Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 40 (2016)

Affine Relativization:
Unifying the Algebrization and Relativization Barriers

Baris Aydinha@lu * Eric Bachf
September 5, 2017

Abstract

We strengthen existing evidence for the so-called “algebrization barrier”. Algebrization — short
for algebraic relativization — was introduced by Aaronson and Wigderson (AW) (STOC 2008) in order
to characterize proofs involving arithmetization, simulation, and other “current techniques”. However,
unlike relativization, eligible statements under this notion do not seem to have basic closure properties,
making it conceivable to take two proofs, both with algebrizing conclusions, and combine them to get a
proof without. Further, the notion is undefined for most types of statements, and does not seem to yield
a general criterion by which we can tell, given a proof, whether it algebrizes. In fact the very notion of
an algebrizing proof is never made explicit, and casual attempts to define it are problematic. All these
issues raise the question of what evidence, if any, is obtained by knowing whether some statement does
or does not algebrize.

We give a reformulation of algebrization without these shortcomings. First, we define what it means
for any statement / proof to hold relative to any language, with no need to refer to devices like a Turing
machine with an oracle tape. Our approach dispels the widespread misconception that the notion of
oracle access is inherently tied to a computational model. We also connect relativizing statements to
proofs, by showing that every proof that some statement relativizes is essentially a relativizing proof of
that statement.

We then define a statement / proof as relativizffinelyif it holds relative to evenaffine oracle—
here an affine oracle is the result of a particular error correcting code applied to the characteristic string
of a language. We show that every statement that AW declare as algebrizing does relativize affinely, in
fact has goroof that relativizes affinely, and that no such proof exists for any of the statements shown
not-algebrizing by AW in the classical computation model.

Our work complements, and goes beyond, the subsequent work by Impagliazzo, Kabanets, and
Kolokolova (STOC 2009), which also proposes a reformulation of algebrization, but falls short of recov-
ering some key results of AW, most notably regarding¥igXP versusP /poly question.

Using our definitions we obtain new streamlined proofs of several classic results in complexity,
includingPSPACE c IP andNEXP ¢ MIP. This may be of separate interest.
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1 Introduction

Motivation. The algebrization notion — short for algebraic relativization — was put forth by Aaronson
and Wigdersong] (AW henceforth) to give evidence that certain complexity-theoretic conjectures are be-
yond the reach of “current proof techniques”. Although the name suggests some type of relativization,
algebrization lacks two essential properties of relativization:

Closure under inference.What exactly constitutes a “current technique” may be inherently unclear, but
at a minimum it seems logical inference rules should be included. However, as pointedydir8[],
statements that algebrize in the AW formulation are not known to be closed under inference.

For example, AW show that the statemeént= NEXP ¢ P /poly does not algebriz€and interpret
this to mean that a certain class of proof techniques, say “algebrizing techniques”, cannap pyete
this does not rule out an approach where, say, one comes up with & dasls showg C NEXP via
algebrizing techniques, then sho@sZ P /poly via algebrizing techniques, and thus derive the very
samey.

Lack of closure under inference thus significantly thins any evidence imparted by a negative al-
gebrization result — as AW obtained fOfEXP versusP /poly and for other questions of structural
complexity — since the class of proofs ruled out by such a result might be much smaller than intended.

This precludes algebrization from having one of the two key virtues of relativization, namely delin-
eating those conjectures within possible reach of a robust family of techniques, from those that are not.
Indeed, some major results in complexity are suggested to have been found using relativization as such
a guide p, 22].

Universality. A main appeal of relativization is being a universal notion, in the sense that it applies
to every statement in one generic way. Intuitively, a statement relativizes if its truth is insensitive to
broadening the definition of computer, from an ordinary Turing Machine, to one with oracle access to
an arbitrary languag®. (We provide an alternate intuition later in Sectibd.6)

This intuition is so natural that it enables the second key virtue of relativization, namely being a
“litmus test” for weeding out futile endeavours. The idea is that i§ already known to not relativize,
then any strategy for proving, in order to be viable, must somehow be unable to handle arbitrary
extensions of the computer notion, or else it would be a strategy for proving nop juzsit thaty
relativizes. Given the scarcity of such proof strategies in structural complexity — at least forjfthose
involving P, hence classes definabfeom P — this idea makes relativization a practical tool for guiding
research. (Alas, we do not have a count on the number of fruitless research hours saved this way.)

For algebrization, however, we have no comparable intuition. This is mainly because algebrization
is a selective notion, in the sense that it is defined only for containnfett® and separations ¢ D,
and moreover, it is applied differently to each side of the containment / separation. Supposing we have
a strategy to proveér — and assuming, to begin witly, is of compatible syntax — there is no universal
criterion we can apply, to check if our ideas can be extended to show talgebrizes. This calls into
guestion how relevant it is to know thatis non-algebrizing in the first place.

Besides the above problems, algebrization brings back some longstanding ones that are as old as the rela-

tivization notion itself:

Controversial relativizations. A pair of theorems might be derived using seemingly the same techniques,
yet only one might be relativizing / algebrizing. For examp8PACE C IP, as AW show, algebrizes,

"We usec for containment ang_ for proper containment throughout the paper.
2Most complexity classes can be viewed as the result of applying various operaforsee Sectior.1.1



yet its cousinNEXP C MIP, doesnot, as observed by Impagliazzo, Kabanets, and Kolokol80p{
except itdoes as AW show, if we restrict oracle access MEXP to be of polynomial-length.

It is not clear how to interpret such results without further work. Can we justify restricting oracle
access, say by showing that it yields a natural subclass not tied to the Turing machine model? If so,
then which “current technique” eliminates the difference between the two classes, the subclass and the
original, thereby overcoming the limits of algebrizing techniques (whatever they are)?

Relativizing statements vs. proofsA generally accepted (though not uncontest&g))[convention is to
remark that some proof, say ¢f relativizes or algebrizes, with no clear consensus on what that exactly
means.

The typical intent behind such remarks seems to be that the said proof can be transformed into a
proof that « relativizes(or algebrizes). However, as anything can be transformed into anything when
there is no constraint, it is not clear which proofs it relativize under such a definition. And even
if some commonsense transformations are tacitly agreed upon — e.g., “give every Turing machine an
oracle for®,” or “bring each statement to its relativized form” — it is unclear whether the transformed
object would always be a valid proof, let alone a valid proof thaktlativizes. (For example, does a
proof that reads “Suppode= NP. ...” not relativize, sincé = NP does not?)

Naturally thus the question arises, of whether precise definitions can be given for what constitutes a
relativizing / algebrizing statement / proof, ideally in a way that agrees with the everyday intuitions for
these notions.

Prior Work.  An early draft by Arora, Impagliazzo, and Vazirard] [(AlV) gives a precise definition

of a relativizing proof, and building on the AIV approach to relativization, Impagliazzo, Kabanets, and
Kolokolova [30] develop an analogous approach for algebrization. However, that approach falls short of
recovering some key results of AW, most notably regardingdB&P versusP /poly question. See Section

1.2

Our Results. In this paper, we reformulate relativization and algebrization, in a way that addresses all the
problems raised in the first section.

First, we give a definition of what it means for a statement / proof to hold relative to a language, with
no need to refer to devices like a Turing machine with an oracle tape. Our approach dispels the widespread
misconception that the notion of oracle access is inherently tied to a computational model. We also show an
interesting connection from relativizing statements to proofs, namely, that every proof thkitivizes is
essentially a relativizing proof af (see Theorer8 for a precise statement).

Our main contribution is to the algebrization notion. We define a statement / proof as relataffiiedy
if it holds relative to everyaffine oracle— here an affine oracle is the result of a particular error correcting
code applied to the characteristic string of a language. With this definition, we show that every statement
that AW declare as algebrizing does relativize affinely, in fact hamaf that relativizes affinely, and that
the opposite holds for statements declared non-algebrizing by AW in the classical ing@tth require
new ideas.) Our formulation in this sense gives rigorous support to the “algebrization barrier” idea of AW,
which can thus be viewed as a refinement of the classic “relativization barrier” of Baker, Gill, and Solovay
[13].

Affine relativization is a refinement of relativization so as to capture the known useghohetization
a technique for interpolating Boolean formulas into polynomials. Famously used in early 90’s for obtaining
PSPACE c IP and related results, which are false relative to some choices of an (?d@s, 24, 16,

8 AW state some non-algebrization results for quantum-based complexity classes as well; we do not pursue these.



arithmetization is widely regarded as a counterexample — méybeounterexample — to the rule-of-
thumb that “most known proof techniques relativize” in structural complexity theory. Affine relativization,
to the extent that it captures the known uses of arithmetization — and it does so fairly well, as we argue in
the rest of Sectiod — can be viewed as a step towards reinstating that rule-of-thumb (albeit only a step, as
the PCP theorem is out of scope of this and related work; see open question in Sgction

Our formulations also tell something about those “known proof techniques” that do not seem to alge-
brize, in particular, aboubcality of computation It is a longstanding debate whether locality — that the
next step of a computation depends on only a “small” fragment of its current state — plays any role in cur-
rent results of complexity, particularly in interactive prod8,[5, 22, 30]. On one handNEXP c MIP can
be explained away as relativizing algebraically with a convenient, but questionable, alteration of the oracle
access mechanism as mentioned above; on the other hand, locality could provide an honest explanation of
this theorem, as argued by Arora, Impagliazzo, and Vazirgpilut an incongruent one to its algebraic
nature, especially when its cousilSPACE C IP, needs no such explanation.

Our results shed some light onto this matter. As we explain in Sett®it is fruitful to put a particular
class betwee®SPACE andIP, and another one betwe®&EXP andMIP, so that each theorem reads as
two containments. The second containment, we argue, captures the real content in each theorem, namely
“gap amplification”; affine relativization can derive every containment except the first ob&fRIP versus
MIP. We conclude that whether or n§EEXP ¢ MIP algebrizes is just a matter of definition, because there
is no application of this theorem (as far as we know) that is sensitive to how it is viewed, gap amplification
versus the common view. Therefore affine relativization can be viewed as a robust proxy, or a candidate
thereof, for the current state of the art.

This is mere interpretation, however, and is not to be confused with the main message of the paper,
namely that the algebrization barrier idea of AW can be rigorously supported:

Summary of Results. Affinely relativizing proofs, as defined in Sectibd, derive each statement classi-
fied as algebrizing by AW, and provably cannot derive any statement classified as non-algebrizing by AW in
the classical model. In particular:

e Each of the following has an affinely relativizing proof

— PSPACE c 1P, (Corollary 34)
— NEXP c MIP, viewed as gap amplification (Theorem40)
— MAEXP ¢ SIZE(21°8" "), vd (Theorenmvd)
— prMA ¢ SIZE(n9),Vd (Theoremi4)
— NP c ZKIP if one-way-functions exist (Theorem49)
e None of the following has an affinely relativizing proof
— NP ¢ P, infactPSPACE ¢ P (Proposition50)
— NP C P, infactRP ¢ SUBEXP (Corollary 57)
— NP C BPP, in factcoNP C MA (Corollary 56)
— pPNP ~ PP (Corollary 56)
— NEXP ¢ P/poly, in fact NEXP ¢ SIZE(n9), Vd (Theorenb3)

1.1 Relativization and Affine Relativization

We now explain our formulation of the relativization and affine relativization notion. We caution that our
results do not depend on any peculiarity of the definitions we give here. The reader who is already at ease
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with some notion of relativization (vague though it may be) can choose to skip this section and still follow
the rest of the paper.

1.1.1 Relativization without oracle machines

One of the first things a student typically learns about relativization isGRatthe clas<C relative to the
languag&?, is not obtained front, but rather from thelefinitionof C. (This is true in general, otherwise
we cannot have bottP = PSPACE and thafP® +# PSPACE? for some(, for example.) Unfortunately,
it is easy to misinterpret this fact, even for professionals, as though relativization is a notion inherently tied
to computational devices like Turing machines. To relativize a class, say RYgedbm P, a common belief
is that we must take an enumeration of machines underRjramd endow each with a mechanism to access
the languag®. (See e.g,33, 18, 22].) We cannot, as the belief goes, obt®H by treatingP as a set; we
must modify the definition of that set.

As we show now, this is false — at least for the classical notion of relativization from Baker, Gill, and
Solovay [L3], which is the one we formalize in this paper.

Take any definition oF P equivalent to the typical definition that uses Turing machines, be it the typical
definition itself, or a machineless one such B pr [15]. Consider the “oracle operator”

(V,0,0) — vOu

which, given functiond’, O : {0,1}* — {0,1}*, and given the functiodi : N — N, outputs the function
VOl defined as

VOl .z V(x,a), where
a] = O(

=
8
@)
<

: (1.1
a; =0V (x,a;..a;—1)),
|a| = €(]x]),
and where: is the empty string. Now, the clag¥® can be relativized simply as
FPO .= { yOIn**+d .V ¢ FP,ce N }. (1.2)

Intuitively, FP? is obtained by taking everlyP-predicate and conferring upon it the power to interact
with a prover that can only compu@— the power to do a Cook-reductiond® essentially. (We formalize
this intuition in§2.7.)

Proposition 1. FP? is exactly the set of all functions computable by a polynomial-time Turing machine
with oracle access t@.

Proof. UseFP(?) to denote the set which we want to shew® equals to.

ThatFP® c FP(© is easy. To compute a function of the form1) with ¢ = n° + c andV € FP, a
Turing machine with access @ can construct; ..a, bit by bit, and then outpW’ (z, a;..ay).

The convers&P® > FP(©) is easy as well. Ifi/ is a Turing machine with access@@® running in time
at mostz|® 4 ¢ on every inputc, then there is an equivalent machihg that makes exactly|® + ¢ queries
to O, by repeating if necessary the last query made\byand that takes no more than + d steps for
somed. Also, there is a machin@ that on input(x, a;..a;) simulatesM’(x), by interpretinga; ..a; as the
answers to the firgtqueries of)/’, and that outputs the next query®f'. If M’ halts during the simulation,
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then Q outputs whatevei/’ outputs. In casé/’ takes too long during simulation, longer than? + d
steps, which could happendf ..a; incorrectly lists the oracle answers, th@routputs something arbitrary,
say0. Notice @ doesnot need access . Therefore, if/ is the function computed b§, thenV € FP.
It follows by (1.1) that V°["“+< is identical to the function computed by; by (1.2), this function is in
FP°. O

SoFP can be relativizeéxtensionallyi.e., as a set, with no need to know the definition of that set.

What about other complexity classes? Most classes have straightforward definitions in téstof
is for these classes that relativization is actually useful as a guide. For exafpI8PP, P /poly, EXP
are all definable, extensionally, froR?. EvenPSPACE is definable in that manner, a5 P (52.3). In fact
all these classes can be viewed as the result of applying various operators to tfie &&sasN - P, BPP
asBP - P, so on (e.g.,34, p.187], RQ], §2.3), andP in turn can be obtained extensionally frafi.

To relativize these classes, we simply relativiZe. In other words, welefineNP® asN - (P9), or
more precisely (and bombastically) Hs % - FPO, where% denotes the process of obtainiBgrom FP
(say by taking eacl € FP and composing it with the projection functian: z1..z,, — z1). Similarly, we
defineBPP® asBP - (P9), and so on.

By centering everything oRP, we thus take a disciplined approach to relativization, with no dilemmas
about what oracle access means for different classes. Since we avoid such a dileiéofdegin with,
we thus have an oracle-free treatment of relativization.

While this approach omits some complexity classes, &ggspace, it is debatable whether that is a
limitation of the approach, or whether such classes are beyond the scope of relativization as originally
intended. Regardless, for all the results in this paper, the approach given here is sufficient.

Oracle machines without machines. By generalizing the above approach we can also dispense with the
notion of “a polynomial-time oracle Turing machine”. This notion is more general than “a polynomial-time
Turing machine with oracle access@, because it allows us to say things like

there exists an oracle machiné* such that for every), M© satisfies ... 1)
and things like
take an enumeration of oracle turing machines running in time 0)

(for an appropriate), the point being in both cases that the quantification of the machine doeh@®the
oracle.
ForV € FP and/ : N — N, let V*I¥) be the function

v (0,z) — VOl (1)
that maps a given languaggand stringz to VO (z) asin (.1) above. Now let
FP* .= {V*I"+e . v ¢ FP ¢ e N}. (1.3)

Then a membef* of FP* serves just like a polynomial-time oracle Turing machine; gi€kiit yields some
19 e FPO. (We make use of this construct in the sequel, to formalize statements simitpatw(f).)

1.1.2 « istrue relative to O vs. is provable relative to O

Perhapghefirst thing a student typically learns about relativization is to call a statement);,s&jativizing
if it remains true when all Turing machines are given access to an arbitrary ¢?adl®o vague spots exist
in this definition; we already started to address the second one, how to “give all Turing machines an oracle”,



in the previous discussion. The first, and the more fundamental issue is, what is really meant for something
to be “true”.

Of course, the notion of truth was settled in the 1950s by Alfred Tarski and Robert Vaught who took a
model-theoretic perspective (e.q29]). However, model-theoretic truth does not seem to capture the intent
of “true” above in the casual definition of relativization.

Instead, we usprovablesandrefutablesto formalize relativization in this paper. 4f has a proof, then
it is provable; if it has a disproof, i.e., if its negatien) has a proof, then it is refutable. Every statement is
either true or false, but some statements are neither provable nor refutable, by the Incompleteness theorem
— assuming, here and throughout, that everyday mathematics is consistent.

Let us be more precise. Take the axioms of everyday set tHéB€y, The reader does not need to know
much abouZFC, besides two things. First, one can express most of everyday mathematics, certainly all
the math in this paper, as proofs fréf'C. The reader can take this as a thesis, akin to the Church-Turing
thesis that every computer program can be implemented by a Turing machine.

The second thing to know abodFC is that it is expressed in the language of first order logic, with two
special symbols: the binary relation symlaglintended to represent membership, and the constant symbol
(), intended to represent the empty set.

Of course, intentions are irrelevamt;and() can be interpreted in any way that respects the axioms. In
other words, the notions “set”, “is a member of”, “empty set” are left undefined; they are primitive notions.
ZFC stipulates how these primitive notions behave with each other, and the rest of mathematics is built
using these notions. (For example, the natural nunliedefined as the set containing, as its only element,
the empty set; the existence and uniquenedsi®then proved fronZFC.) In yet other words, the symbols
€ and() are devoid of meaning; they constitute the special symbol set —sigimature in the terminology
of mathematical logic — of the language of first order logic in which we express mathematics.

Note that symbols such @s 1, N are not a part of the signature likg () are. They are introduced with
definitions, and are placeholders for those definitions, like macros in a programming language. In other
words they are not primitive notions.

Now, add a constant symbdD, to the signature. Add an axiom ¥'C that says

O is a language. [

We can formalize this axiom in a number of ways, e.g.(as” {0,1}*, or asO : {0,1}* — {0,1},
depending on how we want to formalize languages. (Here “language” is used in the complexity-theoretic
sense, not the linguistic sense as in “the language of first order logic”.) Without loss of generality, we pick
the latter, and thus view languages as functions ffor1 }* to {0, 1}.

Now add another constant symbslP, to the signature. Also add another axionZiBC, as follows.
Take any definition of the class of polynomial time computable functions, say, the standard one based on
Turing machines; don'’t call this cla$® yet — call it TheFP instead. Now add an axiom that says

FP equals(TheFP)°. (€3]

Here(TheFP)? is obtained by taking'heFP and applying the oracle operator, asinlj and (L.2).
Just as we can express everyday mathematics égiag we can use

ZFCH+ (1) + (1)

to define relativized complexity classBsNP, BPP, etc., fromFP, as explained in Sectich 1.1 and then
try to derive results about these classes.
If we want to study unrelativized versions of these classes, then we céhtsdbe a trivial language,



say the empty (i.e., constant-zero) language. That is, we can work under the axiom system
ZFC+ () + (1) + “O is empty”

where ‘O is empty” can be formalized a& O(x) = 0, for example.
Similarly, if we want to studyP, NP, BPP, etc., relative to a particular languag@g (e.g., the language
SAT) then we can work under

ZFC + (1) + (1) + “Ois Oy

where ‘O is Oy” might require possibly infinitely many axioms to formalize, but not more than countably
many, since we can always give a list of input-output pairs descrifiing
To recap, we have:

Definition 2. Using the language of first order logic with signatdre= (€, 0, O, FP), let

e CT(x) denoteZFC + “O is a language?- “FP equals(TheFP)”,
e CT(Og) denote, for every languagey, CT(x) +“Ois Op".

Our framework of mathematics {ST(0) — unrelativized complexity theor+ where0 is the empty
language mapping every input @ When we sayy is provable, for example, we mean it is provable
from CT(0) unless we say otherwise. We refer@@’(x) asrelativized complexity theopandCT(Oy) as
complexity theory relative t@,.

Definition 3. Let be a statement in the language of first order logic with signauas in Definition2.
Call y:

e afactif it is a theorem ofCT(0),

¢ afact relative toO; if it is a theorem ofCT(Oy).

Here “ is a theorem ofl” means the same thing ag is provable fromil”, namely: if we take everything
in T to be true, then follows.

We caution that it is not required to abandon unrelativized complexity theory, just to be able to talk about
relativized classes. For example, thaSAT = %, P is a fact of unrelativized complexity theory. In fact
we never have to leave unrelativized complexity: Switching to the relativized vigHD,) amounts to
reinterpretingthe symbolFP, thus giving every class (built fromiP) an oracle folO,, and the same effect
can be achieved by syntactically replacing every occurren&@afith FP°. (This is in fact the approach
taken from ChapteR (see§2.19 onwards; the reason we use relativized worlds here is that it makes the
metamathematical exposition much easier.)

We are ready to define relativizing and nonrelativizing statements.

Definition 4. Let v be a statement in the language of first order logic with signafuas in Definition2.
Call ¢ relativizingiff it is a fact relative to every language.

There are a couple of things to note about Definidomvhich are illustrated in Figuré as a sideways
tree. First, ify is a theorem of relativized complexity theory, then it is relativizing (i.e., row 1 in the figure
implies rows 1 & 2), because a single proofoffrom CT(x) yields, for everyOy, a proof oft from
CT(0Oq). However, the converse is not clear. (An analogous situation is having a single algorithm that runs
in time n!+°() versus having, for each an algorithm running in time!*+=.) We may say that theorems of
relativizing complexity theory areniformly provable in every relativized world. (In the next subsection we
will say such facts have relativizingoofs) Interestingly, all facts designated as relativizing in the everyday



 provable in every world 1 uniformly provable in every world
CT(x)F s
CT(Og) 4, VOy : ()Fv ¥ relativizing
bl 1 not uniformly provable
¢ provable CT(x)
CT(0) F 4 not refutable in any world
1) provable, but not in every world CT(Oo) tf =, VOq
CT(OO) 7 1,300 1 refutable in some world

CT(Op) F =, 300

1 neither provable nor refutable

+ not provable CT(0) tf
CT(O) '7/ Y ) refutable
CT(0) - —v

Figure 1: lllustration for Definitiord (as a sideways tree)

sense, seem to be theorems of relativized complexity. (In the next subsection we will show that this is not a
coincidence.)

Second, ify is a fact that is refuted relative to sor®¥g, then it is a nonrelativizing fact (i.e., row 4 in the
figure implies rows 3 & 4). But the converse does not always hold. We do not know of a natural example
for this, however; like in the first point above, all facts that are designated as nonrelativizing in the everyday
sense, as far as we know, are facts that are refuted in some relativized*'world.

1.1.3 Affine relativization

Affine oracles are motivated in Sectidn3 and precisely defined in Sectiégh Roughly, the languagel
is an affine oracle if there is a languag@iewith f,, denoting its restriction to length-inputs, and withf,,
denoting the unique-variate polynomial of individual degre€-1 extendingf,,, such thatA represents the
evaluation off,, over GF(2¥), for all k£ andn.

Definition 5 (Definition 4 cont'd). Let ) be a statement in the language of first order logic with signature
as in Definition2. Call ¢ affinely relativizingff it is a fact relative to every affine oracle.

The remarks made right after defining relativizing statements (Defindidrave analogues for affine
relativization. In particular, all facts we show in this paper as affinely relativizing are provable from the
following theory:

Definition 6 (Definition 2 cont'd). Using the language of first order logic with signatdtras in Definition
2, let:

e CT(*)denoteCT(x)+ “O is an affine oracle”.

We refer toCT( x ) asaffinely relativized complexity thearilotice thatCT( * ) does not immediately
appear to be a subtheory Gf['(0), unrelativized complexity theory. It iSCT(0) by definition isCT (x) +
“0Ois 0", and the empty language: = — 0 is an affine oracle; this follows from the precise definitions in
Section2 (and should be plausible given the rough definition in the beginning of this subsection).

“Here is an “unnatural” example: Latbe the language that outputon every inputz. ThenCT(1) = CT(x) +“Ois1”,
where we may useéz O(z) = 1 to formalize that last axiom. Now, let be “if O = 1 thenZFC is consistent”. Then for every
languageODy # 1, CT(Oo) proves ‘O # 17, hence proves). On the other handZT(1) proves ‘O = 17, and hence, by the
Incompleteness theorem, cannot prove or refute- assuming, as we agreed to do, tA&IC is consistent.
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Figure 2: (Affinely) relativizing statements

We use Figure to illustrate the relationship between relativization and affine relativization. The “rel-
ativization barrier” idea corresponds to the vertical line between the set of relativizing statements and its
complement. Similarly, the “algebrization barrier” idea can be pictured as the line between the set of affinely
relativizing statements and its complement; i$ affinely nonrelativizing” would then say thdtis some-
where to the right of that line.

1.1.4 Relativizing statements vs. relativizing proofs

We call a proof relativizing if, intuitively, it goes through when we “give every polynomial-time Turing
machine an arbitrary oract@”.

Definition 7. Call a proof fromCT(0) relativizingiff it is also a proof fromCT (x).

SinceCT(x) is a subtheory o€T(0), relativizing proofs are exactly those proofs fr@ff'(x). Proofs that
relativize make no assumptions about the primitive no@ibother than that it is a language.

As remarked in Sectioh.1.2 it is not obvious if a theorem of the form/*relativizes” implies, by itself,
thatw has a proof that relativizes. Nonetheless, in the process of deriving such a theorem, it seems invariably
one ends up giving such a proof. (Of course everyday proofs are not spelled out in the language of first order
logic, just as everyday algorithms algorithms are not specified as Turing machines or Boolean circuits.)

We now show this is not a coincidence.

Theorem 8. Let) be a statement in the language of first order logic with signafir&very proof that)
relativizes can be augmented to make it a relativizing proaf.ofhe augmentation does not depend on the
contents of).

This theorem is consequential to the rest of the paper. It says that all statements kimatamo relativize

are theorems of relativized complexity theory, i.e., they have relativizing proofs. In fact, it says, to give a
relativizing proof ofy, it suffices to give a proof that relativizes; a desired proof can then be obtained by
adding a few additional lines, and those lines that do not even depend®a it says, essentially:

Every proof that) relativizes is a relativizing proof af.

The upshot is that we never have to worry about showing results of the fotmas a relativizing proof”; it
suffices to show relativizes” instead.



Proof of Theorem 8. Let ¢) be a statement over the signatyre 0, O, FP). Suppose we are given a
proof thaty relativizes. Since our framework of mathematics is unrelativized complexity tHe®y),
this means we are given a proof that takes all the axi6ffi0) as true and derives that: relativizes, i.e.,
that: « is a fact relative to every languag#, i.e., that:

for every languag®,, CT(Oy) provesi. ®)

First, notice there is nothing mysterious about mentioning one th€dryO,) while we are inside
another theoryCT(0); it is akin to one Turing machine simulating another.

Second, consider the following question. The proob@fhich we know is in unrelativized complexity
theory — does it really use anything specificuxrelativized complexity theory? The statemet does
seem to involve the symbaD, but only superficially: we could talk about complexity theory by using
another symbol, sa§)’, instead of0. That is, lettingC'T’(Oy) be the same theory &T'(O,) except using
(e’,0',0',FP’) as the signature instead @, (), O, FP), we can restate):

for every languag€,, CT'(Oy) provesy’, ()

where ¢’ is obtained by replacing all occurrences ®f(and respectivelyf), O, and FP) with €' (and
respectively, with)’, @', andFP’). Now (') clearly does not require any assumption@rto be proven,
because we can replace in the proof dj all occurrences o0& with what O stands for in unrelativized
complexity theory, namely the empty langua@e Therefore, i) is a theorem of relativized complexity
theoryCT (x).

We now show that

if (b') theny #

is also a theorem of relativized complexity theory. This suffices to establish the claim, since we ddh put (
and ¢) together and concludg in relativized complexity theory.

Recall the thesis that everyday mathematics, in particular the mathematics in this paper, can be carried
out in the language of first order logic using thEC axioms of set theory, which takes “set membership”
and “empty set” as primitive notions. (The reader who is at ease with the Church-Turing thesis should feel
the same about this one.) Under this thesis, whatever we can prove by starting out witlh&8etlanguage”
is a theorem of relativized complexity theory.

So letO be a language. Suppo$é)( Then

CT'(O) provesy'. (@)
Applying the soundness theorem of first order logic (e2fl, Thm 6.2]) to £) we get,
¢ is a consequence 6fT'(0), (=)

which means that under every interpretation of the symiglg)’, O’, FP’) that satisfy the axiom&T’(0),
the statemeny’ holds. In particular, if we interpret’ as set membershiff, as the empty set)’ asO, and
FP’ asFP, theny’ holds® But )’ is exactlys) under that interpretation.

So,v. We just proved{() asdesired. O

For the reader who wants to avoid the model-theoretic perspective taken during the transition)from (
to () in the above proof, here is the sketch of an alternative argument. A proof can be viewed as a table,
with each cell containing one statement. Each row is obtained by applyiimjesence ruleto zero, or one,

5The application of the soundness theorem is subtle here. If a tHeprgvesyp, theny is true in every model of’; this is the
soundness theorem. But by definition a model s#awhereas here the model is the universe of everyday set theory, the “set” of
all sets, which is not a set. Nevertheless the soundness theorem still holds in this setting. Also see the remarks following the proof.
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or two previous rows, depending on the arity of the rule. The last cell in the last row of the table contains
the conclusion of the proof, and the rest of the cells in that row contain the assumptions of the proof.

So a proof ofp from the theoryT is a table whose last row reafispy, wherel is a finite sequence of
statements frornt'.

The following can be shown in relativized complexity theory:

for every proof, if the assumptions of the proof are true, then so is its conclusion.  ¢) (

This can be shown by induction on the structure of the proof, i.e., on how the proof was obtained from infer-
ence rules. The specifics of the induction depends on what rules of inference are allowed; for concreteness
we take the exposition ir2fl, Ch IV] but in general any Hilbert-style inference system would do.

The base case of the induction corresponds to rules of arity zero. There are two such rules: (i) the row
I" ¢ can be written anytime, for all sequences of statemErtkst contain the statemegpt and (i) the row
consisting of the single statement= ¢ can be written anytime, for all ternis The claim ¢) clearly holds
for these two rules.

We illustrate the inductive step with one rule of arity two, namely the contradiction rule: for any two
rowsI' -p o andI’ —¢ -0, the rowI’ ¢ can be written anytime. Heré is a sequence of statements,
ando are statements. Suppose we have a proof endinglwithderived by applying the contradiction rule.
Suppose the induction hypothesis holds for the subproofs ending with those two lines from which the last
line is derived. We want to show that if everythinglinis true, then so is». So suppose everything in
is true. Suppose towards a contradiction thas false. Then-y is true, and by the induction hypothesis,
boths and—o is true, a contradiction. Thereforg,is true. The inductive step for the other rules proceed
similarly.

Now let us go back to the proof of Theoredyto right after ), and give an alternate way of concluding
1. Letting O be an arbitrary language, we know th@al’(O) provesy’. That is, there exists a proof (a
table) that concludes with’ +’, wherel” is a sequence formed from a finite subse€df (©). Take any
such proof; replace all occurrencesdf (', O’, FP’ with €, (), O, FP respectively. The resulting object is
a proof ending withl" v, where every statement inis either inCT(x), or is a trivial statement such as
O(t) = O(t) for some ternt (because€T’(O) by definition isCT’(x), plus axioms that implement?’ is
O”, and replacing?’ with O turns “O’ is O” into the trivial “O is O”). Therefore ), and we have Theorem
8 again.

1.1.5 Affinely relativizing statements vs. affinely relativizing proofs

Sectionl.1.4 carries over to affine relativization in a straightforward fashion. We call a proof affinely
relativizing if, intuitively, it goes through when we “give every polynomial-time Turing machine an arbitrary
affine oracleD”.

Definition 9 (Definition 7 cont'd). Call a proof fromCT(0) affinely relativizingiff it is also a proof from
CT(x*).

SinceCT(*) is a subtheory ofCT(0) (see remarks after Definitio6), affinely relativizing proofs are
exactly those proofs fro@'T(* ). Intuitively, proofs that affinely relativize make no assumptions about the
primitive notion©O other than that it is an affine oracle.

Every proof that) affinely relativizes is essentially an affinely relativizing proofjof

Theorem 10(TheoremB cont'd). Lett be a statement in the language of first order logic with signafiure
Every proof that) affinely relativizes can be augmented to make it an affinely relativizing praof ®he
augmentation does not depend on the contents of

11



The upshot is that we never have to worry about showing results of the toimag an affinely relativiz-
ing proof”; it suffices to show affinely relativizes” instead.
(The proof is a straightforward adaptation of the proof of TheoBeso we omit it.)

1.1.6 Relativizing formulas

Our current definitions involvé'P and classes definable froRP (§1.1.7). It is desirable to extend the
definitions to formulas as well, so that statements suchSad“is NP-hard” become relativizing. This

is for a couple of reasons. First, it is natural: for examfél' naturally extends to the langua§aT®,

of satisfiable formulas over the Boolean basis extended @itiwhich is complete foNP®. Second,
complexity classes are typically used interchangeably with their complete languageBNE.fpr PSAT,

but unless we find a way of relativizing formulas simultaneously with classes, such natural equivalences fail
in relativized settings.

There are several ways to do this extension; we give two. The first approach is straightforward and
corresponds to the everyday intuitionSAT is NP-complete’ relativizesf we include oracle gates in
SAT”. The second approach is slightly more involved as it builds on the first, but it yields the rather clean
intuition that a statement / proof relativizes (affinely) iff it is insensitive to extending the standard Boolean
basis with any (affine) oracle.

First approach. Rewind to Sectiori.1.2 In addition to®, add another symbo#, to the signature of the
language of first order logic in which we express mathematide( “basis”, O for “oracle”).

Let A : {0,1}* — {0,1} : © — A;x; be the language implementing AND-gate of arbitrary fan-in.
Similarly, let@®, 0, 1 implement, respectively, akOR, a constan0, a constani gate of arbitrary fan-in.
Define Byq to be the ordered sd€D, 1, A, &}. (As is the case with symbols such@sl, N, the symbols
B4, 0, 1, etc. are not added to the signature; each is a placeholder for its definition.)

Now add the axiom8 = Bq U{O}" to relativized complexity theor¢’T(x) — hence to other flavors
of complexity theory as they are all built fro@dT (x). Just like we pledged to work with the relativized
classFP = (TheFP)? instead ofTheFP, we can pledge to define all Boolean circuits (hence formulas)
over the basi#. More precisely, define

CircEval(C, x)

as the function that, given the circditwhose internal gates have labels of the forith ‘basis element”, for
i € {1,..,5}, and given the input to C, evaluate€’(z) by interpreting ‘1st basis element” &, “2nd basis
element” adl, ..., and 5th basis element” a®.

This way, we can work with circuits / formulas without fear of making a nonrelativizing statement just
because we mention circuits / formulas. In particul8AT is NP-complete” does become relativizing, as
does many others such a8SAT is ®P-complete”, sincSAT, ®SAT, etc., are all defined by building on
CircEval.

Second approach. Implement the first approach first. Now define a new cldd3,;.., as the set of
functions computable by polytime-uniform circuits of polynomial size, over the l#sislore precisely,
F € FPg. iff there is a functionDescr € TheFP satisfying, for every: € {0, 1}*,

F(z) = CircEval(Descp(17), z),

whereC'ircEwval is as defined in the first approach.

12



By the Cook-Levin theoremFP,;,. equals(TheFP)® = FP. This suggests that we can drop the
symbol © and use the signatu® := (€, 0, B, FP) when expressing mathematics. In particular, we can
redefine relativized complexity theory and its variants by letting

e CT(x)denoteZFC + “FP equalsFP;." + “B = Bgq U {O} for some languag®,”

e CT(*) denoteCT(x) + “B = Bga U {Op} for some affine oracl€®,”

e CT(Oy) denote, for every languagey, CT(x) + “B = Bgq U {O}".

As was the case in the original definition (Definiti@y hereCT(Oy) may require infinitely many
axioms to formalize. (Think of B = Bgq U {Op}” as “every languag® that is a member 0B \ B is
Oy”, and formalize * . . is Oy” as described right before Definitich)

Notice that everything expressed in relativized complexity theory in sense of the original definition
(Definition 2) can be equivalently expressed in the sense here, by mentiBnjmgy;, instead ofO.

Furthermore, we can still work with circuits / formulas without fear of making a nonrelativizing state-
ment just because we mention circuits / formulas. For exampl&Aé&t denote the satisfiability problem
for formulas over the basi8. Then ‘SAT is NP-complete” is a theorem of T'(x), almost by definition,
since the Cook-Levin theorem is essentially embedded in the definitiBi? gf., hence oft'P.

With this approach, a statement (and respectively, a proof) is relativizing iff it remains a fact (respec-
tively, a proof) when the standard Boolean basis is extended with an arbitrary language. Similarly for affinely
relativizing statements and proofs. Notice that using this approach we dispense with the intuition of giving
“every Turing machine oracle access”, because extending the standard basis automatically does that.

In the sequel, either of the approaches above can be taken as the foundation for our results. For the sake of
readability, we pick the first approach.

1.2 Comparing With and Clarifying Prior Work

Four past works have a direct relation to ours — besides the paper that started it all, of course, by Baker-
Gill-Solovay. The main effort in these four works, and in ours, can be viewed as trying to: (i) formalize
the relativization notion, and / or (ii) refine the notion so as to capR#BACE C IP and related results.

We do a quick survey of these works, first with respect to (i) and then (ii). Along the way we dispel some
common misconceptions as needed.

1.2.1 Efforts to formalize relativization

In mathematics, we can introduce a new object in two ways: constructive or axiomatic. The constructive
way is to introduce the object by defining it in terms of other objects already available. For example, if we
have sets available, then we can define natural numbers as

0=10

1={0} = {0}

2=A{0,1} ={0,{0}}

3=1{0,1,2} = {0,{0},{0,{0}}}
and so on. (Of course, “and so on” is to be replaced with rigorous mathematics: inductive sets, the successor
operation — and so on.)

In the axiomatic approach, on the other hand, we introduce the object as a primitive notion, essentially
leaving it undefined; instead we add axioms that describe how instances of this new object behave in a
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universe consisting entirely of these objects. For example, we can treat “natural number” as a primitive
notion, along with a relation callefluccessor, and add axioms saying that “for every natural number
there is a unique natural numbgsuch thaiy, =) are in theSuccessor relationship” and so on.

In other words: we can introduce an object either by saying what @r by saying what iloes The
former would be constructive, the latter axiomatic.

Since we cannot create something out of nothing, we have to begin by declaring some notions as prim-
itive. So the foundations of mathematics are axiomatic. Beyond that, however, the two approaches often
complement each other. For example, real numbers can be introduced as a complete ordered field, or as
infinite sequences of decimals, or as Dedekind cuts, or as equivalence classes of Cauchy sequences. The
first approach would be axiomatic, the rest constructive, each one informative in its own right.

Our treatment of relativization in Sectidnl, in particular, our definition of relativized classes, at first
glance might appear to be axiomatic, since the very act of puttihon the signature is technically declaring
FP as a primitive notion. That is superficial, howev&® can be taken out of the signature and treated
instead as an ordinary symbol with no loss of generality — after all it is simply declared to equal the class
(TheFP)©, an object introduced constructively. (Rec@lieFP stands for unrelativized polynomial time
computable functions.)

So our approach is constructive, and it is an interesting question whether relativized classes can be de-
fined axiomatically. This is whafrora, Impagliazzo, Vazirani [5] (AIV henceforth) partially answer.
Following Cobham19], AlV introduce FP by an inductive definition: they first declare certain basic func-
tions to be inFP — the length function: — |z|, all constant functions, etc. Then they add new functions
to FP based on existing ones — e.g. fiandg are inFP then so is their composition. The resulting object
exactly characterizes relativized computati¢heFP)© satisfies the definition df'P for every language
O, and anything that satisfies the definitionR¥ equals(TheFP)® for someO.

The AlIV result is particularly interesting because it strengthens the message of Settioronsider-
ably: not only relativization can be defined independently of machines, as we showed in Settiohut
also the very idea of oracle access can arise out of a natural definition that has nothing to do with oracles —
there is no mention of an oract2 in the AIV approach.

(On the flip side, lack of any reference to an ora@enakes it unclear whether a statement li\T
is NP-complete” is relativizing under the AlV definition.)

There is a big caveat that must be noted regarding the AIV approach as well as ours. In both works,
FP is definedafter introducing an entire collection of axioms formalizing everyday mathem&ifdis is
why we consider AlV'’s work as only partially answering the question of whether relativized classes can be
defined axiomatically.)

Itis the lack of appreciation of this caveat that we believe underlies a widespread misconception, namely,
that these results prove some sort of logical independence for statements that do not relatividg (84),, [

[1, Section 6.1.2]). To illustrate, consider the fact tN&XP C P /poly is provable relative to som@ and
refutable relative to some others. We could summarize this fact in the terminology of Skedtam

NEXP C P/poly is independent o T (),

?
but we would be saying nothing about the axiomatic complexity ofNiXP C P/poly question: we
certainly believe thal FC, asubtheory of CT(x), proves eitheNEXP C P /poly or its negation!

The confusion arises because there are two ways of expressing the same quéstion irthe first one,

NEXP C P /poly, follows the convention we took in Sectidnl, of defining complexity classes based on
FP, which in turn is defined as the relativized cl§$eFP)®. The second one ignores that convention and

®AIV take Peano arithmetic as a formalization for everyday mathematics, but their approach can be framgddsisgvell.
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directly works with the clas§heFP, thereby askingCheNEXP & TheP /poly (whereTheC is obtained

from TheFP in the same way a8 is obtained fron¥'P). This is inevitable when we work with a theory that

is anextensiorof everyday mathematics instead ofesstriction, as one can always ignore any additional
axioms and stick to everyday mathematics. For a genuine independence result, we must wodutvtbt a

of the axioms that govern the mathematical universe. But such a set of axioms for relativization is not known
to exist.

1.2.2 Efforts to Refine Relativization

Although relativization succeeds at explaining the failures of structural complexity until the 90s, it fails
at explaining the successes after, in particular those related to interactive proofs. We now discuss four
past proposals to refine relativization. The overarching goal in them is (or so will be our view here) to
provide some model for “known techniques”, which involves meeting two competing objectives: (a) derive
all relevant theorems in the model, and (b) provably fail to derive in the model all relevant conjectures that
are evidently beyond current reach.

We will use Figure3 to roughly illustrate how each proposal fares with respect to these two objectives (a)
and (b). The take-away message from this micro-survey is that although parts of (a), (b) have been attained
by prior work, ours is the first successful attempt that yields all the critical pieces under one framework.

Although the table is less precise than the discussion that follows, it does illustrate some key differences
among prior works. The vertical gap in the table is a caricature of the current state of the art; to the left of
the chasm are facts, and to the right are conjectures apparently out-of-reach. That gap would have been one
column to the left had this been the 80s; while the 80s résilitXP ¢ P/poly [31] relativizes, the 90s
result MAEXP ¢ P/poly [16], proven usingPSPACE C IP, does not, thereby bridging that chasm or
breaking that barrier — pick your metaphor. (The reader should be able to visualize the title of this paper, if
not now then by the end of this section.)

We now survey each of the four proposals in turn.

1.2.2.1 AIV[5]: The first proposal is from the same paper discussed in Setitof) by Arora, Impagli-
azzo, and Vazirani (AlV)%]. There the authors propose what they call “local checkability” as the key
principle underlyingPSPACE C IP and related results such RRAEXP ¢ P /poly.
The starting point of AlV is the classical idea, used by Cook to prov&trecompleteness GFAT, that
a computation running in timecan be represented as a transcript mdws, with each row corresponding
to the state of the computation at one time step. Cook observed that given a taltevsf we can verify
that it is a valid transcript by inspecting all bits of the table in parallel, where each bit depends on only

examples for goal (a) examples for gdia)

NPZP,
EXP¢i.o.-P/poly,..

(3C:CCNEXP A CZP/poly)

= NEXP¢P/poly S2EXPZP/poly  MAEXPZP/poly  NEXPZP /poly

AlV v v v ? ?
For v v v ? N
AW ? v v v v
IKK v v v ? v
this work v v v v v

Figure 3: Attempts at refining relativization
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O(logt) bits elsewhere. As AlV observe, however, this property will not hold for computations with access
to an arbitrary oracl@: just consider the program that takes its inputz,, and outputs)(x;..x,,) — the
transcript of any execution of this program will have a bit that depends bits. This property is called
local checkabilityby AlV.

We can interpret AlV'’s proposal as follows. Local checkability does not hold for an arbitary @Pacle
but it does ifQO itself can be computed by a locally checkable process. So the AlV framework can be viewed
as this: take the Baker-Gill-Solovay framework of relativization, and then restrict the @fadlem an
arbitrary function, to an arbitrary locally checkable function. (AlV present their approach using an oracle-
free framework as explained #1.2.1, with no reference t@, but that presentation is not an integral part of
their approach and can be switched out like we do here.)

This framework derives many known nonrelativizing results — including those outside the scope of this
paper, such as theCP theorem — but as AlV point out, whether it can settle questions suéhwessus
NP or NEXP versusP /poly may be very hard to know. In fact, they observe tha® ifersusNP were
shown beyond reach of their framework in the manner of Baker, Gill, Solovay — by giving contradictory
relativizations NP® < P® andNP® ¢ P9, using oracles satisfying local checkability — thBrwould
actually be separated fromiP. In this sense, the AlV framework is an unsatisfactory candidate for “known
techniques”. (Note that if all we want is a theory that can derive the current theorems, then we can just let
the oracle® be empty.)

1.2.2.2 Fortnow R2]: In aresponse to the AlV proposal dated around the same time, Forazbarfues
that the nonrelativizing ingredient IRSPACE C TP and related results is not local checkability; rather, it
is something of an algebraic nature.

We can interpret Fortnow’s key insight as followBSPACE C IP does not relativize, but it does, if
every oracle) is constrained to have two properties:

(). Algebraic redundancyThis means, roughly, that if we look at the truth tableZbbn inputs of length
N, for any N, then we must see a table whose information content is significantly les8¥hammuch the
same way that if we look at the values of a functjfx) = ax + b over an interval ifR, say, then we would
see a list that can be condensed to merely two entries.

More specifically,O must encode a family of polynomiats = {G,(z1,..,x,)}, that interpolate a
family of Boolean functiong = {g,(z1, .., ) },, such that

Gn(l‘) = ZzE{O,l}n gn(Z)AZ(I‘) (14)
whereA , (x) denotes the monomial thatisf x = z, and0 if « # z, for all Booleanz.

(ii). Closure This roughly means tha® is closed under adding redundancy. Justas an algebraically
redundant version of a family by property (i) above, there is an algebraically redundant versiaf of
itself (after allO is a family just likeg); the closure property dictates that the redundant versi@h wiust
essentially b& itself — more precisely, it must be efficiently computable given acceés to

We discuss the motivation behind these two properties later below, in conjunction with a related paper
(IKK).

The upshot is that Fortnow takes, like AIV essentially do, the Baker-Gill-Solovay framework of rela-
tivization, and then restricts the oradketo satisfy some constraint; for lack of a better name we refer to this
constraint aglosed algebraic redundancy.

Like AlV, Fortnow does not show any formal limits of his framework. However, we can use the tools
we develop in this paper to show that several major conjectures of complexity can provably not be settled
within it (hence thexX symbol in the table) — alas, we do not know how to show thiSN&IXP vs. P /poly.
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In this sense, Fortnow’s framework is (in hindsight given by this thesis) a superior candidate for “known
techniques” compared to AIV’s, but still an unsatisfactory one in the conteXXP vs. P /poly.’

1.2.2.3 AW P2]: A decade-and-half after the above two papers, Aaronson and Wigderson 2Ry ¢-

duce algebrization. Their paper is the first one that, after the nonrelativizing results of the 90s, sheds some
light on whether “known techniques” — a notion that evidently has expanded during the 90s — can settle
questions such aSEXP vs. P /poly.

We can interpret the key insight of AW as follows. In Fortnow’s refinement of relativization described
just above, recall that any oraafe@ must satisfy two properties that we collectively referred to as “closed
algebraic redundancy”. What AW found is that if we drop the closure requirement from this, then the
resulting framework fails to settle many questions of complexity. (EverNtE&P vs. P/poly question
cannot be settled, AW found, if we go a step further and broaden the definition of algebraic redundancy,
by admitting any low-degree polynomial that extends a Boolean function, and not just those of Hegree
cf. (1.4)).

This is a significant development because neither of the previous works, AlV & Fortnow, show any
such limitation of the framework they propose. However, this progress by itself is not enough to yield
a satisfactory framework for “known techniques”, because such a framework must, as explained in the
beginning of this survey, meet two objectives: (a) derive known theorems and (b) fail to settle conjectures.
But all that is shown by this insight is that Forthow’s framework, which achieves goal (a), can be weakened
to achieve goal (b) — albeit losing goal (a) in the process. (Notice that if all we want is a theory that cannot
settle conjectures, then we can just take the empty theory.)

So what remains for AW is to figure out a way of doing what Fortnow did (attain goal (a) using two
properties) by using only one of his properties, namely algebraic redundancy.

However, AW fall short of this. As a compromise they finesse the question of how relativization should
be refined, by simply declaring that a statemant B relativizes algebraically (algebrizes)A® ¢ B®
for everyO, where® is an algebraically redundant version®f Also they declare thak ¢ B algebrizes
if A° ¢ BO. No definition is given for other types of statements (nor for proofs).

Since we ultimately care about containments and their negations, the AW approach might seem appeal-
ing. But it only partially meets goal (a) of deriving known theorems, as it takes a quite limited view of
“known theorems”. For example, the statement

(3C:C C NEXP A C ¢ P/poly) = NEXP ¢ P/poly (1.5)

is true no matter wha¥EXP or P /poly means — it is even true no matter what “is an element of” means
— hence is relativizing, but it cannot be declared as algebraically relativizing in AW's framework. Conse-
quently, showing thaNEXP ¢ P/poly is non-algebrizing, as AW did, does not rule out whether we can
provedC : C € NEXP A C ¢ P/poly by using solely “algebrizing techniques”. (This is alluded to by AW
themselves in their pape2,[§10.1].)

On the positive side, the key ideas of AW — how to meet goal (b) of showing unprovability results,
using oracles with an algebraic property — influence all subsequent work, including ours.

1.2.2.4 IKK[30]: Motivated by the lack of basic closure properties in the AW framework — of which the
above pathologyl(.5) is just an example — Impagliazzo, Kabanets, and Kolokolova (IK3) propose an
alternative formulation soon after the AW paper.

"TheNEXP vs. P /poly problem is representative of a host of other open problems whose provability is unknown in Fortnow’s
framework; see “This work” later in this section.
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We can view the approach of IKK as being along the same line as Fortnow’s (hence also of AW’s) by
considering the following fact. Any Boolean formutacan be extended to non-Boolean values, by viewing
each conjunction as multiplication and each negation as subtractionlfrahe resulting expression —
called thearithmetizationof o — is a low-degree polynomial that agrees wjtlon the Boolean values, and
that can be efficiently evaluated on all small values (here “low” and “small” means, as usual, polynomial in
the size ofp).

Arithmetization of Boolean formulas appears to be the key technique in dei8ihCE C IP and
related results; it is the one ingredient that clearly stands out in all proofs of nonrelativizing results from
the 90s. Invariably, at some point in these proofs, some Boolean formula, used to model some efficient
computation, gets arithmetized; notice this step does not seem to go through in the Baker-Gill-Solovay
framework of relativization because such a formglavould involve non-standard gates — oracle gates —
yielding subformulas of the forr® (¢, .., ¢,,,) for which there is no obvious way to proceed.

Now, in both Fortnow’s framework and in IKK’s, we can interpret the approach as being aimed at making
this arithmetization step go through, for as large a class of oré¢las possible. In Fortnow’s case this is
achieved by constraining all oraclésto have “closed algebraic redundancy”; to see how this constraint
helps, notice that in arithmetization, the act of replacing a conjunationy with a multiplicationz - y is
nothing other than the act of extending the Boolean functiary) — x A y to non-Boolean values via
polynomial interpolation, in other words by adding algebraic redundancy (similarlyforersusl — ).

Stated this way, arithmetization easily generalizes to Forthow’s oracles: simply replace each occurrence
O in the formula with its algebraically redundant version, which does no harm because the aldss of
under consideration is closed under adding algebraic redundancy. (Without closure, however, the resulting
polynomial is not guaranteed to be efficiently computable, and this is where the AW framework runs into
trouble.)

In the framework of IKK, on the other hand, the strategy to enable arithmetization is more direct: they
allow O to be any oracle for which arithmetization, broadly construed, is possible. THatdan be any
family such that every Boolean formula, possibly wifhgates besides the standard ones-, etc.), has
a corresponding low-degree polynomial that extends it to non-Boolean values, and that can be efficiently
evaluated given access(d (IKK present their approach using the oracle-free framework of AlV explained
in §1.2.1 with no reference t@, but that presentation is not an integral part of their approach and can be
switched out like we do here.)

With this definition, IKK obtain a framework that, for the first time, meets both goal (a) of deriving
known theorems, and (b) of failing to resolve conjectures — albeit ndfaXP versusP /poly.? In fact,
the extent to which IKK show their framework meets goal (b) is identical what we said we can show for
Fortnow’s framework using the tools we develop in this paper ¢ghsymbol in Figure3). Thus the IKK
framework is not satisfactory for our purposes either.

1.2.2.5 This work. Affine relativization can be roughly viewed as achieving what AW aimed at but fell
short of; take Fortnow’s framework — relativization with oracles having “closed algebraic redundancy” —
and relax it somehow, so that it still meets goal (a) of deriving known theorems, yet it also meets goal (b) of
failing to resolve conjectures.

Recall from earlier in this survey that AW did find a relaxation of Fortnow’s framework that achieved
goal (b), but lost goal (a) in the process — trading off one good thing with another, where both is needed.
(As a compromise they came up with an ad-hoc notion whose limitations are discussed earlier in the survey

8The NEXP vs. P/poly problem is representative of a host of other open problems whose provability is unknown in IKK’s
framework; see “This work” below.
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and in the introduction.) In order to fix this situation, the natural thing to try is to aim at a model between
Fortnow’s and AW's, in the hope of obtaining the best of both worlds.

This is what we essentially manage to do. Our model is simple to state given previous work: relativiza-
tion with respect to oracles satisfying algebraic redundancy (closed or not). With this basic definition we
succeed in (a) deriving all nonrelativizing theorems classified as algebrizing by AW, sBeiPAS’E C 1P,
as well as all relativizing theorems, and (b) showing that it is impossible to derive any of the statements clas-
sified as non-algebrizing by AW in the classical model of computation, in partidiHaP versusP /poly.

Remark.From a cursory inspection of FiguBgit might seem as thoughEXP ¢ P /poly is the only place

where our framework has an edge over Fortnow’s and IKK’s — a nitpick of sorts. That is only the tip of the
iceberg, howeverNEXP ¢ P/poly is a representative of a host of other statements whose unprovability
can be shown in our framework but is not known for Fortnow’s or IKK's — and in some cases even for
AW'’s. To illustrate this, the first author in his PhD thes#} fook a fairly well-known construction, due to

Beigel, Buhrman, and Fortnowlfl], of an unrestricted oracle relative to whith= &P C NP = EXP,

and used it almost verbatim to give an affine oracle for the same statement. This construction does not seem
to carry through in any other framework surveyed here. 8e€hapter 8] for details.

Remark. Whether our definitions imply IKK’s or Forthow’s, or vice versa, is not clear; we do not know

if algebrizing in one sense can be shown to imply the other. Whatamesay, however, is that every
statement that IKK show as algebrizing, relativizes affinely, and that the opposite holds for those shown
non-algebrizing by IKK — just as is the case for AW. In particular, IKK show various compound statements

to be non-algebrizing; these follow as consequences of results on simpler statements and can be shown in
our framework as well (via what we call the reduction approach in Sedti§)n

1.3 Overview of Ideas and Techniques

Defining affine relativization, and proving that it works, involve a number of observations as well as some
technical ingredients. This section highlights the main ones.

1.3.1 Generalizing arithmetization using affine extensionsOur first observation concerns how the
arithmetization method should be generalized to handle formulas over a generic Boolean bésiszséy}
whereQ is an arbitrary language. In its typical description, the method states that the forgalathme-
tizes asl — ® where® is the arithmetization op; similarly, ¢ A ¢ arithmetizes a® - ¥. Other cases, such
asV and®, are handled by reducing to these two.

We observe that - y is the unique polynomial oveZ, of (individual) degree< 1, that extends the
Boolean functionz, y) — x A y; in other words, it extends an-gate of fan-ir2. Similarly 1 — = extends
a—-gate. We thus make the following generalization: Arithmetization replaces a Booleaf? gaitéan-in
m, with the gateD denoting the unique degreei polynomial

Ox):= > O®) (TT (1 — i) (1—b;) + 2 b;) (1.6)

be{0,1}m™

that extend€) from the Boolean domain t@. We call©O the (multi-)affine extensioof O, and caution that
the notation has nothing to do with Fourier analysis.

For our results we viewl(6) in fields of the formGF(2*) only. There are several benefits to this, and we
point them out as we explain our approach in this section. To begin with, we note that exterGiB(2to
is conceptually cleaner, as it turns a functionsohits into a function om vectors ofk bits each. Also, in
GF(2’“), the arithmetization o @ 1 becomes the naturdl + ¥, whereas in other fields, neither, nor
any other Boolean operator, gets arithmetizedto
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1.3.2 Affine relativization — capturing known uses of arithmetization. Consider a functional view of
an O-gate, as returning bits when each of its inputs come froGiF(2*). In this view, arithmetizing a
formula¢ creates a family of formulag®,, }, with each®;, redundantly describing the behavior@bn the
Boolean domain — the largés, the higher the redundancy (with= 1 corresponding t@ itself).

Now if ¢ is over a basis that includ€3-gates for an arbitrarg, then unlike the case for the standard
basis, its arithmetizatio®® does not seem to allow efficient evaluation; for examplgig of sizen, then it
seemsp, is not efficiently computable fot € ©(n) — even if we have oracle accessfo Interpreting this
to be the nonrelativizing ingredient in proofsBSPACE C IP and related results, we take the following
approach to refine relativization.

The arithmetic formul@ is a redundant encoding of the Boolean formpild is obtained via a transfor-
mation that acts “locally” o, by taking each of its gates and adding redundancy to it-gates become
x-gates;--gates becomégl — .)-gates, and in genergf;gates becomg-gates. Based on this, our idea is to
have the oracle gates gfcompute not some arbitrac9, but something that contains redundancy already,
namelyO for an arbitrary®. The plan being then to show that arithmetization — rather, current uses of it
— need not introduce redundancy at those gates.

We arrive at our formulation thus: whereas a statement relativizes if it holds relative to every language
O, a statement relativizefinely, if it holds relative to every languagé of the form® for some©. More
precisely, A encodes the family of ponnomlaISOm} evaluated oveGF(2F) for all k, whereO is an
arbitrary language an@,,, is its restriction to{0, 1}"*. We call A anaffine oracle

1.3.3 Why was this notion not invented in 1994 Natural though it may seem, affine relativization poses
the following difficulty: the very theorems that it is intended for, @$PACE C IP, do not appear to
relativize affinely, at least not via a superficial examination of their proofs.

To see the issue, consider a propertgf Boolean formulas — unsatisfiability, say. In provings 1P
arithmetization is used asraduction from = to some propertyI of arithmetic formulas — e.g., unsatis-
fiability of ¢ reduces, via arithmetization, to deciding if the product bf+ ®(«)), over all binary input
vectorsa, equalsl in GF(2*%) for anyk.

So each theorem of the forme IP is, in fact, a corollary of a more generic result of the fdie IP,
that gives an interactive protocol for an arithmetic property. It turns out those generic results can be further
generalized, if we enlarge the arithmetic basis, from the standagdtes and}-gates — which are really
A- and@-gates, respectively, per the first discussion above — by aIIo@'H@tes for an arbitrarg). Then
the same protocols that yield € TP work just as well over this extended basis, given oracle access to the
evaluation of0. We may writel1© ¢ IPO wherelI© extenddI to formulas over the extended basis.

Now supposing we have a theorene 1P, let us make a superficial attempt to extend its proof so that
it yields 74 € IP4 for some languagel; herer is a property of formulas, say over the bagis @}, and
7 is its extension to the bas(s\, @, .A}. As just explained, the proof af € IP starts with a reduction, of
the Boolean property to an arithmetic propertyl. Now here is the problem: what property do we reduce
74 to? By definition of arithmetization, it would bE+, the extension ofl to formulas over the basis
{x,+, A}. But then as just explained, we would be placingjin TP — not in TP,

This seeming circularity -+ € IP?, 7€ € IPY, ... — can be interpreted as the main distraction from
arriving at a natural notion such as ours. Indeed, all previous attempts to capture arithmet®22a208(),
dating back to the 1994 article of Fortno22, can be interpreted as having to make compromises so as to
break out of this circularity. For example, the AW notion of algebrization does this by dectarin@ to
algebrize ifC® ¢ D® holds for every® (for a notion ofO related to ours; there is a similar definition for
C ¢ D). We surveyed their approach and others in Secti@n
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In contrast, our approach tackles the circularity problem without compromising the natural notion we
arrived at the previous discussion. Recall our plan from the previous discussion: show that arithmetization,
in its current uses, need not introduce redundancy at gates that contain redundancy already. In the nota-
tion from above, we want to show that the Boolean property when A contains redundancy already —

i.e. whenA is of the formO for some® — can be reduced to the arithmetic propdity, rather than to the
propertyIT“ as all past works seem to have passively accepted.

1.3.4 Relativizing®P C IP. The plan of the previous discussion can be realized whénthe sum
() := ®,0(x), also known as the language&s AT. This is because whemis a formula over the Boolean
basis containingd-gates (whered is of the formO for someQ) each occurrence ofl evaluates the sum
(1.6 overGF(Z’“) for somek, and then returns, say, th® bit of the result giveni. Therefore, if we
step fromGF (2*) to GF(2)*, we can rewrite each occurrencebfas®,(y), for some formulay over the
Boolean basis containin@-gates — not4-gates. After some basic manipulation, we can bring the resulting
expression into prenex form, i.e. such that all the sums appear up front.

So given a formulap(z) with A gates, we can write it as a su¢ (x, z) wherey is a formula with
O-gates. Thus, in the notation of the previous discussighreduces tar® whenr is ®SAT. Now, we
know from the previous discussion thaf e IPA. ThereforerA € IP4, and we fulfil the plan of the
previous discussion. In other wordBSAT € IP — or equivalently®P C IP — relativizes affinely.

This approach can be adapted to sHWPACE C IP andNEXP c MIP can be affinely relativizes as
well. We describe an alternative approach later in this section.

1.3.5 Showing certain statements are affinely nonrelativizingOne of the technical contributions of
this paper is in showing that certain statemeaptdo not relativize affinely. As usual (though not always),
this entails constructing an eligible language — an affine orddleour case — relative to which is false.

For somey, this task turns out to be not too hard given prior work. Suchre of the fornC c D, for
which AW invented an approach based on communication complexity. A technical observation we make
regarding how affine extensions respect disjoint unions (Propodifioenables us to import their approach.

For othery, however, in particular foNEXP ¢ P/poly, we need more significant ideas. If we wanted
to showNEXP C P/poly relative tosomeoracleO, affine or not, or more generally, to shaét’ ¢ D for
classe€ andD, then there is a simple approach to this, due to Hell8}. [at iterationn € N, take the first
n algorithms underlying®, and partially fix© so as tdorcethe behavior of these algorithms ¢f, 1}™.
AssumingC is not too powerful, this forcing can be done without having tadien all of {0, 1}*7, for some
constantk, even considering prior iterations. The free input{@f1}*” on which© is yet undefined can
then be used to store information on how the forced algorithms behave, in such a way that some algorithm
in DO can retrieve that information.

When it comes thaffineoracles, however, we face a difficulty in making this strategy work. An arbitrary
affine oracle?, being the algebraically redundant versigh.8.1, line (1.6)) of an arbitrary oracl€, is less
“dense” in its information content then an arbitrary oracle. So how do we guarantee that partiallyFixing
as done in the previous paragraph, still leaves sufficiently many free inputs on which we can do encoding?

We derive a coding-theoretic ingredient (Lembiaand Theoren?2) to provide this guarantee. Roughly,
our result says that knowingpits of a binary codeword exposes at mobits of its information word in the
following sense: there are stil — ¢ bits of the information word that can be set completely independently
of each other, if the information word hadbits originally.

Our result can be viewed as improving an earlier, implicit attempt by 2é{the same question, who
did construct aQ such thatNEXP<2 ¢ P< /poly, albeit only for a multiquadraticextension, i.e., foQ
encoding a family of polynomials where each member has (individual) degee@stead of degree-1. It
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seemed “crucial”2], in fact, to increase the degree for this purpose. While quadratic extensions suffice for
the AW notion of algebrization, they do not for our notion of affine relativization.

Given a codeword whosebits are revealed, the AW approach is to show the existenee-ot other
codewords such that: (i) each encodes some information word of Hamming weagid (ii) each vanishes
on thet positions revealed. Taken together, (i) and (ii) form too many points to interpolate with a degree-
polynomial, thus forcing the AW approach to go quadratic.

In contrast, we take a linear algebraic approach and show that ghiehof a codeword, that the set of
all codewords agreeing on thesbits form an affine space, of dimension at mokss than the maximum
possible. See Sectighlfor details.

1.3.6 ScalingeP c IP to PSPACE C IP — a proof sans degree reductionOur approach forbP
can be adapted to show tHREPACE C IP affinely relativizes as well. However, we find a more natural
approach which yields another proof of this theorem; this may be of separate interest because current proofs,
as far as we know, employ syntactic tricks in order to control the degree of polynomials that arise from
arithmetizing instances of RSPACE-complete problem (e.g.4[, 10, 42, 4]).

In contrast we show, directly, that every downward-self-reducible language has an interactive protocol,
by essentially bootstrapping the very fact tidt C IP relativizes affinely. In particular, we make no use
of a specificPSPACE-complete problem; we do not even use any additional arithmetization beyond what
is needed forPSAT. (We emphasize that the new proof is sketched here because it might be of separate
interest. The standard proofs of this theorem can also be adapted to our framework.)

The new proof goes as follows. I is downward-self-reducible, then on inputof lengthn, it can
be expressed asly(n)-size circuit over thel-extended Boolean basis, of fan-in at mest 1. This
circuit in turn can be expressed as the sgy(x, y), where¢ is a formula verifying thay represents the
computation of the circuit on input. In notation we may summarize this reduction as

L, — ®SATLn-1 (%)

where®SAT/™ is the extension o®SAT to formulas over thef-extended Boolean basis, of fan-in at most
m. Repeating+) for L,,_; instead ofL,,, we get

@®SATLn 1 — @SATSSAT ™2 _, ggATLn-2 ()

where the first reduction is because extending the basis is functorial in the senge thay implies
®SAT/ — @®SATY, and the second reduction follows by bringing sums to prenex form as mentioned
in the previous discussion aBP c IP (§1.3.4. Note that the reduced formula is now of size abotf, if
the one in §) is of sizen?.

The idea is to tame the growth in the size of the reduced formulas, by using interaction. Building on the
ideas of the previous discussion @S AT, it is easy to show a protocol yielding tiv@eractivereduction

(BSAT/™), 4 — (BSAT/™),
that compresses instancesaS AT/ of sizen? down to sizen¢, for an arbitrarily largel and afixedc, for
every languag¢, in particular forf = L, wheneverm € O(n). We sketch this protocol at the end of this

section §1.3.8.
Thus we can keep repeating«] to get

L, — ®SATL1 — @SATI»2 — ... — @SAT oW

provided we interleave a compression phase whenever the formula size exéeesisice anL-gate of
constant fan-in can be expressed as a constant-size for@suer o reduces taPSAT. SoL € IP as
desired.
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That this proof affinely relativizes becomes obvious, once we carry over the resuliS Al to the
A-extended Boolean basis, for an arbitrary affine extensgion

(Interestingly, just as this proof builds on the relativizationdd? C TP, we use the relativization of
PSPACE c IP in turn to give a streamlined proof of ti¢EXP < MIP theorem, that uses no specific
NEXP-complete problem nor any additional arithmetization; see Se8t®h

1.3.7 NEXP vs.MIP — the gap amplification perspective.As mentioned in the introduction, AW show
thatNEXP C MIP algebrizes only under a restriction, and a questionable one at that, of the oracle access
mechanism foNEXP.° Since we define complexity classes usihgt would be even more artificial to try
to express this restriction in our framework. Instead, we find a natural approach that also sheds some light
into the issues surrounding oracle access.

Consider generalizing the claBB, by replacing in its definition the popular constan8 with 1 — -, so
that if the inputz is supposed to be rejected, then the verifier erroneously acceptis probability < 1 —+.
(If z should be accepted, then, as before, it is.) Call this elassp-IP.

It is easy to see, by the classid@bPACE-completeness result of Stockmeyer and Meygd,[that
0-gap-IP is identical toPSPACE. ThereforePSPACE C IP can be broken into the containments

PSPACE C 0-gap-IP C Q(1)-gap-IP

with the second containment, “gap amplification”, being the actual content of the theorem.
The corresponding case fSIEXP ¢ MIP becomes

NEXP C 0-gap-MIP C Q(1)-gap-MIP

and as our proofs in Sectidh3 suggest, the second containment is the actual content of the theorem.

To put the first containmeniYEXP C 0-gap-MIP, into perspective, consider the following variant
of the Cook-Levin theorem: every languagein P has circuits that are polylog-time uniform, i.€.,is
computable by a familfC,,} of circuits, such that givefr, ), the task to produce the type of tith gate
of C,, as well as the indices of all gates connected to it, can be performed;iiog n time. Intuitively,
this theorem does not relativize, even affinely, simply because it restricts the circuits to have polylogarithmic
fan-in — in other words, it restricts computations to have polylogaritHouality.

Let O be an arbitrary language. Relativedy let P, be the subclass dt satisfying this variant of
the Cook-Levin theorem. Now, usingyc., defineNPjoca andNEXP)ca1, just like NP and NEXP are
defined fromP (e.g.,52.3and§2.6). It is not hard to see that-gap-MIP is identical toONEXPy,¢q (if it
is, then see proof of Propositi@®). It is also not hard to see thAtEXPy,..; IS equivalent to the dubious
version of NEXP with polynomial-length oracle queri&2, making it not so dubious after all.

We do not know of any result usiliyEXP c MIP, that would break down iNEXPj,..1 € MIP is
used instead — in fact we do not know of any result u$itgXP C MIP, period. We conclude that locality
arises iINNEXP < MIP only definitionally; it is an ingredient that has not been exploited beyond making
definitions. (It would be interesting to know if the same reasoning could apply tB@ietheorem; see
open problem in Sectiob.)

1.3.8 CompressingbSAT. For the sake of completing the sketch of the alternate proB&fACE C IP
explained earlier, we now outline the compression protocol mentioned.

The protocol is based on the fact alluded to earlier, ®&AT/ < IP/ for any languagef. This fact
follows from standard considerations: Givenover the f-extended basis, in order to computgo(z),

We caution that neither AW, nor we, advocate or assumeNRaP bealwaysrelativized in this restricted way. It is only for
the purpose of deriving this theorem that this restriction seems inevitable — and this discussion investigates why.
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the verifier: (i) arithmetize® to get®, a formula over thq?—extended arithmetic basis, (i) engages in a
sumcheck protocol, thus reducing the original task to that of evaludtioger GF (2%), with k € O(log n)
being sufficient forp of sizen, and (iii) evaluate®, by using thef—oracle for thef—gates.

The compression protocol also starts out as above. The difference begins in step (iii): instead of calling
thef—oracle, the verifier engages the prover. By using standard interpolation techniques, the verifier reduces
the task of computing the values ﬁfon up ton points, to doing the same on just points or fewer, where
m is the largest fan-in of any-gate in the formula.

Thus the output of step (iii) is a list of at most claims of the form “fm/ (x) = v" with m’ < m and
v, z; € GF(2%). Now becausd,, is merely the sum1(6) in §1.3.1, which can be viewed iiF (2)* rather
than in GF(Q’“), it follows that these claims can be expressed as a conjuncti@SAfFfm-instances, of
combined sizeoly(mk). This yields the compressed instance, si®&AT is closed under conjunction.

2 Definitions, Notation and Conventions

2.1 We useA C B to meanA is a subset ofB; we never useC’. By poly(n) we mean the set of
polynomials{n? + d : d € N}. By dom f we mean the domain df.

2.2 Languages and partial languagesA languageis a function from{0, 1}* to {0, 1}. A partial lan-
guageis a function that is or can be extended to a language. We cofifusé with {False True}.

Given a languagé and an integem, we useL<,, to denote the partial language obtained by restricting
Lto{0,1}=™,

2.3 Basic complexity classes fronk'P. FP is the set of allf : {0,1}* — {0, 1}* that are efficiently
computable. We do not rely on a particular implementation of efficient computability; for concreteness the
reader can take the standard definition based on random access Turing machines. Weriligedmng
enumerable.

P is obtained by taking each function P and projecting its output to its first coordinate.

NP is the set of all languages ih- P, whered - C denotes, for a sét of partial languages, the set of all
partial language# such that

L(z) =1 = 3y e {0,1}0#) : (z,9) € dom V andV (z, )
L(z) =0 = Vy e {0,1}1*D : (z,y) € dom V and=V (z,y)

for somel € poly(n) andV € C.

co-C denotes, for a st of partial languages, the set of all partial languages of the fofm) = —M (z)
for someM € C. Itis customary to writeoC for co - C.

V- C denoteso - 3- C. In particularcoNP =V - P.

DefineX,P = II,P = P, and inductively defin&, P as the set of all languagesi II,_, P, andII, P
as the set of all languagesh %, _,P. The set J, . 2P is called thepolynomial-time hierarchyNote
thatNP = X, P andcoNP = II, P.

PSPACE, or X P, is the set of languages of the form

L(z) = Yy1321 - V(e I20(e)) V (7, ¥, 2)

for someV € P andt(n) € poly(n), wherey;, z; are quantified ovef0, 1}. (We could quantifyy;, z; over
{0,1}¢0=D) for somel € poly(n); the definition would be equivalent to the one given.) The justification
for this definition of PSPACE comes from the well-known result of Stockmeyer and Meyi& Theorem
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4.3] that functions computable by a polynomial-space Turing machine are contaibiedPir{the reverse
containment is clear).
BPP is the set of all languages - P, whered - C denotes, for a set of partial languages, the set of
all partial languageé such that
L(z) =1 = Pryego1yeen[(2,y) € domV andV (z,y)] > 2/3
L(z) =0 = Prycqo1ye0en[(z,y) € domV and=V(z,y)] > 2/3

for somel € poly(n) andV € C.

2.4 Interactive proofs from FP. Let Axp(z) denoteE,[¢(z)], and letMzp(x) denotemax, ¢(x).

AM is the set of all languagéds such that

L(z)=1 = AyMzV(z,y,z) >2/3

L(z) =0 = AyMz V(z,y,2) <1/3
andMA is the set of all languagéds such that

L(z)=1 = MzAyV(z,y,2z) >2/3

L(z)=0 = MzAyV(z,y,2z) <1/3
for someV € P and/ € poly(n), wherey, z are quantified ovef0, 1},

Notice thatAM is the set of languages th- 3- P, andMA is the set of languages i A - P. The class
A -3-Pis calledprAM, and the class- A - P is calledprMA.

IP is the set of languagées such that

L(a:) =1 = Ay; Mzq - -- Ayt(m) Mzt(|z|)V(3;,y, Z) > 2/3

L(z) =0 = Ay1Mz1 - Ayye) M2y V (2, y,2) < 1/3
for someV € P and¢ € poly(n), wherey;, z; are quantified ovef0, 1}. (We could quantifyy;, z; over
{0, 1}4(=1) for some e poly(n); the definition would be equivalent to the one given.)

The A-quantifier in these definitions can be thought of as providing the coin tosses of a probabilistic
verifier Arthur, who interacts with an all-powerful prov&fterlin corresponding to thil-quantifier. Merlin’s
goal is to make Arthur accept, which Arthur does iff the “verdict” predicktegiven the inputz and
transcript(y, z) of the interaction, returnk. The criteria by whichH/ returns0 or 1 is typically described as

a protocol between Merlin and Arthur. The quantity|x|) is referred to as thaumber of roundsaken by
— or theround complexityf — the protocol in computing inputs of lengih|.

Power of the Honest ProverConsider the following subclass @P. It contains languages such that
wheneverL(z) = 1, Merlin can just compute a languaffec C instead of using th&-quantifier. That is,
there is a languagH € C such that for allr, if L(x) = 1, then

PI‘Z[V(ZL‘, Y, Z)] =Ay1 Ayz - Ayt(|z|)v(x7 Y, Z) > 2/37 where GD
21 = H(I’, yl)
z2 = Il(z, y1y2)

z = (x, yl--yt(|x|))7
and the case fak(z) = 0 remains as before. Ank in this class is said to have interactive proofs witeee
power of the honest provés in C.
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CheckableWe call a languagé. checkabléf it has an interactive protocol where the power of the honest
prover reduces td itself. l.e., in ), IT reduces td. via a Karp reduction (as defined below§a.5).

Same-length checkablg/e call L same-length checkabikit is checkable, and if the reduction froi to
L satisfies the following property: each input of the fofmy) gets mapped to some string of lengtih.

Perfect completenes®eplacing the condition=* 2/3” in the above definitions with the condition="1"
yields equivalent definition2p)].

2.5 Defining reductions fromEFP. As in the previous sectior§2.4), let Az (z) denoteE,[¢(x)], and
let Mzp(x) denotemax, ¢(x).
Let F' andG be functions intg{0, 1}* such thatlom F,dom G C {0,1}*. We write

F—-G

and say that" reduces taG via an interactive protocoliff there existsk € FP, t € poly(n), ande €
1/n~M), such that for every: € dom F:

Ay Mz - Ayt(n) Mzt(n)[ F($) = G(R(:‘Ca Y, Z)) v F($) = R(l’,y, Z) ] >1- E(n)
Ay1 Mzy - - Ayt(n) Mzt(n)[ F(x) # G(R($,y, Z)) A R(Ia Y, Z) # ‘fail’ ] < 5(n)

wheren = |z|, andy;, z; are quantified ove{0, 1}. (Notice thatv = G(u) impliesu € dom G.)

We call R aninteractive reductiorfrom F' to G with round complexity(n). We caution that the word
“reduction” refers to a function il'P, not to the notion that somg reduces to somé€'.

Intuitively, as in§2.4, the A-quantifiers in this definition can thought of as Arthur and Mheuantifiers
as Merlin. Givenz, after sending random coin tossgso Merlin and receiving responses Arthur uses
the predicateR to obtain a string . Arthur wants either or G(r) to equalF'(z). Merlin can, with high
probability over Arthur's coin tosses, ensure that Arthur obtains a desiréddVierlin is devious, then he
has negligible chance in making Arthur obtain a string ‘fail’ that is not desired.

We believe this definition to be new. There are three special casRdefng an interactive reduction
that capture some classical definitions:

¢ in arandomized reductigrwe haveR(z,y, z) = R(z,y). Intuitively, Arthur (§2.4) does not need to
interact with Merlin §2.4) to do the reduction.

e in aKarp reductionwe haveR(z,y, z) = R(x). Notice that:(n) = 0 in this case. Intuitively, Arthur
does not need Merlin’s help to do the reduction, nor does he need to flip any coins.

e in aCook reductionwe haveR(z,y, z) = R(z, z). Further, for every extension 6f to a functionG’
on{0, 1}*, for everyx € dom F, and forz satisfying

Z; = G/(R(ZL', Z1..ZZ'_1))

we haveF'(z) = R(zx, z).
Notice that:(n) = 0 in this case. Intuitively, Arthur does not need to flip any coins to do the reduction,
and the power of the honest provelGstself.

We call R astrong Cook reductiofrom F' to G, if R is a Cook reduction fron# to G, and if R(z, z) €
dom G for everyx € dom F' and every: satisfyingz; = G(R(x, z1..z;—1)). (This would be the case, for
example, wherty is a language.) Intuitively, while interacting with Arthur to convince him of the value of
F(z), the honest prover never gets asked a question outside>.

By default, all Cook reductions are strong. By default, all reductions are Karp.

The “reduces to via an interactive reduction” relation is transitive:» G together withG — H imply
F — H. Further, “reduces to via a Karp reduction”, “reduces to via a randomized reduction”, “reduces to
via astrongCook reduction”, are all transitive relations.
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2.6 General time classes fron#P. LetT ¢ n“(1) be a class of functions each of which is computable in
FP. Suppose thdf is closed under taking polynomials in the following sense: for everyl’ andd € N,
there is some’ € T such that?(n) < t'(n) for everyn.

Define DTIME(T) as the set of languagds for which there existdX € P andt € T such that
L(z) = K(z, 110=D) for everyz.

DefineNTIME(T), ¥, TIME(T), MATIME(T), etc., in the same way, except by pickihgrespec-
tively from NP, 3,P, MA, etc.

UseE, NE, ¥,E, MAE, etc., to denote respectivelyTIME (linexp(n)), NTIME(linexp(n)), 3, TIME(linexp(n)),
MATIME(linexp(n)), etc., wherdinexp(n) is the se{2" : ¢ € N}.

UseEXP, NEXP, ¥,EXP, MAEXP, etc., to denote respectivelyTIME(exp(n)), NTIME(exp(n)),
Y, TIME(exp(n)), MATIME(exp(n)), etc., wherexp(n) is the Set{2‘md ¢, d € N}

2.7 Relativized classesFor every languag®, we define the clasEP® — “FP relative to®,” or “FP
with oracle access t@” — as the set of all functions frorfi0, 1}* to {0, 1}* that Cook-reduce t@.

All definitions built onFP (§2.3-62.6) naturally generalize to theielativizedversions:NP to NP?, IP
to IPY, MAEXP to MAEXP?, etc. When we sayF is checkable with oracle access@®, for example,
we mean to replacEP with FP? in the definition for a language to be checkalij2.4), and then declare
L as checkable.

2.8 Oracle access capabilityGivenr € poly(n) andf € FP, consider the function
£ (0,2) = [O(x)
that takes as input any langua@eand stringz, and outputg(z), wheref is a Cook reduction of round
complexityr (§2.5 from the language to ©. We call the set of all suclf*, over all f € FP and all
r € poly(n), the clas¥P* — “FP with oracle access capability
For readability, we always use the notation in the previous paragraph: a starred symbol giich as
denotes a member &P*, and its un-starred versighdenotes the member 8 on which f* is based.
For eachf* € FP*, we sayf* has oracle access capabilityWe usef© to denotef*(0,-), the
restriction of f* obtained by setting its first argument@ and refer tof© as f* when given access 0.
All definitions built onFP (§2.3-§2.6) naturally generalize to theoracle-access-capableersions. For
example,
NP :={L:3V € P, 3¢ € poly(n), Vz string
L(z) =1 < Jye{0,1}*FD v(zy) }
generalizes to
NP* := {L*: 3V* € P*, 3¢ € poly(n), Vz string VO language
L*0,z) =1 < Ty e {0,1}FD v0,z,9) }.

Similarly IP generalizes taP*, etc. When we say “there is an interactive protocol where the verifier has
oracle access capability”, for example, we are merely referring to a functidti‘in

(2.1)

2.9 Enumeration. We take it as a fact thdtP is enumerable. It follows that every class defined above
(82.3-§2.8) is enumerable. For example, to find an enumeratiolNBf, by (2.1) it suffices to find an
enumeration oP* and cross wittN. To find an enumeration af*, it suffices to find an enumeration BP*
sinceP* is obtained by taking every function IAP* and projecting its output to the first coordinage.g,
§2.3). Finally, to find an enumeration &P*, it suffices to take an enumeration 6P and cross it withN,
because by definitior§®.8), underlying everyf* € FP are somef € FP and some* € poly(n).
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2.10 Query complexity. Let f* € FP*. By definition §2.8), underlyingf* are some- € poly(n) and
f € FP, wheref is a Cook reduction of round complexity(§2.5). We refer tor as thequery complexity
of f*.

Let g* € P*. By definition §2.3), underlyingg* is somef* € FP*. By the query complexity of* we
mean that off*.

2.11 Boolean basesBy default, all circuits (hence all formulas) are over $tandard Boolean basis
Bgiq :={0,1, A, @}, where0 is the all-zeroes language ahds the all-onesp mapsz to A;xz; and® maps
x to B;x;.

More generally, by a Boolean basis we mean any finiteBsebntaining B,iq, comprising languages
and partial languages of the forhx,,, (§2.2) for somem € N and languagé.. We refer toB U { f} as the
basisB extended witlf, and whenB = B4, as thef-extended basidNe call f eligibleif the f-extended
basis is defined (i.e., if is a language, or a partial language of the fdrm,,).

When representing circuits (hence formulas) over extended Wases B4, We assume a generic
labeling of gates — using labels such as ‘tHenonstandard element’ — so that a given circuit can be
interpreted over different bases.

2.12 Well-behaved resource boundCall a functions : N — N a well-behaved resource bournfit
is increasing, satisfie®(s(n)) C s(0(n)) c s(n)°M c s(n°WM) andn < s(n), and if the func-
tion that maps the binary encoding ofto the binary encoding of(n) is in FP. Functions of the form
nd, (nlogn)®,20cem? 2dn are well-behaved resource bounds.

This generalizes te : N?> — N if fixing either of the inputs yields a well-behaved resource bound.

2.13 Languages as familiesWe sometimes specify a languadge: {0,1}* — {0,1} as a family of
Boolean functiong Ly, : {0,1}" — {0,1}},,c, and sometimes a§f,, : {0,1}*™ — {0,1}} ., or as
{ fnre : {0,1}30m0) — Lo, 1}}mkEN for some well-behaved resource bounthat is bounded by a poly-
nomial (respectively, im or in mk).

It is an elementary fact that a family of the forff,,, } or { f,, .} as above can be efficiently viewed as a
language of the forn{ L,, } as above, and vice versa. For concreteness, here is one way to do this: et
denote the Cantor pairing of andk. Then givery{ f,,, » }, define{L,.} asL,(z) := fur(1.s(mx)) fOr the
largestm o k such that(m ok, mok) < n. Conversely, givej L,, }, define{ f,,, » } as fo, x(z) := Ly, (20P),
wherep is set so that the input tb is of length exacthyn = s(m o k,m o k).)

2.14 The (partial) language®SAT/. For every Boolean basiB and eligible §2.11) f, define®SAT/
as the map

B(x) = Baego,13m P(a)
where¢ is a formula over the basB U { f }, with n inputsz; ..z,,. By defaultB is the standard basis arfd
is the all-zeroes language.

®SAT/ is undefined on thos¢(z) that are undefined for some settingof its inputsz (due to some
gate of¢ receiving inputs out of its domain). SBSAT/ is a language when the bagiscomprises entirely
of languages and is also a language, which is the case by default.

We index®SAT by n, any upper bound on the number of nodes of the formguldhat is, we view
©SAT as{®SAT,} _ , where®SAT, is defined on length{n) strings for some fixed € poly(n), with
each such string representing a formdlaf at mostn nodes.

Since(®SAT/)¢ is equivalent tq ®SATY)/ under Karp reductions, we writtSAT/* to mean either.
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2.15 The (partial) languageX,SAT/. For every Boolean basiB and eligible §2.11) f, and for every
k € NU {0}, definex, SAT/ as the map

B(X1,.., Xp) — Jag € {0,1}"Vay € {0,1}"2 ... Qay, € {0,1}™ ¢(v1..ap)

whereQ is 3 or V depending respectively dnbeing odd or even, and whegeis a formula over the basis
B U {f} with k setsof inputs: theX; inputs X ;..X ,,, the Xy inputs Xy ;..X3 ,,, and so on.

Whenk = oo, there is no bound oh — other than the size of the formuda that is — and without loss
of generalityn; = --- = ny = 1. By defaultB is the standard basis arfds the all-zeroes language.

¥, SAT/ is undefined on thosé that are undefined for some setting of its inputs (due to some gate of
¢ receiving inputs out of its domain). S9,SAT/ is a language when the badiscomprises entirely of
languages and is also a langauge, which is the case by default.

2.16 Representindgf,.. We represent each elementlof. by ak-bit Boolean string, forming the coeffi-
cients of a polynomial in the rinBz [x] mod some irreduciblg, (x) of degreek. We fix a uniform collection
{pr},cy Of such irreducibles, i.e., we use a functiorFiR that outputg,, givenk in unary @3].

The Boolean versionof a functiong : F7; — F is, for concreteness, the functidool(q) mapping
(z,y) to they™ bit of ¢(z). (Our results do not depend on this definition; any other equivalent function
under Cook reductions would work.)

2.17 Affine extensions and affine oraclesGiven f,, : {0,1}™ — {0, 1}, we define itaaffine extension
polynomialf;, as the uniquen-variate polynomial oveFs, with individual degree< 1, that agrees witlf,,,
overF,, for all £, i.e., as
fm(x) = ZbG{OJ}m fm(b) : H:il(l +x; + bz)
By theaffine extensioof f,, : {0,1}"™ — {0, 1}, we mean the family

~ ~k

Jm = {fm}keN
Wherefn'z denotes the function that evaluatgs overFsu, andfn'i denotes the Boolean versio§2(16) of
~k

Jm- _ -~
Given a familyf := { f,,} we define its affine extensiofi(or its affine extension polynomigl) as the
family obtained by applying the above definitions to each member. In particular, for the language

0= {Om : {07 1}m - {07 1}}m€N
its affine extensio@, which we denote here by, is

A= { A {0, 1) TRERT 40,1}

k,meN
Akt (Y1-.Ymz) — 2 bit of @m(yl, vy Ym)
where eachy; is interpreted as a member Bf.. By §2.13 A can be efficiently viewed as a family of the

form {A4,, : {0,1}" — {0,1}},en, and vice versa.
By anaffine oracle we mean the affine extension of a language.

2.18 Affine extensions respect disjoint unionsThe disjoint union of language®, and O, is the lan-
guageOol10; : (b,z) — Op(z). Affine extensions are compatible with disjoint unions in the following
sense:
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Proposition 11. For every pair of language®,, O;.
ppOo 1101 _ ppOo 1101,

In words, the disjoint union of the affine extensior@gfand the affine extension 6F; is equivalent, under
Cook reductions, to the affine extension of the disjoint uniadfiyénd O, .

Proof. Let O := Oy ][] O;. By definition §2.17), O is the Boolean versiorgR.16 of the function that
evaluates, give®, X, .., X,, € [F,x for anyk, the polynomial

OBX)= > O(ba) T, + (BX); + (bx);)
b,z1,..,xn€{0,1}

= > O@) T+ (BX); + (0);)

z1,..,2n€{0,1}
+ Y Ou(2) - TL(+ (BX)i + (1x)s)
1,..,2n€{0,1}

= (14 B)-0y(X) + B- 0 (X).
It follows that® € POo 110 andO, € po andO; € Pé, implying theclaim. O

2.19 Relativization. We say that a statemehblds relative tothe language?, if the statement can be
proven wherFP is redefined to b&P® and the standard Boolean basis is redefined to b&testended
basis. (See Sectiadhl for a metamathematical exposition.)

2.20 P and the Cook-Levin theorem. For a family of circuitsC' := {C,, },, define
(@) Desce : (1™, 1%) + the type of the'™ gate inC,, and the indices of all gates connected todAgate.
(b) StrongDesc : (n,i) — Desca (17, 17)
Of the two statements
(i) everyL € P is computable by a polynomial-size circuit family;, for which Descc, is in FP.

(ii) every L € P is computable by a polynomial-size circuit famdy, for which StrongDesc, isin FP.
we call (i) the Cook-Levin theorem, and (ii) the strong Cook-Levin theorem. We take for granted that (i)
holds relative to every language. (It is a consequence of Propodifitimat (ii) does not, even relative to
every affine oracle.)

3 Positive Relativization Results

This section shows that the famous results on interactive proofs affinely relativize, as do the circuit lower
bounds that build on them. (Bj1.1.4 it follows that these results do not hgweofsthat affinely relativize.)
These are th& theorem of Shamir{SPACE C IP, Section3.2), theMIP theorem of Babai, Fortnow, and
Lund NEXP c MIP, Section3.3), theZKIP theorem of Goldreich, Micali, and WigdersoNF ¢ ZKIP

if one-way functions exist, SectioB.5), and the strongest lower bounds known to date against general
Boolean circuits, by Buhrman, Fortnow, Thierauf, and by Santhanam (Se&:dpnAll of these build on
several properties gbSAT developed in Sectio.1
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3.1 Checking and CompressingpSAT

This section develops three results ®5AT that enable most of the positive relativization results in the
paper. The reader is referred to Sectifior all undefined terms and notation used in this section.

The first main result in this section shows the existence®Pacomplete language that is same-length
checkable §2.4), and that this affinely relativizes.

Theorem 12(Checking®SAT). @®SAT is checkabley2.4). In fact, there a languag& that issame-length
checkable such thaSAT — K and K — @SAT.
This holds relative to every affine oracle.

Theoreml2 is used, from different aspects, in deriving ShamiPstheorem §3.2) and the circuit lower
bounds of Buhrman et al. and of Santhang14).

The second result gives an interactive compression scher®sii'”, which cuts the size of a formula
from n to n¢, for an arbitrarily largel and a fixed:, as long as thé-gates have fan-i)(n) in the original
formula. (The round complexity of the interaction dependsignThe verifier in the interaction need not
have oracle access g in fact L may even be undecidable as far as the verifier is concerned.

Theorem 13(CompressingdSAT). There is a functiors(m,n) € poly(mlogn) such that the following
holds. There is an interactive reductio§2(5) that for every languagé, maps instances @SAT<m of
sizen, to instances oSATL<m of sizes(m,n), for everym, n.

This holds relative to every affine oracle.

Theorem13 is used in deriving Shamir'sP theorem (Sectiord.2) with a new streamlined proof of that
result.
We also derive two auxiliary facts that will be useful in the sequel:

Proposition 14. A — &SAT® for every languag® and its affine extensioA.

Proposition 15. For every functionR € FP there is a functionk?’ € FP such that the following holds. If
R is a Cook reduction§2.5) from some eligiblef to some eligibley (§2.11), then R’ is a reduction §2.5)
from ®@SAT/ to ®SATY that works over any Boolean bask2(11).

This holds relative to every language.

In the rest of SectioB.1we prove the four claims above.

3.1.1 Organization of the Proofs

We prove the above four claims, Theoreh#s13 and Proposition4-15, in four steps:

- In §3.1.2we define an arithmetic analogue®$ AT called+ASAT, and state several lemmas relating
the two (Lemmad8-21).

- In §3.1.3we derive Theorem$2-13 assuming Propositiorisd-15 and the lemmas of the first step.

- In §3.1.4we extenddSAT and+ASAT to expressions involving summatiowdthin the formula, not
just in front. We call these extensio@8SAT and-+*ASAT, respectively, and derive several facts
relating®*SAT, ®SAT, +*ASAT, and+ASAT.

- In §3.1.5we use the facts derived in step 3 to give the remaining proofs.
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3.1.2 +ASAT, an Arithmetic Analogue of $SAT

We now define an arithmetic analogue®$AT.

Definition 16 (Arithmetic basis) For every Boolean basi§Z.11) B, define thearithmetic basisB as the
set comprising all constants . for eachk, and f for eachf € B. By the standard arithmetic basis we
mean]§std whereB 4 is the standard Boolean basis.

As is the case with Boolean basé2.(1), when representing circuits (hence formulas) over extended
bases 2 Byq, We assume a generic labeling of gates — using labels such a¥"trenstandard element’
— so that a given circuit can be interpreted over different bases.

Definition 17 (+ASATY). For every Boolean basi® and eligible f (§2.11), define+ASAT/ as the
Boolean version§2.16) of the map®(¥) — > ;®(a), where® denotes a formula over the arithmetic
basis corresponding tB U {f}, that has all its constants if,. for somek. By defaultB is the standard
basis andf is the all-zeroes language.

We index §2.13 +ASAT by n andk, and write the corresponding membergsASAT,,; heren upper
bounds the number of nodes in formdlaandk denotes the field',. where the constants df reside.

For our purposes (to become clear in the proof of Len®ave requirek > log? n, i.e., if k < log?n
then+;,ASAT, behaves trivially, say by returnir@ We also require that each instancetgfASAT,,, say
involving the formula®, is represented such that each input nod@ tdkes up> & bits.

Four lemmas regardingSAT and+ASAT are used in proving Theoremg-13:

Lemma 18. ®SAT/ — @SAT’. The reduction works over any Boolean basis and any eligi{2.11).

Lemma 19. ®SAT — +ASAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis. In addition, the same reduction yieff$AT,, — +;,) ASAT for somek € poly log n.

Lemma 20. +ASAT — @SAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis.

Lemma 21. There is a functiop € poly(n) and an interactive protocol that yields the following:
i. +ASAT is same-length checkable.

i. +,ASAT <" reduces tc@SATijé"n;) for every languagd. and for everyk, m € N.

More generally, there is an interactive protocol where the verifier has oracle access capéjalBy, (
such that for every languag®, when the verifier is given acces2(8) to O, the protocol yields (i) and (ii)
for +ASAT® instead of+ ASAT.

We defer the proof of these four lemmasi®1.5

3.1.3 Proofs of Theoremd.2-13
We now derive Theorenis2-13, assuming Propositiorigd-15and Lemmad8-21.

Proof of Theoremi2. Let O be a language and its affine extension. We show th&SAT reduces, to
and from, some languadg that is same-length checkabk2(4) with oracle access2.7) to A. We also
show how this implies thabSAT* is itself checkable with oracle access4o

PutK := +ASAT®. We claim that

®SATA — +ASAT? (3.1)
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and that
+ASAT® — @SATA. (3.2)

To see the first claim, use Lemni& to get®SATA — @®SATY, and then use Lemm&9 with the
O-extended Boolean basi§(11) to get®SAT® — +ASATO?,

For the second claim, use Lemm@with the O-extended Boolean basis to geASAT® — GSAT,
and then use Propositidrd, together with the fact thaD Karp-reduces, hence Cook-reducesAtato get
BSATC — BSATA.

Now, by Lemma21, we know that+ ASAT? is same-length checkable with oracle accessltoBut
then®SAT is also checkable: On input, use the reductior3(1) to get an input:’ for +ASAT?, and
then simulate the checking protocol f6rASAT®, by using the reductior8(2) to translate each query for
+ASAT? to one for&SATA.

(Theoreml2, mod Propositiod5and Lemmad48-21)
O

Proof of Theoremi3. Let O, L be two languages. Led be the affine extension @. We are to show that
there is some(m,n) € poly(mlogn), and an interactive protocol with oracle accégs?) to A, that yield
the reduction

GSATES™ _, @gAT =™

s(m,n)’
over the4-extended Boolean basi§2(11) for everyn, m. Equivalently, recalling fron§2.14that we use
®SAT/I to refer to either of ®SAT/)9 and(bSATY)/ depending on context, we are to show

BSAT;"<" — SSAT, ="

over the standard basis, which is what we do now.
We have, over the standard basis,

GSATALsm — @SATOL<m — 4+ ASATOLs<m,

where the first reduction is by Lemmi& (with the L<,,,-extended basis) and the second by Leni®éwith
the basis extended 9 andL<,,). In fact, the same sequence yields

GSAT, =™ — () ASAT O Lsm

for somek € poly(logn). Now by Lemma21 (with the O-extended Boolean basis), there is a polynomially
bounded functiom, and an interactive protocol with oracle accesslidhat yield

+i(mASATOT<m — @SAT =
completing the proof when we putm, n) := p(mk(n)).

(Theoreml3, mod Lemmad48-21)
O

3.1.4 Extending®SAT to &'SAT and +ASAT to +*ASAT

We now extendDSAT and +ASAT to expressions involving summatiomsthin the formula, not just in
front. We give four definitions, two for extendir®SAT and two for+ASAT.

Definition 22 (bbs) For every Boolean basiB, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f (¢1..4m,) for everyy, ..,1b,, already let in, for every elementin the
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basisB defined onn inputs, for everym € N; (iii) @, for every already let in, for every free variable
of ¢. Call this the set oBoolean expressions involving binary sufnbs) over the basiB.

Definition 23 (&*SAT/). For every Boolean basi8 and eligiblef (§2.11), define®*SAT/ over the basis
B as the map) (%) — ©z1¢(d) wherey is a bbs oveB U { f}, with input variables. By default,B is the
standard basis anflis the all-zeroes language.

Definition 24 (abs) For every arithmetic basid, consider the set of expressions obtained inductively, by
letting in: (i) every variable; (ii)f(V,..V,,) for every ¥y, ..,¥,, already let in, for every element iA
defined onm inputs, for everym € N; (iii) Zye{(],l} ¥ for every ¥ already let in, for every free variable

of w. Call this the set ofirithmetic expressions involving binary sufabs) over the basid.

Definition 25 (+*ASATY). For every arithmetic basid and eligiblef (§2.11), Define+*ASAT/ over the
basisA as the Boolean versiof§Z.16) of the map¥ (%) — >~5z¥ (&), whereV is an abs oveA U {f} with

input variablesr, and eachw; ranges ovef0, 1}. By default, A is the standard arithmetic basis afits the
all-zeroes language.

We derive six facts relatinggSAT, ¢*SAT, +ASAT and+*ASAT:

Lemma 26. For every functionk € FP there is a function?’ € FP such that the following holds. R is a
Cook reduction {2.5) from some eligiblef to some eligibley (§2.11), thenR’ is a reduction from®SAT/
to @ SATY that works over any Boolean basis.

This holds relative to every language.

Lemma 27. ®SAT®SAT _, &*SAT. The reduction works over any Boolean basis.

Lemma 28. & SAT — +*ASAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis.

Lemma 29. +*ASAT — +ASAT. The reduction works over any arithmetic basis.

Lemma 30. +ASAT — ©SAT. The reduction works over any Boolean basis and its corresponding
arithmetic basis.

Corollary 31. &*SAT — ®SAT. The reduction works over any Boolean basis.

We now proceed to prove each of these facts in turn. Before we begin, we derive an auxiliary fact that
will be useful in proving the first two facts, Lemmaé and27.

Lemma 32. For every function? € FP there is a function?’ € FP such that the following holds. R is
a Cook reduction§2.5) from some eligiblef to some eligibley (§2.11), then for everyn, R'(1") gives a
formula&(z,y) over theg-extended Boolean basis such that
f(x) = ®y¢(z,y)
for everyz € {0,1}" Ndom f.
This holds relative to every language.

Proof. Let® be an arbitrary language, and Iete FP® be a Cook reduction from the partial languate
the partial languageg. By definition, this means there is sorie poly(n) such that for every: € dom f,

f(z) = R(z,z), wherez; = g(R(z,z21..2zi—1)) and|z| = £(|x]). (3.3)
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(For a general Cook reduction, we would use3r8[ an arbitrary languagg extendingg, instead ofy,
but recall from§2.5that Cook reductions atrongby default.)

By the Cook-Levin theorem§R.20 applied toR, it follows that there i/ € poly(n) such that for
everyn € N, there are circuit), .., Cg(n), each over th&-extended Boolean basis, such that for every
x €{0,1}" Ndom f,

/

flz) = Cg(n)(.’E,Z), wherez; = g(C;_,(z, z1..2z;—1)) and|z| = £(|x|),
and where

Ciy) = (Ci(W)1..|rw))»
the idea being to calculate the output lengthRfy) and trim the excess from the output@f(y) before
making any use of it. Notice that the function that calculates the output lengthi®fn FP®, because?
is. Hence by the Cook-Levin theorem again, eéltan be implemented by a circuit; moreover, each such
circuit can be produced by a functionitP® given1™.
It follows that for everyz € {0,1}™ Ndom f,

f(z) = @ Ci(z,2) A /\i:1..£(zi = 9(01{71(337 21.i-1))

2€{0,1}¢

wherel denoted(n); further, the righthand side is produced by some functioRRY given inputl™.

The expression inside the sum is a circliitz, z) over theg- andO-extended basis, and can be equiv-
alently written as the sum,&(z, z, v) where£(a, v) checks that describes the computation 6f(a), and
v ranges ovef0, 1}° for somes € poly(size of E') C poly(n).

It follows that there is a function ift’ € FP? that, given inputl”, outputs a formulg over theg- and
O-extended basis satisfying

f(%) = @z,v §(, 2, U)
for everyxz € {0,1}" Ndom f. This was to be shen. O

Proof of Lemma&6. Supposef Cook-reduces tg. By Lemma32, there is a function irt'P that, given
a formula¢ over the basid3 U {f}, whereB is any Boolean basis, takes each subformula of the form
f(¢1..¢y,) and performs the replacement

f(@1..9n) — B, §(d1.-0n,y)
where¢ is a formula over the basBU{g}. This showsbSAT/ — @*SATY overB, for every basif3. [

Proof of Lemm&7. Let B be a Boolean basis for formulas. Given a formula) over the basisB U
{®SATP}, we want a reduction from the task of computiig$(z) to that of computing®.1(z), for
some bbs)(z) over B. We want the reduction to work for every choice®f

Intuitively, replacing each occurrence ®AT? in ¢(x) with the actual sum to be computed, would
constitute a reduction as desired. More preciselyFtetnulaEval® be the partial language that, on input
(t,u), interpretst as a formular over the basis3, and outputs(u), the evaluation of- onu. (In caser
has fewer inputs thaju|, let FormulaEval® outputr(u) only if the extra bits inu are set to zero, else let it
output zero. Also, in case(u) is undefined — which may happen if some nonstandard gateéteives
inputs out of its domain — then |&rmulaEval® be undefined oft, u).)

Each subformula i@ (x) of the form

BSATE (¢1..0m) (3.4)
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can be viewed as the sum
Dyue 0,1y FormulaEval® (¢1..¢p,, ) (3.5)

for each setting of, since the subformulag, (z), .., ¢,,(x) collectively describe a Boolean formuta with
<m input variables.
Now, FormulaEval? Cook-reduces to the basi more precisely, to the partial language

B : (i,z) — B;(x)

whereB; is thei™" element of the basi8. Notice that this reduction does not depend on what the lisis
is, provided we have a reasonable representation of formulas that uses generic labels for gated"— ‘the
nonstandard element’ etc. — which is the case by the way we set thing2d.in
It follows by Lemma32 that there is a function iR'P that, given inputl™, outputs a formulg"? over
the basid1B satisfying

FormulaEval? (a) = @, " (a,y) (3.6)

for every inputa € {0,1}™ on which the left hand side is defined. In case the left hand side is undefined,
then so is the right hand side.
If the basisB containsd elements, thefhl B can be written as

HUB(i,z) = ((i=1) A Bi(2)) & & ((i = d) A By(z)) (3.7)

where % = j’ is shorthand for the formula checks thats the binary encoding of the numbgr The
righthand side of3.7) is a formula over the basiB. Combining with 8.6), we get a function irF'P that,
given inputl™, outputs a formulg? over the basis3 satisfying

FormulaEval®(a) = @D, ¢B(a,y) (3.8)

for every inputa € {0,1}™.
It follows, from (3.5 and (.8), that there is a function if'P that takes each subformula of the form
(3.4), and performs the replacement

®SATB(¢1¢W) = @u,y fB(¢1-~¢ma u, y)
proving ®SAT®SAT _, ¢*SAT. The reduction works over any choice of the ba3is O

Proof of Lemma&8. Given a bbsp over any Boolean basiB, let ® be its “arithmetization”, obtained by
replacing each non-input gafein ¢ with its affine extension polynomi@ﬁ, and by replacing each mau-
sum with a generic sum so that a subexpressian affthe form@y€{0,1}¢’ becomes” yG{OJ}(PI'
Becausq?agrees withf on Boolean settings of its inputs by definitidi2(17), it follows that¢ agrees
with ® on every Boolean input. And because we repreBgntsk-bit vectors §2.16), computing®z (&)
reduces to computing the least significant bitgf® (&) overFy: for any k, where eachy; ranges over
{0,1} in both sums. The transformatiah — ® works over any choice of a basis, provided we have a
reasonable representation of formulas, which is the cag@ iyt and Definition16. O

Proof of Lemm&9. Given an absl over any arithmetic basigl, we give a reduction that produces a
(summation-free) formul@ over A satisfying

U(z) =2y ®(x,y)
for every setting of inputs of ¥ overlF,, for everyk. Herey will be over{0, 1}"" for somem that depends

on V¥, and that is bounded by a polynomial on the siz&of
There is nothing to do i is just a variable or constant, So suppose not.
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If W(z) is of the formW¥, - U5, and if by recursion; is already brought to the desired fobty, @, (z, y),
and ¥, to X, P4 (x, 2), then the rest is easy: just make syrand z refer to disjoint sets of variables by
renaming as needed, and wnkg¢z) = >, . ®¢(z,y) - P2(z, 2).

In case¥ = ¥, + Vs, after recursing and renaming as before, write

(z) =, (Pi(z,y) -0 Tz + Po(z,2)- (1 -0) iy;),
whereb is a single variable.

In caseV is of the formf(¥,,.., ¥,,), wheref is a nonstandard basis element, use the definitiqﬁlof
(82.17) to rewrite W as

V(@) = 324, ., F b1 bim) - Tl (L i) + b2), (3.9)
then recurse into the product on the right side, and then finish by going to the firsticas@,; - ¥,.
The reduction works over any choice of the badisprovided we have a reasonable representation of
formulas, which is the case B2.11and Definitionl16. O

Proof of Lemma&0. Given a formula®(z) over any arithmetic basid, and given?, we show a reduction
from finding the/™ bit of >,®(z), to evaluating the mod-sum @.$(z) for some formulap over the
Boolean basis corresponding o

__ To begin with, let us assume thdtis the standard arithmetic basis so that there are no nonstandard
f-gates in®, in other words, tha® is aF,.-polynomial for some:. By the way we represeiit,. (§2.16),

there is a Boolean circuff' (X') that takes as input/abit vector X ; corresponding to each inpus of ®(x),

and outputsk bits representing the valug(x). C can be produced by some functionHi® given®.

Because the original task is to find tH& bit of the sum>,®(z), and because addition I, corre-
sponds to componentwise additionT¥, we can ignore all output bits af' except the/™ one. Further,
because the summation variablggange over binary values, we can fix in eaXhall the bits to0 except
the least significant bit, which we can call. So we now have a circu(x) returning the/™ bit of ®(x)
for everyzx from the Boolean domain.

It follows that the/™ bit 3=, ® () equals®, ,é(z, y), wheres is the formula verifying thay describes
the computation of the circud on inputz. This proves the lemma whetis the standard arithmetic basis.

Now suppose thab containsf-gates for an arbitrary. Mimicking the above reasoning for the standard
basis, we want to express the evaluationbohs a Boolean circui€’ over the f-extended Boolean basis.
Once this is done, the rest follows as in the earlier case witfrgates.

Perform the process, explained in the proof of LenzBgust above, of bringingp to prenex form —

a seemingly useless thing to do@sloes not involve sums. But notice fror.9) that as a side effect, the
process transforms the summation-fige:) into the sum>= 5 @'(z, B), where eaclf-gate in®’, say the™
one, is isolated in the sense that its inputs now come from g&me., B;,,, among the variables, which
all range over Boolean values. Sinfeagrees withf on Boolean inputs, now thﬁgates can be replaced
with f-gates.

It thus follows, with the same reasoning as earlier, that/thdit of > »®(x) — which is the same
as the/™ bit of ©, p &' (x, B) — equals®, 5 ,¢'(z, B,y), where¢' is a formula over the Boolean basis
corresponding to the basis of

The reduction works over any choice of the badisprovided we have a reasonable representation of
formulas, which is the case I§2.11and Definitionl6. O

Proof of Corollary31. Immediate by chaining together Lemni2&; 29, and30. O
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3.1.5 Finishing up — Proofs of Propositionsl4-15and Lemmas18-21
We finish up Sectio.1 by proving Propositiond4-15and Lemmad.8-21.
Proof of Propositioril5. Immediate from Lemma6 and Corollary31. O

Proof of Lemmé.8. Being the affine extension ¢f, by definition §2.17), on inputz, f gives thezt" bit of
the valuef takes at/, wherey andz are computable ifrP givenz. In other words f gives thet+ ASAT/
instance(®, z) where® is the formula Fly ). Thus f — +ASAT/. Combining with Lemma20 gives
f — ®SAT/. Therefore,

®SAT! — @SAT®ATY _, g#SAT! — @SAT/

by Propositiornl5, Lemma27, and Corollary31, respectively. The composite reducti®S AT/ — GSAT/
works over any choice of a Boolean basis since each constituent reddotisn O

Proof of Propositiori4. Let O be a language. The evaluation®fon a given inputr can be expressed as
the formula ~(’3(9@)’, which is a®SAT? instance (with no free variables). By Lemr@, there is a reduction

from ®SATC to ®SATC. Putting together) — ®SATC. O
Proof of Lemmdl9. Immediate from Lemma&8 and Lemm&R9. O
Proof of Lemm&0. LemmaZ20is identical to Lemm&0. O

Proof of Lemm&1. LetO be alanguage, and I&be theO-extended Boolean basis. Giveh, ), consider
the task of computing-ASAT? (®, £), i.e., computing thé™ bit of >, ®(x), where each; € {0,1}, and
® is a formula over the arithmetic basis correspondingtahat has all its constants iy, for somek.

We show an interactive protocd]d.4) where the verifier has oracle access capabi§®/g), such that
when given acces$Z.9) to O, the protocol performs this task. Further, the protocol we give will show that
+ASATY is same-length checkabl§g2(4), proving part (i) of the Lemma. Later we will amend the protocol
to derive part (ii) as well.

Here is the protocol (to be later amended for part (ii)):

1. The verifier asks from the prover dllbits of the sum>,®(z). By responding to this request, the
prover implicitly makes the claim>™,®(x) = u’ for someu € F,. If the ¢ bit of v is 0, then there
is nothing to be done; the verifier outpwsit this point.

2. The verifier and the prover perform the sumcheck protdchld3.2] overF,«, and replace the claim
with a new one, of the form®(y) = v’ for somey, v over thesamefield as that ofz, .

3. The verifier asks from the prover the value of each gate in the evaluatibypf— i.e., the value of
each subformula ob, when evaluating® ony — and checks all of them to see if they are consistent
and if indeed®(y) = v. If all checks pass then the verifier outpuits

Notice that all of the responses of an honest prover can be obtained by &84T on formulas of
size exactly the size ob. (Formulas smaller tha® can always be appropriately padded; the point is that
no larger formula needs to be used.)

The analysis of the protocol is standard: if the original claim, that/théit of >, ®(z) equalsb, is
false, whereb has<n nodes, then the sumcheck erroneously yields a true claim with probability at most

# of rounds deg @ / size of the field

which grows slower than /n? for any d, due to the requiremerit > log? n in the definition of+ ASAT
(Definition 17). This proves part (i) of the lemma.
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For part (ii), letL be a language, and let € N. Consider extending the badisfrom part (i) with L<,,,
(§2.2). (SoB is now the standard basis extended witland L<,,,.) Given @, ¢), consider the same task as
in part (i), of computing the! bit of >, ® (=) where® is over the arithmetic basis correspondingzo

Modify and amend the protocol from part (i) as follows. For convenience, leftindenotel <,

3. The verifier asks from the prover the value of each gate in the evaluatidfyof and checks all of
themexcepthose forM. If any of the checks fail, then the verifier outpatsif there is no]\?—gate,
then there is nothing left to do; the verifier outpiits

4. The verifier and the prover perform the interpolation technique from the LFKN prot86hl tb
combine multiple claims of the form/\f(z) = w’ into a single one, for each distinct input length,
as follows.

For every pair of cIaimsﬁ(d’) =v’and ‘ﬁ(ﬁ) — w’ whered, [ € IE‘;k for somei < m:

a. Lett € F, [z] be the line that passes througrandj, i.e., let

t(x) = a+ (3 —ad)z.
Then the pair of claims can be rewritten a/zfét(o) =" and ‘]\701&(1) =w'.

b. The verifier asks from the prover the univariate polynom/%dt, and receives some polynomial
@ as response. The verifier checks mﬁ(o) = and@(l) = w, and output9 if either
check fails.

c. The verifier picks arandome .. and replaces the pair of claims with the single claj?h(‘t(p)) =
Mot(p).

5. Reverting back to usinf<,, instead of)M, at this point the verifier has at mostclaims of the form
‘Eik (¥) = ', wherei < m, regarding the value of overFy:. These claims can be expressed as
the conjunction of at most:k claims regarding the value df, of the form ‘ff (7,7) = y;’» where
i < m andj < k. This conjunction is a formula over the standard Boolean basis extendﬁg,py
hence is @SATL<m instance, of size polynomial imk. By Lemmal8, it can be transformed to a

®SATE<m instance of size polynomial imk. The verifier performs this transformation and outputs
the result.

Notice that as in part (i), all of the responses of an honest prover can be obtained by ASAF® on
formulas of size exactly the size & (Formulas smaller tha® can always be appropriately padded; the
point is that no larger formula needs to be used.)

The analysis of the protocol is again standardp iias< n nodes, then Step 4 takesn claims of the
form ‘fi(z) = w’, wherei < m, and merges them into fewer claims; the probability that there is an error
in this merging process, i.e., the probability that all of the merged claims are true, assuming some original
claim is false, is at most

~

# of merges deg(L,, o t) / size of the field

which again grows slower thain/n? for anyd, becausen < n and becausg > log? n by the definition of
+ASAT (Definition 17). This finishes theroof. O

3.2 ThelP Theorem

In this section we show that Shamif® theorem,PSPACE C IP, affinely relativizes. (By§1.1.5 it
follows that thelP theorem does not havepaoof that affinely relativizes.) As a byproduct we obtain a new
streamlined proof of this result; see Sectibffor an overview and comparison with previous proofs.
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The proof is a straightforward consequence of the results in Segtiam ®SAT. We show:
Theorem 33. Every downward-self-reducible language idln This holds relative to every affine oracle.
Proof. Let A be an affine oracle. Suppose that the language {L,},_, is downward-self-reducible with
oracle access td (§2.7), i.e., that there is a Cook-reductiof2(5) R € FP that yields
Lgn B Lgn—l
for everyn > 0. By Propositionl5, there is a reductio®’ € FP that yields
OSAT <n — @SATL<n—1 (3.10)

for everyn € N. Here and throughout the rest of the proof, we take thextended Boolean basis for
@SAT, and usebSAT <~ to denotedSAT.
Repeating 3.10 and combining with Theorerh3, we get a two-step reduction

(@SATE=n-1) 4 — (BSATI=n-2) , — (GSATF<n-2) (3.11)

for everyn, for some large enough constadts!’ wheren’ denotes:’ + i (in particulard must exceed the
exponent hidden in thpoly(-) notation of Theorem 3). We also have the trivial reduction
Ly, — @SATE<n (3.12)

since the task of computinf(«) reduces to the task of evaluating the formuldc)’.
Now consider the reduction that on inputo L, first applies the reduction irB(12, and then fom
iterations, applies the reduction sequenceii]). This composite reduction yields

L<, — ®SAT

nd

for everyn € N, hence it yieldd. — ®SAT.
By Theoreml12 on checking®SAT, it follows that L. is computable by an interactive protocol with
oracle access td. O

By its very definition §2.3), PSPACE has a complete language that is downward-self-reducible sSAT
(82.19, a.k.a.TQBF — and this holds relative to every language. Hence we have:

Corollary 34. PSPACE c IP. This holds relative to every affine oracle.

3.2.1 Aside: strong relativization

Corollary34allows, for example, to have a different interactive protocobQiSAT for each affine oracle

A. But if we unwind the proof of that result, we can see that there is essentially one interactive protocol,
more precisely, there is one interactive protocol where the verifier has oracle access cagatjisuch

that when given acces§2.8) to A, the protocol computes, SATA.

Capturing this sort of phenomenon can be useful. In fact in Se@ti®below, we give a streamlined
proof of NEXP C MIP that uses exactly this.

So let us make a definition. Recall that we i§&* to capture the notion of a polynomial-time oracle
Turing machine {1.1.1, §2.8). Here we want to capture a variant notion: we still have a polynomial-time
oracle Turing machine, but now the oracle access mechanism is altered so that instead of what is on the
oracle tape, say the language it gives@, the affine extension of what is on the tape.
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Definition 35. (FP*) Define the clas&P* — FP with affineoracle access capability — as the set of all
functions of the form

fF:(0.2) = (O, )
wheref* € FP*.

All definitions built onFP (§2.3-§2.6) naturally generalize to their affine-oracle-access-capable versions:
NP to NP*, IP to IP*, and so on. Corollar@4 can be strengthened thus:

Theorem 36. PSPACE* C IP*.

We do not state TheoreB6 as a corollary because it requires an examination of the proofs leading to it.
To rephrase this result in terms Bf_SAT, define the function

SLSAT* : (O, p) — S,SATO ()

as the natural generalization &, SAT (§2.15 that takes as input a language and a formulap, and
computes, SAT () by interpretingp over theO-extended basis. Notice that SAT* € PSPACE™. In
fact, for everyL* € PSPACE*, there is somé? € FP such that

L*(O,z) = ¥ SAT*(O, R(x))
for everyO, x. ThusX _SAT* is PSPACE*-complete.
Now define
SLSAT? ¢ (O, ¢) — $,SAT*(O, )

as the variant ok, SAT™ that, given the formulg and the languag®, interpretsy over theO-extended
basis, and computes,SAT(¢). Then Theoren36 says

Y..SAT* € TP .

3.3 TheMIP Theorem

In this section we show that tiéEXP C MIP theorem of Babai, Fortnow, and Lundll] affinely rela-
tivizes, if it is viewed as a gap amplification result as mention€gili (and explained below i§3.3.2.

To begin with, how do we even defibéIP? Typically, this would be done via Turing machines equipped
with communication tapes. Since our approagh32.6) builds exclusively orF'P, we must find another,
more robust definition foMIP.

Fortunately, such a definition already exists; we recall it in the next seciB.[). After that, we
introduce theMIP theorem from the gap amplification perspecti§@.8.2, and then prove it§3.3.3. Then
we prove why theMIP theorem affinely relativizes when viewed as a gap amplification refiB.¢4), and
then contrast the ordinary view of tRdIP theorem to the gap amplification view3(3.5. We finish by
giving some deferred proof§3.3.9.

3.3.1 DefiningMIP

Recall thatlP is defined §2.4 and the remark on perfect completeness therein) as the set of all landuages
such that

L(z) =1 = Ay1Mz1 - Ayy(iz) M2y V(z,9,2) = 1
L(z) =0 = Ay1 Mz1 - Ayy(a)) M2y(epV (2,9, 2) < 1/3
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for someV € P andt € poly(n), whereAzp(x) denotesE, [p(z)] andMzp(z) denotesnax, ¢(z).
Fortnow, Rompel, and Sipser gaw] a similar definition forMIP. We paraphrase:

Definition 37 (MIP). MIP is the class of all languagdsfor which there existd’* € P*, ¢t € poly(n), a
languager, such that for every string and language’

L(z) =1 = Ayi1 Mz1 - Ayy(iz M2yop) V7 (2,9, 2) = 1

L(x) =0 = Ay1 Mzq --- Ayt(|x|) Mzt(m)V’T' (m,y, Z) < 1/3

wherey;, z; are quantified ovef0, 1}.
In words, L is computable by an interactive protocol where the verifiérthas oracle access capability
(§2.8) such that:

i. whenV* is given access@.8) to «, the protocol computes, or in short,L, € v-gap-IP™,
ii. V*isrobustto its oracle, in the sense that even if some other oradaised instead of, VV* accepts
with probability less than /3 wheneverL(x) = 0.

Intuitively, L € MIP iff L has an “interactively checkable proof system”:Lifz) = 1, then there is an
exponentially long proof string, that a verifier can check by interacting with a prover. (In the definition
above we assemble all such proofs into one languager, i) — m,(7).)

3.3.2 The gap amplification perspective

Consider generalizingP® andMIP as follows.

Definition 38 (y-gap-IP, v-gap-MIP). Let~(n) = 1/x(n) for somex : N — N. Define:
- ~-gap-IP as inIP (§3.3.1), except by replacing the constant3 with 1 — ~(|x|)
- v-gap-MIP as inMIP (§3.3.1), except by replacing the constant3 with 1 — ~(|x|).

By definition,2/3-gap-IP = IP, and0-gap-IP = PSPACE (§2.6). So Shamir'dP theorem (Corollary
34) can be restated @sgap-IP C 2/3-gap-IP.
Similarly, 2/3-gap-MIP = MIP, and:

Proposition 39. 0-gap-MIP = NEXP.
So, similar to Shamir’'s theorem, the Babai-Fortnow-Lund reSiXP ¢ MIP can be restated as:
Theorem 40(MIP theorem) 0-gap-MIP C 2/3-gap-MIP.

We defer the proof of Propositidd® to §3.3.6 and proceed to prove Theoret@iin the next section.

3.3.3 Proof of theMIP theorem using thelP theorem

The proof becomes a straightforward consequence of Segtibthat thelP theorem affinely relativizes,
once a key ingredient is introduced. Namely, it is the seminal “multi-linearity test” of Babai, Fortnow, Lund
[11, Thm 5.13]. Here we combine it with a “Booleanness test” from the same phphé&i7[ 1] and a standard
decoding procedure for low-degree polynomials (ef.§7.2.2]):
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Proposition 41. There isW* € P*, r € poly(n), such that the following holds.
(In words, there is an interactive protocol with round complexit§§2.4) and with a verifierlV* that
has oracle access capabilit§Z.8) such that the following holds.)
For every languagéd, and for everyN € N, there is some affine oraclé such that for every <
{0,1}=N:
i Ay M2y - Ay Mz [WF ((2,17),y,2) = F(2)] = if Fis an affine oracle
i.  Ayi Mz Ay Mz [WE ((2,1Y),y,2) ¢ {F(2), fa|I =0, if Fis an affine oracle
iii.  Ayp Mzy - Ay Mz [WF ((2,1V),y, 2) ¢ {G(z),fail' }] < 1/N, otherwise
wheret :=r(n + N).
(In words, on inputz, 1), when the verifier is given acces®(8) to F': the protocol computes’(z)
if F'is an affine oracle, otherwise it compui§$x) with probabilityl — 1/N.)

We defer the proof to the end of this secti@B.8.9 and proceed to derive Theoretd.

Proof of Theorend0. Let L € 0-gap-MIP. By definition §3.3.9, there is a language andV;; € P* such
that for every language’,

Lia)=1 = V(@) =1
L) =0 — [Vf'(@)] <1,

where we us¢U (z)] as a shorthand foky; Mz1 - - - Ay,(|4) M2y U (2,9, 2) and suppres&(x), the num-
ber of rounds taken by the protocol.

(In words, there is @-gap interactive protocol where the verifier, 34§, has oracle access capability
(§2.8) such that wherVjj" is given access;R.8) to m, the protocol computes; in short,L € 0-gap-IP”.
Moreover,V; is robust to its oracle in the sense of Definit®n)

Take anyr satisfying 8.13. We may assume that is an affine oracle since every language Karp-
reduces to its affine extension.

By Theorem36, there isV}’, € P* such that

2/3
L) =1 = [V,() =1
Lie) =0 = [VI,()] <1/3.

(Inwords, there is @/3-gap interactive protocol where the verifier, 3gY,, has oracle access capability
such that when given accessrtpthe protocol computes; in short,L € IP™.)

So all that remains to show, by Definiti@Y, is that out of allV}’, satisfying 8.14), there is a robust
one. l.e.,

(3.13)

(3.14)

Lz)=0 = [V7,(z)] <1/3 (3.15)

for every language’, for someV’; satisfying 8.14.
So take any;’, satisfying 8.14). By amplification, there i3/,

5/6
Lix) =1 = [Vi(x)] =1
L(z) =0 = [V,(x)] <1/6.

Now consider the protocol where the verifier behaves justllike except when issuing oracle queries;
at those times, instead of queryimgdirectly, say to retriever(X), it engages the prover to execute the
protocol of Propositiod1 on the input( X, 1), and rejects (output¥) immediately if that protocol results
in ‘fail’. The value of m will be worked out later. Since the verifier of the protocol in Proposiddris
denoted a$V*, let us us€V;,; o W)* to denote this new verifier.

€ P* such that
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By Propositiond1-(i), and because is an affine extension, we have
WX, 1™ =n(X)] =1
hence
L(z) =1 = [(Viys 0o W)"(2)] = 1.
Further, by PropositioA1-(ii), and again becauseis an affine extension, we have
WT(X,1™) # n(X)/'fail | =0
hence
L(z) =0 = [(Vsso W)™ (x)] < 1/6.

(In words, if we modifyV,’, so that it uses the protocol of Propositiéhto perform its oracle queries,
then this modification does not change anything when the oraglé is
All that is left to show is that

L(z) =0 = [(Vaso W)™ (2)] < 1/3 (3.16)

for every language’.
So let L(z) = 0 and letn’ be any language. Depending on whether or wois an affine oracle,
respectively, let denote either’, or the languagé; obtained from Propositiodl by putting /" := 7.
Starting from the very first protocol we mentioned by i.e. the one with the verifiev", and going
toward the last one with the verifiéV; , o W)*, we will now argue the validity of four implications

Liz)=0 = (@) <1 = V@) <1/6 = [(VssoW)"(2)] <1/6 = (3.18

which will prove the theorem.

The first implication is immediate fron8(13).

The second implication follows by Theore3s and byH being an affine oracle.

The third implication follows by Propositio#l-(i)-(ii) and by H being an affine oracle.

The last implication is trivial ifH = 7/, so supposél # «’. Then, by PropositioA1-(iii),

W™ (X,1™) # H(X)/fail ] < 1/m.

Hence, ifq := q(|z|) upper bounds the length and the number of oracle queries issued by the W&fjfier
during the execution of its protocol on any inptite {0, 1}1*!, then

(Vs 0 W)™ (@)] < [(Vajs 0 W)™ ()] + a/m,
because except with probability q/m, (Vs,s o W)™ either works the same d¥;,, o W), or rejects
(outputs0) becauséV™ outputs ‘fail’ at some point. Therefore, putting := 64 yields (3.16) as desired.
(If 7 € poly(n) denotes the query complexit§2.10 of V', andt € poly(n) the round complexity
(§2.4) of the protocol ofV%, theng := r(|z| + 2¢(|z|)) works.) O]
3.3.4 Relativizing theMIP theorem
With the MIP theorem (Theorer0) just proven, we now turn to showing that it affinely relativizes.

Theorem 42. Theorem40 holds relative to every affine oracle.

It is tempting to try to prove TheoreAR by merely taking the proof of Theored®, and then putting an
affine oracleA in the superscript everywhere we see a complexity class or a function in a complexity class.
This does in fact work, but we need to argue that the transformed proof goes through at every step.
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In particular, there are two points in the proof of Theo#bnvhere Theorem36is invoked. If we replace
FP with FP throughout the proof, then at those points we would be no longer be invoking Th&@6rem
which is a statement about classes built frBi*. Rather, we would be asserting the truth of a statement
about classes built frorff'P*)*, namely

(PSPACEA)* c (IPA)*, (3.17)

which does not seem a trivial consequence of Thed6éniThe rest of the proof of Theored0, however,
does clearly go through after the transformation. So all that is left to prove Thet#&mo show 8.17).

We now show howJ.17) follows TheorenB6. The lefthand and righthand sides 8{17), respectively,
are the class df-gap and2/3-gap interactive protocols (Definitid8B8) where the verifier/verdict predicate
(§2.4) is a function in(FP*)*. To parse what the latter class means, first notice(fi&t)? = FP?4 for
every pair of Iangyggeﬁ, q and their disjoint uniorp 1 ¢ (§2.18. Second, recall Propositiahl (§2.18),
thatFPP!'4 = FPPI4, putting together, it follows thaf"P-)* comprises functions of the form

FON (R ) o fOHR (@) (3.18)
where(Q is the language thatl is the affine extension of, and the righthand side is the evaluation of the
function that Cook-reduces t811 R via f in £ rounds §2.5), for somef € FP and/ € poly(n).

So what 8.17) says is, for every functiom‘ou* of the form (3.18), there is another functiogpu* of
the form @.18), such that for every language and stringe,

STTR () 51T 4y
FOUR@] =1 = [P @) =1 3.19)

IR <1 = (O TR ()] < 1/3,

where we usg¢U (z)] as a shorthand foky; Mz - - - Ayy (o)) M2y U (7, y, 2) for an appropriaté(z) rep-
resenting the number of rounds taken by the protocol.

So, to show 3.17), take any functiornyU* of the form @.18. This function is based on a function
f € FP and some round complexity € poly(n). Corresponding tgf and/, there is also a function
f* € FP*. Corresponding tg™*, there is, by Theorer®6, someg* € FP* such that
R) =1 = [gR(z)] =1
[ ()] g™ (@)] (3.20)
[[R(@)] <1 = [¢%(@)] < 1/3.
for every languag® and stringr.
Now, if we takeg*, and go in the opposite direction of the path we took frf)‘ﬁ{l “to f*, then we geta

functiongou* of the form @3.18. We claim that this function satisfie8.0(9. To see this, rewrite3(18 as

—

I (R.2) o (OLIR,2) o fOUR()

and notice that this is the composition of a simple injection withSimilarly

—_——

gOH* (Ryz) — (OUR,x) — gOHR(l‘)

is the composition of the same injection with. The claim now follows by 3.20).
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3.3.5 Gap amplification versus the standard view

The gap amplification perspective introducedsth3.2 broke theMIP theorem into two containments,
NEXP C 0-gap-MIP and0-gap-MIP C MIP. The second containment was shown$13.4to hold
relative to every affine oracle. We now show that the first one does not.

Proposition 43. NEXP C 0-gap-MIP doesnothold relative to every affine oracle.

Proof of Propositiord3. First, let us show an unrestricted langu#gé¢affine or not) such that
NEXP® ¢ 0-gap-MIP?. (3.21)

Initialize O to the all-zeroes language. LEf, V5", V5".. be an enumeration dt* (§2.9). For (i, j) :=
(1,1)...(c0,00), updateO as follows.

Consider thed-gap-MIP protocol with verifieer9 and round complexity:’ + j. Let L;; be the
language computed by this protocol. For all large enaugday for alln > n; ;, on every input: € {0,1}",
the value ofL; ;(z) would be unchanged if we modif§ at length2". Hence we may set

012"y := L; ;(1V)

whereN = 1+max(n; ;, N') andN’ is the value ofV in the previous iteration (in case there is no previous
iteration letN’ be —1).
It follows that under this construction f@?, the language

L(z) = 0(1?"),
which clearly is inNEXP?, is not in0-gap-MIP?, satisfying 8.21) as desired.
Now let A be the affine extension @ just constructed. We claim
NEXP? ¢ 0-gap-MIPA (3.22)
which, if true, would finish the proof sinc® reduces ta4 by definition §2.17), implying NEXP® ¢
NEXPA,
By PropositiornL4, A reduces tadSAT?. Further, being downward self-reducibieSAT?® € PSPACE?

(see Propositio’0 for a proof), and by Definitior88, PSPACE® ¢ 0-gap-MIP®. Putting together, we
get0-gap-MIP4 C 0-gap-MIP?, proving .22 asdesired. O

3.3.6 Deferred Proofs
We complete SectioB.3by proving Proposition89 and41.
Proof of Propositior89. Part (C). Let L € 0-gap-MIP. By Definition 37, there isV* € P*, t € poly(n),
a languager, such that for every languagé
L(l‘) =1 < Vy3z;--- Vyt(m)Elzt(WV”(x, Y, Z) (323)
L(l’) =0 = — (Vyﬁlzl .. vyt(\mDazt(\xDVﬂ/(‘r?y? Z)) (324)
wherey;, z; are quantified ovef0, 1}.
On inputz € {0,1}", view the righthand side oB(23 as a tree. The root level of the tree corresponds
to the variabley;, the next level tazq, then toy,, 22, and so on foRt(n) levels until the leaf level, where
each leaf node has a binary valUé€ (z, y, z) obtained by using andz to represent the root-to-leaf path

for that node. The value at a non-leaf node is obtained by recursively evaluating the children and then
aggregating, via either: (a) the maximum of the values, in case the node corresponds tg &aniable, or
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(b) the minimum of the values, in case it corresponds to sgmariable. The value of the tree is the value
of the root node, which equalsif L(z) = 1; otherwise, it ig.

This tree hasS(n) nodes, wheres = 22("), The value at each leaf node depends on the valuesabf
inputs of lengthp(n 4 2t(n)) or less, where € poly(n) is the query complexitys@.10 of V*. Therefore,
the entire tree depends only on the fifgin) values ofr, whereT' = 2°("+21(")) - Combining with 8.23
and @.24), we get

L(.%‘) =1 <= dvy:Vy;dz;-- Vyt(m)ﬂzt(m)vr(x, Y, Z) (325)

wherevy € {0,1}7(™ andT is the language whose characteristic string is formed by extenditogan
infinite string in some trivial fashion, say with all zeroes.
Notice that the function

(v, 2,9, 2) = V(z,y,2)

isinP. (Herew, z,y, z are, as before, of lengtfi(n), n, t(n), t(n) respectively.)
In fact, even the function

(77 1‘) = \v/ylzlzl t Vyt(n)azt(n)vr(xa Y, 2)

is in P because the righthand side corresponds to a treeSfith < 7'(n) nodes as described earlier.
It follows that 3.25 can be rewritten as

L(z) =1 < Fy e {0,1}7=DWw (z, )
for somelW € P. This implies that. € NEXP.

Part (©). Let L € NEXP. By the strong Cook-Levin theorer§Z.20), there is a circuit family{ C,,(z, y) }»
such thaC,, is of sizes(n) € 2P°¥(") and can be described by a function of the form

(n,i) — the type of theth gate inC}, and the indices of all gates connected todAgate (3.26)

that is inFP.

Givenz € {0,1}" andi € {0,1}°¢5(") let = (z, i) be the value of thé" gate inC,,(z,y*) for some
fixed y™ maximizing the output of’,, (z, y) over all eligibley.

Consider the following zero-gap interactive protocol to compute). The verifier has oracle access
capability §2.8), and when given acces$2(8) to w, behaves as follows:

(i) pick atrandom; € {0, 1}logs(n)1

(i) using the descriptor functior8(26) for C,,, find out that the™ gate is, say, of typg and is connected,
say, to gates; ..i,, in that order,

(iii) checkthatz = f(z1..2,), Wherez stands forr(z, 7) in general, with the special case being when gate
i is the output gate (thea = 1), andz; stands forr(x, i) in general, with the special case being
when gate;, is an input gate (them, = x; for an appropriatg).

This protocol is guaranteed to accepLifx) = 1. It will reject with nonzero probability i (z) = 0,
because the check at step (iii) has a honzero chance of being for the output gate Mbreover, when
L(z) = 0, even if some other languagé # 7 is accessed by the verifier, the protocol has a nonzero chance
of rejecting, because there is pdor whichC(z, y) = 1, hence there is ne’ that can describe an accepting
computation forC,, (z, -).

By Definition 37, it follows that L € 0-gap-MIP. This finishes theroof. O
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Proof of Propositiom1. Descriptionof the protocol. Lef be alanguage. The affine orad]eby definition
(§2.17), on inputz € {0,1}" gives thez™" bit of the valueL takes aty € F75, i.e

L) = (L), (3.27)

wherey, z, m, k are all computable if'P out of z, and are alk n. Conversely, givelty, z, m, k), an input
2 for which this holds is also computableiP.

The verifierW ¥ interprets the input as in 8.27), and extracts;, z, m, k. Sincek denotes the field
size, i.e. the logarithm thereof, and sinEg. can be efficiently identified irff,>», and moreover, since
k <n < N, the righthand side of327) can be viewed as

(Eﬁm)z (3.28)

whereY denoteg € F7; identified inF3%, andZ denotes the accordingly updated

Owing to this, W ¥ ovemdes(y,z m, k) with (Y, Z, m, N), andx with someX corresponding to the
latter tuple. For notational convenience, we will not capitalizend Z because they represent the same
information agy andz. Also, we will assume thalV > 10 log 2m; this is without loss of generality as we
can always havél’ " increaseV before overridingy, z, m, k).

After this initial adjustment phasé&l/f" proceeds into the main phase where the objective is to check if
F = L for someL. Let F,,.n denote the interpretation df on appropriate input lengths as a function of
the formL,. . The main phase consists of three steps:

Step 1. TestifF}, n is (multi-)affine:

- Pick at random an axis-parallel line, and three points on this line.
- Check if the valued",, y takes on the three points are collinear.

Step 2. Testiff},, » is Boolean on Boolean inputs:

- Pick at random up ten Boolean vectorsy, .., v; € Fiy
- Do a sumcheck protocol on the clalin= 3, 1 13 Q(b) where

Q) == Fun() (1 + Fnn() T2 (1 + (y,v5)) (3.29)

with (y,w) denoting the inner produdt , y,wy.
- Save the poing’ at which( is evaluated at the last round of sumcheck.
Step 3. Test for consistency:
- Pick at random a liné originating aty, i.e., let((t) := y + th for a randomn € F}, \ {0}.
- Letting (1), .., (m—+1) be a canonical choice afi+1 distinct nonzero elements ¥~
interpolate into a polynomiaj(t) the values of,,, y at¢((1)),..,4((m + 1))
- Check if F},, n(y) = ¢(0). Also checkF), n(y«) = q(t.) for a randomt, andy, := ¢(t).
- Repeat Step 3 also for the poifitsaved in Step 2, in place gf
We refer to L1, §3.2 and§5] for explanations of the terms ‘axis parallel line’, ‘sumcheck protocol’, etc.
If any of the checks fails, thel/ " outputs ‘fail’; otherwise, it repeats Step 1 - 3. This goes on for
T times, after which point?V " outputsF(X), i.e., thezt" bit of F n(y). With foresight, we sef” :=
em?In N, wherec = 8100. This completes the description of theotocol.

Analysis of the protocol. To begin with, note that' /" never outputs something besidE$X) or ‘fail’.
Thus, lettingoutput denote the output o/

for every prover,Prioutput ¢ {F(X),fail' }] = 0. (3.30)
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Parts (i) and (i) of the claim are fairly immediate. Indeed, suppdse L for some languagé. Then
all steps succeed with certainty, provided the prover acts honestly in Step 2. Thus
for some proverPrloutput = F(X)] = 1.
Also, F'(x) = F(X) in this case, because
F(z) = L(z) = Ly (y2) = Ly, (y2) = L(X) = F(X).
Putting together with3.30, we get claims (i)-(ii).

To proceed with part (iii), let us introduce a piece of notation. For functiingwith the same finite
domain, sayf is nearbyg, and writef ~ ¢, to mean

Pry[f(y) # 9(y)] <~

over the uniform choice aof from dom f = dom g. With foresight, we sef := 100%'

Also, let us call a function” : FJy, — F,~ affine, orm-affine, if it is the evaluation irF,~ of an
m-variate polynomial ovelf,~ with individual degree< 1.

For all functionsf : Fjy, — Fy~ and allm, there can be at most one affine function neafbglue to
the Schwartz-Zippel Lemma (see, e.@.,[lemma 4.2]) and the fact that < N.

We now define the languade claimed to satisfy part (|||) For evemyr € N, consider whether there
exists a Boolean functioh,,, : {0,1}™ — {0,1} such thatL, is nearbyF;, n. If yes, thenL,, is unique
by the previous paragraph; if no, then Igt, be arbitrary, say the all-zeroes map= {0,1}" — 0. Then
setG := L.

Now consider three cases:

(A). Fn N is not nearby any affine functioR : F}, — Fon.
In this case, by11, Thm 5.13 and;7.1] 1°

Pr[Step 1 passés< 1 — 1/(8100m°). (a)
(B). Fy, is nearbyL,,
SupposeF,, v disagrees wittL,, ony. Then by B, Proposition 7.2.2.111
Pr[Step 3 passés
< Prthe interpolated value df,,, ; agrees withf,, ; aty.,

but disagrees Witti,fz aty]

<27 +m/(2Y = 1)
<2/(9m). (b)

Now supposé-,, y does agree WitlIAL,fhbv ony. ThenF(X) = G(X) by the way we defined. Further,
G(X) = G(x) since
~ - ~N -

G(x) = L(z) = L, (y2) = L,, (y2) = L(X) = G(X).

1°To invoke [L1, Theorem 5.13] we set= 1/(900m*), § = 1/(900m*), and usgF,~ | > 900m®. In return we get an axis
i € {1..m} along which> e-fraction of lines would fail the test in Step 1 withd-chance, provided thdt,,, x differs from every
affine function or> ¢'-fraction of inputs, where’ < 1/(100m?).

7o invoke B, Proposition 7.2.2.1], we let := F,, ~, andB be the function that givefy, »), outputs the polynomiaj(t)
as described in the protocol. In return, we get that if there is a polynafifldegreed such thatPr, [f(y) # P(y)] = ¢, then
Pri e, [A(y) # ¢(0) yetA(£(t.)) = q(t.) ] < 2V + ziy.
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Putting together with3.30 we get, for every prover,
Proutput ¢ {G(z), fail' }] = 0. (b")

(C). Fy v isnot nearbyfnf, but is nearby some affine functign: F; — Fo.
In this case, by the way we defindg,, we know thatP is not Boolean on all Boolean inputs, i.e.,
P(F3') ¢ Fo.
Consider Step 2, in particular, the randomly picked pgint F, on which the expressio in (3.29
is evaluated at the end of the sumcheck protocol.fLbe the event thak},, y agrees with” on this
pointy’. Then just as in case (B), bg,[Proposition 7.2.2.1],

Pr[Step 3 passes—&]
< Pr[the interpolated value df,,, y agrees with?;,, ;- at Y.,
but disagrees witt aty/]

<2/(9m).

On the other hand, suppoSe Then at the end of sumcheck, the final claim, of the form
'w=Q(y) where Q(y) = Fnnu)(1+Fun®) Lz 1+ (y,v)
for somev € F,n, can be alternately written as
‘v=Qp(y") where Qp(y):= P(y)(1+ P(y)) L= (1 + (y,v;)).
Therefore, for every prover,
Pr[Step 2 passest] < Pr['v = Q(y')’ is a correct claim| &]
= Pr['v = Qp(y') is a correct claim &] = ()

where we just switched from a sumcheck involving the initial claim= ), Q(b)’ to one involving
the initial claim 0 = ), Qp(b)’. We are justified in this transition becausés a function purely of

' and the prover, with “the prover” being just a function fr@Aa™ to the univariate polynomials over
F of degreedeg (), that has nothing to do with the particulars@f Therefore

(¥) < Pr[penultimate claim in the sumcheck fér= >, Qp(b)’ is correct
+ Prllast sumcheck round erfs
< Pr[the firstclaim 0 = >, Qp(b)’ is correct + mp

where we dropped by independence, and where an erroneous round is one that takes an incorrect
claim and produces a correct one, witldenoting the probability of such a round taking place and

being the number of rounds. Because each round involves evaluating a given univariate polynomial of
degree< deg (2 at a random point it~ ,

p < degQ/2N < m(m +2)/210182m < 1/(500m?).
Now, applying Rabin’s Isolation Lemmaf, Theorem 2.4] to the sé¢ C F3' : P(B) ¢ Fy, we get
Prthe first claim 0 = >, Qp(b)’ is correct < 1 — 1/(4m),
and putting together we get, for every prover,
Pr[all steps pags= Pr[€] Pr[all steps pass&] + (1 — Pr[€]) Pr]all steps pass—£]
< max ( Pr[Step 2 passes€], Pr[Step 3 passes—£])
< max (1 —1/(4m) + 1/(500m®), 2/(9m))
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<1-1/(10m). (©)

This concludes the case analysis. Step 1 through Step 3 are refietiteds, which for our choice df’
makes all of §), (b), and €) at mostl /N, thus

Prloutput ¢ {G(z),fail' }] < (max{(a), (b), (0), (©)})T <1/N
asclaimed. ]

3.4 Lower Bounds against General Boolean Circuits

Using thelIP theorem and its variants, Buhrman, Fortnow, Thierdil pfnd SanthananB3P] succeeded
in obtaining the strongest lower bounds known-to-date against general Boolean circuits. In both results,
the lower bound is shown for a class of functions computable by Merlin-Arthur protocols; in the case of
Buhrman et al. it is for the clagdslAEXP (§2.6), and in Santhanam it is fggrMA, the extension of the
classMA (§2.4) to partial languages.

In this section we give a proof that unifies both results. We prove:

Theorem 44. For every constant,
(i) MAEXP contains a language that does not have circuits of éizﬁlogd”).

(i) prMA contains a partial language that does not have circuits of éize?).
This relative to every affine oracle.

The proof consists of three main ingredients. The first one shows that if the lower bound fails to hold,
then this failure scales @®SAT.

Lemma 45 (Scaling)
(i) If part (i) of Theoremd4 is false, ther®SAT has circuits of size?(QIOgd") for somed.

(i) If part (i) of Theorem44is false, ther®SAT has circuits of siz&(n?) for somed.
This holds relative to every affine oracle.

We defer the proof of Lemmé5to the end of this section.
To proceed with the rest of the proof it will be convenient to introduce a piece of notation.

Definition 46 (EgsATf(t)). Lett be a well-behaved resource boufg.(2), and letf be a language. Define
»3SAT/(t) as the set of all languagdsfor which there is a Karp reduction ©;SAT/ (§2.15 from the
language mappinge, 1104D) — L(z) and(z, # 102D — 0.

The second ingredient in proving TheoreW is a collapse result: if the conclusion of the Scaling
lemma (Lemma5) holds, then the polynomial-time hierarchy collapses. We defer its proof to the end of
this section.

Lemma 47 (Collapse) Lets be a well-behaved resource bouri@.(12.
If ®SAT has circuits of siz€(s(n)), thenX3SAT is in MA(s(poly n)).
This holds relative to every affine oracle.

The last ingredient of the proof is a classical result of Kanrgd, [showing circuit lower bounds for
¥.3SAT, and more generally foE3SAT(¢).
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Fact 48(Kannan's bound)Let s be a well-behaved resource bours@.(12.
¥3SAT(poly s(n)) contains a language that does not have circuits of 6iz&(n)).
This holds relative to every oracle.

With the three ingredients in hand — Scaling and Collapse lemmas, and Kannan’s bound — we can
prove Theoremi4. Let A be an affine oracle. For notational convenience, so as to avoid puttinghe
superscripts throughout, extend the standard Boolean basisAwihd letFP stand forFP* — hence let
P denoteP#, NP denoteNP+, and so on for all classes built &P (§2.3-§2.6).

For part (i), letC be the seMAEXP and puts(n) := glog” n: for part (i), letC be the sebrM A and put
s(n) == nf.

The proof goes by contradiction. We give the argument using notation.

C C SIZE(O(s(n)))
= ®SAT € SIZE(O(s(n))) (by Scaling lemma)
— Y3SAT € MA(s(poly n)) (by Collapse lemma)
= 33SAT(poly s(n)) € C *
= contradiction (by Kannan’s bound)

where step (*) follows from Definitio6 and the fact thak(poly s(n)) C poly s(n) for the particular
choices ofs(n).
What remains is the proof of the Scaling and Collapse lemmas.

Proof of Scaling Lemmalet .A be an affine oracle. For notational convenience, so as to avoid putting
the superscripts throughout, extend the standard Boolean basigiythd letFP stand forFP* — hence
let P denoteP4, NP denoteNP+, and so on for all classes built &P (§2.3-52.6).

There is nothing to prove in part (i), becaus®®AT instance of size is computable by brute force in
deterministic timexxp n - poly n, implying @SAT € EXP ¢ MAEXP.

For part (i), suppose that every partial languagerMI A has circuits of siz€&(n?) for some fixedi. We
want to show tha®SAT has circuits of siz@oly n. By Theoreml2, @SAT reduces to some same-length
checkable languagF, so it suffices to show this faK instead okbSAT.

So letK beanysame-length checkable language, and suppose towards a contradictiindbas not
have polynomial-size circuits. Laet: N — N be such that(n) is the size of the smallest circuit deciding
K oninputs of length, for everyn. By assumptions(n) is super-polynomial, i.es(n) >io. n* for every
constant:. Note thats(n) might not be well-behaved?2.12).

Consider the partial languag€’(zy) := K(z) that is defined only on inputs of the formy where
y € 01* serves as a pad of lengfl = | s(|z|)€ |, for some constant > 0 to be later determined.

Now consider the following protocol for computirfg’: givenzy, the prover sends the smallest circuit
for K on inputs of lengthz|, i.e. a circuit of sizes(|z|), and the verifier uses the same-length checkability
of K to computeK (z), henceK'(xzy). This takes, on an input of lengtl| + |y|, time poly s(|x|) C
poly s(|z|)¢ C poly(|z| + |y|). SoK’ is in prMA, and hence has circuits of sigkn?) by assumption. But
thenK has circuits of siz&(n + s(n)®)?, which is less thar(n) for infinitely manyn whenever < 1/d
because(n) is superpolynomial. But this contradict&n) being the smallest circuit size fdr. O

Proof of Collapse LemmaToda famously showedip] that
Y3SAT — @SAT

via a randomized reductioj4.5). His result holds relative to every oracle. (The same holds in general for
Y SAT for all constant:.)
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For notational convenience, so as to avoid puttihon the superscripts throughout, extend the standard
Boolean basis witt4, and letFP stand forFP“* — hence le® denoteP4, NP denoteNP+, and so on for
all classes built oi'P (§2.3-52.6).

If ®SAT has circuits of siz€(s(n)) for formulas of size:, then the protocol for computingsSAT, on
a formula of sizen, proceeds by the verifier doing Toda’s reduction to obtain a formula ofsizepoly n,
then the prover sending a circuit f&SAT at a large enough input lengtioly m, hence a circuit of size
O(s(poly n)), and finally, the verifier running the checker #86AT,,, (Theoreml2) on the circuit, in time
poly(s(poly n)), i.e. in times(poly n) sinces is well-behaed. O

3.5 TheZKIP Theorem

AW made the surprising observation that the famous theorem of Goldreich, Micali, and Wigdsisan,
ZKIP if one-way-functions existd7], can be proven via the same techniques underlyindhtheorem
[2]. Thisisin contrast to the standard proof of this result involving a graph-based construction, which seems
incompatible with the oracle concept.

IKK turned this idea into a complete proof by devising an indirect commitment scheme for this purpose
[30]. In this section we adapt this AW-IKK proof to our framework, to show thatARgP theorem affinely
relativizes.

Theorem 49(ZKIP theorem) NP c ZKIP if there is a one-way function iR secure againsBPP.
This holds relative to every affine oracle.

Similarly to previous work (AW, IKK), we take for granted that under the assumption of Thedé®em
there are bit commitment schemes asdi|][ and that this holds relative to every oracle. Also as in previous
work, we take an informal approach to zero knowledge, declaring some protocol as leaking no information
if, assuming a physical implementation of a perfectly secure bit commitment scheme (such as locked boxes
containing the commitments), the verifier's view of each decommitted bit, when dealing with an honest
prover, is either uniformly distributed, or deterministically computable by the verifier itself.

Idea. We can interpret the combined AW-IKK insight as follows. Fix a vector space over anyHield
We want a protocol where given a publicly known vectothe prover can commit to any vectorthat is
orthogonal tou, and the verifier checks thatL «, but learns nothing additional about

This can be realized by the honest prover committing to three things: (i) a random veéidrthe
vectorr + v, and (iii) the inner productr, v). Since a cheating prover may deviate, let usmse+ v, and
(r,u) to denote what is actually committed for (i), (ii), and (iii) respectively.

Sincev L wiff (v + r,u) = (r,u), the verifier picks at random one of the following two tests.

Test a. prover decommitsand(r, u), and verifier checks thdt, u) = (r, u).

Test b. prover decommits+ v and(r, u), and verifier checks thdt + v, u) = (r, u).

Any prover not committing to a vectar orthogonal tou is caught by al /2-chance in this protocol,
because then at least one equalityint- v, u) = (r,u) = (r,u) fails. On the other hand, an honest prover
reveals no information aboutsince the verifier's view of each decommited bit is uniformly distributed.

Following IKK, let us refer to the prover’s commitment to (i) and (ii) aboveaasndirect commitment
to v, and refer to the rest of the protocol from commitment to (iii) and onwards, asthogonality test for
v With respect tau.

This protocol suggests that given a circGit and given a satisfying assignmenof inputs toC, in
order to show that’ is satisfiable without leaking, all that an efficient prover needs to do is to commit,
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indirectly, to the transcript of the computatiof{x), to which the verifier then applies various orthogonality
tests.

Protocol. Initially let us not extend the standard basis; we will visit the case of an extended basis later.

The prover is given a circul® and a satisfying assignmento C'. Say the gates io' are indexed from
1..s, with s being for the output gate arid. N being for input gates.

Let F denoteF,. for a large enouglt, sayk = s. Let(1),..,(n+1) denote the firsk. + 1 nonzero
elements under some canonical orderin@ of

The protocol proceeds in two phases: In the first phase, for each fragm@nofrthe form

i = f(g1--9n), (3.31)
meaning the gate indexéd> N is of type f and receives its inputs from gates indexedg,, in that order
(wherei > N because there is nothing to check for input gates), the honest prover codirsitfly, to:

e arandomly picked nonzero vectbre F",
e letting z; ..z, be the values of gates..g,, in computingC(x), and/ be the line/(t) := zZ + thinF,
the vectorg((1)), .., £((n+1)),
andindirectly, to:
¢ the coefficients, .., ¢, of the polynomialfoé(t) = cpt"™ + .. + co,
e the evaluationgol((1)), .., fol((n+1)) of the polynomialfo(t).
Also in the first phase, the honest prover commiitdjrectly, to:
e the valuev; of each gate in the computatior” ().

This ends the first phase. Notice that there is no need to commit to the coefficadithe polynomialfoé(t)
for any fragment, becausgsg is supposed to equal the valugof gatei for the fragment3.31).
Because a cheating prover may commit to other values than what he is supposed to, let us use

By £((1)), o £(n+1)) €1, s €y fOU((D)), -, fol(n+1)) (3.32)
to denote the commitments for each fragment, and let us use
Y1, -3 Ys (3.33)

to denote the commitments for the purported values., vs of the gates in the computati@ri(x).
In the second phase, the verifiérpicks at random a fragment ifl, say the fragment3(31) — call it
the" fragment — and then picks at random one of the following tests:
1. letting/(t) be the line(t) := Z + th wherez = yg, ..y,, ,
check{(j) = ¢(j) for a randomly picked € {(1),.., (n+1)}

2. checkfol(j) = f(£(4)) for a randomly picked € {(1),.., (n+1)}

3. Iettingﬂ(t) be the polynomiat,t™ + .. + c1t + co, wherecy = y;,
checkﬂ(j) = fol(j) for a randomly picked € {(1),.., (n+1)}
4. checkh is nonzero

In case gateé is the output gate, thewi in addition does:
5. checky; = 1.
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Intests 1, 2, 4, and 5, the prover completely reveals the relevant information; notice this means decommitting
to two bits for each bit committed indirectly. Test 3 is an orthogonality test.faith respect ta:, where

w=fol(j) cu...co and u=1 j"...j°

so if this test is selected, then the honest prover in addition commiis ), wherer is the vector formed
by putting together the random values sent during indirect commitmerftgtg), c,, . . . , co respectively.

Analysis. The completeness of the test is clear. As for soundness, supposg thaiot a satisfiable
circuit. Then the committed values iB.83 satisfy either of the following:

(&) There is a fragment of the for.81), for which the equality

Yi = f(ygl"ygn)
fails, or

(b) the reported value of the output gate is wrong, g+ 1.
Since there are at mostfragments, with probability> 1/s, the verifier picks an erroneous fragment
for which either (a) or (b) holds. Once picked, case (b) is detected with certainty in Test 5. As for case (a),
consider the values among those 332 committed for this fragment. Adopting the notation of the second
phase of the protocol, either of the following subcases must hold:

(i) the vectorn is zero, or
(i) there is somg € {(1)..(n+1)} for which one of the equalities

fot(G) = J(U9)) = Jot(§) = Jot(s) (3.34)
fails,
because otherwis@(t) would be the polynomiafoﬁ(t) and we would have

Yi = M(O) = fol(0) = f(yg1-~ygn) = f(yg1--ygn)~
contradicting that we are in case (a).

The verifier detects case (i) with probability1/4 (conditioned on having picked an erroneous fragment
in the first place). As for case (ii), with probability 1/(n + 1), the verifier picks an offending, and
depending on which of the first/second/third equalitydr8@) is violated forj, Test 1/2/3 fails respectively,
with (conditional) probability> % for Test 3 and probability for Tests 1 and 2.

It follows that if the circuitC' is not satisfiable, then the verifier rejects with probabilityl /s2, where
s is the number of nodes @f. Repeating the protocol from scrat2k? times brings down the soundness
error tol/3.

Finally, the protocol is zero-knowledge, because each test that passes reveals a value that is either uni-
formly distributed, or is deterministically computable by the verifier itself.

Extended basis. We now generalize the protocol to handle drextended Boolean basis for an arbitrary
affine oracleA. The idea is that the above protocol, over the standard Boolean basis, generalizes to a
protocol over the standaatithmeticbasis (Definitioril6), where each gate in the given circuit is a function
of the formF™ — T rather than{0,1}™ — {0, 1}. This is because all the values committed by the prover
are already ir¥, or over{0, 1} which can be taken as a subseffofvith no change to the protocol.

Therefore, given a circuit’ over the A-extended Boolean basis, all we need to do is to transtoro
an appropriate arithmetic circui2. We now explain how to do this transformation.
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Let O be the language that is the affine extension of. By definitioiZ.17), on inputz € {0,1}", A
gives thez!" bit of the value® takes aty € Fo,ie.,

A() = (On(w)) (3.35)

wherey, z, m, k are all computable if'P givenz. Conversely, givery, z, m, k), an inputz for which this
equality holds is also computable kiP.

Sincek denotes the field size, or the logarithm thereof, and sifigecan be efficiently identified in
Fy>, (3.35 can be viewed as

Alz) = (@nff (Y))Z (3.36)

forany K > k, whereY denotesy identified in[F.;, andZ denotes the accordingly updated
It follows that given a circuitC' over the A-extended Boolean basis, a functionH® can take each
A-gate inC, say

A(g1--9n), (3.37)

whereg; denotes the index of the gate that is connected te®heput of A, and replace it with
O, (Y (g1.-9n 3.38
( m(Y (919 ))Z(gl_gn) (3.38)

whereY andZ are now overloaded to denote the circuit that parses its inps{y, z, m, k) of (3.35, and
then outputs the valués and Z of (3.36) respectively, for anys’ > k, in particular forK = s, the size of
C. Notice that writingZ as a subscript in3.39 is really a shorthand for the idea thatis implemented as
7(a,b) wheren (i, j) is the circuit that gives thg" bit of 4.

So the transformation af' is as follows.

e Perform .37 — (3.39.
e For everym and every standard gafg, with m inputs, replace that gate Wipﬁ,i.

The point of the second step here is to unify the treatment of the standard gates with nonstandard ones. In
the modified circuit, each gate becomes a funcith— T for somem, whereF = Fos.

After the transformation, the original protocol carries through, provided the inputs and the output of
each gate are treated as ofeinstead of{0, 1}, and the prover is given oracle acce$a.7) to .A. (The
verifier does not need oracle accessitd This completes the proof of Theoret8.

4 Negative Relativization Results

This section shows that several major conjectures in structural complexity do not relativize affinely, mirror-
ing corresponding results of AW. (By Sectidnl, it follows that these results are impossible to settle via
affinely relativizing proofs.)

There are two main approaches to deriving such results: an interpolation approach, used for separations
of the formC ¢ D, and an approach based on communication complexity, used for containfnents.
Both of these approaches are constructive; they construct an eligible language relative to which the statement
in question is false.

The main novelty in this section, as mentioned in Secli@) is in the development of the interpolation
approach, which is then used to show tN&XP ¢ P /poly is affinely nonrelativizing. This is carried out
in Section4.1 The communication complexity approach is taken in Secti@n
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Besides these two approaches there is a third, reductionist method that is quite convenient to use when
the situation allows. To show that does not affinely relativize, we find a statementfor which this is
already known, and then show that the implication—- ¢’ affinely relativizes. We thus show that
is “no harder” to prove tharp, in similar spirit to the use of reductions in structural complexity. It should
be noted that in general, this approach cannot be used for the AW notion of algebrizing statements, as it
critically relies on the closure of such statements under inference. (However, the results we obtain using
the reduction method here can be obtained by AW via direct construction; the point of this method is not to
obtain oracles that cannot be found otherwise, but to considerably simplify the job — to recycle oracles, so
to speak.) Sectiod.3employs this approach.

4.1 Interpolation Approach

The classical approach to show tida¢” D does not relativize is to construct a langu&geelative to which

C C D holds. The strategy, vaguely, is to ha®egive more power t@ than it does t&, so as to mak®
containC relative toO. This is easy to do sometimes, as can be seen by té&kiad®SPACE, D = P, andO

to be anyPSPACE-complete language (we spell this out in Proposi@below). Typically, however, the
construction is more involved, and it was one of the main contributions of AW to develop an approach — the
interpolation approach — that enables such constructions in the algebrization framework. Their techniques
do not work for our setting, however.

In this section we develop the interpolation approach within our framework, using quite different tech-
niques from AW’s (see Sectioh.3.5for a comparison). Our key result here is Theorgf that affine
extensions enable interpolation. With that result in hand, we are able to import the ideas of AW to our
setting, and apply it to thBFEXP versusP /poly question; this we do in Secticghl.1

Before we proceed let us note, like AW did, that the easy fact regafliitACE and P mentioned
above carries over to our setting easily:

Proposition 50. PSPACE ¢ P does not hold relative to every affine oracle.

Proof. Every downward self-reducible (d-s-r) language isPBPACE. To see this, viewPSPACE as
0-gap-IP (§3.3.2, of languaged. computable by an interactive protocol where the error probability can be
arbitrarily close tal (but never equal to it) wheh(z) = 0. Now if L := {L,, } is d-s-r, then all that a prover
needs to give as proof that, (z) equalsh € {0,1} is the transcript of a computation involving queries for
L,_1; the verifier then picks one of the claimed queries, 8ay;(y) and thus reduces the task to one
involving L<,—1, and so on.

Therefore, being d-s-r, bothSAT and>_SAT (§2.15 are inPSPACE, as are their negationd®SAT
and—X_SAT. Moreover,>_.SAT is complete foPSPACE by the very definition oPSPACE (§2.3). All
these hold relative to every language.

Now put® := X_SAT and letA be the affine extension @. By Propositionl4, A — ®@SAT®. By
the fact thatbSAT € PSPACE holds relative to every languagd,c PSPACE®. By the fact that._SAT
is PSPACE-compIete,PSPACEO C PSPACE henceA € PSPACE. Therefore,

PSPACE# c PSPACE c P° c PA

where the second containment is becals&S AT is PSPACE-complete, and the last containment is be-
cause every language reduces to its affixtergsion. O
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We now move to the interpolation approach. The crux of our development is two coding-theoretic
ingredients. The first one states that knowingits of a binary codeword exposes at mediits of its
information word, and the second scales this result to affine extensions.

Lemma 51 (Interpolation) Let& : F& — F) be linear and injective. Given a “datawordii € FX and a
set of indicesA C [N], consider the collectio of all datawordsu’ € FX such that€ (u) and £ (v/) agree
on A.

There is a set of indiceB C [K], no larger thanA, such that projecting’ ontoG := [K] \ B gives all
of FS.

Proof. The claim of the lemma o is true iff it is true onU* := U + u. So it suffices to show thdf " is
a subspace dfX with dimension at leask — | A].

Now,y € UT iff y + u € U, which is iff £(y + u) and&(u) agree on4, which is iff £(y) vanishes on
A. ThereforeU* is identical to the space of all datawords whose encodings vanigh on

All that is left is to bounddim U, or equivalently, to boundim £(U™) since€ is injective. The latter
guantity is the dimension of the spa€en Z, where(C is the image of, and Z is the space of allV-bit
vectors that vanish oA. But then by the theorem on the dimension of a sum of subspacesAgeltn 1.4])

dim(U") = dim(Z) 4+ dim(C) — dim(Z +C)
=(N—-|A)+ K —dim(Z2+C)
which is at leasK — |A| becauseZ + C C FY . This finishes th@roof. O

Theorem 52(Interpolation) Given a language and a finite setd of inputs, consider the collectiaf of
all languagesy such thatf andg agree onA.

There is a seB of inputs, no larger tham, such that every partial Boolean functighdefined outside
B can be extended to somes F.

Further, in extending/’ to g, the values of at length+ inputs depend only on those gfat lengthn.

Proof. To begin with, consider the special case whdre_ dom(fmk) for some fixedk andm. For the
purpose of invoking Lemma&l, let £ be the map that takes as input the truth table of a Boolean fungtjon
onm bits, and outputs the truth table @f,. So& : FX — FY, whereK = 2™ andN = k2™ (to see the
value of N, recall thatj”. (y, z) gives thez™" bit of (), whereg}:, is the extension of,, to F25)-

Clearly € is injective; it is also linear becaugg, is additive, and because we represgépt with F5
where addition is componentwise (Sectign So £ fulfils the conditions of Lemm&1, which yields a
setB C {0,1}™ that is no larger thani, such that every partial Boolean function i 1} \ B can be
extended to a language JA. This proves the theorem in the special case.

To handle the general case, partitidrinto A,, , := AN dom(fmk), and use the above special case as
a building block to create a bigger code. In detail, for everynvolved in the partition, defin€,, as the
map sending the truth table gf, to the list comprising the truth tables @f} , 3,7, ... for everyA,, . in
the partition. Now, take each,, thus obtained, and |&t be their product. In other words, |€ttake as
input a listT,,,, T,,,, .. whereT,, is the truth table of some Boolean functigp, onm; bits, and outputs
Emi (Trmy) Ema(Tmy), -- - The theorem now follows from Lemmn&id. O

4.1.1 Application —NEXP vs.P/poly

With the Interpolation theorem (TheoresR) in hand, we are ready to derive the main result of this section:

Theorem 53. NEXP ¢ P /poly does not hold relative to every affine oracle.
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Proof. Itis a basic fact thaNEXP has polynomial-size circuits iffE (§2.6), the linear-exponential version
of NEXP, has circuits of size tixedpolynomial, and that this holds relative to every language. In notation,
for all language®),

NEXP® ¢ SIZE®(polyn) <= NE© c SIZE®(n¢) for somed € N.
Therefore, to prove Theoreh8, it suffices to show a languag satisfying

NE© ¢ SIZE® (n), (4.1)

for some constant because reduces ta.
Take an enumeratiotV;, N7 ,.. of the classNE*. Such an enumeration can be obtained from one for
NP* (§2.9), since by definition42.8, §2.6),

NE* = {L" : (3¢ € N, K* € NP*)(¥z,0) L*(0,z) = K*(0,2,1*")}.

We will want to talk about the query complexity of easl} in the enumeration. Underlying ead¥y*
is a constant € N and a functionk™* € NP*. Underlying K* is some/ € poly(n), and somef* € P* of
query complexity §2.10 ¢, say. Define the query complexigy, of K* asqs(n + £(n)). Define the query
complexityg; of N; asqx (n + 27).

The point of query complexity here is this: (O, z) = 1, then this equality can be maintained by
fixing only ¢;(|x|) bits of O and changing the rest arbitrarily.

Now, modify the list Ny, N1,.. into a list My, My,.. (repetitions allowed) such that #/; has query
complexityg;, theng;(n) < 278" for all n > 1.

Initialize O to the all-zeroes language. The plan is to modifyn such a way that for every > 1, a
sizen? circuit with access t@, sayC?, can compute the function

Ly : {0,138 5 {0, 13" — {0,1}
Ly : (i,2) — MP(2). (4.2)

This yields @.1), hence the theorem, because each languége NE® corresponds to somi/® (§2.9),
and in order to comput& (z) on all but finitely many inputs: (in particular forz € {0, 1}>2) we can just
provide (i, z) to the circuitq%, implying K e SIZE® (n%).

We modifyO iteratively; in iterationn > 1 we finalizeO on all inputs in{0, 1}§"d, plus some additional
24nlogn inputs at most. Leff,, denote the finalized portion @ at the end of iteratiom, i.e., f,, is the
restriction ofO to those inputs on which it is finalized by the end of iteration

In iteration1 we do nothing, sgf; : {A,0,1} — {0} where is the empty string. At iteration > 1,
consider all possible ways of extendiig_; to a languagef. Out of all suchf, pick one such that when
O = f, the collection

Sp:={(,x) : Ly(i,x) =1} (4.3)

is maximal. SetD = f.

Now we want to “open up space” ifiby un-defining it at some inputs, the idea being then to encode the
function L,, in the freed space so that a small circuit can look it up. In doing so, of course, we do not want
to disturb @.3), which, by the way we picked, is equivalent to wanting thal; does not shrink — i.e., as
we restrictf to somef’, no matter how we extenff back to some languagg we wantS, = Sy.

Consider a pai(i, ) in Sy. BecauseV/; has query complexity less thart'°s™ on inputz € {0, 1},
the membership dfi, z) in Sy can be preserved by fixinﬁon at mose™!°2™ inputs only. There are at most
n2" pairs inS;. Thus if we wantS; not to shrink, it suffices to fi>fat23” logm inputs. By the Interpolation
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theorem, this means we only need to reserve a small set of “bad” iBhutssize< 23718 beyond those
already reserved in previous iterations, i.e., beydma f,,_1, such that orB we have no control as to how
f behaves, but on the “good” inpuf8, 1}* \ (B Udom f,_1), we can chang¢ arbitrarily. So letf,, be the
restriction off to B U dom f;,_1.

Now that we opened up space finwe are ready to store the information #h2) so that a small circuit
can look it up. That information is the truth table of a functiono#m log n bits, so it suffices to havg?™ 108
bits available indom f,, for this purpose. Since there are at md%t'°¢™ bad inputs inf,, by the previous
paragraph, and since there are at nd&t—1)1°s(=1) inputs indom f,_, that are outsidg¢0, 1}<(»=D" py
induction, we know there are at ma¥*'°s™ inputs currently inlom f,, that are outsid¢0, 1}<(»~1" So
there is sufficient space iV, 1}"d for storage whe is large enough.

As for how to actually store the information, initially consider each input) to L,, as prepended with
zeroes until it becomes a string; , of lengthn?, and then sefn(Y(iz)) := Ln(i, 7). Of course this may
not work as some bad inputs may coincide with sdrfi,), but this can be handled simply by changing

the encoding ofi, z) to Y(; ) © Z for a suitably pickedZ € {0, 1}”d; suchZ exists because it can be
picked at random with non-zero probability (by a union bound on the event that some bad input coincides
with Y(; ) © Z for some(i, z)). This Z can then be hardwired to a circuit of sizé, as we wanted to do.

To finish, let f,, behave arbitrarily on the rest of the good inputs{in 1}§”d, and then accordingly

adjustf,, on the bad inputs ifO0, 1}§”d — recall from the Interpolation theorem that on a bad ingiytis a
function of how it behaves on non-bad inputs of same length. We have thus consifyersdesired. [

4.2 Communication Complexity Approach

AW show that one can take a lower bound from communication complexity, and use it to construct an
eligible language — an algebraic oracle in their case — relative to whighD holds, for an appropriai@
andD depending on the lower bound picked. Therefore, AW concldde,D does not algebrize.

In this section we develop this approach of AW for our framework. The key observation that enables
this is Propositiorl1 (§2.18), that the affine extension respects disjoint unions. With this in hand, we are
able to import the ideas of AW (and of IKK) to our setting, which we do in Secti@il

Remark.In order to avoid lengthy technicalities, in the rest of this section we will embrace the Turing
machine based jargon — running time, algorittatt,. O

Definition 54 (P vs. Piicc). DefinePyc. as the class of familieg := { f,,} satisfying the following. (i)
Eachf, is a Boolean function on pairs @f'-bit strings, (ii) There is a protocol involving two algorithms
My, My such that for alh and all( X, Y') € dom(f,,), the two parties/;* (1), M{ (1*) computef,,(X,Y)
in time poly n.

Let P.. denote the relaxation ;.. whereM,, M, are allowed to be non-uniform, and where only the
communication betweemly, M; is counted towards time elapsed.

UseP;jcc to defineNPyiq., BPPyicc, etc., similar to how we defin§P, BPP, etc., fromP.12 Similarly
for NP.., BPP,, etc., versu®...

The notatiorCy;.. is meant to indicate that time is measured on equal grounds with communication. A
function inD.. according to the classical definitiod] is defined on strings of every even length, while
Definition 54 requires length a power of two; our convention causes nothing but convenience in this section.

2Recall that definitions oBPP, NP, etc. involve some counting of the witnessesof a P-predicateL(x, w). Here, that
predicate would be of the fori( (X, w) , (Y, w) ) where|w| is polynomially bounded im for f,,, i.e., polylogarithmic in X|.
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We formalize the high-level idea of AW with the following generic theorem in our framework:

Theorem 55. If Ciice Z Dec, thenC C D does not hold relative to every affine oracle. HEré& can be any
class in the polynomial-time hierarch§2.3) containingP.

Proof. Supposing there is some:= {f,} in Ciicc \ Dec, We want to show an affine oraclé relative to
whichC ¢ D. For concreteness, the reader may tdke beNP, say, andD to be BPP.

By Propositionl1, instead of an affine oracle, it suffices fdrto be the disjoint union of two affine
oraclesA, := Oy andA; := O;. In fact, since every language reduces to its affine extension, it suffices to
show (g, O1 such that

Coo]_[(91 ¢ D(’Qvo]_[@vl )

For everyn € N, pick an arbitrary paitX,,, Y,) € dom f,, € {0,1}?" x {0,1}?". Initialize Oy to have
the same truth table a¥,, for everyn, and similarly forO; versusY,,. Becausef € Cy;., the language
L :={L,} defined as

L") := f(Oom, O1), L(#1"):=0
is in 9 1101 to see this just consider usiiig, [ O, to simulate @icc—grotocol for . Our objective is to

modify ©Oy,?; so thatL remains inC? L1 and becomes out @0 101

To that end, for any pair of stringsX,Y) € {0,1}2" x {0,1}%", let Oy « X denote the result of
updatingQy so that at lengthx inputs, it has the same truth tabled@ssimilarly use©O; «— Y to denote the
result of updating?; with Y.

Now let Ny, No,... be an enumeration dP-algorithms endowed with an oracle access mechanism.
(To be precise, we need to consider the clB$sdefined using the cladsP* (§2.8) in the same way that
D would be defined fron¥'P. As stated earlier, however, for convenience in this section we embrace the
Turing Machine based jargon.) For each algorithm in the enumeration, sa¥ fdefineg’ := {g’ } as

gi(X,Y) = NSO @) gy (4.4)

where(X,Y) ranges ovedom f,,. In caseN;’s output is not well-defined o™ — due toN; computing a
partial language which” is outside the domain of — just lgf, take the value .

We claim thatg® differs from f on infinitely many inputs. Indeed, the right-hand-side 4#) can be
computed by a protocol where one party is given access smd knowsO, (up to a finite length, beyond
which N; is guaranteed not to access when runl8h the other party is gively” and knowsQ; (again
finitely bounded), and the two parties simulae by using each other as an oracle for the missing side of
the disjoint union. S@° € D... Sincef ¢ D, the claim follows.

Now, for i = 1..00, find a pair(X,,,Y,,) in dom f,, = domg/, on which f and ¢ differ, for
somen; arbitrarily large. Updat&), to Oy «— X,,, andO; to O; « Y,,,, so thatL(1") differs from

N(OO‘_X)H(Ol‘_Y)(lni). Sincen; is arbitrarily large, this update does not disturb the previous iterations

7

—e.g.n; > 227" suffices since c EXP. O

4.2.1 Applications

Theoremb5 allows us to replicate two negative algebrization results of AW:

Corollary 56. Neither of the following statements hold relative to every affine oracleol)p C MA, (ii)
PN c PP,
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Proof. Let Disj(X,Y) := Vi =(X (i) A Y () be the disjointness predicate. Itis clear thatj € coNPricc.
On the other hand, it takes at led@%(2"/?) bits of communication to comput®isj by a Merlin-Arthur
protocol B2, Corollary 1], implyingDisj ¢ MA... Part (i) now follows from Theorer5.

For part (i), letRCYB(X,Y) := arg max;eg,13» (X (i) A Y(4)), and letf(X,Y) := RCYB(X,Y)
mod 2 be the predicate deciding whether the Rightmost-Common-Yes-Bit positicti ahd Y is odd
(in the uninteresting case that there is no Common-Yes-Bit posifiaaytputs0). It is easy to see that
f € (PNP)i.. On the other hand, it takes at lea¥t2™/3) bits of communication to computg by a
probabilistic protocol17, Section 3.2]:3 implying f ¢ PP... Part (ii) now follows from Theorerd5. [

We can use TheoreBb to replicate a result of IKK as well:

Theorem 57. RP ¢ SUBEXP does not hold relative to every affine oracle. H&EBEXP denotes
NaenDTIME({2""” } e, psa)

Proof of Theoren®d7. Consider the set of all pairs of stringX’, Y') such thatX, Y respectively equal the
truth table (suitably encoded) gﬁﬁ,@z for somem and somef, g : {0,1}" — {0, 1}, wherek is a large
enough constant, sa&y= 10. Consider restricting the equality prediciigual(X,Y") := Vi(X (i) = Y (4))
to this set, and call the resulting functidi{ X, Y").

Yao’s classical result, thdiqual requires(2(2™) bits of communication, implies that there is b
SUBEXP,. that F' can be extended to. In short, and with a slight abuse of notatioh,SUBEXP... To
see this, suppose the contrary Th&mal, (X,Y) can be computed by the following protocol glvﬁ’ne
{0,1}2" Alice computesX ", and giveny” Bob computes” “; then Alice and Bob computE(X Y )
henceEqual(X Y’), using Onlysubexp(|X |) bits of communication. This contradicts Yao’s result since
X" is a function o0 (nk) bits when suitably encoded, and sirice O(1).

On the other hand;’ can be computed by tl the following randomized protocol On idpdibe truth table
of somefm, Alice plcks a randon € dom(fm) and sends to Bob the p&i, fm( )). On inputY the
truth table of som@m, Bob receives Alice’s message and accepﬁnlta) = gTI:L( ) and rejects otherwise.
To bound the error probability of this protocol, suppdse# Y, as there is no chance of error otherwise.
The random choice of Alicey, corresponds to a poiatin the spacé ™) ; let £ be any line in this space that
passes through, and that is parallel to any one of the axes. SinceX,Y are promised to be of the form
fm, gm, if they are not equal, then they agree on only one oRthgoints on¢, making the error probability
less thanl /1000 by our choice of:.

So if we take the clasBPy;.., and relax its definition to include familie§f,,} wheredom f,, is no
longer required to be the set of every p&AirY of length2” strings, but rather some of them, then we may
call the resulting classrRPq;.., and then the previous paragraph shows that prRP4;... (We can ensure
thatdom F;, is never empty for any by simple padding.)

Now the proof of Theorerb5in Sectiond.2is written exactly with this more general situation in mind.
Namely, if prCiicc  D.c, thenC C D does not hold for every extension of the standard Boolean basis with
someA; hereC, D can be any class definable through the mechanisms given in Cl2ag2B-52.6) and
contained inEXP. The claim follavs. O

13The authors of17] show a stronger result where the protocol allows both parties to use private randomness as well, with a
suitable generalization of the acceptance condition for the protocol.

“In fact, Theoren57 holds forRP ¢ SUBLINEXP, whereSUBLINEXP denotes) enDTIME({c2"/ P} .en,p=a). We
state it in the weaker form because we’'d need to slightly refine our approgei6ito be able to officially defin6 UBLINEXP.
(Notice that the clas§ = {(:2”/D}C€N,D>d is not closed under taking polynomials in the sens§208, but that it is closed under
taking quasi-linear functions: t#f € C, then for everyl € N, there is some’ € C such that(n) log? t(n) < t'(n) for everyn.)

62



4.3 Reduction Approach

As mentioned in the beginning of Sectidnsometimes we can get away without constructing oracles, and
still show thaty) does not affinely relativize. To do so, we find somiewhich we already know has that
status, and then show that the implication—- <’ affinely relativizes. We thus reduce the task of creating
an oracle relative to whiclp is false, to doing the same fagr, with the implicatior) = ' serving as
the reduction.

Using the results of Sectioh1-4.2we can readily show:

Theorem 58. None of the following statements hold relative to every affine oracle:
(i) NP C P, (ii) NP ¢ P, and (iii) NP c BPP.

Proof. Part (i): Theorenb3showed thaNEXP ¢ P/poly does not hold relative to every affine oracle, and
Theorem44 showed thaMAEXP ¢ P/poly does. The claim follows because

NPcCP = MA CP = MAEXP C NEXP,

where both implications hold relative to every language, hence relative to every affine oracle.
Part (ii): Propositiorb0 showed thaPSPACE ¢ P does not hold relative to every affine oracle. The
claim follows sinceNP C PSPACE holds relative to every language, hence relative to every affine oracle.
Part (iii): Corollary56 states thatoNP C MA does not have hold relative to every affine oracle. The
claim follows sinceNP ¢ BPP = coNP C MA holds relative to everlanguage. O

5 Suggestions for Further Research

We finish by listing some suggestions for further research.

The PCP theorem. Sectionl.3.7explained that botRSPACE C IP andNEXP C MIP can be naturally
viewed as gap-amplification results, and from that point of view both theorems affinely relativize. Can we
extend this reasoning to thi&CP theorem? If so, this would bolster the candidacy of affine relativization as

a proxy for arithmetization-based techniques.

A genuine independence result. As pointed out in Sectiod.2.1, a common feature — or flaw, if the
reader is logically inclined — of both our framework and related works, AlV and IKK, is that the relativiza-
tion barriers are formalized through axioms that go on top of an existing collection of axioms governing
everyday mathematics.

On one hand, this is a feature because relativization is meant to be a guide for the everyday researcher,
who has everyday mathematics at disposal. On the other hand, this is a flaw because statement®such as “
versusNP does not relativize”, when formalized in these frameworks, on the surface look like they give
some sort of logical independence result — but they do not. (See Sécidr)

For an independence result, one must formalize the relativization barriers suthsaof axioms gov-
erning everyday mathematics, the idea being to find the “weakest” version of everyday math that can derive
each relativizing statement, and then to show that no nonrelativizing statement can be derived by that much
of mathematics.
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A quantitative theory of relativization. Both relativization and affine/algebraic relativization are rigid
notions, in the sense that something either relativizes or does not. This calls for a theory of relativization
that is gradual, based on the information content — or density, so to speak — in an oracle.

Can we associate to each statement a “relativization rank”, so that the algebrization barrier arises as a
guantitative gap, between a lower bound on one hand for the rank of algebrizing statements, and an upper
bound on the other, for the rank of non-algebrizing statements? If so, then we could view the reciprocal of
the rank as a useful complexity measure on theorems and conjectures, just as we have complexity measures
on algorithmic tasks: the larger the reciprocal of the rank, the higher the “relativization sensitivity” of the
statement in hand, indicating more resources — stronger axioms — required to prove it.
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