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Abstract

We extend the recent hierarchy results of Rossman, Servedio and Tan
[2] to any d ≤ c logn

log logn
for an explicit constant c.

To be more precise, we prove that for any such d there is a function
Fd that is computable by a read-once formula of depth d but such that

any circuit of depth d− 1 and size at most 2O(n1/5d) agrees with Fd on a
fraction at most 1

2
+O(n−1/8d) of inputs.

1 Introduction

This technical note is an extension of the work of Rossman, Servedio and Tan

[2]. Their result is that there is a constant c such that for d ≤ c
√

logn
log logn there

is a function Fd that is computed by a read-once formula of depth d but such

that any circuit of size at most exp(n
1

6(d−1) ) and depth d − 1 agrees with Fd
on a fraction of inputs that is at most 1

2 + n−Ω(1/d). We extend their result

by allowing d to be as large as logn
log logn and in particular we prove the following

theorem.

Theorem 1.1 For sufficiently large n and d ≤ logn
log logn , then there is a Boolean

function Fd, depending on n Boolean inputs which is computable by a read-once
circuit of depth d such that for any circuit C of depth d − 1 and size at most

2n
1/5(d−1)

we have

Pr[Fd(x) = C(x)] ≤ 1

2
+O(n−Ω(1/8d)).

The theorem is only really interesting for d ≤ logn
5 log logn as the bound on the

size of C is sublinear for larger values of d. For the record let us state that we

∗Research supported the Swedish Research Council, part of this work was done while
visiting the Simons Institute in Berkeley.
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have not tried to optimize the value of the constants 5 and 8, but even being
more careful, we do not believe they can be pushed below 2.

In fact, as was also done in [2], we prove a lower bound for a slightly larger
class of circuits including those of depth d and small bottom fanin and even
depth d+ 1 circuits with small bottom fanin if the output gate is restricted to
be the other type compared to the output gate of Fd.

As the objective is to keep this as a short technical note we refer to the very
nice introduction of [2] for a discussion of the background of the problem, its
connection to results in various branches of circuit complexity and structural
complexity theory, as well as the historical developments leading up the current
results.

Let us, however, stress the fact that the current work builds very much on
the work of [2] and we use the same framework focused on restrictions and their
generalization in the form of projections.

2 An outline of the paper

The function Fd we prove is difficult to compute on average is more or less the
first function that comes to mind and slight variants of this function are used in
earlier paper proving hierarchy results. It is computed by a read-once formula
which is a tree of depth d and governed by a parameter m ≈ log n/2d. We have
alternating levels of and-gates and or-gates, the top fanin is Θ(22m), the bottom
fanin is 2m while the fanin at other levels is Θ(m22m). A little care is needed
to make it balanced but this is straightforward.

We are given a depth d − 1 circuit C that we wish to prove does not even
approximate Fd. The early papers [3, 4, 1] picked a random restriction (giving
values to most variables) keeping a few variables non-assigned and made sure
that Fd turned into Fd−1 while the depth of the circuit C could be decreased.
A new element was introduced by [2] by allowing projections (identifying sev-
eral different old variables with one new variable) but this paper also relied on
induction.

We follow almost the same approach but there is a subtle difference. After
we have done a random restriction and projection, Fd does not turn exactly
into Fd−1 but to a similar looking function and previous papers uses a clean-up
stage to turn it exactly into Fd−1 in order to apply the induction hypothesis.
This clean-up is fairly costly and we omit it. Instead, starting with Fd we apply
a sequence of d − 1 restrictions and projections and after the i’th stage Fd is
reduced to something similar to, but not exactly equal to Fd−i, while C has,
with high probability, lost i levels. Apart from this little change the approach
of the paper is what can be expected and an outline of the paper is as follows.

Defining the function Fd is done in Section 3. We define our set of restrictions
in Section 4. Their basic properties, that they generate uniformly random inputs
and that they, with high probability and to a significant extent, preserve Fd is
established in Section 5.
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One way of thinking about picking the restriction ρi is by first picking inde-
pendent restrictions ρi−1 to each sub-formula of depth i−1 and then doing some
additional fixing. This is also the way we reason about ρi when performing the
simplifications, via a switching lemma, of the competing circuit C. The needed
switching lemma is found in Section 6. We put all the pieces together proving
our main theorem in Section 7.

3 Defining the functions Fd

We have a parameter m guiding our construction. We define Fd to be a tree
with alternating layers of and-gates and or-gates. The layer next to the inputs
is defined to contain and-gates and thus the output gate is an and-gate if d is
odd and otherwise an or-gate.

The intuitive version of the definition is that we want internal and-gates to
be 1 with probability 2−2m for random inputs and or-gates to be 0 with the
same probability. Furthermore we want the output to be unbiased. This cannot
be achieved exactly but by an inductive definition we can come very close. Let
us turn to the formal details and give the parameters.

Definition 3.1 Let c0 = 1
2 and for 1 ≤ i ≤ d− 1 let fi be the smallest integer

such that
(1− ci−1)fi ≤ 2−2m,

and set ci = (1− ci−1)fi . Finally set fd to be the smallest integer such that

(1− cd−1)fd ≤ 1

2
.

The function Fd is defined by a read-once formula of alternating levels of and-
gates and or-gates. The fan-out at distance i from the inputs is fi.

It is not difficult to see that 2−2m − 2−4m ≤ ci ≤ 2−2m for 1 ≤ i ≤ d − 1
and f1 = 2m, fi = 2m ln 2 · 22m(1 + O(2−m)) for 2 ≤ i ≤ d − 1, while fd =
ln 2 · 22m(1 +O(2−m)). It follows that the number of inputs of Fd is

d∏
i=1

fi = 22(d−1)mmd−12O(d) (1)

and we denote this number by n. We note that if d ≤ logn
2 log logn then the first

factor of (1) is the dominating factor and m = logn
2d−2 (1 + o(1)).

It follows by construction that if we feed random independent uniform bits as
inputs into the formula defining Fd then an and-gate on level i (which assumes
that i is odd) is one with probability ci while an or-gate is zero with the same
probability for even i. It follows that output of Fd is, within an error 2−2m,
unbiased. We turn to defining the space of restrictions.
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4 The space of restrictions Ri

In this paper we, as was first done in [2], complement restrictions with projec-
tions. A classical restriction maps each variable, xi, to one of the three values
0, 1 and ∗. The two first values indicate that the corresponding constant should
be substituted for this variables while the third value says that that the value
of xi remains undetermined.

We combine classical restriction with projections under which groups of
variables are identified with the same new variable. This makes further sim-
plifications possible. The mapping of old variables to new variables could be
completely arbitrary but to avoid a generality that we do not utilize we define
only a special class of projections.

The universe of variables used by our restrictions is given by xv where v
ranges over all nodes in the tree defining Fd. Let Vi be the set of variables xv
where v is at height i, i.e. at distance i from the inputs. Note that the set of
original inputs to Fd is exactly given by V0.

Definition 4.1 A level i restriction, ρi, is a mapping of V0 into the set {0, 1}∪
Vi. The possible values of ρi(xw) are 0, 1 and xv where v is the height i ancestor
of w.

The only way we construct a level i restriction in this paper is to first do
a level i − 1 restriction, then apply a classical restriction to the variables in
Vi−1 and finally identify any live variables with its parent. Thus when going
from ρi−1 to ρi we define a mapping from Vi−1 to {0, 1} ∪ Vi and ρi is the
composition of these two mapping. Any input mapped to a constant under ρi−1

is still mapped to the same constant under ρi.
A central role in our proof is played by a probability distribution of level i

restrictions, Ri, and let us give its basic properties. The restrictions operate
independently on each height i sub-formula and let us assume that i is odd
and hence the top gate of such a sub-formula is an and-gate. Let Fv the be
sub-formula rooted at v, a gate at level i in the formula defining Fd. We have
four basic properties of our space of restrictions.

1. With probability 2−5m/2 all variables of Fv are fixed to constants and
Fvdρi≡ 1.

2. With probability 1 − 2−m all variables of Fv are fixed to constants and
Fvdρi≡ 0.

3. With probability 2−m − 2−5m/2 we have Fvdρi≡ xv.

4. If xv is set to 1 with probability bi defined as

bi =
ci − 2−5m/2

2−m − 2−5m/2
(2)

then ρi combined with this setting gives a uniformly random input to all
variables in Fv.
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For future reference we note that bi = 2−m(1 +O(2−m/2)). If the gate is an or-
gate we reverse the roles of 0 and 1. The spaces of restrictions are constructed
recursively for increasing values of i and let us start by formally defining R1.
Let v be a gate at level one and let Bv be the inputs that appear in Fv which
is thus a set of size 2m.

Definition 4.2 A random restriction ρ1 ∈ R1 is constructed independently for
each gate, v, on level 1 as follows.

1. Pick a uniformly random assignment α ∈ {0, 1}2m to all inputs xw ∈ Bv.

2. If α = 12m then with probability 2−m/2 set ρ(xw) = 1 for all xw ∈ Bv, and
otherwise proceed as follows. Pick a uniformly random non-empty subset
S of Bv and set ρ(xw) = ∗ for xw ∈ S and otherwise set ρ(xw) = 1.

3. If α 6= 12m, then with probability (1 − 2−m)/(1 − 2−2m) set ρ(xw) = αw
for all xw ∈ Bv and otherwise set ρ(xw) = ∗ for all w such that αw = 0
while ρ(xw) = 1 when αw = 1.

4. Identify all variables xw ∈ Bv such that ρ(xw) = ∗ with xv.

We let ρ1 denote a typical level 1 restriction after also the projection in the last
step has been applied. If some variable xw is mapped to xv then we say that xv
is alive and also write this as ρ1(xv) = xv. Keeping with this convention we also
write ρ1(xv) = c when Fv is fixed to the constant c. In general we sometimes
use ρ1(xv) for Fvdρ1 and remember that this takes values 0, 1 or xv.

We think of the assignment α as a “tentative” assignment to all variables.
We forget some of the values but if we later assign xv with the correct bias we
get the same probability distribution as if we had kept the original α. This
assures that such a substitution creates a uniformly random input.

It is not difficult to see that R1 has the four basic properties we described
above but let us still check them in detail.

The probability that Fv is fixed to 1 is 2−5m/2 as we need to pick α = 12m and
then decide to use this assignment fully under step 2. Similarly the probability
that Fv is fixed to 0 is

(1− 2−2m) · (1− 2−m)/(1− 2−2m) = 1− 2−m

as this must happen under step 3. This ensures the two first properties. Note
that in all other cases we have a non-empty set S such that ρ(xw) = xv for all
xw ∈ S while all other variables of Bv are mapped to 1. This implies that the
value at Fvdρ1= xv. We now turn to the property that if any live xv is set to

1 with probability b1 = 2−2m−2−5m/2

2−m−2−5m/2 then we have the distribution of a random
input.

The probability that a set S is chosen under step 2 is

pS2 =
2−2m(1− 2−m/2)

22m − 1
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while the probability that the same set is chosen under step 3 is

pS3 =
2−2m(2−m − 2−2m)

(1− 2−2m)
=

(2−m − 2−2m)

(22m − 1)
.

This implies that, conditioned that S is the set of inputs such that ρ1(xw) = xv,
the probability the probability that it was chosen under step 2 is

pS2
pS2 + pS3

=
2−2m − 2−5m/2

2−m − 2−5m/2
(3)

and this is exactly b1. This implies that if xv is set to 1 with probability b1
then we get the same probability distribution on x as if we had set xw = αw
immediately. We conclude that we get a uniformly random input to the gate v.
We conclude that R1 has all the desired properties and proceed to the general
case.

When picking a restriction in the space Ri we first pick a restriction ρi−1

from Ri−1 which reduces each sub-formula, Fw of depth i− 1 to a constant or
a variable xw. This implies that going from ρi−1 to ρi is essentially picking
the inputs to a single gate and thus quite similar to a restriction from R1. We
again center the construction around a Boolean vector α which plays the role
of a set of independent but suitably biased set of values at level i− 1. The bits
of α come in two flavors. Those that are “hard” which should be thought of
as already fixed by ρi−1 and hence cannot be changed to xv and those that are
“soft” and can be changed.

Let us assume that i is odd and hence that each gate v on level i is an
and-gate. In the case of even i the role of 0 and 1 are reversed in the definition
below. As before we let Bv be the set of input gates to v which is now of size
fi.

We first pick an input α ∈ {0, 1}fi where some values are hard while other
are soft. For each αw independently.

1. Make it a hard zero with probability 2−5m/2.

2. Make it a hard one with probability 1− 2−m.

3. Make it a soft zero with probability ci−1 − 2−5m/2.

4. Make it a soft one with probability 2−m − ci−1.

We note that a coordinate that is not given a hard value is set to a soft zero
with probability exactly bi−1.

Let T be the set of inputs that are given soft values. Thus typically T is of
size roughly 2−mfi and let fv be the actual number. Let S be a potential set
of soft zeroes. For a non-empty set T , by a “uniformly non-empty subset of T
of bias bi−1” we mean that we include each element of T with probability bi−1

in S and if S turns out to be empty we try again. We denote this probability
distribution by qS,T and it is not difficult to see that

qS,T = (1− (1− bi−1)fv )−1b
|S|
i (1− bi−1)fv−|S|. (4)
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Note that if T is about its typical size, then the probability (conditioned on
picking T ) that S is empty is about 2−2m so this conditioning is in general
mild. Now we proceed to the determine the value of ρi by determining the
values of the gates in Bv to be 0, 1 or xv. As indicated above we never change
a hard value while soft values are either made permanent or turned into xv.

1. If there is at least one hard zero in Bv set ρ(xw) = αw for all w.

2. If |fv − fi2−m| ≥ 23m/4 then set ρ(xw) = αw for all w.

Let us turn to the more interesting part of ρ. Let q3 and q4(fv) be constants,
which in rough terms satisfy q3 ≈ 2−m/2 and q4(fv) ≈ 2−m, but whose exact
values are given during the analysis.

3. If α = 1fi , then with probability q3 set ρ(xw) = 1 for all w and otherwise
proceed as follows. Choose a non-empty subset S of T with bias bi−1 and
set ρ(xw) = ∗ for xw ∈ S while ρ(xw) = 1 otherwise.

4. Suppose we get a non-empty set S of soft zeroes. Then with probability
1− q4(fv) set ρ(xw) = αw for all xw ∈ Bv and otherwise we set ρ(xw) = ∗
for w ∈ S and ρ(xw) = 1 = αw otherwise.

5. Identify all live variables in Bv with xv.

Before proceeding let us observe that if any coordinate αw is set to a hard
value, xw is always set to this value. This follows as S is a subset of T and
hence not given hard ones as values and if a hard zero is assigned, all values of
α are used.

The above description tells us how to go from ρi−1 to ρi and there are a
couple of equivalent ways to view the combination into a full assignment. One
way is the following.

1. Pick an assignment α.

2. For hard coordinates w of α pick a restriction ρi−1 ∈ Ri−1 conditioned on
ρi−1(xw) being this constant.

3. For soft coordinates w of α pick a restriction ρi−1 ∈ Ri−1 conditioned on
ρi−1(xw) = xw and then set ρi(xw) as in the above procedure.

Of course an equivalent way to describe the procedure is to first pick random
independent ρi−1 ∈ Ri−1 for each depth i− 1 circuit and then a value of α con-
ditioned on getting hard coordinates with the correct value whenever ρi−1(xw)
was chosen to be a constant. In more detail this is the following procedure.

1. Pick a random ρi−1 ∈ Ri−1. Whenever ρi−1(xw) is a constant we fix αw
to be that constant in hard way.

2. For any w such that αw is not set in step 1 pick it to be a soft value with
bias bi−1.
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3. Fix the values of some xw to constants based on cases 1 and 2. This is
done by a traditional restriction taking values 0, 1 and ∗ and we denote
this restriction by ρ1.

4. Fix the values of some xw for w ∈ Vi−1 based on cases 3 and 4. This as a
traditional restriction that we denote by ρ.

5. For all xw ∈ Bv with ρ(xw) = ∗ set ρi(xw) = xv. We call this projection
π.

We say that ρi−1, ρ1, ρ and π are the components of ρi. The most interesting
part when going from ρi−1 to ρi turns out to be the third step ρ. For a function f
we let fdρ denote the function after this step. We let fdρ+π denote the function
also after the projection has been made. We have that fdρ is a function of xw
where w ∈ Vi−1 while fdρ+π is a function of xv where v ∈ Vi.

As an example suppose that f = xw1
∨ x̄w2

where w1 and w2 are two nodes
in the same depth i sub-formula. Suppose furthermore that ρ does not fix either
of these variables. In this situation fdρ is the same function as f while fdρ+π
is identically true.

5 Simple properties of Ri

The construction of the space of restrictions, Ri has been carefully crafted to,
more or less by definition, satisfy the four basic properties and we establish
these as a sequence of lemmas.

Lemma 5.1 For any node v on level i in Fd such that xv is alive after ρi we
have Fvdρi= xv. Furthermore if Fvdρi is a constant then ρi assigns constants
to all variables in Fv.

Proof: Going over the construction line by line it is not difficult to see that
this is true.

The second lemma says that a sub-formula is reduced to 0 with the correct
probability.

Lemma 5.2 We can determine a value of q3 = 2−m/2(1 + o(m)) such that
Pr[Fvdρi= 1] = 2−5m/2.

Proof: Let p2 be the probability that that case 2 happens. By standard
Chernoff bounds we have p2 = exp(−Ω(2m/2/m)). Let p2,1 be the probability
that the value of Fv is fixed to 1 under case 2.

Now let p3 be the event that we are in case 3. As the probability that α = 1fi

is ci we have that p3 = ci − p2,1 and thus p3 = 2−2m(1 + o(m)). Fix the value
of q3 to be (2−5m/2− p2,1)/p3 and note that q3 = 2−m/2(1 + o(m)) as promised.
The probability of fixing Fv to the value 1 is p2,1 + p3q3 and this, by the choice
of q3, equals 2−5m/2.
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We next determine a suitable value for q4(fv).

Lemma 5.3 We can determine a value of q4(fv) = 2−m(1 + o(m)) such that
setting xv = 1 with probability bi gives the same distribution as setting xw = αw
for all w.

Proof: We prove that for any S and T , conditioned on T being the non-
hard ones and S being the set of variables set to xv, the probability that this
happened in case 3 is bi while the probability that this happened in case 4 is
1− bi. As we in case 3 change the values of the variables in S from 1 to xv and
in case 4 from 0 to xv this is sufficient to prove the lemma. From now on we
condition on a particular set T of size fv being chosen and no hard zero being
picked.

The conditional probability of ending up with a specific set S and being in
case 3 is

p4,3
S,T = (1− bi−1)fvqS,T ,

where qS,T is the conditional probability as in (4). The probability of getting
the same sets in case 4 is

p4,4
S,T = (1− (1− bi−1)fv )qS,T q4(fv).

We now set

q4(fv) =
(1− bi−1)fv (1− bi)
(1− (1− bi−1)fv )bi

(5)

with the result that
p4,4
S,T

p4,3
S,T

=
1− bi
bi

. (6)

Since we did not fix the values of all variables in case 2 we know that fv =
fi2
−m(1 + o(m)) and hence (1 − bi−1)fv = 2−2m(1 + o(m)). Furthermore as

bi = 2−m(1+o(m)) it is possible to satisfy (5) with q4(fv) = 2−m(1+o(m)).

From now on we assume that we use the values of q3 and q4(fv) determined
by Lemma 5.2 and Lemma 5.3. The next lemma is, more or less, an immediate
consequence of Lemma 5.3.

Lemma 5.4 Let v be a node on level i of the formula for Fd. Then picking a
random ρi ∈ Ri and then setting xv with bias bi gives the uniform distribution
on inputs to the formula Fv.

For completeness let us point out that by “bias bi” we here mean that xv is
more likely to be 0 if i is odd and more likely to be 1 if i is even.

Proof: We proceed by induction over i and for i = 1 we already established
the lemma in the discussion after the definition of R1.

Lemma 5.3 tells us that picking a xv with bias bi is the same as setting the
soft values according to α. This, in its turn, is the same as picking independent
restrictions from ρi−1 for each sub-formula Fw and setting any live xw with bias
bi−1. By induction this results in the uniform distribution.

9



Let us also verify the last basic property of Ri.

Lemma 5.5 We have Pr[Fvdρi= 0] = 1− 2−m.

Proof: This could be done by a tedious calculation, but in fact it can be
seen by a high level argument. The restriction ρi can reduce Fv to 0, 1 or
xv. Lemma 5.2 says that second value is taken with the correct probability and
Lemma 5.4 says that if xv is set to 1 with bias bi then we get a uniformly random
input and hence the output of Fv is one with probability ci. This implies that

2−5m/2 + biPr[Fvdρi≡ xv] = ci

and hence, by the definition of bi, we conclude that Pr[Fvdρi≡ xv] = 2−m −
2−5m/2 and as the probabilities of obtaining the three possible values for Fvdρi
sum to one, the lemma follows.

The most interesting property of our restrictions is that we can prove a
switching lemma and we proceed with this step.

6 The switching lemmas

To establish a general hierarchy result (in particular distinguishing depth d and
d− 2) it is sufficient to prove a switching lemma for Ri for i ≥ 2 and in view of
this we prove this lemma first. To get a tight result we later prove a modified
lemma for R1.

As discussed in Section 4, a restriction ρi ∈ Ri is chosen by first picking
ρi−1 ∈ Ri−1, followed by ρ1, ρ and finally making a projection π. In this section
we assume any fixed values of of ρi−1 and ρ1 and consider the effect of ρ. The
fact that the distribution of ρ is dependent on the actual values of ρi−1 and ρ1

is left implicit.
A set F of restrictions is said to be “downward closed” if changing the value

of ρ on some input from the value ∗ to a constant cannot make it leave the set.
Let us write this formally.

Definition 6.1 A set F of restrictions is downward closed if when ρ ∈ F and
ρ′(xw) = ρ(xw) for w 6= w0 and ρ(xw0

) = ∗ then ρ′ ∈ F .

We can now formulate the main lemma.

Lemma 6.2 Let ρi ∈ Ri be a random restriction with components ρi−1, ρ1,
ρ and π and f be an arbitrary function. Suppose g = fdρi−1 is computed by
a depth-2 circuit of bottom fanin t ≤ 2m/8. Let F be a downward closed set
of restrictions and let depth(gdρi) be the minimal depth of the decision tree
computing gdρi . Then, for sufficiently large m,

Pr[depth(gdρi) ≥ s | ρ ∈ F ] ≤ Ds,

where D = t23−m/2.
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Proof: By symmetry we may assume that i is odd. By possibly looking at the
negation of g (which has the same depth decision tree as g) we can assume that
g is a CNF, and after ρ1 has been applied it can be written as

gdρ1= ∧`i=1Ci,

where each Ci is a disjunction of at most t literals. The proof proceeds by
induction over ` and the base case is when ` = 0 in which case gdρi is always
computable by a decision tree of depth 0.

We divide the analysis into two cases depending on whether C1 is forced to
one or not. We can bound the probability of the lemma as the maximum of

Pr[depth(gdρi) ≥ s | ρ ∈ F ∧ C1dρ≡ 1],

and

Pr[depth(gdρi) ≥ s | ρ ∈ F ∧ C1dρ 6≡ 1]. (7)

The first term is taken care of by induction applied to g without its first con-
junction (and thus having size at most ` − 1) and using that the conditioning
in this case is a new downward closed set. We need to consider the second term
(7).

To avoid that gdρi≡ 0 there must be some non-empty set, Y of variables
appearing in C1 which are given the value ∗ by ρ. Let a set Bv of variables be
called a “block” and suppose the variables in C1 come from t1 different blocks.
Say that a block is “undetermined” if it contains a variable given the value ∗
by ρ. Let Z be the set of undetermined blocks and let us assume it is of size r.
Let us introduce the notation undet(Z) to denote the event that all blocks in Z
are undetermined and det(C1/Z) to say that all variables in C1 outside Z are
fixed to non-∗ values by ρ.

We start constructing a decision tree for gdρi by querying the new variables
corresponding to Z. Let τ be an assignment to these variables. We can now
bound (7) as∑
τ,Z

Pr[depth(gdτρi) ≥ s− r ∧ undet(Z) ∧ det(C1/Z) | ρ ∈ F ∧ C1dρ 6≡ 1], (8)

where r is the size of Z which is non-empty. We will use the estimate

Pr[depth(gdτρi) ≥ s− r | undet(Z) ∧ det(C1/Z) ∧ ρ ∈ F ∧ C1dρ 6≡ 1]×
Pr[undet(Z) | ρ ∈ F ∧ C1dρ 6≡ 1]

(9)

for each term in (8) and hence a key lemma is the following.

Lemma 6.3 If Z is a set of set r blocks appearing in C1 and ρ a random
restriction appearing in the construction of Ri for i ≥ 2, then, for sufficiently
large m,

Pr[undet(Z) | ρ ∈ F ∧ C1dρ 6≡ 1] ≤ 2r(1−m/2).
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Proof: The crux of the proof is to, given a restriction ρ that contributes to the
probability in question, create a restriction ρ′ that also satisfies the conditioning
but fixes all variables in the blocks of Z. We describe how to do this for r = 1 but
the general case follows immediately as we can do the changes independently on
each block. Thus let us assume that Z is the single block Bv and fix a restriction
ρ that contributes to the event of the lemma. Let P be the set of variables of Bv
that appears positively in C1 and N the set of variables that appear negatively.

We can assume that we have no hard zero in Bv and the number of non-
hard ones in Bv is close to fi2

−m as otherwise already ρ1 would have fixed all
variables in Bv to constants.

Clearly for ρ we must have ρ(xv) = ∗. For variables xw ∈ P we must have
ρ(xw) = ∗ while for variables in N we have either ρ(xw) = ∗ or ρ(xw) = 1.

We now define a companion restriction ρ′ = H(ρ). If ρ maps some variable
outside N to ∗ (and in particular if P is non-empty) we set ρ′(xv) = 0 and
otherwise ρ′(xv) = 1. For a xw ∈ P we set ρ′(xw) = 0 while for xw ∈ N we
set ρ′(xw) = 1, independently of the value of ρ(xw). Outside C1 but in Bv
we set ρ′(xw) = 1 if ρ(xw) = 1 and ρ′(xw) = ρ′(xv) otherwise. Outside Bv,
ρ and ρ′ agree. First observe that ρ′ satisfies the conditioning. We only have
ρ(xw) 6= ρ′(xw) when ρ(xw) = ∗ and by the definition of P and N we are careful
not to satisfy C1.

The mapping H is many-to-one as given ρ′ we do not know the values of
ρ(xw) when xw ∈ N (but we do for all other variables in Bv).

First note that
Pr(ρ)

Pr(ρ′)
=
Pr(ρv)

Pr(ρ′v)

where ρv is only the behavior of ρ on Bv and similarly for ρ′. This is true
as ρ and ρ′ take the same values outside Bv and the restrictions are picked
independently on each Bv.

Assume first that ρ′(xv) = 0. In this situation ρ could have been picked
under case 3 or case 4 while ρ′ can only have been produced under case 4. We
know, by (6), that each ρ is about a factor 2m more likely to have been produced
under case 4 than under case 3 so let us ignore case 3, introducing a small error
factor (1 +O(2−m)) that we temporarily suppress.

Let N1 be subset of N that was actually given the value ∗ by ρ. If N1 is

empty then Pr(ρv) = q4(fv)
1−q4(fv)Pr(ρ

′
v) and in general we pick up an extra factor

b
|N1|
i−1 (1− bi−1)−|N1|. As

∑
N1⊆N

b
|N1|
i−1 (1− bi−1)−|N1| = (1 +

bi−1

1− bi−1
)|N |

we get

∑
H(ρ)=ρ′

Pr(ρ) ≤
(

1 +
bi−1

1− bi−1

)|N |
q4(fv)

1− q4(fv)
Pr[ρ′] ≤ 21−mPr[ρ′], (10)
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for sufficiently large m. This follows as |N | ≤ 2m/8, bi = (1 + o(m))2−m and
q4 = (1 + o(m))2−m.

If, ρ′(xv) = 1 the situation is similar except that ρ′ is produced under case
3 and thus we pick up a factor q3 instead of 1− q4(fv). We get in this case

∑
H(ρ)=ρ′

Pr(ρ) ≤
(

1 +
bi−1

1− bi−1

)|N |
q4(fv)

q3
Pr[ρ′] ≤ 21−m/2Pr[ρ′], (11)

again for sufficiently large m. The fact that we ignored restrictions ρ produced
under case 3 gives an additional factor (1 + O(2−m)) in the above estimates
and thus the calculations remain valid, possibly by making m slightly larger, to
make sure that the “sufficiently large m” statements are true.

The case of general r follows from the fact that we do the modifications on
all blocks of Z independently.

Remark 1 The careful reader might have noticed that in the case with the
ρ′(xv) = 1 then we can conclude that N1 is non-empty giving a slightly better
estimate especially in the case when t is small. This observation can probably
be used to get a slightly better constant in the main theorem, but to keep the
argument simple we ignore this point. We return to main argument.

We now estimate

Pr[depth(gdτρi) ≥ s− r | undet(Z) ∧ det(C1/Z) = 0 ∧ ρ ∈ F ∧C1dρ 6≡ 1], (12)

by induction. We need to check that the conditioning defines a downward closed
set. This is not complicated but let us spell out some details. Fix any behavior
of ρ inside the blocks of Z and satisfying the conditioning. As gdρiτ does not
depend on the variables corresponding to Z the event in (12) depends only the
values of ρ outside Z. Changing ρ from ∗ to a constant value for any variable
outside Z cannot violate any of the conditions in the conditioning and hence we
have a downward closed set when considering ρ as a restriction outside Z. We
conclude that the probability of the event in (12) is, by induction, bounded by
Ds−r.

Our goal is to estimate the sum (8), using the bound (9) for each term,
Lemma 6.3 and the inductive case. If C1 intersects t1 different blocks (where of
course t1 ≤ t) then, using the fact that we have at most 2r (remember that r is
the number of blocks of Z) different τ , we get the total estimate∑
Z 6=∅

2r2r(1−m/2)Ds−r = Ds
(

(1 +D−122−m/2)t0 − 1
)
≤ Ds

(
(1 +

1

2t
)t0 − 1

)
≤ Ds

and we are done.

Lemma 6.2 is sufficient to prove a fairly tight hierarchy theorem. To prove
a tight variant we need also to see how R1 simplifies circuits.
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Lemma 6.4 Let g be computed by a depth-2 circuit of bottom fanin t ≤ m/4.
Let F be a downward closed set of restrictions and ρ1 a random restriction with
the distribution R1. Let depth(gdρ1) be the minimal depth of the decision tree
computing gdρ1 . Then, for sufficiently large m,

Pr[depth(gdρ1) ≥ s | ρ ∈ F ] ≤ Ds,

where D = t23+t−m/2.

Proof: The proof of this lemma is almost identical to the proof of Lemma 6.2
and let us only discuss the differences. Lemma 6.3 is replaced by the following.

Lemma 6.5 If Z is a set of set r blocks appearing in C1 and ρ a random
restriction appearing in the construction of R1, then, for sufficiently large m,

Pr[undet(Z) | ρ ∈ F ∧ C1dρ 6≡ 1] ≤ 2r(t+1−m/2).

Proof: The proof is almost the same as the proof of Lemma 6.3. The reason
for the loss in parameters is that the factor(

1 +
bi−1

1− bi−1

)|N |
that used to be bounded by a constant strictly less than two can now be as large
as 2t.

The rest of the proof of how Lemma 6.4 follows from Lemma 6.5 is identical
with how Lemma 6.2 followed from Lemma 6.3 with the obvious change in the
final calculation.

7 The proof of the main theorem

We now proceed to prove Theorem 1.1. In fact we are going to prove the
following, slightly stronger, theorem.

Theorem 7.1 Let C be a circuit depth d with bottom fanin at most m/4 and
which is of size S then, for sufficiently large m,

Pr[Fd(x) = C(x)] ≤ 1

2
+O(2−m/4) + S2−2m/2−4

.

It is not difficult to see that this theorem implies Theorem 1.1 as a depth
d − 1 circuit can be seen as a depth d circuit with bottom fanin one and that
m = logn

2d−2 (1 + o(1)). We turn to proving Theorem 7.1.
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Proof: Let us apply a random restriction ρd−1 ∈ Rd−1 to both Fd and C. Let
us assume that i is odd and hence the output gate of Fd is an and-gate. The
case of even i is completely analogous. By Lemma 5.4 we have

Pr[Fd(x) = C(x)] = Pr[Fddρd−1(x) = Cdρd−1(x)]

where the latter probability is over a random ρd−1 and random assignment to the
live variables in Vd−1 where each variable is given the value 1 with probability
1− bd−1. Let us first see how ρd−1 affects Fd.

We have the output gate, v, of fanin fd. With probability O(2−m/2) some
input gate is forced to 0 by ρd−1. Suppose that this does not happen and let h1

be the number of input gates to v that are not fixed to one. With probability
1 − exp(−Ω(2m/2)) we have |h1 − fd2

−m| ≤ 23m/4. Thus we conclude that,
with probability 1 − O(2−m/2), Fd has been reduced to an and-gate of fanin
ln 2 · 2m(1 +O(2−m/4)).

Now let us see how ρd−1 affects C. We to prove by induction that ρi, with
high probability, reduces the depth of C by i. Let us assume that C has Si
gates at distance i from the inputs.

Consider any gate in C at distance two from the inputs and suppose it is
an or of and-gates, the other case being similar. By Lemma 6.4, for sufficiently

large m, after ρ1 has been applied, except with probability 2−2m/2−4

this sub-
circuit can be computed by a decision tree of depth of depth at most 2m/2−4.
This implies that it can we written as an and of or-gates of fan-out at most

2m/2−4. We conclude that except with probability S22−2m/2−4

, by collapsing
two adjacent levels of and-gates, Cdρ1 can be computed by a depth d−1 circuit

with bottom fanin at most 2m/2−4 where each gate at distance at least two from
the inputs corresponds to a gate at distance at least three in the original circuit.

Applying Lemma 6.2 for i = 2, 3 . . . d− 2 in a similar way we conclude that

except with probability
∑d−2
i=3 Si2

−2m/2−4

, Cdρd−2 can be computed by a depth

2 circuit of bottom fanin 2m/2−4. A final application of Lemma 6.2 says that

except with an additional failure probability 2−2m/2−4

, Cdρd−1 can be computed

by a decision tree of depth 2m/2−4.
By the above reasoning we know that except with probability O(2−m/2) +

S2−2m/2−4

, it is true that Fddρd−1 is an and of size ln 2 · 2m(1 +O(2−m/4)) and

Cdρd−1 is computed by a decision tree of depth 2m/2−4. As the former is equal

to 1 with probability 1
2 (1 + O(2−m/4)) and the output of any decision tree of

depth s of inputs that are bd−1 biased has a sbd−1 biased output, we conclude
that

Pr[Fddρd−1(x) = Cdρd−1(x)] =
1

2
+O(2−m/4) + S2−2m/2−4

and the proof is complete.

Looking more closely at the proof we can derive an even stronger theorem.

Theorem 7.2 Suppose d is odd and let C be a circuit depth d+ 1 with output
gate that is an or-gate, with bottom fanin at most m/4 and of size at most S,
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then, for sufficiently large m,

Pr[Fd(x) = C(x)] ≤ 1

2
+O(2−m/4) + S2−2m/2−4

.

The same is true for even d if the output gate of C is an and-gate.

Proof: Let us assume that d is odd, the even case being completely analogous.
We follow exactly the proof of Theorem 7.1 until the very last step. We can
conclude that Cdρd−1 , with high probability, is reduced to the disjunction of a

set of functions each computable by a decision tree of depth 2m/2−4. We can
convert this to a DNF formula of bottom fanin 2m/2−4 and we must analyze the
probability that such a formula equals an and of size ln 2 · 2m(1 + O(2−m/4)).
We have two cases.

Suppose first that each term in the DNF-formula contains a negated variable.
Then Cdρd−1 rejects the all-one input which is chosen with probability 1

2 +

O(2−m/4) and as this input is accepted by Fddρd−1 we have

Pr[Fddρd−1(x) = Cdρd−1(x)] ≤ 1

2
+O(2−m/4) (13)

in this situation (where the probability is only over a random input) and this
case follows.

On the other hand if there is a term in Cdρd−1 that only contains positive

variables then it (and hence Cdρd−1) is true with probability 1 − O(2−m/2).
As Fddρd−1 is close to unbiased, (13) is true also in this case and the theorem
follows.

As stated previously we have not done a serious effort to get the best con-
stants in our main theorems. They are, however, not too far from the truth as
we may take C to be one input to the output gate of Fd. This is a depth d− 1
circuit of sub-linear size that agrees with Fd for a fraction 1

2 + Ω(2−2m) of the
inputs.

8 Some final words

The main difference between the current paper and the early proof of the hierar-
chy theorem in [1] is the use of projections. The projections serve two purposes.
The first is to make sure that once a single ∗ is found in ρ we do not bias any
other value of ρi to be ∗. This was achieved in [1] by fixing the values of neigh-
boring variables to constants while here we identify all the neighboring variables
with the same new variable and hence we only query one variable in the decision
tree. We feel that this difference is minor.

The more important difference is that projections enables us to choose a
uniformly random input where this seemed difficult to achieve. It is amazing
how seemingly simple ideas can take care of problems that, at least initially,
looks like fundamental obstacles.
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