boolean Circuits

Using thelP theorem and its variants, Buhrman, Fortnow, Thireauf [12] and Santhanam [28] succeeded in
obtaining the strongest lower bounds known-to-date against general Boolean circuits. In both results, the
lower bound is shown for the class of Merlin-Arthur protocols; in the case of Buhrman et al. it is for the
classMA (expn), of protocols running in exponential time, and in Santhanam it isMa«(poly n). For
notational convenience, we us€A (¢(n)) to denote classes of partial languages, and make it explicit when
we talk about the subclass of (total) languages.

In this section we give an affinely relativizing proof that unifies both results. We prove:

Theorem 30. For every constant,
(i) MA(expn) contains a language that does not have circuits of @Zﬁ‘ogd").

(i) MA(polyn) contains a partial language that does not have circuits of 6ize?).
This also holds if the Boolean basis is extended with

The proof consists of three main ingredients. The first one shows that if the lower bound fails to hold,
then this failure scales ®SAT.

Lemma 31(Scaling)
(i) If part (i) of Theorem 30 is false, theBSAT has circuits of size?(QIOgd") for somed.

(i) If part (i) of Theorem 30 is false, the®SAT has circuits of siz&(n?) for somed.
This also holds if the Boolean basis is extended wiith

We defer the proof of Lemma 31 to the end of this section.
To proceed with the rest of the proof it will be convenient to introduce some notation.

31

Definition 32 (X3SAT). Let ¥3SAT denote the language mappingr, v, z) — JzVy3z ¢(z,y, z) where
¢ is over the standard Boolean basis by default.

For ¢t a well-behaved resource bound, §SAT(¢) denote the set of all languages Karp-reducible
in time ¢ to X3SAT. In other words,X3SAT(¢) is the set of all languages for which the language
(z,140#1)) — L(z) Karp-reduces ta3SAT.

The second ingredient in proving Theorem 30 is a collapse result: if the conclusion of the Scaling lemma
holds, then the polynomial-time hierarchy collapses. We defer its proof to the end of this section.

Lemma 33(Collapse) Let s be a well-behaved resource bound.
If ®SAT has circuits of siz€)(s(n)), thenX3SAT is computable by a protocol iR A (s(poly n)).
This also holds if the Boolean basis is extended with

The last ingredient of the proof is a classical result of Kannan [23], showing circuit lower bounds for
Y¥3SAT, and more generally faL; SAT(¢). His proof relativizes.

Fact 34(Kannan's bound)Let s be a well-behaved resource bound.
¥3SAT(poly s(n)) contains a language that does not have circuits of 6iz&(n)).
This also holds if the Boolean basis is extended with

With the three ingredients in hand — Scaling and Collapse lemmas, and Kannan’s bound — we can
prove Theorem 30. For part (i), we Iétbe the set of languages MA (expn) and puts(n) = 9log n: for
part (i), we letC be the set of partial languagesNbA (poly) and puts(n) = n<.

The proof goes by contradiction. We give the argument using notation.

C C SIZE(O(s(n)))
= @®SAT € SIZE(O(s(n))) (by Scaling lemma)
= Y3SAT € MA(s(polyn)) (by Collapse lemma)
= Y3SAT(poly s(n)) € C *
= contradiction (by Kannan’s bound)

where step (*) follows from Definition 32 and the fact thdpoly s(n)) C poly s(n) for the particular
choices ofs(n).
What remains is the proof of Scaling and Collapse lemmas.

Proof of Scaling Lemma There is nothing to prove in part (i), becaus®8AT instance of sizex is com-
putable by brute force in deterministic timep n - poly n, which by definition is a protocol iMA (exp n).

For part (i), suppose that every partial languagéia (poly) has circuits of sizeD(n?) for some
fixed d. We want to show thabSAT has circuits of sizepoly n. By Theorem 2@SAT reduces to some
same-length checkable langual§e so it suffices to show this fak instead ofbSAT.

So letK beanysame-length checkable language, and suppose towards a contradictiindbas not
have polynomial-size circuits. Laet: N — N be such that(n) is the size of the smallest circuit deciding
K on inputs of lengtm, for everyn. By assumptions(n) is super-polynomial, i.es(n) >io. n” for every
constant:. Note thats(n) might not be well-behaved.

Consider the partial languag€’(zy) := K(z) that is defined only on inputs of the form; where
y € 01* serves as a pad of lengfl = | s(|z|)¢ |, for some constart > 0 to be later determined.

Now consider the followingIA-protocol for K’: givenzy, the prover sends the smallest circuit for
on inputs of lengthz|, i.e. a circuit of sizes(|z|), and the verifier uses the same-length checkabilit db

32

computek (x), henceK’(zy). This takes, on an input of length| + |y|, timepoly s(|z|) C poly s(|x|)¢ C
poly(|z| + |y|). SoK’ is in MA(poly n), and hence has circuits of sigfn?) by assumption. But thef’
has circuits of siz€(n + s(n)?)¢, which is less thar(n) for infinitely manyn whenevee < 1/d because
s(n) is superpolynomial. But this contradicién) being the smallest circuit size fax. O

Proof of Collapse LemmaToda famously showed [34]
Y3SAT — @SAT

via a randomized reduction that works over every Boolean basis for formulas. (The same holds in general
for X, SAT for all constank.) So if ®SAT has circuits of siz€(s(n)) for formulas of sizen, then theVA-

protocol for computing-3SAT, on a formula of size:, proceeds by the verifier doing the above reduction

to obtain a formula of sizen € poly n, then the prover sending a circuit f@SAT at a large enough input
lengthpoly m, hence a circuit of siz&(s(poly n)), and finally, the verifier running the checker 86AT,,
(Theorem 2) on the circuit, in timgoly(s(poly n)), i.e. in times(poly n) sinces is well-behaved. O

3.5 TheZKIP Theorem

AW made the surprising observation that the famous theorem of Goldreich, Micali, and Wigd€isan,
ZKIP if one-way-functions exist [21], can be proven via the same techniques underlyih§ theorem
[1]. Thisisin contrast to the standard proof of this result involving a graph-based construction, which seems
incompatible with the oracle concept.

IKK turned this idea into a complete proof by devising an indirect commitment scheme for this purpose
[22]. In this section we adapt this AW-IKK proof to our framework, to get an affinely relativizing proof of
the ZKIP theorem.

Theorem 35(ZKIP theorem) NP C ZKIP if there is a one-way function iR secure againsBPP.
This also holds if the standard Boolean basis is extendedith

Similarly to previous work (AW, IKK), we take for granted that there is a relativizing proof showing
that under the assumption of Theorem 35, there are bit commitment schemes as in [27]. Also as in previous
work, we take an informal approach to zero knowledge, declaring some protocol as leaking no information
if, assuming a physical implementation of a perfectly secure bit commitment scheme (such as locked boxes
containing the commitments), the verifier's view of each decommitted bit, when dealing with an honest
prover, is either uniformly distributed, or deterministically computable by the verifier itself, .

Idea. We can interpret the combined AW-IKK insight as follows. Fix a vector space over anyield
We want a protocol where given a publicly known vectoithe prover can commit to any vectorthat is
orthogonal tou, and the verifier checks that L «, but learns nothing additional about
This can be realized by the honest prover committing three things: (i) a random ¥e(itpthe vector
r 4+ v, and (iii) the inner productr, u). Since a cheating prover may deviate, let usmse+ v, and(r, u)
to denote what is actually committed for (i),(ii), and (iii) respectively. o
Sincev L wiff (v + r,u) = (r,u), the verifier picks at random one of the following two tests.

Test a. prover decommits toand(r, u), and verifier checks that, u) = (r,u).

Test b. prover decommits to+ v and(r, u), and verifier checks that + v, u) = (r,u).

Any prover not committing to a vectar orthogonal tou is caught by al /2-chance in this protocol,
because then at least one equalityint- v, u) = (r,u) = (r,) fails. On the other hand, an honest prover
reveals no information about

33

Following IKK, let us refer to the prover's commitment to (i) and (ii) aboveaasndirect commitment
to v, and refer to the rest of the protocol from commitment to (iii) and onwards, asthogonality test for
v with respect tau.

This protocol suggests that given a circGit and given a satisfying assignmenof inputs toC, in
order to show that’ is satisfiable without leaking, all that an efficient prover needs to do is to commit,
indirectly, to the transcript of the computatiof{x), to which the verifier then applies various orthogonality
tests.

Protocol. Initially let us not extend the standard basis; we will visit the case of an extended basis later.

The prover is given a circuif and a satisfying assignmento C. Say the gates i’ are indexed from
1..s, with s being for the output gate arid. N being for input gates.

Let F denoteF,. for a large enouglt, sayk = s. Let(1),..,(n+1) denote the firsk. + 1 nonzero
elements under some canonical orderind of

The protocol proceeds in two phases: In the first phase, for each fragm@nofrihe form

i= f(91--9n), (10)
meaning the gate indexéd> N is of type f and receives its inputs from gates indexedg,, in that order
(wherei > N because there is nothing to check for input gates), the honest prover codimitfly, to:

e arandomly picked nonzero vectbre F,
e letting z; ..z, be the values of gates..g,, in computingC(x), and/ be the line/(t) := zZ + thin F,
the vectorg((1)), .., £((n+1)),
andindirectly, to:
e the coefficients, .., ¢, of the ponnomiaIfoﬂ(t) =cpt" + .. + co,
e the evaluationgof((1)), .., fol((n+1)) of the polynomialfo(t).
Also in the first phase, the honest prover commiitdjrectly, to:
e the valuev; of each gate in the computatior”' ().

This ends the first phase. Notice that there is no need to commit to the coefficietie polynomia[)%E(t)
for any fragment, becausg is supposed to equal the valugof gatei for the fragment (10).
Because a cheating prover may commit to other values than what he is supposed to, let us use

By £((1), s H((n41)), €1, s Cay fOl((1), -, fol((n+1)) (11)
to denote the commitments for each fragment, and let us use
Y1, Ys (12)

to denote the commitments for the purported values., v, of the gates in the computati@rn(z).
In the second phase, the verifiérpicks at random a fragment i, say the fragment where gaten
the left hand side in (10) — call it th&" fragment — and then picks at random one of the following tests:
1. letting/(t) be the line/(t) := Z + th wherez = yg, ..y, ,
check/(j) = ¢(j) for arandomly picked € {(1), .., (n+1)}

2. checkfol(j) = f(£(j)) for a randomly picked € {(1),.., (n+1)}

3. Iettingﬂ(t) be the polynomiat;,t™ + .. + c1t + cp, wherecy = y;,
checkﬂ(j) = fol(j) for a randomly picked € {(1),.., (n+1)}

4. checkh is nonzero

34

In case gate is the output gate, theW in addition does:

5. checky; = 1.
Intests 1, 2, 4, and 5, the prover completely reveals the relevant information; notice this means decommitting
to two bits for each bit committed indirectly. Test 3 is an orthogonality test/faith respect ta:, where

w=fol(j) ¢u...co and u=1 j".. .j°

so if this test is selected, then the honest prover in addition commits«d, with r being the vector formed
by putting together the random values sent during indirect commitmerftgtg), c,, . . ., co respectively.

Analysis. The completeness of the test is clear. As for soundness, supposg thatot a satisfiable
circuit. Then the committed values in (12) satisfy either of the following:

(a) There is a fragment of the form (10), for which the equality

Yi = f(ygl"ygn)
fails, or

(b) the reported value of the output gate is wrong, ye# 1.
Since there are at mostfragments, with probability> 1/s, the verifier picks an erroneous fragment
for which either (a) or (b) holds. Once picked, case (b) is detected with certainty in Test 5. As for case (a),
consider the values among those in (11) committed for this fragment. Adopting the notation of the second
phase of the protocol, either of the following subcases must hold:

(@) the vectorh is zero, or
(i) thereis somg € {(1)..(n+1)} for which one of the equalities
fot(G) = J(U9)) = fot(§) = Jot(s) (13)
fails,
because otherwis@(t) would be the polynomiafoﬁ(t) and we would have

Yi = M(O) = fol(0) = f(ygr'ygn) = f(ygl--ygn)-
contradicting that we are in case (a).

The verifier detects case (i) with probability1/4 (conditioned on having picked an erroneous fragment
in the first place). As for case (ii), with probability 1/(n + 1), the verifier picks an offending, and
depending on which of the first/second/third equality in (13) is violated fdiest 1/2/3 fails respectively,
with (conditional) probability> % for Test 3 and probability for Tests 1 and 2.

It follows that if the circuitC' is not satisfiable, then the verifier rejects with probabﬂ_i’t)l/SQ, with s
being the number of nodes 6f. Repeating the protocol from scrat2k? times brings down the soundness
error tol/3.

Finally, the protocol is zero-knowledge, because each test that passes reveals a value that is either uni-
formly distributed, or is deterministically computable by the verifier itself.

Extended basis. We now generalize the protocol to handle 4rextended Boolean basis. The idea is
that the above protocol, over the unextended Boolean basis, generalizes to a protocol over the unextended
arithmetic basis, where each gate in the given circuit is a function of the fBfin — [F rather than
{0,1}"™ — {0,1}. This is because all the values committed by the prover are alreaByexcept for
those in (12), which are oveb, 1}, but which can be taken ov&rwith no change to the protocol.
Therefore, given a circuif’ over theA-extended Boolean basis, all we need to do is to transtérnm
an appropriate arithmetic circui?. We now explain how to do this transformation.

35

Let O be a language, and its affine extension. By the defininitions in Section 2, on input {0,1}",
A gives thez"" bit of the valueO takes aty € F1, i.e.,

(0n®). (14)

wherey, z, m, k are all computable in polynomial-time out of Conversely, giveriy, z, m, k), an inputx
for which this holds is also computable in polynomial-time.

Sincek denotes the field size, or the logarithm thereof, and sifigecan be efficiently identified in
Fy>%, (14) can be viewed as

~ K
Y 1
(0n), (15)
forany K > k, whereY denotesy identified in[F.;, andZ denotes the accordingly updated

It follows that given a circuitC' over the.4-extended Boolean basis, a polynomial-time algorithm can
take each4-gate inC, say

whereg; denotes the index of the gate that is connected te®heput of A, and replace it with
O (Y (91--9n 17
(m(Y (919))Z(gl..m (17)

whereY andZ are now overloaded to denote the circuit that parses its in@st(y, z, m, k) of (14), and
then outputs the values and Z of (15) respectively, for any > k, in particular forK = s, the size of
C'. Note that writingZ as a subscript in (17) actually denotes another circuit, namely the cirguib) that
gives theb™ bit of a.

So the transformation af' is as follows.

e Perform (16)— (17).
e For everym and every standard gafg, with m inputs, replace that gate Wipﬁ;.

The point of the second step here is to unify the treatment of the standard gates with nonstandard ones. In
the modified circuit, each gate becomes a funcith— T for somem, whereF = Fos.

After the transformation, the original protocol carries through, provided the inputs and the output of
each gate are treated as o¥einstead of{0, 1}. This completes the proof of Theorem 35.

4 Negative Relativization Results

This section shows that several major conjectures in structural complexity are impossible to settle via an
affinely relativizing proof, mirroring corresponding results of AW.

There are two main approaches to deriving such results: an interpolation approach, used for separations
of the formC ¢ D, and an approach based on communication complexity, used for containinent3.
Both of these approaches are model theoretic, in the sense that they construct an eligible language relative
to which the statement in question is false.

The main novelty in this section, as explained in Section 1.3, is in the development of the interpolation
approach, which is then used to show tN&XP ¢ P /poly is affinely non-relativizing. This is carried out
in Section 4.1. The communication complexity approach is taken in Section 4.2.

Besides these two approaches there is a third, proof theoretically flavored approach, that is quite con-
venient to use when the situation allows. To show thatdmits no proof that affinely relativizes, we find
a statement’ for which this is already known, and then derive the implication—- ¢’ via an affinely

36

relativizing proof. We thus show that is “no harder” to prove thag, in similar spirit to the use of reduc-

tions in structural complexity. It should be noted that in general, this approach cannot be used for the AW
notion of algebrizing proofs, as it critically relies on the closure of such proofs under inference. Section 4.3
employs this approach.

4.1 Interpolation Approach

The classical way to show thé&t ¢ D does not admit a relativizing proof is to construct a langué@ge
relative to whichC C D holds. Such a construction amounts to a balancing act of sorts; the goal, vaguely,
is to haveQO give more power td than it does t&’, so as to maké& containC in the O-extended basis.

This can be done nonetheless, and sometimes easily so, as can be seen iy takrfPACE, D = P,

andO to be anyPSPACE-complete language (we spell this out in Proposition 36). Typically, however, the
construction is more involved, and it was one of the main contributions of AW to develop an approach — the
interpolation approach — that enables such constructions in the algebrization framework. Their techniques
do not work for our setting, however.

In this section we develop the interpolation approach within our framework, using quite different tech-
nigues from AW'’s (see Section 1.3 for a comparison). Our key result here is Theorem 38, that affine exten-
sions enable interpolation. With that result in hand, we are able to import the ideas of AW to our setting,
and apply it to theNEXP versusP /poly question; this we do in Section 4.1.1.

Before we proceed let us note, like AW did, that the easy fact regalliitACE and P mentioned
above carries over to our setting easily: (Recall weQigep-I1P for PSPACE; see Definition 19.)

Proposition 36. 0-gap-IP ¢ P does not hold for all extensions of the standard Boolean basis with gbme

Proof. Every downward self-reducible language isOhgap-IP. This is because if. := {L,} is d-s-r,
then all that a prover needs to give as proof thatx) equalsh € {0, 1} is the transcript of a computation
involving queries forL<,_1; the verifier then picks one of the claimed queries, $3y(y) and thus
reduces the task to one involvidg.,,—;, and so on.

So both®SAT and TQBF are in0-gap-IP, as are their negation®SAT and -TQBF. Moreover,
TQBF is complete fo0-gap-1P, because the interaction in abygap-IP protocol can be readily expressed
as al'QBF instance. All these hold also when the standard Boolean basis is extende@. with

It follows that0-gap-IP C P with respect to th&-extended standard basis, whéte= TQBF. It turns
out this containment also holds if the basis is extended, instead, with the affine extdnsiafl. This is
because regardless of whats, A reduces tadSAT® (by Corollary 17), andbSAT, -®SAT & 0-gap-IP
under theO-extended basis (by previous paragraph). Therefore whea TQBF, 0-gap-IP does not
become larger if4 is used as the basis extension instea@ of O

We now move to the interpolation approach. The crux of our development is two coding-theoretic
ingredients. The first one states that knowinbits of a binary codeword exposes at meodiits of its
information word, and the second scales this result to affine extensions.

Lemma 37 (Interpolation) Let& : F& — FY be linear and injective. Given a “datawordil € FX and a
set of indicesA C [N], consider the collectio® of all datawordsu’ € FX such that€(u) and€(u’) agree
onA.

There is a set of indiceB C [K], no larger thanA, such that projecting/ ontoG := [K]| \ B gives all
of F§.

37

Proof. The claim of the lemma ofy is true iff it is true onU™ := U + u. So it suffices to show thdf ™ is
a subspace dfX with dimension at leask — | A].

Now,y € UT iff y + u € U, which is iff £(y + u) and&(u) agree on4, which is iff £(y) vanishes on
A. ThereforeU* is identical to the space of all datawords whose encodings vanigh on

All that is left is to boundlim U™, or equivalently, to boundim £(U™) since€ is injective. The latter
guantity is the dimension of the spa€en Z, where(C is the image of, and Z is the space of allV-bit
vectors that vanish oA. But then by the theorem on the dimension of a sum of subspaces (e.g. [5, Thm 1.4])

dim(U") =dim(Z) 4+ dim(C) — dim(Z + C)
=(N—-JA)+ K —dim(Z+C)
which is at leas — |A| becauseZ + C C FY. This finishes the proof. O

Theorem 38(Interpolation) Given a languagg’ and a finite set of inputs, consider the collectiafi of
all languagesy such thatf andg agree onA.

There is a seB of inputs, no larger tham, such that every partial Boolean functighdefined outside
B can be extended to somge: F.

Further, in extending/’ to g, the values of at length+ inputs depend only on those gfat lengthn.

Proof. To begin with, consider the special case whdre_ dom(fmk) for some fixedk andm. For the
purpose of invoking Lemma 37, I€tbe the map that takes as input the truth table of a Boolean fungtjon
onm bits, and outputs the truth table @f,. So€ : FX — FY, whereK = 2™ andN = k2™ (to see the
value of N, recall that”, (y, z) gives thez™" bit of (), whereg}:, is the extension of,, to F25)-

Clearly € is injective; it is also linear becaugg, is additive, and because we represépt with F%
where addition is componentwise (Section 2). &dulfils the conditions of Lemma 37, which yields a
setB C {0,1}™ that is no larger thanl, such that every partial Boolean function ¢i 1}"* \ B can be
extended to a language JA. This proves the theorem in the special case.

To handle the general case, partitidrinto A,, , := AN dom(fni), and use the above special case as
a building block to create a bigger code. In detail, for everynvolved in the partition, defin€,, as the
map sending the truth table gf, to the list comprising the truth tables?giﬁ1 ,5,22 ;... foreveryA,, g, in
the partition. Now, take eachi,, thus obtained, and I&t be their product. In other words, I€ttake as
input a listT},,, , Trn,, .. whereT),, is the truth table of some Boolean functigy, onm; bits, and outputs

Emi (Timy)y Emy(Timy), -- - The theorem now follows from Lemma 37. O

4.1.1 Application —NEXP vs.P/poly

The Interpolation theorem enables us to adapt some of the classical constructions from relativization to
affine relativization. The general idea is to construct a langdagach thaC C D holds relative ta?), i.e.,
such that® c DY, by taking each algorithm underlyin@’, say the first. algorithms, and by fixing up
to a certain length, say.(n), so as to force the behavior of these algorithms on inputs of lemgiWvhile
doing so, the goal is fo® to encode those forced behaviors, in a way that can be easily queried by some
algorithm inD©.
This classical idea can be extended to our setting via the Interpolation theorem. Even though the goal
here is to hav&€ C D hold not relative taD, but relative to its affine extensiod, we can proceed almost
as before. This is because thanks to the Interpolation theorem, forcing the behaviof @igorithm by
fixing A bears little extra burden o than does fixing? to force aC® algorithm. For details we refer to
the proof of the next theorem, which is the main result of this section:

38

Theorem 39. NEXP ¢ P/poly cannot be derived via an affinely relativizing proof.

Proof. It is a basic fact thaNEXP has polynomial-size circuits ifNE (the linear-exponential version of
NEXP) has circuits of size &ixedpolynomial, and that this relativizes. In notation,

NEXP? ¢ SIZE®(poly n) <= NE® c SIZE®(n?) for somed € N.
Therefore, to prove Theorem 39, it suffices to show a langyagmisfying

NE/ ¢ SIZE/ (n%), (18)

for some constant becausg reduces tq?.

So let My, My,.. be a list (repetitions allowed) of all nondeterministic algorithms with access to an
arbitrary languag®, such thatM/; runs in time< 2nlogn on all inputs of lengthn > i. We construct
the languagef in such a way that whe® = f, the information regarding how eadl; behaves on
each large enough input, is stored byf in a format retrievable by a small circuit. More precisely, we
ensure that for every > 1, a sizern? circuit with access o, sayC,Jf, can compute the functioh,, :
{0,1}loen) » {0,1}" — {0, 1} defined as

L (i, x) := M (2). (19)

This yields (18), hence the theorem, because each langkiageNE/ corresponds to somMif, and in
order to computéy () on all but finitely many inputs (in particular forz € {0, 1}>2%) we can just provide
(i,x) to the circuitcf; ,implying K e SIZE/ (n4).

We constructf in&uctively, as the limit of a sequendgg, f-,.. of Boolean functions wher¢, extends
fn_1. The domain off, will include all of {0,1}<"", plus some additional‘"!°s" strings at most. Set
fi1:{0,1} — {0}.

At iterationn > 1, proceed to sef,, as follows. Consider all possible ways of extendifig 1 to a
languagef. Out of all suchf, pick one that maximizes (19), i.e., one for which the collection

Sy ={(t,z) : L,(i,x) =1} (20)

of accepting algorithm-input pairs is maximal.

Now we want to “open up space” ifi by un-defining it at some inputs, the idea being then to encode
the function in (19) in the freed space so that a small circuit can look it up. In doing so, of course, we do
not want to disturb (19), which, by the way we pickgds equivalent to wanting thai; does not shrink —
i.e., as we restricf to somef’, no matter how we extenfl back to some languagg we wantS, = S;.

Consider an accepting algorithm-input pgirz) in Sy. Becausel/; runs in nondeterministig” 108 -
time on inputz € {0,1}", it could issue a great many oracle querieg,tbowever, as far as the membership
of (i,x) in Sy is concerned, it suffices f(j‘fvto honor only those queries @f; alongone acceptingompu-
tation path. So each such pé&irz) actually forcesfto be fixed at only2"!°e™ inputs or less. There are at
mostn2” pairs inSy. Thus if we wantS; not to shrink, it suffices to fifat23" logm jnputs. By the Interpo-
lation theorem, this means we only need to reserve a small set of “bad” iBpofssize< 23"'°¢™ beyond
those already reserved in previous iterations, i.e., beyiond f,, 1, such that orB we have no control as
to how f behaves, but on the “good” inpu{§, 1}* \ (B U dom f,,—1), we can chang¢ arbitrarily. So let
fn be the restriction of to B U dom f,,_1.

Now that we opened up spacefinwe are ready to store the information in (19) so that a small circuit can
look it up. That information is the truth table of a function enr- log n bits, so it suffices to have?™ 18"
bits available indom f,, for this purpose. Since there are at md%t'°s™ bad inputs inf,, by the previous
paragraph, and since there are at n@J§t—11°s("=1) inputs indom f,_; that are outside0, 1}<=1*

39

by induction, we know there are at mast'°s™ inputs currently inlom f, that are outsidg0, 1}<m=1",

So there is sufficient space {), 1}”d for storage whenl is large enough. As for how to actually store
the information, initially consider each inp(t x) to L,, as prepended with zeroes until it becomes a string
Y{i,z) Of lengthn?, and then setn(Y(ix)) := Lu(i,z). Of course this may not work as some bad inputs may
coincide with somé/; ., but this can be handled simply by changing the encodirig of) to Y; .y ® Z for

a suitably picked” € {0, 1}”d; suchZ exists because it can be picked at random with non-zero probability
(by a union bound on the event that some bad input coincides¥yith) © Z for some(i, x)). This Z can
then be hardwired to a circuit of siz&, as we wanted to do.

To finish, let f,, behave arbitrarily on the rest of the good inputs{in 1}§"d, and then accordingly
adjustf,, on the bad inputs if0, I}S"d — recall from the Interpolation theorem that on a bad ingitis a
function of how it behaves on non-bad inputs of same length. We have thus consifyetedesired. [

4.2 Communication Complexity Approach

AW show that one can take a lower bound from communication complexity, and use it to construct an
eligible language — an algebraic oracle in their case — relative to whighD holds, for an appropriai@

andD depending on the lower bound picked. Therefore, AW concldde, D cannot have an algebrizing
proof.

In this section we develop this approach of AW for our framework. Our key observation here is in
Proposition 42, that the affine extension respects disjoint unions. With this in hand, we are able to import
the ideas of AW and of IKK to our setting, which we do in Sections 4.2.1 and 4.2.2.

We start by making a notational convention involving the classical communication complexity classes
P, NP, BPP,,, etc.

Definition 40 (P Vvs. Piicc). DefinePyic. as the class of familieg := { f,,} satisfying the following. (i)
Eachf,, is a Boolean function on pairs @f'-bit strings, (ii) There is a protocol involving two algorithms
My, My such thatfor alh and all(X,Y') € dom(f,,), the two parties/;* (1), MY (1) computef,,(X,Y")
in time poly n.

Let P.. denote the relaxation df;.. whereM, M, are allowed to be non-uniform, and where only the
communication betweefl,, M is counted towards time elapsed.

UsePijcc to defineNPyi.., BPPyicc, etc., similar to how we definP, BPP, etc., fromP.1? Similarly
for NP, BPP,, etc., versu® ..

The notatiorC;.. is meant to indicate that time is measured on equal grounds with communication. A
function in D.. according to the classical definition [9] is defined on strings of every even length, while
Definition 40 requires length a power of two; our convention causes nothing but convenience in this section.

We formalize the high-level idea of AW with the following generic theorem in our framework:

Theorem 41. If Ciiee ¢ Dee, thenC C D does not hold for every extension of the standard Boolean basis
with someA. HereC, D can be any class in the polynomial-time hierarchy contairitng

The key ingredient in arguing Theorem 41 is the observation, mentioned on page 6, that affine extensions
are compatible with disjoint unions in the following sense.

2Recall that definitions oBPP, NP, etc. involve some counting of the witnessesof a P-predicateL(x, w). Here, that
predicate would be of the formfi((X, w) , (Y, w)) where|w| is polynomially bounded im for f,,, i.e., polylogarithmic in X |.

40

Proposition 42. Let Ay, .A; be the affine extension of the languad&s O, respectively. Then the disjoint
union Ap [[A; : bz — Ap(x) is equivalent, under Cook reductions, to the affine extension of the disjoint
unionOg [[Oy : bz +— Op(z).

Proof. Let O := Oy][] O;. By definition, the affine extension @ is the Boolean version of the function
that evaluates, giveB, X1, .., X,, € F,. for anyk, the polynomial

OBX)= Y O(z) I[;(1+ (BX); + (bx);)
b,x1,..,xn€{0,1}
= (Oo(z)- (1 + B)+ O1(z) - B) - [[;(1 + Xi + z:)
= (1+ B)-0g(X) + B- 01(X)
which clearly can be evaluated given accesglgand.A4,, i.e. to.Ay [A1, and vice versa. O

We now give a generic argument for Theorem 41. Supposing there is gome{ f,,} in Cicc \ Dec,
we construct a languag@ such that relative to its affine extensiot the statemenf C D fails. For
concreteness, the reader may té€ke beNP, say, andD to be BPP.

Let MP, M ,... be alist of all polynomial-time decision algorithms with access to an arbitrarily picked
language?. SinceD is definable fronP, we can use this list to define a li3t°, N9, ... of algorithms that
includes every algorithm foP?, i.e., the clas® with respect to th&-extended basis. (Note that the list
of N;’s may include more than every algorithm fBx. it corresponds to the clagsD, the extension oD
to partial languages.)

For everyn € N, pick an arbitrary(X,,,Y,,) € dom f,,. Initialize O to be the disjoint unio®, [[Oy,
where(Qy is the language that has the same truth tabl& asor everyn, and similarly forO; versusy;,.
Becausef € Ciicc, the languagé. := {L,,} defined as

L,: 1" f(X,,Y,)

and defined trivially on the rest of the inputs ($8yis in C?; to see this just consider usirgg to simulate
aCyice-protocol for f. Our objective is to modiffy,O@; so thatL remains inC®, and becomes out @4,
Then we will be done sinc@ reduces to4.

We realize this objective as follows. For= 1..c0, we pick somegX,,,,Y,,) € dom f,, for a large
enoughn;, and updat&)y, O; at lengthn; to have the same truth table a5,,,Y,,, respectively. Let us
denote this update operation withy «— X,,, andO; < Y,,,. Notice that updating in this way readily
maintainsL € C®. As for ensuringl. ¢ DA, we pick X,,,,Y;,. so that if©’ denotes the update@ using
Xn,,Y,,, and A’ denotes its affine extension, then

N (1) # f (X, Yoy, (21)
which makes the" algorithm in the list fail to computé. (Note thatV;’s output might not be well-defined
on the inputl™ due toN; computing some partial language whith is outside the domain of; (21) still
holds in that case.)

All that remains to argue is that there are infinitely manysatisfying (21), because then we can pick
n; arbitrarily large, so as to not disturb the previous phases of the construction —#;exg22 " suffices

sinceD C EXP.
To argue this, ley,, be the function with the same domain s behaving as

gn (X,Y) = N (1), (22)

41

where A’ is, as before, the affine extension®@f, and®’ is © updated usingX, Y. (In caseN;*' (1) is not
well-defined, then ley,, have value 1’ on that X, Y. We may assume that, takes on finitely-many_t’
values, for otherwise there is nothing to argue.)

Now what remains is to argue that.= {g,} is in D, for then there are infinitely many for which
fn # gn, IMplying (21) can be enforced infinitely often, as desired.

By Proposition 42, we know that the languagé of (22) Cook reduces tol) [].A}, where A is
the affine extension af;, obtained by updatin@, with X, and similarly for.4|. Letting R denote this
reduction, we can modifyV; so that it issues its oracle queries4§][A} instead of4’; in notation,

NA(17) = (N; o R A (17,
But this shows already thatis in D.., because there is a protocol where one party is given accéssaital
knows Oy, the other party is giver and knows?D;, and the two parties simulafs: o HA1 (1™) by using

(2

each other as an oracle fdf, and.4] respectively. This finishes the generic argument for Theorem 41.

4.2.1 Applications

Theorem 41 allows us to replicate two negative algebrization results of AW:

Corollary 43. Neither of the following statements can be derived via an affinely relativizing proof: (i)
coNP C MA, (i) PNP ¢ PP.

Proof. Let Disj(X,Y) := Vi =(X (i) A Y () be the disjointness predicate. Itis clear thatj € coNPricc.
On the other hand, it takes at le@%(2"/2) bits of communication to comput®isj by a Merlin-Arthur
protocol [24, Corollary 1], implyindisj ¢ MA... Part (i) now follows from Theorem 41.

For part (i), letLYB(X, Y') := max;cqo,13» (X (1) AY (7)), and letf (X, Y) := LYB(X,Y) mod 2 be
the predicate for whether the Last-Yes-Bit position¥findY is odd. It is easy to see thgitc (PNF);c..
On the other hand, it takes at le&¥t2"/3) bits of communication to computgby a probabilistic protocol
[13, Section 3.2}2 implying f ¢ PP... Part (i) now follows from Theorem 41. O

We can use Theorem 41 to replicate a result of IKK as well:

Claim 44. RP ¢ SUBEXP cannot be derived via an affinely relativizing prd6fHere SUBEXP denotes
N-DTIME(2™).

Proof sketch.Consider the set of all pairs of string&’, Y') such thatX, Y respectively equal the truth table
of ﬁ,@ﬁ for somem and somef, g : {0,1}™ — {0, 1}, wherek = 2 4 log m. Consider restricting the
equality predicat&qual(X,Y) := Vi(X(¢) = Y (i)) to this set, and call the resulting functiédi(X,Y).

Yao's classical result oRqual implies that there is n@ € SUBEXP,. that £ can be extended to. In
short, and with a slight abuse of notatidii,¢ SUBEXP,..

On the other hand, if we take the cld3®;.., and relax its definition to include familiesf,,} where
dom f,, is no longer required to be the set of every p#irY” of length2” strings, but rather some of them,
then we may call the resulting clapsRPy;i.., and then see thall € prRPic. by the Schwartz-Zippel
Lemma.

13The authors of [13] show a stronger result where the protocol allows both parties to use private randomness as well, with a
suitable generalization of the acceptance condition for the protocol.

KK show the stronger result whe®UBEXP = N.DTIME(2"") is replaced by\. DTIME(2°"). Using a less modular
argument we can derive this result as well.

42

Now the proof of Theorem 41 in Section 4.2 is written exactly with this more general situation in mind.
Namely, if prCiicc Dec, thenC C D does not hold for every extension of the standard Boolean basis with
someA,; hereC, D can be any class definable frdPrand contained iftXP. The claim follows. O

4.2.2 Extensions

Refining the AW approach, IKK considerably strengthened a result of AW: they showed that no algebriz-
ing proof (for their notion of algebrization) exists fofP having sub-linear-exponential circuits, even at
infinitely many input lengths. We can extend Theorem 41 to replicate this result in our framework as well:

Claim 45. NP C i.0.-SIZE(2°") cannot be derived via an affinely relativizing proof for same 0.

We give a rough outline of a proof. Similar to the argument for Theorem 41, we consider a list of &i'size-
Boolean circuits om-bits, for eachn € N. Similarly again, we define a languagethat encodes, at each

input lengthn, a single instance of a communication problg(X, V), with X andY being encoded in the

oracle. The difference here, following IKK, is thgtis the direct product of a Boolean problem instead of

a merely Boolean one, for which we know a much stronger variarft ¢fD.., namely the strengthening

of this to average-case hardness on all input lengths (as opposed to worst-case hardness at infinitely many
input lengths). This allows us to use a randomized process to define the oracle “at once”, thereby obtaining
a hardness fof. that holds at every input length. We refer to [22, Lemma 4.2] for details.

4.3 Proof Theoretic Approach

As mentioned in the beginning of Section 4, sometimes we can get away without constructing oracles, and
still show thaty) admits no proof that relativizes affinely. To do so, we find samhavhich we already
know has that status, and then derive the implicatioas=- ' via an affinely relativizing proof. We thus
reduce the task of creating an oracle relative to whicis false, to doing the same fqr, with the proof
of » = 1’ serving as the reduction. More generally, we reduce the task of showing hatits no
affinely relativizing proof, to doing the same fof.

Using the results of Section 4.1-4.2 we can readily show:

Theorem 46. None of the following statements can be derived via an affinely relativizing proof:
(i) NP C P, (ii) NP ¢ P, and (iii) NP C BPP.

Proof. Part (i): Theorem 39 showed thatEXP ¢ P/poly cannot have an affinely relativizing proof, and
Theorem 30 showed thafA (exp) ¢ P/poly via an affinely relativizing proof. The claim follows because
NP c P impliesMA c P, which in turn impliesMA (exp) ¢ NEXP, both implications being derivable
via a relativizing (hence affinely relativizing) proof.

Part (ii): Proposition 36 showed th@dgap-IP ¢ P cannot have an affinely relativizing proof. The claim
follows sinceNP C 0-gap-IP via a relativizing proof.

Part (iii): Corollary 43 states thabNP C MA does not have an affinely relativizing proof. The claim
follows sinceNP C BPP impliescoNP C MA via a relativizing proof. O

5 Conclusions and Open Problems

Our results counter the folkloric belief that relativizing techniques treat computation only as a “black box”
mapping inputs to outputs (e.g., [1, p. 2]), and that arithmetization, or more generally a circuit-based view

43

of computation, seems to let us “peer into the guts of it” [2, p. 115], and hence circumvents the limits of
relativizing techniques.

In contrast, according to our definitions, a Boolean formula in the relativizing view, say over the basis
{N, ®, O}, gives complete freedom regarding how thegates behave, and in this sense e@epate is a
black box, of “volume” the size of its truth-table. In the affinely relativizing view, however, €xgate
redundantly encodes a Boolean function, by extending its domain G&12)", say, toGF(2k)”; this
means that the behavior of the gate is determine2’ogntries of a truth table of size rough”. So each
O-gate has a black-box “core”, carrying on with the metaphor, of volume roughlyoot of its overall
volume; herek must beQ2(log n) for all the results catalogued in this paper, and can be takéilag n)
for a formula of sizeD(n).

So it seems that: (i) circuit-based technigaesrelativizing, if they are insensitive to enlarging the basis
arbitrarily, (ii) arithmetization-based techniqua also relativizing, only “slightly less” so. To make this
a bit more precise, consider the following question: what can be the circuit complexity, over the standard
basis{0, 1, A, @}, of a sizen circuit over the extended basf§, 1, A, ®, O}? In the relativizing view, i.e.,
in RCT, the answer i2°(") — just consider a singl®-gate withn — 1 inputs. To see this in the affine-
relativizing view ACT, let us first clean up the definition of affine extension a bit, so thatisfa Boolean
function onn inputs, then its affine extension involvé§(2’“) for £ > logn only, instead of > 1. By
the above discussion, this makes no difference for the results catalogued in this paper, but now the answer is
easily seen to bg?9("/1ogn) again via ar®-gate withn — 1 inputs. Dividing byn and taking logarithms, we
get what might be called the “opacity” of each theory, a quantity that rangesidrnat the real-world end
of complexity theory, taD(n) at the fully relativized end, with affine relativization being abavé:!—¢)
for everye > 0, just “slightly less” than relativization.

We finish by listing some suggestions for further research.

A quantitative theory of relativization. Both relativization and affine/algebraic relativization are rigid
notions, in the sense that something either relativizes or does not. However, the discussion just above, on the
various degrees of being opaque, calls for a theory of relativization that is gradual, based on the information
content — or density, so to speak — in an oracle.

Can we associate to each statement a “relativization rank”, so that the algebrization barrier arises as a
quantitative gap, between a lower bound on one hand for the rank of algebrizing statements, and an upper
bound on the other, for the rank of non-algebrizing statements? If so, then we could view the reciprocal of
the rank as a useful complexity measure on theorems and conjectures, just as we have complexity measures
on algorithmic tasks: the larger the reciprocal of the rank, the higher the “relativization sensitivity” of the
statement in hand, indicating more resources — stronger axioms — required to prove it.

New oracles fromold. Section 4.3 showed that sometimes we can evade the task of constructing an oracle,
by reducing the task to another one already done. For example, there is no need to construct an (affine) oracle
refutingNP C P when we already have one refutidgiXP ¢ P/poly, becaus&P ¢ P — NEXP ¢
P /poly via an affinely relativizing proof — meaningP C P is harder to prove thaNEXP ¢ P /poly in
some sense.

Can we use this idea to simplify the landscape of oracle constructions? For example, many of the
statements shown not affinely relativizing in Section 4.2 are containments of theCfarnD for which
various circuit lower bound consequences are known. This suggests that a handful of oracles, each refuting
some circuit lower bound, may yield a rich collection of statements getting indirectly refuted via reductions
of the form given in the above example.

44

Weaker theories for arithmetization. As asserted in Section 1.2, we can replicate all the classification
given by IKK (as well as by AW) for what algebrizes and what does not, however, we do not know if
algebrization in the IKK sense implies affine relativization, or vice vé?sBhis suggests that there should
be a weaker characterization of arithmetization-based techniques that subsumes both notions.

Is there a constraint that we can place on the basis exte@ksibasides that it is a language, so that the
resulting theory is a consequence of both versiond@f , ours and IKKs, and still derives all the theorems
shown algebrizing by AW? (Notice that such a theory would automatically be unable to prove anything
unprovable byAC7, hence all the non-algebrizing statements of AW.)

Of course, the weakest axiom deriving a theorem is the theorem itself, so there is a trivial answer to the
guestion the way stated above: just take the conjunction of all the algebrizing stateiightegrem MIP
theorem, etc., and add it as an axiom. This kind of “overfitting” clearly lacks the succinctness desired in a
theory, so we need to amend the question a bit. Say that a proof is nontrivial if the proof remains valid when
viewed inC7. Then we want a theory that is a consequence of both versiad€®df and thahontrivially
derives all theorems shown algebrizing by AW.

The PCP theorem. Section 1.3 explained that both thHe theorem and th&ITP theorem can be naturally
viewed as a gap-amplification result, and from that point of view both theorems have affinely relativizing
proofs. Can we extend this reasoning to eP theorem? If so, this would bolster the candidacy of affine
relativization as a proxy for arithmetization-based techniques.

A completeness theorem for oracles. If we can provey, and that) relativizes, then is there a relativizing
proof of? It is consistent with experience that such a “completeness” phenomenon holds. Confirming this
would allow us to focus solely on proving facts about statements, and not on how we prove those facts.
Along the same lines, what if each statement in a proof relativizes — then does the proof itself relativize?
If so, then we could say that a proof relativizes if and only if each of its intermediate statements does. (The
“only if” direction is already true by the way we defined things in Section 1.1; the non-trivial part is to make
the jump from the semantic fact that each step relativizes, to the syntactic one that the proof relativizes.)

A genuine independence result. Be it in our version ofRC7 and.AC7, or in AlVs and IKKs, Section 1.2
pointed out that the axioms go on top of an existing collection of axioms governing everyday mathematics.
Another approach to formalizing these barriers, would be to propessetof axioms governing every-

day math, the idea being to find the “weakest” version of everyday math that can derive each algebrizing
statement, and then to show that no non-algebrizing statement can be derived by that much of mathematics.

Acknowledgements

We thank Scott Aaronson and Eric Allender for their helpful comments. This research was supported by
NSF Grant CCF-1420750, and by the Graduate School and the Office of the Vice Chancellor for Research
and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni
Research Foundation.

Bibliography

[1] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theAGM Transactions on
Computation Theoryl(1), 2009.

5The IKK approach is oveZ but can be adapted BF(2*), so this is not the issue. Also, the IKK approach builds on the AIV
formulation of RC7, but it can also use our version ®RC7, so again this is not the issue.

45

(2]
(3]
[4]

[5]
[6]

[7]
(8]
9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]
[24]

[25]

Sanjeev Arora and Boaz Barak.omputational Complexity: A Modern ApproadBambridge University Press,
2009.

Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus nonrelativizing techniques: the
role of local checkability. Manuscript retrieved from http://cseweb.ucsd.edu/ russell/ias.ps, 1992.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problendaurnal of the ACM45(3):501-555, 1998.

Emil Artin. Geometric AlgebraJohn Wiley & Sons, 1957.

Laszb Babai. E-mail and the unexpected power of interactionPrisceedings of the Structure in Complexity
Theory Conferencgages 30—44, 1990.

Laszb Babai and Lance Fortnow. Arithmetization: A new method in structural complexity th&mgputa-
tional Complexity1:41-66, 1991.

L aszb Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover interactive
protocols.Computational Complexityi:3—-40, 1991.

Laszb Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory (pre-
liminary version). InProceedings of the IEEE Symposium on Foundations of Computer Science (FaG&)
337-347, 1986.

Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP qué&itidvi.Journal on
Computing 4(4):431-442, 1975.

Manuel Blum and Sampath Kannan. Designing programs that check their Jeantal of the ACM42(1):269—
291, 1995.

Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separatioAsodeedings of the IEEE
Conference on Computational Complexjipges 8-12, 1998.

Harry Buhrman, Nikolai K. Vereshchagin, and Ronald de Wolf. On computation and communication with small
bias. InComputational Complexifyages 24-32, 2007.

Alan Cobham. The intrinsic computational difficulty of functions FAroceedings of the International Conggress
for Logic, Methodology, and Philosophy of Sciengeptges 24—-30, 1964.

Stephen A. Cook. Short propositional formulas represent nondeterministic computétimnshation Process-
ing Letters 26(5):269-270, 1988.

Herbert B. EndertonA mathematical introduction to logicAcademic Press, 1972.
Lance Fortnow. The role of relativization in complexity thedBylletin of the EATCS52:229-243, 1994.

Lance Fortnow. [Blog post: The great oracle debate of 1993]. Retrieved from
http://blog.computationalcomplexity.org/2009/06/great-oracle-debate-of-1993.html, 2016.

Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive proidwdset-
ical Computer Scien¢d 34(2):545-557, 1994.

Lance Fortnow and Michael Sipser. Are there interactive protocols for co-NP languafsfation Processing
Letters 28(5):249-251, 1988.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all languages
in NP have zero-knowledge proof systendsurnal of the ACM38(3):691-729, 1991.

Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic approach to algebrization. In
Proceedings of the ACM Symposium on Theory of Computing (SPaggs 695-704, 2009.

Ravi Kannan. Circuit-size lower bounds and nonreducibility to sparse Isdétsmation and Contrgl55(1):40—
56, 1982.

Hartmut Klauck. Rectangle size bounds and threshold covers in communication complextynputational
Complexity pages 118-134, 2003.

Richard Lipton. [Blog post: | hate oracle results]. Retrieved from http://rjlipton.wordpress.com/2009/05/21/i-
hate-oracle-results, 2016.

46

[26]

[27]
(28]

[29]
[30]
[31]
[32]
[33]

[34]

[35]

Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof
systems.Journal of the ACM39(4):859—-868, 1992.

Moni Naor. Bit commitment using pseudorandomnek<ryptology 4(2):151-158, 1991.

Rahul Santhanam. Circuit lower bounds for Merlin-Arthur classd&\M Journal on Computing9(3):1038—
1061, 2009.

Rahul Santhanam. [Comment to blog post: Barriers to proving P!=NP]. Retrieved from
http://www.scottaaronson.com/blog/?p=272#comment-7634, 2016.

Adi Shamir. IP = PSPACEJournal of the ACM39(4):869—-877, 1992.
Alexander Shen. IP = PSPACE: simplified prodéurnal of the ACM39(4):878—-880, 1992.

Victor Shoup. New algorithms for finding irreducible polynomials over finite fiedsthematics of Computa-
tion, 54(189):435-447, 1990.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Preliminary report. In
Proceedings of the ACM Symposium on Theory of Computing (SPaggs 1-9, 1973.

Seinosuke Toda. On the computational power of PP and +Prdeeedings of the IEEE Symposium on Founda-
tions of Computer Science (FOCPnges 514-519, 1989.

Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutibhsoretical Computer
Science47(3):85-93, 1986.

47

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

