
Affine Relativization:
Unifying the Algebrization and Relativization Barriers

Barış Aydınlıŏglu ∗ Eric Bach†

June 9, 2016

Abstract

We strengthen existing evidence for the so-called “algebrization barrier”. Algebrization — short
for algebraic relativization — was introduced by Aaronson and Wigderson (AW) (STOC 2008) in order
to characterize proofs involving arithmetization, simulation, and other “current techniques”. However,
unlike relativization, eligible statements under this notion do not seem to have basic closure properties,
making it conceivable to take two proofs, both with algebrizing conclusions, and combine them to get a
proof without. Further, the notion is undefined for most types of statements, and does not seem to yield
a general criterion by which we can tell, given a proof, whether it algebrizes. In fact the very notion of
an algebrizing proof is never made explicit, and casual attempts to define it are problematic. All these
issues raise the question of what evidence, if any, is obtained by knowing whether some statement does
or does not algebrize.

We reformulate algebrization to handle these shortcomings. We first define a statement asrelativiz-
ing if, intuitively, it is insensitive to the choice of a Boolean basis, and then asrelativizing affinelyif,
roughly, it relativizes with respect to every affine extension — here an affine extension is the result of
a particular error correcting code applied to the characteristic string of a language. We also define the
notion of aproof to relativize (affinely), while ensuring closure under inference. We show that all state-
ments that AW declare as algebrizing can be derived via an affinely relativizing proof, and that no such
proof exists for any of the statements shown not-algebrizing by AW in the classical computation model.

Our work complements, and goes beyond, the subsequent work by Impagliazzo, Kabanets, and
Kolokolova (STOC 2009), which also proposes a reformulation of algebrization, but falls short of recov-
ering some key results of AW, most notably regarding theNEXP versusP/poly question.

One consequence of our definitions is a demystified perspective on the extent to which relativiz-
ing techniques view computation as a “black box” and current uses of arithmetization do not. As an-
other consequence, we give new streamlined proofs of several classic results in complexity, including
PSPACE ⊂ IP andNEXP ⊂ MIP.

∗University of Wisconsin-Madison;baris@cs.wisc.edu.
†University of Wisconsin-Madison;bach@cs.wisc.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 40 (2016)

Contents

1 Introduction 1
1.1 Relativization and Affine Relativization . 4
1.2 Comparison with Prior Work . 6
1.3 Overview of Ideas and Techniques . 10

2 Definitions, Notation and Conventions 14

3 Positive Relativization Results 17
3.1 Checking and Compressing�SAT . 17
3.2 TheIP Theorem . 24
3.3 TheMIP Theorem . 25
3.4 Lower Bounds against General Boolean Circuits . 31
3.5 TheZKIP Theorem . 33

4 Negative Relativization Results 36
4.1 Interpolation Approach . 37
4.2 Communication Complexity Approach . 40
4.3 Proof Theoretic Approach . 43

5 Conclusions and Open Problems 43

Bibliography 45

1 Introduction

Motivation. The algebrization notion — short for algebraic relativization — was put forth by Aaronson
and Wigderson [1] (AW henceforth) to give evidence that certain complexity-theoretic conjectures are be-
yond the reach of “current proof techniques”. Although the name suggests some type of relativization,
algebrization lacks two essential properties of relativization:

Closure under inference.What exactly constitutes a “current technique” may be inherently unclear, but
at a minimum it seems logical inference rules should be included. However, as pointed out in [1, 29, 22],
statements that algebrize in the AW formulation are not known to be closed under inference.

For example, AW show that the statementψ := NEXP 6⊂ P/poly does not algebrize, and interpret
this to mean that a certain class of proof techniques, say “algebrizing techniques”, cannot proveψ. Yet,
this does not rule out an approach where, say, one comes up with a classC and, showsC ⊂ NEXP via
algebrizing techniques, then showsC 6⊂ P/poly via algebrizing techniques, and thus derive the very
sameψ.

Lack of closure under inference thus significantly thins any evidence imparted by a negative al-
gebrization result — as AW obtained forNEXP versusP/poly and for other questions of structural
complexity — since the class of proofs ruled out by such a result might be much smaller than intended.

This precludes algebrization from having one of the two key virtues of relativization, namely delin-
eating those conjectures within possible reach of a robust family of techniques, from those that are not.
Indeed, some major results in complexity are suggested to have been found using relativization as such
a guide [6, 17].

Universality. A main appeal of relativization is being a universal notion, in the sense that it applies
to every statement in one generic way. Intuitively, a statement relativizes if its truth is insensitive to
broadening the definition of computer, from an ordinary Turing Machine, to one with oracle access to
an arbitrary languageO. (We provide an alternate intuition later in Section 1.1.)

This intuition is so natural that it enables the second key virtue of relativization, namely being a
“litmus test” for weeding out futile endeavours. The idea is that ifψ is already known to not relativize,
then any strategy for provingψ, in order to be viable, must somehow be unable to handle arbitrary
extensions of the computer notion, or else it would be a strategy for proving not justψ, but thatψ
relativizes. Given the scarcity of such proof strategies in structural complexity — at least for thoseψ
involving P-based classes — this idea makes relativization a practical tool for guiding research. (Alas,
we do not have a count on the number of fruitless research hours saved this way.)

For algebrization, however, we have no comparable intuition. This is mainly because algebrization
is a selective notion, in the sense that it is defined only for containmentsC ⊂ D and separationsC 6⊂ D,
and moreover, it is applied differently to each side of the containment / separation. Supposing we have
a strategy to proveψ — and assuming, to begin with,ψ is of compatible syntax — there is no universal
criterion we can apply, to check if our ideas can be extended to show thatψ algebrizes. This calls into
question how relevant it is to know thatψ is non-algebrizing in the first place.

Besides the above problems, algebrization brings back some longstanding ones that are as old as the rela-
tivization notion itself:

Controversial relativizations. A pair of theorems might be derived using seemingly same techniques, yet
only one might be relativizing / algebrizing. For example,PSPACE ⊂ IP, as AW show, algebrizes, yet
its cousin,NEXP ⊂ MIP, doesnot, as observed by Impagliazzo, Kabanets, and Kolokolova [22] —
except itdoes, as AW show, if we restrict oracle access forNEXP to be of polynomial-length.

1

It is not clear how to interpret such results without further work. Can we justify restricting oracle
access, say by showing that it yields a natural subclass not tied to the Turing machine model? If so,
then which “current technique” eliminates the difference between the two classes, the subclass and the
original, thereby overcoming the limits of algebrizing techniques (whatever they are)?

Relativizing statements vs. proofs.A generally accepted (though not uncontested [25]) convention is to
remark that some proof, say ofψ, relativizes or algebrizes, with no clear consensus on what that exactly
means.

The typical intent behind such remarks seems to be that the said proof can be transformed into a
proof that ψ relativizes(or algebrizes). However, as anything can be transformed into anything when
there is no constraint, it is not clear which proofs donot relativize under such a definition. And even
if some commonsense transformations are tacitly agreed upon — e.g., “give every Turing machine an
oracle forO,” or “bring each statement to its relativized form” — it is unclear whether the transformed
object would always be a valid proof, let alone a valid proof thatψ relativizes.

Naturally thus the question arises, of whether precise definitions can be given for what constitutes a
relativizing / algebrizing statement / proof. Ideally, the definitions should capture the everyday intuition
for these notions, as well as test the folkloric belief that relativizing techniques (whatever they are) view
computation as a “black box”, and relate that to algebrizing techniques.

Prior Work. Although an early draft by Arora, Impagliazzo, and Vazirani [3] (AIV) succeeds in giving
a precise definition of a relativizing proof, it is not clear if their approach captures the everyday intuitions
for the concept. For one thing, no distinction is made there between a statementψ to relativize, versus
ψ to have a relativizingproof, although such a distinction seems essential to capture the everyday uses;
see Section 1.2 for more explanation. Further, the approach is recursion theoretic and makes no reference
to computational devices such as circuits or Turing machines, and consequently it is difficult to tell, for
example, that “Satisfiability isNP-complete” relativizes in their framework, or has such a proof, even though
“oracle gates” forO can be easily incorporated into a circuit / formula. See Section 1.2 for more discussion.

Building on the AIV approach to relativization, Impagliazzo, Kabanets, and Kolokolova [22] develop an
analogous approach for algebrization. However, that approach falls short of recovering some key results of
AW, most notably regarding theNEXP versusP/poly question. Again, see Section 1.2 for details.

Our Results. In this paper, we reformulate relativization and algebrization, in a way that addresses all the
problems raised in the first section.

We give a simple definition of what it means for a statement / proof to relativize, that yields the following
intuition: a statement / proof relativizes iff it is insensitive to enlarging the standard Boolean basis. Our work
delineates the notions of a statementψ to relativize versus aproof of ψ to relativize (as well as other notions
in between). As we argue in Section 1.2, this distinction is essential if we want to model the intuition behind
the casual uses of these terms.

Our main contribution is to the algebrization notion. We define a statement / proof as relativizingaffinely
if, intuitively, it is insensitive to enlarging the standard Boolean basiswith any affine extension— here affine
extension is the result of a particular error correcting code applied to the characteristic string of a language.
With this definition, we show that every statement that AW declare as relativizing algebraically does rela-
tivize affinely — in fact has aproof that relativizes affinely — and that the opposite holds for statements
declared non-algebrizing by AW in the classical model.1 (Both require new ideas.) Our formulation in
this sense gives rigorous support to the “algebrization barrier” idea of AW, which can thus be viewed as a
refinement of the classic “relativization barrier” of Baker, Gill, and Solovay [10].

1 AW state some non-algebrization results for quantum-based complexity classes as well; we do not pursue these.

2

Affine relativization is a refinement of relativization so as to capture the known uses ofarithmetization,
a technique for interpolating Boolean formulas into polynomials. Famously used in early 90’s for obtaining
PSPACE ⊂ IP and related results, which are false relative to some choices of an oracleO [20, 19, 12],
arithmetization is widely regarded as a counterexample — maybethe counterexample — to the rule-of-
thumb that “most known proof techniques relativize” in structural complexity theory. Affine relativization,
to the extent that it captures the known uses of arithmetization — and it does so fairly well, as we argue in
the rest of this section — can be viewed as a step towards reinstating that rule-of-thumb (albeit only a step,
as thePCP theorem is out of scope of this and related work; see open question in Section 5).

As one conceptual consequence, our formulations yield a demystified perspective on the extent to which
relativizing techniques are “black-box” and arithmetization-based techniques are not; see Section 5.

Our formulations also tell something about those “few known proof techniques” that do not seem to
relativize affinely, in particular, aboutlocality of computation. It is a longstanding debate whether locality
— that the next step of a computation depends on only a “small” fragment of its current state — plays
any role in current results of complexity, particularly in interactive proofs [18, 3, 17, 22]. On one hand,
NEXP ⊂ MIP can be explained away as relativizing algebraically with a convenient, but questionable,
alteration of the oracle access mechanism as mentioned above; on the other hand, locality could provide an
honest explanation of this theorem, as argued by Arora, Impagliazzo, and Vazirani [3], but an incongruent
one to its algebraic nature, especially when its cousin,PSPACE ⊂ IP, needs no such explanation.

Our results shed some light onto this matter. As we explain in Section 1.3, it is fruitful to put a particular
class betweenPSPACE andIP, and another one betweenNEXP andMIP, so that each theorem reads as
two containments. The second containment, we argue, captures the real content in each theorem, namely
“gap amplification”; affine relativization can derive every containment except the first one forNEXP versus
MIP. We conclude that whether or notNEXP ⊂ MIP algebrizes is just a matter of definition, because there
is no application of this theorem (as far as we know) that is sensitive to how it is viewed, gap amplification
versus the common view. Therefore affine relativization can be viewed as a robust proxy, or a candidate
thereof, for the current state of the art.

This is mere interpretation, however, and is not to be confused with the main message of the paper:

Summary of Results. Affinely relativizing proofs, as defined in Section 1.1, have the following properties.

• Each of the following has an affinely relativizing proof

– PSPACE ⊂ IP, viewed as gap amplification (Corollary 21)

– NEXP ⊂ MIP, viewed as gap amplification (Theorem 23)

– MAEXP 6⊂ SIZE(2logd n), ∀d (Theorem 30)

– prMA 6⊂ SIZE(nd), ∀d (Theorem 30)

– NP ⊂ ZKIP if one-way-functions exist (Theorem 35)

• None of the following has an affinely relativizing proof

– NP 6⊂ P, in factPSPACE 6⊂ P (Proposition 36)

– NP ⊂ P, in factRP ⊂ SUBEXP (Corollary 44)

– NP ⊂ BPP, in factcoNP ⊂ MA (Corollary 43)

– PNP ⊂ PP (Corollary 43)

– NEXP 6⊂ P/poly, in factNEXP 6⊂ SIZE(nd), ∀d (Theorem 39)

Further, affinely relativizing proofs are closed under inference, and if a statement has an affinely relativizing
proof, then it “affinely relativizes,” i.e., it holds relative to each language that is an affine extension, as
defined in Section 1.1.

3

Organization. We describe our formulation next in Section 1.1 and compare it to prior work in Section
1.2. We give an overview of the ideas and techniques in Section 1.3. The technical development starts from
Section 2 and is self-contained from thereon.

1.1 Relativization and Affine Relativization

We now describe our formulation of the relativization and affine relativization notion.

Relativization without oracles. Let the standard Boolean basis refer to the set{0, 1,∧,⊕} comprising
four languages (with0 denoting the empty language, viewed as the function mapping all binary strings to
zero,1 its negation, and with∧,⊕ denoting the AND,XOR function on binary strings respectively). We
say that the statementψ holds relative to the languageO iff ψ is true when the standard Boolean basis is
extended withO. We sayψ relativizes to mean thatψ holds relative to everyO.

Some remarks are in order.

• Let us momentarily be more precise. We will work in the first order language with signature{∈, Bstd}.
The symbols0, 1,∧,� are introduced with definitions, and are not officially part of the signature.
(Similar to the idea that first order number theory doesn’t have any numerals besides0; other numerals
are abbreviations forS(0), SS(0), etc.)

Take the axioms of everyday set theory, sayZFC, and add two new axioms: (i) thatBstd includes
{0, 1,∧,⊕} (i.e., 0 ∈ Bstd and1 ∈ Bstd and so on), (ii) thatBstd is included in{0, 1,∧,⊕,O} for
some languageO. Name the new collection of axiomsRCT , for relativized complexity theory.

Now takeRCT and add the axiom: (iii)Bstd is included in{0, 1,∧,⊕}. Call this set of axiomsCT ,
for real-world complexity theory. (Note (iii) implies (ii) asO need not be a distinct fifth element.)

Given a statementψ (in the language with signature{∈, Bstd}), we callψ relativizing iff it is true
in everystandardmodel ofRCT . Assuming, as we may here and throughout the paper, that every-
day mathematics is consistent, astandard model of set theoryis one where the symbol ‘∈’ for set
membership is interpreted as the actual “is an element of” relation.

• ψ being nonrelativizing per se does not make it interesting or hard to prove; e.g. letψ be “the standard
Boolean basis is{0, 1,∧,⊕}”.

Conversely, relativizing statements can be nontrivial; in facteverytrue statement that does not mention
the standard Boolean basis (i.e., everyψ over the signature{∈} that holds in the standard models of
ZFC) is by definition relativizing.2

• Relativizing statements are closed under inference, since ifφn+1 is a consequence ofφ1, .., φn, then
φn+1 is true wheneverφ1, .., φn are, which makesφn+1 relativizing assumingφ1, .., φn already are.

We agree to take the uniform-circuit-based definition ofP, andP-based definitions ofNP, NEXP, etc.,
so that extending the standard Boolean basis withO automatically gives usPO, NPO, etc., without having
to mention oracle access toO at all — though we do mention it anyway, for emphasis. An algorithm thus
means to us a uniform family of circuits. So if we “letV be a time-t(n) algorithm with oracle access to a
proof stringπ”, for example, then unless otherwise stated, we mean to “letV := {Vn} be a uniform circuit
family of sizet(n) (or of sizet(n) polylog t(n) — does not matter in this paper) over the basisBstd ∪ π”
for some languageπ defined appropriate to the context.

The uniformity in the above paragraph can be specified using any notion of classical computer running
in polynomial-time, be it Turing machines or pointer machines or anything else; we pick Turing machines

2this agrees with intuition: ifψ does not mention a Boolean basis, then its truth is insensitive to the choice of such basis.

4

to get the following fact for free: for everyL ∈ P, there isfL ∈ FP describing a circuit familyC := {Cn}
for L, say via the map

(1n, 1i) 7→ the type of theith gate inCn and the indices of all gates connected to theith gate.

We caution that we do not exploit any peculiarity in this way of definingP. The reader who prefers the
Turing machine model can stick to it, provided the Turing machine is defined to have oracle access to every
element of the standard Boolean basis, so that the above definitions make sense.

It is out of the scope of this paper whether our framework can handle classes “below”P, or those classes
not definable fromP. (And it is an observation of this paper thatNEXP with poly-length oracle queriescan
be defined fromP, as0-gap-MIP. Similarly PSPACE can be defined as0-gap-IP. See Section 1.3.)

ψ relativizes vs.ψ has a proof that relativizes. Given a proofΠ of ψ — i.e., a sequenceφ1..φn where
φn = ψ, and eachφi is either taken for granted or is a consequence ofφ1, .., φi−1 — we callΠ relativizing
iff after extending the standard Boolean basis with an arbitrary languageO, it remains a proof ofψ.

Further remarks are in order.

• Let us again be more precise for a moment. Take any Hilbert-style system of proof, e.g., the one in
[16, section 2.4]. Letψ be a statement in the language with signature{∈, Bstd}. We call a proof ofψ
(from CT) relativizing iff it is a proof fromRCT .

• ψ being relativizing per se does not meanψ has a relativizing proof; e.g. letψ be “ZFC is consistent”.

• Relativizing proofs are closed under inference. (This is immediate from the precise definition, since
they are exactly those proofs derivable from a certain set of axioms.) This is because ifφn+1 is a
consequence ofφ1, .., φn, then it remains so no matter what, in particular no matter how the standard
Boolean basis is extended, which makesφ1..φnφn+1 a relativizing proof assumingφ1..φn already is.3

• A relativizing proof ofψ yields a proof thatψ and thatψ relativizes. (Precisely speaking this is by
the soundness theorem for first order logic). The converse is not clear; see open question in Section 5.

We emphasize that relativization of statements is asemanticconcept, and of proofs is asyntacticone.
In Section 3, many theorems we derive are of the form “ψ, andψ (affinely) relativizes”, or something to

that effect. As remarked just above, it is not clear if such a theorem implies, by itself, thatψ has a relativizing
proof. Nonetheless, in the process of deriving each of these theorems we end up giving a relativizing proof
of the correspondingψ. (Of course we do not provide a formal proof ofψ in first order logic, just as we do
not specify algorithms by implementing them as Boolean circuits.)

So those theorems in Section 3 should really be read as “ψ has an (affinely) relativizing proof” for some
ψ. To be convinced of such claims, the salient point to be checked in their proofs is whether they account
for the standard Boolean basis to be extended with some arbitrary (affine) languageO— and they do.

Affine relativization. TakeRCT and add the axiom:Bstd is included in{0, 1,∧,⊕,O} for some affine
extensionO. That is, there is a languagef , with fn denoting its restriction to length-n inputs, and withf̂n

denoting the uniquen-variate polynomial of individual degree-≤ 1 extendingfn, such thatO represents the
evaluation off̂n overGF(2k), for all k andn. (See Section 2 for a precise definition, and Section 1.3 for a
motivation.)

Call the resulting setACT , for affinely relativized complexity theory. Define the notion of a statement
/ proof affinely relativizing similarly toRCT . (Precisely, a statementψ is affinely relativizing iff it holds in
every standard model ofACT , and a proof ofψ is affinely relativizing iff it is a proof fromACT .) It follows
just as in the case forRCT above that affinely relativizing statements / proofs are closed under inference.

3A relativizing proof can in one step be turned into a proof that is non-relativizing — but not via an inference step.

5

The empty language is the affine extension of itself. Thus it does not make any difference to add the
same axiom, thatO is an affine extension, toCT as well. Now we have three theoriesRCT ⊂ ACT ⊂ CT ,
each strictly more powerful than the one before, as the results in this paper imply.

Multiple oracles. If ψ is (affinely) relativizing, or has such a proof, then what happens if we want to
extend the standard Boolean basis twice — say withO0 andO1? For plain relativization the answer is easy;
just setO to be their disjoint union,O0

∐
O1 : bx 7→ Ob(x), and proceed as before.

For affine relativization, however, a bit more care is needed since we wantO to be an affine extension.
If O0 is the affine extension ofL0, andO1 of L1, the key observation is that the disjoint unionO0

∐
O1

of the affine extensions is equivalent, under Cook reductions, to the affine extension of the disjoint union
L0
∐

L1. This is spelled out in Proposition 42, but intuitively is true because the disjoint union merely adds
an extra dimension — the “b-axis” — and the affine extension acts on each dimension independently (see
equation (†) on page 10). So we setO to the affine extension ofL0

∐
L1 and proceed as before, the upshot

being that one affine oracle is just as good ask of them fork > 1.

1.2 Comparison with Prior Work

Four past works have a direct relation to ours. The main effort in all of them, and in ours, can be viewed as
trying to: (i) formalize the relativization notion, and / or (ii) refine the notion so as to capturePSPACE ⊂ IP
and related results. We now do a comparison with past work, first with respect to (i) and then (ii).

1.2.1 Efforts to Formalize Relativization

In a widely-known manuscript,Arora, Impagliazzo, Vazirani [3] (AIV henceforth) build on Cobham’s
axioms for polynomial-time computation [14] to defineRCT , relativized complexity theory, and argue that
derivations fromRCT can be translated to and from relativizing proofs in our sense (which they refer to
informally, as proofs in a “relativized normal math” system).

A common feature — or flaw, if the reader is logically inclined — of both our definition ofRCT and
AIV’s is that the axioms for capturing relativization go on top of an existing collection of axioms governing
everyday mathematics. On one hand, this is a feature because relativization is meant to be a guide for the
everyday researcher, who has everyday mathematics at disposal. On the other hand, this is a flaw because
statements such as “P versusNP is independent ofRCT ” can be easily misunderstood, as the so-called
independence concerns onlyonenatural way of definingP, NP out of at least two — another one being to
just ignore the extra axioms (they do not interfere with everyday math). This is inevitable unless oneremoves
axioms from mathematics and not add to it, and the quest then becomes to find the “weakest” version of
math that can prove statements such asPSPACE ⊂ IP, as opposed to finding, like we and AIV essentially
set out to do, for the “strongest” version of these statements that can be proven by everyday math.

One difference of our version ofRCT from AIV’s is its accessibility. While AIV’s approach̀a la
Cobham [14] gives an elegant axiomatization of relativizedP (with only a dozen or so axioms), it also
avoids devices such as circuits, Turing machines, etc., making it difficult for a casual user to tell whether
s/he is really working with their proposed definition. Our approach, in contrast, is “naive” in the sense that
it does not attempt at a minimal set of axioms (nor does it spell out every axiom) but in return, it gives a
formalism that is arguably closer to the everyday uses of relativization — e.g., unlike in AIV’s approach,
“Satisfiability isNP-complete” is easily seen to have a relativizing proof in our framework.4

4One can derive the same result in the AIV framework by first showing that their definition is equivalent to a device-based
definition, but that would amount to not using their definition.

6

Our work identifies a distinction between astatementψ to relativize and aproof of ψ to relativize. By
mapping the former notion to a semantic concept, and the latter to a syntactic one, our formulation yields,
as a byproduct, that

(i) ψ is a statement that can be proven to relativize, and

(ii) ψ is a relativizing statement that can be proven,

are distinct notions, as is their combination (i)&(ii); none are known to be equivalent, some are not equiva-
lent, and all are implied by

(iii) ψ has a relativizing proof.

In contrast, AIV use all of (i),(ii),(iii) synonymously in [3].5

We consider this separate treatment, of statements and proofs, essential in formalizing the casual uses of
relativization. Indeed, in the casual sense,ψ relativizes if it is true no matter what oracleO we incorporate
into the definition of a Turing machine — meaning ifψ is true and does not mention any Turing machines,
then it should relativize automatically. So “1+1 = 2” should relativize, as should “ZFC is consistent”. But
this last statement dashes any hope of formalizing relativization solely with proofs.

It is tempting to get around this issue by saying that1+1 = 2 is an “uninteresting” statement. Indeed, in
their sequel to the AIV paper, Impagliazzo, Kabanets, and Kolokolova [22] can be interpreted as taking this
position when they claim “a complexity statement aboutP” relativizes iff it is provable from AIV’sRCT .
Notice, however, that it is unclear what such a statement could be6. Besides, it disagrees with everyday
usage to say, e.g., that whetherA ⊂ B ∧ B ⊂ C =⇒ A ⊂ C relativizes depends on whatA,B, C are.

Our interpretation of the everyday usage of relativization for a statementψ is this: – thatψ does relativize
as a casual claim is really a claim thatψ has a relativizing proof, – thatψ does not relativize as a casual
claim is really a claim thatψ does not relativize. Notice that the two cases sound complementary in casual
use, but when made precise (under our interpretation) they are merely mutually exclusive: the former is
syntactic and the latter semantic, justifying once again our separate treatment of statements and proofs.

1.2.2 Efforts to Refine Relativization

Although relativization succeeds at explaining the failures of structural complexity until the 90s, it fails at
explaining the successes after, especially those regarding interactive proofs. We now discuss four past pro-
posals to refine relativization. The overarching goal in them is (or so will be our view here) to provide some
model for “known techniques”, which involves meeting two competing objectives: (a) derive all relevant
theorems in the model, and (b) provably fail to derive in the model all relevant conjectures that are evidently
beyond current reach.

We will use Figure 1 to roughly illustrate how each proposal fares with respect to these two objectives (a)
and (b). The take-away message from this micro-survey is that although parts of (a), (b) have been attained
by prior work, ours is the first successful attempt that yields all the critical pieces under one framework.

Although the table is less precise than the discussion that follows, it does illustrate some key differences
among prior work. The solid vertical line in the table is a caricature of the state of the art; to the left of the
line are facts, and to the right are conjectures evidently out-of-reach. The dashed vertical line is where we
would have drawn the solid vertical line had this been year 1985; it represents the relativization “barrier”.
(The reader should be able to visualize the title of this paper, if not now then by the end of this section.)

The first proposal is from the same paper discussed above, byAIV [3]. BesidesRCT , there the authors
propose “local checkability” as the key non-relativizing ingredient underlyingPSPACE ⊂ IP as well as

5for usage in the sense of (i) see p.4 first par., for (ii) see p.7 last par. and p.8 second par., for (iii) see p.8 first par.
6for example, even definingNP usingP would involve variables from the mathematical universe

7

Figure 1: Attempts at refining relativization

(∃C:C⊂NEXP ∧ C6⊂P/poly)
=⇒ NEXP 6⊂P/poly

PSPACE⊂IP PCP thm NEXP 6⊂P/poly
NP 6⊂P,

EXP 6⊂i.o.-P/poly,..

AIV X X X ? ?
For X X ? ? Xrrr

AW ? X ? X X
IKK X X ? ? X

this work X X ? X X

other results including thePCP theorem. The idea is that a polynomial-time computation should be verifi-
able by inspecting all bits of its transcript in parallel, where each bit depends on only a logarithmic number
of bits elsewhere. For computations with oracle access, however, this property may not hold, although it will
if the oracle itself is checkable. So their approach can be viewed very roughly in terms of ours, as taking
our version ofRCT and adding the constraint “Bstd is included in{0, 1,∧,⊕,O} for someO that is locally
checkable”, in other words, that any oracleO added to the standard basis must be locally checkable.

The authors call their refined theoryLCT , and point out that althoughLCT implies many known non-
relativizing results, whether it can settle questions such asP versusNP is very hard to know. In fact, they
observe that ifP versusNP were shown beyond reach ofLCT in the manner of Baker, Gill, Solovay — by
giving contradictory relativizations with oracles satisfying the theory — thenP would actually be separated
from NP. In this sense,LCT is an unsatisfactory candidate for “current techniques”. (Notice that if all we
want is a theory that can derive the current theorems then we can just letBstd be{0, 1,∧,⊕}.)

In a counterview to the AIV proposal dated around the same time,Fortnow [17] argues that the nonrela-
tivizing ingredient in the proof ofPSPACE ⊂ IP is of an algebraic nature. We can interpret his key insight
as follows. AlthoughPSPACE ⊂ IP does not relativize, it does in a weaker sense: LetÔ denote the affine
extension ofO, as defined on page 5. (Strictly speaking Fortnow works overZ instead ofGF(2k).) Then

PSPACEO ⊂ IPÔ, and consequently,PSPACEO ⊆ IPO wheneverÔ Cook-reduces toO. Effectively,
then, he defines a theoryACT by taking our version ofRCT and adding the constraint that any addition to
the standard Boolean basis must be some oracleO for which Ô ∈ PO.

Although Fortnow does not prove any unprovability results for his theory, we can show that his version
ofACT yields most of AW’s classification of what algebrizes and what does not (hence the ‘Xrrr ’ symbol) —
but not all, as we explain later below.

A decade-and-half after the above two papers,AW [1] introduce algebrization. Their paper finesses the
question of how relativization should be refined, by simply declaring that a statementA ⊂ B relativizes
algebraically ifAO ⊂ BÔ for everyO (for a notion ofÔ similar to our notion of affine extension), and that
A 6⊂ B algebrizes ifAÔ 6⊂ BO. No definition is given for other types of statements, or for proofs.

Since we ultimately care about containments and their negations, the AW approach seems appealing.
There are problems with it, however (page 1), chief among which is that not everything that relativizes can
be said to algebrize. For example, the statement(∃C : C ⊂ NEXP ∧ C 6⊂ P/poly) =⇒ NEXP 6⊂ P/poly
is true no matter whatNEXP or P/poly means — it is even true no matter what “is an element of” means
— hence is relativizing, but it cannot be declared as algebrizing by building on the original definitions.
Consequently, showing thatNEXP 6⊂ P/poly is non-algebrizing, as AW did, does not rule out whether we
can prove∃C : C ⊂ NEXP ∧ C 6⊂ P/poly by using solely “algebrizing techniques” [1,§10.1].

On the positive side, AW succeed in giving containmentsA ⊂ B that do not algebrize, by showing that
an oracleO exists for whichAO 6⊂ BÔ. (There are similar examples for negations of containments.) This

8

is a critical idea upon which subsequent work expands, including ours; we say more about this below.
Soon after the AW paper,Impagliazzo, Kabanets, Kolokolova[22] (IKK henceforth) resume the ap-

proach of AIV, and propose an intermediate theory betweenRCT andLCT that they callACT , short for
arithmetic checkability theory. (They also define a variant,ACT ∗, but we blur the distinction here.)

We can view IKK’s approach as being along the same line of Fortnow’s, by considering the following
task. Givenφ andα, evaluateΦ(α); hereφ is a Boolean formula,Φ is any fixed low-degree polynomial
interpolatingφ (such as its arithmetization), andα are inputs fromGF(2O(n)). (Like Fortnow, IKK work
overZ, but both approaches can be adapted toGF(2k).) Call the decision version of this task — giveni
return theith bit of the result, for example — the languageAF, short for arithmetized formula evaluation.

ClearlyAF ∈ P. Indeed, this seems to be an essential feature of arithmetization: it would seem pointless
to interpolate Boolean formulas into polynomials that we cannot evaluate efficiently. But ifφ is over an
arbitrary basis{∧,⊕,O}, then it does not seem thatAFO ∈ PO since theO-gates withinφ need to be
interpolated somehow as well.

Now, in both IKK’s approach and Fortnow’s, we can interpret the starting point as restricting the oracle
O so thatAFO ∈ PO becomes a true statement — in Fortnow’s case via the constraintÔ ∈ PO, and in
IKK’s case, directly viaAFO ∈ PO. The IKK constraint (rather, our interpretation of it) is implied by
Fortnow’s; this will be clear in Section 1.3 once we generalize arithmetization. Hence anything provable
from the IKK constraint is automatically provable from Fortnow’s. Although the converse is not known to
hold, it does hold in the following sense. AnythingIKK show to beunprovable from the IKK constraint, we
can show is unprovable from Fortnow’s constraint as well; we can do this using our observation on page 6,
that affine extensions respect disjoint unions. So the two approaches currently seem to have the same power.

The key advantage of our approach over IKK’s and Fortnow’s is its avoidance of computational notions
in restricting the oracleO. By giving a direct algebraic restriction, namely thatO equalsf̂ for some language
f , our approach allows us to expand on one of AW’s critical ideas: using interpolation to show that certain
statementsψ do not relativize algebraically (in our case, affinely). In contrast, neither IKK’s approach nor
Fortnow’s is known to allow interpolation. Consequently, although IKK pose it as an open question for their
framework, we can capture a key result of AW, thatNEXP 6⊂ P/poly does not relativize algebraically.7

Another place where IKK diverges from AW concerns the theoremNEXP ⊂ MIP. As mentioned, AW
showed that this theorem algebrizes under a machine-specific restriction of the classNEXP. While IKK did
show an analogous result for their framework in the model-theoretic sense, they did not show it in the proof-
theoretic sense; in fact they use a machine-free characterization ofNEXP and cannot directly express the
query restriction of AW, so it is not even clear a priori if the result itself can be expressed in their approach.
Instead, IKK observe that under the proper, unrestricted definition ofNEXP, the theorem does not algebrize,
and suggest that there are additional ingredients underlying this theorem besides arithmetization, and point
this out as a point of divergence from the AW thesis that algebrization captures “current techniques” [22,
p.15]. As mentioned in page 3, our formulation of this theorem substantially clarifies the discussion.

Whether our definitions implies IKK’s or Fortnow’s, or vice versa, is not clear; we do not know if
algebrizing in one sense can be shown to imply the other. What wecansay, however, is that every statement
that IKK show as algebrizing has an affinely relativizing proof, and that the opposite holds for those shown
non-algebrizing by IKK — just as the case for AW. In particular, IKK show various compound statements
to be non-algebrizing; these follow as consequences of results on simpler statements and can be shown in
our framework as well (via what we call the proof theoretic approach in Section 4.3).

7In fact IKK ask a weaker question: whetherEXP 6⊂ P/poly can be shown to not algebrize in their framework [22, p.15].
The same question automatically applies to Fortnow’s framework, since his constraint implies IKK’s.

9

1.3 Overview of Ideas and Techniques

Defining affine relativization, and proving that it works, involve a number of observations as well as some
technical ingredients. This section highlights the main ones.

Generalizing arithmetization using affine extensions. Our first observation concerns how the arithmeti-
zation method should be generalized to handle formulas over a generic Boolean basis, say{∧,⊕,O} where
O is an arbitrary language. In its typical description, the method states that the formula¬φ arithmetizes as
1−Φ whereΦ is the arithmetization ofφ; similarly, φ∧ψ arithmetizes asΦ ∙Ψ. Other cases, such as∨ and
⊕, are handled by reducing to these two.

We observe thatx ∙ y is the unique polynomial overZ, of (individual) degree≤ 1, that extends the
Boolean function(x, y) 7→ x ∧ y; in other words, it extends an∧-gate of fan-in2. Similarly 1− x extends
a¬-gate. We thus make the following generalization: Arithmetization replaces a Boolean gateO, of fan-in
m, with the gateÔ denoting the unique degree-≤1 polynomial

Ô(x) :=
∑

b∈{0,1}m

O(b) ∙
∏m

i=1(1− xi) ∙ (1− bi) + xi ∙ bi (†)

that extendsO from the Boolean domain toZ. We callÔ the (multi-)affine extensionof O, and caution that
the notation has nothing to do with Fourier analysis.

For our results we view (†) in fields of the formGF(2k) only. There are several benefits to this, and we
point them out as we explain our approach in this section. To begin with, we note that extension toGF(2k)
is conceptually cleaner, as it turns a function onn bits into a function onn vectors ofk bits each. Also, in
GF(2k), the arithmetization ofφ ⊕ ψ becomes the naturalΦ + Ψ, whereas in other fields, neither⊕, nor
any other Boolean operator, gets arithmetized to+.

Affine Relativization — capturing known uses of arithmetization. Consider a functional view of an
Ô-gate, as returningk bits when each of its inputs come fromGF(2k). In this view, arithmetizing a formula
φ creates a family of formulas{Φk}, with eachΦk redundantly describing the behavior ofφ on the Boolean
domain — the largerk, the higher the redundancy (withk = 1 corresponding toφ itself).

Now if φ is over an arbitrary basis that includesO-gates, then unlike the case for the standard basis, its
arithmetizationΦ does not seem to allow efficient evaluation, over sayGF(2O(n)). Interpreting this to be
the non-relativizing ingredient in proofs ofPSPACE ⊂ IP, etc., we take the following approach to refine
relativization.

The formulaΦ, which redundantly encodesφ, is obtained fromφ via a “local” transformation acting on
its gates, namely by adding redundancy at the gates. Based on this, our idea is to have the oracle gates ofφ
compute not some arbitraryO, but something that contains redundancy already, namelyÔ for an arbitrary
O. The plan being then to show that arithmetization — rather, current uses of it — need not introduce
redundancy at those gates, or, at least do so in a feasible way.

We arrive at our formulation thus: whereas a statement relativizes if it holds relative to every language
O, a statement relativizesaffinely, if it holds relative to every languageA of the formÔ for someO. More
precisely,A encodes the family of polynomials{Ôm} evaluated overGF(2k) for all k, whereO is an
arbitrary language andOm is its restriction to{0, 1}m. We also callA the(multi-)affine extensionof O.

Why was this notion not invented in 1994? Natural though it may seem, affine relativization poses the
following difficulty: the very theorems that it is intended for, e.g.PSPACE ⊂ IP, do not appear to relativize
affinely, at least not via a superficial examination of their proofs.

10

To see the issue, consider a propertyπ of Boolean formulas — unsatisfiability, say. In provingπ ∈ IP
arithmetization is used as areduction, from π to some propertyΠ of arithmetic formulas — e.g., unsatis-
fiability of φ reduces, via arithmetization, to deciding if the product of(1 + Φ(α)), over all binary input
vectorsα, equals1 in GF(2k) for anyk.

So each theorem of the formπ ∈ IP is, in fact, a corollary of a more generic result of the formΠ ∈ IP,
that gives an interactive protocol for an arithmetic property. It turns out those generic results can be further
generalized, if we extend the arithmetic basis, from the standard×-gates and+-gates — which are really
∧̂- and⊕̂-gates, respectively, per the first discussion above — by allowingÔ-gates for an arbitraryO. Then
the same protocols that yieldΠ ∈ IP work just as well over this extended basis, given oracle access to the

evaluation ofÔ. We may writeΠÔ ∈ IPÔ, whereΠÔ extendsΠ to formulas over the extended basis.
Now supposing we have a theoremπ ∈ IP, let us make a superficial attempt to extend its proof so that

it yields πA ∈ IPA for some languageA; hereπ is a property of formulas, say over the basis{∧,⊕}, and
πA is its extension to the basis{∧,⊕,A}. As just explained, the proof ofπ ∈ IP starts with a reduction, of
the Boolean propertyπ to an arithmetic propertyΠ. Now here is the problem: what property do we reduce
πA to? By definition of arithmetization, it would beΠÂ, the extension ofΠ to formulas over the basis

{×, +, Â}. But then as just explained, we would be placingπA in IPÂ — not in IPA.

This seeming circularity —πO ∈ IPÔ, πÔ ∈ IP
̂̂O, ... — can be interpreted as the main distraction from

arriving at a natural notion such as ours. Indeed, all previous attempts to capture arithmetization [17, 1, 22],
dating back to the 1994 article of Fortnow [17], can be interpreted as having to make compromises so as to
break out of this circularity. For example, the AW notion of algebrization does this by declaringC ⊂ D to
algebrize ifCO ⊂ DÔ holds for everyO (for a notion ofÔ related to ours; there is a similar definition for
C 6⊂ D). We surveyed their approach and others in Section 1.2.

In contrast, our approach tackles circularity directly. The idea is to avoid the problematic reduction
πA → ΠÂ, and to instead reduceπA to πO by somehow exploitingπ wheneverA is of the formÔ for
someO. Then the combined reductionπA → πO → ΠA breaks the circularity. This fulfils the plan of the
previous discussion, namely to show that arithmetization, in its current uses, need not extend gates that are
extensions of something already.

Relativizing �P ⊂ IP. The idea of the previous discussion can be realized whenπ is the sumπ(φ) :=
�xφ(x), also known as the language�SAT. This is because whenφ is a formula over theA-extended
Boolean basis, each occurrence ofA evaluates the sum (†) overGF(2k) for somek, and then returns, say,
theith bit of the result giveni. Therefore, if we step fromGF(2k) toGF(2)k, we can rewrite each occurrence
of A as�yγ(y), for some formulaγ over theO-extended Boolean basis. This becomes the reduction we
want, once we show how to convert formulas involving sums to prenex form, i.e. such that all sums appear
up front. It follows that�SAT ∈ IP — or equivalently,�P ⊂ IP — relativizes affinely.

Scaling toPSPACE ⊂ IP — a proof sans degree reduction. Our approach for�P can be adapted to
show thatPSPACE ⊂ IP affinely relativizes as well. However, we find a more natural approach which
yields another proof of this theorem; this may be of separate interest because current proofs, as far as we
know, employ syntactic tricks in order to control the degree of polynomials that arise from arithmetizing
instances of aPSPACE-complete problem (e.g., [30, 7, 31, 2]).

In contrast we show, directly, that every downward-self-reducible language has an interactive protocol,
by essentially bootstrapping the very fact that�P ⊂ IP relativizes affinely. In particular, we make no use
of a specificPSPACE-complete problem; we do not even use any additional arithmetization beyond what
is needed for�SAT. (We emphasize that the new proof is sketched here because it might be of separate
interest. The standard proofs of this theorem can also be adapted to our framework.)

11

The new proof goes as follows. IfL is downward-self-reducible, then on inputsx of lengthn, it can
be expressed as apoly(n)-size circuit over theL-extended Boolean basis, of fan-in at mostn − 1. This
circuit in turn can be expressed as the sum�yφ(x, y), whereφ is a formula verifying thaty represents the
computation of the circuit on inputx. In notation we may summarize this reduction as

Ln → �SATLn−1 (∗)

where�SATfm is the extension of�SAT to formulas over thef -extended Boolean basis, of fan-in at most
m. Repeating (∗) for Ln−1 instead ofLn, we get

�SATLn−1 → �SAT�SATLn−2
→ �SATLn−2 (∗∗)

where the first reduction is because extending the basis is functorial in the sense thatf → g implies
�SATf → �SATg, and the second reduction follows by bringing sums to prenex form as mentioned
in the previous discussion. Note that the reduced formula is now of size aboutn2d, if the one in (∗) is of size
nd.

The idea is to tame the growth in the size of the reduced formulas, by using interaction. Building on the
ideas of the previous discussion, it is easy to show a protocol yielding theinteractivereduction

(�SATfm)nd → (�SATfm)nc

that compresses instances to�SATfm of sizend down to sizenc, for an arbitrarily larged and afixedc, for
every languagef , in particular forf = L, wheneverm ∈ O(n). We sketch this protocol later on page 14.

Thus we can keep repeating (∗∗) to get

Ln → �SATLn−1 → �SATLn−2 → ∙ ∙ ∙ → �SATLO(1)

provided we interleave a compression phase whenever the formula size exceedsnc. Since anL-gate of
constant fan-in can be expressed as a constant-size formula,�SATLO(1) reduces to�SAT. SoL ∈ IP as
desired.

That this proof affinely relativizes becomes obvious, once we carry over the results on�SAT to the
A-extended Boolean basis, for an arbitrary affine extensionA.

(Interestingly, just as this proof builds on the relativization of�P ⊂ IP, we use the relativization of
PSPACE ⊂ IP in turn to give a streamlined proof of theNEXP ⊂ MIP theorem, that uses no specific
NEXP-complete problem nor any additional arithmetization; see Section 3.3.)

NEXP vs.MIP — the role of locality. As mentioned in the introduction, AW show thatNEXP ⊂ MIP
algebrizes only under a restriction, and a questionable one at that, of the oracle access mechanism for
NEXP.8 Since we define complexity classes usingP, it would be even more artificial to try to express this
restriction in our framework. Instead, we find a natural approach that also sheds some light into the issues
surrounding oracle access.

Consider generalizing the classIP, by replacing in its definition the popular constant2/3 with γ, so that
if the inputx is supposed to be rejected, then the verifier erroneously acceptsx with probability< 1 − γ.
(If x should be accepted, then, as before, it is.) Call this classγ-gap-IP.

It is easy to see, by the classicalPSPACE-completeness result of Stockmeyer and Meyer [33], that
0-gap-IP is identical toPSPACE. ThereforePSPACE ⊂ IP can be broken into the containments

PSPACE ⊂ 0-gap-IP ⊂ Ω(1)-gap-IP

with the second containment, “gap amplification”, being the actual content of the theorem.

8We caution that neither AW, nor we, advocate or assume thatNEXP bealwaysrelativized in this restricted way. It is only for
the purpose of deriving this theorem that this restriction seems inevitable — and this discussion investigates why.

12

The corresponding case forNEXP ⊂ MIP becomes revealing. Of the containments

NEXP ⊂ 0-gap-MIP ⊂ Ω(1)-gap-MIP

only the second one, gap amplification, affinely relativizes as we show in Section 3.3. So what “current
technique” is it that yields the first containment, that affine relativization cannot capture?

It is locality, more specifically,polylog-locality, which yields the following variant of the Cook-Levin
theorem: A language is inP iff it has circuits that are polylog-time uniform, i.e., iff it is computable by a
family {Cn} of circuits, such that given(n, i), the task to produce the type of theith gate ofCn, as well as
the indices of all gates connected to it, can be performed inpoly log n time. Intuitively, this theorem does
not relativize, even affinely, simply because it restricts the circuits to have polylogarithmic fan-in.

In our framework, we defineP so that it satisfiespoly-locality instead of polylog, and useP itself to
express polylog-locality (by saying that the above function on pairs(n, i) is in FP) and call the class thus
obtainedPlocal, the subclass ofP satisfying the above locality theorem. We then usePlocal to defineNPlocal,
NEXPlocal, etc. Immediately two things fall out of these definitions. First, that0-gap-MIP is identical to
NEXPlocal, so locality does capture the first containment above. Second, thatNEXPlocal is equivalent to
the dubious version ofNEXP with polynomial-length oracle queries, making it not so dubious after all.

We do not know of any result usingNEXP ⊂ MIP, that would break down ifNEXPlocal ⊂ MIP is
used instead — in fact we do not know of any result usingNEXP ⊂ MIP, period. We conclude that locality
arises inNEXP ⊂ MIP only definitionally; it is an ingredient that has not been exploited beyond making
definitions. (It would be interesting to know if the same reasoning could apply to thePCP theorem; see
open problem in Section 5.)

NEXP vs.P/poly — a coding-theoretic interpolation lemma. One of the technical contributions of this
paper is in showing that certain statementsψ do not relativize affinely. As usual (though not always), this
entails constructing an eligible language — an affine extensionA in our case — relative to whichψ is false.

For someψ, this task turns out to be relatively easy given prior work. Suchψ are of the formC ⊂
D, for which AW invented an approach based on communication complexity. Our observation that affine
extensions respect disjoint unions (see Section 1.1, multiple oracles) enables us to import their approach.

For otherψ, however, in particular forNEXP 6⊂ P/poly, we need more substantial ideas. While AW [1]
did construct aQ such thatNEXPQ ⊂ PQ/poly, they did this only for a multi-quadraticextension, i.e., for
Q encoding a family of polynomials where each member has (individual) degree-≤2, instead of degree-≤1.
It seemed “crucial” [1], in fact, to increase the degree for this purpose. While quadratic extensions suffice
for the AW notion of algebrization, they do not for our notion of affine relativization.

As the key technical step for this purpose, we derive a coding-theoretic ingredient (Lemma 37 and
Theorem 38), stating that knowingt bits of a codeword exposes at mostt bits of its information word, and
this holds for every binary code, including the affine extension (overGF(2k)).

AW implicitly proved a weaker form of this fact, involving quadratic polynomials. One of the ideas
that enables us to do better, is to consider a different formulation for what it means to “expose” a bit of the
information word. Whereas the AW approach (implicitly) considers each exposed bit as being completely
revealed, our approach gives a finer treatment: an exposed bit is one whoselocation is revealed, but whose
contents may vary as a function of the unexposed bits.

The advantage of this refinement is that it allows us to show, givent bits of a codeword, that the set of
all codewords agreeing on theset bits form an affine space, of dimension at mostt less than the maximum
possible. In contrast, the AW approach resorts to using indicator polynomials to surgically alter, bit-by-bit,
the codeword whoset bits are revealed; this inevitably raises the degree to quadratic because each indicator

13

polynomial must also vanish on thet points that are revealed, in addition to all-but-one point of the Boolean
cube.

Compressing�SAT. For the sake of completing the sketch of the alternate proof ofPSPACE ⊂ IP
explained earlier, we now outline the compression protocol mentioned.

The protocol is based on the fact alluded to earlier, that�SATf ∈ IPf̂ for any languagef . This fact
follows from standard considerations: Givenφ over thef -extended basis, in order to compute�zφ(z),
the verifier: (i) arithmetizesφ to getΦ, a formula over thêf -extended arithmetic basis, (ii) engages in a
sumcheck protocol, thus reduces the original task to that of evaluatingΦ overGF(2k), with k ∈ O(log n)
being sufficient forφ of sizen, and (iii) evaluatesΦ, by using thef̂ -oracle for thef̂ -gates.

The compression protocol also starts out as above. The difference begins in step (iii): instead of calling
thef̂ -oracle, the verifier engages the prover. By using standard interpolation techniques, the verifier reduces
the task of computing the values of̂f on up ton points, to doing the same on justm points or fewer, where
m is the largest fan-in of anyf -gate in the formulaφ.

Thus the output of step (iii) is a list of at mostm claims of the form “̂fm′(x) = v” with m′ ≤ m and
v, xi ∈ GF(2k). Now becausêfm′ is merely the sum (†) on page 10, which can be viewed inGF(2)k rather
than inGF(2k), it follows that these claims can be expressed as a conjunction of�SATfm-instances, of
combined sizepoly(mk). This yields the compressed instance, since�SAT is closed under conjunction.

2 Definitions, Notation and Conventions

O and A. Unless stated otherwise,O stands for an arbitrary language, andA for its affine extension as
defined later in this section.

Well-behaved resource bound. We call a functions : N → N a well-behaved resource boundif it
is increasing, satisfiesO(s(n)) ⊂ s(O(n)) ⊂ s(n)O(1) ⊂ s(nO(1)) andn ≤ s(n), and if the function
n 7→ s(n) is in FP. Functions of the formnd, (nd log n)d′ , 2(log n)d

, 2dn are well-behaved resource bounds.
The above generalizes tos : N2 → N if fixing either of the inputs yields a well-behaved resource bound.

Languages as families. We view languagesL : {0, 1}∗ → {0, 1} as families of Boolean functions
{Ln : {0, 1}n → {0, 1}}n∈N, though we sometimes specify them as

{
fm : {0, 1}s(m) → {0, 1}

}
n∈N, or

as
{
fm,k : {0, 1}s(m,k) → {0, 1}

}
m,k∈N for some well-behaved resource bounds that is bounded by a poly-

nomial (respectively, inm or in mk).
It is an elementary fact that a family of the form{fm} or {fm,k} as above can be efficiently viewed as a

language of the form{Ln} as above, and vice versa. For concreteness, letm � k denote the Cantor pairing
of m andk. Then given{fm,k}, define{Ln} asLn(x) := fm,k(x1..s(m,k)) for the largestm � k such that
s(m � k,m � k) ≤ n. Conversely, given{Ln}, define{fm,k} asfm,k(x) := Ln(x0p), wherep is set so that
the input toL is of length exactlyn = s(m � k,m � k).

RepresentingF2k . We represent each element ofF2k by ak-bit Boolean string, forming the coefficients
of a polynomial in the ringF2[x] mod some irreduciblepk(x) of degreek. We fix a uniform collection
{pk}k∈N so that a deterministic algorithm can producepk in time polynomial ink [32].

TheBoolean versionof a functionq : Fm
2k → F2k is, for concreteness, the functionbool(q) mapping

(x, y) to theyth bit of q(x). (Our results do not depend on this definition; any other equivalent function
under Cook reductions would work.)

Affine extensions. (This definition uses all the definitions above.)

14

Givenfm : {0, 1}m → {0, 1}, we define itsaffine extension polynomialas the uniquem-variate poly-
nomial overF2, with individual degree≤1, that agrees withfm overF2k for all k, i.e., as

f̂m(x) :=
∑

b∈{0,1}m fm(b) ∙
∏m

i=1(1 + xi + bi)

By theaffine extensionof fm : {0, 1}m → {0, 1}, we mean the family

f̃m :=
{

f̃
k

m

}

k∈N

wheref̂
k

m denotes the function that evaluatesf̂m overF2k , andf̃
k

m denotes the Boolean version off̂
k

m .
Given a familyf := {fm} we define its affine extensioñf (or its affine extension polynomial̂f) as the

family obtained by applying the above definitions to each member. In particular, for the language

O = {Om : {0, 1}m → {0, 1}}m∈N

its affine extensioñO, which we denote byA, is

A :=
{
Am,k : {0, 1}mk+dlog ke → {0, 1}

}

k,m∈N

Am,k : (y1..ymz) 7→ zth bit of Ôm(y1, .., ym)

where eachyi is interpreted as a member ofF2k . (By the previous definitions,A can be efficiently viewed
as a family of the form{An : {0, 1}n → {0, 1}}n∈N, and vice versa.)

By anaffine extension language, we mean the affine extension of a language.

(Affine) Relativization. For succinctness we summarize the discussion in Section 1.1 here. Working in
the first order language with signature{∈, Bstd}, define

1. RCT := ZFC + “{0,1, ∧,�} ⊂ Bstd” + “ Bstd ⊂ {0,1, ∧,�,O} for some languageO”

2. ACT := RCT + “Bstd ⊂ {0,1, ∧,�,A} for some affine extension languageA”

3. CT := ACT + “Bstd ⊂ {0,1, ∧,�}”

whereZFC is the axioms of everyday set theory, and∧,�,0,1 is shorthand for the AND/XOR/constant
0/constant1 function on binary strings. The statements in quotes are to be formalized in the obvious way.

We sayψ has a proof iffCT ` ψ, has a relativizing proof iffRCT ` ψ, and has an affinely relativizing
proof iff ACT ` ψ. We sayψ relativizes iffRCT |=

std
ψ, shorthand forψ being true in all standard models

ofRCT . We sayψ affinely relativizes iffACT |=
std

ψ.
We do not know ifCT ` ψ andRCT |=

std
ψ together implyRCT ` ψ (the converse is immediate), but

in the sequel, all theorems of the form “ψ, and this also holds if the standard Boolean basis is extended with
O” are derived by proving thatRCT ` ψ. Similarly, “ψ, and this also holds if the standard Boolean basis is
extended withA” is derived by proving thatACT ` ψ.

P and the Cook-Levin Theorem. For a family of circuitsC := {Cn}n overBstd, define

(a) DescC : (1n, 1i) 7→ the type of theith gate inCn and the indices of all gates connected to theith gate.

(b) StrongDescC : (n, i) 7→ DescC(1n, 1i)

We defineP as the set of languagesL computable by a polynomial-size familyCL for which DescCL
is

computable by a polynomial-time Turing machine. Of the two statements

(i) everyL ∈ P is computable by a polynomial-size circuit familyCL for whichDescCL
is in FP.

(ii) everyL ∈ P is computable by a polynomial-size circuit familyCL for whichStrongDescCL
is in FP.

we call (i) the Cook-Levin theorem, and (ii) the strong Cook-Levin theorem. We take for granted thatRCT
proves (i), andCT proves (ii) [15]. (It is a consequence of Proposition 26 thatACT does not prove (ii).)

15

In fact,RCT proves thatDescCL
is in “unrelativized”FP, i.e., thatCDescCL

is over the basis{0, 1,⊕,∧}.
(Similarly for CT andStrongDescCL

, but we do not use this.)
By a polynomial-time algorithm we mean the circuit familyCL for the decision versionL of a function

f ∈ FP.

Partial languages. We callf a partial language if it is a language or can be extended to a language.
In particular, for a languageL := {Ln}n∈N we useL≤n to denote the partial language{Li}i≤n.

Boolean bases. We define a Boolean basis inductively, as either the set{0, 1,⊕,∧}, or the setB ∪ {f}
whereB is a Boolean basis andf is a partial language for which̃f is defined (in particular,f is defined on
either all length-n strings or none, for everyn). Here∧,�,0,1 is shorthand for the AND / XOR / constant0
/ constant1 function on binary strings respectively.

By the standard Boolean basiswe mean the set{0, 1,⊕,∧}, and by the basisB extended withf we
meanB ∪ {f}. (Caution: extending the standard basis changes only what wemeanby the standard basis.)

The (partial) language�SATf . For every Boolean basisB and eligible partial languagef , we define
�SATf as the partial language mappingφ(~x) to the evaluation of the mod-2 sum�~αφ(~α), whereφ denotes
a formula over the basisB extended withf . By defaultB is the standard basis andf is the trivial map
x 7→ 0.

�SATf is undefined on thoseφ, and only on those, that are undefined on some input~α (due to some
gate ofφ receiving an input out of its domain while evaluatingφ(~α)). So over the standard basis, iff is a
language then so is�SATf , and the same holds if the standard basis is extended with any language.

We index�SAT by n, any upper bound on the number of gates of the formulaφ. That is, we view
�SAT as{�SATn}

n∈N
, where�SATn is defined on length-s(n) strings for some fixeds(n) ∈ poly(n),

with each such string representing a formulaφ of at mostn gates.
Since(�SATf)g is equivalent to(�SATg)f under Karp reductions, we write�SATf,g to mean either.

(Interactive) Reductions. For partial languagesf andg, we write

f → g

if there is an interactive protocol satisfying the following. Let[E] denote the maximum probability that the
eventE occurs, over all possible prover strategies in the protocol. Then givenx ∈ {0, 1}n, the protocol runs
in timepoly(n) and outputsy such that:

(i) if x ∈ dom f then[y ∈ dom g andf(x) = g(y)] ≥ 1− ε,

(ii) if x ∈ dom f then[y /∈ dom g ∪ {‘fail’ }] ≤ ε

for a negligible functionε ∈ (1/n)w(1).
Since the verifier in an interactive protocol may ignore the prover, and/or ignore its coin flips, we use

the same notationf → g for randomized reductions, as well as for Karp reductions.
By default,f → g denotes a Karp reduction.

Cook reductions. For partial languagesf andg, we sayf Cook-reduces tog, if there is a functionV ∈ FP
that behaves as follows. On input(x, a), intuitively, V consumesa bit-by-bit, interpreting each bit as the
response to its next query forg; if a is of length exactlỳ (|x|), say, thenV computesf(x), otherwiseV
computes the next query forg — here` is a well-behaved size bound inpoly(n). More precisely,

• V (x, a) ∈ dom g if x ∈ dom f and|a| < `(|x|) andai = g(V (x, a1..i−1)) for i = 1..|a|,

• V (x, a) = f(x) if x ∈ dom f and|a| = `(|x|) andai = g(V (x, a1..i−1)) for i = 1..|a|.

16

3 Positive Relativization Results

This section shows that the famous results on interactive proofs admit affinely relativizing proofs, as do the
circuit lower bounds that build on them. These are theIP theorem of Shamir (PSPACE ⊂ IP, Section 3.2),
theMIP theorem of Babai, Fortnow, and Lund (NEXP ⊂ MIP, Section 3.3), theZKIP theorem of Goldre-
ich, Micali, and Wigderson (NP ⊂ ZKIP if one-way functions exist, Section 3.5), and the strongest lower
bounds known-to-date against general Boolean circuits, by Buhrman, Fortnow, Thireauf, and by Santhanam
(Section 3.4). All of these build on several properties of�SAT developed in Section 3.1.

(As explained in Section 1.1, we do not state these results in proof-theoretic terms; e.g., Theorem 2
asserts, among other things, that�SAT ⊂ IP affinely relativizes, rather than that it has such a proof, even
though the latter also holds.)

3.1 Checking and Compressing�SAT

This section develops three results on�SAT that enable most of the positive relativization results in the
paper.

We first recall some notions from program checking [11].

Definition 1 (Same-length checkable). We say a languageL := {Ln}n∈N is same-length checkableif there
is an interactive protocol for computingL, i.e. for deciding the language(x, b) 7→ L(x) ≡ b, wherein the
prover acts as a purported oracle forL|x|. We sayL is checkableif the prover is allowed to answer queries
also forL 6=|x|. We refer to the verifier algorithm in these protocols as acheckerfor L.

The first main result in this section shows (via an affinely relativizing proof) the existence of a�P-
complete language that is same-length checkable.

Theorem 2 (Checking�SAT). �SAT is checkable. In fact,�SAT is equivalent, under Karp reductions,
to some language that issame-lengthcheckable.

This also holds if the standard Boolean basis is extended withA, via a checker that has access toA.
Neither the checker nor any of the reductions depend on the choice ofA.

Theorem 2 is used, from different aspects, in deriving Shamir’sIP theorem (Section 3.2) and the circuit
lower bounds of Buhrman et al. and of Santhanam (Section 3.4).

The second result gives an interactive compression scheme for�SATL, which cuts the size of a formula
from nd to nc, for an arbitrary larged and a fixedc, as long as theL-gates have fan-inO(n) in the original
formula. (The runtime of the interaction depends ond.) The verifier in the interaction need not have oracle
access toL; in factL may even be undecidable as far as the verifier is concerned.

Theorem 3(Compressing�SAT). For every languageL := {Lm}m∈N , there is an interactive protocol that
reduces instances of�SATL≤m of sizen, to instances of�SATL≤m of sizepoly(m log n) for everym,n.

This also holds if the standard Boolean basis is extended withA, via a protocol that has access toA.
The protocol does not depend on the choice ofA.

Theorem 3 is used in deriving Shamir’sIP theorem (Section 3.2) with a new streamlined proof of that result.
We also derive an auxiliary fact that comes in handy when proving Theorems 2-3 and theIP theorem:

Proposition 4. �SATf → �SATg wheneverf Cook-reduces tog. The reduction works over any basis for
formulas, and depends only on the Cook-reduction fromf to g.

Remark.Throughout this section, “reduction” disambiguates to thealgorithmthat yields the reduction.

17

3.1.1 Proofs of Theorems 2-3 and Proposition 4

We now prove the claims made in the previous section. We do this in three steps: In the first step we
generalize�SAT, from formulas to expressions involving sums. In the second step, we define arithmetic
analogues of�SAT and of its generalization. We derive some key facts about these functions, right after
defining them. In the last step we put everything together and prove Theorems 2-3 and Proposition 4.

— Step 1: Generalizing�SAT to �∗SAT —

Definition 5 (bbs). For every Boolean basisB, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f(ψ1..ψm) for everyψ1, ..,ψm already let in, for every elementf in the
basisB of arity m, for everym ∈ N; (iii) �yψ for everyψ already let in, for every free variabley of ψ. Call
this the set ofBoolean expressions involving binary sums(bbs) over the basisB.

Definition 6 (�∗SAT). Define�∗SATf over the basisB as the mapψ(~x) 7→ �~αψ(~α) whereψ is a bbs
overB ∪ {f}, with input variables~x. By defaultB is the standard basis andf is the trivial mapx 7→ 0.

In this section we derive two facts relating�SAT to�∗SAT:

Lemma 7. �SATf → �∗SATg wheneverf Cook-reduces tog. The reduction works over any basis for
formulas, and depends only on the Cook-reduction fromf to g.

Lemma 8. �SAT�SAT → �∗SAT. The reduction works over any basis for formulas.

Lemma 7 is a weaker version of Proposition 4. Lemma 8 is what one would expect. We prove these next.

Proof of Lemma 7.Let V ∈ FP be the function realizing the Cook-reduction fromf to g, as defined in
Section 2. By applying the Cook-Levin theorem toV , we get a well-behaved size bound` ∈ poly(n), and
a function inFP that on input1n, produces a sequence of`(n) + 1 circuitsC1, .., C`(n), C∗, such that

• Ci : {0, 1}n × {0, 1}i−1 → {0, 1}`(n)

C∗ : {0, 1}n × {0, 1}`(n) → {0, 1}

• Ci(x, a) ∈ dom g, if x ∈ dom f andai = g(C ′
i(x, a1..i−1)) for i ∈ 1..|a|,

• C∗(x, a) = f(x), if x ∈ dom f andai = g(C ′
i(x, a1..i−1)) for i ∈ 1..|a|,

whereC ′
i indicates that thè-bit output ofCi is to be trimmed off excess bits before being fed intog (here

` upper bounds the “running time” ofV hence the length of each “query” made byV). More precisely,
C ′

i(z) := (Ci(z))1..Di(z) whereDi is a circuit that computes the number of valid output bits ofCi(z).
Thereforef(x), which can be written as

V (x, a), whereai = g(V (x, a1..i−1)) and|a| = `

can also be written as
⊕

a∈{0,1}`

C∗(x, a) ∧
∧

i=1..`(ai ≡ g(C ′
i(x, a1..i−1))

for everyx ∈ dom f ∩ {0, 1}n, by some function inFP. The same function can view the expression
inside the sum as a circuit over theg-extended basis, say asE(x, a), and rewrite it as the formulaξ(x, a, v)
checking thatv describes the computation ofE on its input.

It follows that there is a function inFP that given input1n, outputs a formulaξ such that

f(x) =
⊕

a,v ξ(x, a, v)

18

for everyx ∈ dom f ∩ {0, 1}n. Consequently, there is a function inFP that given a formulaφ, takes each
occurrence of a subformula of the formf(φ1..φn), and performs the replacement

f(φ1..φn) 7→
⊕

a,v ξ(φ1..φn, a, v).

proving that�SATf → �∗SATg. The reduction depends only on the Cook-reduction fromf to g, and
works over any choice of a basis for formulas.

Proof of Lemma 8.Let B be a Boolean basis for formulas. Given a formulaφ(x) over B extended with
�SAT, we want a reduction from the task of computing�xφ(x) to that of computing�zψ(z), for some bbs
ψ(z) overB. We want the reduction to work for every choice ofB.

The reduction proceeds by simply replacing each occurrence of�SAT in φ(x) with the actual sum to
be computed. More precisely, letFormulaEval be the partial language that, on input(t, u), interpretst as a
formulaτ over the basisB, and outputsτ(u), the evaluation ofτ onu. (In caseτ has fewer inputs than|u|,
let FormulaEval outputτ(u) only if the extra bits inu are set to zero, else let it output zero.)

Each subformula inφ of form

�SAT(φ1..φm) (1)

can be viewed as the sum

�u∈{0,1}mFormulaEval(φ1..φm, u)

for each setting ofx, since the subformulasφ1(x), .., φm(x) describe a Boolean formulaτx with ≤ m
input variables. And sinceFormulaEval Cook-reduces to the basisB — more precisely, to the function
(i, x) 7→ Bi(x) whereBi is theith element of the basisB — the same reasoning in the proof of Lemma 7
gives a formulaξ over the basisB such that

FormulaEval(z) =
⊕

a,v ξ(z, a, v)

for every inputz ∈ {0, 1}m. Hereξ can be produced by some function inFP from the input1m. Hence there
is a function inFP that takes each occurrence of a subformula of the form (1), and performs the replacement

�SAT(φ1..φm) 7→
⊕

u,a,v ξ(φ1..φm, u, a, v)

proving that�SAT�SAT → �∗SAT. The reduction works over any choice of a basis for formulas.

— Step 2: Arithmetic analogues of�SAT and�∗SAT —

In order to proceed towards Proposition 4 and Theorems 2-3, we need to define the arithmetic analogues of
�SAT and�∗SAT. We begin by introducing arithmetic bases.

Definition 9 (Arithmetic basis). For every Boolean basisB, define thearithmetic basisB̂ as the set com-
prising all constants inF2k for eachk, andf̂ for eachf ∈ B. By the standard arithmetic basis we meanB̂
whereB is the standard Boolean basis.

The following two definitions are very analogous to Definitions 5-6 (bbs -�∗SAT).

Definition 10 (abs). For every arithmetic basisA, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f(Ψ1..Ψm) for everyΨ1, ..,Ψm already let in, for every element inA
defined onm variables, for everym ∈ N; (iii)

∑
y∈{0,1} Ψ for everyΨ already let in, for every free variable

y of Ψ. Call this the set ofarithmetic expressions involving binary sums(abs) over the basisA.

19

Definition 11 (+∗ASAT, +ASAT). Define+∗ASATf over the basisA as the Boolean version (as defined
in Section 2) of the mapΨ(~x) 7→

∑
~αΨ(~α); hereΨ is an abs overA ∪ {f̂} with input variables~x, and each

αi ranges over{0, 1}. By default,A is the standard arithmetic basis andf is the trivial mapx 7→ 0..
Define+ASATf as the special case of+∗ASATf whereΨ(~x) is in fact a formula overA.
We index+ASAT by n andk, and write the corresponding member as+kASATn; heren upper bounds

the number of nodes in formulaΦ, andk denotes the fieldF2k where the constants ofΦ reside.
For our purposes (to be made clear in Step 3) we require that each instance of+kASATn, say involving

the formulaΦ, is represented such that each input node ofΦ takes up≥ k bits. We also requirek ≥ log2 n.

In this section we derive four facts relating+∗ASAT, +ASAT, �∗SAT, �SAT:

Lemma 12 (Arithmetization). �∗SAT → +∗ASAT. The reduction works over any Boolean basis for
formulas and its corresponding arithmetic basis.

In addition, the same reduction yields�SATn → +kASAT for somek ∈ poly log n.

Lemma 13(Prenex). +∗ASAT→ +ASAT. The reduction works over any basis for formulas.

Lemma 14(Booleanization). +ASAT→ �SAT. The reduction works over any Boolean basis for formulas
and its corresponding arithmetic basis.

Corollary 15. �∗SAT→ �SAT. The reduction works over any basis for formulas.

Proof of Lemma 12.Given a bbsφ over any Boolean basisB, let Φ be its arithmetization as defined in
Section 1.3, i.e.,Φ is obtained by replacing each non-input gatef in φ with its affine extension polynomial
f̂ , and by replacing each mod-2 sum with a generic sum so that a subexpression ofφ of the form�y∈{0,1}φ

′

becomes
∑

y∈{0,1}Φ
′.

Becausef̂ agrees withf on Boolean settings of its inputs by definition (Section 2), it follows thatφ
agrees withΦ on every Boolean input. And because we representF2k ask-bit vectors (Section 2), computing
⊕~αφ(~α) reduces to computing the least significant bit of

∑
~αΦ(~α) overF2k for anyk, where eachαi ranges

over{0, 1} in both sums. The reduction works over any choice of a basis for formulas.

Proof of Lemma 13.Given an absΨ over any arithmetic basisA, we give a reduction that produces a
(summation-free) formulaΦ overA satisfying, for every setting of inputsx of Ψ overF2k for everyk,

Ψ(x) =
∑

yΦ(x, y).

There is nothing to do ifΨ is just a variable or constant, so suppose not.
If Ψ(x) is of the formΨ1 ∙Ψ2, and if by recursionΨ1 is already brought to the desired form

∑
yΦ1(x, y),

andΨ2 to
∑

zΦ2(x, z), then the rest is easy: just make surey andz refer to disjoint sets of variables by
renaming as needed, and writeΨ(x) =

∑
y,zΦ1(x, y) ∙ Φ2(x, z).

In caseΨ = Ψ1 + Ψ2, after recursing and renaming as before, write

Ψ(x) =
∑

b,y,z

(
Φ1(x, y) ∙ b ∙

∏
izi + Φ2(x, z) ∙ (1− b) ∙

∏
iyi

)
,

whereb is a single variable.
In caseΨ is of the formf̂(Ψ1,.., Ψm), wheref is a nonstandard basis element, use the definition off̂m

(Section 2) to rewriteΨ as

Ψ(x) =
∑

b1..bm
f̂(b1,.., bm) ∙

∏
i=1..m(1 + Ψi(x) + bi), (2)

then recurse into the product on the right side, and then finish by going to the first case,Ψ = Ψ1 ∙Ψ2.
The reduction works over any choice of a Boolean basis for formulas and its corresponding arithmetic

basis.

20

Proof of Lemma 14.Given an arithmetic formulaΦ(x) and giveǹ , we give a reduction from finding thèth

bit of
∑

xΦ(x), to evaluating the mod-2 sum�zφ(z) for some Boolean formulaφ.
To begin with, let us assume that there are no nonstandardf̂ -gates inΦ, in other words, thatΦ is a

F2k -polynomial for somek. By the way we representF2k (Section 2), there is a Boolean circuitC(X) that
takes as input ak-bit vectorXj corresponding to each inputxj of Φ(x), and outputsk bits representing the
valueΦ(x). C is constructible in polynomial-time givenΦ, independent of the choice of a basis.

Because the original task is to find the`th bit of the sum
∑

xΦ(x), and because addition inF2k corre-
sponds to componentwise addition inFk

2, we can ignore all output bits ofC except thè th one. Further,
because the summation variablesxi range over binary values, we can fix in eachXi all the bits to0 except
the least significant bit, which we can callxi. So we now have a circuitC(x) returning thè th bit of Φ(x)
for everyx from the Boolean domain.

It follows that the`th bit
∑

xΦ(x) equals�x,yφ(x, y), whereφ is the formula verifying thaty describes
the computation of the circuitC on inputx. This proves the lemma whenΦ(x) is a polynomial.

Now suppose thatΦ containsf̂ -gates for an arbitraryf . Mimicking the above reasoning for the standard
basis, we want to express the evaluation ofΦ as a Boolean circuitC over thef -extended Boolean basis.
Once this is done, the rest follows as in the earlier case with nof̂ -gates.

Perform the process, explained in the proof of Lemma 13 just above, of bringingΦ to prenex form —
a seemingly useless thing to do asΦ does not involve sums. But notice that as a side effect, the process
transforms the summation-freeΦ(x) into the sum

∑
B Φ′(x,B), where eacĥf -gate inΦ′, say theith one, is

“isolated” in the sense that its inputs now come from someBi1, .., Bimi among the variablesB, which all
range over Boolean values. Sincef̂ agrees withf on Boolean inputs, now thêf -gates can be replaced with
f -gates.

It thus follows, with the same reasoning as earlier, that the`th bit of
∑

xΦ(x) — which is the same
as thè th bit of

∑
x,B Φ′(x,B) — equals�x,B,yφ

′(x,B, y), whereφ′ is a formula over the Boolean basis
corresponding to the basis ofΦ. The reduction works over any choice of a basis forΦ.

— Step 3: Putting things together —

We now proceed to prove Theorems 2-3 and Proposition 4, beginning with the proposition.

Proof of Proposition 4. Immediate from Lemma 7 and Corollary 15.

Both Theorem 2 and Theorem 3 involve interactive proofs. For shortening the exposition, we now give
a generic lemma that provides this ingredient to both results. It says that claims of the form ‘

∑
xΦ(x) = v’

are same-length checkable, provided that the checker has oracle access to each gate inΦ. If there is no
access for one type of gate, say thef̂ -gates, then instead of a yes/no answer, the checker can output a small
conjunction of claims of the form ‘̂f(z) = w’ where “small” means no more thanm conjuncts if the fan-in
of the f̂ -gates inΦ is at mostm.

Lemma 16(Same-length Checking). For every languageL := {Lm}m∈N , there is a same-length checkerV

that reduces+ASATL to the task of verifying, in parallel, multiple claims regardingL̂.
In particular, +kASATL≤m gets reduced to at mostm claims of the form ‘̂L

k

i (y) = v’ wherei ≤ m.
This also holds if we extend the standard Boolean basis withO, and give the checker access toA. The

checker does not depend on the choice ofA.

Proof. The checkerV is to verify that thè th bit of
∑

xΦ(x) equalsb, given (Φ, `, b); hereΦ has all its
constants inF2k and hence the sum is overF2k . V works as follows:

21

First, it obtains the claimed values for the rest of thek bits for
∑

xΦ(x), so that the claim becomes
‘
∑

xΦ(x) = u’ for someu ∈ F2k .
Second, it performs the sumcheck protocol [8, Section 3.2] overF2k to get rid of the sum and update the

claim to ‘Φ(y) = v’ for somey, v over the same range as that ofx, u. (Note: field remains the same.)
At this point, V obtains the value of each gate in the evaluation ofΦ(y) — i.e., the value of each

subformula ofΦ, when evaluatingΦ ony — and checks all of them except those forL̂.
Finally, V uses the interpolation technique from the LFKN protocol [26], and combines multiple claims

of the form ‘L̂i(z) = w’ into a single one, for each distincti. More precisely, to merge two claims “L̂i(~α) =
v” and “L̂i(~β) = w”, consider the linet passing through~α and~β (i.e.,t(x) = ~α + (~β − ~α)x ∈ Fi

2k [x]), and

rewrite the claims to be merged as “L̂◦t(0) = v” and “L̂◦t(1) = w”. The checker obtains the univariate
polynomial L̂◦ t — or rather the polynomial̂L◦t purported to bêL◦ t — and sets the merged claim as
“ L̂i(γ) = y” where~γ = t(ρ) andy = L̂◦t(ρ) for a randomly chosenρ ∈ F2k .

The analysis of the protocol is standard: if the original claim, that the`th bit of
∑

xΦ(x) equalsb, is
false, whereΦ has≤ n nodes, then the sumcheck stage erroneously yields a true claim with probability at
most

of rounds∙ deg Φ / size of the field

which grows slower than1/nd for anyd, due to the requirementk ≥ log2 n in the definition of+ASAT
(Definition 11). Similarly, given≤ n claims of the form ‘̂Li(z) = w’, if one of them is false, then the
merging stage erroneously yields a correct conjunction of claims with probability at most

of merges∙ deg R / size of the field

which again grows slower than1/nd for anyd.
Since each input node ofΦ is represented with a string of length≥ k (Definition 11), the checker can

maintain its queries to be of the same length.
Finally, the checker does not depend on the choice ofA. This finishes the proof.

Before we finally prove Theorems 2-3, let us note one consequence of what is done in Steps 1-2:

Corollary 17 (Extension Closure). �SATf̃ → �SATf . The reduction works over any basis for formulas.

Proof. Being the affine extension off , by the definitions in Section 2, on inputx, f̃ gives thezth bit of the
valuef̂ takes aty, wherey andz are computable in polynomial-time out ofx. In other words,f̃ gives the
+ASATf instance(Φ, z) whereΦ is the formula ‘̂f(y)’. Thus f̃ → +ASATf . Combining with Lemma 14
givesf̃ → �SATf . Therefore,

�SATf̃ → �SAT�SATf

→ �∗SATf → �SATf

by Proposition 4, Lemma 8, and Corollary 15, respectively.

Proof of Theorem 2. Extend the standard Boolean basis withA. We are to show that there is a language
K that is equivalent to�SAT under Karp reductions. Further,K must be same-length checkable given
access toA, and neither the checker nor the reductions to and from�SAT can depend on the choice ofA.

Recall that�SAT with respect to the (now-extended) standard basis is the same as�SATA with re-
spect to the basis{0, 1,∧,⊕}. In the rest of the proof we will work in the latter basis for�SAT, and its
corresponding arithmetic basis for+ASAT.

We claim thatK := +ASATO is a language as desired.

22

We begin by showing thatK and�SATA reduce to each other. In one direction we have

K → �SATO → �SATA,

where the first reduction is by Lemma 14 (with theO-extended basis for�SAT), and the second by using
Proposition 4 and the fact thatO Karp-reduces to its affine extensionA. For the other direction, do the
same sequence of reductions in reverse, by using first Corollary 17 and then Lemma 12 (again with theO-
extended basis for Boolean formulas). Since none of the reductions used depend on the choice of a Boolean
basis, neither does their composition in either direction.

Next, the same-length checkability ofK given access toA, is immediate from Lemma 16 by settingL
to the empty languageL : x 7→ 0 and the basis for+ASAT to be the standard arithmetic basis. By the same
lemma, the checker does not depend on the choice ofA.

Finally, �SATA is checkable: On inputx, reduce it to an inputx′ for K, then simulate the checking
protocol forK(x′), by reducing each query forK to one for�SATA. Because the reductions in either
direction do not depend on the choice of a Boolean basis, and because the checker forK does not depend
on the choice ofA, the same holds for the checker for�SATA.

Proof of Theorem 3. Extend the standard Boolean basis withA. Let L be a language. We are to show
that there is an interactive protocol yielding the reduction

�SAT
L≤m
n → �SAT

L≤m

poly(m log n),

for everyn,m. The protocol will have access toA but will not depend on the choice ofA.
Recall that�SAT with respect to the (now-extended) standard basis is the same as�SATA with re-

spect to the basis{0, 1,∧,⊕}. In the rest of the proof we will work in the latter basis for�SAT, and its
corresponding arithmetic basis for+ASAT.

Also recall that we use�SATf,g to refer to either of(�SATf)g and(�SATg)f depending on context,
as they are equivalent under Karp reductions.

We proceed with the proof. We have

�SATA,L≤m → �SATO,L≤m → +ASATO,L≤m ,

where the first reduction is by Corollary 17 (with theL≤m-extended basis for�SAT) and the second by
Lemma 12 (with theO- andL≤m-extended basis for�SAT)). In fact, the same sequence yields

�SAT
A,L≤m
n → +kASATO,L≤m ,

for somek ∈ poly log n.
Now, Lemma 16 says (with theO-extended basis) that+kASATO,L≤m is reducible, via an interactive

protocol that has access toA, to the conjunction of at mostm claims regardinĝL
k

i , i ≤ m, and therefore
to the conjunction of at mostmk claims regarding̃L

k

i , the Boolean version of̂L
k

i . Altogether these claims
can be expressed as one Boolean formula, hence as one�SAT instance, of sizepoly(mk), over the basis
extended with the affine extension ofL≤m. In notation,

+kASATO,L≤m → �SAT
L̃≤m

poly(mk).

Finally, Corollary 17 says, with the settingO = L≤m, that

�SATL̃≤m → �SATL≤m

completing the desired reduction.
All the Karp reductions above work over any choice of basis, in particular, ofA andm. The interactive

reduction of Lemma 16 also does not depend on the choice ofA andm. This completes the proof.

23

3.2 TheIP Theorem

In this section we show that Shamir’sIP theorem,PSPACE ⊂ IP, admits an affinely relativizing proof. As
a byproduct we obtain a new streamlined proof of this result; see Section 1.3 for an overview and comparison
with previous proofs.

The proof is a straightforward consequence of the results in Section 3.1 on�SAT. We show:

Theorem 18. Every downward-self-reducible language is computable by an interactive protocol.
This also holds if the standard Boolean basis is extended withA, via a protocol that has access toA.

The protocol does not depend on the choice ofA if the self-reduction does not.

Proof. Extend the standard Boolean basis withA. Let L := {Ln}n∈N be downward-self-reducible, so that
there is a function inFP that induces the Cook-reduction fromLn toL≤n−1 for everyn > 0. By Proposition
4, there is a function inFP that induces the reduction

�SATLn → �SATLn−1

for everyn ∈ N; here and throughout the rest of the proof,�SATL−1 denotes�SAT, andLi denotesL≤i.
Iterating this and combining it with Theorem 3, we get a function inFP and an interactive protocol that

together induce the two-step reduction

(�SATLn−1)nd → (�SATLn−2)nd′ → (�SATLn−2)nd , (3)

for everyn, for some large enough constantsd, d′ whereni denotesni + i (in particulard must exceed the
exponent hidden in thepoly(∙) notation of Theorem 3). We also have the trivial reduction

Ln → �SATLn (4)

since the task of computingL(α) reduces to the task of evaluating the formula ‘L(α)’.
Now consider the reduction that on inputx to Ln, first applies the reduction in (4), and then forn

iterations, applies the reduction sequence in (3). This compound reduction yields

Ln → �SAT

for everyn ∈ N, in other words, it yieldsL→ �SAT.
By Theorem 2 on checking�SAT, it follows thatL is computable by a protocol that has access toA

but does not depend on the choice ofA.

We now state Shamir’s theorem as a gap-amplification result, as explained on page 12.

Definition 19 (γ-gap-IP). Say that a languageL is in γ-gap-IP iff there is an interactive protocol forL
with completeness1 and soundness< 1− γ. Hereγ can be any function fromN to [0, 1) ⊂ R.

By its very definition, the class0-gap-IP hasTQBF as a complete language, because the interaction
between the verifier and prover in a0-gap-IP protocol can be expressed as aTQBF instance. Hence:

Proposition 20. There is a downward-self-reducible language that is complete for0-gap-IP. This also
holds if the standard Boolean basis is extended withO. The reductions do not depend on the choice ofO.

Remark.LetPSPACE be the class polynomial-space defined in the classical sense using Turing machines,
and letPSPACEO be its relativized variant in the sense of Baker-Gill-Solovay. The well-known result of
Stockmeyer and Meyer [33], showing that the languageTQBF is complete forPSPACE , in fact can be
restated as saying thatPSPACE ⊂ 0-gap-IP. More generally,PSPACEO ⊂ 0-gap-IP with respect to the
O-extended Boolean basis.

24

Corollary 21 (IP theorem). 0-gap-IP ⊂ Ω(1)-gap-IP. This also holds if the standard Boolean basis
is extended withA. The correspondence between the0-gap-IP and theΩ(1)-gap-IP protocols does not
depend on the choice ofA.

So for every0-gap-IP-protocolΠ0 under theA-extended basis, there is aΩ(1)-gap-IP-protocolΠΩ(1) that
not only computes the same language asΠ0, but continues to do so even ifA is changed to be some other
affine extension language.

3.3 TheMIP Theorem

In this section we show that theNEXP ⊂ MIP theorem of Babai, Fortnow, and Lund [8] admits an affinely
relativizing proof, if it is viewed as a gap amplification result as explained on page 12. We show:

Definition 22 (γ-gap-MIP). Say that a languageL is in γ-gap-MIP iff there is a multiple-prover interactive
protocol forL with completeness1 and soundness< 1−γ. Hereγ can be any function fromN to [0, 1) ⊂ R.

Theorem 23(MIP theorem). 0-gap-MIP ⊂ Ω(1)-gap-MIP. This also holds if the standard Boolean basis
is extended withA, via protocols with access toA.

The proof becomes a straightforward consequence of Section 3.2, that theIP theorem affinely relativizes,
once two ingredients are introduced. First is a very useful characterization ofMIP, and more generally of
γ-gap-MIP, due to Fortnow, Rompel, and Sipser [14]. We paraphrase their result:

Fact 24. L ∈ MIP iff there is a languageπ such thatL ∈ IPπ, with a protocol that is robust to its oracleπ
in the following sense: if some other oracleπ∗ is used instead ofπ then no prover strategy can exploit this,
i.e., the verifier cannot be convinced to acceptx with probability≥ 1/3 wheneverL(x) = 0, even if some
otherπ∗ is used as oracle instead ofπ.

This equivalence more generally holds if “MIP” is replaced with “γ-gap-MIP”, “ IP” with “ γ-gap-IP”,
and “1/3” with “ 1− γ”.

The above also holds when the standard Boolean basis is extended withO, and all the protocols involved
are given (additional) access toO.

The second ingredient in proving Theorem 23, and the key one, is the seminal “multi-linearity test” of
Babai, Fortnow, Lund [8, Thm 5.13]. We combine it with a “Booleanness test” from the same paper [8,
§7.1] and a standard decoding procedure for low-degree polynomials (e.g., [4,§7.2.2]):

Proposition 25. There is an interactive protocol,Decode, for which the following holds. Let[E] denote the
maximum probability that eventE occurs, over all possible prover strategies in the protocol.

For every languageF and every numberN ∈ N , there is some affine extension languageG such that:
given inputs(x, ε,N) where|x| ≤ N and ε ≤ 1/2, and given oracle access toF , Decode runs in time
poly(N/ε), and outputs a valueoutput such that:

(i) if F is an affine extension, then[output = F (x)] = 1,

(ii) if F is an affine extension, then[output /∈ {F (x), ‘fail’ }] = 0,

(iii) otherwise,[output /∈ {G(x), ‘fail’ }] ≤ ε.

We defer the proof to the end of this section (§3.3.2) and proceed to derive Theorem 23.

25

Proof of Theorem 23.Let us adopt the notation of Proposition 25, and use[V (x)] to denote the maximum
probability that a verifierV accepts its inputx, over all possible prover strategies in a protocol.

Extend the standard Boolean basis withA. Let L ∈ 0-gap-MIP. By Fact 24,L ∈ 0-gap-IPπ for some
languageπ; we may assumeπ is an affine extension since every language reduces to its affine extension.
Pick any protocol realizingL ∈ 0-gap-IPπ, and let its verifier beV0. We know that this protocol is robust
to its oracleπ in the sense of Fact 24.

By Corollary 21,L ∈ IPπ.9 Therefore, by Fact 24, all that remains to show is that among the protocols
realizingL ∈ IPπ, one is robust toπ. So pick any protocol realizingL ∈ IPπ, with verifierV say. We may
assume that the soundness error of this protocol is< 1/6 by amplification.

Consider modifyingV , so that it performs each of its oracle queries, say toπ(X), via the protocol of
Proposition 25, asDecodeπ(X, ε, t), and rejects upon failure; heret := t(|x|) is the total running time ofV
on an input of length|x|, andε will be worked out later. By Proposition 25-(i)-(ii), and by the assumption
thatπ is an affine extension, this modification does not affect the outcome of the protocol whenπ is used as
oracle, so we still have aIPπ-protocol forL.

We claim that this new protocol has the desired robustness; in the notation introduced up front,

[V ◦Decπ∗
(x)] < 1/3 (†)

for every languageπ∗ and everyx such thatL(x) = 0, whereV ◦Dec denotes the modified verifier.
To see this, letL(x) = 0 and letπ∗ be any language. Depending on whether or notπ∗ is an affine

extension, respectively, letH denote eitherπ∗, or the languageG obtained from Proposition 25 by putting
F := π∗.

Starting from the very first protocol we mentioned forL, i.e. the one with the verifierV0, and going
toward the last one with the verifierV ◦Dec, we will now argue the validity of four implications

L(x) = 0 =⇒ [V H
0 (x)] < 1 =⇒ [V H(x)] < 1/6 =⇒ [V ◦DecH(x)] < 1/6 =⇒ (†)

which will prove the theorem.
The first implication holds no matter whatH is, becauseV0 is the verifier of a0-gap-IPπ-protocol for

L that is robust toπ in the sense of Fact 24.
For the second implication, we know thatV π agrees withV π

0 on x by Corollary 21. Moreover, by the
second part of by Corollary 21,V H agrees withV H

0 onx, and hence acceptsx with probability< 1/6.
The third implication is byH being an affine extension, and hence byDecodeH working the same as

H, by Proposition 25-(i)-(ii).
The last implication is trivial ifH = π∗, so suppose not. Then by Proposition 25, except with probability

≤ ε, Decodeπ∗
returns eitherH or ‘fail’. This means, recalling thatt bounds the running time ofV on x,

except with probability≤ tε, V ◦Decπ∗
either works the same asV ◦DecH , or it rejects becauseDecodeπ∗

returns “fail” at some point. Therefore,[V ◦Decπ∗
(x)] ≤ [V ◦DecH(x)]+ tε. To finish, setε ≤ 1/(6t).

3.3.1 Comparison with the standard view

We now take up the discussion on page 12, that relates the gap amplification view of theMIP theorem,
Theorem 23, to the standard view,NEXP ⊂ MIP:

Proposition 26. NEXP ⊂ 0-gap-MIP. This doesnot alwayshold if the standard Boolean basis is extended
with someA.

9When the Boolean basis is extended withA, notice that0-gap-IPπ really involves two affine oracles not just one. We are still
justified in invoking Corollary 21, however; see the discussion in page 6 titled “multiple oracles”.

26

In order to make transparent what “current technique” yields it, we prove Proposition 26 in two steps. First,
we characterize0-gap-MIP as a subclass ofNEXP, namely as those languages inNEXP with “strong
locality”. Then we show that the strong Cook-Levin theorem collapsesNEXP to that subclass.

Definition 27 (strong uniformity). Call a family of circuits{Cn}n∈N strongly uniform iff the function that
outputs, given input(n, i), the type of theith gate inCn, as well as the indices of all gates connected to it, is
in FP.

Definition 28 (NEXPlocal). Let Plocal be the class of all languages with strongly uniform polynomial-
size circuits. Using this class defineNPlocal, and then by padding defineNEXPlocal; in other words let
NEXPlocal be the class of all languages with strongly uniform exponential-size nondeterministic circuits.

Proposition 29. 0-gap-MIP = NEXPlocal. This also holds if the standard Boolean basis is extended with
O, and the protocols are given access toO.

Remark.Over an arbitrary basis extensionO, the classNEXPlocal corresponds exactly to what we may
denote asNEXPO[poly], the Turing-machine-based definition of relativizedNEXP where the oracle queries
are restricted to be of polynomial length. In logical terms (Section 1.1), in every standard model ofACT ,
the variableNEXPlocal gets interpreted as the classNEXPO[poly] for someO, and conversely for everyO,
there is some standard model ofACT in whichNEXPlocal is interpreted asNEXPO[poly]. Proposition 29
thus vindicates the use of poly-length query restriction in previous work; see the discussion on page 12.

We now proceed to prove Propositions 29 & 26.

Proof of Proposition 29.Part(⊂): Extend the standard Boolean basis withO. Let L ∈ 0-gap-MIP. By
Fact 24,L ∈ 0-gap-IPπ for some languageπ. In other words, there is a family of size-poly n circuits
V π := {V π

n (x, r)}n over theπ-extended basis (this extension is in addition toO) such thatL(x) = 1 iff
∧

r1

∨

r2

∙ ∙ ∙
∨

r|r|

V π
n (x, r) (5)

evaluates to1, where eachri ranges over{0, 1}, |r| ∈ poly n (wlog |r| is even), andn = |x|.
View (5) as a circuitDπ

n(x), of sizeO(2|r|) times the size ofV π
n . Now viewDπ

n as a circuitCn(x, yπ)
over thestandardbasis (we still haveO in the basis), by replacing eachπ-gate inD with ayπ-gate.

V π is a uniform family, i.e., there is a function inFP that outputs, given input(1n, 1i), information about
the ith gate ofV π

n in the sense of Definition 27. It follows thatC := {Cn(x, yπ)}n is a strongly-uniform
family. This proves the first part.

Part(⊃): Extend the standard Boolean basis withO. Let L ∈ NEXPlocal with a corresponding strongly
uniform circuit family{Cn(x, y)}n of sizes(n) ∈ exp poly n. For everyx ∈ {0, 1}n andi ∈ {0, 1}log s(n),
let π(x, i) be the value of theith gate inCn(x, y∗) for some fixedy∗ maximizing the output ofCn(x, y) over
all eligibley. Then in the protocol forL(x), the verifierV simply: (i) picks at randomi ∈ {0, 1}log s(n); (ii)
using the strong uniformity of{Cn}, finds out that theith gate is, say, of typef and is connected, say, to gates
i1..im in that order; and (iii) checks that the transcript is consistent with theith gate, i.e., thatz = f(z1..zm),
wherez stands forπ(x, i) in general, with the special case being when gatei is the output gate (thenz = 1),
and wherezk stands forπ(x, ik) in general, with the special case being when gateik is an input gate (then
zk = xj for an appropriatej). It is easy to see the robustness of this protocol toπ. The claim follows.

Proof of Proposition 26.P ⊂ Plocal by the strong Cook-Levin theorem (Section 2), implyingNEXP ⊂
NEXPlocal and proving the first claim via Proposition 29.

27

For the second claim, we want to show a languageO with its affine extensionA, such thatNEXP 6⊂
NEXPlocal with respect to theA-extended basis. It actually suffices to show this non-containment with
respect to theO-extended basis, becauseA reduces to�SATO by Corollary 17, and because�SAT can
be computed brute-force inNEXPlocal, the latter holding also under theO-extended basis. (To see this, let
FmlaEval(φ, x) be the language that interpretsφ as a formula and evaluatesφ at x. Then�SAT(φ(x)) =
�xC(φ, x), whereC is the circuit forFmlaEval at the appropriate input length. ViewC as a circuitD of
size2|x| times the size ofC. BecauseC is uniform,D is strongly uniform, so�SAT ∈ EXPlocal in fact.)

ThusNEXPlocal does not become smaller ifO is used as the basis extension instead ofA — it does
not matter whetherNEXP does — and what remains is to constructO. But this is an easy matter: let
M1,M2,M3.. be a list (repetitions allowed) of all nondeterministic algorithms with access to an arbitrary
languageO, such thatMi runs in time≤ 2nlog n

on all inputs of lengthn ≥ i, and such that all queries toO
are of length≤ nlog n. Now for i = 1..∞, updateO at a large enough input, say on12i

, to the output ofMi

on 1i. Every language inNEXPlocal with respect to theO-extended basis is computed by someMi in the
list, yet the language mapping1i 7→ ¬O(12i

) is clearly not, provingE 6⊂ NEXPlocal with respect to that
O.

3.3.2 Proof of Proposition 25

We complete Section 3.3 by providing the deferred proof of Proposition 25.

— Proof of Proposition 25 : The protocolDecode —

Let L be a language. Being the affine extension ofL, by the definitions in Section 2, on inputx ∈ {0, 1}n,
L̃ gives thezth bit of the valueL̂ takes aty ∈ Fm

2k , i.e.,
(
L̂

k

m(y)
)

z
(6)

wherey, z,m, k are all computable in polynomial-time out ofx, and are all≤ n. Conversely, given
(y, z,m, k), an inputx for which this holds is also computable in polynomial-time.

The protocolDecode interprets its inputx as though it were for somẽL, and extractsy, z,m, k. Since
k denotes the field size, or the logarithm thereof, and sinceF2k can be efficiently identified inF2≥k , and
moreover, sincek ≤ n ≤ N , (6) can be viewed as

(
L̂

N

m(Y)
)

Z
(7)

whereY denotesy identified inFm
2N , andZ denotes the accordingly updatedz.

Owing to this,Decode overrides(y, z,m, k) with (Y,Z,m,N), andx with someX corresponding to
the latter tuple. For notational convenience, we will not capitalizeY andZ because they represent the same
information asy andz. Also, we will assume thatN ≥ 10 log 2m; this is without loss of generality as we
can always haveDecode increaseN before overriding(y, z,m, k).

After this initial adjustment phase,Decode proceeds into the main phase consisting of three steps:

Step 1. Test ifFm,N is (multi-)affine:

- Pick at random an axis-parallel line, and three points on this line.

- Check if the valuesFm,N takes on the three points are collinear.

Step 2. Test ifFm,N is an affineextension, i.e., if Fm,N is Boolean on Boolean inputs:

- Pick at random up tom Boolean vectorsv1, .., vi ∈ Fm
2N .

28

- Do a sumcheck protocol on the claim0 =
∑

b∈{0,1}m Q(b) where

Q(y) := Fm,N (y)(1 + Fm,N (y))
∏

j=1..i(1 + 〈y, vj〉) (8)

with 〈y, w〉 denoting the inner product
∑

` y`w`.

- Save the pointy′ at whichQ is evaluated at the last round of sumcheck.

Step 3. Test for consistency:

- Pick at random a linè originating aty, i.e., let`(t) := y + th for a randomh ∈ Fm
2N \ {0}.

- Letting (1), .., (m+1) be a canonical choice ofm+1 distinct nonzero elements ofF2N ,
interpolate into a polynomialq(t) the values ofFm,N at `((1)), .., `((m + 1))

- Check ifFm,N (y) = q(0). Also checkFm,N (y∗) = q(t∗) for a randomt∗ andy∗ := `(t∗).

- Repeat Step 3 also for the pointy′ saved in Step 2, in place ofy.

We refer to [8,§3.2 and§5] for explanations of the terms ‘axis parallel line’, ‘sumcheck protocol’, etc.
If any of the checks fails, thenDecode outputs ‘fail’; otherwise, it repeats Step 1 - 3. This goes on

for T times, after which pointDecode outputsF (X), i.e., thezth bit of Fm,N (y). With foresight, we set
T := cm9 ln 1

ε , wherec = 8100. This completes the description of the protocol.

— Proof of Proposition 25 : Analysis ofDecode —

To begin with, note that the protocol never outputs something besidesF (X) or ‘fail’. Thus

for every prover,Pr[output /∈ {F (X), ‘fail’ }] = 0. (9)

Parts (i) and (ii) of the claim are fairly immediate. Indeed, supposeF = L̃ for some languageL. Then
all steps succeed with certainty, provided the prover acts honestly in Step 2. Thus

for some prover,Pr[output = F (X)] = 1.

Also, F (x) = F (X) in this case, because

F (x) = L̃(x) = L̃
k

m(yz) = L̃
N

m (yz) = L̃(X) = F (X).

Putting together with (9), we get claims (i)-(ii).
To proceed with part (iii), let us introduce a piece of notation. For functionsf , g with the same finite

domain, sayf is nearbyg, and writef ≈ g, to mean

Pry[f(y) 6= g(y)] ≤ γ

over the uniform choice ofy from dom f = dom g. With foresight, we setγ := 1
100m2 .

Also, let us call a functionP : Fm
2N → F2N affine, orm-affine, if it is the evaluation inF2N of an

m-variate polynomial overF2N with individual degree≤ 1.
For all functionsf : Fm

2N → F2N and allm, there can be at most one affine function nearbyf , due to
the Schwartz-Zippel Lemma (see, e.g., [4, Lemma 4.2]) and the fact thatm ≤ N .

We now define the languageG claimed to satisfy part (iii). For everym ∈ N, consider whether there
exists a Boolean functionLm : {0, 1}m → {0, 1} such that̂L

N

m is nearbyFm,N . If yes, thenLm is unique
by the previous paragraph; if not, then letLm be arbitrary, say the mapx ∈ {0, 1}m 7→ 0. Then setG := L̃.

Now consider three cases:

29

case i.Fm,N is not nearby any affine functionP : Fm
2N → F2N . In this case, by [8, Thm 5.13 and§7.1],10

Pr[Step 1 passes] ≤ 1− 1/(8100m9). (i)

case ii.Fm,N is nearbyL̂
N

m . SupposeFm,N disagrees witĥL
N

m ony. Then by [4, Proposition 7.2.2.1],11

Pr[Step 3 passes]

≤ Pr[the interpolated value ofFm,N agrees withFm,N aty∗, but disagrees witĥL
N

m aty]

≤ 2
√

γ + m/(2N − 1) ≤ 2/(9m). (ii)

Now supposeFm,N does agree witĥL
N

m ony. ThenF (X) = G(X) by the way we definedG. Further,
G(X) = G(x) since

G(x) = L̃(x) = L̃
k

m(yz) = L̃
N

m (yz) = L̃(X) = G(X).

Putting together with (9) we get, for every prover,

Pr[output /∈ {G(x), ‘fail’ }] = 0. (ii’)

case iii.Fm,N is not nearbŷL
N

m , but is nearby some affine functionP : Fm
2k → F2k . In this case, by the

way we definedLm, we know thatP is not Boolean on all Boolean inputs, i.e.,P (Fm
2) 6⊂ F2.

Consider Step 2, in particular, the randomly picked pointy′ ∈ Fm
2N on which the expressionQ in

(8) is evaluated at the end of the sumcheck protocol. LetE be the event thatFm,N agrees withP on this
pointy′. Then just as in case ii., by [4, Proposition 7.2.2.1],

Pr[Step 3 passes| ¬E]

≤ Pr[the interpolated value ofFm,N agrees withFm,N aty′∗, but disagrees withP aty′]

≤ 2/(9m).

On the other hand, supposeE . Then at the end of sumcheck, the final claim, of the form

‘v = Q(y′)’ where Q(y) := Fm,N (y)(1 + Fm,N (y))
∏

j=1..i(1 + 〈y, vj〉)

for somev ∈ F2N , can be alternately written as

‘v = QP (y′)’ where QP (y) := P (y)(1 + P (y))
∏

j=1..i(1 + 〈y, vj〉).

Therefore, for every prover,

Pr[Step 2 passes| E] ≤ Pr[‘v = Q(y′)’ is a correct claim| E]

= Pr[‘v = QP (y′)’ is a correct claim| E] = (∗)

where we just switched from a sumcheck involving the initial claim ‘0 =
∑

b Q(b)’ to one involving
the initial claim ‘0 =

∑
b QP (b)’. We are justified in this transition becausev is a function purely ofy′

and the prover, with “the prover” being just a function fromF≤m to the univariate polynomials overF
of degreedeg Q, that has nothing to do with the particulars ofQ. Therefore

(∗) ≤ Pr[penultimate claim in the sumcheck for ‘0 =
∑

b QP (b)’ is correct]

10To invoke [8, Theorem 5.13] we setε = 1/(900m4), δ = 1/(900m4), and use|F2N | ≥ 900m4. In return we get an axis
i ∈ {1..m} along which≥ ε-fraction of lines would fail the test in Step 1 with≥δ-chance, provided thatFm,N differs from every
affine function on≥ ε′-fraction of inputs, whereε′ ≤ 1/(100m2).

11To invoke [4, Proposition 7.2.2.1], we letA := Fm,N , andB be the function that given(y, h), outputs the polynomialq(t)
as described in the protocol. In return, we get that if there is a polynomialP of degreed such thatPry[f(y) 6= P (y)] = ε, then
Prh,t∗ [A(y) 6= q(0) yetA(`(t∗)) = q(t∗)] ≤ 2

√
ε + d

|F|−1
.

30

+ Pr[last sumcheck round errs]

≤ Pr[the first claim ‘0 =
∑

b QP (b)’ is correct] + mρ

where we droppedE by independence, and where an erroneous round is one that takes an incorrect claim
and produces a correct one, withρ denoting the probability of such a round taking place andm being
the number of rounds. Because each round involves evaluating a given univariate polynomial of degree
≤ deg Q at a random point inF2N ,

ρ ≤ deg Q/2N ≤ m(m + 2)/210 log 2m ≤ 1/(500m9).

Now, applying Rabin’s Isolation Lemma [35, Theorem 2.4] to the setB ⊂ Fm
2 : P (B) 6⊂ F2, we get

Pr[the first claim ‘0 =
∑

b QP (b)’ is correct] ≤ 1− 1/(4m),

and putting together we get, for every prover,

Pr[all steps pass] ≤ min(Pr[Step 2 passes| E] , Pr[Step 3 passes| ¬E]) ≤ 1− 1/10m. (iii)

This concludes the case analysis. Step 1 through Step 3 are repeatedT times, which for our choice ofT
makes all of (i), (ii), and (iii) at mostε, thus

Pr[output /∈ {G(x), ‘fail’ }] ≤ (max{(i),(ii),(iii) })T + (ii’) ≤ ε

as claimed.

3.4 Lower Bounds against General Boolean Circuits

Using theIP theorem and its variants, Buhrman, Fortnow, Thireauf [12] and Santhanam [28] succeeded in
obtaining the strongest lower bounds known-to-date against general Boolean circuits. In both results, the
lower bound is shown for the class of Merlin-Arthur protocols; in the case of Buhrman et al. it is for the
classMA(exp n), of protocols running in exponential time, and in Santhanam it is forMA(poly n). For
notational convenience, we useMA(t(n)) to denote classes of partial languages, and make it explicit when
we talk about the subclass of (total) languages.

In this section we give an affinely relativizing proof that unifies both results. We prove:

Theorem 30. For every constantd,

(i) MA(exp n) contains a language that does not have circuits of sizeO(2logd n).

(ii) MA(poly n) contains a partial language that does not have circuits of sizeO(nd).

This also holds if the Boolean basis is extended withA.

The proof consists of three main ingredients. The first one shows that if the lower bound fails to hold,
then this failure scales to�SAT.

Lemma 31(Scaling).

(i) If part (i) of Theorem 30 is false, then�SAT has circuits of sizeO(2logd n) for somed.

(ii) If part (ii) of Theorem 30 is false, then�SAT has circuits of sizeO(nd) for somed.

This also holds if the Boolean basis is extended withA.

We defer the proof of Lemma 31 to the end of this section.
To proceed with the rest of the proof it will be convenient to introduce some notation.

31

Definition 32 (Σ3SAT). Let Σ3SAT denote the language mappingφ(x, y, z) 7→ ∃x∀y∃z φ(x, y, z) where
φ is over the standard Boolean basis by default.

For t a well-behaved resource bound, letΣ3SAT(t) denote the set of all languages Karp-reducible
in time t to Σ3SAT. In other words,Σ3SAT(t) is the set of all languagesL for which the language
(x, 1t(|x|)) 7→ L(x) Karp-reduces toΣ3SAT.

The second ingredient in proving Theorem 30 is a collapse result: if the conclusion of the Scaling lemma
holds, then the polynomial-time hierarchy collapses. We defer its proof to the end of this section.

Lemma 33(Collapse). Lets be a well-behaved resource bound.
If �SAT has circuits of sizeO(s(n)), thenΣ3SAT is computable by a protocol inMA(s(poly n)).
This also holds if the Boolean basis is extended withA.

The last ingredient of the proof is a classical result of Kannan [23], showing circuit lower bounds for
Σ3SAT, and more generally forΣ3SAT(t). His proof relativizes.

Fact 34(Kannan’s bound). Lets be a well-behaved resource bound.
Σ3SAT(poly s(n)) contains a language that does not have circuits of sizeO(s(n)).
This also holds if the Boolean basis is extended withO.

With the three ingredients in hand — Scaling and Collapse lemmas, and Kannan’s bound — we can
prove Theorem 30. For part (i), we letC be the set of languages inMA(exp n) and puts(n) = 2logd n; for
part (ii), we letC be the set of partial languages inMA(poly n) and puts(n) = nd.

The proof goes by contradiction. We give the argument using notation.

C ⊂ SIZE(O(s(n)))

=⇒ �SAT ∈ SIZE(O(s(n))) (by Scaling lemma)

=⇒ Σ3SAT ∈ MA(s(poly n)) (by Collapse lemma)

=⇒ Σ3SAT(poly s(n)) ∈ C (*)

=⇒ contradiction (by Kannan’s bound)

where step (*) follows from Definition 32 and the fact thats(poly s(n)) ⊂ poly s(n) for the particular
choices ofs(n).

What remains is the proof of Scaling and Collapse lemmas.

Proof of Scaling Lemma .There is nothing to prove in part (i), because a�SAT instance of sizen is com-
putable by brute force in deterministic timeexp n ∙ poly n, which by definition is a protocol inMA(exp n).

For part (ii), suppose that every partial language inMA(poly n) has circuits of sizeO(nd) for some
fixed d. We want to show that�SAT has circuits of sizepoly n. By Theorem 2,�SAT reduces to some
same-length checkable languageK, so it suffices to show this forK instead of�SAT.

So letK beanysame-length checkable language, and suppose towards a contradiction thatK does not
have polynomial-size circuits. Lets : N → N be such thats(n) is the size of the smallest circuit deciding
K on inputs of lengthn, for everyn. By assumption,s(n) is super-polynomial, i.e.,s(n) >i.o. nk for every
constantk. Note thats(n) might not be well-behaved.

Consider the partial languageK ′(xy) := K(x) that is defined only on inputs of the formxy where
y ∈ 01∗ serves as a pad of length|y| = bs(|x|)ε c, for some constantε > 0 to be later determined.

Now consider the followingMA-protocol forK ′: givenxy, the prover sends the smallest circuit forK
on inputs of length|x|, i.e. a circuit of sizes(|x|), and the verifier uses the same-length checkability ofK to

32

computeK(x), henceK ′(xy). This takes, on an input of length|x|+ |y|, timepoly s(|x|) ⊂ poly s(|x|)ε ⊂
poly(|x|+ |y|). SoK ′ is in MA(poly n), and hence has circuits of sizeO(nd) by assumption. But thenK
has circuits of sizeO(n + s(n)ε)d, which is less thans(n) for infinitely manyn wheneverε < 1/d because
s(n) is superpolynomial. But this contradictss(n) being the smallest circuit size forK.

Proof of Collapse Lemma.Toda famously showed [34]

Σ3SAT→ �SAT

via a randomized reduction that works over every Boolean basis for formulas. (The same holds in general
for ΣkSAT for all constantk.) So if�SAT has circuits of sizeO(s(n)) for formulas of sizen, then theMA-
protocol for computingΣ3SAT, on a formula of sizen, proceeds by the verifier doing the above reduction
to obtain a formula of sizem ∈ poly n, then the prover sending a circuit for�SAT at a large enough input
lengthpoly m, hence a circuit of sizeO(s(poly n)), and finally, the verifier running the checker for�SATm

(Theorem 2) on the circuit, in timepoly(s(poly n)), i.e. in times(poly n) sinces is well-behaved.

3.5 TheZKIP Theorem

AW made the surprising observation that the famous theorem of Goldreich, Micali, and Wigderson,NP ⊂
ZKIP if one-way-functions exist [21], can be proven via the same techniques underlying theIP theorem
[1]. This is in contrast to the standard proof of this result involving a graph-based construction, which seems
incompatible with the oracle concept.

IKK turned this idea into a complete proof by devising an indirect commitment scheme for this purpose
[22]. In this section we adapt this AW-IKK proof to our framework, to get an affinely relativizing proof of
theZKIP theorem.

Theorem 35(ZKIP theorem). NP ⊂ ZKIP if there is a one-way function inP secure againstBPP.
This also holds if the standard Boolean basis is extended withA.

Similarly to previous work (AW, IKK), we take for granted that there is a relativizing proof showing
that under the assumption of Theorem 35, there are bit commitment schemes as in [27]. Also as in previous
work, we take an informal approach to zero knowledge, declaring some protocol as leaking no information
if, assuming a physical implementation of a perfectly secure bit commitment scheme (such as locked boxes
containing the commitments), the verifier’s view of each decommitted bit, when dealing with an honest
prover, is either uniformly distributed, or deterministically computable by the verifier itself, .

Idea. We can interpret the combined AW-IKK insight as follows. Fix a vector space over any fieldF.
We want a protocol where given a publicly known vectoru, the prover can commit to any vectorv that is
orthogonal tou, and the verifier checks thatv ⊥ u, but learns nothing additional aboutv.

This can be realized by the honest prover committing three things: (i) a random vectorr, (ii) the vector
r + v, and (iii) the inner product〈r, u〉. Since a cheating prover may deviate, let us user, r + v, and〈r, u〉
to denote what is actually committed for (i),(ii), and (iii) respectively.

Sincev ⊥ u iff 〈v + r, u〉 = 〈r, u〉, the verifier picks at random one of the following two tests.

Test a. prover decommits tor and〈r, u〉, and verifier checks that〈r, u〉 = 〈r, u〉.

Test b. prover decommits tor + v and〈r, u〉, and verifier checks that〈r + v, u〉 = 〈r, u〉.

Any prover not committing to a vectorv orthogonal tou is caught by a1/2-chance in this protocol,
because then at least one equality in〈r + v, u〉 = 〈r, u〉 = 〈r, u〉 fails. On the other hand, an honest prover
reveals no information aboutv.

33

Following IKK, let us refer to the prover’s commitment to (i) and (ii) above, asan indirect commitment
to v, and refer to the rest of the protocol from commitment to (iii) and onwards, as anorthogonality test for
v with respect tou.

This protocol suggests that given a circuitC, and given a satisfying assignmentx of inputs toC, in
order to show thatC is satisfiable without leakingx, all that an efficient prover needs to do is to commit,
indirectly, to the transcript of the computationC(x), to which the verifier then applies various orthogonality
tests.

Protocol. Initially let us not extend the standard basis; we will visit the case of an extended basis later.
The prover is given a circuitC and a satisfying assignmentx to C. Say the gates inC are indexed from

1..s, with s being for the output gate and1..N being for input gates.
Let F denoteF2k for a large enoughk, sayk = s. Let (1), .., (n+1) denote the firstn + 1 nonzero

elements under some canonical ordering ofF .
The protocol proceeds in two phases: In the first phase, for each fragment inC, of the form

i = f(g1..gn), (10)

meaning the gate indexedi > N is of typef and receives its inputs from gates indexedg1..gn in that order
(wherei > N because there is nothing to check for input gates), the honest prover commits,directly, to:

• a randomly picked nonzero vector~h ∈ Fn,

• lettingz1..zn be the values of gatesg1..gn in computingC(x), and` be the linè (t) := ~z + t~h in Fn,

the vectors̀ ((1)), .., `((n+1)),

andindirectly, to:

• the coefficientsc1, .., cn of the polynomialf̂◦`(t) = cntn + .. + c0,

• the evaluationŝf◦`((1)), .., f̂◦`((n+1)) of the polynomialf̂◦`(t).

Also in the first phase, the honest prover commits,indirectly, to:

• the valuevi of each gatei in the computationC(x).

This ends the first phase. Notice that there is no need to commit to the coefficientc0 in the polynomialf̂◦`(t)
for any fragment, becausec0 is supposed to equal the valuevi of gatei for the fragment (10).

Because a cheating prover may commit to other values than what he is supposed to, let us use

~h, `((1)), .., `((n+1)), c1, .., cn, f̂◦`((1)), .., f̂◦`((n+1)) (11)

to denote the commitments for each fragment, and let us use

y1, .., ys (12)

to denote the commitments for the purported valuesv1, .., vs of the gates in the computationC(x).
In the second phase, the verifierV picks at random a fragment inC, say the fragment where gatei on

the left hand side in (10) — call it theith fragment — and then picks at random one of the following tests:

1. letting`(t) be the linè (t) := ~z + t~h where~z = yg1 ..ygn ,

check`(j) = `(j) for a randomly pickedj ∈ {(1), .., (n+1)}

2. checkf̂◦`(j) = f̂(`(j)) for a randomly pickedj ∈ {(1), .., (n+1)}

3. lettingf̂◦`(t) be the polynomialcntn + .. + c1t + c0, wherec0 = yi,

checkf̂◦`(j) = f̂◦`(j) for a randomly pickedj ∈ {(1), .., (n+1)}

4. check~h is nonzero

34

In case gatei is the output gate, thenV in addition does:

5. checkyi = 1.

In tests 1, 2, 4, and 5, the prover completely reveals the relevant information; notice this means decommitting
to two bits for each bit committed indirectly. Test 3 is an orthogonality test forw with respect tou, where

w = f̂◦`(j) cn . . . c0 and u = 1 jn . . . j0

so if this test is selected, then the honest prover in addition commits to〈r, u〉, with r being the vector formed
by putting together the random values sent during indirect commitments tof̂◦`(j), cn, . . . , c0 respectively.

Analysis. The completeness of the test is clear. As for soundness, suppose thatC is not a satisfiable
circuit. Then the committed values in (12) satisfy either of the following:

(a) There is a fragment of the form (10), for which the equality

yi = f(yg1 ..ygn)

fails, or

(b) the reported value of the output gate is wrong, i.e.,ys 6= 1.

Since there are at mosts fragments, with probability≥ 1/s, the verifier picks an erroneous fragment
for which either (a) or (b) holds. Once picked, case (b) is detected with certainty in Test 5. As for case (a),
consider the values among those in (11) committed for this fragment. Adopting the notation of the second
phase of the protocol, either of the following subcases must hold:

(i) the vector~h is zero, or

(ii) there is somej ∈ {(1)..(n+1)} for which one of the equalities

f̂◦`(j) = f̂(`(j)) = f̂◦`(j) = f̂◦`(j) (13)

fails,

because otherwisêf◦`(t) would be the polynomial̂f◦`(t) and we would have

yi = f̂◦`(0) = f̂◦`(0) = f̂(yg1 ..ygn) = f(yg1 ..ygn).

contradicting that we are in case (a).
The verifier detects case (i) with probability≥ 1/4 (conditioned on having picked an erroneous fragment

in the first place). As for case (ii), with probability≥ 1/(n + 1), the verifier picks an offendingj, and
depending on which of the first/second/third equality in (13) is violated forj, Test 1/2/3 fails respectively,
with (conditional) probability≥ 1

2 for Test 3 and probability1 for Tests 1 and 2.
It follows that if the circuitC is not satisfiable, then the verifier rejects with probability≥ 1/s2, with s

being the number of nodes ofC. Repeating the protocol from scratch2s2 times brings down the soundness
error to1/3.

Finally, the protocol is zero-knowledge, because each test that passes reveals a value that is either uni-
formly distributed, or is deterministically computable by the verifier itself.

Extended basis. We now generalize the protocol to handle anA-extended Boolean basis. The idea is
that the above protocol, over the unextended Boolean basis, generalizes to a protocol over the unextended
arithmetic basis, where each gate in the given circuit is a function of the formFm → F rather than
{0, 1}m → {0, 1}. This is because all the values committed by the prover are already inF except for
those in (12), which are over{0, 1}, but which can be taken overF with no change to the protocol.

Therefore, given a circuitC over theA-extended Boolean basis, all we need to do is to transformC to
an appropriate arithmetic circuitD. We now explain how to do this transformation.

35

LetO be a language, andA its affine extension. By the defininitions in Section 2, on inputx ∈ {0, 1}n,
A gives thezth bit of the valueÔ takes aty ∈ Fm

2k , i.e.,
(
Ô

k

m(y)
)

z
(14)

wherey, z,m, k are all computable in polynomial-time out ofx. Conversely, given(y, z,m, k), an inputx
for which this holds is also computable in polynomial-time.

Sincek denotes the field size, or the logarithm thereof, and sinceF2k can be efficiently identified in
F2≥k , (14) can be viewed as

(
Ô

K

m (Y)
)

Z
(15)

for anyK ≥ k, whereY denotesy identified inFm
2K , andZ denotes the accordingly updatedz.

It follows that given a circuitC over theA-extended Boolean basis, a polynomial-time algorithm can
take eachA-gate inC, say

A(g1..gn), (16)

wheregi denotes the index of the gate that is connected to theith input ofA, and replace it with
(
Ô

s

m(Y (g1..gn)
)

Z(g1..gn)
(17)

whereY andZ are now overloaded to denote the circuit that parses its inputx as(y, z,m, k) of (14), and
then outputs the valuesY andZ of (15) respectively, for anyK ≥ k, in particular forK = s, the size of
C. Note that writingZ as a subscript in (17) actually denotes another circuit, namely the circuitπ(a, b) that
gives thebth bit of a.

So the transformation ofC is as follows.

• Perform (16)7→ (17).

• For everym and every standard gatefm with m inputs, replace that gate witĥf
s

m.

The point of the second step here is to unify the treatment of the standard gates with nonstandard ones. In
the modified circuit, each gate becomes a functionFm → F for somem, whereF = F2s .

After the transformation, the original protocol carries through, provided the inputs and the output of
each gate are treated as overF instead of{0, 1}. This completes the proof of Theorem 35.

4 Negative Relativization Results

This section shows that several major conjectures in structural complexity are impossible to settle via an
affinely relativizing proof, mirroring corresponding results of AW.

There are two main approaches to deriving such results: an interpolation approach, used for separations
of the formC 6⊂ D, and an approach based on communication complexity, used for containmentsC ⊂ D.
Both of these approaches are model theoretic, in the sense that they construct an eligible language relative
to which the statement in question is false.

The main novelty in this section, as explained in Section 1.3, is in the development of the interpolation
approach, which is then used to show thatNEXP 6⊂ P/poly is affinely non-relativizing. This is carried out
in Section 4.1. The communication complexity approach is taken in Section 4.2.

Besides these two approaches there is a third, proof theoretically flavored approach, that is quite con-
venient to use when the situation allows. To show thatψ admits no proof that affinely relativizes, we find
a statementψ′ for which this is already known, and then derive the implicationψ =⇒ ψ′ via an affinely

36

relativizing proof. We thus show thatψ′ is “no harder” to prove thanψ, in similar spirit to the use of reduc-
tions in structural complexity. It should be noted that in general, this approach cannot be used for the AW
notion of algebrizing proofs, as it critically relies on the closure of such proofs under inference. Section 4.3
employs this approach.

4.1 Interpolation Approach

The classical way to show thatC 6⊂ D does not admit a relativizing proof is to construct a languageO
relative to whichC ⊂ D holds. Such a construction amounts to a balancing act of sorts; the goal, vaguely,
is to haveO give more power toD than it does toC, so as to makeD containC in theO-extended basis.
This can be done nonetheless, and sometimes easily so, as can be seen by takingC = PSPACE, D = P,
andO to be anyPSPACE-complete language (we spell this out in Proposition 36). Typically, however, the
construction is more involved, and it was one of the main contributions of AW to develop an approach — the
interpolation approach — that enables such constructions in the algebrization framework. Their techniques
do not work for our setting, however.

In this section we develop the interpolation approach within our framework, using quite different tech-
niques from AW’s (see Section 1.3 for a comparison). Our key result here is Theorem 38, that affine exten-
sions enable interpolation. With that result in hand, we are able to import the ideas of AW to our setting,
and apply it to theNEXP versusP/poly question; this we do in Section 4.1.1.

Before we proceed let us note, like AW did, that the easy fact regardingPSPACE andP mentioned
above carries over to our setting easily: (Recall we use0-gap-IP for PSPACE; see Definition 19.)

Proposition 36. 0-gap-IP 6⊂ P does not hold for all extensions of the standard Boolean basis with someA.

Proof. Every downward self-reducible language is in0-gap-IP. This is because ifL := {Ln} is d-s-r,
then all that a prover needs to give as proof thatLn(x) equalsb ∈ {0, 1} is the transcript of a computation
involving queries forL≤n−1; the verifier then picks one of the claimed queries, sayLn−1(y) and thus
reduces the task to one involvingL≤n−1, and so on.

So both�SAT andTQBF are in0-gap-IP, as are their negation¬�SAT and¬TQBF. Moreover,
TQBF is complete for0-gap-IP, because the interaction in any0-gap-IP protocol can be readily expressed
as aTQBF instance. All these hold also when the standard Boolean basis is extended withO.

It follows that0-gap-IP ⊂ P with respect to theO-extended standard basis, whereO = TQBF. It turns
out this containment also holds if the basis is extended, instead, with the affine extensionA of O. This is
because regardless of whatO is,A reduces to�SATO (by Corollary 17), and�SAT,¬�SAT ∈ 0-gap-IP
under theO-extended basis (by previous paragraph). Therefore whenO = TQBF, 0-gap-IP does not
become larger ifA is used as the basis extension instead ofO.

We now move to the interpolation approach. The crux of our development is two coding-theoretic
ingredients. The first one states that knowingt bits of a binary codeword exposes at mostt bits of its
information word, and the second scales this result to affine extensions.

Lemma 37(Interpolation). LetE : FK
2 → FN

2 be linear and injective. Given a “dataword”u ∈ FK
2 and a

set of indicesA ⊆ [N], consider the collectionU of all datawordsu′ ∈ FK
2 such thatE(u) andE(u′) agree

onA.
There is a set of indicesB ⊆ [K], no larger thanA, such that projectingU ontoG := [K] \B gives all

of FG
2 .

37

Proof. The claim of the lemma onU is true iff it is true onU+ := U + u. So it suffices to show thatU+ is
a subspace ofFK

2 with dimension at leastK − |A|.
Now, y ∈ U+ iff y + u ∈ U , which is iff E(y + u) andE(u) agree onA, which is iff E(y) vanishes on

A. ThereforeU+ is identical to the space of all datawords whose encodings vanish onA.
All that is left is to bounddim U+, or equivalently, to bounddim E(U+) sinceE is injective. The latter

quantity is the dimension of the spaceC ∩ Z , whereC is the image ofE , andZ is the space of allN -bit
vectors that vanish onA. But then by the theorem on the dimension of a sum of subspaces (e.g. [5, Thm 1.4])

dim(U+) = dim(Z) + dim(C)− dim(Z + C)

= (N − |A|) + K − dim(Z + C)

which is at leastK − |A| becauseZ + C ⊆ FN
2 . This finishes the proof.

Theorem 38(Interpolation). Given a languagef and a finite setA of inputs, consider the collectionF of
all languagesg such thatf̃ and g̃ agree onA.

There is a setB of inputs, no larger thanA, such that every partial Boolean functiong′ defined outside
B can be extended to someg ∈ F .

Further, in extendingg′ to g, the values ofg at length-n inputs depend only on those ofg′ at lengthn.

Proof. To begin with, consider the special case whereA ⊆ dom(f̃
k

m) for some fixedk andm. For the
purpose of invoking Lemma 37, letE be the map that takes as input the truth table of a Boolean functiongm

on m bits, and outputs the truth table ofg̃ k

m. SoE : FK
2 → FN

2 , whereK = 2m andN = k2km (to see the
value ofN , recall that̃g k

m(y, z) gives thezth bit of ĝ k
m(y), whereĝ k

m is the extension ofgm to Fm
2k).

Clearly E is injective; it is also linear becausêg k
m is additive, and because we representF2k with Fk

2

where addition is componentwise (Section 2). SoE fulfils the conditions of Lemma 37, which yields a
setB ⊆ {0, 1}m that is no larger thanA, such that every partial Boolean function on{0, 1}m \ B can be
extended to a language inF . This proves the theorem in the special case.

To handle the general case, partitionA into Am,k := A ∩ dom(f̃
k

m), and use the above special case as
a building block to create a bigger code. In detail, for everym involved in the partition, defineEm as the
map sending the truth table ofgm to the list comprising the truth tables ofg̃

k1

m , g̃
k2

m , . . . for everyAm,kj
in

the partition. Now, take eachEm thus obtained, and letE be their product. In other words, letE take as
input a listTm1 , Tm2 , .. whereTmi is the truth table of some Boolean functiongmi on mi bits, and outputs
Em1(Tm1), Em2(Tm2), .. . The theorem now follows from Lemma 37.

4.1.1 Application —NEXP vs.P/poly

The Interpolation theorem enables us to adapt some of the classical constructions from relativization to
affine relativization. The general idea is to construct a languageO such thatC ⊂ D holds relative toO, i.e.,
such thatCO ⊂ DO, by taking each algorithm underlyingCO, say the firstn algorithms, and by fixingO up
to a certain length, saym(n), so as to force the behavior of these algorithms on inputs of lengthn. While
doing so, the goal is forO to encode those forced behaviors, in a way that can be easily queried by some
algorithm inDO.

This classical idea can be extended to our setting via the Interpolation theorem. Even though the goal
here is to haveC ⊂ D hold not relative toO, but relative to its affine extensionA, we can proceed almost
as before. This is because thanks to the Interpolation theorem, forcing the behavior of aCA algorithm by
fixing A bears little extra burden onO than does fixingO to force aCO algorithm. For details we refer to
the proof of the next theorem, which is the main result of this section:

38

Theorem 39. NEXP 6⊂ P/poly cannot be derived via an affinely relativizing proof.

Proof. It is a basic fact thatNEXP has polynomial-size circuits iffNE (the linear-exponential version of
NEXP) has circuits of size afixedpolynomial, and that this relativizes. In notation,

NEXPO ⊂ SIZEO(poly n) ⇐⇒ NEO ⊂ SIZEO(nd) for somed ∈ N.

Therefore, to prove Theorem 39, it suffices to show a languagef satisfying

NEf̃ ⊂ SIZEf (nd), (18)

for some constantd becausef reduces tõf .
So let M0,M1,.. be a list (repetitions allowed) of all nondeterministic algorithms with access to an

arbitrary languageO, such thatMi runs in time≤ 2n log n on all inputs of lengthn > i. We construct
the languagef in such a way that whenO = f̃ , the information regarding how eachMi behaves on
each large enough inputx, is stored byf in a format retrievable by a small circuit. More precisely, we
ensure that for everyn > 1, a size-nd circuit with access tof , sayCf

n , can compute the functionLn :
{0, 1}blog nc × {0, 1}n → {0, 1} defined as

Ln(i, x) := M f̃
i (x). (19)

This yields (18), hence the theorem, because each languageK ∈ NEf̃ corresponds to someM f̃
i , and in

order to computeK(x) on all but finitely many inputsx (in particular forx ∈ {0, 1}>2i) we can just provide
(i, x) to the circuitCf

|x|, implying K ∈ SIZEf (nd).
We constructf inductively, as the limit of a sequencef1, f2,.. of Boolean functions wherefn extends

fn−1. The domain offn will include all of {0, 1}≤nd
, plus some additional24n log n strings at most. Set

f1 : {0, 1} → {0}.
At iteration n > 1, proceed to setfn as follows. Consider all possible ways of extendingfn−1 to a

languagef . Out of all suchf , pick one that maximizes (19), i.e., one for which the collection

Sf := {(i, x) : Ln(i, x) = 1} (20)

of accepting algorithm-input pairs is maximal.
Now we want to “open up space” inf by un-defining it at some inputs, the idea being then to encode

the function in (19) in the freed space so that a small circuit can look it up. In doing so, of course, we do
not want to disturb (19), which, by the way we pickedf , is equivalent to wanting thatSf does not shrink —
i.e., as we restrictf to somef ′, no matter how we extendf ′ back to some languageg, we wantSg = Sf .

Consider an accepting algorithm-input pair(i, x) in Sf . BecauseMi runs in nondeterministic2n log n-
time on inputx ∈ {0, 1}n, it could issue a great many oracle queries tof̃ , however, as far as the membership
of (i, x) in Sf is concerned, it suffices for̃f to honor only those queries ofMi alongone acceptingcompu-
tation path. So each such pair(i, x) actually forcesf̃ to be fixed at only2n log n inputs or less. There are at
mostn2n pairs inSf . Thus if we wantSf not to shrink, it suffices to fix̃f at23n log n inputs. By the Interpo-
lation theorem, this means we only need to reserve a small set of “bad” inputsB, of size≤ 23n log n, beyond
those already reserved in previous iterations, i.e., beyonddom fn−1, such that onB we have no control as
to howf behaves, but on the “good” inputs{0, 1}∗ \ (B ∪ dom fn−1), we can changef arbitrarily. So let
fn be the restriction off to B ∪ dom fn−1.

Now that we opened up space inf , we are ready to store the information in (19) so that a small circuit can
look it up. That information is the truth table of a function onn + log n bits, so it suffices to have22n log n

bits available indom fn for this purpose. Since there are at most23n log n bad inputs infn by the previous
paragraph, and since there are at most24(n−1) log(n−1) inputs indom fn−1 that are outside{0, 1}≤(n−1)d

39

by induction, we know there are at most24n log n inputs currently indom fn that are outside{0, 1}≤(n−1)d
.

So there is sufficient space in{0, 1}n
d

for storage whend is large enough. As for how to actually store
the information, initially consider each input(i, x) to Ln as prepended with zeroes until it becomes a string
Y(i,x) of lengthnd, and then setfn(Y(i,x)) := Ln(i, x). Of course this may not work as some bad inputs may
coincide with someY(i,x), but this can be handled simply by changing the encoding of(i, x) to Y(i,x)⊕Z for

a suitably pickedZ ∈ {0, 1}n
d
; suchZ exists because it can be picked at random with non-zero probability

(by a union bound on the event that some bad input coincides withY(i,x) ⊕ Z for some(i, x)). ThisZ can
then be hardwired to a circuit of sizend, as we wanted to do.

To finish, letfn behave arbitrarily on the rest of the good inputs in{0, 1}≤nd
, and then accordingly

adjustfn on the bad inputs in{0, 1}≤nd
— recall from the Interpolation theorem that on a bad input,fn is a

function of how it behaves on non-bad inputs of same length. We have thus constructedfn as desired.

4.2 Communication Complexity Approach

AW show that one can take a lower bound from communication complexity, and use it to construct an
eligible language — an algebraic oracle in their case — relative to whichC 6⊂ D holds, for an appropriateC
andD depending on the lower bound picked. Therefore, AW conclude,C ⊂ D cannot have an algebrizing
proof.

In this section we develop this approach of AW for our framework. Our key observation here is in
Proposition 42, that the affine extension respects disjoint unions. With this in hand, we are able to import
the ideas of AW and of IKK to our setting, which we do in Sections 4.2.1 and 4.2.2.

We start by making a notational convention involving the classical communication complexity classes
Pcc, NPcc, BPPcc, etc.

Definition 40 (Pcc vs. Pticc). DefinePticc as the class of familiesf := {fn} satisfying the following. (i)
Eachfn is a Boolean function on pairs of2n-bit strings, (ii) There is a protocol involving two algorithms
M0,M1 such that for alln and all(X,Y) ∈ dom(fn), the two partiesMX

0 (1n),MY
1 (1n) computefn(X,Y)

in timepoly n.
Let Pcc denote the relaxation ofPticc whereM0,M1 are allowed to be non-uniform, and where only the

communication betweenM0,M1 is counted towards time elapsed.
UsePticc to defineNPticc, BPPticc, etc., similar to how we defineNP, BPP, etc., fromP.12 Similarly

for NPcc, BPPcc, etc., versusPcc.

The notationCticc is meant to indicate that time is measured on equal grounds with communication. A
function inDcc according to the classical definition [9] is defined on strings of every even length, while
Definition 40 requires length a power of two; our convention causes nothing but convenience in this section.

We formalize the high-level idea of AW with the following generic theorem in our framework:

Theorem 41. If Cticc 6⊂ Dcc, thenC ⊂ D does not hold for every extension of the standard Boolean basis
with someA. HereC,D can be any class in the polynomial-time hierarchy containingP.

The key ingredient in arguing Theorem 41 is the observation, mentioned on page 6, that affine extensions
are compatible with disjoint unions in the following sense.

12Recall that definitions ofBPP, NP, etc. involve some counting of the witnessesw of a P-predicateL(x, w). Here, that
predicate would be of the formf((X, w) , (Y, w)) where|w| is polynomially bounded inn for fn, i.e., polylogarithmic in|X|.

40

Proposition 42. LetA0,A1 be the affine extension of the languagesO0,O1 respectively. Then the disjoint
unionA0

∐
A1 : bx 7→ Ab(x) is equivalent, under Cook reductions, to the affine extension of the disjoint

unionO0
∐
O1 : bx 7→ Ob(x).

Proof. LetO := O0
∐
O1. By definition, the affine extension ofO is the Boolean version of the function

that evaluates, givenB,X1, .., Xn ∈ F2k for anyk, the polynomial

Ô(BX) =
∑

b,x1,..,xn∈{0,1}

O(bx) ∙
∏

i(1 + (BX)i + (bx)i)

= (O0(x) ∙ (1 + B) +O1(x) ∙B) ∙
∏

i(1 + Xi + xi)

= (1 + B) ∙ Ô0(X) + B ∙ Ô1(X)

which clearly can be evaluated given access toA0 andA1, i.e. toA0
∐
A1, and vice versa.

We now give a generic argument for Theorem 41. Supposing there is somef := {fn} in Cticc \ Dcc,
we construct a languageO such that relative to its affine extensionA, the statementC ⊂ D fails. For
concreteness, the reader may takeC to beNP, say, andD to beBPP.

Let MO
1 ,MO

2 ,... be a list of all polynomial-time decision algorithms with access to an arbitrarily picked
languageO. SinceD is definable fromP, we can use this list to define a listNO

1 , NO
2 , ... of algorithms that

includes every algorithm forDO, i.e., the classD with respect to theO-extended basis. (Note that the list
of Ni’s may include more than every algorithm forD: it corresponds to the classprD, the extension ofD
to partial languages.)

For everyn ∈ N, pick an arbitrary(Xn, Yn) ∈ dom fn. InitializeO to be the disjoint unionO0
∐
O1,

whereO0 is the language that has the same truth table asXn for everyn, and similarly forO1 versusYn.
Becausef ∈ Cticc, the languageL := {Ln} defined as

Ln : 1n 7→ f(Xn, Yn)

and defined trivially on the rest of the inputs (say0) is in CO; to see this just consider usingO to simulate
aCticc-protocol forf . Our objective is to modifyO0,O1 so thatL remains inCO, and becomes out ofDA.
Then we will be done sinceO reduces toA.

We realize this objective as follows. Fori = 1..∞, we pick some(Xni , Yni) ∈ dom fni for a large
enoughni, and updateO0,O1 at lengthni to have the same truth table asXni , Yni respectively. Let us
denote this update operation withO0 ← Xni andO1 ← Yni . Notice that updatingO in this way readily
maintainsL ∈ CO. As for ensuringL /∈ DA, we pickXni , Yni so that ifO′ denotes the updatedO using
Xni , Yni , andA′ denotes its affine extension, then

NA′

i (1ni) 6= f(Xni , Yni), (21)

which makes theith algorithm in the list fail to computeL. (Note thatNi’s output might not be well-defined
on the input1ni due toNi computing some partial language which1ni is outside the domain of; (21) still
holds in that case.)

All that remains to argue is that there are infinitely manyni satisfying (21), because then we can pick
ni arbitrarily large, so as to not disturb the previous phases of the construction — e.g.,ni > 22ni−1 suffices
sinceD ⊂ EXP.

To argue this, letgn be the function with the same domain asfn, behaving as

gn : (X,Y) 7→ NA′

i (1n), (22)

41

whereA′ is, as before, the affine extension ofO′, andO′ isO updated usingX,Y . (In caseNA′

i (1n) is not
well-defined, then letgn have value ‘⊥’ on thatX,Y . We may assume thatgn takes on finitely-many ‘⊥’
values, for otherwise there is nothing to argue.)

Now what remains is to argue thatg := {gn} is in Dcc, for then there are infinitely manyn for which
fn 6= gn, implying (21) can be enforced infinitely often, as desired.

By Proposition 42, we know that the languageA′ of (22) Cook reduces toA′
0

∐
A′

1, whereA′
0 is

the affine extension ofO′
0 obtained by updatingO0 with X, and similarly forA′

1. Letting R denote this
reduction, we can modifyNi so that it issues its oracle queries toA′

0

∐
A′

1 instead ofA′; in notation,

NA′

i (1n) = (Ni ◦R)A
′
0

∐
A′

1(1n).

But this shows already thatg is inDcc, because there is a protocol where one party is given access toX and

knowsO0, the other party is givenY and knowsO1, and the two parties simulateN
A′

0

∐
A′

1
i (1n) by using

each other as an oracle forA′
0 andA′

1 respectively. This finishes the generic argument for Theorem 41.

4.2.1 Applications

Theorem 41 allows us to replicate two negative algebrization results of AW:

Corollary 43. Neither of the following statements can be derived via an affinely relativizing proof: (i)
coNP ⊂ MA, (ii) PNP ⊂ PP.

Proof. Let Disj(X,Y) := ∀i ¬(X(i)∧Y (i)) be the disjointness predicate. It is clear thatDisj ∈ coNPticc.
On the other hand, it takes at leastΩ(2n/2) bits of communication to computeDisj by a Merlin-Arthur
protocol [24, Corollary 1], implyingDisj /∈ MAcc. Part (i) now follows from Theorem 41.

For part (ii), letLYB(X,Y) := maxi∈{0,1}n(X(i)∧ Y (i)), and letf(X,Y) := LYB(X, Y) mod 2 be
the predicate for whether the Last-Yes-Bit position ofX andY is odd. It is easy to see thatf ∈ (PNP)ticc.
On the other hand, it takes at leastΩ(2n/3) bits of communication to computef by a probabilistic protocol
[13, Section 3.2],13 implying f /∈ PPcc. Part (ii) now follows from Theorem 41.

We can use Theorem 41 to replicate a result of IKK as well:

Claim 44. RP ⊂ SUBEXP cannot be derived via an affinely relativizing proof.14 HereSUBEXP denotes
∩εDTIME(2nε

).

Proof sketch.Consider the set of all pairs of strings(X,Y) such thatX,Y respectively equal the truth table
of f̃

k

m , g̃
k

m for somem and somef, g : {0, 1}m → {0, 1}, wherek = 2 + log m. Consider restricting the
equality predicateEqual(X,Y) := ∀i(X(i) ≡ Y (i)) to this set, and call the resulting functionE(X,Y).

Yao’s classical result onEqual implies that there is noF ∈ SUBEXPcc thatE can be extended to. In
short, and with a slight abuse of notation,E /∈ SUBEXPcc.

On the other hand, if we take the classRPticc, and relax its definition to include families{fn} where
dom fn is no longer required to be the set of every pairX,Y of length2n strings, but rather some of them,
then we may call the resulting classprRPticc, and then see thatE ∈ prRPticc by the Schwartz-Zippel
Lemma.

13The authors of [13] show a stronger result where the protocol allows both parties to use private randomness as well, with a
suitable generalization of the acceptance condition for the protocol.

14IKK show the stronger result whereSUBEXP = ∩εDTIME(2nε

) is replaced by∩εDTIME(2εn). Using a less modular
argument we can derive this result as well.

42

Now the proof of Theorem 41 in Section 4.2 is written exactly with this more general situation in mind.
Namely, ifprCticc 6⊂ Dcc, thenC ⊂ D does not hold for every extension of the standard Boolean basis with
someA; hereC,D can be any class definable fromP and contained inEXP. The claim follows.

4.2.2 Extensions

Refining the AW approach, IKK considerably strengthened a result of AW: they showed that no algebriz-
ing proof (for their notion of algebrization) exists forNP having sub-linear-exponential circuits, even at
infinitely many input lengths. We can extend Theorem 41 to replicate this result in our framework as well:

Claim 45. NP ⊂ i.o.-SIZE(2εn) cannot be derived via an affinely relativizing proof for someε > 0.

We give a rough outline of a proof. Similar to the argument for Theorem 41, we consider a list of all size-2εn

Boolean circuits onn-bits, for eachn ∈ N. Similarly again, we define a languageL that encodes, at each
input lengthn, a single instance of a communication problemf(X,Y), with X andY being encoded in the
oracle. The difference here, following IKK, is thatf is the direct product of a Boolean problem instead of
a merely Boolean one, for which we know a much stronger variant off /∈ Dcc, namely the strengthening
of this to average-case hardness on all input lengths (as opposed to worst-case hardness at infinitely many
input lengths). This allows us to use a randomized process to define the oracle “at once”, thereby obtaining
a hardness forL that holds at every input length. We refer to [22, Lemma 4.2] for details.

4.3 Proof Theoretic Approach

As mentioned in the beginning of Section 4, sometimes we can get away without constructing oracles, and
still show thatψ admits no proof that relativizes affinely. To do so, we find someψ′ which we already
know has that status, and then derive the implicationψ =⇒ ψ′ via an affinely relativizing proof. We thus
reduce the task of creating an oracle relative to whichψ is false, to doing the same forψ′, with the proof
of ψ =⇒ ψ′ serving as the reduction. More generally, we reduce the task of showing thatψ admits no
affinely relativizing proof, to doing the same forψ′.

Using the results of Section 4.1-4.2 we can readily show:

Theorem 46. None of the following statements can be derived via an affinely relativizing proof:
(i) NP ⊂ P, (ii) NP 6⊂ P, and (iii) NP ⊂ BPP.

Proof. Part (i): Theorem 39 showed thatNEXP 6⊂ P/poly cannot have an affinely relativizing proof, and
Theorem 30 showed thatMA(exp) 6⊂ P/poly via an affinely relativizing proof. The claim follows because
NP ⊂ P impliesMA ⊂ P, which in turn impliesMA(exp) ⊂ NEXP, both implications being derivable
via a relativizing (hence affinely relativizing) proof.

Part (ii): Proposition 36 showed that0-gap-IP 6⊂ P cannot have an affinely relativizing proof. The claim
follows sinceNP ⊂ 0-gap-IP via a relativizing proof.

Part (iii): Corollary 43 states thatcoNP ⊂ MA does not have an affinely relativizing proof. The claim
follows sinceNP ⊂ BPP impliescoNP ⊂ MA via a relativizing proof.

5 Conclusions and Open Problems

Our results counter the folkloric belief that relativizing techniques treat computation only as a “black box”
mapping inputs to outputs (e.g., [1, p. 2]), and that arithmetization, or more generally a circuit-based view

43

of computation, seems to let us “peer into the guts of it” [2, p. 115], and hence circumvents the limits of
relativizing techniques.

In contrast, according to our definitions, a Boolean formula in the relativizing view, say over the basis
{∧,⊕,O}, gives complete freedom regarding how theO-gates behave, and in this sense eachO-gate is a
black box, of “volume” the size of its truth-table. In the affinely relativizing view, however, eachO-gate
redundantly encodes a Boolean function, by extending its domain fromGF(2)n, say, toGF(2k)n; this
means that the behavior of the gate is determined by2n entries of a truth table of size roughly2kn. So each
O-gate has a black-box “core”, carrying on with the metaphor, of volume roughlykth root of its overall
volume; herek must beΩ(log n) for all the results catalogued in this paper, and can be taken asΘ(log n)
for a formula of sizeO(n).

So it seems that: (i) circuit-based techniquesare relativizing, if they are insensitive to enlarging the basis
arbitrarily, (ii) arithmetization-based techniquesare also relativizing, only “slightly less” so. To make this
a bit more precise, consider the following question: what can be the circuit complexity, over the standard
basis{0, 1,∧,⊕}, of a size-n circuit over the extended basis{0, 1,∧,⊕,O}? In the relativizing view, i.e.,
in RCT , the answer is2O(n) — just consider a singleO-gate withn − 1 inputs. To see this in the affine-
relativizing viewACT , let us first clean up the definition of affine extension a bit, so that iff is a Boolean
function onn inputs, then its affine extension involvesGF(2k) for k ≥ log n only, instead ofk ≥ 1. By
the above discussion, this makes no difference for the results catalogued in this paper, but now the answer is
easily seen to be2O(n/ log n), again via anO-gate withn−1 inputs. Dividing byn and taking logarithms, we
get what might be called the “opacity” of each theory, a quantity that ranges fromO(1) at the real-world end
of complexity theory, toO(n) at the fully relativized end, with affine relativization being aboveO(n1−ε)
for everyε > 0, just “slightly less” than relativization.

We finish by listing some suggestions for further research.

A quantitative theory of relativization. Both relativization and affine/algebraic relativization are rigid
notions, in the sense that something either relativizes or does not. However, the discussion just above, on the
various degrees of being opaque, calls for a theory of relativization that is gradual, based on the information
content — or density, so to speak — in an oracle.

Can we associate to each statement a “relativization rank”, so that the algebrization barrier arises as a
quantitative gap, between a lower bound on one hand for the rank of algebrizing statements, and an upper
bound on the other, for the rank of non-algebrizing statements? If so, then we could view the reciprocal of
the rank as a useful complexity measure on theorems and conjectures, just as we have complexity measures
on algorithmic tasks: the larger the reciprocal of the rank, the higher the “relativization sensitivity” of the
statement in hand, indicating more resources — stronger axioms — required to prove it.

New oracles from old. Section 4.3 showed that sometimes we can evade the task of constructing an oracle,
by reducing the task to another one already done. For example, there is no need to construct an (affine) oracle
refutingNP ⊂ P when we already have one refutingNEXP 6⊂ P/poly, becauseNP ⊂ P =⇒ NEXP 6⊂
P/poly via an affinely relativizing proof — meaningNP ⊂ P is harder to prove thanNEXP 6⊂ P/poly in
some sense.

Can we use this idea to simplify the landscape of oracle constructions? For example, many of the
statements shown not affinely relativizing in Section 4.2 are containments of the formC ⊂ D for which
various circuit lower bound consequences are known. This suggests that a handful of oracles, each refuting
some circuit lower bound, may yield a rich collection of statements getting indirectly refuted via reductions
of the form given in the above example.

44

Weaker theories for arithmetization. As asserted in Section 1.2, we can replicate all the classification
given by IKK (as well as by AW) for what algebrizes and what does not, however, we do not know if
algebrization in the IKK sense implies affine relativization, or vice versa.15 This suggests that there should
be a weaker characterization of arithmetization-based techniques that subsumes both notions.

Is there a constraint that we can place on the basis extensionO, besides that it is a language, so that the
resulting theory is a consequence of both versions ofACT , ours and IKKs, and still derives all the theorems
shown algebrizing by AW? (Notice that such a theory would automatically be unable to prove anything
unprovable byACT , hence all the non-algebrizing statements of AW.)

Of course, the weakest axiom deriving a theorem is the theorem itself, so there is a trivial answer to the
question the way stated above: just take the conjunction of all the algebrizing statements,IP theorem,MIP
theorem, etc., and add it as an axiom. This kind of “overfitting” clearly lacks the succinctness desired in a
theory, so we need to amend the question a bit. Say that a proof is nontrivial if the proof remains valid when
viewed inCT . Then we want a theory that is a consequence of both versions ofACT , and thatnontrivially
derives all theorems shown algebrizing by AW.

The PCP theorem. Section 1.3 explained that both theIP theorem and theMIP theorem can be naturally
viewed as a gap-amplification result, and from that point of view both theorems have affinely relativizing
proofs. Can we extend this reasoning to thePCP theorem? If so, this would bolster the candidacy of affine
relativization as a proxy for arithmetization-based techniques.

A completeness theorem for oracles. If we can proveψ, and thatψ relativizes, then is there a relativizing
proof ofψ? It is consistent with experience that such a “completeness” phenomenon holds. Confirming this
would allow us to focus solely on proving facts about statements, and not on how we prove those facts.

Along the same lines, what if each statement in a proof relativizes — then does the proof itself relativize?
If so, then we could say that a proof relativizes if and only if each of its intermediate statements does. (The
“only if” direction is already true by the way we defined things in Section 1.1; the non-trivial part is to make
the jump from the semantic fact that each step relativizes, to the syntactic one that the proof relativizes.)

A genuine independence result. Be it in our version ofRCT andACT , or in AIVs and IKKs, Section 1.2
pointed out that the axioms go on top of an existing collection of axioms governing everyday mathematics.
Another approach to formalizing these barriers, would be to propose asubsetof axioms governing every-
day math, the idea being to find the “weakest” version of everyday math that can derive each algebrizing
statement, and then to show that no non-algebrizing statement can be derived by that much of mathematics.

Acknowledgements

We thank Scott Aaronson and Eric Allender for their helpful comments. This research was supported by
NSF Grant CCF-1420750, and by the Graduate School and the Office of the Vice Chancellor for Research
and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni
Research Foundation.

Bibliography

[1] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.ACM Transactions on
Computation Theory, 1(1), 2009.

15The IKK approach is overZ but can be adapted toGF(2k), so this is not the issue. Also, the IKK approach builds on the AIV
formulation ofRCT , but it can also use our version ofRCT , so again this is not the issue.

45

[2] Sanjeev Arora and Boaz Barak.Computational Complexity: A Modern Approach. Cambridge University Press,
2009.

[3] Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus nonrelativizing techniques: the
role of local checkability. Manuscript retrieved from http://cseweb.ucsd.edu/ russell/ias.ps, 1992.

[4] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problems.Journal of the ACM, 45(3):501–555, 1998.

[5] Emil Artin. Geometric Algebra. John Wiley & Sons, 1957.

[6] Lászĺo Babai. E-mail and the unexpected power of interaction. InProceedings of the Structure in Complexity
Theory Conference, pages 30–44, 1990.

[7] Lászĺo Babai and Lance Fortnow. Arithmetization: A new method in structural complexity theory.Computa-
tional Complexity, 1:41–66, 1991.

[8] Lászĺo Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover interactive
protocols.Computational Complexity, 1:3–40, 1991.

[9] Lászĺo Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory (pre-
liminary version). InProceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages
337–347, 1986.

[10] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP question.SIAM Journal on
Computing, 4(4):431–442, 1975.

[11] Manuel Blum and Sampath Kannan. Designing programs that check their work.Journal of the ACM, 42(1):269–
291, 1995.

[12] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. InProceedings of the IEEE
Conference on Computational Complexity, pages 8–12, 1998.

[13] Harry Buhrman, Nikolai K. Vereshchagin, and Ronald de Wolf. On computation and communication with small
bias. InComputational Complexity, pages 24–32, 2007.

[14] Alan Cobham. The intrinsic computational difficulty of functions. InProceedings of the International Conggress
for Logic, Methodology, and Philosophy of Science II, pages 24–30, 1964.

[15] Stephen A. Cook. Short propositional formulas represent nondeterministic computations.Information Process-
ing Letters, 26(5):269–270, 1988.

[16] Herbert B. Enderton.A mathematical introduction to logic. Academic Press, 1972.

[17] Lance Fortnow. The role of relativization in complexity theory.Bulletin of the EATCS, 52:229–243, 1994.

[18] Lance Fortnow. [Blog post: The great oracle debate of 1993]. Retrieved from
http://blog.computationalcomplexity.org/2009/06/great-oracle-debate-of-1993.html, 2016.

[19] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive protocols.Theoret-
ical Computer Science, 134(2):545–557, 1994.

[20] Lance Fortnow and Michael Sipser. Are there interactive protocols for co-NP languages?Information Processing
Letters, 28(5):249–251, 1988.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all languages
in NP have zero-knowledge proof systems.Journal of the ACM, 38(3):691–729, 1991.

[22] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic approach to algebrization. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 695–704, 2009.

[23] Ravi Kannan. Circuit-size lower bounds and nonreducibility to sparse sets.Information and Control, 55(1):40–
56, 1982.

[24] Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity. InComputational
Complexity, pages 118–134, 2003.

[25] Richard Lipton. [Blog post: I hate oracle results]. Retrieved from http://rjlipton.wordpress.com/2009/05/21/i-
hate-oracle-results, 2016.

46

[26] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive proof
systems.Journal of the ACM, 39(4):859–868, 1992.

[27] Moni Naor. Bit commitment using pseudorandomness.J. Cryptology, 4(2):151–158, 1991.

[28] Rahul Santhanam. Circuit lower bounds for Merlin-Arthur classes.SIAM Journal on Computing, 39(3):1038–
1061, 2009.

[29] Rahul Santhanam. [Comment to blog post: Barriers to proving P!=NP]. Retrieved from
http://www.scottaaronson.com/blog/?p=272#comment-7634, 2016.

[30] Adi Shamir. IP = PSPACE.Journal of the ACM, 39(4):869–877, 1992.

[31] Alexander Shen. IP = PSPACE: simplified proof.Journal of the ACM, 39(4):878–880, 1992.

[32] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields.Mathematics of Computa-
tion, 54(189):435–447, 1990.

[33] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Preliminary report. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 1–9, 1973.

[34] Seinosuke Toda. On the computational power of PP and +P. InProceedings of the IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 514–519, 1989.

[35] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.Theoretical Computer
Science, 47(3):85–93, 1986.

47

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

