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Abstract

We say that a circuit C over a field F functionally computes an n-variate polynomial P ∈
F[x1, x2, . . . , xn] if for every x ∈ {0, 1}n we have that C(x) = P(x). This is in contrast to
syntactically computing P, when C ≡ P as formal polynomials. In this paper, we study the
question of proving lower bounds for homogeneous depth-3 and depth-4 arithmetic circuits
for functional computation. We prove the following results :

• Exponential lower bounds homogeneous depth-3 arithmetic circuits for a polynomial in
VNP.

• Exponential lower bounds for homogeneous depth-4 arithmetic circuits with bounded
individual degree for a polynomial in VNP.

Our main motivation for this line of research comes from our observation that strong enough
functional lower bounds for even very special depth-4 arithmetic circuits for the Permanent
imply a separation between #P and ACC0. Thus, improving the second result to get rid of
the bounded individual degree condition could lead to substantial progress in boolean circuit
complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that
over constant sized finite fields, strong enough average case functional lower bounds for ho-
mogeneous depth-4 circuits imply superpolynomial lower bounds for homogeneous depth-5
circuits.

Our proofs are based on a family of new complexity measures called shifted evaluation di-
mension, and might be of independent interest.
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1 Introduction

Arithmetic circuits are one of the most natural models of computation for studying computation
with multivariate polynomials. One of the most fundamental questions in this area of research is
to show that there are low degree polynomials which cannot be efficiently computed by small sized
arithmetic circuits. However, in spite of the significance of this question, progress on it has been
sparse and our current state of understanding of lower bounds for arithmetic circuits continues to
remain extremely modest.

Most of the research in algebraic complexity theory so far considers arithmetic circuits and
multivariate polynomials as formal objects and studies the complexity of syntactic representation
of polynomials over the underlying field. However, in this work, we aim to study the semantic or
functional analogue of the complexity of computing multivariate polynomials. We formally define
this notion below and then try to motivate the definition based on our potential applications.
Definition 1.1 (Functional equivalence). Let F be any field and let D be a subset of F. We say that two
n-variate polynomials P1 and P2 in F[x1, x2, . . . , xn] are functionally equivalent over the domain Dn if

∀x ∈ Dn , P1(x) = P2(x) ♦

This definition of functional equivalence naturally extends to the case of arithmetic circuits
functionally computing a family of polynomials, as defined below.
Definition 1.2 (Functional computation). Let F be any field and let D be a subset of F. A circuit family
{Cn} is said to functionally compute a family of polynomials {Pn} over the domain Dn if

∀n ∈N, x ∈ Dn , Cn(x) = Pn(x) ♦

Having defined functional computation, we will now try to motivate the problem of proving
functional lower bounds for arithmetic circuits.

1.1 Motivation

Improved boolean circuit lower bounds: In the late 80’s there was some spectacular progress
on the question of lower bounds for bounded depth boolean circuits. In particular, Razborov and
Smolensky [Smo87, Raz87] showed exponential lower bounds for constant depth boolean circuits
with AND (∧), OR (∨), Negations (¬) and mod p gates for a prime p (i.e the class of AC0[p]
circuits). However, the question of proving lower bounds for constant depth boolean circuits
which also have mod q gates for a composite q (i.e the class of general ACC0 circuits) remained
wide open. In general, one major obstacle was that the techniques of Razborov and Smolensky
failed for composite moduli, and we could not find alternative techniques which were effective
for the problem. Although it is widely believed that the the majority function should be hard for
such circuits, till a few years ago, we did not even know to show that there is such a language in
NEXP1. In a major breakthrough on this question, Williams [Wil11] showed that there is a function
in NEXP which requires ACC0 circuits of superpolynomial size. Along with the result itself, the
paper introduced a new proof strategy for showing such lower bounds. However, it still remains
wide open to show that there is a function in deterministic exponential time, which requires ACC0

circuits of superpolynomial size.

1The class of problems in nondeterministic exponential time.
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One of our main motivations for studying functional lower bounds for arithmetic circuits is
the following lemma which shows that such lower bounds in fairly modest set up would imply a
separation between #P and ACC0. A formal statement and a simple proof can be found in Section 3.

Lemma 1.3 (Informal). Let F be any field of characteristic zero or at least exp (ω (poly(log n))). Then,
a functional lower bound of exp (ω (poly(log n))) for the permanent of an n× n matrix over {0, 1}n2

for
depth-4 arithmetic circuits with bottom fan-in poly(log n) imply that #P 6= ACC0.

In fact, we show that something slightly stronger is true. It suffices to prove functional lower
bounds for the model of sums of powers of low degree polynomials for the conclusion in Lemma 1.3
to hold.

At this point, there are two possible interpretations of the statement of Lemma 1.3. For an opti-
mist, it provides another approach to proving new lower bounds for ACC0, while for a pessimist it
points to the fact that the functional lower bounds for depth-4 arithmetic circuits could be possibly
very challenging. What makes us somewhat optimistic about this strategy is the fact that in the last
few years, we seem to have made substantial progress on the question of proving lower bounds
for homogeneous depth-4 circuits in the syntactic setting [GKKS14, FLMS14, KLSS14, KS14]. In
particular, even though the depth-4 circuits obtained in the proof of Lemma 1.3 are not homoge-
neous, an exponential lower bound for sums of powers of low degree polynomials is known in the
syntactic set up. Therefore, it makes sense to try and understand if these bounds can be extended
to the functional set up as well.

Lower bounds for homogeneous depth-5 circuits: In a recent work by Kumar and Sapthar-
ishi [KS15], it was shown that over constant size finite fields, average case functional lower bounds
for homogeneous depth-4 circuits2 implies lower bounds for homogeneous depth-5 circuits. More
precisely, the following lemma was shown:

Lemma 1.4 ([KS15]). Let Fq be a finite field such that q = O(1). Let P be a homogeneous polynomial of
degree d in n variables over Fq, which can be computed by a homogeneous depth-5 circuit of size at most
O
(
exp

(
d0.499)). Then, there exists a homogeneous depth-4 circuit C′ of bottom fan-in O(

√
d) and top

fan-in at most O
(
exp

(
d0.499)) such that

Pr
x∈Fn

q

[
P(x) 6= C′(x)

]
≤ exp(−Ω(

√
d))

Informally, the lemma shows that over small finite fields strong enough average case functional
lower bounds for homogeneous depth-4 arithmetic circuit with bounded bottom fan-in are suf-
ficient to show superpolynomial lower bounds for homogeneous depth-5 circuits. Even though
in [KS15], the authors do not take this route to eventually prove their lower bounds, this connec-
tion seems like a strong motivation to study the question of proving functional lower bounds for
bounded depth arithmetic circuits.

Functional lower bounds for bounded depth arithmetic circuits: It is immediately clear from
the definition that syntactic computation implies functional computation, but vice-versa may not
be necessarily true. In this sense, proving lower bounds for functional computation could be

2in fact, with bounded bottom fan-in
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potentially harder than proving lower bounds for syntactic computation. From this point of view,
once we have syntactic lower bounds for a certain class of circuits, it seems natural to ask if these
bounds can be extended to the functional framework as well. The last few years have witnessed
substantial progress on the question of proving lower bounds for variants of depth-4 arithmetic
circuits, and in this work we explore the question of whether these bounds can be extended to the
functional setting.

Applications to proof complexity lower bounds : Functional lower bounds have recently found
applications for obtaining lower bounds for algebraic proof systems. In particular, Forbes, Sh-
pilka, Tzameret, and Wigderson [FSTW15] have given lower bounds in various algebraic circuit
measures for any polynomial agreeing with certain functions of the form x 7→ 1

p(x) , where p is a
constant-degree polynomial (which is non-zero on the boolean cube). In particular, they used such
lower bounds to obtain lower bounds for the various subclasses of the Ideal Proof System (IPS) of
Grochow and Pitassi [GP14].

In the next section, we explore the connections between syntactic and functional computation
in a bit more detail, and discuss why the techniques used in proving syntactic lower bounds do not
seem conducive to prove lower bounds in the functional setting. Hence, the problem of proving
functional lower bounds might lead us to more techniques for arithmetic circuit lower bounds.

1.2 Functional vs syntactic computation

We now discuss the differences and similarities between functional and syntactic computation in
a bit more detail. The following observation is easy to see.

Observation 1.5. The following properties follow from Definition 1.2:

• Any two polynomials P1 and P2 which are syntactically equivalent are also functionally equivalent
for every choice of D.

• If two polynomials of individual degrees bounded by d are functionally equivalent over any domain
of size at least d + 1, then they are also syntactically equivalent.

• In particular, any two multilinear polynomials which are functionally equivalent over the hypercube
{0, 1}n are also syntactically equivalent.

For the rest of the paper, our domain of interest will be D = {0, 1} and we will be interested
in polynomials which are functionally the same over the hypercube {0, 1}n. For brevity, for the
rest of the paper, when we say that two polynomials are functionally equivalent, we mean that
the domain is the hypercube. As an additional abuse of notation, when we say that a circuit C
is functionally equivalent to a polynomial P, we mean that for every x ∈ {0, 1}n, C(x) = P(x).
Observe that functional equivalence over the hypercube is precisely the same as syntactic equiva-
lence when we work modulo the ideal generated by the polynomials {x2

i − xi : i ∈ [n]}. However,
we find the functional view easier and more convenient to work with.

At this point, one might ask why is the choice of D as {0, 1} a natural one? The motivation for
studying a domain of size 2 stems from the fact that most of the polynomials for which we have
syntactic arithmetic circuit lower bounds, are multilinear. For instance, the permanent (Perm), the
determinant (Det), the Nisan-Wigderson polynomials (NW) and the iterated matrix multiplication
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polynomial (IMM) are known to be hard for many natural classes of arithmetic circuits, homoge-
neous depth three circuits being one such class. Since for any D ⊆ F such that |D| ≥ 2, Dn is an
interpolating set for multilinear polynomials, it seems natural to ask if there is a small homoge-
neous depth three arithmetic circuit which is functionally equivalent to any of these polynomials.

Another reason why {0, 1}n seems a natural domain to study functional algebraic computa-
tion is due to potential connections to boolean circuit lower bounds. It seems natural to ask if
the techniques discovered in the quest for arithmetic circuit lower bounds can be adapted to say
something interesting about questions in boolean circuit complexity. And, Lemma 1.3 seems like
an encouraging step in this direction.

1.2.1 Functional lower bounds and partial derivatives

Almost all the bounded depth arithmetic circuit lower bounds so far have been proved using tech-
niques based on the partial derivatives of a polynomial. This includes exponential lower bounds
for homogeneous depth-3 circuits [NW97] and lower bounds for homogeneous depth-4 arithmetic
circuits [GKKS14, FLMS14, KLSS14, KS14]. At a high level, the proofs have the following structure:

• Define a function Γ : F[x]→N, called the complexity measure, which serves as an indicator
of the hardness of a polynomial.

• For all small arithmetic circuits in the model of interest, show that Γ has a non-trivial upper
bound.

• For the target hard polynomial, show that Γ is large. Comparing this with the upper bound
in step 2 leads to a contradiction if the hard polynomial had a small arithmetic circuit.

The precise measure Γ used in these proofs varies, but they all build upon the the notion of partial
derivatives of a polynomial. The idea is to define Γ(P) to be the dimension of a linear space of
polynomials defined in terms of the partial derivatives of P. In the syntactic set up, if a circuit C
computes a polynomial P, then any partial derivative of C must be equivalent to the correspond-
ing partial derivative of P. This observation along with bounds on the dimension of the partial
derivative based linear spaces, led to circuit lower bounds.

However, this clearly breaks down in the case when our only guarantee is that the circuit C and
the polynomial P agree as functions on all of {0, 1}n. Apriori, it is not clear if we can say anything
meaningful about how the partial derivatives of C and those of P are related to each other. An
extreme case of this is the following example. Let the polynomials P and Q be defined as follows:

P =

(
n

∑
i=1

xi

)n

and
Q = P mod I0

Here I0 is the ideal generated by the polynomials {x2
i − xi : i ∈ [n]}. The following items follow

easily from the definitions:

• ∀x ∈ {0, 1}n, P(x) = Q(x).

• The dimension of the span of partial derivatives of P is at most n.
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• The dimension of the span of partial derivatives of Q is at least 2n. This follows from the fact
that the leading monomial of Q is x1 · x2 · · · xn.

So, clearly the dimension of the partial derivatives of two polynomials which are functionally the
same over {0, 1}n can be wildly different. Thus, it seems tricky to extend the proofs of syntactic
lower bounds to the functional setup. Nevertheless, we do manage to get around this obstacle
in certain cases as our results in the next section show. Moreover, we also show that a general
solution to this question offers a possibility of proving new lower bounds for boolean circuits,
that have so far been beyond our reach so far.

1.3 Our results

We now state our main results.
As our first result, we show functional lower bounds for homogeneous3 depth-3 circuits. In

the syntactic setting such lower bounds were first shown by Nisan and Wigderson [NW97] using
the partial derivative of a polynomial as the complexity measure. However, as we discussed in
Section 1.2.1, partial derivative based proofs do not extend to the functional setting in a straight-
forward manner. We get around this obstacle by working with a different but related complexity
measure. We now formally state the theorem :

Theorem 1.6. Let F be any field. There exists a family {Pd} of polynomials of degree d in n = poly(d)
variables in VNP such that any ΣΠΣ circuit of formal degree d which is functionally equivalent to Pd over
{0, 1}n has size at least exp (Ω (d log n)).

As our second result, we show similar functional analogues of the homogeneous depth-4 lower
bounds of [KLSS14, KS14] but under the restriction that the depth-4 circuit computes a polynomial
of low individual degree. As discussed in the introduction, such lower bounds for depth-4 circuits
with bounded bottom fan-in but unbounded individual degree would imply that #P 6= ACC0, and
would be a major progress on the question of boolean circuit lower bounds.

Theorem 1.7. Let F be any field. There exists a family {Pd} of polynomials of degree d in n = poly(d)
variables in VNP such that any ΣΠΣΠ circuit of formal degree d and individual degree O(1) which is
functionally equivalent to Pd over {0, 1}n has size at least exp

(
Ω
(√

d log n
))

.

Our techniques for the proof of Theorem 1.7 are again different from the proofs of homoge-
neous depth-4 lower bounds in the syntactic setting. We introduce a family of new complexity
measures, which are functional in their definition (as opposed to partial derivative based mea-
sures), and use them to capture functional computation. The family of measures, called Shifted
Evaluation dimension is a shifted analogue of the well known notion of evaluation dimension,
which has had many applications in algebraic complexity (for instance, in multilinear formula,
circuit lower bounds [Raz09, Raz06, RY09]). We believe that the measure is of independent inter-
est, and could have other potential applications.

3Our lower bounds require that the formal degree of the circuit and the degree of the polynomial are close to each
other. Homogeneity guarantees this condition, but is a much stronger condition than what we need for our proofs to
work.
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Elementary symmetric polynomials : In their paper [NW97], Nisan and Wigderson showed an
exponential lower bound on the size of homogeneous depth-3 circuits computing the elementary
symmetric polynomials. A curious consequence of our proof, is that we are unable to show an
analogue of Theorem 1.6 for the elementary symmetric polynomials. One of the reasons for this is
the fact that the elementary symmetric polynomials have a small evaluation dimension complexity
(the complexity measure used for this lower bound), hence our proof technique fails. However,
it turns out the at least over fields of sufficiently large characteristic, there are polynomial sized
depth-3 circuits of low formal degree which are functionally equivalent to the elementary sym-
metric polynomials over {0, 1}n. The upper bounds are based on the simple observation that for
any d and x ∈ {0, 1}n, the value of Symd(x) (elementary symmetric polynomial of degree d) is
equal to (h(x)

d ), where h(x) = ∑i xi is the hamming weight of x. In particular, for d = 1, the

polynomial ∑i xi is functionally equivalent to Sym1, the polynomial (∑i xi)(∑i xi−1)
2 is functionally

equivalent to Sym2 and so on. In particular, there is a polynomial which is a product of d affine
forms which is equivalent to Symd. However, over fields of low characteristic, the complexity of
the elementary symmetric polynomials for functional computation by depth-3 (or even depth-4)
circuits is not clear to us and is an interesting open question.

Comparison to Kayal, Saha, Tavenas [KST15] : In a recent independent result, Kayal, Saha
and Tavenas showed exponential lower bounds for depth-4 circuits of bounded individual degree
computing an explicit polynomial in VP. Their proof uses a complexity measure called skew shifted
partials which is very similar in spirit to the notion of shifted evaluation dimension, the complexity
measure we use. Even though the results seem related, none of them subsumes the other. For
our proof, we require that the formal degree of the depth-4 circuit is small (homogeneity), in
addition to the individual degree being small, whereas in [KST15] the authors only require the
individual degree of the circuit to be small. In this sense, their result is for a more general model
than ours. However, for our lower bounds, we only require the circuit to agree with the target
hard polynomial over {0, 1}n while the proof in [KST15] is for syntactically computing the hard
polynomial. Hence, the results are incomparable.

1.4 Organization of the paper

We set up some notations to be used in the rest of the paper in Section 2. We prove the connections
between functional lower bounds for depth-4 circuits and lower bounds for ACC0 in Section 3.
We introduce our main complexity measure in Section 4. We define and study the properties of
the hard polynomials for our lower bounds in Section 5. We present the proof of Theorem 1.6 in
Section 6 and the proof of Theorem 1.7 in Section 7.

2 Notation

We now setup some notation to be used for the rest of the paper.

• Throughout the paper, we shall use bold-face letters such as x to denote a set {x1, . . . , xn}.
Most of the times, the size of this set would be clear from context. We shall also abuse this
notation to use xe to refer to the monomial xe1

1 · · · x
en
n .
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• The set of formal variables in this paper denoted by x of size n shall often be partitioned into
sets y and z. We shall use ny and nz to denote the sizes of y and z respectively.

• For an integer m > 0, we shall use [m] to denote the set {1, . . . , m}.

• We shall use the short-hand ∂xe(P) to denote

∂e1

∂xe1
1

(
∂e2

∂xe2
2
(· · · (P) · · ·)

)
.

• For a set of polynomialsP shall use ∂=k
y P to denote the set of all k-th order partial derivatives

of polynomials in P with respect to y variables only, and ∂≤k
y P similarly.

Also, x=`P shall refer to the set of polynomials of the form xe · P where Deg(xe) = ` and
P ∈ P . Similarly x≤`P .

• For a polynomial P ∈ F[x] and for a set S ⊆ Fn, we shall denote by EvalS(P) the vector
of the evaluation of P on points in S (in some natural predefined order like say the lexico-
graphic order). For a set of vectors V, their span over F will be denoted by Span(V) and
their dimension by Dim(V).

3 Functional lower bounds for depth-4 circuits and ACC0

In this section, we show that strong enough functional lower bounds for even very special depth-
4 arithmetic circuits are sufficient to imply new lower bounds for ACC0. The proof follows from
a simple application of a well known characterization of ACC0 by Yao [Yao85] and Beigel and
Tarui [BT94]. The following version of the theorem is from Arora-Barak [AB09]

Theorem 3.1 ([Yao85, BT94]). If a function f : {0, 1}n → {0, 1} is in ACC0, then f can be computed by
a depth 2 circuit with a symmetric gate with quasipolynomial

(
exp(logO(1) n)

)
fan-in at the output level

and ∨ gates with polylogarithmic
(

logO(1) n
)

fan-in at the bottom level.

We now prove the following lemma which shows functional upper bound for ACC0.

Lemma 3.2. Let F be any field of characteristic zero or at least exp (ω (poly(log n))). If a function
f : {0, 1}n → {0, 1} is in ACC0, then there exists a polynomial Pf ∈ F[x1, x2, . . . , xn] such that the
following are true:

• For every x ∈ {0, 1}n, f (x) = Pf (x).

• Pf can be computed by a quasipolynomial sized Σ∧ΣΠ circuit with bottom fan-in at most poly(log n),
which are depth-4 circuits where the product gates in the second level are powering gates.

Proof. From Theorem 3.1, we know that there exists a symmetric function h and multilinear poly-
nomials g1, g2, . . . , gt such that

• t = exp(poly(log n)).

• For every x ∈ {0, 1}n, f (x) = h(g1(x), g2(x), . . . , gt(x)).
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• Each gi is a multilinear polynomial in at most poly(log n) variables.

• For every x ∈ {0, 1}n and j ∈ [t], gj(x) ∈ {0, 1}.

From the last item above, we know that the gis only take boolean values on inputs from {0, 1}n.
Since h is symmetric, it follows that its value on boolean inputs only depends upon the hamming
weight of its input. Hence, h is in fact a function of ∑i∈[t] gi. Therefore, over any field of charac-
teristic zero or larger than t, there exists a univariate polynomial Ph of degree at most t over reals,
such that

∀x ∈ {0, 1}n, h (g1(x), g2(x), . . . , gt(x)) = Ph

(
∑

i∈[t]
gi(x)

)
The lemma now follows from the fact that each gi is a multilinear polynomial in poly(log n) vari-
ables.

Lemma 3.2 now immediately implies the following lemma.

Lemma 3.3. Let F be any field of characteristic zero or at least exp (ω (poly(log n))). Then, an
exp (ω (poly(log n))) functional lower bound for a function on n variables for Σ ∧ ΣΠ[poly(log n)] circuits
over F would imply that f is not in ACC0.

4 The complexity measure

In the lower bounds for homogeneous depth four circuits [KLSS14, KS14], the complexity measure
used was the dimension of projected shifted partial derivatives. The following definition is not the
same as used in [KLSS14, KS14], but this slight variant would be easier to work with for our
applications. We abuse notation to call it “projected shifted partial derivatives” as it continues to
have the essence of the original definition. A discussion on the precise differences between the
following definition and the original definition of [KLSS14, KS14] is present in Appendix A
Definition 4.1 (Projected shifted partial derivatives). Let x = y t z with |y| = ny and |z| = nz, and
let S be the set of all strings in {0, 1}ny+nz that are zero on the first ny coordinates. If k, ` are some pa-
rameters, the dimension of projected shifted partial derivatives for any polynomial P(y, z) ∈ F[y, z],
denoted by ΓPSPD

k,` (P), is defined as

ΓPSPD
k,` (P) := Dim

{
EvalS

(
z=`∂=k

y (P)
)}

. ♦

The above measure is still syntactic as partial derivatives are not useful in the functional set-
ting. For the functional setting, we shall use a different measure for our lower bound that we call
the shifted evaluation dimension. We now define the complexity measure that we shall be using to
prove the lower bound. For brevity, we shall assume that our set of variables x is partitioned into
y and z. For our proofs, we shall use a carefully chosen partition. We now formally define the
notion of shifted evaluation dimension of a polynomial below.
Definition 4.2 (Shifted evaluation dimension). Let ` and k be some parameters and let x = y t z such
that |y| = ny and |z| = nz. For any polynomial P ∈ F[y, z], define Γk,`(P) as

ΓSED
k,` (P) := Dim

{
Eval{0,1}nz

(
z=` · {P(a, z) : a ∈ {0, 1}ny

≤k}
)}

. ♦
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Informally, for every polynomial P, we fix a partition of the input variables into y and z and
generate a linear space by the following algorithm.

• We take the projections of P obtained by setting each of the y variables to 0, 1 such that the
number of y variables set to 1 is at most k.

• We shift the polynomials obtained in step 1 by all monomials in variables z of degree `.

• Observe that the polynomials obtained at the end of step two are polynomials only in the z
variables. We now look at the evaluation vectors of these polynomials over {0, 1}nz .

The complexity measure of the polynomial P is defined as the dimension of the linear space gen-
erated by the vectors obtained at the end of step 3 in the algorithm above. For our proof, we will
pick a careful partition of the variables x into y and z and look at ΓSED

k,` (P). The following lemma
highlights the key reason of utility of the above measure to functional lower bounds.

Lemma 4.3 (Functional equivalence and shifted evaluation dimension). Let P ∈ F[x] and Q ∈ F[x]
be any two polynomials which are functionally equivalent over {0, 1}n. Then, for every choice of k, ` and
partition x = y t z

ΓSED
k,` (P) = ΓSED

k,` (Q)

Proof. The proof easily follows from the fact that the measure ΓSED
k,` (P) is the dimension of a linear

space which is generated by vectors which correspond to evaluations of P over subcubes of {0, 1}n.
Hence, it would be the same for any two polynomials which agree as functions over {0, 1}n.

Remark. Observe that a lemma analogous to Lemma 4.3 is not true in general for partial derivative based
measures. And hence, the proofs for syntactic lower bounds which are based on such measures does not
immediately carry over to the functional setting. ♦

4.1 Evaluations vs partial derivatives

In this section, we show that for polynomials of low individual degree, the notion of shifted eval-
uation dimension can be used as a proxy for the notion of shifted partial derivatives. This is the
key observation that drives the proofs of Theorem 1.6 and Theorem 1.7. We first consider the case
when the polynomial is set-multilinear in which case derivatives can be directly related to careful
evaluations.

4.1.1 For set-multilinear polynomials

The explicit polynomials we shall be working with in this paper would be set-multilinear. An
example to keep in mind is Detn or Permn where the variables can be partitioned into rows and
each monomial involves exactly one variable from each part.
Definition 4.4 (Set-multilinear polynomials). A polynomial P is said to be set-multilinear with respect
to the a partition x = x1 t · · · t xr if every monomial of P involves exactly4 one variable from each xi. ♦

We begin with the following simple observation.

4sometimes in the literature the word ‘exactly’ is replaced by ‘at most’ but in this paper we would be dealing with
this definition.
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Observation 4.5. Let P ∈ F[x] be a set-multilinear with respect to a partition x = x1 t · · · t xr. Let
y = x1 ∪ · · · ∪ xk for some k ≤ r and let z = x \ y. Then, for any degree k monomial ye that is set-
multilinear with respect to x1 t · · · t xk, we have

∂P
∂ye = P(e, z).

Proof. We shall prove this by induction on k. Suppose y = x1 and y1 ∈ x1. Since P is set-
multilinear, we can write P as

P(x1, · · · , xr) = ∑
yi∈x1

yi · Pi(x2, · · · , xr).

Hence it follows that ∂y1(P) equals P1, which is also the partial evaluation of P where y1 is set to
1 and all other yi ∈ x1 is set to zero. Hence, if y1 = ye, then ∂y1(P) = P(e, x2, · · · , xr). The claim
follows by repeating this argument on P(e, x2, · · · , xr) which continues to be set-multilinear.

Observation 4.5 immediately implies the following corollary, which shows that for set-multilinear
polynomials shifted evaluation dimension and shifted partial derivatives are the same quantity if
we choose our set of derivatives carefully.

Corollary 4.6. Let P(x) be a set-multilinear polynomial with respect to x = x1 t · · · t xr. Suppose
y = x1 ∪ · · · ∪ xk and z = x \ y. Then if we consider the dimension of projected shifted partials with
respect to set-multilinear monomials in y, we have

ΓPSPD
k,` (P) ≤ ΓSED

k,` (P).

4.1.2 For low individual degree polynomials

We now proceed to show that an approximation of the Corollary 4.6 also holds for polynomials of
low individual degree.

Lemma 4.7. Let P(y, z) be a polynomial with individual degree at most r. Then, for every choice of
parameters k and ` {

P(a, z) : a ∈ {0, 1}ny
≤k

}
⊆ Span

((
∂≤rkP

)
y=0

)
.

Proof. For the rest of this proof, we shall think of P as an element Pz(y) ∈ F[z][y]. Let a be any
point in {0, 1}ny . Then by the Taylor’s expansion, we know that

Pz(y + a) = ∑
e

ae · ∂ye(Pz)(y)

If the support of a is at most k, then for every e such that ‖e‖0 > k, we would have ae = 0.
Moreover, since P is a polynomial of individual degree at most r, it follows that if any coordinate
of e is more than r then

∂ye(Pz) = 0.

10



In summary, for any a such that ‖a‖0 ≤ k,

Pz(y + a) = ∑
e:‖e‖0≤k,
‖e‖1≤rk

ae · ∂ye(Pz)(y)

=⇒ Pz(a) = P(a, z) = ∑
e:‖e‖0≤k,
‖e‖1≤rk

ae ·
(
∂ye(Pz)

)
y=0 ∈ Span

((
∂≤rkP

)
y=0

)
.

We are now ready to prove our main technical claim of this section.

Lemma 4.8. Let P(y, z) be a polynomial with individual degree at most r. Then, for every choice of
parameters k and `,

ΓSED
k,` (P) ≤ ΓPSPD

rk,` (P)

Proof. From Lemma 4.7, we know that{
P(a, z) : a ∈ {0, 1}ny

≤k

}
⊆ Span

((
∂≤rkP

)
y=0

)
=⇒

{
z=` · P(a, z) : a ∈ {0, 1}ny

≤k

}
⊆ Span

(
z=` ·

(
∂≤rkP

)
y=0

)
By looking at the evaluation vectors on {0, 1}nz ,{

Eval{0,1}nz

(
z=` · P(a, z)

)
: a ∈ {0, 1}ny

≤k

}
⊆ Span

(
Eval{0,1}nz

(
z=` ·

(
∂≤rkP

)
y=0

))
= Span

(
Eval{0}ny×{0,1}nz

(
z=` · ∂≤rkP

))
Taking the dimension of the linear spans on both sides completes the proof.

5 Nisan-Wigderson polynomial families

In this section, we formally define the family of Nisan-Wigderson polynomials and mention some
known results about lower bounds on the their projected shifted partials complexity [KLSS14,
KS14, KS15]. These bounds will be critically used in our proof.
Definition 5.1 (Nisan-Wigderson polynomial families). Let d, m, e be arbitrary parameters with m
being a power of a prime, and d, e ≤ m. Since m is a power of a prime, let us identify the set [m] with the
field Fm of m elements. Note that since d ≤ m, we have that [d] ⊆ Fm. The Nisan-Wigderson polynomial
with parameters d, m, e, denoted by NWd,m,e is defined as

NWd,m,e(x) = ∑
p(t)∈Fm[t]
Deg(p)<e

x1,p(1) . . . xd,p(d)

That is, for every univariate polynomial p(t) ∈ Fm[t] of degree less that e, we add one monomial that
encodes the ‘graph’ of p on the points [d].

This is a homogeneous, multilinear polynomial of degree d over dm variables with exactly me mono-
mials. Furthermore, the polynomial is set-multilinear with respect to x = x1 t · · · t xd where xi =
{xi1, · · · , xim}. ♦

11



We now state the following lemma which shows a lower bound on the ΓPSPD
k,` (NWd,m,e) for

an appropriate choice of parameters. We will then use this bound along with Corollary 4.6 to
show a lower bound on ΓSED

k,` (NWd,m,e). The lower bound on ΓPSPD
k,` (NWd,m,e) was shown in two

independent proofs by Kayal et al. [KLSS14] and by Kumar and Saraf [KS14]. The version stated
below is from a strengthening of these bounds by Kumar and Saptharishi [KS15].

Lemma 5.2. For every d and k = O(
√

d) there exists parameters m, e, ε such that m = Θ(d2) and
ε = Θ

(
log d√

d

)
with

mk ≥ (1 + ε)2(d−k)

me−k =

(
2

1 + ε

)d−k

· poly(m).

For such a choice of parameters, let x =
{

xij : i ∈ [d] , j ∈ [m]
}
= x1t · · · t xd where xi = {xi1, . . . , xim}.

Let y = x1 t · · · t xk and z = x \ y. If ` is a parameter that satisfies ` = nz
2 (1− ε), then over any field F,

we have5

ΓPSPD
k,` (NWd,m,e(y, z)) ≥

(
nz

`+ d− k

)
· exp(−O(log2 d)).

From Corollary 4.6, we immediately have the following crucial lemma.

Lemma 5.3. Let d, m, e, ` be parameters as defined in Lemma 5.2 and let y and z be the partition of variables
x as in Lemma 5.2. Then,over any field F, we have

ΓSED
k,` (NWd,m,e(y, z)) ≥

(
nz

`+ d− k

)
· exp(−O(log2 d)).

6 Functional lower bounds for depth-3 circuits

In this section, we complete the proof of Theorem 1.6. We start by defining the exact hard poly-
nomial for which our lower bound is shown.

Hard polynomials for the lower bound

We will prove Theorem 1.6 for the polynomial NWd,m,e for an appropriate choice of the parameters.

Lemma 6.1. Let the parameters e and d be chosen so that e = d/2− 1, and let k = e + 1. Let the variables
x in NWd,m,e be partitioned into y =

{
xij : i ∈ [k], j ∈ [m]

}
and z = x \ y. Then

ΓSED
k,0 (NWd,m,e(y, z)) ≥ md/2.

5We remark that in the calculations in [KLSS14, KS14, KS15], the shifted monomials consist of both the y and z
variables, while here we only shift by z variables. But the calculations still go through since the parameters continue to
satisfy the constraints needed for soundness of the calculation.
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Proof. Let the set of monomials S be defined as

S =

{
k

∏
i=1

xi,ji : ji ∈ [m]

}

Observe that for every monomial xα in S, the partial derivative of NWd,m,e with respect to xα, is a
monomial in z. This is due to the fact that e < d/2 and no two distinct univariate polynomials of
degree d/2 can agree at more than d/2 many points. Moreover for every two distinct monomials
xα and xβ in S,

∂NWd,m,e

∂xα
6= ∂NWd,m,e

∂xβ

Hence,
ΓPSPD

k,0 (NWd,m,e) = |S| = md/2

Since NWd,m,e is a set-multilinear with respect to the rows of variable matrix, by Observation 4.5,
it follows that

ΓSED
k,0 (NWd,m,e) = md/2

Complexity of the model

Lemma 6.2. The C(x) be a ΣΠΣ circuit of formal degree d and top fan-in s. Then, for all choices of k and
any partition of x into y and z,

ΓSED
k,0 (C) ≤ s · 2d

Proof. Observe that for any choice of k and `, ΓSED
k,` is a subadditive measure. Therefore, it is enough

to upper bound the value of ΓSED
k,0 () for every product gate in C by 2d. Let

Q(y, z) =
d

∏
i=1

Li

be any product gate of formal degree at most d in C. Since each Li is a linear form, we can express
it as Li = Lyi + Lzi, where Lyi and Lzi are the parts of Li consisting entirely of y and z variables
respectively. Therefore,

Q(y, z) = ∑
S⊆[d]

∏
i∈S

Lyi ·∏
j/∈S

Lzj

Now observe that by

{Q(a, z) : a ∈ {0, 1}ny} ⊆ Span

({
∏
j/∈S

Lzj : S ⊆ [d]

})

Therefore,
ΓSED

k,0 (C) ≤ 2d

The lemma now follows by subadditivity.
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Wrapping up the proof

We are now ready to complete the proof of Theorem 1.6.

Theorem 6.3. Let F be any field, and let d, m, e be parameters such that e = d/2− 1 and m = poly(d).
Let C be a ΣΠΣ circuit of formal degree d which is functionally equivalent to the polynomial NWd,m,e. Then

Size(C) ≥ md/2/2d

Proof. Let k = e + 1 and consider a partition of variables into y and z where all the variables in the
first k rows of the variable matrix are labelled y and the remaining variables are labelled z. Now,
the theorem immediately follows from Lemma 6.1 and Lemma 6.2.

7 Functional lower bounds for depth-4 circuits

In this section, we prove Theorem 1.7. We first define the family of polynomials for which our
lower bounds apply.

Hard polynomials for the lower bound

For the proof of Theorem 1.7, we would have to show that a statement in the spirit of Lemma 5.3
is also true for a random projection of our hard polynomial. Even though we believe6 that this is
true for the polynomial defined in Definition 5.1, for simplicity, we modify our hard polynomial
and in turn prove a lower bound for the following variant of it.
Definition 7.1 (Hard polynomials for the lower bound). Let d, m, e be parameters as defined in Defini-
tion 5.1. Let p = p(m, d) be a parameter and let

t =
dm
p

The polynomial NW ◦ Lin is defined as

NW ◦ Lind,m,e,p = NWd,m,e (L(x1,1), L(x1,2), . . . , L(xd,m))

where for each i ∈ [d], j ∈ [m], L(xi,j) is defined as

L(xi,j) =
t

∑
u=1

xi,j,u

♦

For the rest of this proof, we set p = (md)−0.1, and for brevity, we will indicate NW ◦ Lind,m,e,(md)0.1

by NW ◦ Lind,m,e. Observe that setting p sets t to be equal to (md)1.1. We conclude this section with
the next lemma where we show that NW ◦ Lind,m,e is robust under random restrictions where every
variable is kept alive with a probability p.

6In fact, [KLSS14, KS14] showed such statements to be true.
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Lemma 7.2. Let p and t be as stated above and let n = dm. Let P be a random projection of NW ◦ Lin
obtained by setting every variable in {xi,j,h : i ∈ [d], j ∈ [m], h ∈ [t]} to zero with a probability equal to
1− p. Then, with a probability at least 1− o(1), NWd,m,e is a projection of P.

Proof. For every i ∈ [d], j ∈ [m], define the set Ai,j as

Aij = {xi,j,h : h ∈ [t]}

When every variable is being set to zero with a probability 1− p, the probability that there exists
an i ∈ [d] and j ∈ [m] such that all the variables in the set Ai,j are set to zero is at most dm(1− p)t.
For p = n−0.1, the probability is at most n(̇1− n−0.1)n1.1

which is exp(−Ω(n)).
Therefore, with a probability at least 1 − exp(−Ω(n)), each of the set Ai,j has at least one

variable alive in P. Now, we set all but one of them to zero for each i, j. Observe that the resulting
projection of P is precisely NWd,m,e up to a relabelling of variables. This proves the lemma.

It should be noted that the polynomial NW ◦ Lin continues to remain set-multilinear with re-
spect to he rows of the variable matrix.

Upper bound on the complexity of the model

We now show the upper bound on ΓSED
k,` (C) when C is a depth-4 circuit of individual degree at

most r and bottom support s. We will use the following upper bound on ΓPSPD
k,` (C) from [KLSS14,

KS14].

Lemma 7.3. Let C(y, z) be a depth-4 circuit, of formal degree at most d and bottom support at most s. Let
k and ` be parameters satisfying`+ ks < nz/2. Then

ΓPSPD
k,` (C) ≤ Size(C) ·

(O
(

d
s

)
+ k

k

)
·
(

nz

`+ ks

)
· poly(n).

The following lemma now immediately follows from Lemma 7.3 and Lemma 4.8.

Lemma 7.4. Let C(y, z) be a depth-4 circuit, of formal degree at most d, individual degree at most r and
bottom support at most s. Let k and ` be parameters satisfying `+ krs < nz/2. Then

ΓSED
k,` (C) ≤ Size(C) ·

(O
(

d
s

)
+ kr

kr

)
·
(

nz

`+ krs

)
· poly(nz).

Wrapping up the proof

Theorem 7.5. Let d, m, e be parameters as defined in Lemma 5.2. Let C be a ΣΠΣΠ circuit C of formal
degree d and individual degree at most r = O(1) over any field F such that C is functionally equivalent to
NW ◦ Lind,m,e. Then,

Size(C) ≥ exp
(

Ω
(√

d log dm
))

Proof. If the size of C is larger than exp
(√

d log dm
1000r

)
, then we are already done, else the size of C

is at most exp
(√

d log dm
1000r

)
. Let us set every variable in C and NW ◦ Lind,m,e to zero independently

with a probability 1− (md)−0.1. The following claim easily follows via a standard application of
the union bound.
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Claim 7.6. With probability at least 1− o(1) over the random restrictions as defined above, every product
gate at the bottom level of C with support at least

√
d

100r is set to zero.

From the above claim and from Lemma 7.2, it follows that there is a ΣΠΣΠ circuit C′ of formal
degree d over F which is functionally equivalent to NWd,m,e. Let us relabel the variables as y and

z as described in Lemma 5.2. Let k =
√

d and let ` = nz
2 · (1− ε) where ε = O

(
log d√

d

)
to be chosen

shortly. By Lemma 5.3, we know that for this choice of k and `

ΓSED
k,` (NWd,m,e(y, z)) ≥

(
nz

`+ d− k

)
· exp(−O(log2 d))

≥
(

nz

`

)
· (1 + ε)2d−2k · exp(−O(log2 d))

Moreover, by Lemma 7.4, we know that

ΓSED
k,` (C′) ≤ (dm)

√
d/1000r ·

(O
(√

d
r

)
+ kr

kr

)
·
(

nz

`+ k · r ·
√

d
100r

)
· poly(nz)

≤ (dm)
√

d/1000r · 2O(
√

d) ·
(

nz

`

)
· (1 + ε)

d
50 · exp(O(log2 d))

≤ exp
(√

d log d/100r
)
· 2O(

√
d) ·
(

nz

`

)
· (1 + ε)

d
50 · exp(O(log2 d))

Now, observe that there exists a constant c such that if ε is set to c log d√
d

, then

ΓSED
k,` (NWd,m,e) > ΓSED

k,` (C′)

But this is a contradiction since C′ computes NWd,m,e. This completes the proof.

8 Open problems

We end with some open questions :

• The main challenge would be to improve Theorem 1.7, and prove it for the model of sums
of powers of low degree polynomials. It is not clear to us if the complexity measure used in
this paper would be useful.

• The functional lower bounds proved in this paper are for exact functional computation. We
believe that some of these bounds should also hold in the average case, where the circuit and
the polynomial agree on a random point on {0, 1}n with a high probability. It is not clear to
us if the proof techniques in this paper can be adapted to say something in the average case
setting. The most natural attempt to generalize the proofs seem to hit a matrix rigidity like
obstacle.
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[FLMS14] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower
bounds for depth 4 formulas computing iterated matrix multiplication. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pages 128–135,
2014. Pre-print available at eccc:TR13-100.

[FSTW15] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof Complex-
ity Lower Bounds from Algebraic Circuit Complexity. Manuscript, 2015.

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approach-
ing the Chasm at Depth Four. Journal of the ACM, 61(6):33:1–33:16, 2014. Preliminary
version in the 28th Annual IEEE Conference on Computational Complexity (CCC 2013).
Pre-print available at eccc:TR12-098.

[GP14] Joshua A. Grochow and Toniann Pitassi. Circuit Complexity, Proof Complexity, and
Polynomial Identity Testing. In Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2014), pages 110–119, 2014. Full version at
arXiv:abs/1404.3820.

[KLSS14] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential
Lower Bound for Homogeneous Depth Four Arithmetic Circuits. In Proceedings of the
55th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014), 2014. Pre-
print available at eccc:TR14-005.

[KS14] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic
circuits. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2014), 2014. Pre-print available at eccc:TR14-045.

[KS15] Mrinal Kumar and Ramprasad Saptharishi. An exponential lower bound for homo-
geneous depth-5 circuits over finite fields. Electronic Colloquium on Computational Com-
plexity (ECCC), 2015. eccc:TR15-109.
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A The evaluation perspective on projected shifted partial derivatives

The notion of projected shifted partial derivatives was first introduced by Kayal, Limaye, Saha and
Srinivasan [KLSS14] in proving lower bounds for homogeneous depth-4 circuits. The following is
the precise definition they used.
Definition A.1 (Projected shifted partial derivatives of [KLSS14]). Let k and ` be some parameters.
The projected shifted partial derivatives of a polynomial P(y, z), denoted by ΓPSPD0

k,` (P), is defined as

ΓPSPD0
k,` (P) := Dim

{
mult

(
z=`∂=k

y (P)
)}

.

where mult( f ) is just the vector of coefficients of all multilinear monomials in f in a fixed predefined
order. ♦

An alternate way to interpret the above definition is to consider the shifted partial derivatives
of P, and reduce them under the relation x2

i = 0, and only then list the coefficients of the surviving
monomials. The rationale for this in [KLSS14] was to ensure that non-multilinear terms do not
interact with multilinear terms in the shifted partial derivatives of P. Hence,

ΓPSPD0
k,` (P) = Dim

{
z=`∂=k

y (P) mod
{

x2
i : i ∈ [n]

}}
.

Another equally useful definition, which was also employed by Kumar and Saptharishi [KS15],
is to reduce the shifted partial derivatives of P with respect to x2

i = xi instead. This also in essence
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ensures that non-multilinear terms do not interact with the relevant multilinear terms by reducing
their degree. We shall denote this by ΓPSPD1

k,` (P), which is formally defined to be

ΓPSPD1
k,` (P) := Dim

{
z=`∂=k

y (P) mod
{
(x2

i − xi) : i ∈ [n]
}}

.

Since any polynomial f has a unique multilinear representation modulo
{

x2
i − xi : i ∈ [n]

}
, it

follows that its evaluations on {0, 1}n completely determine the coefficients of the reduced poly-
nomial f mod

{
x2

i − xi : i ∈ [n]
}

. Therefore, if ΓPSPD
k,` (P) is defined as

ΓPSPD2
k,` (P) := Dim

{
Eval{0,1}n

(
z=`∂=k

y (P)
)}

,

then it follows that
ΓPSPD2

k,` (P) = ΓPSPD1
k,` (P).

Finally, if P was set-multilinear with respect to x = x1 t · · · t xr and y = x1 t · · · t xk, then all
partial derivatives of order k with respect to y would be result in polynomials only in z. Therefore
for such set-multilinear polynomials,

ΓPSPD2
k,` (P) = Dim

{
Eval{0,1}n

(
z=`∂=k

y (P)
)}

= Dim
{
Eval{0}ny×{0,1}nz

(
z=`∂=k

y (P)
)}

=: ΓPSPD
k,` (P) as defined in Definition 4.1.

The explicit polynomials for which we shall be show the lower bounds would indeed be set-
multilinear and hence there is no loss incurred in restricting to only evaluations on {0}ny ×{0, 1}nz .

For polynomials that are not set-multilinear, clearly

ΓPSPD2
k,` (P) = Dim

{
Eval{0,1}n

(
z=`∂=k

y (P)
)}

≥ Dim
{
Eval{0}ny×{0,1}nz

(
z=`∂=k

y (P)
)}

=: ΓPSPD
k,` (P).

Hence for the purposes of upper-bounding ΓPSPD
k,` () for say a term in the circuit computing P,

taking fewer evaluations only helps.
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