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Abstract

We initiate a study of “universal locally testable codes” (universal-LTCs). These codes admit
local tests for membership in numerous possible subcodes, allowing for testing properties of
the encoded message. More precisely, a universal-LTC C : {0, 1}k → {0, 1}n for a family of
functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

is a code such that for every i ∈ [M ] the subcode

{C(x) : fi(x) = 1} is locally testable. We show a “canonical” O(1)-local universal-LTC of length

Õ(M · s) for any family F of M functions such that every f ∈ F can be computed by a circuit
of size s, and establish a lower bound of the form n = M1/O(k), which can be strengthened to
n = MΩ(1) for any F such that every f, f ′ ∈ F disagree on a constant fraction of their domain.

We also consider a variant of universal-LTCs wherein the testing procedures are also given free
access to a short proof, akin the MAPs of Gur and Rothblum (ITCS 2015). We call such codes

“universal locally verifiable codes” (universal-LVCs). We show universal-LVCs of length Õ(n2) for
t-ary constraint satisfaction problems (t-CSP) over k variables, with proof length and query

complexity Õ(n2/3), where t = O(1) and n ≥ k is the number of constraints in the CSP instance.
In addition, we prove a lower bound of p · q = Ω̃(k) for every polynomial length universal-LVC for
CSPs (over k variables) having proof complexity p and query complexity q.

Lastly, we give an application for interactive proofs of proximity (IPP), introduced by
Rothblum et al. (STOC 2013), which are interactive proof systems wherein the verifier queries
only a sublinear number of input bits and soundness only means that, with high probability, the
input is close to an accepting input. We show that using a small amount of interaction, our
universal-LVC for CSP can be, in a sense, “emulated” by an IPP, yielding a 3-round IPP for CSP
with sublinear communication and query complexity.
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1 Introduction

Locally testable codes [FS95, RS96, GS06] are error-correcting codes that have local procedures for
ascertaining the integrity of purported codewords. More accurately, a code C is a locally testable
code (LTC) if there exists a probabilisitic algorithm (tester) that gets a proximity parameter ε > 0,
makes a small number of queries to a string w, and with high probability accepts if w is a codeword
of C and rejects if w is ε-far from C. The query complexity of the tester is the number of queries
that it makes (also referred to as the locality of the LTC).

In this work we initialize a study of a generalization of the notion of LTCs, which we call
universal locally testable codes. A universal-LTC is a code that not only admits a local test for
membership in the code C but also a local test for membership in a family of subcodes of C. More
precisely, a binary code C : {0, 1}k → {0, 1}n is a q-local universal-LTC for a family of functions
F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

if for every i ∈ [M ] the subcode Πi := {C(x) : fi(x) = 1} is locally

testable with query complexity q. Viewed in an alternative perspective, such codes allow for testing
properties of the encoded message; that is, testing whether C(x) is an encoding of a message x that
satisfies a function fi ∈ F .

Universal-LTCs implicit in previous works. We remark that the notion of universal-LTCs
is implicit in the literature. For instance, the long code [BGS98], which maps a message to its
evaluations under all Boolean functions, can be thought of as the “ultimate” universal-LTC for all
Boolean functions. To see this, note that the long code is both locally testable and correctable
(i.e., there exists a local algorithm that can recover any bit of a slightly corrupted codeword), and

observe that we can test a subcode {LC(x) : f(x) = 1}, where LC : {0, 1}k → {0, 1}22
k

is the long
code and f : {0, 1}k → {0, 1} is some Boolean function, by first running the codeword test (and
rejecting if it rejects), and then running the local correcting algorithm with respect to the bit in
LC(x) that corresponds to the evaluation of f on x. However, the ability to test all subcodes comes
at the cost of great redundancy, as the length of the long code is doubly exponential in the length of
the message.

By an analogous argument, the Hadamard code, which maps a message to its evaluations under all
linear Boolean functions, can be thought of as a universal-LTC for all linear Boolean functions; note
that the length of the Hadamard code is exponential in the length of the message. Another example
is the inner PCP for satisfiability of quadratic equations [ALM+98], wherein the (exponentially
long) PCP oracle is an encoding of an assignment, independent from the set of quadratic equations it
allegedly satisfies. This PCP is an ”universal” encoding that admits a local test for the satisfiability
of any function that is given by a set of quadratic equations, and thus it can be thought of as a
universal-LTC for quadratic equations.

In this work, we ask whether universal-LTCs can be constructed for any family of functions F ,
and what are the optimal parameters (i.e., the code’s length, locality, and number of subcodes for
which it admits a local test) that can be obtained by universal-LTCs.

Universal (relaxed) Locally Decodable Codes. Before proceeding to present our results, we
wish to highlight a close connection between universal-LTCs and a relaxed form of local decodability.
A code is said to be a relaxed locally decodable code (relaxed-LDC) [BSGH+06] if there exists a local
algorithm (decoder) that is given a location to decode and query access to an alleged codeword.
If the codeword is valid, the decoder successfully decodes, and if the codeword is corrupted, the
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decoder, with high probability, either decodes correctly or rejects (indicating it detected a corruption
in the codeword). It turns out that universal-LTCs immediately imply a generalization of the notion
of relaxed-LDCs, which we describe next.1.

We define a universal relaxed locally decodable code (in short, universal-LDC) for a family of
functions F (analogously to universal-LTCs) as a relaxed-LDC wherein, instead of local procedures
for (relaxed) decoding of bits of the message x, we have local procedures for (relaxed) decoding of
the value of f(x) for every f ∈ F .

Now, let F be a family of Boolean functions. Observe that a universal-LTC for F ∪ (1−F) (i.e.,
a code with a tester Tf,b for each subcode {C(x) : f(x) = b}, where f ∈ F and b ∈ {0, 1}) implies a
universal-LDC for F , which is also locally testable, and vice versa. To see this, consider the following
local decoding procedure for f ∈ F : To decode f(x), invoke Tf,0 and Tf,1. If one tester accepted and
the other rejected, rule according to the accepting tester, and otherwise reject. Is is straightforward
to verify that this is indeed a (relaxed) local decoding procedure (see Appendix A for discussion
and generalizations). For the other direction, to test the subcode {C(x) : f(x) = 1}, first run the
codeword test, then decode the value of f(x) and accept if and only if it equals 1 (i.e., a decoded
value of 0 and a decoding error both cause rejection). We remark that all universal-LTCs in this
work can be easily extended to families of the type F ∪ (1−F), and thus we also obtain analogous
results for universal-LDCs.

1.1 Results for Universal Locally Testable Codes

To simplify the presentation of our results, throughout the introduction we fix the proximity
parameter ε to a small constant, and when we refer to “codes”, we shall actually mean error-
correcting codes with linear distance. Our first result shows a “canonical” universal-LTC for any
family of functions.

Theorem 1 (informally stated, see Theorem 3.2). Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be any

family of Boolean functions that can each be computed by a size s = s(k) circuit. Then, there exists

a (one-sided error) universal-LTC C : {0, 1}k → {0, 1}Õ(M ·s) for F with query complexity O(1).

We complement the foregoing“canonical” universal-LTC with a general lower bound on the query
complexity of universal-LTCs, as a function of the encoding’s length and number of subcodes for
which it admits a local test.

Theorem 2 (informally stated, see Theorem 3.7). Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be a family

of distinct Boolean functions. Then, every universal-LTC C : {0, 1}k → {0, 1}n for F must have query
complexity Ω(log logM − log log n− log k). Furthermore, if the functions in F are pairwise far (i.e.,
Prx[fi(x) 6= fj(x)] = Ω(1) for every i 6= j), then the query complexity is Ω(log logM − log logn).

Note that log logM − log log n = O(1) implies n = MΩ(1). In contrast, recall that Theorem 1 shows
an upper bound of n = Õ(M · s), where s bounds the circuit size for computing each f ∈ F . Thus,
for sufficiently large families of pairwise-far functions, Theorem 2 shows that the length of the the
canonical universal-LTC (in Theorem 1) is optimal, up to a constant power. This raises the question
of whether the aforementioned slackness can be removed. We answer this question to the affirmative,
albeit for a specific family of functions.

1We also note that, under certain conditions, universal-LTCs imply (non-relaxed) local decodability, see Appendix A
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Specifically, we show a universal-LTC C : {0, 1}k → {0, 1}k1.01 for a family of M =
(
k
m

)
· 22m

functions, namely the family of m-juntas,2 with query complexity Õ(m); note that for constant m,
the number of functions M is an arbitrarily large polynomial in the code’s length k1.01, whereas for
the canonical universal-LTC the length is linear in M .

In addition, note that the lower bound in Theorem 2 allows for a tradeoff between the
universal-LTC’s length and locality (i.e., query complexity), whereas Theorem 1 only shows universal-LTCs
in the constant locality regime. In Section 3.3 we show that for the family of m-juntas, there exists
a universal-LTC that allows for a tradeoff between locality and length. (See Proposition 3.11 for a
precise statement.)

1.2 Universal Locally Verifiable Codes

Next, we consider a variant of universal-LTC wherein the testing procedures are also given free access
to a short proof. In more detail, we say that a property Π has an MA proof of proximity (MAP)
[GR15] if there exists a probabilisitic algorithm (verifier) V that gets a proximity parameter ε > 0
and a short (sublinear) proof π as well as oracle access to a string w. The verifier satisfies, with
high probability, the following conditions: If w ∈ Π, there exists proof π such that V w(π, ε) accepts,
and if w is ε-far from Π, then for every alleged proof π, the verifier V w(π, ε) rejects.

We say that a code C : {0, 1}k → {0, 1}n is a universal locally verifiable code (universal-LVC) for
a family of functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

with proof complexity p and query complexity

q if for every i ∈ [M ] the subcode Πi := {C(x) : fi(x) = 1} has an MAP with proof length p and
query complexity q.3

We show quadratic length universal-LVCs of sublinear proof and query complexity for a large
and natural complexity class, for which every polynomial length universal-LTC must have almost
linear query complexity. Specifically, let n ≥ k, and denote by CSPn,k the set of all instances of
constraint satisfaction problems with n constraints of constant arity over k variables.

Theorem 3 (informally stated, see Theorem 4.3). There exists a universal-LVC C : {0, 1}k →
{0, 1}Õ(n2) for CSPn,k with proof and query complexity Õ(n2/3). More generally, for every α > 0 it

is possible to obtain proof length Õ(n2α) and query complexity Õ(n1−α).

In contrast, as stated above, every polynomial length universal-LTC for CSPn,k has query com-
plexity that is roughly linear in k. Actually, we provide a lower bound on the tradeoff between the
two complexity measures of universal-LVCs for CSPn,k.

Theorem 4 (informally stated, see Corollary 4.5). For every polynomial (in k) length universal-LVC
for CSPn,k with proof complexity p and query complexity q it holds that p · q = Ω̃(k). For p = 0 (i.e.,

a universal-LTC), the query complexity is Ω̃(k).

Note that for n = Θ(k), Theorem 3 gives a universal-LVC of length Õ(k2), and proof and query
complexity Õ(k2/3) each, whereas Theorem 4 shows that such a universal-LVC (of length poly(k))
must have either query or proof complexity Ω̃(

√
k).

2That is, all Boolean functions that only depend on m of their k variables.
3We remark that if we do not restrict the length of the proof, then every property Π can be verified trivially using

only a constant amount of queries, by considering an MAP proof that contains a full description of the input and
testing identity between the proof and the input.

3



1.3 An Application for Interactive Proofs of Proximity

An interactive proof of proximity (IPP) [RVW13] can be thought of as a generalization of the
notion of MAP, in which the verifier is allowed to interact with an omniscient prover (instead of a
“static” proof). More accurately, an IPP is an interactive proof system wherein an all powerful (yet
untrusted) prover interacts with a verifier that only has oracle access to an input x. The prover
tries to convince the verifier that x has a particular property Π. Here, the guarantee is that for
inputs in Π, there exists a prover strategy that will make the verifier accept with high probability,
whereas for inputs that are far from Π, the verifier will reject with high probability no matter what
prover strategy is employed.4

Rothblum et al. [RVW13] showed that, loosely speaking, every language in NC has an IPP with
Õ(
√
n) query and communication complexities, albeit this IPP requires a large (polylog(n)) number

of rounds of interaction. However, for IPPs that use a small number of rounds of interactive (in
particular, MAPs) only results for much lower complexity are known (e.g., for context-free languages
and languages that are accepted by small read-once branching programs [GGR15]).

We show that the universal-LVC in Theorem 3 can be, in a sense, “emulated” using a small
(constant) amount of interaction rounds. This yields the following IPP.

Theorem 5 (informally stated, see Theorem 4.8). Let n ≥ k. For every ϕ ∈ CSPn,k there exists
a 3-round IPP for the property πϕ := {x ∈ {0, 1}k : ϕ(x) = 1} with communication and query
complexity n6/7+o(1). More generally, there exists an O(1)-round IPP for Πϕ with communication
and query complexity n0.501.

1.4 Organization

In Section 2, we provide the required preliminaries for the main technical sections (i.e., Sections 3
and 4). In Section 3, we present our results regarding universal-LTCs. In Section 4, which is the
more involved part of this work, we present our results regarding universal-LVCs and the application
for interactive proofs of proximity. In addition, in Appendix A we show a sufficient condition for
obtaining locally decodable codes from universal-LTCs, and in Appendix B we provide deferred details
of proofs from Sections 3 and 4. The reason for deferring these details is that we think that they
are quite standard and are likely to be skipped by most readers.

2 Preliminaries

We begin with standard notations:

• We denote the absolute distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn by
∆(x, y) := |{xi 6= yi : i ∈ [n]}| and their relative distance by δ(x, y) := ∆(x,y)

n . If δ(x, y) ≤ ε,
we say that x is ε-close to y, and otherwise we say that x is ε-far from y. Similarly, we denote
the absolute distance of x from a non-empty set S ⊆ Σn by ∆(x, S) := miny∈S ∆(x, y) and
the relative distance of x from S by δ(x, S) := miny∈S δ(x, y). If δ(x, S) ≤ ε, we say that x is
ε-close to S, and otherwise we say that x is ε-far from S. We denote the projection of x ∈ Σn

on I ⊆ [n] by x|I .
4Indeed, MAPs can be thought of as a restricted case of IPPs, in which the interaction is limited to a single message

sent from the prover to the verifier.
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• We denote by Ax(y) the output of algorithm A given direct access to input y and oracle
access to string x. Given two interactive machines A and B, we denote by (Ax, B(y))(z) the
output of A when interacting with B, where A (respectively, B) is given oracle access to x
(respectively, direct access to y) and both parties have direct access to z. Throughout this
work, probabilistic expressions that involve a randomized algorithm A are taken over the
inner randomness of A (e.g., when we write Pr[Ax(y) = z], the probability is taken over the
coin-tosses of A).

Integrality. Throughout this work, for simplicity of notation, we use the convention that all
(relevant) integer parameters that are stated as real numbers are implicitly rounded to the closest
integer.

Uniformity. To facilitate notation, throughout this work we define all algorithms non-uniformly ;
that is, we fix an integer n ∈ N and restrict the algorithms to inputs of length n. Despite fixing
n, we view it as a generic parameter and allow ourselves to write asymptotic expressions such as
O(n). We remark that while our results are proved in terms of non-uniform algorithms, they can be
extended to the uniform setting in a straightforward manner.

Circuit Size. We define the size s(k) of a Boolean circuit C : {0, 1}k → {0, 1} as the number
of gates C contains. We count the input vertices of C as gates, and so s(k) ≥ k. We shall write
f ∈ SIZE

(
s(k)

)
to state that a Boolean function f : {0, 1}k → {0, 1} can be computed by a Boolean

circuit of size s(k).

2.1 Property Testing and Proofs of Proximity

In this section we review the definitions of testers, MAPs and IPPs. We begin with the definition of
IPPs and obtain the definitions of testers and MAPs as special cases of IPPs.

Definition 2.1 (Interactive Proof of Proximity [EKR04, RVW13]). Let n ∈ N. An interactive proof
of proximity (IPP) for property Π ⊆ Σn is an interactive protocol with two parties: a prover P that
has free access to input x ∈ Σn, and a probabilistic verifier V that has oracle access to x. The parties
exchange messages, and at the end of the communication the following two conditions are satisfied:

1. Completeness: For every proximity parameter ε > 0 and input x ∈ Π it holds that

Pr [(Vx,P(x))(ε) = 1] ≥ 2/3.

2. Soundness: For every ε > 0, x ∈ Σn that is ε-far from Π, and (cheating) prover P∗ it holds
that

Pr [(Vx,P∗)(ε) = 0] ≥ 2/3.

If the completeness condition holds with probability 1, we say that the IPP has a one-sided error, and
otherwise we say that the IPP has a two-sided error.

An IPP for property Π has query complexity (or locality) q = q(n, ε) if for every ε > 0 and x ∈ Σn

the verifier V makes at most q queries to x, and communication complexity c = c(n, ε) if for every
ε > 0 and x ∈ Σn the parties V and P exchange at most c bits. A round of communication consists
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of a single message sent from V to P followed by a single message sent from P to V. An r-round
IPP, where r = (n, ε), is an IPP in which for every ε > 0 and x ∈ Σn the number of rounds in the
interaction between V and P on input x is at most r.

The definition of a tester can be derived from Definition 2.1 by allowing no communication
(which effectively eliminates the prover). Similarly, the definition of an MAP can be derived by
restricting the communication to a single message from P to V (see [GR15] for further details on
MAPs). We shall sometimes refer to a tester with respect to proximity parameter ε as an ε-tester,
and similarly, we refer to an IPP (or MAP) with respect to proximity parameter ε as an IPPε (or
MAPε).

2.2 Locally Testable and Decodable Codes

Let k, n ∈ N. A code over alphabet Σ with distance d is a function C : Σk → Σn that maps messages
to codewords such that the distance between any two codewords is at least d = d(n). If d = Ω(n),
we say that C has linear distance. If Σ = {0, 1}, we say that C is a binary code. If C is a linear map,
we say that it is a linear code. The relative distance of C, denoted by δ(C), is d/n, and its rate is
k/n. When it is clear from the context, we shall sometime abuse notation and refer to the code
C as the set of all codewords {C(x)}x∈Σk . Following the discussion in the introduction, we define
locally testable codes and locally decodable codes as follows.

Definition 2.2 (Locally Testable Codes). A code C : Σk → Σn is a locally testable code (LTC) if
there exists a probabilistic algorithm (tester) T that, given oracle access to w ∈ Σn and direct access
to proximity parameter ε, satisfies:

1. Completeness: For any codeword w = C(x), it holds that Pr[TC(x)(ε) = 1] ≥ 2/3.

2. Soundness: For any w ∈ {0, 1}n that is ε-far from C, it holds that Pr[Tw(ε) = 0] ≥ 2/3.

The query complexity of a LTC is the number of queries made by its tester (as a function of ε and
k). A LTC is said to have one-sided error if its tester satisfy perfect completeness (i.e., accepts valid
codewords with probability 1).

Definition 2.3 (Locally Decodable Codes). A code C : Σk → Σn is a locally decodable code (LDC)
if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm (decoder) D that, given
oracle access to w ∈ Σn and direct access to index i ∈ [k], satisfies the following condition: For any
i ∈ [k] and w ∈ Σn that is δradius-close to a codeword C(x) it holds that Pr[Dw(i) = xi] ≥ 2/3. The
query complexity of a LDC is the number of queries made by its decoder.

We shall also need the notion of relaxed-LDCs (introduced in [BSGH+06]). Similarly to LDCs,
these codes have decoders that make few queries to an input in attempt to decode a given location
in the message. However, unlike LDCs, the relaxed decoders are allowed to output a special symbol
that indicates that the decoder detected a corruption in the codeword and is unable to decode this
location. Note that the decoder must still avoid errors (with high probability).5

5The full definition of relaxed-LDCs, as defined in [BSGH+06] includes an additional condition on the success rate
of the decoder. Namely, for every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and for at least a ρ fraction of
the indices i ∈ [k], with probability at least 2/3 the decoder D outputs the ith bit of x. That is, there exists a set
Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw it holds that Pr [Dw(i) = xi] ≥ 2/3. We omit this condition
since it is irrelevant to our application, and remark that every relaxed-LDC that satisfies the first two conditions can
also be modified to satisfy the third conditions (see [BSGH+06, Lemmas 4.9 and 4.10]).
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Definition 2.4 (relaxed-LDC). A code C : Σk → Σn is a relaxed-LDC if there exists a constant
δradius ∈ (0, δ(C)/2),

1. (Perfect) Completeness: For any i ∈ [k] and x ∈ Σk it holds that DC(x)(i) = xi.

2. Relaxed Soundness: For any i ∈ [k] and any w ∈ Σn that is δradius-close to a (unique) codeword
C(x), it holds that

Pr[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

There are a couple of efficient constructions of codes that are both relaxed-LDCs and LTCs (see
[BSGH+06, GGK15]). We shall need the construction in [GGK15], which has the best parameters
for our setting.6

Theorem 2.5 (e.g., [GGK15, Theorem 1.1]). For every k ∈ N and α > 0 there exists a (linear)
code C : {0, 1}k → {0, 1}k1+α with linear distance, which is both a relaxed-LDC and a (one-sided
error) LTC with query complexity poly(1/ε).

3 Universal Locally Testable Codes

Following the discussion in the introduction, we define universal locally testable codes as follows.

Definition 3.1. Let k,M ∈ N, and F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be a family of functions. A

universal locally testable code (universal-LTC) for F with query complexity q = q(k, ε) is a code
C : {0, 1}k → {0, 1}n such that for every i ∈ [M ] and ε > 0 there exists an ε-tester for the subcode
Πi := {C(x) : fi(x) = 1} with query complexity q. A universal-LTC is said to have one-sided error if
all of its testers satisfy perfect completeness.

Notation (ε-testing). We shall refer to a universal-LTC with respect to a specific proximity
parameter ε > 0 as a universal-LTCε.

Section Organization. We start, in Section 3.1, by showing a canonical universal-LTC for every
family of functions. This construction relies on a PCP-based machinery for asserting consistency of
encodings, which we shall use throughout this work. Next, in Section 3.2, we prove general lower
bounds on the query complexity of universal-LTCs as a function of the code’s length and number of
functions it can test. Finally, in Section 3.3, we show a specific family of functions (namely, the
family of m-juntas, i.e., Boolean functions that only depend on m of their variables) for which we
can obtain a smooth tradeoff between the universal-LTC length and locality.

3.1 The Canonical Universal-LTC

In this subsection we show a methodology for constructing an O(1)-local universal-LTC for any
family of Boolean functions.

6Specifically, the codes in [GGK15] are meaningful for every value of the proximity parameter, whereas the codes
in [BSGH+06] require ε > 1/polylog(k).
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Theorem 3.2. Let t(k) be a proper complexity function, and let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be a family of functions such that for every i ∈ [M ], the function fi can be computed by a size t(k)
circuit (i.e., fi ∈ SIZE

(
t(k)

)
). Fix n = M · Õ(t(k)). Then, for every ε > 1/polylog(n) there exists

a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}Õ(n) for F with linear distance and query
complexity O(1/ε).

We remark that, loosely speaking, the “canonical” universal-LTC above tightly matches the lower
bound (see Theorem 3.7) in the low query complexity regime, for a reasonable setting of the
parameters; see Section 3.2 for a more accurate statement.

The key idea for proving Theorem 3.2 is to design a universal-LTC that includes, for every f ∈ F ,
a PCP encoding of the message x, which asserts the value of f(x); this way we obtain a local test for
each function in F , simply by running its corresponding PCP verifier. The main problem, however,
is that given concatenated PCP oracles we cannot locally verify that all of these PCPs are consistent
with the exact same message. To overcome this issue, we shall first show a machinery for “bundling”
encodings together in a way that allows for locally testing that all of the encodings are consistent
with the same message. The key components for this construction are PCPs of proximity, which we
discuss below.

3.1.1 Preliminaries: PCP of proximity

PCPs of proximity (PCPPs) [BSGH+06, DR06] are a variant of PCP proof systems, which can be
thought of as the PCP analogue of property testing. Recall that a standard PCP is given explicit
access to a statement and oracle access to a proof. The PCP verifier is required to probabilistically
verify whether the (explicitly given) statement is correct, by making few queries to proof. In contrast,
a PCPP is given oracle access to a statement and a proof, and is only allowed to make a small
number of queries to both the statement and the proof. Since a PCPP verifier only sees a small part
of the statement, it cannot be expected to verify the statement precisely. Instead, it is required to
only accept correct statements and reject statements that are far from being correct (i.e., far in
Hamming distance from any valid statement). More precisely, PCPs of proximity are defined as
follows.

Definition 3.3. Let V be a probabilistic algorithm (verifier) that is given explicit access to a
proximity parameter ε > 0, oracle access to an input x ∈ {0, 1}k and to a proof ξ ∈ {0, 1}n. We say
that V is a PCPP verifier for language L if it satisfies the following conditions:

• Completeness: If x ∈ L, there exists a proof ξ such that the verifier always accepts the pair
(x, ξ); i.e., V x,ξ(ε) = 1.

• Soundness: If x is ε-far from L, then for every ξ the verifier rejects the pair (x, ξ) with high
probability; that is, Pr[V x,ξ(ε) = 0] ≥ 2/3.

The length of the PCPP is n and the query complexity is the number of queries made by V to both x
and ξ.

We shall use the following PCPP due to Ben-Sasson and Sudan [BS05] and Dinur [Din07].

Theorem 3.4 (Short PCPPs for NP). For every L ⊆ {0, 1}k that can be computed by a circuit of
size t(k), there exists a PCPP with query complexity q = O(1/ε) and length t(k) · polylog(t(k)).
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3.1.2 Consistency-Testable Bundles

Building on techniques of Ben-Sasson at el. [BSGH+06], we show a way to bundle together (possibly
partial) encodings of the same message such that it possible to locally test that all these encodings are
indeed consistent. That is, we are given some encodings E1, . . . , Es : {0, 1}k → {0, 1}n, and we wish
to encode a single message x ∈ {0, 1}k by all of these encodings (i.e., to bundle E1(x), . . . , Es(x))
such that we can test that all of the encodings are valid and consistent with the same message x.
We shall need such bundles thrice in this work: In Section 3.1.3 each Ei will simply correspond to a
Boolean function fi ∈ F , in Section 3.3 the Ei’s will correspond to encodings of small chunks x,
and in Section 4.1 Ei’s will correspond to the encodings of x by different error-correcting codes (i.e.,
Reed-Muller codes over different finite fields).

The main idea is to construct a bundle that consists of three parts: (1) the (explicit) message
x, (2) the encodings E1(x), . . . , Es(x), and (3) PCPPs that asset the consistency of the first part
(the message) with each purported encoding Ei(x) in the second part. However, such PCPPs can
only ascertain that each purported pair of message and encoding, denoted (y, zi), is close to a
valid pair (x,Ei(x)). Thus, in this way we can only verify that the bundle consists of encodings of
pairwise-close messages, rather than being close to encodings of a single message (e.g., the PCPPs
may not reject a bundle (x,E1(y1), . . . , Es(ys)) wherein each yi is close to x).

To avoid this problem, we also encode the message via an error-correcting code ECC, so the
bundle is of the form

(
ECC(x), (E1(x), . . . , Es(x)), (PCPP1(x), . . . ,PCPPs(x))

)
. Now, each PCPP

ascertains that a purported pair (y, zi) is close to (ECC(x), Ei(x)). Due to the distance of ECC,
this allows to verify that the bundle consists of s (close to valid) encodings of the same message.
Lastly, we repeat ECC(x) such that it constitutes most of the bundle’s length, and so if an alleged
bundle is far from valid, its copies of ECC(x) must be corrupted, and so the bundle itself constitutes
an error-correcting code that is locally testable (by verifying at random one of the PCPPs in the
bundle).

More precisely, consider the following way of bundling several encodings of the same message.

Construction 3.5 (Consistency-Testable Bundles). Let E1, . . . , Es : {0, 1}k → {0, 1}n be encodings
such that for every i ∈ [s], the problem of (exactly) deciding whether (x, y) ∈ {0, 1}k+n satisfies
y = Ei(x) can be computed by a size t(k) circuit. The consistency-testable bundle of {Ei(x)}i∈[s] is

the code B(x) : {0, 1}k → {0, 1}` that consists of the following ingredients.

1. An (arbitrary) code ECC : {0, 1}k → {0, 1}n′ with linear distance, which can be computed by a
size Õ(n′) circuit, where n′ = Õ(k).

2. Encodings E1, . . . , Es (given by the application) that we wish to bundle.

3. PCP of proximity oracles ξ1, . . . , ξs for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb}.

where and ra, rb are set such that |a| ≈ |b| = O(t(k)).

Let ε ≥ 1/polylog(s · t(k)). Consider the bundle

B(x) =
(

ECC(x)r,
(
E1(x), . . . , Es(x)

)
,
(
ξ1(x), . . . , ξs(x)

))
,
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where the length of each PCPP oracle ξi(x) is Õ(t(k)),7 and where r is the minimal integer such that
the first part of the bundle constitutes (1− ε/2) fraction of the bundle’s length (i.e., |ECC(x)|r ≥
(1− ε/2) · `).

Note that the length of B is ` = Õ(s · t(k)) and that B has linear distance, because |ECC(x)|r
dominates B’s length.

Notation for (alleged) bundled. For the analysis, when we consider an arbitrary string w ∈
{0, 1}` (which we think of as an alleged bundle), we view w ∈ {0, 1}`1+`2+`3 as a string composed of
three parts (analogous to the three parts of Construction 3.5):

1. The anchor, ẼCC(x) = (ẼCC(x)1, . . . , ẼCC(x)r) ∈ {0, 1}n
′·r, which consists of r alleged copies

of ECC(x);

2. The bundled encodings (Ẽ1(x), . . . , Ẽs(x)) ∈ {0, 1}n·s, which allegedly equals (E1(x), . . . , Es(x));

3. The PCPPs (ξ̃1(x), . . . , ξ̃s(x)) ∈ {0, 1}Õ(t(k))·s, which allegedly equals (ξ1(x), . . . , ξs(x)).

We show that there exists a local test that can ascertains the validity of the bundle as well as
asserts the consistency of any encoding Ei in the bundle with the anchor of the bundle. Note that
since the bundle’s anchor dominates its length, it is possible that the bundle is very close to valid,
and yet all of the Ei’s are heavily corrupted. Thus, we also need to provide a test for the validity of
each Ei and its consistency with the anchor.

Proposition 3.6. For every bundle B(x), as in Construction 3.5, there exists a consistency test
T that for every ε ≥ 1/polylog(`) makes O(1/ε) queries to a string w ∈ {0, 1}` and satisfies the
following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that Pr[Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far
from Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Note that Tw(0) is a codeword test for B, whereas for every i ∈ [s], the test Tw(i) asserts that

Ẽi is close to an encoding of the anchor. To verify that w is a bundle wherein all encodings refer
to the same message (the anchor), we have to invoke Tw(i) for all i ∈ {0} ∪ [s], but typically we
will be interested only in the consistency of one encoding with the anchor, where this encoding is
determined by the application. The proof of Proposition 3.6 is by standard case analysis, and so we
defer it to Appendix B.1.

3.1.3 Proof of Theorem 3.2

Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be a family of functions such that for every i ∈ [M ] it holds

that fi ∈ SIZE
(
t(k)

)
). Fix n = M · Õ(t(k)) and ε > 1/polylog(n). We set Ei = fi for every i ∈ [M ],

7Note that Li ∈ SIZE(m) by the hypothesis regarding ECC and Ei. Thus, by Theorem 3.4, such a PCPP exists.
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bundle these encodings via Proposition 3.6, and denote the bundle by C : {0, 1}k → {0, 1}Õ(n). Note
that by Proposition 3.6, the code C has linear distance.

Fixing fi ∈ F , we show an O(1/ε)-local ε-tester Ti for the subcode Πi := {C(x) : fi(x) = 1}.
Given input w ∈ {0, 1}Õ(n), the tester Ti simply invokes the bundle consistency test on w (which
makes O(1/ε) queries to w), with respect to proximity parameter ε and the purported copy of fi(x)
in the bundle, which is a bit, denoted by zi. The tester accepts if and only if the consistency test
accepts and zi = 1.

The perfect completeness of Ti follows by the one-sided error of the bundle consistency test. For
the soundness, assume that w is ε-far from Πi. By Proposition 3.6, we can assume that there exists
y ∈ {0, 1}k such that w is ε-close to C(y) (otherwise the consistency test fails with probability 2/3),
and since w is ε-far from Πi, it holds that fi(y) = 0; furthermore, the value of w at fi is uncorrupted
(i.e., it actually equals 0),8 and so Ti rejects.

3.2 General Lower Bounds

In this section we prove a general lower bound on the query complexity of universal-LTCs for any
family of functions F , as a function of the universal-LTC’s length and the number of functions in F .
We also prove a stronger lower bound for the case that the functions in F are “pairwise far”.

Theorem 3.7. Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be a family of distinct functions. Then, every

q-local universal-LTCε C : {0, 1}k → {0, 1}n for F with linear distance and ε < δ(C)/2 must satisfy

q ≥ log logM − log log n− log(k)−O(1).

Furthermore, if there exists β = Ω(1) such that Prx∈{0,1}k [fi(x) 6= fj(x)] > β for every i 6= j, then
q = Ω(log logM − log logn).

Note that in the constant locality regime (i.e., where q = O(1)), the lower bound for “pairwise far”
functions implies that n ≥M c for some constant c > 0. On the other hand, recall that the canonical
universal-LTC in Theorem 3.2 has query complexity O(1) and length Õ(M · t(k)), for any family of
functions that can be computed by a circuit of size t(k) each (recall that t(k) ≥ k, by definition).
Thus, for sufficiently large families of “pairwise far” functions, the lower bound above matches the
upper bound of the canonical universal-LTC up to a constant power, where by “sufficiently large”
we mean that t(k) = poly(M).

Proof. We prove Theorem 3.7 using two different representations of testers: when proving the
main claim we view testers as randomized decision trees, whereas in the proof of the furthermore
claim we view testers as a distribution over deterministic decision trees. We begin with the main
claim, for which we use the following lemma, due to Goldreich and Sheffet [GS10], which shows
that the amount of randomness that suffices for testing is roughly doubly logarithmic in the size of
the universe of objects it tests.

Lemma 3.8 ([GS10, Lemma 3.7] restated). Let k ∈ N, U ⊆ {0, 1}k, and let Π ⊆ U be a property.
Assume that Π has a tester with randomness complexity r, which makes q queries to a string in U .
Then, Π has a tester that makes q queries and has randomness complexity log log |U |+O(1).

8Formally, Proposition 3.6 guaranties that w contains a copy of fi(y) that is ε-close to zi, but since fi(y) is a single
bit, this means that fi(y) is uncorrupted.

11



Let C : {0, 1}k → {0, 1}n be a universal-LTC for F , and assume that each tester Ti for the subcode
Πi = {C(x) : fi(x) = 1} is given the promise that its input is a valid codeword of C; that is, we only
consider the behavior of Ti given a codeword C(x) out of the universe U := {C(x) : x ∈ {0, 1}k},
which consists of 2k codewords. We shall prove a lower bound of the query complexity of the
foregoing testers, and this, in particular, implies a lower bound on standard testers (which are not
given a promise regarding their input).

Here we view a randomized decision tree is a decision tree wherein the vertices are also allowed
to be labeled with a special coin-flip symbol ∗ that indicates that during computation, one of the
children of each ∗-labeled vertex is chosen uniformly at random. Note that any tester with query
complexity q and randomness complexity r can be represented by a randomized decision tree of
depth q + r in which all vertices in the first r layers are ∗-labeled. By Lemma 3.8 we can assume
without loss of generality that r = log log |U |+ O(1) = log(k) + O(1). Observe that there are at

most (n+ 3)2q+log(k)+O(1)
such randomized decision trees (we bound the number of depth d decision

trees over n variables by counting all possible labeling of a depth d binary tree with the names of
the variables, the two terminals, and the coin-flip symbol).

Recall that for every i 6= j the functions fi and fj are different, hence there exist x ∈ {0, 1}k
such that C(x) ∈ Πi4Πj , and so by the distance of C, a tester for Πi cannot also be a tester for Πj .

Therefore M ≤ (n+ 3)2q+log(k)+O(1)
, and so q ≥ log logM − log logn− log k −O(1).

For the furthermore claim of Theorem 3.7, for every i ∈ [M ], denote by Ti the q-query ε-tester
for the subcode Πi := {C(x) : fi(x) = 1}, and by amplification, assume that Ti makes q′ = O(q)
queries and obtains completeness and soundness error of at most δerr = β/2. Note that if x satisfies
fi(x) = 1, then C(x) ∈ Πi, thus the tester Ti accepts (i.e., outputs 1) with high probability, and if x
satisfies fi(x) = 0, then C(x) is ε-far from Πi, and thus the tester Ti rejects (i.e., outputs 0) with
high probability; that is,

∀x ∈ {0, 1}k Pr[T
C(x)
i = fi(x)] ≥ 1− δerr. (3.1)

Hence, testing codewords of C for membership in Πi amounts to computing fi(x).
Let D1, . . . , Ds be all (binary, deterministic) depth q′ decision trees over n variables, and note

that s ≤ (n+ 2)2q
′
. Here we view each Ti is a distribution over {Dj}j∈[s]; that is, for every i ∈ [M ]

there exists a distribution µi over [M ] such that for every w ∈ {0, 1}n, the output of Twi is obtained
by drawing j ∼ µi and outputting Dw

j . By Eq. (3.1), for every x and i ∈ [M ],

s∑
j=1

µi(j) · Pr
x∈{0,1}k

[D
C(x)
j = fi(x)] ≥ 1− δerr.

In particular, we obtain that for every i ∈ [M ] there exists j ∈ [s] such that Prx[D
C(x)
j = fi(x)] ≥

1− δerr. Observe that if M > s (i.e., there are more fi’s than depth-q′ decision trees), then there

exists i1, i2 ∈ [M ], where i1 6= i2 and j ∈ [s], such that Prx[fi1(x) = D
C(x)
j = fi2(x)] ≥ 1− 2δerr =

1 − β, in contradiction to the hypothesis. Thus M ≤ s ≤ (n + 1)2q
′
, and since q′ = O(q), then

q = Ω(log logM − log logn).

On the gap between “pairwise far” and general families of functions. Recall that there
is an additive difference of Ω(log k) between the lower bound for general families of functions and the
stronger lower bound for families of functions that are “pairwise far”. We leave open the question
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of whether the lower bound for general families of functions can be improved to match the stronger
lower bound for ”pairwise far” functions, or whether there exists a universal-LTC for a family of
functions, which are not ”pairwise far”, that matches the lower bound for general functions. We
point out two observations regarding the forgoing question:

1. The argument in the furthermore claim of Theorem 3.7 also shows that any universal-LTC with
deterministic testers must satisfy q = Ω(log logM − log logn), even for families of functions
that are not ”pairwise far” and when given the proviso that the input is a valid codeword.
Therefore, to construct a universal-LTC that matches the general lower bound, the testers
must use a randomized strategy, not only for checking the validity of the encoding, but also
for computing the function of the message. (We remark that all of the universal-LTCs in this
work use randomness only for codeword testing.)

2. The proof of the furthermore claim of Theorem 3.7 actually yields a stronger statement
regarding ”pairwise far” functions. Specifically, it only requires that the functions should be
”pairwise far” under some distribution (and not necessarily the uniform distribution); that is,
it suffices that there exists a distribution D over {0, 1}k such that Prx∼D[fi(x) 6= fj(x)] = Ω(1)
for every i 6= j.

3.3 Trading off Length for Locality

The general lower bound in Theorem 3.7 allows for a tradeoff between the universal-LTC’s length
and locality. We remark that while the canonical universal-LTC in Theorem 3.2 matches this lower
bound, it is limited to the extreme end of the tradeoff, wherein the locality is minimized (i.e., the
query complexity is constant). In this subsection we show a specific family of functions (namely, the
family of m-juntas) for which we can obtain a smooth tradeoff between the universal-LTC’s length
and locality.

3.3.1 Universal-LTCs of Nearly-Linear Length

Let m, k ∈ N such that m ≤ k, and denote by Juntam,k the set of all
(
k
m

)
· 22m k-variate Boolean

functions that only depend on m coordinates. We start by showing that using super-constant query
complexity, we can obtain universal-LTCs that are shorter than the canonical universal-LTC. More
precisely, we prove that there exists a universal-LTC for Juntam,k with linear distance, nearly-linear
length, and query complexity that is quasilinear in m. (We discuss how Observation 3.9 matches the
lower bound in Theorem 3.7 in Section 3.3.3.)

Observation 3.9. Let k,m ∈ N such m ≤ k, and let α > 0 be a constant. For every ε > 0 there
exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}k1+α for Juntam,k with linear distance

and query complexity Õ(m) + poly(1/ε).

Sketch of proof. The idea is to use a code C that is both locally testable and decodable, and
obtain a tester for each subcode {C(x) : f(x) = 1} (where f ∈ Juntam,k) by invoking the tester for
membership in C, using the decoder to recover the values of the m influencing variables of f (for
which we shall need to reduce the error probability of the decoder to 1/m), and ruling accordingly.
Recall, however, that there are no known LDCs with constant query complexity and polynomial
length (let alone such with nearly-linear length). Instead, we observe that for the foregoing idea
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it suffices that C is a relaxed-LDC,9 and so we can use the code in Theorem 2.5, which is both a
(one-sided error) LTC and a relaxed-LDC, with nearly-linear length. The implementation of the
aforementioned ideas is straightforward, and so, we omit it.

Digression: Universal-LTCs with optimal rate. In Observation 3.9, we are concerned with
minimizing the locality of the universal-LTCs, while settling for nearly-linear length (and so, we use
the code in Theorem 2.5 as the base code). We remark that the argument underlying Observation 3.9
holds for any base code that is both locally testable and (possibly relaxed) locally decodable. Thus,
different base codes may be used to obtain universal-LTCs in other regimes. For example, allowing
large query complexity (which depends on k) and focusing on optimizing the rate and the distance,
we can obtain the following corollary by using the recent construction, due to Meir [Mei14, Theorem
1.1, 1.2, and Remark 1.5], of codes that are both locally testable and decodable with constant rate
and optimal distance, and query complexity that is an arbitrary small power of the input length.

Corollary 3.10. For every 0 < r < 1, α, β > 0 there exists a finite field H of characteristic 2 such
that for every m ≤ k, there exists a universal-LTC C : Fk2 → Hn for Juntam,k with rate at least r,
relative distance at least 1− r − α, and query complexity O(kβm logm+ kβ/ε).10

3.3.2 The Actual Tradeoff

Next, we show a universal-LTC for Juntam,k with a smooth tradeoff between length and query
complexity.

Proposition 3.11. Let k,m ∈ N such that m ≤ k. For every τ < m and ε ≥ 1/polylog(n), where

n ≤ km+1

kt · (2
2m)1/2t, there exists exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}Õ(n)

for Juntam,k with linear distance and query complexity Õ(τ) +O(1/ε).

We remark that in the Õ(m)-locality regime (the query-heavy extreme of the tradeoff), Proposi-
tion 3.11 only yields a universal-LTC of quadratic length, whereas Observation 3.9 achieves nearly-
linear length.11

Sketch of proof. The basic idea is to map x ∈ {0, 1}k to the long code encoding of the projection of
x to each m-subset of [k]; that is, x→

(
LC(x|S1), . . . , LC(x|SN )

)
, where S1, . . . , SN are all N =

(
m
k

)
distinct m-subsets of [k] and LC : {0, 1}m → {0, 1}22

m

is the corresponding long code.
Next, to ascertain that all the long code encodings are consistent with restrictions of a single x,

we bundle these encodings with PCPs according to the consistency-testable bundling mechanism
presented in Section 3.1 (where the encodings {Ei} correspond to {LC(x|Si}). This yields a
universal-LTC for m-juntas with query complexity O(1) and length

(
k
m

)
· Õ(22m + k): To test that x

satisfies the junta f(x) = f ′(x|S), where S ⊆ [k] such that |S| = m, we first use Proposition 3.6 to

9Recall that relaxed-LDCs are a relaxation of locally decodable codes that requires local recovery of individual
information-bits, yet allow for recovery-failure, but not error, on the rest (see Definition 2.4).

10Recall that the query complexity measures the number of queries made, rather than the number of bits that were
read, but since p is a constant, the difference is immaterial.

11It is possible to optimize Proposition 3.11 such that in the query-heavy extreme of the tradeoff it will yield
universal-LTCs of linear length, by adapting techniques from [BSGH+06, Section 4] to our setting. However, this

methodology is far more involved than simply using Observation 3.9 in the Õ(m)-locality regime.
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ensure the consistency of the bundle (i.e., the consistency of f with the anchor), then we extract
the value of f(x) by locally correcting the point that corresponds to f ′ in the purported copy of
LC(x|S).

Finally, to obtain a smooth tradeoff, we modify the foregoing construction such that x is mapped
to the long code encoding of the projection of x to each (m− τ)-subset of [k] (instead of m-subset),
for the given parameter τ ∈ [m]. The idea is that now, to test that x satisfies f ′(x|S) = 1, we first
arbitrarily choose t bits of x|S and decode them one-by-one (as in Observation 3.9); this induces a
function f ′′ on the remaining m− τ bits, which we compute by self-correcting the single bit that
corresponds to f ′′ in the long code encoding of x projected to these m− τ bits. The implementation
of the foregoing ideas is straightforward and is presented in Appendix B.2.

3.3.3 Lower Bounds for Universal-LTCs for Juntas

We conclude this subsection by proving a lower bound on the query complexity of universal-LTCs
for Juntam,k. Observe that the family of all m-juntas do not satisfy the ”pairwise far” condition,
and thus Theorem 3.7 only gives us a lower bound of q ≥ m − log logn − O(log k). However, we
show that while the family Juntam,k is not ”pairwise far”, it contains a dense subset of functions
that are ”pairwise far”, and so we can strengthen the foregoing lower bound as follows.

Proposition 3.12. Let k,m ∈ N such m ≤ k. There exists a universal constant c > 0 such that
every universal-LTCε C : {0, 1}k → {0, 1}n for Juntam,k with linear distance and ε < δ(C)/2 must
have query complexity Ω(m− log log(n) + c).

We remark that that for m =
(
1 + Ω(1)

)
· log log(n), the lower bound simplifies to Ω(m) and matches

Observation 3.9 up to a constant power. Furthermore, it is possible to improve Proposition 3.12
such that it gives a non-trivial lower bound when m < log log(k) (see discussion at the end of the
section).

Proof of Proposition 3.12. We show that Juntam,k contains a dense subset that is “pairwise far”.
Specifically, fix S ⊆ [k] such that |S| = m, and let JuntaSm,k ⊆ Juntam,k denote all m-juntas that

depend only on coordinates in S. We prove that there exists a family F ⊆ JuntaSm,k of M = 2Ω(2m)

distinct functions such that every distinct f and g in F satisfies Prx∈{0,1}k [f(x) 6= g(x)] = Ω(1).

Note that the set of truth tables, restricted to inputs supported on S, of all f ∈ JuntaSm,k is

isomorphic to {0, 1}2m , and thus we can choose a subset of it that constitutes a good code. That is,
for every f ∈ JuntaSm,k, note that f(x) = f ′(x|S) for some f ′ : {0, 1}m → {0, 1}, and denote the truth
table of f ′ by 〈f ′〉. Let C0 be a code with linear distance, constant rate, and codewords of length 2m,
and observe that by the rate and distance of the code C0, the set F = {f ∈ JuntaSm,k : 〈f ′〉 ∈ C0}
is a collection of 2Ω(2m) functions such that every distinct f, g ∈ F satisfy

Pr
x∈{0,1}k

[f(x) 6= g(x)] = Pr
x∈{0,1}k
x|[k]\S=0

[f(x) 6= g(x)] = Ω(1).

The proof of Proposition 3.12 is concluded by applying Theorem 3.7 to F .

Improving the lower bound. We point out a slackness in the proof of Proposition 3.12.
Specifically, we apply Theorem 3.7 to a subset F of m-juntas that depend on a single set
S ⊂ [k] of cardinality m, and so we lose all dependency in k (the dimension of the code).
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We sketch below how to tighten this slackness and obtain a slightly stronger lower bound of
Ω(max{m,Ω(log(m)) + log log(k)} − log log(n)), which gives a non-trivial lower bound also when
m < log log(k) and n < km (while noting that Proposition 3.12 trivializes for this range of parame-
ters).

As a first attempt, we can consider a partition of [k] to sets S1, . . . , Sk/m of cardinality m,

and (similarly to Proposition 3.12) include in F a subset of functions from each JuntaSim,k whose
truth-tables form a good code. Inspection shows that as long as the foregoing good code is
balanced,12 juntas in such F are pairwise far, and so we can apply Theorem 3.7. The problem
is, however, that such argument only strengthens the lower bound by a constant factor; that
is, it yields q = Ω

(
log log

(
k
m · 2

2m
)
− log logn

)
, which is not asymptotically better than q =

Ω(log log(22m)− log logn), established in Proposition 3.12.
To obtain an asymptotical strengthening, we can choose kΩ(m) distinct subsets of [k] with small

(say, m/100) pairwise intersection (using the Nisan-Wigderson combinatorial designs [NW94]), and
for each such subset S, include in F juntas from JuntaSm,k whose truth-tables form a random code.
On inspection, it turns out that juntas in such F are pairwise far, and thus we can apply Theorem 3.7
to obtain q = Ω(log log(km · 22m)− log logn), which yields the aforementioned bound.

4 Universal Locally Verifiable Codes and Proofs of Proximity for
CSP

Following the discussion in the introduction, we define the MA analogue of universal-LTCs, i.e.,
universal-LTCs with MAPs instead of testers. We refer to such codes as “universal locally verifiable
codes”.

Definition 4.1. Let k,M ∈ N, and F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

be a family of functions. A

universal locally verifiable code (universal-LVC) for F with query complexity q = q(k, ε) and proof
complexity p = p(k, ε) is a code C : {0, 1}k → {0, 1}n such that for every i ∈ [M ] and ε > 0, there
exists an MAP, with respect to proximity parameter ε, for the subcode Πi := {C(x) : fi(x) = 1} with
query complexity q and proof complexity p. A universal-LVC is said to have one-sided error if all of
its MAPs satisfy perfect completeness.

Notation. We shall refer to a universal-LVC with respect to a specific proximity parameter ε > 0
as a universal-LVCε.

Section Organization. In the first subsection (Section 4.1) we show an efficient universal-LVC
for constraint satisfaction problems (CSPs). As discussed in the introduction, this universal-LVC
can be viewed as a concise representation (or encoding) of assignments that allows for efficient
MAPs for every CSP instance. We remark that the bundle consistency test (see Section 3.1) is used
in the foregoing construction. Next, in Section 4.2 we show a lower bound on the complexity of
universal-LVCs for conjugations (and in particular for CSPs). Finally, in Section 4.3 we show that
using interactive verification procedures we can, in a sense, emulate the universal-LVC in Section 4.1
and obtain an interactive proof of proximity (IPP) for any CSP. Note that this result refers to the
standard model of IPPs, where the verifier is given access to a plain assignment (rather than to its
encoding).

12That is, a code wherein each codeword consists of an equal number of 0’s and 1’s.
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4.1 A Universal Locally Verifiable Code for CSP

Throughout this section, let k, n, t ∈ N such that t ≤ k (the reader is encouraged to think of t
as being relatively small with respect to k). A constraint of arity t on k variables is a predicate
c : {0, 1}k → {0, 1} that only depends on t coordinates (i.e., a t-junta). We denote the set of all
such constraints by Constraintt,k.

Definition 4.2. A function ϕ : {0, 1}k → {0, 1} is an instance of a constraint satisfaction problem
with n constraints of arity t, denoted ϕ ∈ CSPn,t,k (or ϕ ∈ CSPn, if t and k are clear from the
context), if ϕ(x) =

∧n
i=1 ci(x1, . . . , xk) = 1, where c1, . . . , cn ∈ Constraintt,k.

For example, in our formulation, a k-variate, n-clause 3SAT instance ϕ : {0, 1}k → {0, 1} can be
expressed as a CSPn,3,k by writing ϕ(x) =

∧n
i=1 ci(x1, . . . , xk), where each ci is a disjunction of 3

literals from { x1, . . . , xk } ∪ { 1− x1, . . . , 1− xk }. We stress that in Definition 4.2 we allow the
constraints to be arbitrary and different predicates of the same arity.

The following theorem shows an efficient universal-LVC for constraint satisfaction problems. For
simplicity, we assume without loss of generality that n ≥ k (otherwise, we add k− n empty clauses).

Theorem 4.3. Let n, k, t,m ∈ N such that t < k ≤ n and ε > 1/polylog(n).13 There exists a

(one-sided error) universal-LVCε C : {0, 1}k → {0, 1}Õ(m·t·n2) for CSPn,t,k with linear distance such

that for every ` ∈ [m/2], the universal-LVC has proof complexity Õ(m ·n2`/m ·t`) and query complexity
Õ(m · tn1−`/m/ε).

Note that for constant t, m, and ε we obtain code length Õ(n2),14 proof length Õ(n2`/m), and
query complexity Õ(n1−`/m). In particular, for ` = m/3 (e.g., for m = 3), Theorem 4.3 yields a
(nearly) quadratic length universal-LVC with both proof and query complexity Õ(n2/3). We remark
that the proof complexity of our MAP has a factor of t` (and ` may be as large as m/2), and so we
shall want to choose m = O(1) and work with individual degree d = n1/m polynomials, rather than
the usual setting of m = log(n)/ log log(n) and d = log(n).

4.1.1 Motivation and Overview of the Construction

In this subsection we give an overview of the key ideas underlying our universal-LVC for CSP. We
assume basic familiarity with algebraic PCP systems. Our general approach follows the arithmetiza-
tion paradigm, commonly used in many probabilistic proof systems. However, for reasons detailed
next, we cannot use the standard arithmetizations used in the PCP literature. We focus on the first
step of arithmetization, which is over the integers, and assume for simplicity that only one type of
t-ary constraint, denoted c, is used.

The most common arithmetization, which can be traced back to [FGL+91], represents the t-ary
instance ϕ as a generic function φ : [k]t → {0, 1} such that φ(i1, . . . it) = 1 if and only if the i’th
constraint of ϕ involves the variables xi1 . . . , xit . The satisfiability of ϕ at x is then given by∑

i1,...it∈[k]

φ(i1, . . . it) · c(xi1 , . . . xit) = n. (4.1)

13We believe that the limitation on the proximity parameter can be eliminated, by adapting the techniques in
[GGK15] to our setting. We leave the verification of this idea as an open problem.

14We remark that the quadratic length of our universal-LVC is inherent in our techniques, and it is an open question
whether it is possible to obtain sub-quadratic length.
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This leads to a PCP oracle of length at least kt, and at best we can hope to implement it by a
universal-LVC that has proof length p and query complexity q such that p · q ≥ kt. Our goal is,
however, to get both p and q to the sublinear (in k) level.

The large PCP length of Eq. (4.1) lead [BFLS91] to suggest a different representation. Using a
universal circuit φ of size n′ = Õ(n), the satisfiability of ϕ at x is represented by

∃y ∈ {0, 1}n′
∑

i∈[k+n′]

φ(i) · c′
(
(xy)|Si

)
, (4.2)

where c′ is a fixed condition (which depends on c) and each Si ⊆ [k + n′] is a subset of constant
cardinality. The problem with Eq. (4.2) is that y is a sequence of auxiliary variables and its
assignment in Eq. (4.2) depends on the instance ϕ (and not only on the assignment x).

Our alternative arithmetization composes the assignment x ∈ {0, 1}k viewed as a function
x : [k] → {0, 1} with functions ϕ1, . . . , ϕt : [n] → [k] that represent the instance ϕ. Specifically,
ϕj(i) = i′ if xi′ = x(i′) is the j’th variable of the i’th constraint of ϕ. Hence, ϕ is satisfiable if and
only if ∑

i∈[n]

c
(
x ◦ ϕ1(i), . . . , x ◦ ϕt(i)

)
= n. (4.3)

Next, we consider the algebraic representation of Eq. (4.3) over a sufficiently large finite field F
(discussed below). For simplicity, we assume throughout the rest of this overview that n = k and
t = O(1). We identify [n] (the number of constraints) with some set Hm, where H ⊂ F. Throughout
this work, we shall denote the low-degree extension of a function f by f̂ . Let ϕ̂j : Fm → Fm and

X̂ : Fm → F be the individual degree n1/m extensions of ϕj : Hm → {0, 1} and the assignment
X : Hm → {0, 1} (respectively), and let ĉ : Ft → F be the degree t multilinear extension of the
constraint c : {0, 1}t → {0, 1}. Note that ϕ(x) = 1 if and only if∑

z1,...,zm∈H
ĉ
(
X̂ ◦ ϕ̂1(z1, . . . , zm), . . . , X̂ ◦ ϕ̂t(z1, . . . , zm)

)
= n.

The straightforward way to implement an MAP for such arithmetization is as follows. Let
` ∈ [m/2] be a parameter that will be used to control a tradeoff between proof and query complexity.
The purported proof for the MAP is the polynomial

π(z1, . . . , z`) =
∑

z`+1,...,zm∈H
ĉ
(
X̂ ◦ ϕ̂1(z1, . . . , zm), . . . , X̂ ◦ ϕ̂t(z1, . . . , zm)

)
, (4.4)

specified by its coefficients. Observe that the individual degree of both X̂ and ϕ̂j is |H| = n1/m and

that the composition of X̂ with ϕj increases the individual degree to |H|2. Note this is in contrast

to standard arithmetizations, wherein typically the degree of the proof polynomial is Õ(|H|). In
addition, note that ĉ only contributes a factor of t to the degree of π, since the constraint is Boolean,
and so we can take its multilinear extension (saving an exp(t) factor that would have arisen had we
constructed a universal-LVC for 3-CNF formulas and use reductions to handle general t-ary CSPs.)
Observe that the proof length of such MAP is deg(π)` · log |F| = t` · |H|2` · log |F| (where deg(π) is
the individual degree of π, which equals t · |H|2).

Given the foregoing alleged proof π, the verifier can check that
∑

z1,...z`∈H π(z1, . . . , z`) = n.

Thus, ascertaining the validity of the proof reduces to computing π at a random point r ∈ F` and
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comparing it to the right hand side of Eq. (4.4). Recall that the formula ϕ is hardcoded in the
verifier, and so it remains for the verifier to query X̂ ◦ ϕ̂j(r, z′) at all z′ ∈ Hm−` (which is actually
done via self-correction, preceded by a low-degree test). Therefore, it suffices to set the universal-LVC
to X̂, the low-degree extension of the assignment (which does not depend on the formula). Observe

that the query complexity of such MAP is t · n1− `
m · log |F| (which is primarily determined by the

number summands in π).
Unfortunately, a straightforward application of the MAP above requires the order of the field F

(to which we extend) to be greater than the sum we are checking (i.e., n, the number of constraints),
because we cannot afford taking a (pseudo) random linear combination of the constraints, as often
done in the PCP literature (since this would increase the length of the proof π and prevent us from
obtaining sublinear complexity). This causes the length of the universal-LVC (i.e., the Reed-Muller
encoding of the assignment to F) to be roughly nm.

We overcome this issue by arithmetizing over several (distinct) prime fields {Fq}q∈Q such that:
(1) for every q ∈ Q, the order of Fq is larger (by a constant multiplicative factor) than the individual
degree of the proof polynomial, which is O(|H|2) = O(n2/m),15 and (2) it holds that

∏
q∈Q q > n

(and so we shall set |Q| = Θ(m)). We then invoke, in parallel, the foregoing MAP for each Fq. This
gives us the number of satisfied clauses modulo q, and since

∏
q∈Q q > n, we can use the Chinese

remainder theorem to extract the number of satisfied clauses. Note that each Fq is of size O(n2/m),
and so the length of a universal-LVC that consists of the Reed-Muller encodings of the assignment to
each field in {Fq}q∈Q is Õ(m · n2).

Finally, recall that we wish the verifier to have access to the low-degree extension of an assignment
over several finite fields, and so the verifier needs to be able to verify that its input actually consists
of several polynomials that are consistent with the low-degree extension of a single assignment.
Towards this end we bundle the foregoing polynomials using the PCP-based consistency mechanism
we showed in Section 3.1 (which also allows us to ascertain that the assignment is binary).

4.1.2 The actual proof of Theorem 4.3

We construct a universal-LVC that maps each assignment x ∈ {0, 1}k to its low-degree extensions
over m distinct finite fields, each of cardinality O(n1/m), bundled (via Construction 3.5) in a way
that allows for locally verifying that all codewords encode the same assignment. More precisely, fix
d = n1/m−1, and let Q be the set of the first m/2 primes greater than 10(d2t+d)m = O(mt ·n2/m);
note that each q ∈ Q satisfies q = O(mt · n2/m) and that

∏
q∈Q q > n. For every q ∈ Q, denote by

Fq the finite field with q elements.

The universal-LVC. Let H = [d], and note that H ⊂ Fq for every q ∈ Q. We fix a bijection
Hm ↔ [n] and use these domains interchangeably. We denote by X : Hm → {0, 1} the embedding
of an assignment x ∈ {0, 1}k in Hm, given by

X(z) =

{
xz if z ∈ [k]

0 otherwise
.

For every q ∈ Q, let X̂ ′q : Fmq → Fq be the unique (individual) degree d extension of X to Fq.
15This condition is required for the soundness of the MAP.
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To reduce the alphabet to binary, let C0 : Fq → {0, 1}100 log |Fq | be a good linear code, and consider

the concatenation of X̂ ′q with C0 as the inner code, which we denote by X̂q : Fmq → {0, 1}100 log |Fq |.

For convenience, we shall treat X̂q as if it maps to Fq, and so whenever we query X̂q at a point

z ∈ Fmq , we actually query the 100 log |Fq| bits of the codeword C0(X̂q(z)) and decode (the Fq
element) X̂q(z).

Next, we bundle the Reed-Muller encodings {〈X̂q〉}q∈Q (where 〈X̂q〉 denotes the evaluation

of the function X̂q over its entire domain) according to Construction 3.5, so that we can locally
test that all of these encodings are consistent with the same message (assignment). Recall that
in Construction 3.5 we bundle encodings Ei, . . . , Es with an (arbitrary) error-correcting code ECC
(which can be computed by a circuit of quasilinear size and has linear distance) and with a PCPP
for every Ei, which ascertains that a pair (a, b) satisfies a = ECC(y) and b = Ei(y) for some y. Here,
the encodings will correspond to the Reed-Muller encodings {〈X̂q〉}q∈Q of the assignment X. Note
that (exact) verification of m-dimensional Reed-Muller codes over Fq can be done using circuits

of size m · |Fq|m · polylog|Fq| = Õ(mt · n2), since |Fq| = O(mt · n2).16 Hence, by Theorem 3.4, for

every q ∈ Q there exist a PCPP oracle ξq, as required in Construction 3.5, of length Õ(mt · n2). We

obtain the code C : {0, 1}k → {0, 1}Õ(mt·n2) given by

C(x) =
(

ECC(x)r,
(
〈X̂q〉

)
q∈Q,

(
ξq(x)

)
q∈Q

)
. (4.5)

We show that C is a universal-LVC for CSPn. This calls for describing a short (MAP) proof for each
ϕ ∈ CSPn and describing how it is verified.

Let ϕ ∈ CSPn, and write ϕ(x) =
∧n
i=1 c′i(x1, . . . , xk) = 1, where c′1, . . . , c

′
n ∈ Constraintt,k,{0,1}.

Recall that each c′i is a t-junta, denote its influencing variables by Ii, and note that there exists
ci : {0, 1}t → {0, 1} such that c′i(x) = ci(x|Ii). We stress that unlike the overview in Section 4.1.1,
each constraint ci may be a different predicate; this will make our arithmetization slightly more
involved. Note that each ci takes binary inputs, and so, for every q ∈ Q, we denote by ĉi,q : Ftq → Fq
the degree t multilinear extension of ci to Fq. We show an MAP for the subcode Πϕ := {C(x) :
ϕ(x) = 1}. We shall first describe the MAP proof and then describe how it is verified.

The MAP proof (for C(x) being in Πϕ). For every q ∈ Q, consider the following functions.

• Constraint Indicator: For every i ∈ [n], let χi : Hm → {0, 1} be the indicator of the i’th
constraint, i.e., for every z ∈ Hm = [n] it holds that χi(z) = 1 if and only if z = i. Denote
by χ̂i,q : Fmq → Fq the unique, individual degree d, extension of χi to Fq. (This component is
necessary now since each constraint may be a different predicate.)

• Variable Indicator: For every j ∈ [t], let ϕj : Hm → Hm be the function that maps a
constraint index z ∈ Hm to the j’th variable index that appears in the z’th constraint (e.g., if
cz = (x5 ∨ x7 ∨ x11), then ϕ1(z) = 5, ϕ2(z) = 7, and ϕ3(z) = 11). Denote by ϕ̂j,q : Fmq → Fmq
the unique, individual degree d, extension of ϕj to Fq. (The variable indicator is the same as
in the overview.)

16This can be done by checking that each one of the m · |Fq|m−1 axis-parallel lines is a degree d univariate polynomial,
and each such check can be done by a circuit of size |Fq| · polylog|Fq|.
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• Constraint-Satisfication Indicator: Let ψq : Fmq → Fq be the individual degree d2t+d polynomial
given by

ψq(z1, . . . , zm) =
n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
,

(4.6)
where the summation is over Fq. Note that for every z ∈ Hm, the value of ψq(z) indicates

whether the z’th constraint of ϕ is satisfied by the assignment encoded in X̂q. Note that the

degree of ψq is d+ d2t, where d2 is due to the composition of X̂q with ϕ̂j,q.

The prescribed MAP proof for C(x) being in Πϕ) is πϕ = {πϕ,q}q∈Q, where πϕ,q : F`q → Fq is given
by

πϕ,q(z1, . . . , z`) =
∑

z`+1,...,zm∈H
ψq(z1, . . . , z`, z`+1, . . . , zm), (4.7)

where the summation is over Fq. Note that the length of the MAP proof is
∑

q∈Q(d2t + d)` ·
100 log |Fq| = Õ(m · n2`/m · t`), and observe that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of

ϕ’s constraints that are satisfied by the assignment encoded in X̂q modulo q (due to the field’s
characteristic).

The MAP verifier (for ϕ). Hereafter, we shall use z̃ to denote a string that is allegedly equal
to z. Consider the MAPε verifier Vϕ for the subcode {C(x) : ϕ(x) = 1}, which has free access to
a purported proof π̃ϕ = {π̃ϕ,q}q∈Q, which is supposed to equal πϕ = {πϕ,q}q∈Q (as defined above),

and oracle access to a purported bundle w ∈ {0, 1}Õ(mt·n2) that is supposed to equal Eq. (4.5);

that is, w allegedly consists of three parts: (1) the purported anchor ẼCC(x), (2) the purported
Reed-Muller encodings (〈X̃q〉)q∈Q, and (3) the purported PCPs of proximity (ξ̃q(x))q∈Q. Let T
be the bundle consistency test in Proposition 3.6. Recall that T is given a proximity parameter
ε, an encoding-index parameter q ∈ Q, and oracle access to a purported bundle w. The test T
accepts, with high probability, if and only if w is ε-close to C(x), and 〈X̃q〉 is ε-close to 〈X̂q〉 (i.e.,
the low-degree extension of a binary assignment x).

The verifier Vϕ performs the following checks for every q ∈ Q, in parallel, and accepts if none of
the checks failed.

1. The MAP proof π̃ϕ is consistent with a satisfying assignment: Check that∑
z1,...,z`∈H

π̃ϕ,q(z1, . . . , z`) ≡ n (mod q).

2. The universal-LTC itself is a bundle of Reed-Muller encodings of a binary assignment: Invoke the
bundle consistency test T with respect to proximity parameter ε, encoding-index parameter
q, and purported bundle w. (Hence, we may assume that 〈X̃q〉 is ε-close to 〈X̂q〉, which is

consistent with x; that is, all 〈X̂q〉’s are pairwise consistent with the same binary assignment
x.)

3. The MAP proof π̃ϕ,q is consistent with the universal-LTC w: Compare the evaluation of π̃ϕ,q
and πϕ,q at a random point. That is, recall that the verifier Vϕ has the formula ϕ hard-

coded, and so it can evaluate πϕ,q (without help from the prover) by self-correcting X̃q,
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as follows. Select uniformly at random r1, . . . , r` ∈R Fq, and for every z`+1, . . . , zm ∈ H

and j ∈ [t], decode X̃q ◦ ϕ̂j,q(r1, . . . , r`, z`+1, . . . , zm) using the Reed-Muller self-corrector,
repeated O((m − `) · t · log(|H|)) times so that the error probability in the self-correction
is 1/(10 · t · |H|m−`) for each point. Denoting the value read by vj,q(r1, . . . , r`, z`+1, . . . , zm),
check that

π̃ϕ,q(r1, . . . , r`) =
∑

z`+1,...,zm∈H

n∑
i=1

χ̂i,q(r1, . . . , r`, z`+1, . . . , zm) (4.8)

· ĉi,q
(
v1,q(r1, . . . , r`, z`+1, . . . , zm), . . . , vt,q(r1, . . . , r`, z`+1, . . . , zm)

)
.

(Note that, assuming Test 2 passes (with high probability) and all invocations of the self-
corrector were successful,17 the right-hand side of Eq. (4.8) equals πϕ,q(r1, . . . , r`).)

Recall that for each q ∈ Q, the purported proof π̃ϕ,q is a low-degree polynomial (like πϕ,q). Hence,
if π̃ϕ,q and πϕ,q agree (with high probability) on a random point, as checked in Test 3, then
π̃ϕ,q = πϕ,q. Note that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of constraints of ϕ that the

binary assignment x satisfies modulo q (where Test 2 asserts that all πϕ,q’s refer to the same
assignment x). By Test 1, it follows that

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) is congruent to n modulo q.

Since this holds for all q ∈ Q, then by the Chinese remainder theorem,
∑

z1,...,z`∈H πϕ,q(z1, . . . , z`) ≡ n
(mod

∏
q∈Q q), and since

∏
q∈Q q ≥ n, the assignment x satisfies the formula ϕ.

Note that for each of the O(m) primes in Q, the verifier Vϕ makes O(1/ε) queries during the

bundle consistency test and then queries t · |H|m−` = t · n1−(`/m) points in X̂q via (amplified)

self-correction of X̃q. Thus, the total query complexity is∑
q∈Q

(
O

(
1

ε

)
+ tn1− `

m ·O(m log(|H|))
)
· log(|Fq|) = Õ

(
mt · n1− `

m · 1

ε

)
.

Perfect completeness follows from the one-sided error of the bundle test and the self-correction
procedure. The following claim establishes the soundness of Vϕ.

Claim 4.3.1. If w is ε-far from the subcode {C(x) : ϕ(x) = 1}, then for every alleged MAP proof
π̃ϕ, it holds that Pr[V w

ϕ (π̃ϕ) = 0] ≥ 2/3.

The proof of Claim 4.3.1 is a straightforward analysis of the construction, and so we defer its proof
to Appendix B.3. This concludes the proof of Theorem 4.3.

4.2 Lower Bounds on Verifying Conjugation Properties

Denote by Conjugation the set of all conjugations (of at most k variables); that is, Conjugation =
{ fS(x1, . . . , xk) = ∧i∈Sxi }S⊆[k]. The following theorem shows a lower bound on the universal-LVC

17Note that πϕ,q is well defined if the purported bundle w is close to a codeword C(x), which Test 2 asserts. In this
case,

πϕ,q(z1, . . . , z`) =
∑

z`+1,...,zm∈H

n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
,

where X̂q is the low-degree extension of x to Fq. Hence, the verifier Vϕ, which has the formula ϕ hard-coded, can
evaluate πϕ,q by self-correcting X̃q.
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complexity of Conjugation, which in particular, yields a lower bound on the universal-LVC complexity
of CSP.

Theorem 4.4. Suppose C : {0, 1}k → {0, 1}n is a code of constant relative distance δ(C), and fix
ε < δ(C). If C is a universal-LVCε for Conjugation with proof complexity p and query complexity q,
then p · q = Ω(k/ log n).

Note that the foregoing lower bound trivializes for n = 2k, and indeed there exists a universal-LTC for
Conjugation of roughly such length (see Theorem 3.2). As an immediate consequence of Theorem 4.4,
we obtain the following corollary.

Corollary 4.5. Suppose C : {0, 1}k → {0, 1}n is a code of constant relative distance δ(C), and fix
ε < δ(C). If C is a universal-LVCε for CSPn,k with proof complexity p and query complexity q, then
p · q = Ω(k/ log n).

We prove Theorem 4.4 by a reduction from MA communication complexity protocols, which we
briefly recall next.

4.2.1 Preliminaries: MA communication complexity

In MA communication protocols we have a function f : X × Y → {0, 1}, for some finite sets X
and Y , and three computationally unbounded parties: Merlin, Alice, and Bob. The function f is
known to all parties. Alice gets an input x ∈ X, and Bob gets an input y ∈ Y . Merlin sees both
A,B, but Alice and Bob share a random string r that Merlin does not see. The protocol starts with
a message π = π(x, y) sent from Merlin to both Alice and Bob, which is supposed to be a proof
that f(x, y) = 1. Then, the two players exchange messages to verify that indeed f(x, y) = 1.

Definition 4.6. Let f : X × Y → {0, 1}. An MA communication protocol for f , with proof
complexity p and communication complexity c is a probabilistic protocol between two parties who
share a random string r, and also receive a p-bit string π = π(x, y), which is a functions of x and y,
but independent of r. The parties communicate c bits and output 〈A(x), B(y)〉(r, π) such that:

1. Completeness: for every Yes-input (x, y) ∈ f−1(1), there exists a proof π ∈ {0, 1}p such that

Pr
r

[〈A(x), B(y)〉(r, π) = 1] ≥ 2/3.

2. Soundness: for every No-input (x, y) ∈ f−1(0) and for any alleged proof π ∈ {0, 1}p,

Pr
r

[〈A(x), B(y)〉(r, π) = 0] ≥ 2/3.

We shall use the following (tight) lower bound on the MA communication complexity of the
set-disjointness problem, in which Alice has input S ⊆ [k], Bob has input T ⊆ [k], and the parties
need to decide whether their sets are disjoint; that is, compute the predicate

DISJk(S, T ) =

{
1 if |S ∩ T | = 0

0 if |S ∩ T | ≥ 1
.

It is well-known (see [KS92]) that the randomized communication complexity of the set-disjointness
problem is linear in the length of the inputs. Moreover, Klauck [Kla03] showed the following (tight)
lower bound on the MA communication complexity of set-disjointness.

Theorem 4.7 ([Kla03]). Every MA communication complexity protocol for DISJk with proof
complexity p and communication complexity c satisfies p · c = Ω(k).
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4.2.2 Proof of Theorem 4.4

Consider the communication complexity problem, in which Alice has input A ⊆ [k], Bob has input
B ⊆ [k], and the parties need to decide whether Alice’s set is a subset of Bob’s set; that is, compute

the predicate SUBSETk(A,B) =

{
1 if A ⊆ B
0 otherwise

.

Claim 4.7.1. Every MA communication complexity protocol for SUBSETk with proof complexity p
and communication complexity c satisfies p · c = Ω(k).

Proof. We reduce from DISJk. Let ProtSUBSET be an MA protocol for SUBSETk with proof
complexity p and communication complexity c, and let S, T ⊆ [k] be the inputs of Alice and Bob to
the DISJk problem. The parties emulate ProtSUBSET on inputs A := S and B := [k] \ T . Note that
if S ∩ T = ∅, then A = S ⊆ [k] \ T = B. Otherwise, there exists i ∈ S ∩ T such that i 6∈ [k] \ T = B,
and A 6⊆ B follows. We stress that the reduction maps 1-instances to 1-instances, and so it preserves
membership in the class MA.

We prove the following claim by adapting the methodology in [BBM11], in which property
testing lower bounds are obtained via reductions from communication complexity, to the setting of
universal-LTCs.

Claim 4.7.2. If the universal-LVC C has proof complexity p and query complexity q, then there exists
anMA communication complexity protocol for SUBSETk with proof complexity p and communication
complexity q · (1 + log n).

Proof. Let A,B ⊆ [k] be the inputs of Alice and Bob (respectively) to the SUBSETk problem.
Bob computes the codeword C(B), where B is viewed as a k-bit string.18 Then, Alice invokes
the MAP verifier for the subcode CA := {C(x) : ∧i∈Axi = 1}, and answers each of its q queries by
communicating with Bob as follows. On query i ∈ [n], Alice sends i (communicating log n bits) to
Bob, who responds with (a single bit) C(B)i, which Alice provides as answer to the MAP verifier
for CA, denoted VA. If A ⊆ B, then ∧i∈ABi = 1, and so C(B) ∈ CA; thus there exists a proof

π ∈ {0, 1}p such that Pr[V
C(B)
A = 1] ≥ 2/3. Otherwise (i.e., A 6⊆ B), there exists i ∈ A such that

i 6∈ B, hence ∧i∈ABi = 0, and so C(B) is δ(C)-far from CA, and for every π ∈ {0, 1}p it holds that

Pr[V
C(B)
A = 0] ≥ 2/3.

Combining Claim 4.7.1 and Claim 4.7.2 concludes the proof of the Theorem 4.4.

4.3 Constant-Round IPPs for CSP

Recall that an interactive proof of proximity (hereafter, IPP) is an interactive proof system in which
the verifier only queries a sublinear number of input bits and soundness only means that, with high
probability, the input is close to an accepting input (see Definition 2.1). In this section, we show
that using O(1) rounds of interaction, an IPP protocol wherein the verifier has oracle access to an
assignment x ∈ {0, 1}k can, in a sense, emulate the universal-LVC for CSP of Theorem 4.3; thus, we
obtain an efficient IPP for satisfiability of fixed CSPs. We shall make an effort to keep the round
complexity of such IPP to a minimum. We warn that Section 4.1 is a prerequisite for this section.

18Via the standard mapping in which the i’th bit of the string is 1 if i ∈ B and 0 otherwise.
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Let k ∈ N. We consider CSPn = CSPn,t,k, where for simplicity of presentation, in this subsection
we fix n = k and t = O(1) (generalizing to general values of n, k, t can handled similarly as in
Section 4.1). Recall that each round of an IPP consists of two messages, one from the prover and
one from the verifier (see Section 2.1). We prove the following.

Theorem 4.8. For every ε ≥ 1/n6/7 and ϕ ∈ CSPn there exists a 3-round (one-sided error)
IPP for the property Πϕ =

{
x ∈ {0, 1}k : ϕ(x) = 1

}
with communication and query complexity

O(n6/7+o(1)).

We remark that by allowing additional O(1) rounds of interaction, it is possible to obtain both
query and communication complexity nα for any constant α > 1/2, see Section 4.3.3.

4.3.1 Overview of the Proof of Theorem 4.8

We start with a brief overview of the main ideas behind the proof of Theorem 4.8. Fixing any
ϕ ∈ CSPn, let C(x) be the universal-LVC encoding of an assignment x ∈ {0, 1}k, as used in
Theorem 4.3. Recall that C(x) consists of a bundle of Reed-Muller encodings of x over several prime
fields {Fq}q∈Q,19 and let Vϕ be the MAP verifier for Πi = {C(x) : ϕ(x) = 1}.

Let C(x) be a valid codeword (where ϕ(x) ∈ {0, 1}). Then, by Theorem 4.3: (1) if ϕ(x) = 1,

then there exists a proof π such that Pr[V
C(x)
ϕ (π) = 1] = 1, and (2) if ϕ(x) = 0, then for

every alleged proof π it holds that Pr[V
C(x)
ϕ (π) = 1] < 1/3. A closer inspection of the proof

of Theorem 4.3 shows that, for every q ∈ Q, the verifier Vϕ(π) generates, as a function of the
alleged proof π and its own randomness, a subset of indices Jq ⊆ [|C(x)|] and a vector of values
~vq ∈ {0, 1}|Jq | such that: (1) if ϕ(x) = 1, then for every q ∈ Q there exists a proof π such that
Pr(Jq ,~vq)←Vϕ(π)[C(x)|Jq = ~vq] = 1, and (2) if ϕ(x) = 0, then for every alleged proof π there exists
q ∈ Q such that Pr(Jq ,~vq)←Vϕ(π)[C(x)|Jq = ~vq] < 1/3.20 Hence, we view Vϕ as a reduction of verifying
that x satisfies ϕ to verifying that C(x)|Jq = ~vq for every q ∈ Q. Hereafter, we fix q ∈ Q and omit
it from subscripts.

Recall, however, that in the setting of Theorem 4.8 the verifier does not have access to the
encoding C(x), but rather only oracle access to the plain assignment x itself. Aiming at sublinear
query complexity, the verifier cannot read all of x. Instead the verifier sends the set of locations
J to the prover and asks it to prove to it that C(x)|J = ~v. To this end, we use techniques from
[RVW13] that allow us to verify claims regarding C(x) by only making a small number of queries
to x. This is performed in two steps, which we describe next.

The first step is to strengthen the soundness condition of Vϕ such that, with high probability,
if x is ε-far from Πi := {z ∈ {0, 1}k : ϕ(z) = 1}, not only C(x)|J 6= ~v, but also for every x′ that
is ε-close to x (simultaneously) it holds that C(x′)|J 6= ~v. That is, if x is ε-far from Πi, then it is
ε-far from {z ∈ {0, 1}k : C(z)|J = ~v}. The second step is to invoke an IPP (due to [RVW13]) for
verifying membership in {z ∈ {0, 1}k : C(z)|J = ~v}, where C consists of Reed-Muller encodings.
Details follow.

19Actually, C consists of the foregoing Reed-Muller encodings, bundled with PCPPs that ascertain the consistency
of the encodings (see Construction 3.5). However, in the context of Theorem 4.8, we shall not need these PCPPs, and
we view C as consisting solely of the low-degree extensions.

20This is because (1) the verifier is non-adaptive, and (2) assuming C(x) is valid, the verifier only needs to make
queries to the Reed-Muller encodings (and do not need to query the PCPP oracles that are used for consistency
testing).
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Denote the query complexity of the verifier Vϕ by `. We start by reducing the soundness error
of Vϕ, via S parallel repetitions (at the cost of increasing the the query complexity to S · `). Note
that the amplified verifier V ′ϕ generates a pair (J,~v) of O(S · `) locations and values, such that if
ϕ(x) = 0, then Pr(J,~v)[C(x)|J = ~v] = exp(−S). Observe that if x is ε-far from satisfying ϕ (and in
particular ϕ(x′) = 0), then the probability there exists x′ that is ε-close to x such that C(x′)|J = ~v
is at most

(
n
εn

)
· exp(−S).

Therefore, by setting S = Θ(ε · n log n) we obtain that with high probability no x′ that is ε-close
to x satisfies C(x′)|J = ~v. Thus, if x is ε-far from {x ∈ {0, 1}k : ϕ(x) = 1}, then with high
probability (over the pair (J,~v), chosen by V ′ϕ) the assignment x is ε-far from the affine subspace

AJ,~v := {x ∈ {0, 1}k : C(x)|J = ~v}.
Therefore, the foregoing constitutes a 2-message “reduction”: The prover sends the MAP proof

(constructed as in Theorem 4.3) that x satisfies ϕ, and the verifier sends back a set of random
locations J , asking the prover to provide a vector ~v and prove that it is equal to C(x)|J . Hence, we
performed a randomized reduction of verifying that x satisfies ϕ to verifying membership in the affine
subspace AJ,~v. Fortunately, 3-message IPPs with sublinear communication and query complexity
are known for testing membership in affine subspaces that are induced by Reed-Muller codes.
Furthermore, these IPPs also have sublinear communication and query complexity for sub-constant
values of ε. This is crucial since we perform S = Θ(ε · n log n) parallel repetitions of Vϕ, which
adds a factor of Θ(ε · n log n) to the communication complexity, and since we aim for sublinear
communication complexity, the proximity parameter must be sub-constant. Finally, we compose
the aforementioned reduction protocol with an IPP for membership in AJ,~v, and hence obtain an
IPP for

{
x ∈ {0, 1}k : ϕ(x) = 1

}
.

To present the actual proof of Theorem 4.8, we shall need to define the following property of
membership in the affine subspace that corresponds to the Reed-Muller code.

Definition 4.9 (PVAL). Let F be a finite field, J ⊆ Fm, and ~v ∈ F|J |. The property PVALF,d,m
J,~v (or

just PVALF
J,~v, when d and m are clear from the context) consists of all strings x ∈ {0, 1}dm such

that their (individual) degree d extension to F, denoted X̂ : Fm → F, takes the values ~v on the
coordinates J ; that is,

PVALF
J,~v = {x ∈ {0, 1}dm : X̂(J) = ~v}.

The following theorem, due to Rothblum et al. [RVW13], shows that PVAL has efficient IPPs.

Theorem 4.10 ([RVW13, Theorem 3.12]). Let d,m ∈ N , and let F be a finite field. Fix parameters
r and q such that r ≤ min(d, |F |/10) and q > max{(dr)1+o(1), |F|}.

Then, for every J ⊆ Fm, ~v ∈ F|J |, and any ε ≥ 1/q1−o(1) there exists a one-sided error, (2r+ 1)-

message (where the first message is sent by the prover) IPPε for PVALF,d,m
J,~v with communication

complexity (dm−r + |J | · d) · qo(1) and query complexity q.

We remark that the product of the proof and query complexities in Theorem 4.10 can be made almost
linear in some cases; specifically, for r = log q

log d we obtain communication complexity dm

q1−o(1)
+|J |·d·qo(1)

and query complexity q. We shall, however, use r = O(1).

4.3.2 The Actual Proof of Theorem 4.8

Let ϕ ∈ CSPn, and write ϕ(x) =
∧n
i=1 c′i(x1, . . . , xk), where c′1, . . . , c

′
n ∈ Constraintt,k,{0,1}. Recall

that each c′i is a t-junta, denote its influencing variables by Ii, and note that there exists ci :
{0, 1}t → {0, 1} such that c′i(x) = ci(x|Ii).
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We show an IPP for the property Πϕ := {x ∈ {0, 1}k : ϕ(x) = 1}. As discussed in the
overview, we begin by using a similar construction to that of Theorem 4.3, to the end of performing
a randomized reduction of verifying that the assignment x satisfies ϕ to verifying membership in the
affine subspace induced by Reed-Muller encodings of x. More accurately, we shall use a “bare-bones”
version of the foregoing universal-LTC, which only consists of Reed-Muller encodings of x over several
prime fields (note that we omit both the alphabet reduction, and the PCP-based consistency testing
mechanism), and whose MAP verifiers do not query the universal-LTC, but rather send to the prover
the queries they wish to make. We stress that this construction do not include the anchor and
PCPPs in Construction 3.5.

For the convenience of the reader, we briefly review the following definitions from Section 4.1,
which are needed to describe the foregoing “bare-bones” version of the universal-LTC in Theorem 4.3.

Review of the arithmetization in Theorem 4.3. Letm = O(1), to be determined later, and fix
d = n1/m− 1. Let Q be the set of the first m/2 primes that are greater than 2(d2t+d)m = O(n2/m).
Note that

∏
q∈Q q > n. Let q ∈ Q. Denote by Fq the finite field with q elements. Denote by

ĉi,q : Ftq → Fq the multilinear extension of ci to Fq. Let H = [d] (note that H ⊂ Fq); we fix

a bijection Hm ↔ [n] and use these domains interchangeably. For every x ∈ {0, 1}k consider
Xq : Hm → {0, 1} given by Xq(z) = xz. Let X̂q : Fmq → Fq be the unique (individual) degree d
extension of Xq to Fq.

For every i ∈ [n], let χi : Hm → {0, 1} be the indicator of the i’th constraint, i.e., for every
z ∈ Hm = [n] it holds that χi(z) = 1 if and only if z = i. Denote by χ̂i,q : Fmq → Fq the unique,
individual degree d, extension of χi to Fq. For every j ∈ [t], let ϕj : Hm → Hm be the function
that maps a constraint index z ∈ Hm to the j’th variable index that appears in the z’th constraint.
Denote by ϕ̂j,q : Fmq → Fmq the unique, individual degree d, extension of ϕj to Fq. For every
i ∈ [n] and j ∈ [t], denote by χ̂i,q and ϕ̂j,q the low-degree extension of χi and ϕj to Fq. Finally, let
ψq(z1, . . . , zm) : Fmq → Fq, given by

ψq(z1, . . . , zm) =
n∑
i=1

χ̂i,q(z1, . . . , zm) · ĉi,q
(
X̂q ◦ ϕ̂1,q(z1, . . . , zm), . . . , X̂q ◦ ϕ̂t,q(z1, . . . , zm)

)
.

Having reviewed the foregoing definitions, we are ready to proceed with the proof of Theorem 4.8.

The 3-round IPP. Let ε > 0, ` ∈ [m/2], and S ∈ N, to be determined later. Consider the
following 3-round IPPε for the property Πϕ := {x ∈ {0, 1}k : ϕ(x) = 1}. The protocol starts by
emulating a ”bare-bones” version of the MAP verifier of Theorem 4.3, which differs in the following
aspects: (1) the consistency test and alphabet reduction are omitted, (2) the soundness of the
verifier is amplified via S = O(εn log n) parallel repetitions, and (3) the verifier does not make
queries to its input, but rather communicates to the prover the queries it wishes to make and asks
the prover to assert the values of these queries. Details follow.

Hereafter, we shall denote by f̃ a function, sent by the prover, which allegedly equals f . For
every q ∈ Q, the prover sends a polynomial π̃q : F`q → Fq, which allegedly equals πq(z1, . . . , z`) :=∑

z`+1,...,zm∈H ψq(z1, . . . , z`, z`+1, . . . , zm), where the summation is over Fq. The verifier first checks

that all πq’s are consistent with a satisfying assignment (i.e., checks that
∑

z1,...,z`∈H π̃q(z1, . . . , z`) ≡ n
(mod q), for all q ∈ Q). Then, the verifier wishes to evaluate each πq on S randomly chosen points
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and compare it to the value of π̃q on these points,21 which amounts to evaluating the low-degree

extensions {X̂q}q∈Q of the assignment x at S · |H|m−` points; denote these points by Jq.
Recall, however, that the verifier only has access to the plain assignment x, and not to its

encodings {X̂q}q∈Q (note that evaluating X̂q at any point, without assistance from the prover, may
require reading the assignment x entirely). Instead the verifier asks the prover to assert the values
of {X̂q}q∈Q at the points it wishes to probe. To that end, the verifier selects uniformly at random

r
(s)
q := (r

(s)
1 , . . . , r

(s)
` ) ∈ F`q, for every s ∈ [S] and sends it to the prover, which in turns sends a

vector ~vq of the evaluations of X̂q at Jq, for every q ∈ Q. Finally the parties invoke the IPP in
Theorem 4.10 with respect to (Jq, ~vq), for every q ∈ Q, and accept if and only if all of the invocations
accepted. More accurately, the IPP is described as follows. For every q ∈ Q, in parallel, perform the
following steps:

1. The prover sends an (individual) degree d2t+ d polynomial π̃q : F`q → Fq (by specifying its
coefficients), which allegedly equals:

πq(z1, . . . , z`) =
∑

z`+1,...,zm∈H
ψq(z1, . . . , z`, z`+1 . . . , zm).

2. The verifier checks that
∑

z1,...,z`∈H π̃q(z1, . . . , z`) ≡ n (mod q).

3. The verifier selects uniformly at random and sends r
(s)
q := (r

(s)
1 , . . . , r

(s)
` ) ∈ F`q, for every

s ∈ [S].

4. The prover sends ~vq ∈ FS·|H|
m−`·t

q such that allegedly ~vq[s, ~z, i] = X̂q ◦ ϕ̂i,q
(
r

(s)
1 , . . . , r

(s)
` , ~z

)
, for

every s ∈ [S], ~z ∈ Hm−`, and i ∈ [t].

5. The verifier checks that, for every s ∈ [S],∑
~z∈Hm−`

n∑
i=1

χ̂i,q
(
r

(s)
1 , . . . , r

(s)
` , z

)
· ĉi,q

(
~vq[s, z, 1], . . . , ~vq[s, z, t]

)
≡ n (mod q).

6. Fix Jq =
(
ϕ̂i,q(r

(s)
1 , . . . , r

(s)
` , ~z)

)
s∈[S],~z∈H`−m,i∈[t]

, and invoke the IPP for PVAL (Theorem 4.8)

on input x (the assignment), field Fq, location set Jq, and evaluation vector ~vq.

Note that in Step 1 the prover communicates
∑

q∈Q(d2t+ d)` · log |Fq| bits, in Step 3 the verifier

sends
∑

q∈Q S · ` · log |Fq| bits, and in Step 4, the prover sends
∑

q∈Q S · |H|m−` · t · log |Fq| bits.

Hence, prior to the final step (i.e., Step 6), Õ
(
n2`/m + S · nm−`/m

)
bits are being communicated

and no queries are being made to the assignment x by the verifier.
Finally, the parties invoke the 3-message (starting with the prover) PVAL IPP (in Step 6), whose

communication complexity isdm−1 +
∑
q∈Q
|Jq| · d

 · qo(1) =
(
n
m−1
m + S · n

m−`+1
m

)
· qo(1)

21Note that by the proof of Theorem 4.3, evaluating each πq on a single randomly chosen point yields constant
soundness, and so, in the setting of Theorem 4.8, as discussed in the overview, we obtain soundness exp(−S) by
evaluating each πq on S randomly chosen points.
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and query complexity is q. (Note that only the PVAL protocol actually makes queries to the input x).
Fixing ε = 1/n6/7, q = n6/7+o(1), S = O(εn log n), m = 7, and ` = 3 yields the claimed complexity.
Perfect completeness follows by construction. To show soundness, we shall first need the following
claim

Claim 4.10.1. If x 6∈ Πϕ, then there exists q ∈ Q such that Pr(Jq ,~vq)[X̂q(Jq) = ~vq] < (1/10)S.

The proof of Claim 4.10.1 is by a straightforward analysis of the construction, and thus we defer
its proof to Appendix B.4. Next, assume that x is ε-far from Πϕ, and observe that by Claim 4.10.1
there exists q ∈ Q such that

Pr
(Jq ,~vq)

[∀x′ ∈ Nε(x) X̂ ′q|(Jq) 6= ~vq] ≥ 1−
(
n

εn

)
· max
x′ 6∈Πϕ

{
Pr

(Jq ,~vq)
[X̂ ′q(Jq) = ~vq]

}
≥ 1−

(
n

εn

)
· (1/10)S (Claim 4.10.1)

≥ 9/10. (S = O(εn log n))

(where Nε(x) consists of all strings that are ε-close to x). Thus, there exists q ∈ Q such that with

probability 9/10 over the verifier’s randomness, the assignment x is ε-far from PVAL
Fq
Jq ,~vq

, and so,

by Theorem 4.8, x is rejected with probability at least 9/10 · 9/10 in the last step of the IPP (the
invocation of the PVAL protocol). This concludes the proof of Theorem 4.8.

4.3.3 Round Complexity versus Communication and Query Complexity Tradeoff

The proof of Theorem 4.8 naturally extends to IPPs with a higher round complexity, admitting
O(1)-round IPPs with proof and query complexity nα for any constant α > 1/2. We sketch below
how such extension is performed.

The idea is to replace the emulation of the “bare-bones” MAP verifier Vϕ (Steps 1-3 of the IPP
in Theorem 4.8) with a sumcheck protocol [LFKN92], in which the summation is striped down in
iterations, coordinate-by-coordinate. That is, the protocols starts with m rounds (recall that we
arithmetize over m-variate polynomials), where in the j’th round, for every q ∈ Q and s ∈ [S], the

prover sends a degree d2t+ d univariate polynomial π̃
(s)
j,q : Fq → Fq that allegedly equals:

π
(s)
j,q (z) =

∑
zj+1,...,zm∈H

ψq(r
(s)
1 , . . . , r

(s)
j−1, z, zj+1 . . . , zm).

The verifier then checks the consistency of each π̃
(s)
j,q with π̃

(s)
j−1,q; i.e., verifies that

π̃
(s)
j−1,q

(
r

(s)
j−1

)
=
∑
z∈H

π
(s)
j,q (z),

and the j’th round is concluded by letting the verifier select uniformly at random r
(s)
j ∈ Fq and

send it to the prover.
Standard analysis of the sumcheck protocol shows that the larger m is (which in turn dictates

the round complexity), the smaller the communication and query complexity of such protocols; in
particular for O(1)-rounds, we can obtain both query and proof complexity nβ , where β = β(m) is
an arbitrarily small constant. The bottleneck in both query and proof complexity is, however, due
to the final step of our IPP, which is an invocation of IPP in Theorem 4.10, wherein both query and
proof complexity are inherently ω(

√
n).
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A On Obtaining Locally Decodable Codes from Universal-LTCs

In this appendix we show that universal-LTCs for the family of linear functions (and more generally,
for self-correctable families of functions) imply local decodability in the strong (non relaxed) sense.
More accurately, denote the set of all k-variate linear functions over GF(2) by Lineark. The following
theorem shows that any universal-LTC for Lineark implies a LDC with roughly the same parameters.

Theorem A.1. If there exists an universal-LTC C for Lineark with linear distance, rate r, and
query complexity q = q(ε), then there exists a binary LDC with linear distance, rate Ω(r), and query
complexity O(1).

Proof. Fix ε = δ(C)/3. For every linear function f ∈ Lineark and b ∈ {0, 1}, let Tf,b be the ε-tester
for the subcode Πf,b := {C(x) : f(x) = b} guarantied by the universal-LTC C : {0, 1}k → {0, 1}n.
These testers admit a natural candidate for a local decoding procedure: to decode xi, simply invoke
Tf,0 and Tf,1 for the linear function f(x) = xi, and rule according to the tester that accepted.
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The problem is that given a slightly corrupted copy of C(x), the testers Tf,0 and Tf,1 may both
reject, since they are not necessarily tolerant ;22 in this case we cannot decode. (Indeed, if the
aforementioned testers are tolerant, then the foregoing procedure is a local decoder.23) Nevertheless,
since the foregoing case only happens when the input is not a valid codeword, we obtain a procedure
that either decodes correctly or detects a corruption in the encoding and aborts (similarly to
relaxed-LDCs, see Definition 2.4). Then, by slightly modifying the code, we can bound the number
of linear functions on which we are forced to abort and use the linear functions that we are able to
compute to recover any linear function, including f(x) = xi. Details follow.

Assume without loss of generality that the testers of the universal-LTC have soundness error of
at most 1/10. Consider the algorithm A that, given f ∈ Lineark and oracle access to w ∈ {0, 1}n,
invokes Tf,0 and Tf,1 on w; if one tester accepted and the other rejected, A rules according to
the accepting tester, and otherwise it outputs ⊥. Hence, A has query complexity O(q(ε)) = O(1).
The following claim shows that indeed A succeeds in locally computing f(x) in the following sense
(which is analogous to that of relaxed-LDCs).

Claim A.1.1. For every f ∈ Lineark, the algorithm A satisfies the following two conditions.

1. If w = C(x) for some x ∈ {0, 1}k, then Pr
[
AC(x)(f) = f(x)

]
≥ 2/3.

2. If w is δ(C)/3-close to a codeword C(x), then Pr [Aw(f) ∈ {f(x),⊥}] ≥ 2/3.

Proof. Let w = C(x) for x ∈ {0, 1}k such that f(x) = 1 (the case in which f(x) = 0 is symmetrical).
Since Tf,1 is a tester for Πf,1 := {C(x) : f(x) = 1}, then Pr[Twf,1 = 1] ≥ 9/10, and since Tf,0 is a
δ(C)/3-tester for Πf,0 := {C(x) : f(x) = 0} and w is δ(C)-far from Πf,0, then Pr[Twf,0 = 0] ≥ 9/10.

Thus, by the definition of A it holds that Pr [Aw(f) = f(x)] ≥ (9/10)2. Next, assume that w
is δ(C)/3-close to a codeword C(x) such that f(x) = 1 (again, the case in which f(x) = 0 is
symmetrical). Then, Pr[Twf,0 = 1] < 1/10 and Pr [Aw(f) ∈ {f(x),⊥}] ≥ 9/10 follows.

The second condition of Claim A.1.1 does not bound the number of linear functions on which
the algorithm A is allowed to abort (and so, given a corrupted codeword, A can potentially output
⊥ on all inputs). However, by adapting of the techniques of Ben-Sasson et al. [BSGH+06, Lemmas
4.9 and 4.10] to the setting of universal-LTCs, we obtain the following claim, which shows that C
and A can be modified to allow for such bound.

Claim A.1.2. If there exists a code C : {0, 1}k → {0, 1}n with distance d and rate r, and an
algorithm A with query complexity q, which satisfies the conditions of Claim A.1.1, then there exists
a constant δradius > 0, a code C ′ : {0, 1}k → {0, 1}n′ with distance Θ(d) and rate Θ(r), and an
algorithm B that for every (explicitly given) f ∈ Lineark makes O(q) queries to a string w ∈ {0, 1}n′

and satisfies the following condition: If w is δradius-close to a codeword C ′(x), then there exists
a family F of at least (9/10) · 2k functions in Lineark such that for every f ′ ∈ F it holds that
Pr [Bw(f ′) = f ′(x)] ≥ 9/10.

We omit the proof of Claim A.1.2, since it follows by a trivial adaptation of [BSGH+06, Lemmas
4.9 and 4.10] to our setting. We mention that the main idea is that by repeating heavily probed
locations in the code, we can modify A such that on an average f it make queries that are nearly

22Recall that tolerant testers accept strings that are (say) δ(C)/3-close to being valid and reject strings that are
(say) δ(C)/2-far from being valid (with high probability).

23In fact, the argument above shows that a tolerant universal-LTC for any family of functions F that contain the
dictator functions, i.e., such that {f(x) = xi}i∈[k] ⊆ F , implies a LDC with roughly the same parameters.
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uniformly, and then use this ”average smoothness” to bound the fraction of functions on which we
are forced to abort.

The proof of Theorem A.1 follows by noting that given a slightly corrupted copy of C ′(x), for
every f ∈ Lineark we can use the algorithm B of Claim A.1.2 to extract the value of f(x) using the
self correctability of linear functions. In more detail, let w ∈ {0, 1}n′ such that δ(w,C ′(x)) ≤ δradius
for some x ∈ {0, 1}k, and let i ∈ [k]. To decode xi, we uniformly choose g ∈ Lineark, invoke Bw(g)
and Bw(g + xi), and output Bw(g) + Bw(g + xi). By the union bound, with probability at least
1− 2/10 both g and g + xi are functions on which B succeeds with probability at least 9/10. Thus,
with probability at least (8/10) · (9/10), both Bw(g) = g(x) and Bw(g+xi) = g(x) +xi, and so their
summation (over GF(2)) is xi.

Generalizing to Self-Correctable Families of Functions. We remark that the only place in
which the proof of Theorem A.1 relies on F being the family of all linear functions is that the
latter family admits self correction. Therefore, the same proof holds for any family of functions
F =

{
fi + b : {0, 1}k → {0, 1}

}
i∈[M ],b∈{0,1} that is self correctable.

B Deferred Details of Proofs

In this appendix, we provide the full details of claims that were sketched in Sections 3 and 4. We
believe that these details are straightforward implementations of the proof ideas presented in the
foregoing sections.

B.1 Proof of Proposition 3.6

We show that for every bundle B(x), as in Construction 3.5, there exists a consistency test T that,
for every ε ≥ 1/polylog(`), makes O(1/ε) queries to a string w ∈ {0, 1}` and satisfies the following
conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that PrT [Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi is ε-far from
Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Let ε ≥ 1/polylog(`), and assume without loss of generality that ε < δ(ECC)/2.24 For every
i ∈ [s] denote by Vi the PCPP verifier for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb},

with respect to proximity parameter ε/6 and soundness 9/10. Consider the ε-tester T that is given

i ∈ {0} ∪ [s] and oracle access to w = (ẼCC(x), (Ẽi)i∈[s], (ξ̃i)i∈[s]) ∈ {0, 1}` and accepts if both of
the following tests accept.

24The relative distance of ECC is constant, so if ε ≥ δ(ECC)/2, we can set the proximity parameter to δ(ECC)/2,
increasing the complexity by only a constant factor.

33



1. Repetition Test: Query two random copies from the long-code part of w and check if they
agree on a random location. More accurately, select uniformly at random j, j′ ∈ [r] and reject

if and only if ẼCC(x)j and ẼCC(x)j′ disagree on a random coordinate. Repeat this test O(1/ε)
times.

2. Consistency Test: Choose uniformly j ∈ [r]. If i = 0, choose uniformly i′ ∈ [s], otherwise set

i′ = i. Reject if the verifier Vi′ rejects on input (ẼCC(x)j
ra
, Ẽi′(x)rb) and proof ξ̃i′(x).

The first condition of Proposition 3.6 follows by construction. For the other conditions, first observe
that if ẼCC(x) is far from consisting of r identical copies, then the repetition test rejects with high

probability. That is, let ĉ ∈ {0, 1}n′ be a string that is closest on average to the copies in ẼCC(x),

i.e., a string that minimizes ∆(ẼCC(x), ĉr) =
∑r

j=1 ∆(ẼCC(x)j , ĉ). Observe that

E
j,j′∈R[r]

[δ(ẼCC(x)j , ẼCC(x)j′)] ≥ E
j∈R[r]

[δ(ẼCC(x)j , ẼCC(x))] = δ(ẼCC(x), ĉr).

If δ(ẼCC(x), ĉr) > ε/60, then by invoking the codeword repetition test O(1/ε) times, with probability
at least 2/3 one of the invocations will reject. Otherwise, note that with probability at least 9/10

the random copy ẼCC(x)j is ε/6-close to ĉ; assume hereafter that this is the case.

If w is ε-far from B, then since ẼCC(x) ≥ (1 − ε/2)`, it follows that ẼCC(x) is ε/2-far from
ECCr, and thus

δECCr(ĉ
r) ≥ δECCr(ẼCC(x))− δ(ĉr, ẼCC(x)) = ε/2− ε/60 > ε/3.

Recall that we assumed that δ(ẼCC(x)j , ĉ) ≤ ε/6, and so δECC(ẼCC(x)j) > ε/6. Thus, Pr[V w
i′ =

0] ≥ 9/10 · 9/10.

Finally, If there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far from Ei(x),

then since δ(ẼCC(x), ĉr) ≤ ε/60, it follows that with probability at least 9/10 the random copy

ẼCC(x)j is ε/6-close to ECC(x). Hence, (ẼCC(x)j
ra
, Ẽi(x)rb) is at least 5ε/6-far from Li, and so

Pr[V w
i = 0] ≥ 9/10 · 9/10.

B.2 Proof of Proposition 3.11

Let k,m ∈ N such that m ≤ k. We show that for every τ < m and ε ≥ 1/polylog(n), where n =(
k

m−τ
)
·max{22m−τ , k}, there exists exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}Õ(n)

for Juntam,k with linear distance and query complexity Õ(τ) +O(1/ε).
Let τ < m and ε ≥ 1/polylog(n). We bundle the long code encoding of each projection of x

to (m − τ) coordinates; that is, denote the (m − τ)-dimensional long code by LC : {0, 1}m−τ →
{0, 1}22

m−τ
, denote the set of all subsets of [k] of cardinality m− τ by S(m−τ) = {S′ ⊆ [k] : |S′| =

m− τ}. We bundle the encodings {LC(x|S′)}S′∈S(m−τ) according to Construction 3.5.
Recall that in Construction 3.5 we bundle encodings Ei, . . . , Es with an (arbitrary) error-

correcting code ECC (which can be encoded by a circuit of quasilinear size in k and has linear
distance) and with a PCPP for every Ei, which ascertains that a pair (a, b) satisfies a = ECC(y)
and b = Ei(y) for some y. Here, the encodings will correspond to the long code encodings of x
projected to (m− τ)-subsets in S(m−τ), i.e., {LC(x|S′)}S′∈S(m−τ) . Note that each LC(x|S′) can be

computed by a circuit of size O(22m ·m) = Õ(n). Hence, by Theorem 3.4, for every S′ ∈ S(m−τ)
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there exist a PCPP oracle ξS′ , as required in Construction 3.5, of length Õ(n). We obtain the code

C : {0, 1}k → {0, 1}Õ(n) given by

C(x) =
(

ECC(x)r,
(
LC(x|S′

)
S′∈S(m−τ) ,

(
ξS′(x)

)
S′∈S(m−τ)

)
. (B.1)

We show that C is a universal-LTCε for Juntam,k with query complexity Õ(τ) +O(1/ε).
Fix ε > 0, f ∈ Juntam,k, and write f(x) = f ′(x|S), where S denotes the m influencing coordinates

of f . Denote by T the first τ coordinates in S. For every i ∈ T , let S′i ∈ S(m−τ) be a (m− τ)-subset
that contains i. Denote by D the O(1)-query corrector of the long code. Using amplification,
assume that the corrector D and the bundle consistency-test (see Proposition 3.6) make at most
O(log(τ)) and O(log(τ)/ε) queries (respectively) and obtain soundness error that is (strictly) less
than 1/(10(τ + 1)).

Consider the ε-tester Tf for the subcode Πf = {x ∈ {0, 1}k : f(x) = 1}, which has oracle

access to a purported bundle w ∈ {0, 1}Õ(n) that is supposed to equal Eq. (B.1); that is, w allegedly

consists of three parts: (1) the purported anchor ẼCC(x), (2) the purported long code encodings(
L̃C(x|S′

)
S′∈S(m−τ) , and (3) the purported PCPs of proximity

(
ξ̃S′(x)

)
S′∈S(m−τ) . Note that we use z̃

to denote a string that is allegedly equal to z. The tester Tf operates as follows:

1. Consistency Test: Invoke the bundle consistency test on w, with respect to proximity parameter
ε and the purported encoding L̃C(x|S\T ), as well as L̃C(x|Ti), for every i ∈ T . Reject if any of
the tests fail. (The query complexity of this step is O(τ · log(τ)/ε).)

2. Direct recovery of t variables: Decode x|T using the self correction of the long code; that is, for

every i ∈ T decode xi from L̃C(x|S′i) (recall that S′i is a (m− τ)-subset that contains i), using
the corrector D. Denote the string of recovered values by z. (The query complexity of this
step is O(τ · log(τ)).)

3. Computing the induced (m−τ)-junta: Choose f ′′ : {0, 1}m−τ → {0, 1} such that f ′′(y) = f ′(z◦y),

decode f ′′ from the purported long code encoding L̃C(x|S\T ) using the corrector D, and accept
if and only if it returns 1. (The query complexity of this step is O(log(τ)).)

The perfect completeness of Tf follows by the one-sided error of the bundle consistency test and
the long code corrector D. For the soundness, assume that w is ε-far from Πf . By Proposition 3.6,
we can assume that there exists y ∈ {0, 1}k such that w is ε-close to C(y), and since w is ε-

far from Πf , it holds that f(y) = 0; furthermore, L̃C(y|S\T ) is ε-close to LC(y|S\T ), and each

L̃C(y|S′i) is ε-close to LC(y|S′i), otherwise the bundle consistency test rejects with probability at
most (τ + 1)/(10(τ + 1)). Thus, in Step 2, the corrector D successfully recovers y|T with probability
(1/10) ·τ/(10(τ+1)), and so, with probability at least 2/3, in Step 3 the tester Tf correctly computes
f ′′(y|S\T ) = f ′(y|T ◦ y|S\T ) = f(y) = 0 and rejects. This concludes the proof of Proposition 3.11.

B.3 Proof of Claim 4.3.1

We show that if w is ε-far from the subcode {C(x) : ϕ(x) = 1}, then for every alleged MAP proof
π̃ϕ, it holds that Pr[V w

ϕ (π̃ϕ) = 0] ≥ 2/3. Assume, without loss of generality, that ε < 1/3. By
Proposition 3.6, the consistency test (Step 2 of Vϕ) rejects with probability 2/3 unless there exists
x ∈ {0, 1}k such that: (1) the input w is ε-close to the codeword C(x), and (2) for every q ∈ Q,
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the purported function X̃q in w is ε-close to X̂q, the low-degree extension of x to Fq. Note that,

in particular, the polynomial X̂q takes binary values over Hm (i.e., encodes a binary assignment).
Since w is ε-far from the subcode {C(x) : ϕ(x) = 1}, this implies that the assignment x does not
satisfy ϕ. In addition, we may also assume that for every q ∈ Q the purported proof π̃ϕ,q satisfies∑

z1,...,z`∈H
π̃ϕ,q(z1, . . . , z`) ≡ n (mod q),

since otherwise the verifier rejects in Step 1.
On the other hand, observe that there exists q∗ ∈ Q such that∑

z1,...,z`∈H
πϕ,q∗(z1, . . . , z`) 6≡ n (mod q∗).

To see this, first recall that
∑

z1,...,z`∈H πϕ,q(z1, . . . , z`) counts the number of clauses that the assign-
ment satisfies, modulo q. Note that since the assignment is binary, then

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`) ≤

n, where the summation is over the integers, and that
∏
q∈Q q > n. Thus, if

∑
z1,...,z`∈H πϕ,q(z1, . . . , z`)

is congruent to n for all q ∈ Q, then by the Chinese remainder theorem, the assignment satisfies all
n constraints, in contraction to our assumption.

Therefore, the `-variate individual degree d2t+ d polynomials πϕ,q and π̃ϕ,q are not identical,
and so, by the Schwartz-Zippel Lemma, they disagree on a randomly chosen point with probability

at least 1− (d2t+d)`
Fq ≥ 9/10.

To complete the argument, note that the (amplified) self-correctability of low-degree polynomials
guarantees that every location in X̂q can be reconstructed from X̃q with probability 1− 1/10|H|m−`.
Therefore, all points are read correctly with probability at least 9/10, and thus, with probability 9/10·
9/10, the verifier rejects (in Step 3) when checking whether πϕ,q(r1, . . . , r`) equals π̃ϕ,q(r1, . . . , r`).

B.4 Proof of Claim 4.10.1

We show that if x 6∈ Πϕ, then there exists q ∈ Q such that Pr(Jq ,~vq)[X̂q(Jq) = ~vq] ≤ (1/2)S .

Fix s ∈ S. For every q ∈ Q, denote Jq,s = {ϕ̂i(r(s)
1 , . . . , r

(s)
` , ~z)}~z∈Hm−`,i∈[t] and ~vq,s ∈ F|H|

m−`·t
q

such that ~vq,s[~z, i] = ~vq[s, ~z, i] for all ~z ∈ Hm−` and i ∈ [t] (recall that ~vq[s, z, i] allegedly equals

X̂q ◦ ϕ̂i(r(s)
1 , . . . , r

(s)
` , ~z)). We first show that there exists q ∈ Q such that Pr(Jq,s,~vq,s)[X̂q(Jq,s) =

~vq,s] ≤ 1/2.
Similarly to the case in Theorem 4.3, observe that there exists q ∈ Q such that

∑
z∈H` πq(z) 6≡ n

(mod q), since otherwise, by the Chinese remainder theorem,

∑
z∈Hm

n∑
i=1

χi(z) · ci
(
X ◦ ϕ1(z), . . . , X ◦ ϕt(z)

)
≡ n (mod

∏
q∈Q

q),

in contradiction to the assumption that ϕ(x) = 0; fix such q ∈ Q. Therefore the `-variate individual
degree d2t+ d polynomials πq and πq differ, and so, by the Schwartz-Zippel Lemma,

Pr
r
(s)
1 ,...,r

(s)
` ∈Fq

[πq(r
(s)
1 , . . . , r

(s)
` ) 6= πq(r

(s)
1 , . . . , r

(s)
` )] ≥ 1− (d2t+ d)`

Fq
≥ 1− (d2t+ d)m

Fq
≥ 9/10.
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In other words, it holds that Pr(Jq,s,~vq,s)[X̂q(Jq,s) = ~vq,s] < 1/10. Finally, since {(Jq,s, ~vq,s)}s∈[S] are
independently selected, it holds that

Pr
(Jq ,~vq)

[X̂q(Jq) = ~vq] =

(
Pr

(Jq,s,~vq,s)
[X̂q(Jq,s) = ~vq,s]

)S
≤
(

1

10

)S
.

This concludes the proof of Claim 4.10.1.
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