On Q-Resolution and CDCL QBF Solving

Mikoláš Janota
Microsoft Research, Cambridge, United Kingdom

Abstract

Q-resolution and its variations provide the underlying proof systems for the DPLL-based QBF solvers. While (long-distance) Q-resolution models a conflict driven clause learning (CDCL) QBF solver, it is not known whether the inverse is also true. This paper provides a negative answer to this question. This contrasts with SAT solving, where CDCL solvers have been shown to simulate resolution.

1 Introduction

Conflict driven clause learning (CDCL) has been established as an efficient and practical method for SAT solving [18]. The relation between CDCL and propositional resolution has been extensively studied. It has been shown that, under various assumptions, modern SAT solvers simulate propositional resolution [3,19,4].

CDCL, with certain modifications, enables also solving quantified Boolean formulas (QBF) [22,8,15]. Propositional resolution also has its quantified counterpart Q-resolution [14] and a popular extension long distance Q-resolution [22,2]. As of today, the relation between CDCL solving and the underlying proof systems leaves a number of open questions.

The objective of this paper is to explore the relation between CDCL solving and (long-distance) Q-resolution. In particular, the paper gives a negative answer to the question whether a CDCL solver can simulate any Q-resolution proof. By this is meant that there is an infinite enumerable family of formulas $\Phi_{1}, \ldots, \Phi_{n}, \ldots$, for which there exist Q-resolution refutations polynomial in n but any CDCL solver requires computation time super-polynomial (or even exponential) in n. In fact, it is shown that not even tree-like Q-resolution can be simulated by CDCL.

QBF solving brings in the complication that propagation can also be performed on the universal variables, which is done with the aid of solution driven cube learning (SDCL). When combined, CDCL and SDCL influence one another because order of propagation determines which clauses/cubes are learned. While the presented results is concerned only with CDCL solving, we show that it is still relevant in a restricted form for solving with the combined learning.

2 Preliminaries

A literal is a Boolean variable or its negation. The literal complementary to a literal l is denoted as \bar{l}, i.e. $\bar{x}=\neg x, \overline{7 x}=x$. A clause is a disjunction of zero or
more non-complementary literals. A formula in conjunctive normal form (CNF) is a conjunction of clauses. Whenever convenient, a clause is treated as a set of literals and a CNF formula as a set of sets of literals. For a literal $l=x$ or $l=\neg x$, we write $\operatorname{var}(l)$ for x. For a clause C, we write $\operatorname{var}(C)$ to denote $\{\operatorname{var}(l) \mid l \in C\}$ and for a CNF $\psi, \operatorname{var}(\psi)$ denotes $\{l \mid l \in \operatorname{var}(\psi), C \in \psi\}$

A complementary concept to clause, is cube, which is a conjunction of zero or more non-complementary literals.

2.1 Quantified Boolean Formulas

Quantified Boolean Formulas (QBFs) [13] extend propositional logic by enabling quantification over Boolean variables. Any propositional formula ϕ is also a QBF with all variables free. If Φ is a QBF with a free variable x, the formulas $\exists x . \Phi$ and $\forall x . \Phi$ are QBFs with x bound, i.e. not free. Note that we disallow expressions such as $\exists x . \exists x . x$. Whenever possible, we write $\exists x_{1} \ldots x_{k}$ instead of $\exists x_{1} \ldots \exists x_{k}$; analogously for \forall. For a QBF $\Phi=\forall x$. Ψ we say that x is universal in Φ and is existential in $\exists x . \Psi$. Analogously, a literal l is universal (resp. existential) if $\operatorname{var}(l)$ is universal (resp. existential).

The application of an assignment τ is defined for a QBF Φ if all variables of $\operatorname{dom}(\tau)$ are free in Φ, and, it is defined as $(\mathcal{Q x} . \Phi) \tau=\Phi \tau$ for $\mathcal{Q} \in\{\exists, \forall\}$. QBFs can be seen as compact representations of propositional formulas. In particular, the formula $\forall x . \Psi$ is satisfied by the same truth assignments as $\Psi[x \rightarrow 0] \wedge \Psi[x \rightarrow 1]$ and $\exists x . \Psi$ by $\Psi[x \rightarrow 0] \vee \Psi[x \rightarrow 1]$. Since $\forall x \forall y . \Phi$ and $\forall y \forall x . \Phi$ are semantically equivalent, we allow writing $\forall X$ for a set of variables X; analogously for \exists. A QBF with no free variables is false (resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

A QBF is closed if it does not contain any free variables. A QBF is in prenex form if it is of the form $\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{k} X_{k} . \phi$, where $\mathcal{Q}_{i} \in\{\exists, \forall\}, \mathcal{Q}_{i} \neq \mathcal{Q}_{i+1}$, and ϕ is propositional. The propositional part ϕ is called the matrix and the rest the prefix. If a variable x is in the set X_{i}, we say that x is at level i and write $\operatorname{lv}(x)=i$; we write $\operatorname{lv}(l)$ for $\operatorname{lv}(\operatorname{var}(l))$.

We write QCNF for the class of QBFs in prenex form where the matrix is in CNF. Unless specified otherwise, QBFs are assumed to be closed and with CNF matrix.

2.2 Q-resolution

Q-resolution (Q-Res), by Kleine Büning et al. [14], is a resolution-like calculus that operates on QBFs in prenex form where the matrix is a CNF. The rules are given in Figure 1.

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang and Malik [22] and was formalized into a calculus by Balabanov and Jiang [2]. It merges complementary literals of a universal variable u into the special literal u^{*}. These special literals prohibit certain resolution steps. In particular, different literals of a universal variable u may be merged only if $\operatorname{lv}(x)<\operatorname{lv}(u)$, where x is the resolution variable. The rules are given in Figure 2.

$$
\bar{C}(\text { Axiom }) \quad \frac{C_{1} \cup\{x\}}{C_{1} \cup C_{2}} C_{2} \cup\{\neg x\} \text { (Res) }
$$

C is a clause in the matrix. Variable x is existential. If $z \in C_{1}$, then $\neg z \notin C_{2}$.

$$
\begin{array}{cl}
C \cup\{u\} \\
C & (\forall \text {-Red })
\end{array} \begin{aligned}
& \text { Variable } u \text { is universal. If } x \in C \text { is } \\
& \text { existential, then } \operatorname{lv}(x)<\operatorname{lv}(u) .
\end{aligned}
$$

Fig. 1. The rules of Q-Res [14]

$$
\bar{C} \text { (Axiom }) \quad \frac{D \cup\{u\}}{D}(\forall \text {-Red }) \quad \frac{D \cup\left\{u^{*}\right\}}{D}\left(\forall-\text { Red }^{*}\right)
$$

C is a clause in the matrix. Literal u is universal and $\operatorname{lv}(u) \geq \operatorname{lv}(l)$ for all $l \in D$.

$$
\frac{C_{1} \cup U_{1} \cup\{x\} \quad C_{2} \cup U_{2} \cup\{\neg x\}}{C_{1} \cup C_{2} \cup U}(\text { Res })
$$

Variable x is existential. If for $l_{1} \in C_{1}, l_{2} \in C_{2}, \operatorname{var}\left(l_{1}\right)=\operatorname{var}\left(l_{2}\right)=z$ then $l_{1}=$ $l_{2} \neq z^{*} . U_{1}, U_{2}$ contain only universal literals with $\operatorname{var}\left(U_{1}\right)=\operatorname{var}\left(U_{2}\right)$. For each $u \in \operatorname{var}\left(U_{1}\right)$ we require $\operatorname{lv}(x)<\operatorname{lv}(u)$. If for $w_{1} \in U_{1}, w_{2} \in U_{2}, \operatorname{var}\left(w_{1}\right)=\operatorname{var}\left(w_{2}\right)=u$ then $w_{1}=\neg w_{2}, w_{1}=u^{*}$ or $w_{2}=u^{*} . U$ is defined as $\left\{u^{*} \mid u \in \operatorname{var}\left(U_{1}\right)\right\}$.

Fig. 2. The rules of LD-Q-Res [2]

For a clause C, a universal literal $l \in C$ is blocked by an existential literal $k \in C$ iff $\operatorname{lv}(l)<\operatorname{lv}(k) . \forall$-reduction is the operation of removing from a clause C all universal literals that are not blocked by some literal.

For a QCNF $\mathcal{P} . \phi$, a Q-resolution proof of a clause C is a sequence of clauses C_{1}, \ldots, C_{n} where $C_{n}=C$ and any C_{i} in the sequence is part of the given matrix ϕ; or was obtained from one of the preceding clauses by \forall-reduction; or it is a Q-resolvent of some pair of preceding clauses. A Q-resolution proof is called a refutation iff C is the empty clause, denoted \perp.

In this article Q-resolution and plain resolution proofs are treated as connected directed acyclic graphs (DAG). Any graph representing a resolution or Q-resolution proof has one and only one node with in-degree 0 , which we call the root (the final clause in the proof). All the nodes with out-degree 0 are labeled with clauses from the original formula and we call them leafs of the proof or axiom clauses. Any non-axiom clause has two outgoing edges pointing to its respective antecedents.

A Q-resolution proof is called tree-like if the corresponding graph forms a tree (rooted in the final clause). It is known that at the propositional level, tree resolution does not p-simulate DAG resolution [6].

A Q-resolution proof is called ordered, if there exists a sequence of variables S such that for any path from a leaf to the root the sequence of variables being
eliminated form a sub-sequence of S. Sometimes ordered propositional resolution is referred to as Davis-Putnam resolution as it corresponds to the Davis-Putnam algorithm. It is known that at the propositional level, ordered resolution does not p -simulate unrestricted resolution [10,1].
Definition 1 (level-ordered proof). Let π be a Q-resolution proof of a QCNF Φ. We say that π is level-ordered iff the following holds. Consider an arbitrary path from the root to some leaf and some resolution steps on that path on literals x_{1} and x_{2} such that the resolution on x_{1} is closer to the root. Then, $\operatorname{lv}\left(x_{1}\right) \leq \operatorname{lv}\left(x_{2}\right)$.
Remark 1. Janota and Silva define level-order refutations [12], which the above definition generalizes for an arbitrary proof.

2.3 CDCL and SDCL Solving

Basic understanding of CDCL+SDCL QCNF solving is assumed; for further details see $[9,15]$. We assume that a solver's state is uniquely determined by a sequence of decisions \mathcal{D}, a trail \mathcal{T}, and a database of clauses and cubes. The input formula is always in the database of clauses.

For the purpose of this paper we only assume CDCL, i.e. universal variables are handled by traditional chronological backtracking and there are no cubes in the database. SDCL is also briefly discussed for completeness.

The trail \mathcal{T} and decisions \mathcal{D} are modeled as sequences of literals, where \mathcal{D} is a subsequence of \mathcal{T}. Any literal l in \mathcal{T} but not in \mathcal{D} is said to be propagated, and is obtained by unit propagation from \mathcal{D}. For a literal l we write $\mathcal{T}(l)$ to denote the value of l in \mathcal{T}, i.e. $\mathcal{T}(l)=1$ if $l \in \mathcal{T}$ and $\mathcal{T}(l)=0$ if $\bar{l} \in \mathcal{T}$.

CDCL A conflict is reached whenever unit propagation gives an existential literal two opposing values. This corresponds to violating a clause in the database. Upon a conflict, clause learning is invoked. Learning performs Q-resolution steps in the reverse chronological order of propagations. We assume that any \forall-reduction is carried out as soon as possible.

The learning process stops when the derived clause C fulfills the unique implication point property, which for QBF has the following conditions [22]. There exists a literal $l \in C$ such that all the following properties are fulfilled:

1. l is existential and it has the highest decision level in C.
2. l is at a decision level where the decision is an existential literal.
3. All universal literals with quantification level smaller than l are decided at a decision level smaller than l.
CDCL QBF solving is simulated by long-distance Q-resolution. More precisely, if a solver decides given formula as false, a long-distance Q-resolution refutation can be constructed for it in time polynomial to the running time of the solver.

Certain propagation can yield long-distance resolution steps, which can be avoided by modifying the UIP scheme [8], this however potentially leads to exponential blowup [20]. For the purpose of this paper, this difference is not important as we later see that long-distance steps do not occur in the considered formula.

a_{1}	\cdots	a_{1}	$\cdots \cdots$	a_{N}	\cdots	a_{N}
b_{1}	\cdots	b_{N}	\cdots	b_{1}	\cdots	b_{N}

Fig. 3. Completion principle

SDCL Solution driven cube learning (SDCL) is symmetrical to CDCL with the difference that the initial cube database is empty and new cubes are also created when the current assignment gives a model to the initial formula. We note that symmetrical approaches to SDCL+CDCL solving exist [21,11].

3 Formula

The formula used to show the main result is taken from Janota and Silva [12]. ${ }^{1}$ Its construction derives from a principle named completion principle. Two sets are considered: $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ and their cross-product $A \times B$. Let us visualize the cross-product as in Figure 3. The following game is played. In the first round, the \exists-player deletes one and only one cell from each column. In the second round, the \forall-player chooses one of the two rows. The \forall-player wins if the chosen row contains either the complete set A or the set B.

There is the following winning strategy for the \forall-player. If the \exists-player wants to make sure that the bottom row (the b_{i} row) does not contain the complete set B, it must delete at least one element from each of the n copies of B. Hence, for the j-th copy of B there is an element a_{j} that was not deleted and thus forming the complete set A. Hence, the winning strategy for the \forall-player is to look at the bottom row and see if it contains a complete copy of B. If it does, the \forall-player selects the bottom row and otherwise he selects the top row.

Let us construct a formula based on this principle. For each column i introduce a variable x_{i} that determines which cell is deleted by the \exists-player in the first round. For the \forall-player introduce a single universal variable z, which determines the selected row. Further, add clauses that make sure that whenever one of the sets A or B is complete, the formula becomes false.

In the remainder of the paper we denote the set of variables $x_{i j}, i, j \in 1 . . n$ by \mathcal{X}, and $a_{i}, b_{i}, i \in 1 . . n$ by \mathcal{L} (the letter \mathcal{L} is chosen to evoke "last").

The formula CR_{n} is defined by the prefix $\exists \mathcal{X} \forall z \exists \mathcal{L}$ and the following matrix.

$$
\begin{array}{r}
x_{i j} \vee z \vee a_{i}, i, j \in 1 . . n \\
\neg x_{i j} \vee \neg z \vee b_{j}, i, j \in 1 . . n \\
\bigvee_{i \in 1 . . n} \neg a_{i} \\
\bigvee_{i \in 1} \neg b_{i} \tag{4}
\end{array}
$$

[^0]The first two types of clauses (1) and (2) represent the effects of the moves. The last two clauses (3) and (4) disable setting all a_{i} and b_{i} to true, respectively. Hence, the whole formula CR_{n} is false because once z is set according to the strategy outlined above, the variables \mathcal{L} must be set such that variables from one of the sets a_{i} and b_{i} will be all true. Consequently, one of the clauses (3) and (4) must be falsified.

3.1 Lower Bounds for Level-ordered Q-Resolution

An exponential lower-bound for level-ordered resolution for CR_{n} is known [12].
Proposition 1. [12, Prop. 5] Any level-ordered Q-resolution refutation of $C R_{n}$ is exponential in n.

For the purpose of this paper a stronger result is needed. Here we show that any level-ordered proof of any unit clause is already exponential.

Lemma 1. Let π be a level-ordered Q-resolution proof from $C R_{n}$, where π is a proof of a unit clause $\{l\}$ with $\operatorname{var}(l) \in \mathcal{L}$. Let P be a path from the root of π to some clause C where P does not contain any resolutions on \mathcal{L}. Let $\pi_{C} \subseteq \pi$ be the proof of C.

Then, π_{C} contains one of the clauses (3), (4).
Proof. We consider the following cases:

1. π_{C} contains at least one resolution step on \mathcal{L}. Then one of (3), (4) must appear in π_{C} since they are the only clauses containing negative occurrences of the \mathcal{L} variables.
2. π_{C} does not contain any resolution step on \mathcal{L}. Then, if there are no clauses (3), (4), than all axiom clauses are of type (1) or (2). This would be a contradiction with the requirement that π proves a unit clause since the variable z would always remain blocked as there are no more \mathcal{L} resolutions on the path from the root of π to C.

Lemma 2. Let π be a level-ordered Q-resolution proof from $C R_{n}$, where π is a proof of a unit clause $\{l\}$ with $\operatorname{var}(l) \in \mathcal{L}$. Let P be a path from the root of π to some clause C where P does not contain any resolutions on \mathcal{L} and P is maximal in that respect.

Then, C contains at least $n-1$ different \mathcal{X} variables.
Proof. Observe that all \mathcal{L} variables are treated symmetrically in the formula so without loss of generality, consider $l \in\left\{a_{k}, \neg a_{k}\right\}$ for some $k \in 1$..n.

Let $\pi_{C} \subseteq \pi$ be the proof of C. From Lemma 1, one of the clauses (3), (4) must appear in π_{C}.

Let us assume that (3) is in π_{C}. Since π is level-ordered and it derives the clause $\{l\}$, all a_{i} with $i \in 1 . . n, i \neq k$ must be resolved away in π_{C}. This means that π_{C} contains the clause $x_{i j} \vee z \vee a_{i}$ for each $i \in 1 . . n, i \neq k$. Since π_{C} has no resolutions on \mathcal{X}, the corresponding \mathcal{X} variables also appear in C.

If (4) is in π_{C}, the reasoning is analogous to the above.

Proposition 2. Let π be a level-ordered Q-resolution proof from $C R_{n}$, where π is a proof of a unit clause $\{l\}$ with $\operatorname{var}(l) \in \mathcal{L}$. Then π is exponential in n.

Proof. Pick an assignment τ to all the \mathcal{X} variables. Construct a path P from the root of π that contains \forall-reductions and \mathcal{X} resolutions only and is maximal in that respect such that it respects the assignment τ.

Due to Lemma 2, P ends in a clause C containing at least $n-1 \mathcal{X}$ variables. There are $2^{n^{2}}$ assignments to \mathcal{X} variables and C covers at most $2^{n^{2}-(n-1)}$ of those. Hence, there are at least $2^{n^{2}} / 2^{n^{2}-(n-1)}=2^{n-1}$ clauses in π.

Proposition 3. Let π be a level-ordered Q-resolution proof from $C R_{n}$, where π is a proof of a unit clause $\{l\}$ with $\operatorname{var}(l) \in \mathcal{X}$. Then π is exponential in n.

Proof. Since $x_{i j}$ and $\neg x_{i j}$ are treated symmetrically in CR_{n}, any level-ordered sub-exponential proof of $x_{i j}$ could be rewritten to a level-ordered sub-exponential proof of $\neg x_{i j}$. Resolving the two would give a level-ordered sub-exponential refutation of CR_{n}, which would be a contradiction with Proposition 1.

Corollary 1. Let C be a unit or empty clause with a level-ordered Q-resolution proof π from $C R_{n}$. Then π is exponential with respect to n.

4 Properties of Propagation on CR_{n}

To be able to reason about the clauses that are learned during solving of CR_{n}, several properties of unit propagation are needed. A crucial property of the input formula is that there are no clauses enabling propagation "across quantification levels". Namely, while decisions are being made on the \mathcal{X} variables, no propagation happens in the \mathcal{L} variables. These get value only once z gets a value. For this purpose we introduce the concept of mixed clauses.

Definition 2 (mixed clause). We say that a clause is mixed if it contains both \mathcal{X} variables and \mathcal{L} variables, i.e., if $\operatorname{var}(C) \cap \mathcal{X} \neq \emptyset$ and $\operatorname{var}(C) \cap \mathcal{L} \neq \emptyset$.

The following lemma shows that Q-resolution does not enable us to derive mixed clauses without the variable z.

Lemma 3. Let π be an arbitrary Q-resolution proof from $C R_{n}$. For any mixed clause $C \in \pi$ it holds that $z \in \operatorname{var}(C)$.

Proof (By induction on the derivation depth.). The hypothesis holds for all the axiom clauses of CR_{n}.

Let C be a new mixed clause derived by resolution from some clauses D_{1} and D_{2}, for which the hypothesis holds. Since C is mixed, at least one of D_{1}, D_{2} must be mixed. Therefore C also contains z.

Let C be derived by \forall-reduction from an existing clause D. Since \mathcal{L} variables block \forall-reduction of z, the clauses C and D do not contain \mathcal{L} variables and therefore are not mixed.

Remark 2. The above-lemma can easily be generalized. Indeed, if the input formula only contains mixed clauses that have a universal variable in the middle, that variable cannot be reduced unless all the variables at the higher quantification level are resolved away.

The following lemma is crucial for our result. As long as there are no unit clauses, there cannot be propagation across quantification levels since all the mixed clauses need z to have a value to give propagation.

Lemma 4. Let \mathcal{T} be the trail for a $C D C L$ solver in a state before any unit clauses are learned. If $\operatorname{var}(\mathcal{T}) \subseteq \mathcal{X}$ then there is no propagation on \mathcal{L} variables.

Proof. Since CR_{n} does not contain any unit clauses and no unit clauses have been learned so far, any propagation on \mathcal{L} must come from a clause in the database that has at least two literals. Since $\operatorname{var}(\mathcal{T}) \subseteq \mathcal{X}$, such clause would have to contain an \mathcal{X} variable. However, due to Lemma 3, any mixed clauses contain also the z variable, which is unassigned and therefore cannot give a unit \mathcal{L} clause. There is no propagation on z since we're assuming only CDCL (not SDCL).

5 Exponential Lower Bound for CDCL QBF Learning

This section shows that a run of a CDCL solver on the formula CR_{n} is exponential. This is done by showing that the proofs of all learned clauses are level-ordered. Due to Corollary 1, it is sufficient to show that the proofs of learned clauses are level-ordered until a unit clause is learned. Indeed, even if the solver derives some non-level-ordered proofs after the first unit clause has been learned, the proof of the unit clause is already exponential. Therefore, the solver must perform an exponential number of steps to derive the unit clause. Note also that the input formula has no unit clauses as long as $n \geq 2$.

Note that the reasoning below needs to account for all the clauses derived during learning, not just the learned clauses. We start by a couple of technical lemmas characterizing the learning process.

Lemma 5. Let \mathcal{T} be the trail for a $C D C L$ solver in a state before any unit clauses are learned. Let \mathcal{T} be such that it leads to a conflict and let C be some clause that is derived during the learning of the pertaining learned clause. If $l \in C$ with $\operatorname{var}(l)=z$, then $\mathcal{T}(l)=0$.

Proof. By construction, C is derived by resolution steps on clauses that participated in the propagation leading to the conflict.

While z is not assigned, propagation is only on clauses that contain \mathcal{X} variables only because any clauses that contain also some \mathcal{L} variables also contain z due to Lemma 3.

Once z is assigned, all clauses that contain a literal l with $\operatorname{var}(l)=z$ and $\mathcal{T}(l)=1$ cannot be used during propagation (they are effectively deleted from the propagation process).

The above lemma immediately gives us the consequence that there are no long-distance resolution steps in learned clauses.

Corollary 2. For the formula $C R_{n}$, a $C D C L$ solver never learns clauses derived by long-distance Q-resolution steps.

Lemma 6. Let \mathcal{T} be a trail for a $C D C L$ solver in a state before any unit clauses are learned. Let \mathcal{T} be such that it leads to a conflict and let C be some clause that is derived during the learning of the pertaining learned clause.

Let C be such that it does not contain any propagated \mathcal{L} literals, but it contains some \mathcal{L} literals. Then C is a UIP.

Proof. Due to the precondition, all \mathcal{L} are decisions in C therefore there must be one literal k with $\operatorname{var}(k) \in \mathcal{L}$ with the highest decision level as all \mathcal{L} variables are decided after \mathcal{X} variables due to Lemma 4. From Lemma 5 , if C contains the variable z, then the corresponding literal is set to 0 . This fulfills the conditions for C be a UIP.

Proposition 4. Let \mathcal{T} be the trail for a $C D C L$ solver in a state before any unit clauses are learned. Let \mathcal{T} be such that it leads to a conflict and let C be some clause that is derived during the learning of the pertaining learned clause.

If C contains any \mathcal{L} variables, then it is derived by resolution steps only on the \mathcal{L} variables.

Proof. The hypothesis is trivially true for all the axiom clauses.
If $\operatorname{var}(\mathcal{T}) \subseteq \mathcal{X}$ then the derivation of the learned clause only contains \mathcal{X} variables due to Lemma 4.

If $\operatorname{var}(\mathcal{T}) \cap(\mathcal{L} \cup\{z\}) \neq \emptyset$ then consider the following cases:

1. C contains some \mathcal{L} literal, forced to 0 by propagation. Then, resolution is performed on one such literal as propagation on \mathcal{L} takes place later chronologically than propagation on \mathcal{X} variables due to Lemma 4.
2. C does not contain any \mathcal{L} literal, then the hypothesis is trivially satisfied.
3. C does not contain any propagated \mathcal{L} literal, then C is a UIP due to Lemma 6.

Finally we need to show that as long as clauses containing \mathcal{L} variables are only derived by resolution steps on \mathcal{L}, the corresponding proofs are level-ordered. For such we utilize the following two observations.

Observation 1 Let C be derived by a resolution step over an \mathcal{X} variable from clauses with level-ordered proofs. Then the proof of C is also level-ordered.

Observation 2 A proof that contains resolution steps only on \mathcal{L} variables is level-ordered.

Proposition 5. Let \mathcal{T} be the trail that leads to a conflict for a CDCL solver in a state before any unit clauses are learned. The proof of the corresponding learned clauses is level-ordered.

Fig. 4. Derivation of an "all x " clause for $k \in 1 . . n$ in n resolution steps.

Proof. Prove from Proposition 4 by induction on derivation depth.
The hypothesis is trivially true for axiom clauses and is trivially preserved by \forall-reduction. Split on the following two cases.

1. If a clause C is derived by resolution on a \mathcal{L} variable, then both antecedents must contain at least one \mathcal{L} variable, From Proposition 4, the antecedents are derived only by \mathcal{L} resolutions only. Therefore, the proof is level-ordered (Observation 2).
2. If a clause C is derived by resolution on an \mathcal{X} variable, then the derivation of C is level-ordered because the antecedents are level-ordered (IH) and due to Observation 1.

Remark 3. Proving that learned clauses are themselves level-ordered is not itself inductive. The solver could learn a clause containing an \mathcal{L} variable while using \mathcal{X} resolutions and then use this learned clause in a level-ordered manner.

Theorem 1. Solving $C R_{n}$ by a $C D C L Q B F$ solver requires time exponential in n.
Proof. Due to Proposition 5, proof of any learned clause is level-ordered while no unit clauses are learned. Consider the first unit clause learned by the solver. Due to Corollary 1, the Q-resolutions proof of the clause is exponential in n. Therefore, the solver must have carried out an exponential number of steps to learn this clause.

6 Short Tree-like Q-resolution Refutation of CR_{n}

This section shows that CR_{n} has a polynomial tree-like Q-resolution refutation. We do so in a constructive manner and the proof is conceptually divided into three parts.

First, derive clauses $\bigvee_{i \in 1 . . n} x_{i k}$ for $k \in 1 . . n$ (Figure 4). Each of these clauses lets us derive a clause $\neg z \vee b_{k}$ for $k \in 1$..n (Figure 5). Finally, using the clause $\neg b_{1} \vee \cdots \vee \neg b_{n}$, the empty clause is derived (Figure 6).

Fig. 5. Derivation of an $\neg z \vee b_{k}$ clause for $k \in 1 . . n$ in n steps, using Figure 4.

Fig. 6. Derivation of \perp, using Figure 5 .

The first phase requires n^{2} resolution steps and $n \forall$-reduction steps. The second phase requires n^{2} resolution steps. Finally, the last phase requires n resolution steps and one \forall-reduction. Since the size of the input formula has $2 n^{2}+2$ clauses, the proof size is linear in the formula's size.

Observe that each clause appears exactly once in the proof-the proof forms a tree. Also note that the proof is not level-ordered because it starts with resolutions on a_{i} variables, continues with \mathcal{X} resolutions, and finishes with resolutions on b_{i} variables. However, the proof is ordered with the following order.

$$
a_{1}, \ldots, a_{n}, x_{(1,1)}, \ldots, x_{(n, n)}, b_{1}, \ldots, b_{n}
$$

Theorem 2. $C R_{n}$ has a polynomial refutation in ordered tree-like Q-resolution.

Corollary 3. Level-ordered resolution does not simulate ordered or tree-like Q resolution.

Corollary 4. $C D C L Q B F$ solving does not simulate tree-like, ordered Q-resolution.

Remark 4. Mahajan and Shukla in fact show that level-ordered Q-resolution and tree-like Q-resolution are incomparable [17].

n	CDCL	CDCL + SDCL	CDCL + SDCL - pure lits.
4	101	101	101
5	1081	1081	751
6	19611	19611	3531
7	370811	370811	36411
8	>9995451	>10000981	5464551
9	>10612011	>10619361	>931211
10	>10303551	>10313901	>8608251

Table 1. Number of backtracks for DepQBF on CR_{n} with a 1-hr. timeout. Unsolved instances are marked with $>$.

7 Discussion

QBF solving presents us with some subtleties and complications due to the two types of propagation and learning. Here we discuss how these relate to the presented results.

The presented result is concerned only with CDCL and so we may ask whether SDCL can speed up the solving of CR_{n}. A pivotal point in our proof is Lemma 4 , which shows that there is no propagation from \mathcal{X} variables to \mathcal{L} variables, i.e., propagation across levels. The lemma relies on the fact that z will not be given a value by propagation from \mathcal{X} variables. This can happen if SDCL is employed. More precisely, if the solver learns a cube containing only a subset of \mathcal{X} variables and z, the variable z may be given a value before all \mathcal{X} variable are assigned, which may subsequently give propagation on \mathcal{L} variables. Such propagation could potentially lead to learned clauses with non-level-ordered proofs.

However, this can only happen when the universal player made a wrong choice for the value of z in the past. Since there is a winning strategy for the universal player, there always is a value for z that does not lead to a solution and consequently no cube learning is employed if the player follows the strategy.

Observation 3 For a false $Q B F \Phi$, if universal variables are given values according to a winning strategy for the universal player, a $S D C L+C D C L ~ Q B F$ solver behaves identically to a CDCL QBF solver. Consequently, the Corollary 4 also holds for a $S D C L+C D C L Q B F$ solver under such restriction.

Another relevant technique is pure literals [7,15]. Those enable assigning values to variables out of the quantification order. This can again influence what kind of clauses and cubes are learned. However, there is also a potential adversarial effect of pure literals. If the universal player makes better choices, it learns fewer cubes-which could have otherwise potentially speed up the proof.

While at this point we do not have a definite answer to the above questions, experimental evaluation might provide some hints. I have run the solver DepQBF [16] on CR_{n} and recorded the number of backtracking steps-these
are presented for various configurations in Table 1. All configurations have the switches --traditional-qcdcl --long-dist-res --dep-man=simple to disable advanced features of DepQBF but also allow long-distance Q-resolution. The leftmost configuration only performs CDCL, the middle CDCL+SDCL, and the last one also combines CDCL and SDCL but switches off the pure-literal technique.

Instances that were not solved within 1 hour, are marked with $>B$ where B is the number of backtracking steps performed up to that point.

The configuration CDCL and CDCL+SDCL behave identically and can only solve CR_{n} for $n \in 1 . .7$. Interestingly enough, turning off pure literals leads to a significant improvement and also $n=8$ is solved.

Further inspection reveals that the CDCL+SDCL configuration never learned any cubes. Because, as indicated above, it never makes a wrong decision for the universal variable z. Somewhat paradoxically, this is disadvantageous.

8 Summary and Future Work

The paper compares the strength of QBF conflict driven clause learning (CDCL) to Q-resolution. In contrast to its propositional counterparts, CDCL QBF solving appears to be quite weak compared to general Q-resolution. Indeed, even if we impose the limit that the resolution should be tree-like and ordered, CDCL cannot simulate the refutation.

The crux of our proof is that the investigated formula does not permit propagation across levels, which consequently leads to level-ordered derivations of the learned clauses. This observation suggests a number of interesting questions for future research. Can solution driven cube learning (SDCL) speed-up the proof? The experimental evaluation suggest that it might. However, only if the pure literal technique is turned off. This observation also has a practical consequence. Pure literals may lead to fewer learned cubes and consequently a decrease in the quality of the clausal proof. Can such adversarial effect be avoided?

References

1. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular and general resolution. Theory of Computing 3(5), 81-102 (2007), http://www.theoryof computing.org/articles/v003a005
2. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods in System Design 41(1), 45-65 (2012)
3. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22, 319-351 (2004), http://dx.doi.org/10.1613/jair. 1410
4. Beame, P., Sabharwal, A.: Non-restarting SAT solvers with simple preprocessing can efficiently simulate resolution. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. pp. 2608-2615. AAAI Press (2014), http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/ view/8397
5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
6. Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: Exponential separations between restricted resolution and cutting planes proof systems. In: 39th Annual Symposium on Foundations of Computer Science, FOCS. pp. 638-647. IEEE Computer Society (1998)
7. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified Boolean formulae and its experimental evaluation. J. Autom. Reasoning 28(2), 101-142 (2002)
8. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research 26(1), 371-416 (2006)
9. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Biere et al. [5], pp. 761-780
10. Goerdt, A.: Davis-Putnam resolution versus unrestricted resolution. Ann. Math. Artif. Intell. 6(1-3), 169-184 (1992), http://dx.doi.org/10.1007/BF01531027
11. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-based QBF solving. In: DATE. pp. 811-814 (2013), http://dl.acm.org/ citation.cfm?id=2485484
12. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theoretical Computer Science 577, 25-42 (April 2015)
13. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Biere et al. [5], pp. 735-760
14. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12-18 (1995)
15. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice. Ph.D. thesis, Johannes Kepler Universität (2012), http://www.kr. tuwien.ac.at/staff/lonsing/diss/
16. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3), 71-76 (2010)
17. Mahajan, M., Shukla, A.: Level-ordered Q-resolution and tree-like Q-resolution are incomparable. Information Processing Letters 116(3), 256 - 258 (2016), http: //www.sciencedirect.com/science/article/pii/S0020019015002112
18. Marques Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Computers 48(5), 506-521 (1999), http://doi. ieeecomputersociety.org/10.1109/12.769433
19. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence 175(2), 512 - 525 (2011), http://www. sciencedirect.com/science/article/pii/S0004370210001669
20. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula solving. In: Milano, M. (ed.) CP. vol. 7514, pp. 647-663. Springer (2012)
21. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms. In: AAAI. AAAI Press (2006)
22. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: ICCAD. pp. 442-449 (2002)

[^0]: ${ }^{1}$ See http://sat.inesc-id.pt/~mikolas/cdcl16 for a formula generator.

