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Abstract

Let f : {0, 1}n → {0, 1} be a boolean function. Its associated XOR function is the two-
party function f⊕(x, y) = f(x⊕ y). We show that, up to polynomial factors, the deterministic
communication complexity of f⊕ is equal to the parity decision tree complexity of f . This relies
on a novel technique of entropy reduction for protocols, combined with existing techniques in
Fourier analysis and additive combinatorics.

1 Introduction

Let F : X × Y → {0, 1} be a boolean function and suppose Alice and Bob are holding x ∈ X and
y ∈ Y , respectively. A natural question capturing the essence of communication complexity is the
following: How much communication between Alice and Bob is required to compute F (x, y) in the
worst case? One of the fundamental open problems in communication complexity, the log-rank
conjecture, links this question to the rank of F as a real matrix.

Conjecture 1.1. (Log-rank conjecture [LS93]) Is it true that for every boolean function F : X ×
Y → {0, 1},

D(F ) ≤ polylog(rank(F ))

where D(·) is the deterministic communication complexity.

Yet, after over 30 years of active research, we are far from settling this conjecture, directing
attention towards solving log-rank for special classes of boolean functions. A natural and important
such class is the so called XOR functions.

Let Fn2 be the n-dimensional vector space over the field of two elements. For a given function
f : Fn2 → {0, 1} define its XOR function as f⊕(x, y) = f(x + y). This class of functions is large
enough to capture many interesting examples (e.g., equality and Hamming distance functions),
but it is also especially attractive for it allows use of tools from discrete Fourier analysis. This is
because the eigenvalues of f⊕ as a matrix are the same as the Fourier coefficients of f ; therefore,
rank(f⊕) = |supp(f̂)|. Moreover, if A × B ⊂ Fn2 × Fn2 is a monochromatic rectangle in f⊕, then f
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is constant on all of A + B, where the sum set A + B is defined as {a + b : a ∈ A, b ∈ B}. This
directly links communication complexity of XOR functions to the structure of sum sets in additive
combinatorics. We will discuss this relation in more details later.

Going back to the log-rank conjecture for XOR functions, an interesting approach to settle
the conjecture is via another complexity measure, called the parity decision tree complexity (PDT
in short), denoted pdt(·). A PDT for a boolean function f is an extension of the usual notion
of decision trees. While in a regular decision tree, intermediate nodes query variables, in a parity
decision tree they are allowed to query an arbitrary linear function of the inputs. If a function f has a
PDT of depth k, then it admits a natural protocol for its associated XOR function, which computes
f⊕(x, y) by simulating the PDT for f evaluated on x⊕ y. This shows that D(f⊕) ≤ 2 · pdt(f).

Our main interest in this work is whether this relation can be reversed. Namely, is is true that
an efficient deterministic protocol for a XOR functions implies a low depth parity decision tree for
the boolean function. Our main result is a polynomial relation between the two.

Theorem 1.2 (Main theorem). For any f : Fn2 → {0, 1} we have pdt(f) ≤ O(D(f⊕)6).

1.1 Proof overview

Fix f : Fn2 → {0, 1}, where we assume that f⊕ has an efficient deterministic protocol. Our goal is
to design a low depth PDT for f .

Reduction to monochromatic subspaces. Note that if f has a PDT of depth k, then in
particular, the leaves of the PDT determine affine subspaces of co-dimension ≤ k on which f is
contant. We call such subspaces monochromatic subspaces for f . From here onwards, we use
“subspace” as a shorthand for “affine subspace”.

It turns out that in order to design a PDT for f , it suffices to show that there exists a large
monochromatic subspace for f . This follows from [TWXZ13] who showed (among others) that if
f is constant on a subspace V , then the Fourier sparsity of f restricted to any coset of V reduces
by at least a factor of two. This is sufficient for our application, as the existence of an efficient
deterministic protocol for f⊕ implies in particular that f has low Fourier sparsity. This reduces
Theorem 1.2 to the following question, which is the main problem we investigate in this paper.

Question 1.3. Let f : Fn2 → {0, 1} with with D(f⊕) ≤ k. Find a subspace V of co-dimesion
poly(k) on which f is constant.

In the next few paragraphs we give a brief discussion of how to find such a subspace. We
first describe a natural approach, which only tries to exploit the existence of a large monochro-
matic rectangle for f⊕ (many techniques in communication complexity follow this approach; in the
randomized settings, one needs to replace “monochromatic rectangle” with “biased rectangle”).
However, as we discuss below, a direct application of this technique fails, and a more careful appli-
cation requires unproven conjectures in additive combinatorics. As such, we follow a different route,
which exploits the entire structure of the protocol. This is somewhat uncommon in communication
complexity, and we view this is as a conceptual contribution of this work.

Using a large monochromatic rectangle, and why it fails. The existence of an efficient
deterministic protocol for f⊕ implies that it is constant on a large rectangle A × B. This implies
that f is constant on A + B. As a first attempt, one may hope that if A,B ⊂ Fn2 are large sets,
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then A + B must contain a large subspace. This would directly imply that f is constant on this
subspace. Unfortunately this is false, as the following example of Green [Gre04] shows.

Example 1.4. Let A = B = B(n/2 −
√
n) where B(r) ⊂ {0, 1}n is the hamming ball of radius

r. Then |A| = |B| = Ω(2n), A + B = B(n − 2
√
n) but the largest subspace contained in A + B

has co-dimension 2
√
n (for example, such a subspace can be obtained by fixing the first 2

√
n bits to

zero).

The situation becomes better when looking on sum sets of more than two sets. Sanders [San12]
showed that for a set A ⊂ Fn2 with |A| ≥ ε2n, 4A = A + A + A + A contains a subspace of co-
dimension O(log4(1/ε)). As Yao showed [Yao15], this result directly implies that a deterministic
protocol for the 4-party function F (x, y, z, w) = f(x ⊕ y ⊕ z ⊕ w) with complexity k implies the
existence of a parity decision tree of depth O(k5) for f .

Going back to two-fold sum sets, we can use the assumption that f has few nonzero Fourier
coefficients, and require to find only a near-monochromatic subspace in A + B. Such a subspace
would automatically imply the existence of a large monochromatic subspace for f . The reason is
that if f is a boolean function with at most 2k non-zero Fourier coefficients, then all the Fourier
coefficients have the form a/2k for an integer a (for a proof see [GOS+11]). In particular, if V is a
subspace on which E[f |V ] < 2−k then in fact f |V = 0, and if E[f |V ] > 1− 2−k then in fact f |V = 1.

Therefore, it is enough to show that if A,B ⊂ Fn2 are large sets, then A+B contains most of a
large subspace. Working out the details, it turns out that we would need the following conjecture.

Conjecture 1.5. Let A ⊂ Fn2 of size |A| ≥ ε2n. Then for any δ > 0 there exists a subspace V such
that |2A ∩ V | ≥ (1− δ)|V |, where the co-dimension of V is at most polylog(1/εδ).

For this and related conjectures see [SS14] (in particular section 9, the paragraph on correlations
of 2A, 3A, 4A). We note that two partial results towards Conjecture 1.5 are known, both due to
Sanders:

• [San10] proves the existence of a subspace with co-dimension O((1/ε) log(1/δ)).

• [San12] proves the existence of a subspace with co-dimension O((1/δ2) log4(1/ε)).

Unfortunately, neither version is strong enough for our application. If f⊕ has a deterministic
protocol which sends k bits, then the largest monochromatic rectangle has size |A|, |B| ≥ 2n−k. We
thus have ε = 2−k. Furthermore, f⊕ has at most 2k nonzero Fourier coefficients, which means that
we need a subspace which is 2−k close to monochromatic. This means that we need to set δ < 2−k.
As our goal is to get a subspace of co-dimension poly(k), we need poly-logarithmic dependency on
both ε and δ.

Our approach: utilizing the entire protocol. We circumvent the need to use unproven
conjectures by devising an alternative route, which exploits the entire structure of the protocol.
Fix a deterministic protocol for f⊕ which sends k bits, and let K = 2k. Let Ai × Bi for i ∈ [K]
be the partition of Fn2 × Fn2 induced by the protocol. By our assumption f⊕ is constant on each
Ai ×Bi, which means that f is constant on each Ai +Bi.

Let µ = E[f ] be the average of f on the entire space, and assume without loss of generality that
µ ≥ 1/2. We may use the existence of a large monochromatic rectangle to find a large subspace
V on which the average of f is far from the global average. Concretely, let A × B be the largest
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rectangle on which f equals to zero. It can be shown that |A|, |B| ≥ 2n−2k. The results of [San12]
imply the existence of a subspace V such that |V ∩ (A + B)| ≥ (3/4)|V |, where the co-dimension
of V is O(k4). This implies that E[f |V ] ≤ 1/4.

Thus, f is not pseudo-random with respect to the subspace V . More concretely, it cannot be
the case that

|Ai ∩ V |
|V |

≈ |Ai|
2n

,
|Bi ∩ V |
|V |

≈ |Bi|
2n

∀i ∈ [K],

as this would imply that E[f |V ] ≈ E[f ]. In fact, the same holds if we replace V with any coset
of V , as the restriction of f⊕ to (V + w) × (V + w) still computes f |V . We exploit this lack of
pseudo-randomness, and show that f simplifies when restricted to a typical coset of V .

Technically, we show this by analyzing the entropy of the protocol. Let pi = |Ai×Bi|
22n

denote the
density of each rectangle. We define the entropy of the partition P = {Ai ×Bi : i ∈ [K]} to be the
Shannon entropy of the induced distribution, namely

h(P ) = h(p1, . . . , pK) =

k∑
i=1

pi log(1/pi).

Our main technical lemma (Lemma 3.1) shows whenever the average of a function f is far from its
average on a subspace V , then if we restrict P to a typical coset (V + w1) × (V + w2) of V × V
then the entropy of the restricted partition reduces by a constant. Concretely, if we assume that
E[f ] ≥ 1/2,E[f |V ] ≤ 1/4 then

Ew1,w2∈Fn
2

[
h(P |(V+w1)×(V+w2))

]
≤ h(P )− 2−25.

In particular, there exists a coset (V + w1)× (V + w2) on which the entropy decreases by at least
2−25. We may now iterate this process. As originally we have h(P ) ≤ k (since the partition P is
to K = 2k rectangles), after O(k) iterations we would reach a constant function on a subspace of
co-dimension O(k5).

Paper organization. We give some preliminary definitions in Section 2. We state and prove our
main technical lemma, Lemma 3.1, in Section 3. We apply it to prove Theorem 1.2 in Section 4.
We discuss some open problems in Section 5.

2 Preliminaries

Partitions. A labeled partition (or simply a partition) P of Fn2 × Fn2 is a family P = {(Ri, zi) :
i ∈ [m]} where Ri = Ai × Bi, Ai, Bi ⊂ Fn2 , such that {Ri : i ∈ [m]} forms a partition of Fn2 × Fn2 ,
and zi ∈ {0, 1}. We also view P as a function P : Fn2 × Fn2 → {0, 1}, where P (x, y) = zi, where i
is the unique index for which (x, y) ∈ Ri. For a subspace V over F2 we extend these definitions to
P : V × V → {0, 1}, by identifying V ∼= Fn2 for n = dim(V ).

Restriction to subspaces. Let V ⊂ Fn2 be a linear subspace, and let W be the quotient subspace
Fn2/V , so that {V +w : w ∈W} are the cosets of V in Fn2 . Let P = {(Ri, zi) : i ∈ [m]} be a partition
of Fn2 × Fn2 . For any w′, w′′ ∈ W we define P |V,w′,w′′ to be a partition of V × V , induced by the
restriction of P to (V + w′)× (V + w′′), shifted to V × V . That is,

P |V,w′,w′′ = {((Ri + (w′, w′′)) ∩ (V × V ), zi) : i ∈ [m]}
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where R+ (w′, w′′) = {(x+ w′, y + w′′) : (x, y) ∈ R}.

Entropy of partitions. Let p1, . . . , pm be a probability distribution, that is, pi ≥ 0 and
∑
pi = 1.

Its entropy is

h(p1, . . . , pm) =
m∑
i=1

pi log(1/pi)

where here and throughout the paper, logarithms are in base two. The entropy of a partition is
the entropy of the distribution it induces on rectangles. Let P = {(Ri, zi) : i ∈ [m]} be a partition
of Fn2 × Fn2 . Let pi = |Ri|/22n. We define

h(P ) = h(p1, . . . , pm).

Partition averaged function. Given a partition P of Fn2 × Fn2 , we define its averaged function
fP : Fn2 → [0, 1] by

fP (x) = Ey∈Fn
2
P (y, x+ y).

Note that if P corresponds to a deterministic protocol for a XOR function f⊕ then fP = f .

2.1 Technical claims

Claim 2.1. Let X be a random variable, finitely supported on [0,∞). Assume that EX = 1 and
E|X − 1| = η. Then

E[X logX] ≥ η2/2.
Proof. We apply Pinsker’s inequality: for any two distributions p1, . . . , pm and q1, . . . , qm,∑

pi log(pi/qi) ≥ (1/2)
(∑

|pi − qi|
)2
.

Assume that X is supported on x1, . . . , xm ∈ [0,∞). Let pi = xi Pr[X = xi] and qi = Pr[X = xi].
Note that p1, . . . , pm and q1, . . . , qm are indeed distributions,∑

i

pi log(pi/qi) =
∑
i

Pr[X = xi]xi log xi = E[X logX]

and ∑
i

|pi − qi| =
∑
i

Pr[X = xi]|xi − 1| = E|X − 1|.

Thus E[X logX] ≥ E[|X − 1|]2/2 = η2/2.

3 Entropy decrease lemma

Let V ⊂ Fn2 be a linear subspace and let W be a dual subspace, so that Fn2 = V +W . Let P be a
partition of Fn2 × Fn2 . Define

hV (P ) := Ew′,w′′∈W [h(P |V,w′,w′′)].

We will show that always hV (P ) ≤ h(P ), and furthermore, the gap is noticeable if the average of fP
on V differs from its global average. Recall that fP : Fn2 → [0, 1] is defined by fP (x) = Ey∈Fn

2
P (y, x+

y). Let E[fP ] = E[P ] denote the global average value of fP , and let E[fP |V ] = Ex∈V fP (x) denote
its average restricted to V .
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Lemma 3.1. Let V ⊂ Fn2 be a linear subspace, P a partition of Fn2 × Fn2 . Assume that

|E[fP ]− E[fP |V ]| ≥ ε.

Then
h(P )− hV (P ) ≥ ε5/20000.

We assume without loss of generality that E[fP ] ≥ E[fP |V ] + ε, the other case being analogous
(flip the labels of all rectangles in P ). We first set some notations. Let P = {(Ri, zi) : i ∈ [m]}
where Ri = Ai ×Bi. Define

αi :=
|Ai|
2n

, βi :=
|Bi|
2n

, pi := αiβi.

Note that h(P ) =
∑

i pi log(1/pi). For each w′, w′′ ∈W define

αi|w′ :=
|Ai ∩ (V + w′)|

|V |
, βi|w′′ :=

|Bi ∩ (V + w′′)|
|V |

, pi|w′,w′′ := αi|w′βi|w′′ .

Note that Ew′ [αi|w′ ] = αi, Ew′′ [βi|w′′ ] = βi and Ew′,w′′ [pi|w′,w′′ ] = pi, where here and throughout the
section, w′, w′′ ∈W are uniformly chosen. Furthermore, define

qi|w′,w′′ =
pi|w′,w′′

pi
.

Note that Ew′,w′′ [qi|w′,w′′ ] = 1 for all i ∈ [m].

Claim 3.2. h(P )− hV (P ) =
∑

i pi · Ew′,w′′∈W
[
qi|w′,w′′ log(qi|w′,w′′)

]
.

Proof. Using the fact that Ew′,w′′ [pi|w′,w′′ ] = pi for all i ∈ [m], we have

h(P )− hV (P ) =
∑
i

{
pi log(1/pi)− Ew′,w′′∈W

[
pi|w′,w′′ log(1/pi|w′,w′′)

]}
=
∑
i

Ew′,w′′∈W
[
pi|w′,w′′ log(pi|w′,w′′/pi)

]
=
∑
i

pi · Ew′,w′′∈W
[
qi|w′,w′′ log(qi|w′,w′′)

]
.

Let us shorthand ∆i := Ew′,w′′∈W
[
qi|w′,w′′ log(qi|w′,w′′)

]
. Note that as the function x log x is

convex, and Ew′,w′′ [qi|w′,w′′ ] = 1, we obtain that

∆i ≥ 0 ∀i ∈ [m]. (1)

In particular, h(P )−hV (P ) ≥ 0 holds for any subspace V . However, our goal is to show under the
conditions of Lemma 3.1, that there is a significant gap.

To this end, define I := {i ∈ [m] : zi = 1}. We may express E[fP ] and E[fP |V ] as

E[fP ] = Ex,y∈Fn
2
P (x, y) =

∑
i∈I

pi (2)
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and

E[fP |V ] = Ev∈V,x∈Fn
2
P (x, v + x) = Ew∈WEv′,v′′∈V P (v′ + w, v′′ + w) = Ew∈W

∑
i∈I

pi|w,w. (3)

The main idea is that we cannot have αi|w ≈ αi, βi|w ≈ βi for all w ∈ W, i ∈ [m], as otherwise
pi ≈ pi|w,w and E[fP ] ≈ E[fP |V ], contradicting our assumption. Thus, for a typical i ∈ I, either
{αi|w : w ∈ W} or {βi|w : w ∈ W} must have a noticable variance. To formalize this let η > 0 to
be determined later and define

I1 := {i ∈ I : Ew∈W |αi|w − αi| ≥ η2αi}
I2 := {i ∈ I : Ew∈W |βi|w − βi| ≥ η2βi}
I3 := I \ (I1 ∪ I2).

Claim 3.3. If i ∈ I1 ∪ I2 then ∆i ≥ η4/2.

Proof. We show the proof only for i ∈ I1, as the proof for i ∈ I2 is analogous. Fix i ∈ I1. Let
qi|w′ = Ew′′∈W [qi|w′,w′′ ] =

αi|w′

αi
. By convexity of the function x log x we have

∆i = Ew′,w′′∈W
[
qi|w′,w′′ log(qi|w′,w′′)

]
≥ Ew′∈W

[
qi|w′ log(qi|w′)

]
.

Let X be a random variable, given by X = qi|w′ for a uniformly chosen w′ ∈W . Then X is finitely
supported on [0,∞) and satisfies EX = 1 and E|X − 1| ≥ η2. By Claim 2.1 we have

∆i = E[X logX] ≥ η4/2.

So, we need to show that between I1 and I2 we have a noticeable fraction of the probability
mass. This is given by the following claim.

Claim 3.4.
∑

i∈I1∪I2 pi ≥ ε− 5η.

Proof. Fix i ∈ I3. As i /∈ I1 we have that Ew∈W |αi|w − αi| ≤ η2αi. Thus, by Markov inequality
we have that Prw∈W [|αi|w − αi| ≤ ηαi] ≥ 1 − η. Similarly, as i /∈ I2 we have Prw∈W [|βi|w − βi| ≤
ηβi] ≥ 1− η. Let

Si = {w ∈W : |αi|w − αi| ≤ ηαi and |βi|w − βi| ≤ ηβi}.

By the union bound, |Si| ≥ (1− 2η)|W |.
Next, fix w ∈ Si and let ai,w = αi|w/αi and bi,w = βi|w/βi. Note that ai,w, bi,w ∈ [1− η, 1 + η].

We have ∣∣∣∣pi|w,wpi
− 1

∣∣∣∣ = |ai,wbi,w − 1| ≤ ai,w|bi,w − 1|+ |ai,w − 1| ≤ (1 + η)η + η ≤ 3η.

Thus, for any i ∈ I3 we have

Ew∈W [pi|w,w] =
1

|W |
∑
w∈W

pi|w,w ≥
1

|W |
∑
w∈Si

pi|w,w ≥
|Si|
|W |

(1− 3η)pi ≥ (1− 5η)pi.
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Hence

E[fP |V ] = Ew∈W
∑
i∈I

pi|w,w ≥ Ew∈W
∑
i∈I3

pi|w,w ≥ (1− 5η)
∑
i∈I3

pi ≥
∑
i∈I3

pi − 5η.

On the other hand, we know by our assumptions that

E[fP |V ] ≤ E[fP ]− ε =
∑
i∈I

pi − ε.

We conclude that ∑
i∈I3

pi ≤
∑
i∈I

pi − ε+ 5η.

The lemma follows as
∑

i∈I1∪I2 pi =
∑

i∈I pi −
∑

i∈I3 pi.

We now conclude the proof of Lemma 3.1. Set η = ε/10 so that
∑

i∈I1∪I2 pi ≥ ε/2. Thus

h(P )− hV (P ) =
∑
i

pi∆i ≥
∑

i∈I1∪I2

pi∆i ≥
∑

i∈I1∪I2

piη
4/2 ≥ ε5/20000.

4 Deterministic protocols for XOR functions

Let f : Fn2 → {0, 1} be a boolean function. The associated XOR function is f⊕(x, y) = f(x+ y). A
deterministic protocol for f⊕ corresponds to a partition of Fn2 ×Fn2 to rectangles Ai×Bi, such that
f⊕ is constant on each Ai×Bi. Equivalently, f is constant on each Ai +Bi. Let D⊕(f) denote the
minimum complexity of a deterministic protocol which computes f⊕.

We restate Theorem 1.2, which we prove in this section, for the convenience of the reader.

Theorem 1.2 (Main theorem). For any f : Fn2 → {0, 1} we have pdt(f) ≤ O(D⊕(f)6).

Tsang et al. [TWXZ13] showed that in order to design a parity decision tree, it suffices to find a
large subspace on which the function is constant; and then recurse. For completeness, we reproduce
their argument. Let rank(f) denote the rank of the real matrix Mx,y = f(x + y). It equals the
number of nonzero Fourier coefficients of f . Note that log rank(f) ≤ D⊕(f).

Lemma 4.1. Let T : N → N be a function for which the following holds. For any function
f : Fn2 → {0, 1}, if D⊕(f) = k then there exists an affine subspace V of co-dimension T (k) on
which f is constant. Then for any function f : Fn2 → {0, 1}, pdt(f) ≤ T (D⊕(f)) ·D⊕(f).

Proof. The main idea is that if f is constant on V , then its rank on any coset of V reduces by at
least a factor of two, which then allows for induction. To see that, assume that rank(f) = r. Then

f(x) =
r∑
i=1

f̂(αi)(−1)〈x,αi〉,

for some α1, . . . , αr ∈ Fn2 . We know by assumption that f is constant on an affine subspace V of
co-dimension t = T (D⊕(f)). We may assume that V is linear subspace, by replacing f(x) with
f(x + v) for some v ∈ V (note that this does not change D⊕ or rank(f)). Let W be the quotient
subspace Fn2/V so that dim(W ) = t and Fn2 = V + W . Note that any x ∈ Fn2 can be uniquely
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decomposed as x = v + w with v ∈ V,w ∈ W . Let πV : Fn2 → V and πW : Fn2 → W be the
projection maps to V and W , respectively, mapping x = v+w to πV (x) = v and πW (x) = w. Then

f |V (v) =
r∑
i=1

f̂(αi)(−1)〈v,πV (αi)〉,

In particular, as f is constant on V , it must be the case that for every non-zero αi there exists
some αj such that πV (αi) = πV (αj), or equivalently αi + αj ∈W . Thus

|{πV (αi) : i ∈ [r]}| ≤ r + 1

2
.

Let V + w be any coset of V . Then

f |V+w(v + w) =

r∑
i=1

f̂(αi)(−1)〈w,πW (αi)〉(−1)〈v,πV (αi)〉.

In particular, rank(f |V+w) ≤ |{πV (αi) : i ∈ [r]}| ≤ rank(f)+1
2 .

We now construct the parity decision tree for f . We first query w = πW (x), which requires depth
dim(W ) = T (D⊕(f)). Each restricted function f |V+w has D⊕(f |V+w) ≤ D⊕(f) and rank(f |V+w) ≤
rank(f)+1

2 , and hence by induction can be computed by a parity decision tree of depth at most
T (D⊕(f)) · (log(rank(f)) + 1) ≤ T (D⊕(f)) · (D⊕(f) + 1). The lemma follows.

From now on, we focus on the task of finding a large subspace on which f is constant. We use
the following result of Sanders [San12] (see also [CS10] and [C LS13]).

Theorem 4.2. Let A,B ⊂ Fn2 be sets of size |A|, |B| ≥ 2n/K. For any η > 0, there exists an affine
subspace V of co-dimension d ≤ O(log(K)4/η) such that

|(A+B) ∩ V | ≥ (1− η)|V |.

We also need the following lemma from [GOS+11], which shows that low rank boolean functions
cannot be too close to constant without actually being constant.

Lemma 4.3 (Theorem 12 in [GOS+11]). Let f : Fn2 → {0, 1} be a function which has at most 2s

nonzero Fourier coefficients. Then all the Fourier coefficients of f are of the form a
2s where a ∈ Z.

In particular, if E[f ] < 2−s then f ≡ 0, and if E[f ] > 1− 2−s then f ≡ 1.

Definition 4.4 (XOR entropy). The XOR entropy of a function f : Fn2 → {0, 1} is the minimum
entropy of a partition P of Fn2×Fn2 corresponding to deterministic XOR protocols for which fP = f .
We denote it by h⊕(f).

The following lemma allows for decrease in the XOR entropy.

Lemma 4.5. Let f : Fn2 → {0, 1} be a non-constant function. Then there exists an affine subspace
V of co-dimension dim(V ) = O(D⊕(f)4) such that

h⊕(f |V ) ≤ h⊕(f)− 2−25.
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Theorem 1.2 follows immediately by applying Lemma 4.5 iteratively, as D⊕(f |V ) ≤ D⊕(f) and
entropy is never negative, we deduce the existence of a subspace V of co-dimension O(D⊕(f)5) such
that f |V is constant, and by Lemma 4.1 we conclude that pdt(f) ≤ O(D⊕(f)6).

Proof. Let k = D⊕(f). Assume without loss of generality that E[f ] ≥ 1/2 (otherwise replace f
with 1 − f). By Lemma 4.3, E[f ] ≤ 1 − 2−k. Fixing a XOR protocol for f with at most 2k many
rectangles, and considering all the 0-rectangles in it, there must exist a rectangle A×B such that
f(A + B) = 0 and |A × B| ≥ 22n−2k. In particular, |A|, |B| ≥ 2n−2k. Applying Theorem 4.2 to
A,B with K = 22k, η = 1/4, we deduce the existence of an affine subspace V of co-dimension O(k4)
such that |(A + B) ∩ V | ≥ (3/4)|V |. In particular, E[f |V ] ≤ 1/4. We may assume that V is a
linear subspace, by replacing f(x) with f(x+ v) for some v ∈ V . Let W be the dual of V so that
Fn2 = V +W . Let P be the partition of Fn2 × Fn2 corresponding to the deterministic XOR protocol
for f , so that h(P ) = h⊕(f). Applying Lemma 3.1 we obtain that

Ew′,w′′∈W [h(P |V,w′,w′′)] = hV (P ) ≤ h(P )− 2−25.

In particular, there exists a choice of w′, w′′ ∈W such that

h(P |(V+w′)×(V+w′′)) ≤ h(P )− 2−25.

Note that P |(V+w′)×(V+w′′) is a deterministic protocol for f |V+w′+w′′ , and hence

h⊕(f |V+w′+w′′) ≤ h⊕(f)− 2−25.

5 Open problems

There are two natural open problems which stem directly from our work. The first is whether our
result can be extended to randomized protocols vs randomized parity decision trees. Some partial
results follow directly from our technique (concretely, a parity decision tree which approximates
the function under a product distribution) but the general result still seems to be elusive.

Problem 5.1. Let f : Fn2 → {0, 1} be a function. Assume that f⊕ has a randomized protocol with
complexity k. Does there exist a randomized parity decision tree of depth poly(k) which computes
f?

The second question asks about what happens if we replace XOR with other gadgets. Sher-
stov [She11] showed that for many gadgets, including some natural 2-bit gadgets, efficient protocols
imply low-degree approximating polynomials, which by the work of Nisan and Szegedy [NS94] im-
ply efficient (standard) decision trees. This however does not hold for 1-bit gadgets. Except for
XOR functions, the other class of gadgets that can be considered are AND gadgets (any other 1-bit
gadget is either trivial or equivalent to either XOR or AND).

That is, for a boolean function f : {0, 1}n → {0, 1} define its corresponding AND function
as f∧(x, y) = f(x ∧ y), where ∧ is bitwise AND function. An example of an AND function is
disjointness. The analog class of decision trees are AND decision trees, where each internal node
may query the AND of a subset of the inputs or their negations.

Problem 5.2. Let f : Fn2 → {0, 1} be a function. Assume that f∧ has a deterministic / randomized
protocol with complexity k. Does there exist a deterministic / randomized AND decision tree of depth
poly(k) which computes f?
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