
Universal Locally Testable Codes∗

Oded Goldreich
Weizmann Institute of Science

oded.goldreich@weizmann.ac.il

Tom Gur
Weizmann Institute of Science
tom.gur@weizmann.ac.il

November 25, 2016

Abstract

We initiate a study of “universal locally testable codes” (universal-LTCs). These codes admit
local tests for membership in numerous possible subcodes, allowing for testing properties of
the encoded message. More precisely, a universal-LTC C : {0, 1}k → {0, 1}n for a family of
functions F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M]

is a code such that for every i ∈ [M] the subcode

{C(x) : fi(x) = 1} is locally testable.

We show a “canonical” O(1)-local universal-LTC of length Õ(M · s) for any family F of M
functions such that every f ∈ F can be computed by a circuit of size s, and establish a lower
bound of the form n = M1/O(k), which can be strengthened to n = MΩ(1) for any F such that
every f, f ′ ∈ F disagree on a constant fraction of their domain.

∗This work previously appeared as the first part of the ECCC Technical Report 16-042 (original version) [GG16a].
The second part now appears separately in [GG16b].
Research was partially supported by the Israel Science Foundation (grant number 671/13) and Irit Dinur’s ERC grant
number 239985.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 42 (2016)

Contents

1 Introduction 1
1.1 The Notion of Universal-LTC . 1
1.2 Our Results . 2
1.3 Previous Version and Universal Locally Verifiable Codes 3

2 Preliminaries 3
2.1 Locally Testable and Decodable Codes . 4

3 The Definition of Universal Locally Testable Codes 5

4 The Canonical Universal-LTC 6
4.1 Preliminaries: PCP of proximity . 6
4.2 Consistency-Testable Bundles . 7
4.3 Proof of Theorem 4.1 . 10

5 General Lower Bounds 10

6 Trading off Length for Locality 12
6.1 Universal-LTCs of Nearly-Linear Length . 12
6.2 The Actual Tradeoff . 13
6.3 Lower Bounds for Universal-LTCs for Juntas . 14

A On Obtaining Locally Decodable Codes from Universal-LTCs 16

B Proof of Proposition 6.3 18

1 Introduction

Locally testable codes [FS95, RS96, GS06] are error-correcting codes that have local procedures for
ascertaining the integrity of purported codewords. More accurately, a code C is a locally testable
code (LTC) if there exists a probabilisitic algorithm (tester) that gets a proximity parameter ε > 0,
makes a small number of queries to a string w, and with high probability accepts if w is a codeword
of C and rejects if w is ε-far from C. The query complexity of the tester is the number of queries
that it makes (also referred to as the locality of the LTC).

1.1 The Notion of Universal-LTC

In this work we initialize a study of a generalization of the notion of LTCs, which we call universal
locally testable codes. A universal-LTC is a code that not only admits a local test for membership
in the code C but also a local test for membership in a family of subcodes of C. More precisely,
a binary code C : {0, 1}k → {0, 1}n is a q-local universal-LTC for a family of functions F ={
fi : {0, 1}k → {0, 1}

}
i∈[M]

if for every i ∈ [M] the subcode Πi := {C(x) : fi(x) = 1} is locally

testable with query complexity q. Viewed in an alternative perspective, such codes allow for testing
properties of the encoded message; that is, testing whether C(x) is an encoding of a message x that
satisfies a function fi ∈ F .

Universal-LTCs implicit in previous works. We note that the notion of universal-LTCs is
implicit in the literature. For instance, the long code [BGS98], which maps a message to its
evaluations under all Boolean functions, can be thought of as the “ultimate” universal-LTC for all
Boolean functions. To see this, recall that the long code is both locally testable and correctable
(i.e., there exists a local algorithm that can recover any bit of a slightly corrupted codeword). Now,

observe that we can test a subcode {LC(x) : f(x) = 1}, where LC : {0, 1}k → {0, 1}22
k

is the long
code and f : {0, 1}k → {0, 1} is some Boolean function, by first running the codeword test (and
rejecting if it rejects), and then running the local correcting algorithm with respect to the bit in
LC(x) that corresponds to the evaluation of f on x. Note, however, the ability to test all subcodes
comes at the cost of great redundancy, since the length of the long code is doubly exponential in the
length of the message.

By an analogous argument, the Hadamard code, which maps a message to its evaluations under all
linear Boolean functions, can be thought of as a universal-LTC for all linear Boolean functions. Note
that the length of the Hadamard code is exponential in the length of the message. Another example
is the inner PCP for satisfiability of quadratic equations [ALM+98], wherein the (exponentially
long) PCP oracle is an encoding of an assignment, independent from the set of quadratic equations
it allegedly satisfies. Hence, this PCP is an ”universal” encoding that admits a local test for the
satisfiability of any function that is given by a set of quadratic equations, and so it can be thought
of as a universal-LTC for quadratic equations.

In this work, we ask whether universal-LTCs can be constructed for any family of functions F ,
and what are the optimal parameters (i.e., the code’s length, locality, and number of subcodes for
which it admits a local test) that can be obtained by universal-LTCs.

Universal (relaxed) Locally Decodable Codes. Before proceeding to present our results, we
highlight a close connection between universal-LTCs and a universal generalization of the notion

1

of relaxed local decodability. Recall that a code is said to be a relaxed locally decodable code
(relaxed-LDC) [BSGH+06] if for every location i in the message there exists a local algorithm
(decoder) that is given query access to an alleged codeword, and satisfies the following: If the
codeword is valid, the decoder successfully decodes the i’th symbol, and if the codeword is corrupted,
the decoder, with high probability, either decodes correctly or rejects (indicating it detected a
corruption in the codeword). It turns out that universal-LTCs immediately imply a generalization of
the notion of relaxed-LDCs, which we describe next. (We also note that, under certain conditions,
universal-LTCs imply (non-relaxed) local decodability, see Appendix A.)

We define a universal relaxed locally decodable code (in short, universal-LDC) for a family of
functions F (analogously to universal-LTCs) as a relaxed-LDC wherein, instead of local procedures
for (relaxed) decoding of bits of the message x, we have local procedures for (relaxed) decoding of
the value of f(x) for every f ∈ F .

Now, let F be a family of Boolean functions. Observe that a universal-LTC for F ∪ (1−F) (i.e.,
a code with a tester Tf,b for each subcode {C(x) : f(x) = b}, where f ∈ F and b ∈ {0, 1}) implies a
universal-LDC for F , which is also locally testable, and vice versa. To see this, consider the following
local decoding procedure for f ∈ F : To decode f(x), invoke Tf,0 and Tf,1. If one tester accepted
and the other rejected, rule according to the accepting tester, and otherwise reject. The reader
may verify that this is indeed a (relaxed) local decoding procedure (see Appendix A for discussion
and generalizations). For the other direction, to test the subcode {C(x) : f(x) = 1}, first run the
codeword test, then decode the value of f(x) and accept if and only if it equals 1 (i.e., a decoded
value of 0 and a decoding error both cause rejection). We remark that all universal-LTCs in this
work can be easily extended to families of the type F ∪ (1−F), and thus we also obtain analogous
results for universal-LDCs.

On “uniformity” with respect to F . For simplicity, we defined universal LTCs and LDCs in a
“non-uniform” manner with respect to the family of functions F ; that is, we required that for every
function f ∈ F , there exists a testing or decoding procedure. A stronger, ”F-uniform”, definition
would require that there exists a procedure that receives f ∈ F as a parameter and tests or decodes
with respect to f . We remark that all of our upper bounds can be easily adapted to satisfy the
stronger F-uniform condition, while our lower bounds hold even without this condition.

1.2 Our Results

To simplify the presentation of our results, throughout the introduction we fix the proximity
parameter ε to a small constant, and when we refer to “codes”, we shall actually mean error-
correcting codes with linear distance. Our first result shows “canonical” universal-LTCs for any
family of functions.

Theorem 1 (informally stated, see Theorem 4.1). Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be any

family of Boolean functions that can each be computed by a size s = s(k) circuit. Then, there exists

a (one-sided error) universal-LTC C : {0, 1}k → {0, 1}Õ(M ·s) for F with query complexity O(1).

We complement the foregoing“canonical” universal-LTC with a general lower bound on the query
complexity of universal-LTCs, as a function of the encoding’s length and number of subcodes for
which it admits a local test.

2

Theorem 2 (informally stated, see Theorem 5.1). Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family

of distinct Boolean functions. Then, every universal-LTC C : {0, 1}k → {0, 1}n for F must have
query complexity Ω(log logM − log logn− log k). Furthermore, if the functions in F are pairwise far
(i.e., Prx[fi(x) 6= fj(x)] = Ω(1) for every i 6= j), then the query complexity is Ω(log logM− log log n).

Note that log logM − log logn = O(1) implies a lower bound of n ≥MΩ(1). In contrast, recall that
Theorem 1 shows an upper bound of n = Õ(M · s), where s bounds the circuit size for computing
each f ∈ F . Thus, for sufficiently large families of pairwise-far functions, Theorem 2 shows that the
length of the canonical universal-LTC (in Theorem 1) is optimal, up to a constant power. This raises
the question of whether the aforementioned slackness can be removed. We answer this question to
the affirmative, albeit for a specific family of functions.

Specifically, we show a universal-LTC C : {0, 1}k → {0, 1}k1.01 for a family of M =
(
k
m

)
· 22m

functions, namely the family of m-juntas,1 with query complexity Õ(m); note that for a large
constant m, the number of functions M is an arbitrarily large polynomial in the code’s length
k1.01 < M1.01/m, whereas for the canonical universal-LTC the length is linear in M .

In addition, note that the lower bound in Theorem 2 allows for a tradeoff between the
universal-LTC’s length and locality (i.e., query complexity), whereas Theorem 1 only shows universal-LTCs
in the constant locality regime. In Section 6 we show that for the family of m-juntas, there exists
a universal-LTC that allows for a tradeoff between locality and length. (See Proposition 6.3 for a
precise statement.)

1.3 Previous Version and Universal Locally Verifiable Codes

This work appeared previously as a part of our technical report [GG16a], which contained the
foregoing results regarding universal-LTCs as well as results regarding a related notion called “universal
locally verifiable codes”. Since this combination caused the latter notion and results to be missed, we
chose to split the original version into two parts. The current part contains the material regarding
universal-LTCs. The part regarding universal locally verifiable codes appears in a companion paper
[GG16b].

2 Preliminaries

We begin with standard notations:

• We denote the absolute distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn by
∆(x, y) := |{xi 6= yi : i ∈ [n]}| and their relative distance by δ(x, y) := ∆(x,y)

n . If δ(x, y) ≤ ε,
we say that x is ε-close to y, and otherwise we say that x is ε-far from y. Similarly, we denote
the absolute distance of x from a non-empty set S ⊆ Σn by ∆(x, S) := miny∈S ∆(x, y) and
the relative distance of x from S by δ(x, S) := miny∈S δ(x, y). If δ(x, S) ≤ ε, we say that x is
ε-close to S, and otherwise we say that x is ε-far from S. We denote the projection of x ∈ Σn

on I ⊆ [n] by x|I .

• We denote by Ax(y) the output of algorithm A given direct access to input y and oracle
access to string x. Given two interactive machines A and B, we denote by (Ax, B(y))(z) the
output of A when interacting with B, where A (respectively, B) is given oracle access to x

1That is, all Boolean functions that only depend on m of their k variables.

3

(respectively, direct access to y) and both parties have direct access to z. Throughout this
work, probabilistic expressions that involve a randomized algorithm A are taken over the
inner randomness of A (e.g., when we write Pr[Ax(y) = z], the probability is taken over the
coin-tosses of A).

Integrality. Throughout this work, for simplicity of notation, we use the convention that all
(relevant) integer parameters that are stated as real numbers are implicitly rounded to the closest
integer.

Uniformity. To facilitate notation, throughout this work we define all algorithms non-uniformly ;
that is, we fix an integer n ∈ N and restrict the algorithms to inputs of length n. Despite fixing
n, we view it as a generic parameter and allow ourselves to write asymptotic expressions such as
O(n). We remark that while our results are proved in terms of non-uniform algorithms, they can be
extended to the uniform setting in a straightforward manner.

Circuit Size. We define the size s(k) of a Boolean circuit C : {0, 1}k → {0, 1} as the number
of gates C contains. We count the input vertices of C as gates, and so s(k) ≥ k. We shall write
f ∈ SIZE

(
s(k)

)
to state that a Boolean function f : {0, 1}k → {0, 1} can be computed by a Boolean

circuit of size s(k).

2.1 Locally Testable and Decodable Codes

Let k, n ∈ N. A code over alphabet Σ with distance d is a function C : Σk → Σn that maps messages
to codewords such that the distance between any two codewords is at least d = d(n). If d = Ω(n),
we say that C has linear distance. If Σ = {0, 1}, we say that C is a binary code. If C is a linear map,
we say that it is a linear code. The relative distance of C, denoted by δ(C), is d/n, and its rate is
k/n. When it is clear from the context, we shall sometime abuse notation and refer to the code
C as the set of all codewords {C(x)}x∈Σk . Following the discussion in the introduction, we define
locally testable codes and locally decodable codes as follows.

Definition 2.1 (Locally Testable Codes). A code C : Σk → Σn is a locally testable code (LTC) if
there exists a probabilistic algorithm (tester) T that, given oracle access to w ∈ Σn and direct access
to proximity parameter ε, satisfies:

1. Completeness: For any codeword w = C(x), it holds that Pr[TC(x)(ε) = 1] ≥ 2/3.

2. Soundness: For any w ∈ {0, 1}n that is ε-far from C, it holds that Pr[Tw(ε) = 0] ≥ 2/3.

The query complexity of a LTC is the number of queries made by its tester (as a function of ε and
k). A LTC is said to have one-sided error if its tester satisfy perfect completeness (i.e., accepts valid
codewords with probability 1).

Definition 2.2 (Locally Decodable Codes). A code C : Σk → Σn is a locally decodable code (LDC)
if there exists a constant δradius ∈ (0, δ(C)/2) and a probabilistic algorithm (decoder) D that, given
oracle access to w ∈ Σn and direct access to index i ∈ [k], satisfies the following condition: For any
i ∈ [k] and w ∈ Σn that is δradius-close to a codeword C(x) it holds that Pr[Dw(i) = xi] ≥ 2/3. The
query complexity of a LDC is the number of queries made by its decoder.

4

We shall also need the notion of relaxed-LDCs (introduced in [BSGH+06]). Similarly to LDCs,
these codes have decoders that make few queries to an input in attempt to decode a given location
in the message. However, unlike LDCs, the relaxed decoders are allowed to output a special symbol
that indicates that the decoder detected a corruption in the codeword and is unable to decode this
location. Note that the decoder must still avoid errors (with high probability).2

Definition 2.3 (relaxed-LDC). A code C : Σk → Σn is a relaxed-LDC if there exists a constant
δradius ∈ (0, δ(C)/2),

1. (Perfect) Completeness: For any i ∈ [k] and x ∈ Σk it holds that DC(x)(i) = xi.

2. Relaxed Soundness: For any i ∈ [k] and any w ∈ Σn that is δradius-close to a (unique) codeword
C(x), it holds that

Pr[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

There are a couple of efficient constructions of codes that are both relaxed-LDCs and LTCs (see
[BSGH+06, GGK15]). We shall need the construction in [GGK15], which has the best parameters
for our setting.3

Theorem 2.4 (e.g., [GGK15, Theorem 1.1]). For every k ∈ N and α > 0 there exists a (linear)
code C : {0, 1}k → {0, 1}k1+α with linear distance, which is both a relaxed-LDC and a (one-sided
error) LTC with query complexity poly(1/ε).

3 The Definition of Universal Locally Testable Codes

Following the discussion in the introduction, we define universal locally testable codes as follows.

Definition 3.1. Let k,M ∈ N, and F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of functions. A

universal locally testable code (universal-LTC) for F with query complexity q = q(k, ε) is a code
C : {0, 1}k → {0, 1}n such that for every i ∈ [M] and ε > 0 there exists an ε-tester for the subcode
Πi := {C(x) : fi(x) = 1} with query complexity q. A universal-LTC is said to have one-sided error if
all of its testers satisfy perfect completeness.

Notation (ε-testing). We shall refer to a universal-LTC with respect to a specific proximity
parameter ε > 0 as a universal-LTCε.

Organization. We start, in Section 4, by showing a canonical universal-LTC for every family of
functions. This construction relies on a PCP-based machinery for asserting consistency of encodings,
which we shall use throughout this work. Next, in Section 5, we prove general lower bounds on the
query complexity of universal-LTCs as a function of the code’s length and number of functions it can

2The full definition of relaxed-LDCs, as defined in [BSGH+06] includes an additional condition on the success rate
of the decoder. Namely, for every w ∈ {0, 1}n that is δradius-close to a codeword C(x), and for at least a ρ fraction of
the indices i ∈ [k], with probability at least 2/3 the decoder D outputs the ith bit of x. That is, there exists a set
Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw it holds that Pr [Dw(i) = xi] ≥ 2/3. We omit this condition
since it is irrelevant to our application, and remark that every relaxed-LDC that satisfies the first two conditions can
also be modified to satisfy the third conditions (see [BSGH+06, Lemmas 4.9 and 4.10]).

3Specifically, the codes in [GGK15] are meaningful for every value of the proximity parameter, whereas the codes
in [BSGH+06] require ε > 1/polylog(k).

5

test. Finally, in Section 6, we show a specific family of functions (namely, the family of m-juntas,
i.e., Boolean functions that only depend on m of their variables) for which we can obtain a smooth
tradeoff between the universal-LTC length and locality.

4 The Canonical Universal-LTC

In this subsection we show a methodology for constructing an O(1)-local universal-LTC for any
family of Boolean functions.

Theorem 4.1. Let t(k) be a proper complexity function, and let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of functions such that for every i ∈ [M], the function fi can be computed by a size t(k)
circuit (i.e., fi ∈ SIZE

(
t(k)

)
). Fix n = M · Õ(t(k)). Then, for every ε > 1/polylog(n) there exists

a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}Õ(n) for F with linear distance and query
complexity O(1/ε).

We remark that, loosely speaking, the “canonical” universal-LTC above tightly matches the lower
bound (see Theorem 5.1) in the low query complexity regime, for a reasonable setting of the
parameters; see Section 5 for a more accurate statement.

The key idea for proving Theorem 4.1 is to design a universal-LTC that includes, for every f ∈ F ,
a PCP encoding of the message x, which asserts the value of f(x); this way we obtain a local test for
each function in F , simply by running its corresponding PCP verifier. The main problem, however,
is that given concatenated PCP oracles we cannot locally verify that all of these PCPs are consistent
with the exact same message. To overcome this issue, we shall first show a machinery for “bundling”
encodings together in a way that allows for locally testing that all of the encodings are consistent
with the same message. The key components for this construction are PCPs of proximity, which we
discuss below.

4.1 Preliminaries: PCP of proximity

PCPs of proximity (PCPPs) [BSGH+06, DR06] are a variant of PCP proof systems, which can be
thought of as the PCP analogue of property testing. Recall that a standard PCP is given explicit
access to a statement and oracle access to a proof. The PCP verifier is required to probabilistically
verify whether the (explicitly given) statement is correct, by making few queries to proof. In contrast,
a PCPP is given oracle access to a statement and a proof, and is only allowed to make a small
number of queries to both the statement and the proof. Since a PCPP verifier only sees a small part
of the statement, it cannot be expected to verify the statement precisely. Instead, it is required to
only accept correct statements and reject statements that are far from being correct (i.e., far in
Hamming distance from any valid statement). More precisely, PCPs of proximity are defined as
follows.

Definition 4.2. Let V be a probabilistic algorithm (verifier) that is given explicit access to a
proximity parameter ε > 0, oracle access to an input x ∈ {0, 1}k and to a proof ξ ∈ {0, 1}n. We say
that V is a PCPP verifier for language L if it satisfies the following conditions:

• Completeness: If x ∈ L, there exists a proof ξ such that the verifier always accepts the pair
(x, ξ); i.e., V x,ξ(ε) = 1.

6

• Soundness: If x is ε-far from L, then for every ξ the verifier rejects the pair (x, ξ) with high
probability; that is, Pr[V x,ξ(ε) = 0] ≥ 2/3.

The length of the PCPP is n and the query complexity is the number of queries made by V to both x
and ξ.

We shall use the following PCPP due to Ben-Sasson and Sudan [BS05] and Dinur [Din07].

Theorem 4.3 (Short PCPPs for NP). For every L ⊆ {0, 1}k that can be computed by a circuit of
size t(k), there exists a PCPP with query complexity q = O(1/ε) and length t(k) · polylog(t(k)).

4.2 Consistency-Testable Bundles

Building on techniques of Ben-Sasson at el. [BSGH+06], we show a way to bundle together (possibly
partial) encodings of the same message such that it possible to locally test that all these encodings are
indeed consistent. That is, we are given some encodings E1, . . . , Es : {0, 1}k → {0, 1}n, and we wish
to encode a single message x ∈ {0, 1}k by all of these encodings (i.e., to bundle E1(x), . . . , Es(x))
such that we can test that all of the encodings are valid and consistent with the same message x.
We shall need such bundles twice in this work: In Section 4.3 each Ei will simply correspond to a
Boolean function fi ∈ F , and in Section 6 the Ei’s will correspond to encodings of small chunks x.

The main idea is to construct a bundle that consists of three parts: (1) the (explicit) message
x, (2) the encodings E1(x), . . . , Es(x), and (3) PCPPs that asset the consistency of the first part
(the message) with each purported encoding Ei(x) in the second part. However, such PCPPs can
only ascertain that each purported pair of message and encoding, denoted (y, zi), is close to a
valid pair (x,Ei(x)). Thus, in this way we can only verify that the bundle consists of encodings of
pairwise-close messages, rather than being close to encodings of a single message (e.g., the PCPPs
may not reject a bundle (x,E1(y1), . . . , Es(ys)) wherein each yi is close to x).

To avoid this problem, we also encode the message via an error-correcting code ECC, so the
bundle is of the form

(
ECC(x), (E1(x), . . . , Es(x)), (PCPP1(x), . . . ,PCPPs(x))

)
. Now, each PCPP

ascertains that a purported pair (y, zi) is close to (ECC(x), Ei(x)). Due to the distance of ECC,
this allows to verify that the bundle consists of s (close to valid) encodings of the same message.
Lastly, we repeat ECC(x) such that it constitutes most of the bundle’s length, and so if an alleged
bundle is far from valid, its copies of ECC(x) must be corrupted, and so the bundle itself constitutes
an error-correcting code that is locally testable (by verifying at random one of the PCPPs in the
bundle).

More precisely, consider the following way of bundling several encodings of the same message.

Construction 4.4 (Consistency-Testable Bundles). Let E1, . . . , Es : {0, 1}k → {0, 1}n be encodings
such that for every i ∈ [s], the problem of (exactly) deciding whether (x, y) ∈ {0, 1}k+n satisfies
y = Ei(x) can be computed by a size t(k) circuit. The consistency-testable bundle of {Ei(x)}i∈[s] is

the code B(x) : {0, 1}k → {0, 1}` that consists of the following ingredients.

1. An (arbitrary) code ECC : {0, 1}k → {0, 1}n′ with linear distance, which can be computed by a
size Õ(n′) circuit, where n′ = Õ(k).

2. Encodings E1, . . . , Es (given by the application) that we wish to bundle.

7

3. PCP of proximity oracles ξ1, . . . , ξs for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb}.

where and ra, rb are set such that |a| ≈ |b| = O(t(k)).

Let ε ≥ 1/polylog(s · t(k)). Consider the bundle

B(x) =
(
ECC(x)r,

(
E1(x), . . . , Es(x)

)
,
(
ξ1(x), . . . , ξs(x)

))
,

where the length of each PCPP oracle ξi(x) is Õ(t(k)),4 and where r is the minimal integer such that
the first part of the bundle constitutes (1− ε/2) fraction of the bundle’s length (i.e., |ECC(x)|r ≥
(1− ε/2) · `).

Note that the length of B is ` = Õ(s · t(k)) and that B has linear distance, because |ECC(x)|r
dominates B’s length.

Notation for (alleged) bundled. For the analysis, when we consider an arbitrary string w ∈
{0, 1}` (which we think of as an alleged bundle), we view w ∈ {0, 1}`1+`2+`3 as a string composed of
three parts (analogous to the three parts of Construction 4.4):

1. The anchor, ẼCC(x) = (ẼCC(x)1, . . . , ẼCC(x)r) ∈ {0, 1}n
′·r, which consists of r alleged copies

of ECC(x);

2. The bundled encodings (Ẽ1(x), . . . , Ẽs(x)) ∈ {0, 1}n·s, which allegedly equals (E1(x), . . . , Es(x));

3. The PCPPs (ξ̃1(x), . . . , ξ̃s(x)) ∈ {0, 1}Õ(t(k))·s, which allegedly equals (ξ1(x), . . . , ξs(x)).

We show that there exists a local test that can ascertains the validity of the bundle as well as
asserts the consistency of any encoding Ei in the bundle with the anchor of the bundle. Note that
since the bundle’s anchor dominates its length, it is possible that the bundle is very close to valid,
and yet all of the Ei’s are heavily corrupted. Thus, we also need to provide a test for the validity of
each Ei and its consistency with the anchor.

Proposition 4.5. For every bundle B(x), as in Construction 4.4, there exists a consistency test
T that for every ε ≥ 1/polylog(`) makes O(1/ε) queries to a string w ∈ {0, 1}` and satisfies the
following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that Pr[Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far
from Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Note that Tw(0) is a codeword test for B, whereas for every i ∈ [s], the test Tw(i) asserts that

Ẽi is close to an encoding of the anchor. To verify that w is a bundle wherein all encodings refer
to the same message (the anchor), we have to invoke Tw(i) for all i ∈ {0} ∪ [s], but typically we
will be interested only in the consistency of one encoding with the anchor, where this encoding is
determined by the application.

4Note that Li ∈ SIZE(m) by the hypothesis regarding ECC and Ei. Thus, by Theorem 4.3, such a PCPP exists.

8

Proof of Proposition 4.5. We show that for every bundle B(x), as in Construction 4.4, there
exists a consistency test T that, for every ε ≥ 1/polylog(`), makes O(1/ε) queries to a string
w ∈ {0, 1}` and satisfies the following conditions.

1. If w = B(x), then for every i ∈ {0} ∪ [s] it holds that PrT [Tw(i) = 1] = 1.

2. If w is ε-far from B, then Pr[Tw(0) = 0] ≥ 2/3.

3. For every i ∈ [s], if there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi is ε-far from
Ei(x), then Pr[Tw(i) = 0] ≥ 2/3.

Let ε ≥ 1/polylog(`), and assume without loss of generality that ε < δ(ECC)/2.5 For every
i ∈ [s] denote by Vi the PCPP verifier for the language

Li = {(a, b) : ∃x ∈ {0, 1}k such that a = ECC(x)ra and b = Ei(x)rb},

with respect to proximity parameter ε/6 and soundness 9/10. Consider the ε-tester T that is given

i ∈ {0} ∪ [s] and oracle access to w = (ẼCC(x), (Ẽi)i∈[s], (ξ̃i)i∈[s]) ∈ {0, 1}` and accepts if both of
the following tests accept.

1. Repetition Test: Query two random copies from the long-code part of w and check if they
agree on a random location. More accurately, select uniformly at random j, j′ ∈ [r] and reject

if and only if ẼCC(x)j and ẼCC(x)j′ disagree on a random coordinate. Repeat this test O(1/ε)
times.

2. Consistency Test: Choose uniformly j ∈ [r]. If i = 0, choose uniformly i′ ∈ [s], otherwise set

i′ = i. Reject if the verifier Vi′ rejects on input (ẼCC(x)j
ra
, Ẽi′(x)rb) and proof ξ̃i′(x).

The first condition of Proposition 4.5 follows by construction. For the other conditions, first observe
that if ẼCC(x) is far from consisting of r identical copies, then the repetition test rejects with high

probability. That is, let ĉ ∈ {0, 1}n′ be a string that is closest on average to the copies in ẼCC(x),

i.e., a string that minimizes ∆(ẼCC(x), ĉr) =
∑r

j=1 ∆(ẼCC(x)j , ĉ). Observe that

E
j,j′∈R[r]

[δ(ẼCC(x)j , ẼCC(x)j′)] ≥ E
j∈R[r]

[δ(ẼCC(x)j , ẼCC(x))] = δ(ẼCC(x), ĉr).

If δ(ẼCC(x), ĉr) > ε/60, then by invoking the codeword repetition test O(1/ε) times, with probability
at least 2/3 one of the invocations will reject. Otherwise, note that with probability at least 9/10

the random copy ẼCC(x)j is ε/6-close to ĉ; assume hereafter that this is the case.

If w is ε-far from B, then since ẼCC(x) ≥ (1 − ε/2)`, it follows that ẼCC(x) is ε/2-far from
ECCr, and thus

δECCr(ĉ
r) ≥ δECCr(ẼCC(x))− δ(ĉr, ẼCC(x)) = ε/2− ε/60 > ε/3.

Recall that we assumed that δ(ẼCC(x)j , ĉ) ≤ ε/6, and so δECC(ẼCC(x)j) > ε/6. Thus, Pr[V w
i′ =

0] ≥ 9/10 · 9/10.

Finally, If there exists x ∈ {0, 1}k such that w is ε-close to B(x) and Ẽi(x) is ε-far from Ei(x),

then since δ(ẼCC(x), ĉr) ≤ ε/60, it follows that with probability at least 9/10 the random copy

ẼCC(x)j is ε/6-close to ECC(x). Hence, (ẼCC(x)j
ra
, Ẽi(x)rb) is at least 5ε/6-far from Li, and so

Pr[V w
i = 0] ≥ 9/10 · 9/10.

5The relative distance of ECC is constant, so if ε ≥ δ(ECC)/2, we can set the proximity parameter to δ(ECC)/2,
increasing the complexity by only a constant factor.

9

4.3 Proof of Theorem 4.1

Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of functions such that for every i ∈ [M] it holds

that fi ∈ SIZE
(
t(k)

)
). Fix n = M · Õ(t(k)) and ε > 1/polylog(n). We set Ei = fi for every i ∈ [M],

bundle these encodings via Proposition 4.5, and denote the bundle by C : {0, 1}k → {0, 1}Õ(n). Note
that by Proposition 4.5, the code C has linear distance.

Fixing fi ∈ F , we show an O(1/ε)-local ε-tester Ti for the subcode Πi := {C(x) : fi(x) = 1}.
Given input w ∈ {0, 1}Õ(n), the tester Ti simply invokes the bundle consistency test on w (which
makes O(1/ε) queries to w), with respect to proximity parameter ε and the purported copy of fi(x)
in the bundle, which is a bit, denoted by zi. The tester accepts if and only if the consistency test
accepts and zi = 1.

The perfect completeness of Ti follows by the one-sided error of the bundle consistency test. For
the soundness, assume that w is ε-far from Πi. By Proposition 4.5, we can assume that there exists
y ∈ {0, 1}k such that w is ε-close to C(y) (otherwise the consistency test fails with probability 2/3),
and since w is ε-far from Πi, it holds that fi(y) = 0; furthermore, the value of w at fi is uncorrupted
(i.e., it actually equals 0),6 and so Ti rejects.

5 General Lower Bounds

In this section we prove a general lower bound on the query complexity of universal-LTCs for any
family of functions F , as a function of the universal-LTC’s length and the number of functions in F .
We also prove a stronger lower bound for the case that the functions in F are “pairwise far”.

Theorem 5.1. Let F =
{
fi : {0, 1}k → {0, 1}

}
i∈[M]

be a family of distinct functions. Then, every

q-local universal-LTCε C : {0, 1}k → {0, 1}n for F with linear distance and ε < δ(C)/2 must satisfy

q ≥ log logM − log log n− log(k)−O(1).

Furthermore, if there exists β = Ω(1) such that Prx∈{0,1}k [fi(x) 6= fj(x)] > β for every i 6= j, then
q = Ω(log logM − log logn).

Note that in the constant locality regime (i.e., where q = O(1)), the lower bound for “pairwise far”
functions implies that n ≥M c for some constant c > 0. On the other hand, recall that the canonical
universal-LTC in Theorem 4.1 has query complexity O(1) and length Õ(M · t(k)), for any family of
functions that can be computed by a circuit of size t(k) each (recall that t(k) ≥ k, by definition).
Thus, for sufficiently large families of “pairwise far” functions, the lower bound above matches the
upper bound of the canonical universal-LTC up to a constant power, where by “sufficiently large”
we mean that t(k) = poly(M).

Proof. We prove Theorem 5.1 using two different representations of testers: when proving the
main claim we view testers as randomized decision trees, whereas in the proof of the furthermore
claim we view testers as a distribution over deterministic decision trees. We begin with the main
claim, for which we use the following lemma, due to Goldreich and Sheffet [GS10], which shows
that the amount of randomness that suffices for testing is roughly doubly logarithmic in the size of
the universe of objects it tests.

6Formally, Proposition 4.5 guaranties that w contains a copy of fi(y) that is ε-close to zi, but since fi(y) is a single
bit, this means that fi(y) is uncorrupted.

10

Lemma 5.2 ([GS10, Lemma 3.7] restated). Let k ∈ N, U ⊆ {0, 1}k, and let Π ⊆ U be a property.
Assume that Π has a tester with randomness complexity r, which makes q queries to a string in U .
Then, Π has a tester that makes q queries and has randomness complexity log log |U |+O(1).

Let C : {0, 1}k → {0, 1}n be a universal-LTC for F , and assume that each tester Ti for the subcode
Πi = {C(x) : fi(x) = 1} is given the promise that its input is a valid codeword of C; that is, we only
consider the behavior of Ti given a codeword C(x) out of the universe U := {C(x) : x ∈ {0, 1}k},
which consists of 2k codewords. We shall prove a lower bound of the query complexity of the
foregoing testers, and this, in particular, implies a lower bound on standard testers (which are not
given a promise regarding their input).

Here we view a randomized decision tree is a decision tree wherein the vertices are also allowed
to be labeled with a special coin-flip symbol ∗ that indicates that during computation, one of the
children of each ∗-labeled vertex is chosen uniformly at random. Note that any tester with query
complexity q and randomness complexity r can be represented by a randomized decision tree of
depth q + r in which all vertices in the first r layers are ∗-labeled. By Lemma 5.2 we can assume
without loss of generality that r = log log |U |+ O(1) = log(k) + O(1). Observe that there are at

most (n+ 3)2q+log(k)+O(1)
such randomized decision trees (we bound the number of depth d decision

trees over n variables by counting all possible labeling of a depth d binary tree with the names of
the variables, the two terminals, and the coin-flip symbol).

Recall that for every i 6= j the functions fi and fj are different, hence there exist x ∈ {0, 1}k
such that C(x) ∈ Πi4Πj , and so by the distance of C, a tester for Πi cannot also be a tester for Πj .

Therefore M ≤ (n+ 3)2q+log(k)+O(1)
, and so q ≥ log logM − log logn− log k −O(1).

For the furthermore claim of Theorem 5.1, for every i ∈ [M], denote by Ti the q-query ε-tester
for the subcode Πi := {C(x) : fi(x) = 1}, and by amplification, assume that Ti makes q′ = O(q)
queries and obtains completeness and soundness error of at most δerr = β/2. Note that if x satisfies
fi(x) = 1, then C(x) ∈ Πi, thus the tester Ti accepts (i.e., outputs 1) with high probability, and if x
satisfies fi(x) = 0, then C(x) is ε-far from Πi, and thus the tester Ti rejects (i.e., outputs 0) with
high probability; that is,

∀x ∈ {0, 1}k Pr[T
C(x)
i = fi(x)] ≥ 1− δerr. (5.1)

Hence, testing codewords of C for membership in Πi amounts to computing fi(x).
Let D1, . . . , Ds be all (binary, deterministic) depth q′ decision trees over n variables, and note

that s ≤ (n+ 2)2q
′
. Here we view each Ti is a distribution over {Dj}j∈[s]; that is, for every i ∈ [M]

there exists a distribution µi over [M] such that for every w ∈ {0, 1}n, the output of Twi is obtained
by drawing j ∼ µi and outputting Dw

j . By Eq. (5.1), for every x and i ∈ [M],

s∑
j=1

µi(j) · Pr
x∈{0,1}k

[D
C(x)
j = fi(x)] ≥ 1− δerr.

In particular, we obtain that for every i ∈ [M] there exists j ∈ [s] such that Prx[D
C(x)
j = fi(x)] ≥

1− δerr. Observe that if M > s (i.e., there are more fi’s than depth-q′ decision trees), then there

exists i1, i2 ∈ [M], where i1 6= i2 and j ∈ [s], such that Prx[fi1(x) = D
C(x)
j = fi2(x)] ≥ 1− 2δerr =

1 − β, in contradiction to the hypothesis. Thus M ≤ s ≤ (n + 1)2q
′
, and since q′ = O(q), then

q = Ω(log logM − log logn).

11

On the gap between “pairwise far” and general families of functions. Recall that there
is an additive difference of Ω(log k) between the lower bound for general families of functions and the
stronger lower bound for families of functions that are “pairwise far”. We leave open the question
of whether the lower bound for general families of functions can be improved to match the stronger
lower bound for ”pairwise far” functions, or whether there exists a universal-LTC for a family of
functions, which are not ”pairwise far”, that matches the lower bound for general functions. We
point out two observations regarding the forgoing question:

1. The argument in the furthermore claim of Theorem 5.1 also shows that any universal-LTC with
deterministic testers must satisfy q = Ω(log logM − log logn), even for families of functions
that are not ”pairwise far” and when given the proviso that the input is a valid codeword.
Therefore, to construct a universal-LTC that matches the general lower bound, the testers
must use a randomized strategy, not only for checking the validity of the encoding, but also
for computing the function of the message. (We remark that all of the universal-LTCs in this
work use randomness only for codeword testing.)

2. The proof of the furthermore claim of Theorem 5.1 actually yields a stronger statement
regarding ”pairwise far” functions. Specifically, it only requires that the functions should be
”pairwise far” under some distribution (and not necessarily the uniform distribution); that is,
it suffices that there exists a distribution D over {0, 1}k such that Prx∼D[fi(x) 6= fj(x)] = Ω(1)
for every i 6= j.

6 Trading off Length for Locality

The general lower bound in Theorem 5.1 allows for a tradeoff between the universal-LTC’s length
and locality. We remark that while the canonical universal-LTC in Theorem 4.1 matches this lower
bound, it is limited to the extreme end of the tradeoff, wherein the locality is minimized (i.e., the
query complexity is constant). In this subsection we show a specific family of functions (namely, the
family of m-juntas) for which we can obtain a smooth tradeoff between the universal-LTC’s length
and locality.

6.1 Universal-LTCs of Nearly-Linear Length

Let m, k ∈ N such that m ≤ k, and denote by Juntam,k the set of all
(
k
m

)
· 22m k-variate Boolean

functions that only depend on m coordinates. We start by showing that using super-constant query
complexity, we can obtain universal-LTCs that are shorter than the canonical universal-LTC. More
precisely, we prove that there exists a universal-LTC for Juntam,k with linear distance, nearly-linear
length, and query complexity that is quasilinear in m. (We discuss how Observation 6.1 matches the
lower bound in Theorem 5.1 in Section 6.3.)

Observation 6.1. Let k,m ∈ N such m ≤ k, and let α > 0 be a constant. For every ε > 0 there
exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}k1+α for Juntam,k with linear distance

and query complexity Õ(m) + poly(1/ε).

Sketch of proof. The idea is to use a code C that is both locally testable and decodable, and
obtain a tester for each subcode {C(x) : f(x) = 1} (where f ∈ Juntam,k) by invoking the tester for
membership in C, using the decoder to recover the values of the m influencing variables of f (for

12

which we shall need to reduce the error probability of the decoder to 1/m), and ruling accordingly.
Recall, however, that there are no known LDCs with constant query complexity and polynomial
length (let alone such with nearly-linear length). Instead, we observe that for the foregoing idea
it suffices that C is a relaxed-LDC,7 and so we can use the code in Theorem 2.4, which is both a
(one-sided error) LTC and a relaxed-LDC, with nearly-linear length. The implementation of the
aforementioned ideas is straightforward, and so, we omit it.

Digression: Universal-LTCs with optimal rate. In Observation 6.1, we are concerned with
minimizing the locality of the universal-LTCs, while settling for nearly-linear length (and so, we use
the code in Theorem 2.4 as the base code). We remark that the argument underlying Observation 6.1
holds for any base code that is both locally testable and (possibly relaxed) locally decodable. Thus,
different base codes may be used to obtain universal-LTCs in other regimes. For example, allowing
large query complexity (which depends on k) and focusing on optimizing the rate and the distance,
we can obtain the following corollary by using the recent construction, due to Meir [Mei14, Theorem
1.1, 1.2, and Remark 1.5], of codes that are both locally testable and decodable with constant rate
and optimal distance, and query complexity that is an arbitrary small power of the input length.

Corollary 6.2. For every 0 < r < 1, α, β > 0 there exists a finite field H of characteristic 2 such
that for every m ≤ k, there exists a universal-LTC C : Fk2 → Hn for Juntam,k with rate at least r,
relative distance at least 1− r − α, and query complexity O(kβm logm+ kβ/ε).8

6.2 The Actual Tradeoff

Next, we show a universal-LTC for Juntam,k with a smooth tradeoff between length and query
complexity.

Proposition 6.3. Let k,m ∈ N such that m ≤ k. For every τ < m and ε ≥ 1/polylog(n), where

n ≤ km+1

kt · (2
2m)1/2t, there exists exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}Õ(n)

for Juntam,k with linear distance and query complexity Õ(τ) +O(1/ε).

We remark that in the Õ(m)-locality regime (the query-heavy extreme of the tradeoff), Proposition 6.3
only yields a universal-LTC of quadratic length, whereas Observation 6.1 achieves nearly-linear
length.9

Sketch of proof. The basic idea is to map x ∈ {0, 1}k to the long code encoding of the projection of
x to each m-subset of [k]; that is, x→

(
LC(x|S1), . . . , LC(x|SN)

)
, where S1, . . . , SN are all N =

(
m
k

)
distinct m-subsets of [k] and LC : {0, 1}m → {0, 1}22

m

is the corresponding long code.
Next, to ascertain that all the long code encodings are consistent with restrictions of a single x,

we bundle these encodings with PCPs according to the consistency-testable bundling mechanism pre-
sented in Section 4 (where the encodings {Ei} correspond to {LC(x|Si}). This yields a universal-LTC

7Recall that relaxed-LDCs are a relaxation of locally decodable codes that requires local recovery of individual
information-bits, yet allow for recovery-failure, but not error, on the rest (see Definition 2.3).

8Recall that the query complexity measures the number of queries made, rather than the number of bits that were
read, but since p is a constant, the difference is immaterial.

9It is possible to optimize Proposition 6.3 such that in the query-heavy extreme of the tradeoff it will yield
universal-LTCs of linear length, by adapting techniques from [BSGH+06, Section 4] to our setting. However, this

methodology is far more involved than simply using Observation 6.1 in the Õ(m)-locality regime.

13

for m-juntas with query complexity O(1) and length
(
k
m

)
· Õ(22m + k): To test that x satisfies the

junta f(x) = f ′(x|S), where S ⊆ [k] such that |S| = m, we first use Proposition 4.5 to ensure the
consistency of the bundle (i.e., the consistency of f with the anchor), then we extract the value of
f(x) by locally correcting the point that corresponds to f ′ in the purported copy of LC(x|S).

Finally, to obtain a smooth tradeoff, we modify the foregoing construction such that x is mapped
to the long code encoding of the projection of x to each (m− τ)-subset of [k] (instead of m-subset),
for the given parameter τ ∈ [m]. The idea is that now, to test that x satisfies f ′(x|S) = 1, we first
arbitrarily choose t bits of x|S and decode them one-by-one (as in Observation 6.1); this induces a
function f ′′ on the remaining m− τ bits, which we compute by self-correcting the single bit that
corresponds to f ′′ in the long code encoding of x projected to these m− τ bits. The implementation
of the foregoing ideas is straightforward and is presented in Appendix B.

6.3 Lower Bounds for Universal-LTCs for Juntas

We conclude this subsection by proving a lower bound on the query complexity of universal-LTCs
for Juntam,k. Observe that the family of all m-juntas do not satisfy the ”pairwise far” condition,
and thus Theorem 5.1 only gives us a lower bound of q ≥ m − log logn − O(log k). However, we
show that while the family Juntam,k is not ”pairwise far”, it contains a dense subset of functions
that are ”pairwise far”, and so we can strengthen the foregoing lower bound as follows.

Proposition 6.4. Let k,m ∈ N such m ≤ k. There exists a universal constant c > 0 such that
every universal-LTCε C : {0, 1}k → {0, 1}n for Juntam,k with linear distance and ε < δ(C)/2 must
have query complexity Ω(m− log log(n) + c).

We remark that that for m =
(
1 + Ω(1)

)
· log log(n), the lower bound simplifies to Ω(m) and matches

Observation 6.1 up to a constant power. Furthermore, it is possible to improve Proposition 6.4
such that it gives a non-trivial lower bound when m < log log(k) (see discussion at the end of the
section).

Proof of Proposition 6.4. We show that Juntam,k contains a dense subset that is “pairwise far”.
Specifically, fix S ⊆ [k] such that |S| = m, and let JuntaSm,k ⊆ Juntam,k denote all m-juntas that

depend only on coordinates in S. We prove that there exists a family F ⊆ JuntaSm,k of M = 2Ω(2m)

distinct functions such that every distinct f and g in F satisfies Prx∈{0,1}k [f(x) 6= g(x)] = Ω(1).

Note that the set of truth tables, restricted to inputs supported on S, of all f ∈ JuntaSm,k is

isomorphic to {0, 1}2m , and thus we can choose a subset of it that constitutes a good code. That is,
for every f ∈ JuntaSm,k, note that f(x) = f ′(x|S) for some f ′ : {0, 1}m → {0, 1}, and denote the truth
table of f ′ by 〈f ′〉. Let C0 be a code with linear distance, constant rate, and codewords of length 2m,
and observe that by the rate and distance of the code C0, the set F = {f ∈ JuntaSm,k : 〈f ′〉 ∈ C0}
is a collection of 2Ω(2m) functions such that every distinct f, g ∈ F satisfy

Pr
x∈{0,1}k

[f(x) 6= g(x)] = Pr
x∈{0,1}k
x|[k]\S=0

[f(x) 6= g(x)] = Ω(1).

The proof of Proposition 6.4 is concluded by applying Theorem 5.1 to F .

14

Improving the lower bound. We point out a slackness in the proof of Proposition 6.4.
Specifically, we apply Theorem 5.1 to a subset F of m-juntas that depend on a single set
S ⊂ [k] of cardinality m, and so we lose all dependency in k (the dimension of the code).
We sketch below how to tighten this slackness and obtain a slightly stronger lower bound of
Ω(max{m,Ω(log(m)) + log log(k)} − log log(n)), which gives a non-trivial lower bound also when
m < log log(k) and n < km (while noting that Proposition 6.4 trivializes for this range of parameters).

As a first attempt, we can consider a partition of [k] to sets S1, . . . , Sk/m of cardinality m,

and (similarly to Proposition 6.4) include in F a subset of functions from each JuntaSim,k whose
truth-tables form a good code. Inspection shows that as long as the foregoing good code is
balanced,10 juntas in such F are pairwise far, and so we can apply Theorem 5.1. The problem
is, however, that such argument only strengthens the lower bound by a constant factor; that
is, it yields q = Ω

(
log log

(
k
m · 2

2m
)
− log logn

)
, which is not asymptotically better than q =

Ω(log log(22m)− log logn), established in Proposition 6.4.
To obtain an asymptotical strengthening, we can choose kΩ(m) distinct subsets of [k] with small

(say, m/100) pairwise intersection (using the Nisan-Wigderson combinatorial designs [NW94]), and
for each such subset S, include in F juntas from JuntaSm,k whose truth-tables form a random code.
On inspection, it turns out that juntas in such F are pairwise far, and thus we can apply Theorem 5.1
to obtain q = Ω(log log(km · 22m)− log logn), which yields the aforementioned bound.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM), 45(3):501–555, 1998. 1.1

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and
nonapproximability—towards tight results. SIAM Journal on Computing, 27(3):804–915,
1998. 1.1

[BS05] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and query complexity.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 266–275. ACM, 2005. 4.1

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput.,
36(4):889–974, 2006. 1.1, 2.1, 2.1, 2, 3, 4.1, 4.2, 9, A, A

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM (JACM),
54(3):12, 2007. 4.1

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006. 4.1

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In Theory
of Computing and Systems, 1995. Proceedings., Third Israel Symposium on the, pages
190–198. IEEE, 1995. 1

10That is, a code wherein each codeword consists of an equal number of 0’s and 1’s.

15

[GG16a] Oded Goldreich and Tom Gur. Universal locally testable codes (original version).
Electronic Colloquium on Computational Complexity (ECCC), 23:42, 2016. ∗, 1.3

[GG16b] Oded Goldreich and Tom Gur. Universal locally verifiable codes. Electronic Colloquium
on Computational Complexity (ECCC TR16-192), 2016. ∗, 1.3

[GGK15] Oded Goldreich, Tom Gur, and Ilan Komargodski. Strong locally testable codes with
relaxed local decoders. In 30th Conference on Computational Complexity, CCC 2015,
June 17-19, 2015, Portland, Oregon, USA, pages 1–41, 2015. 2.1, 2.4, 3

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear
length. J. ACM, 53(4):558–655, 2006. 1

[GS10] Oded Goldreich and Or Sheffet. On the randomness complexity of property testing.
Computational Complexity, 19(1):99–133, 2010. 5, 5.2

[Mei14] Or Meir. Locally correctable and testable codes approaching the singleton bound.
Electronic Colloquium on Computational Complexity (ECCC), 21:107, 2014. 6.1

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and
System Sciences, 49(2):149–167, 1994. 6.3

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996. 1

A On Obtaining Locally Decodable Codes from Universal-LTCs

In this appendix we show that universal-LTCs for the family of linear functions (and more generally,
for self-correctable families of functions) imply local decodability in the strong (non relaxed) sense.
More accurately, denote the set of all k-variate linear functions over GF(2) by Lineark. The following
theorem shows that any universal-LTC for Lineark implies a LDC with roughly the same parameters.

Theorem A.1. If there exists an universal-LTC C for Lineark with linear distance, rate r, and
query complexity q = q(ε), then there exists a binary LDC with linear distance, rate Ω(r), and query
complexity O(1).

Proof. Fix ε = δ(C)/3. For every linear function f ∈ Lineark and b ∈ {0, 1}, let Tf,b be the ε-tester
for the subcode Πf,b := {C(x) : f(x) = b} guarantied by the universal-LTC C : {0, 1}k → {0, 1}n.
These testers admit a natural candidate for a local decoding procedure: to decode xi, simply invoke
Tf,0 and Tf,1 for the linear function f(x) = xi, and rule according to the tester that accepted.

The problem is that given a slightly corrupted copy of C(x), the testers Tf,0 and Tf,1 may both
reject, since they are not necessarily tolerant ;11 in this case we cannot decode. (Indeed, if the
aforementioned testers are tolerant, then the foregoing procedure is a local decoder.12) Nevertheless,
since the foregoing case only happens when the input is not a valid codeword, we obtain a procedure

11Recall that tolerant testers accept strings that are (say) δ(C)/3-close to being valid and reject strings that are
(say) δ(C)/2-far from being valid (with high probability).

12In fact, the argument above shows that a tolerant universal-LTC for any family of functions F that contain the
dictator functions, i.e., such that {f(x) = xi}i∈[k] ⊆ F , implies a LDC with roughly the same parameters.

16

that either decodes correctly or detects a corruption in the encoding and aborts (similarly to
relaxed-LDCs, see Definition 2.3). Then, by slightly modifying the code, we can bound the number
of linear functions on which we are forced to abort and use the linear functions that we are able to
compute to recover any linear function, including f(x) = xi. Details follow.

Assume without loss of generality that the testers of the universal-LTC have soundness error of
at most 1/10. Consider the algorithm A that, given f ∈ Lineark and oracle access to w ∈ {0, 1}n,
invokes Tf,0 and Tf,1 on w; if one tester accepted and the other rejected, A rules according to
the accepting tester, and otherwise it outputs ⊥. Hence, A has query complexity O(q(ε)) = O(1).
The following claim shows that indeed A succeeds in locally computing f(x) in the following sense
(which is analogous to that of relaxed-LDCs).

Claim A.1.1. For every f ∈ Lineark, the algorithm A satisfies the following two conditions.

1. If w = C(x) for some x ∈ {0, 1}k, then Pr
[
AC(x)(f) = f(x)

]
≥ 2/3.

2. If w is δ(C)/3-close to a codeword C(x), then Pr [Aw(f) ∈ {f(x),⊥}] ≥ 2/3.

Proof. Let w = C(x) for x ∈ {0, 1}k such that f(x) = 1 (the case in which f(x) = 0 is symmetrical).
Since Tf,1 is a tester for Πf,1 := {C(x) : f(x) = 1}, then Pr[Twf,1 = 1] ≥ 9/10, and since Tf,0 is a
δ(C)/3-tester for Πf,0 := {C(x) : f(x) = 0} and w is δ(C)-far from Πf,0, then Pr[Twf,0 = 0] ≥ 9/10.

Thus, by the definition of A it holds that Pr [Aw(f) = f(x)] ≥ (9/10)2. Next, assume that w
is δ(C)/3-close to a codeword C(x) such that f(x) = 1 (again, the case in which f(x) = 0 is
symmetrical). Then, Pr[Twf,0 = 1] < 1/10 and Pr [Aw(f) ∈ {f(x),⊥}] ≥ 9/10 follows.

The second condition of Claim A.1.1 does not bound the number of linear functions on which
the algorithm A is allowed to abort (and so, given a corrupted codeword, A can potentially output
⊥ on all inputs). However, by adapting of the techniques of Ben-Sasson et al. [BSGH+06, Lemmas
4.9 and 4.10] to the setting of universal-LTCs, we obtain the following claim, which shows that C
and A can be modified to allow for such bound.

Claim A.1.2. If there exists a code C : {0, 1}k → {0, 1}n with distance d and rate r, and an
algorithm A with query complexity q, which satisfies the conditions of Claim A.1.1, then there exists
a constant δradius > 0, a code C ′ : {0, 1}k → {0, 1}n′ with distance Θ(d) and rate Θ(r), and an
algorithm B that for every (explicitly given) f ∈ Lineark makes O(q) queries to a string w ∈ {0, 1}n′

and satisfies the following condition: If w is δradius-close to a codeword C ′(x), then there exists
a family F of at least (9/10) · 2k functions in Lineark such that for every f ′ ∈ F it holds that
Pr [Bw(f ′) = f ′(x)] ≥ 9/10.

We omit the proof of Claim A.1.2, since it follows by a trivial adaptation of [BSGH+06, Lemmas
4.9 and 4.10] to our setting. We mention that the main idea is that by repeating heavily probed
locations in the code, we can modify A such that on an average f it make queries that are nearly
uniformly, and then use this ”average smoothness” to bound the fraction of functions on which we
are forced to abort.

The proof of Theorem A.1 follows by noting that given a slightly corrupted copy of C ′(x), for
every f ∈ Lineark we can use the algorithm B of Claim A.1.2 to extract the value of f(x) using the
self correctability of linear functions. In more detail, let w ∈ {0, 1}n′ such that δ(w,C ′(x)) ≤ δradius
for some x ∈ {0, 1}k, and let i ∈ [k]. To decode xi, we uniformly choose g ∈ Lineark, invoke Bw(g)
and Bw(g + xi), and output Bw(g) + Bw(g + xi). By the union bound, with probability at least

17

1− 2/10 both g and g + xi are functions on which B succeeds with probability at least 9/10. Thus,
with probability at least (8/10) · (9/10), both Bw(g) = g(x) and Bw(g+xi) = g(x) +xi, and so their
summation (over GF(2)) is xi.

Generalizing to Self-Correctable Families of Functions. We remark that the only place in
which the proof of Theorem A.1 relies on F being the family of all linear functions is that the
latter family admits self correction. Therefore, the same proof holds for any family of functions
F =

{
fi + b : {0, 1}k → {0, 1}

}
i∈[M],b∈{0,1} that is self correctable.

B Proof of Proposition 6.3

Let k,m ∈ N such that m ≤ k. We show that for every τ < m and ε ≥ 1/polylog(n), where n =(
k

m−τ
)
·max{22m−τ , k}, there exists exists a (one-sided error) universal-LTCε C : {0, 1}k → {0, 1}Õ(n)

for Juntam,k with linear distance and query complexity Õ(τ) +O(1/ε).
Let τ < m and ε ≥ 1/polylog(n). We bundle the long code encoding of each projection of x

to (m − τ) coordinates; that is, denote the (m − τ)-dimensional long code by LC : {0, 1}m−τ →
{0, 1}22

m−τ
, denote the set of all subsets of [k] of cardinality m− τ by S(m−τ) = {S′ ⊆ [k] : |S′| =

m− τ}. We bundle the encodings {LC(x|S′)}S′∈S(m−τ) according to Construction 4.4.
Recall that in Construction 4.4 we bundle encodings Ei, . . . , Es with an (arbitrary) error-

correcting code ECC (which can be encoded by a circuit of quasilinear size in k and has linear
distance) and with a PCPP for every Ei, which ascertains that a pair (a, b) satisfies a = ECC(y)
and b = Ei(y) for some y. Here, the encodings will correspond to the long code encodings of x
projected to (m− τ)-subsets in S(m−τ), i.e., {LC(x|S′)}S′∈S(m−τ) . Note that each LC(x|S′) can be

computed by a circuit of size O(22m ·m) = Õ(n). Hence, by Theorem 4.3, for every S′ ∈ S(m−τ)

there exist a PCPP oracle ξS′ , as required in Construction 4.4, of length Õ(n). We obtain the code

C : {0, 1}k → {0, 1}Õ(n) given by

C(x) =
(
ECC(x)r,

(
LC(x|S′

)
S′∈S(m−τ) ,

(
ξS′(x)

)
S′∈S(m−τ)

)
. (B.1)

We show that C is a universal-LTCε for Juntam,k with query complexity Õ(τ) +O(1/ε).
Fix ε > 0, f ∈ Juntam,k, and write f(x) = f ′(x|S), where S denotes the m influencing coordinates

of f . Denote by T the first τ coordinates in S. For every i ∈ T , let S′i ∈ S(m−τ) be a (m− τ)-subset
that contains i. Denote by D the O(1)-query corrector of the long code. Using amplification,
assume that the corrector D and the bundle consistency-test (see Proposition 4.5) make at most
O(log(τ)) and O(log(τ)/ε) queries (respectively) and obtain soundness error that is (strictly) less
than 1/(10(τ + 1)).

Consider the ε-tester Tf for the subcode Πf = {x ∈ {0, 1}k : f(x) = 1}, which has oracle

access to a purported bundle w ∈ {0, 1}Õ(n) that is supposed to equal Eq. (B.1); that is, w allegedly

consists of three parts: (1) the purported anchor ẼCC(x), (2) the purported long code encodings(
L̃C(x|S′

)
S′∈S(m−τ) , and (3) the purported PCPs of proximity

(
ξ̃S′(x)

)
S′∈S(m−τ) . Note that we use z̃

to denote a string that is allegedly equal to z. The tester Tf operates as follows:

1. Consistency Test: Invoke the bundle consistency test on w, with respect to proximity parameter
ε and the purported encoding L̃C(x|S\T), as well as L̃C(x|Ti), for every i ∈ T . Reject if any of
the tests fail. (The query complexity of this step is O(τ · log(τ)/ε).)

18

2. Direct recovery of t variables: Decode x|T using the self correction of the long code; that is, for

every i ∈ T decode xi from L̃C(x|S′i) (recall that S′i is a (m− τ)-subset that contains i), using
the corrector D. Denote the string of recovered values by z. (The query complexity of this
step is O(τ · log(τ)).)

3. Computing the induced (m−τ)-junta: Choose f ′′ : {0, 1}m−τ → {0, 1} such that f ′′(y) = f ′(z◦y),

decode f ′′ from the purported long code encoding L̃C(x|S\T) using the corrector D, and accept
if and only if it returns 1. (The query complexity of this step is O(log(τ)).)

The perfect completeness of Tf follows by the one-sided error of the bundle consistency test and
the long code corrector D. For the soundness, assume that w is ε-far from Πf . By Proposition 4.5,
we can assume that there exists y ∈ {0, 1}k such that w is ε-close to C(y), and since w is ε-

far from Πf , it holds that f(y) = 0; furthermore, L̃C(y|S\T) is ε-close to LC(y|S\T), and each

L̃C(y|S′i) is ε-close to LC(y|S′i), otherwise the bundle consistency test rejects with probability at
most (τ + 1)/(10(τ + 1)). Thus, in Step 2, the corrector D successfully recovers y|T with probability
(1/10) ·τ/(10(τ+1)), and so, with probability at least 2/3, in Step 3 the tester Tf correctly computes
f ′′(y|S\T) = f ′(y|T ◦ y|S\T) = f(y) = 0 and rejects. This concludes the proof of Proposition 6.3.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

