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Abstract

In a recent work, Moshkovitz [FOCS ’14] presented a transformation on two-player games
called “fortification”, and gave an elementary proof of an (exponential decay) parallel repe-
tition theorem for fortified two-player projection games. In this paper, we give an analytic
reformulation of Moshkovitz’s fortification framework, which was originally cast in combina-
torial terms. This reformulation allows us to expand the scope of the fortification method to
new settings.

First, we show any game (not just projection games) can be fortified, and give a simple
proof of parallel repetition for general fortified games. Then, we prove parallel repetition and
fortification theorems for games with players sharing quantum entanglement, as well as games
with more than two players. This gives a new gap amplification method for general games in
the quantum and multiplayer settings, which has recently received much interest.

An important component of our work is a variant of the fortification transformation, called
“ordered fortification”, that preserves the entangled value of a game. The original fortification
of Moshkovitz does not in general preserve the entangled value of a game, and this was a
barrier to extending the fortification framework to the quantum setting.

1 Introduction
A central concept in theoretical computer science and quantum information is that of a two-player
one-round game. A two-player game G is specified by question sets X and Y , answer sets A and B,
a distribution µ over pairs of questions, and a verification predicate V : Aˆ BˆX ˆ Y Ñ t0,1u.
The game is played between two cooperating (but non-communicating) players and a referee. The
referee samples px,yq P XˆY according to µ and sends x and y to each player, who provide answers
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a P A and b P B respectively. The players win the game if their answers satisfy the predicate
V pa,b,x,yq.

Games arise naturally in settings ranging from hardness of approximation [Hås01] and in-
teractive proof systems [BOGKW88, FRS88] to the study of Bell inequalities and non-locality in
quantum physics [CHSH69, CHTW04]. Depending on the context it is natural to consider players
with access to different resources. In particular, in this work we distinguish between the classical
value ValpGq of a game, defined as the maximum winning probability of players allowed to pro-
duce their answers using private and shared randomness, and the entangled value Val

˚pGq, for
which the players may use shared entanglement as well .

An important operation on games and the main focus of this work is that of repeated tensor
product or parallel repetition. This operation takes a game G and a parameter m and outputs a
new game Gbm in which m independent instances of G are simultaneously played with the two
players: the referee samples m independent questions tpxi , yiqu

m
i“1 from G, sends px1, . . . ,xmq to

the first and py1, . . . , ymq to the second player, and checks their corresponding answers pa1, . . . , amq
and pb1, . . . , bmq using the predicate V “

śm
i“1V pai ,bi ,xi , yiq. Parallel repetition is often used

in complexity theory in order to perform some form of amplification, such as amplifying the
completeness-soundness gap of a proof system. A fundamental question that arises in this con-
text is how the value of a repeated game Gbm relates to the value of the original game G and the
number of repetitions m.

The behavior of the game value under parallel repetition can in general be quite subtle [FV02,
FKO07, Raz11]. In a celebrated paper, Raz showed that if ValpGq ă 1, then ValpGbmq goes to 0
exponentially fast in m [Raz98]. Even with later simplifications and improvements to the proof
(e.g. [Hol07, Rao11, BG15]), Raz’s parallel repetition theorem remains a substantial technical re-
sult.

Recently, Moshkovitz [Mos14] introduced a simple yet powerful framework for parallel repeti-
tion, called parallel repetition via fortification. In this framework, a game G is transformed through
an operation called “fortification” to a new game G1. This new game G1 is equivalent to G in that
ValpGq “ ValpG1q, but then Moshkovitz shows that behavior of the value of fortified games un-
der parallel repetition is much simpler than the general case, and avoids many of the subtleties
encountered in the general case. The main benefits of fortified games are two-fold: first, their
behavior under parallel repetition is much simpler than the general case, and second, all games
can be easily fortified. Thus for nearly all intents and purposes, it suffices to focus on the parallel
repetition of fortified games.

Despite its attractive features, the fortification framework [Mos14] has some limitations; for
instance it is only applicable to the restricted (though very important) setting of classical two-
player projection games. In this work, we continue the study of the fortification approach to
parallel repetition and try to expand its scope to wider classes of games.

Previously, an attempt to address the limitation of fortification to projection games was made
in [BSVV15, Lemma 1.9], but this was only partially successful.1 Here, using a slightly modified

1The difficulty there was that fortification increases the alphabet size of the game considerably, which in turn in-
creased the additive error of the parallel repetition to the extent that for general two-prover games the whole approach
seemed to entirely break down. We get around this difficulty by showing that for the kinds of games (concatenated
games) that arise from the fortification procedure it is possible to establish a parallel repetition theorem where the
additive error only depends on the alphabet size of the original, rather than the fortified game. See Subsection 1.1 for
more on this.
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form of the framework (see the discussion of our analytic formulation below), we are able to
extend fortification to all classical games (i.e. games that are not projection games, and involve any
number of players), as well as the challenging setting of entangled games.

More precisely, the following is a summary of our main contributions:

• Analytic formulation of fortification. The framework of parallel repetition by fortification
was originally cast in combinatorial terms; Moshkovitz’s definition of fortified games, which
we describe below in detail, involves a guarantee on the value of every sufficiently large
rectangular subgame of a game. In our analytic reformulation, fortified games are defined
in terms of substrategies, which one can think of as randomized strategies for the game where
the probability that the players output an answer may be less than 1. This definition behaves
much more “smoothly”, allowing us to generalize them to the entangled and multiplayer
settings.

• Fortification of general classical games and games with more than two players. Next, we
show how to fortify a general k-player game G, for any k ě 2. We show that for any two
fortified general classical games G1 and H 1, ValpG1bH 1q « ValpG1q ¨ValpH 1q. Together this
implies new gap amplification results for general (as opposed to projection) two-player and
multiplayer classical games.

• An entangled-value preserving variant of concatenation. A major obstacle in extending
the fortification framework to the quantum setting is that concatenation, the main ingre-
dient of the original fortification results, does not in general preserve the entangled value.
That is, if G1 is the fortification of G, it doesn’t generally hold that Val*pG1q “ Val

*pGq (even
though ValpG1q “ ValpGq). This is problematic for obtaining gap amplification results: if
Val

*pGq “ 1, then Val
*pGbnq “ 1, but Val*pG1bnq could be exponentially small!

To resolve this issue, we augment the ordinary concatenation procedure of [Mos14] by giving
the players some auxiliary advice input (see Definition 1.4) which helps in keeping the en-
tangled value unchanged. Using this, we define a variant of the fortification transformation
which we call ordered fortification. As desired, in addition to preserving the classical value,
this transformation also preserves the entangled value, which is essential for the complete-
ness of our gap amplification result.

• Fortification of games with entangled players. We show that for a general two-player game
G, its ordered-fortification GOF is a two-player game such that Val˚pGOFq “ Val

˚pGq, and
is also quantumly fortified. We then prove that for any two quantumly fortified games
G1 and H 1, Val*pG1 bH 1q « Val

*pG1q ¨ Val*pH 1q. Together this implies a new general gap
amplification method for entangled two-player games. This (see Theorem 1.3) is the most
technically challenging component of this work.

Let us note that our extensions of the fortification approach, as described in the last three
items above, are ultimately enabled by the analytic viewpoint described in point 1. In order to
describe the main ideas behind these results, we first briefly recall the combinatorial framework
from [Mos14].
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The combinatorial framework. Let G be a two-player game with question sets X,Y and accep-
tance predicate V . For S Ď X and T Ď Y , the subgame GSˆT is defined as the game where the
referee selects px,yq P X ˆ Y according to µ conditioned on x P S,y P T and checks the players’
answers according to the same predicate V (the referee accepts automatically if µpS ˆ T q “ 0). A
game G is said to be pε,δq-combinatorially fortified2 if

ValpGSˆT q ď ValpGq` ε, @S Ď X, T Ď Y , s.t. µpS ˆ T q ě δ. (1)

The main insight underlying [Mos14] is that games satisfying (1) also satisfy a strong form of
parallel repetition (up to some number of rounds depending on ε, δ, and the alphabet size of
G). This motivates the following approach to parallel repetition: Given a game G, Moshkovitz
transforms the game GÑ G1 such that ValpG1q « ValpGq and G1 is pε,δq-combinatorially fortified
for an appropriate choice of pε,δq. Since fortified games satisfy a strong form of parallel repetition,
one expects

ValpG1bmq « ValpG1qm « ValpGqm. (2)

Indeed, by appropriately choosing the parameters pε,δq, [Mos14] can show that the full procedure

G ÝÑ G1 ÝÑ G1bm (3)

amounts to a size-efficient method of gap amplification. That is, we have

ValpGq ě c ñ ValpG1bmq & cm

ValpGq ď s ñ ValpG1bmq . sm
, (4)

where we refer to the first condition as completeness and the second as soundness. The gap
amplification procedure of Moshkovitz G Ñ G1 Ñ G1bm from (3) has three components: (i) a
preprocessing step (biregularization), (ii) fortification, (iii) parallel repetition for fortified games.

The goal of the preprocessing step – the simplest step of the three – is to make the game
biregular (a game G is called biregular if the marginals of questions on both Alice and Bob sides
are uniform), since it is typically easier to analyze the fortification procedure for such games.
The second step is fortification, which is the main technical ingredient of the whole approach.
It is achieved by “concatenating” the game (see Section 1.1 below) with appropriate bipartite
pseudorandom graphs. The third step G1 Ñ G1bm is the parallel repetition of fortified games,
which as observed by [Mos14] is considerably simpler to analyze than the general (non-fortified)
games.

1.1 Results and techniques

The main result of our work is the extension of the fortification framework to general classical
games (with any number of players) and two-player entangled games. On the way to these results
we prove new results on all three components of the fortification framework: (i) biregularization,
(ii) fortification, and (iii) parallel repetition. In this subsection, we discuss some of these results
in detail.

2We shall refer to this notion as combinatorial fortification to distinguish it from the distinct (though closely related)
notion of analytic fortification we primarily use throughout the paper; see Definition 3.1.
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Parallel repetition. A main contribution of [Mos14] was the realization that the two-player pro-
jection fortified games satisfy a strong form of parallel repetition, up to an additive error. This
additive error depended on the parameters of fortification as well as the alphabet size of the for-
tified game. In this work, we prove an improved parallel repetition theorem (Theorem 3.4) which
has the same dependance in the parameters of fortification, but instead of the alphabet size of
the resulting fortified game, it only depends on the alphabet size of the original game (which has
exponentially smaller alphabet size). This new parallel repetition theorem is crucial for extending
the fortification framework to the setting of general (as opposed to projection) two-player games.

Let us remark that the reason why alphabet blow-up of fortification does not cause an issue for
projection games is because for projection games it suffices to only fortify one side of the game (by
working with so-called “square projection” version of the game). As a result there is no alphabet
blow-up for the “unfortified” side, which allows the arguments of [Mos14, BSVV15] to go through.
This one-sided fortification does not work for general games, which is why we need Theorem 3.4.

Fortification. We start with a definition. Let G “ pX ˆ Y ,Aˆ B,µ,V q be a game, and M and P
two bipartite graphs over vertex sets pX 1,Xq and pY 1,Y q respectively. For each x P X or x1 P X 1 let
N pxq Ď X 1 and N px1q Ď X denote the set of neighbors of x and x1, respectively (similarly for any
y,y1).

Definition 1.1 (Concatenated game [Mos14]). In the concatenated game G1 “ pM ˝G˝P q, the referee
selects questions px,yq according to µ, and independently selects a random neighbor x1 for x usingM, and
y1 for y using P . The players receive questions x1 and y1 and respond with assignments a1 : N px1q Ñ A
and b1 :N py1q Ñ B respectively. The players win if V pa1pxq,b1pyq,x,yq “ 1.

Our first two main results show how, both in the classical and quantum settings, any game
can be fortified by concatenating it with bipartite graphs M and P with sufficiently good spectral
expansion.3 (See Section 2.4 for the definition of spectral expanders, and Section 3.1 for the notion
of weak fortification.)

Theorem 1.2 (Main-classical). Let G be a biregular game and M and P two bipartite λ-spectral ex-

panders. If λ ď ε
2

b

δ
2 , then the concatenated game G1 “ pM ˝G ˝ P q is pε,δq-weakly fortified against

classical substrategies.

Theorem 1.3 (Main-quantum). Let G be a biregular game and M and P two bipartite λ-spectral
expanders. If λ ď ε2δ

56 , then the concatenated game G1 “ pM ˝G ˝ P q is pε,δq-weakly fortified against
entangled strategies.

We stress that both in the quantum and classical settings the procedure used to fortify a game
is precisely the same, i.e. concatenation with spectral expanders, and the only difference is in
the resulting parameters. Despite the similarities, the proof of Theorem 1.3 is significantly more
involved, requiring several new ideas and substantial matrix analytic arguements.

Next we discuss a distinctively quantum phenomenon which makes the construction of a full
quantum gap amplification theorem – quantum analogue of (4) – considerably more difficult. As

3Even though explaining these results in full requires the definition of analytically fortified games, which we intro-
duce only later in Section 3.1, the analogy with the notion of combinatorially fortified games from (1) should still be
sufficient to understand the basic ideas.
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it turns out, even though Theorem 1.3 is sufficient to prove the soundness case of the gap amplifi-
cation theorem, the concatenation procedure used in the process can undermine the completeness
condition (i.e. Val*pG1bmq & Val

*pGqm in general fails to hold).

The issue is as follows: let G be a game and G1 “ pM ˝G ˝ P q be a concatenated version of G.
Classically we have ValpG1q “ ValpGq. Quantumly, even though we still have Val

*pG1q ď Val
*pGq

the other direction in general fails: we would have liked to argue that the players in G1 are able to
utilize the strategy in G to achieve the same success probability in the concatenated game, but this
seems impossible: having received x1 P X 1 and y1 P Y 1, the players have access to lists N px1q Ď X
and N py1q Ď Y that they know contain the true questions of the referee, i.e. x˚ PN px1q, y˚ PN py1q.
The players would like to apply their optimal strategy in G to each and every px,yq PN px1qˆN py1q
simultaneously, but this is in general impossible in the quantum setting.4

Note that the same issue does not arises classically because the optimal strategy in G can be
taken to be a deterministic one, and the players in G1 can use the same labeling suggested by
the optimal strategy in G to give labels to all of N px1q and N py1q simultaneously. This strategy
however relies on the fact that classically different questions have a simultaneous labeling, a fact
which certainly has no quantum analogue.

We resolve the above issue using a novel entangled value-preserving variant of fortification
which we call ordered fortification. The basic idea for ordered fortification is to give the players
some extra advice information which helps in preserving the entangled value.

LetG be a game andG1 “ pM˝G˝P q be a concatenated version ofG. There is an extra parameter
l in the construction defined as l “max

 

maxx1PX1 |N px1q|,maxy1PY 1 |N py1q|
(

.

Definition 1.4 (Ordered concatenation). Let G and G1 be as above. In G1OF , the referee samples px,yq
according to G and picks random neighbors x1 „N pxq and y1 „N pyq independently. She then also picks
two random injective maps rx1 : N px1q Ñ rls and sy1 : N py1q Ñ rls conditioned on sx1pxq “ ry1pyq. The
referee sends x1 and rx1 to the first player, and y1 and sy1 to the second and accepts if the players’ answers
a1 :N px1q Ñ A and b1 :N py1q Ñ B satisfy V pa1pxq,b1pyq,x,yq “ 1.

Here the crucial point is that rx1 and sy1 are correlated. They give matching labels to true
questions x and y. To achieve the same winning probability as in G, the players in G1OF will share
l copies of the state |ψy from the optimal strategy in G. For each x˚ P N px1q with label i “ rx1px˚q,
the first player will apply the optimal G-strategy for x to the ith copy of |ψy (similarly for the
second player). The fact that rx1pxq “ sy1pyq ensures that for the true questions x and y the players
apply the optimal G strategies to the same copy of |ψy, and hence are able to win with exactly the
same winning probability as in G.

Of course, the crucial part here is that even though the auxiliary information in rx1 and sy1 is
helpful to the players for replicating the winning probability of G, it should not be “too helpful”.
In particular, we need to still be able to prove that G1OF is fortified with appropriate parameters.
This point is established by the following theorem.

Theorem 1.5 (Main-ordered fortification). Let G be a game and M and P be two bipartite graphs as
above. Let G1OF be constructed from G and G1 “ pM ˝G ˝ P q as in Definition 1.4. Then, we have

Val
*pG1OFq “ Val

*pGq.

4This is because the measurement operators of different questions do not in general commute which prevents Alice
(say) to obtain simultaneous answers for all questions in N px1q. As a further illustration of this issue, see Section 2.2
for an example of a game where Val

*pG1q ă Val
*pGq.
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Furthermore if M and P are λ-spectral expanders and λď ε2δ
56 , then G1OF is also pε,δq weakly fortified.

We prove Theorem 1.5 in Section 6 using a spectral argument that reduces it to Theorem 1.3.
Beside the above, we also prove a simple multiplayer fortification in Section 5 for classical games.
It may be possible to adapt the proofs of Theorem 1.3 and Theorem 5.2 to obtain a multiplayer
fortification theorem for entangled games. Although plausible, some further technical issues arise
in this case which we do not pursue here.

Biregularization. As already mentioned, biregularization is a minor (but necessary) step in the
fortification framework. Our biregularization lemmas are presented in Subsection 2.3 and are
proved in Appendix A. In terms of final statement, our biregularization lemmas are incomparable
with those of [Mos14, BSVV15]. For example, in the case of graphical games, we prove a biregular-
ization lemma which preserves the value exactly but has a cubic blow-up in the number of ques-
tions, whereas the biregularization lemmas from [BSVV15, Mos14] had a nearly linear blow-up
but only preserved value up to an additive error. Moreover, in this work we prove biregularization
for all games whereas [BSVV15, Mos14] only considered graphical games. (See Subsection 2.3 for
definitions.)

1.2 Related work

The main result underlying the present work is Moshkovitz [Mos14], where the framework of
parallel repetition via fortification was first introduced. Some simplifications and corrections
to the work of Moshkovitz appeared in Bhangale et al. [BSVV15]. In particular, an important
contribution of [BSVV15] was the clarification of the best bounds possible in classical fortification
theorems [BSVV15, Appendix C]. Going back, the general idea of modifying the game in order to
facilitate its analysis under parallel repetition originates from the work of Feige and Kilian [FK00]
who introduced the confuse/miss-match style repetition of games. The Feige-Kilian type parallel
repetition was later extended by Kempe and Vidick [KV11] to the quantum setting allowing them
to obtain the first general parallel repetition theorem for quantum games.5

Another important set of ideas underlying our work is related to the analytic approach to par-
allel repetition pioneered by Dinur and Steurer [DS14], further extended by Dinur et al. [DSV14].
Our analytic reformulation of fortification framework is very much inspired by the ideas in these
works.

Yet another different stream of work (more distantly related to the present work) follows the
original ideas of Raz and Holenstein [Raz98, Hol07] by taking a more information theoretic ap-
proach to quantum parallel repetition. The first results in this direction were obtained by Chail-
loux and Scarpa [CS14] and Jain et al. [JPY14] who prove exponential-decay parallel repetition
results for free two-player games. Their analysis, as well as the follow-up work of Chung et
al. [CWY15], provided the basis for the recent work of the authors [BVY15] who obtained hard-
ness amplification method in great generality by introducing and analyzing the parallel repetition
of a class of games called anchored games. The final hardness amplification results obtained here
through fortification are incomparable to that of [BVY15]: fortification allows for a somewhat

5Their transformation did not preserve the entangled value, and hence did not lead to a fully general hardness
amplification method for entangled games (being restricted to the case where the completeness holds with classical
strategies). Our Theorem 1.3, without the improvement of Theorem 1.5, is applicable to a similar setting.
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faster rate of decay in some regimes,6 yet it suffers from a much larger blow-up in terms of alpha-
bet size.

Turning to the multiplayer setting, very little was known prior to the present work and [BVY15].
It is folklore that free games with any number of players satisfy a parallel repetition theorem, and
this was explicitly proved in both classical and quantum settings in [CWY15]. Multiplayer par-
allel repetition has been studied in the setting of non-signaling strategies, a superset of entangled
strategies which allows the players to generate any correlations that do not imply communication.
Buhrman et al. [BFS13] show that the non-signaling value of a gameG with any number of players
decays exponentially under parallel repetition, with a rate of decay that depends on the entire de-
scription of the gameG. Arnon-Friedman et al. [AFRV14] and Lancien and Winter [LW15] achieve
similar results using a different technique based on “de Finetti reductions”. An interesting fact
about the latter work [LW15] is the use of a notion of sub-no-signalling strategies which seems
related to our notion of quantum/classical substrategies.

1.3 Organization

In Section 2, we introduce some basic definitions and notation including the notion of substrate-
gies, induced strategies, and some other basic results and definitions that are used throughout
the paper. In Section 3, we complete the presentation of our main results (which was started in
the introduction), discuss the parameters of the final gap amplification results, and present the
formal definition of analytically fortified games.

The remaining sections contain proof of the main theorems. Our parallel repetition theorem
is proved in Section 4. Theorems 1.2 and 1.3 are proved in Sections 5 and 7, respectively. The
reduction from Theorem 1.5 to Theorem 1.3 is given in Section 6. The biregularization lemmas
are proved in Appendix A. We conclude by some open problems in Section 8.

2 Preliminaries
Given a distribution µ, by z „ µ we mean that the random variable z is distributed according to µ.
For a set S, by z „ S we mean z „ US where US is the uniform distribution over S. For Hermitian
matrices A,B we write Aě B if and only if A´B is positive semidefinite.

Given two games G1 and G2, we define the tensor product game G1 bG2 as the game where
the referee selects two pairs of questions px1, y1q and px2, y2q independently according to G1 and
G2, sends px1,x2q and py1, y2q to Alice and Bob respectively, and checks their answers pa1, a

1
2q and

pb1,b2q according to the product predicate
ś2
i“1V pai ,bi ,xi , yiq.

2.1 Game value and strategies

The main goal of this section is to introduce the notion of classical and quantum substrategies
which replace the notion of subgames from [Mos14, BSVV15]. As subgames were central in the
combinatorial framework of [Mos14], substrategies are similarly central to our analytic framework.

Let G be a game with question sets X,Y , answer sets A,B, predicate V , and question distribu-
tion µ on XˆY .

Definition 2.1 (Classical substrategies). LetG “ pXˆY ,AˆB,µ,V q be a two-player game. A classical

6For example, for general two-player games the fortification approach gives a nearly perfect decay in terms of
number of repetitions and question size blow-up, whereas [BVY15] and other information theoretic results have a
p1´ ε2qΩpmq type behavior which is weaker than fortification when m! ε´1.
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substrategy is given by pf ,gq where f : XˆAÑ r0,1s, g : Y ˆBÑ r0,1s satisfy

@x P X, f pxq :“
ÿ

a

f px,aq ď 1, @y P Y , gpyq :“
ÿ

b

gpy,bq ď 1.

We call pf ,gq a “complete strategy” (sometimes simply strategy) if equality holds in all above inequal-
ities, i.e. f pxq “ gpyq “ 1 for all x,y.

Definition 2.2. Given a substrategy pf ,gq, the value of G with respect to pf ,gq is given by

ValpG,f ,gq :“ E

px,yq„µ

ÿ

aPA,bPB

V pa,b,x,yqf px,aq ¨ gpy,bq. (5)

The classical value of G is
ValpGq :“ sup

f ,g
ValpG,f ,gq, (6)

where the supremum is taken over all complete strategies f ,g.

We note that the definition given by (6) can be easily seen to be equivalent to the more tradi-
tional definition of the classical value, i.e.

ValpGq :“ max
p:XÑA
q:YÑB

E

px,yq„µ
V pppxq,qpyq,x,yq, (7)

because any strategy f : X ˆAÑ r0,1s, g : Y ˆBÑ r0,1s can be written as convex combination of
a collection of strategies of t0,1u valued strategies; on the other hand, taking supremum over f ,g
which are t0,1u valued is precisely equivalent to (7).

Next, we extend the above notions to the quantum setting.

Definition 2.3 (Quantum substrategies). Let G “ pX ˆ Y ,A ˆ B,µ,V q be a two-player game. A
quantum (or entangled) substrategy for G is a tuple p|ψy,tAaxu,tB

b
yuq defined by an integer d P N,

a unit vector |ψy P Cdˆd and sets of positive semi-definite matrices tAaxuxPX,aPA,tB
b
yuyPY ,bPB over Cd

satisfying
@x P X, Ax :“

ÿ

a

Aax ď Id, @y P Y , By :“
ÿ

b

Bby ď Id . (8)

If Ax “ By “ Id for every x,y the quantum substrategy is called a “complete strategy” (sometimes
simply strategy).

Definition 2.4. Given a quantum substrategy p|ψy,tAaxu,tB
b
yuq, the value ofGwith respect to p|ψy,tAaxu,tB

b
yuq

is given by
Val

*pG, |ψy,tAaxu,tB
b
yuq “ E

px,yq„µ

ÿ

a,b

V pa,b,x,yqxψ|AaxbB
b
y |ψy.

The entangled value of G is defined as

Val
*pGq “ sup

|ψy,tAaxu,tBbyu

Val
*pG, |ψy,tAaxu,tB

b
yuq, (9)

where the supremum is taken over all complete strategies p|ψy,tAaxu,tB
b
yuq.

9



2.2 Concatenated games

Let G “ pX ˆ Y ,AˆB,µ,V q be a game, and M and P two bipartite graphs over vertex sets pX 1,Xq
and pY 1,Y q respectively. For each x P X or x1 P X 1 let N pxq Ď X 1 and N px1q Ď X denote the set of
neighbors of x and x1, respectively (similarly for any y,y1). Recall the definition of Concatenated
Games from the introduction.

Definition (Definition 1.1 restated). In the concatenated game G1 “ pM ˝G ˝ P q, the referee selects
questions px,yq according to µ, and independently selects a random neighbor x1 for x using M, and y1

for y using P . The players receive questions x1 and y1 and respond by assignments a1 : N px1q Ñ A and
b1 :N py1q Ñ B respectively. The players win if V pa1pxq,b1pyq,x,yq “ 1.

For a concatenated game G1 “ pM ˝G ˝ P q, we refer to G1 as the outer game and to G as the inner
game.

Let G1 “ pM ˝G ˝P q be a concatenated game. Let dX1 “maxx1PX1 |N px1q|, dY 1 “maxy1PB1 |N py1q|.
Then, the alphabet of the concatenated game is given by A1 “ AdX1 , B1 “ BdY 1 . Similarly, it is easy

to see that the distribution µ1 of questions in G1 is given by µ1px1, y1q “ Epx,yq„µ
1x1PNpxq
|N pxq| ¨

1y1PNpyq
|N pyq| .

Definition 2.5. Let G1 “ pM ˝G ˝ P q be a concatenated game. To any pair of substrategies pf ,gq for G1

we associate the induced substrategy7

f px,aq :“ E

x1„N pxq

ÿ

a1:a1pxq“a

f px1, a1q, gpy,bq :“ E

y1„N pyq

ÿ

b1:b1pyq“b

f py1,b1q. (10)

Similarly, given an entangled substrategy p|ψy,tAa
1

x1u,tB
b1
y1uq for G1, we define the induced substrategy

as
Aax :“ E

x1„N pxq

ÿ

a1pxq“a

Aa
1

x1 , Bby :“ E

y1„N pyq

ÿ

b1pyq“b

Bb
1

y1 . (11)

Intuitively, an induced strategy is a strategy for the inner game in which the players proceed
as follows: given question x P X, y P Y and a strategy pf ,gq for the outer game, the players select
two random neighbors of their questions x1 P N pxq, y1 P N pyq independently, and play according
to the labeling of x,y suggested by pf ,gq at x1 and y1.

The following simple proposition will play an important role throughout the paper.

Proposition 2.6. Let G1 “ pM ˝G˝P q be a concatenated game. The value of any classical strategy pf ,gq
(resp. quantum strategy p|ψy,tAa

1

x1u,tB
b1
y1uq) in the outer game G1 is equal to the value of the induced

strategy in the inner game G:

ValpG1, f ,gq “ ValpG,f ,gq and Val
*pG1, |ψy,tAa

1

x1u,tB
b1
y1uq “ Val

*pG, |ψy,tAaxu,tB
b
yuq. (12)

As a consequence,
ValpG1q ď ValpGq, and Val

*pG1q ď Val
*pGq. (13)

Furthermore,
ValpG1q “ ValpGq. (14)

7Note the slight (but convenient) abuse of notation due to the use of the same letter to represent a substrategy
and the corresponding induced substrategy. The more accurate but more cumbersome way of denoting the induced
strategies in in [DS14]’s language would have been Mf and P g.

10



Proof. The first equality in (12) follows from linearity of expectation and the definition of induced
strategies as

ValpG1, f ,gq “ E

px,yq„µ
E

x1„N pxq
E

y1„N pyq

ÿ

a1PA1,b1PB1
V pa1pxq,b1pyq,x,yqf px1, a1q ¨ gpy1,b1q

“ E

px,yq„µ

ÿ

aPA,bPB

V pa,b,x,yqf px,aq ¨ gpy,bq

“ ValpG,f ,gq.

The second equality is proved similarly. The two inequalities (13) follow directly from (12). To
show (14) it remains to show that ValpG1q ě ValpGq. Consider an optimal deterministic strategy
for G given by p : XÑ A and q : Y Ñ B. For any x1 P X 1, y1 P Y 1 define a1 :N px1q Ñ A according to p
and b1 : N py1q Ñ B according to q. It is easy to see that this achieves the same value in G1 as pp,qq
did in G.

As mentioned in the introduction, the quantum analogue of (14) does not hold in general. For
example, consider the case that M and P are complete bipartite graphs. In this case, the players
playing G1 “ pM ˝ G ˝ P q need to provide a labeling to all vertices in X and Y simultaneously.
But this is essentially just a classical strategy as the labelings for X,Y are now fixed. Hence,
Val

*pG1q “ ValpGq, the classical value, which in many cases could be much smaller than Val
*pGq.

2.3 Biregularization

As in [Mos14, BSVV15] we prove our fortification theorems for the special class of biregular games.

Definition 2.7. A two-prover game G “ pXˆY ,AˆB,µ,V q is called biregular if the marginals of µ on
X and Y are both uniform.

The following lemma justifies that for our purposes we may always assume a game is biregular.

Lemma 2.8 (Biregularization lemma). LetG “ pXˆY ,AˆB,µ,V q be a two-prover game and τ P p0,1q
a fixed constant. There exists an efficient algorithm that given G produces a biregular game Gint with
question sets Xint and Yint of cardinality at most

|Xint| ď
8|X|2|Y |

τ
, |Yint| ď

8|X||Y |2

τ
, (15)

the same answer alphabet size as G, and value satisfying

ValpGq ď ValpGintq ď ValpGq` τ, Val
*pGq ď Val

*pGintq ď Val
*pGq` τ. (16)

Note that (16) implies that applying the Biregularization Lemma to a game never decreases its
value, and hence the procedure is completeness preserving.

A widely used class of games in applications are so-called graphical games, for which we can
get an improved biregularization result that does not require any approximation factor τ .

Definition 2.9. A graphical game G is a game where the questions are given by choosing an edge of
a bipartite graph uniformly at random (i.e. E Ď X ˆ Y and µpx,yq “ 1

|E| if px,yq P E and µpx,yq “ 0
otherwise). The predicate and the answers do not have any restrictions.

11



Lemma 2.10 (Biregularization lemma, graphical case). Suppose G is two-prover graphical game with
E edges between pX,Y q. There exists an efficient algorithm that given G produces a biregular game Gint
with question sets Xint and Yint bounded by

|Xint| ď |E| ¨ |X| ď |X|
2|Y |, |Yint| ď |E| ¨ |Y | ď |X||Y |

2, (17)

the same answer alphabet size as G, and the value satisfying

ValpGq “ ValpGintq Val
*pGq “ Val

*pGintq. (18)

Remark 2.11. In the above, we can allow for multiple edges across vertices of G. In this case E
must be taken as a multi-set and the bound |E| ď |X||Y | used in (17) must be suitably modified.

Interestingly, our technique for proving the biregularization lemmas is concatenation itself!
This is done in Appendix A.

2.4 Expanders

The method used in [Mos14, BSVV15] for fortifying a game is concatenation with sufficient pseu-
dorandom bipartite graphs. This is done using extractors in [Mos14] whereas expanders are em-
ployed in [BSVV15].8 Here we follow the latter approach and use expanders.

Let M “ pX 1ˆX,Eq be a bipartite graph. For x P X let N pxq Ď X 1 denote the set of neighbors
of x and similarly for x1 P X 1. We shall work with graphs that are X-regular, i.e. d “ |N pxq| for all
x P X. Define distributions µ and µ1 on X and X 1 via

µpxq “
1
|X|

, µ1px1q “
|N px1q|
d

.

for all x P X and x1 P X 1. Note that µ1px1q is the probability of obtaining x1 by sampling x „ µ
and taking a random neighbor of (according M) x . LetM be the following normalized adjacency
matrix of M

Mpx,x1q “

#

1
d ¨

b

µpxq
µ1px1q if x1 PN pxq

0 otherwise

We usually viewM as an operator from `2pX
1q to `2pXq. Note that whenM is a biregular expander

we get the simpler definitionMpx,x1q “ 1
d

b

|X1|
|X| for x1 PN pxq, and 0 otherwise.

Definition 2.12. A bipartite graph M is called a λ-spectral expander if the second-largest singular
value ofM is at most λ.

A simple useful proposition for us is the following:

Proposition 2.13. Let M “ pX 1ˆX,Eq be a bipartite λ-spectral expander. For f : X 1 Ñ R and x P X
let f pxq “ Ex1„N pxq f px1q, and f̄ “ Ex1„µ1 f px1q “ Ex„µ f pxq. Then

E
x„µ
pf pxq´ f̄ q2 ď λ2

E

x1„µ1
pf px1q´ f̄ q2. (19)

8The two approaches however lead to essentially to similar parameters (e.g. λ“Opε
?
δq to get pε,δq-fortified graph

where λ is the second largest singular value of normalized adjacency matrix of the concatenating graph.); moreover, in
the classical setting the approaches are in fact are more or less equivalent. See [BSVV15] for more.
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Proof. Let pµ P RX ,pµ1 P RX
1

to unit vectors defined as pµpxq :“
a

µpxq and pµ1px
1q :“

a

µpx1q.
LetqXpxq :“

a

µpxqf pxq, qX1px1q :“
a

µpx1qf px1q.

First, observe thatMpµ1 “ pµ andMt pµ1 “ pµ. It follows that ppµ,pµ1q form a pair of singular
vectors of M. Moreover, it is easy to see9 that these are top singular vectors which shows that
}M}op “ 1. Now notice that

E

x1Ðµ1
pf px1q´ f̄ q2 “

ÿ

x1
p

b

µpx1qf px1q´ f̄
b

µpx1qq2 “ }qX1 ´ f̄ pµ1}
2
2, (20)

Second, observe
MqX1 “ qX . (21)

As such, (19) precisely corresponds to

}qX ´ f̄ pµ}
2
2 “ }MpqX1 ´ f̄ pµ1q}

2
2 ď λ

2 ¨ }qX1 ´ f̄ pµ1}
2
2. (22)

The claim follows by noting the orthogonality property

xqX1 ´ f̄ pµ1 ,pµ1y “
ÿ

x1
µpx1qf px1q´ f̄ “ 0. (23)

3 Fortification Framework
This section introduces the fortification framework. We define the notion of analytically fortified
games and recall our main parallel repetition and fortification theorems. We end by a discussion
of the parameters of the resulting gap amplification results.

3.1 Analytical fortification

We distinguish between two variants of the notion of fortified games which we call weakly fortified
games and strongly fortified games. Although the difference between the two may seem minor, this
difference is in fact quite important in the quantum case.

Definition 3.1 (Fortified games). Let ε,δ P r0,1s. A concatenated game G1 “ pM ˝G ˝ P q is called
weakly pε,δq- fortified against classical substragies if for any substrategy f ,g we have

ValpG1, f ,gq ď pValpGq` εq ¨ E

px,yq„µ
f pxqgpyq` δ. (24)

Similarly, we define G1 to be weakly pε,δq-fortified against entangled substrategies if for any substrategy
tAa

1

x1u,tB
b1
y1u we have

Val
*pG1,tAa

1

x1u,tB
b1
y1uq ď pVal

*pGq` εq ¨ E

px,yq„µ
xψ|AxbBy |ψy` δ. (25)

If furthermore ValpGq (resp. Val*pGq) can be replaced by ValpG1q, (resp. Val*pG1q) in the above then
the game is called “strongly fortified” against classical (resp. quantum) substrategies.

9e.g. by appealing to the Perron-Frobenius theorem.
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Note that our main results, Theorems 1.2 and 1.3, show how any game can be (weakly) fortified
by concatenating it with good-enough spectral expanders.

Two remarks regarding the above definition are in order:

• Using (13), we see that strong fortification implies weak fortification, as expected from the
terminaology.

• From (14) it follows that the two notions in fact coincide in the case of classical fortification,
but this is no longer the case for quantum fortification.

Our notion of fortified games and that of [Mos14, BSVV15] are closely related. Essentially, in
Definition 3.1 we have replaced the the condition for all δ-large rectangles in (1) with a smoother
condition. In terms of a precise relation, we can show the following.

Claim 3.2. Every pε,εδq strongly fortified game is also p2ε,δq combinatorially fortified.

Proof. Consider a subgame given by S Ď X,T Ď Y in G. To every strategy pp,qq for GSˆT , i.e.,
p : SÑ A, q : T Ñ B, we can associate a natural substrategy pf ,gq by

f px,aq “

#

1 if x P S ^ ppxq “ a,

0 otherwise
, gpy,bq “

#

1 if y P T ^ qpyq “ b,

0 otherwise
. (26)

Then one can easily see

ValpG,f ,gq “ ValpGSˆT ,p,qq ¨µpS ˆ T q.
10 (27)

Now assuming that rectangle S ˆ T is δ-large, i.e. µpS ˆ T q ě δ, and since G is fortified against
classical substrategies, we have

ValpGSˆT ,p,qq “
ValpG,f ,gq

µpS ˆ T q
(28)

ď pValpGq` εq ¨
Epx,yq„µ f pxqgpyq

µpS ˆ T q
`

δε
µpS ˆ T q

(29)

ď ValpGq` 2ε (30)

where in the second inequality we used µpS ˆ T q “ Epx,yq„µ f pxqgpyq.

We note that in Lemma 3.2, the reverse implication does not hold and the notion of analytically
fortified game is strictly stronger. In what follows, in the rare occasion when we call a game
fortified (without specifying weak or strong) we mean strongly fortified.

10The term µpS ˆ T q “ Epx,yq„µ f pxqgpyq is a natural scaling parameter playing an important role in our discussion
as a measure of the “largeness” of a subgame or a substrategy.
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3.2 Parallel repetition of fortified games

Using the definition of fortified games, it is straightforward to prove the following parallel repe-
tition theorem.

Theorem 3.3 (Basic parallel repetition). Let G12 be a pε,δq-fortified game against classical substrate-
gies. Then for any game G11 we have

ValpG11bG
1
2q ď pValpG

1
2q` εq ¨ValpG

1
1q` δ ¨ |ΣG11 |, (31)

where ΣG11 is the total answer alphabet size (i.e. the product of Alice and Bob’s alphabets) of G11.

We prove this theorem in Section 4 by adapting the proof of the analogous theorems in [Mos14,
BSVV15] to the analytic setting. Unfortunately, while this theorem exemplifies the main idea
behind our results, it is not directly useful for applications. The reason for this is that the
fortification procedure G Ñ G1 via concatenation induces a large blow-up in the alphabet size,
|ΣG1 | « |ΣG|

D , where D “ 1
ε
?
δ

is the degree of the expander graph chosen. As one iterates the rep-

etition procedurem times, the blow-up due to the additive term in (31) will be of order δ|ΣG1 |m´1.
But typically |ΣG1 |m´1 " |ΣG|

pm´1q{
?
δ, leading to a term larger than 1 and rendering the theorem

useless.

We resolve this problem by proving an improved repetition theorem which exploits the fact
that G1 takes the form of a concatenated game, whose inner game G has a much smaller alphabet.

Theorem 3.4. Let G1 be a concatenated game, with inner game G, that is pε,δq-weakly fortified against
classical substrategies. If δ ¨ pm´ 1q ¨ |ΣG|m´1 ď η then

ValpG1bmq ď pValpGq` εqm` η. (32)

Similarly, if G1 is pε,δq weakly-fortified against entangled substrategies and δ ¨ pm´ 1q ¨ |ΣG|m´1 ď η
then

Val
*pG1bmq ď pVal*pGq` εqm` η. (33)

The main advantage of Theorem 3.4 compared to Theorem 3.3 is in the additive error, which
is now is in terms |ΣG| rather than |ΣG1 |. What is important here is that the size of |ΣG| is indepen-
dent of the fortification parameters pε,δq whereas |ΣG1 | grows exponentially as δ decreases. Let us
also note that Theorem 3.4 is quite general, and in particular applies to the multiplayer case.

3.3 Gap amplification

Having stated our main parallel repetition, fortification, and biregularization theorems, all the
main components of gap amplification are finally in place. Indeed, using ValpGq “ ValpG1q The-
orem 3.4 implies our final gap amplification for the classical value. This matches the parameters
of main results of [Mos14, BSVV15] and extends it to more general settings.

Since quantumly we could have Val
*pG1q ă Val

*pGq, from (33) we cannot obtain

Val
*pG1bmq ď pVal*pG1q` εqm` η. (34)

However, Theorem 1.3 and Theorem 3.4 are still sufficient to prove a gap amplification theorem
for the case where the completeness holds against classical players and the soundness against the
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quantum ones.11 To obtain a fully quantum gap amplification however, we need to appeal to the
notion of ordered fortification which, as we discussed, is a entangled-value preserving variant of
the ordinary fortification.

Theorem (Theorem 1.5 restated). Let G be a game and M and P be two bipartite graphs as above. Let
G1OF be constructed from G and G1 “ pM ˝G ˝ P q as in Definition 1.4. Then, we have

Val
*pG1OFq “ Val

*pGq.

Furthermore if M and P are λ-spectral expanders and λď ε2δ
56 , then G1OF is also pε,δq weakly fortified.

We stress that G1OF constructed above is itself a concatenated game with the inner game G‘l ,
disjoint union of l “ polyp 1

ε2δ q copies of G. This means the inner alphabet size of G1OF is precisely
the same as G’s, and therefore there is fortunately no issue in terms of alphabet blow-up for
applying Theorem 3.4 to G1OF . So using G1OF instead of G1 in Theorem 3.4, we can finally prove
the analogue of (34) for G1OF .

Parameters of gap amplification. We can now discuss the parameters of the gap amplification
corollaries. As in [Mos14, BSVV15], the parameters are typically very good in terms of question
sizes but much worse in terms of alphabet size. Here, we mostly focus our discussion to gap
amplification in the classical setting as the calculations in the quantum setting are similar.

To understand the parameters, we need to only consider the soundness case. Suppose we are
given a game G with guarantee ValpGq ď 1´τ and a target soundness value β. We choose ε “ τ{2
and m such that pValpGq` εqm ď β{2. Hence, we have m“ logp2{βq

logp1´τ{2q ď
2logp2{βq

τ . We want

ValpG1bmq ď pValpGq` εqm` δ ¨ pm´ 1q|ΣG|
m´1 ď β. (35)

Hence, we just need to ensure δ ¨ |ΣG|m´1 ď β{2. So we have δ “ β
pm´1q¨|ΣG|m´1 .

So what does the above mean in terms of the size of the final output of gap amplification
G1bm. The question size is |X|m and |Y |m (since we have |X 1| “ |X| and |Y 1| “ |Y |). Note that m is
essentially as small as we can hope for because even given a perfect parallel repetition theorem,
we had to take m « logp1{βq

τ . Hence, the construction is essentially optimal in terms of question
sizes.

For the alphabet size, the situation is much worse. We have |ΣG1 | “ |ΣG|D whereD “Oppolylogp1{ε2δq
ε2δ q.

This means (up to dominant factors) that |ΣG1bm | “ |ΣG|
m2|ΣG|

m´1

β which means that the alphabet is
exponentially worse than basic parallel repetition which results in |ΣG|m. Note that however in
typical settings where |ΣG| is constant and β a small constant (or inverse logarithmic in size of G),
this exponentially worse behavior of alphabet size does not cause a significant problem.

Next, let us consider the setting where the completeness holds for classical players and sound-
ness against entangled players. In this case, we can just use Theorem 1.3 instead of Theorem 1.2,
and hence all the calculations are precisely the same with ε and δ replaced with their squares.

Lastly, in the fully quantum case we need to use Theorem 1.5. In this case, m,ε,δ are chosen
in precisely the same way. Alphabet size is also exactly the same as G1OF has the same alphabet

11E.g. as was the case in [IV12, Vid13].
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size as G1. The only difference is that the question sizes in G1OF are slightly larger than G1: we have

|X 1| “ |X| ¨polyp |ΣG|
m

β q and |Y 1| “ |Y | ¨polyp |ΣG|
m

β q. This is however arguably a minor blow-up since
we typically expect that |ΣG|{β to be much smaller than sizepGq “ |X| ¨ |Y |.

4 Parallel Repetition Theorems
In this section we prove our main parallel repetition theorem.

Theorem (Theorem 3.4 restated). Let G1 be a concatenated game pε,δq-weakly fortified against classi-
cal substrategies with inner game G. If δ ¨ pm´ 1q ¨ |ΣG|m´1 ď η then

ValpG1bmq ď pValpGq` εqm` η. (36)

Similarly, if G1 is pε,δq weakly-fortified against entangled substrategies and δ ¨ pm´ 1q ¨ |ΣG|m´1 ď η
then

Val
*pG1bmq ď pVal*pGq` εqm` η. (37)

The proof follows directly from the following proposition.

Proposition 4.1. Let tG1iu
t
i“1 be a collection of concatenated games with inner games tGiuti“1. Suppose

that G1t is pε,δq weakly fortified against classical substrategies. Then,

ValpG11bG
1
2b . . .bG

1
tq ď pValpGtq` εq ¨ValpG

1
1bG

1
2b . . .bG

1
t´1q` δ ¨

t´1
ź

i“1

|ΣGi |. (38)

Similarly, if G1t is pε,δq weakly fortified against quantum substrategies, then

Val
*pG11bG

1
2b . . .bG

1
tq ď pVal

*pGtq` εq ¨Val
*pG11bG

1
2b . . .bG

1
t´1q` δ ¨

t´1
ź

i“1

|ΣGi |. (39)

The key to proving Proposition 4.1 is to work with the induced strategies. This allows us to
get an additive error depending just on the alphabet size of the inner game. In the proof, we use
the usual notation where a strategy missing an (answer) argument indicates summation over that
variable. For example,

f px1, a1, . . . ,xt´1, at´1,xtq “
ÿ

at

f px1, a1, . . . ,xt´1, at´1,xt , atq.

Proof. We only prove (38) as the proof of (39) follows the same structure. Also for simplicity, we
focus on the case of two-player games as the proof of the multiplayer case is a straightforward
extension.

Consider any strategies f : X 11ˆA
1
1ˆ . . .ˆX

1
tˆA

1
tÑ r0,1s, g : Y 11ˆB

1
1ˆ . . .ˆY

1
t ˆB

1
tÑ r0,1s. To

clarify notation we will denote tuples pz1, . . . , zt´1q as zăt. With this notation, ValpG11b. . .bG
1
t , f ,gq

is precisely

E

pxďt ,yďtq
E

x1ďt
E

y1ďt

ÿ

a1ďt ,b1ďt

t
ź

i“1

V pa1ipxiq,b
1
ipyiq,xi , yiqf px

1
ďt ,a

1
ďtq ¨ gpy

1
ďt ,b

1
ďtq, (40)
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where the expectations are according to pxi , yiq „ µi and x1i „ N pxiq and y1i „ N pyiq for all i “
1, . . . , t. As usual let

f pxăt ,aăt ,x
1
t , a
1
tq “ E

x1ăt„N pxătq

ÿ

a1ipxiq“ai , iăt

f px1ăt ,a
1
ăt ,x

1
t , a
1
tq. (41)

Using this notation, we can rewrite (40) as

E

pxăt ,yătq

ÿ

aăt ,băt

t´1
ź

i“1

V pai ,bi ,xi , yiqSpxăt ,yăt ,aăt ,bătq, (42)

where Spxăt ,yăt ,aăt ,bătq is given by

E

pxt ,ytq
E

x1t
E

y1t

ÿ

a1t ,b
1
t

V pa1tpxtq,b
1
tpytq,xt , ytqf pxăt ,aăt ,x

1
t , a
1
tq ¨ gpyăt ,băt , y

1
t ,b

1
tq. (43)

Consider the following substrategy G1t: fix the first 2pt ´ 1q arguments of f to pxăt ,aătq and the
first 2pt´1q arguments of g to pyăt ,bătq. Then (43) is precisely the value of this substrategy in G1t.
Since G1t is pε,δq weakly fortified, it follows that

(43)ď pValpGtq` εq ¨ E

pxt ,ytq
f pxăt ,aăt ,xtq ¨ gpyăt ,băt , ytq` δ. (44)

Plugging this expression back into (42), ValpG11b . . .bG
1
t , f ,gq is bounded by

pValpGtq` εq E

pxďt ,yďtq

ÿ

aăt ,băt

t´1
ź

i“1

V pai ,bi ,xi , yiqf pxăt ,aăt ,xtq ¨ gpyăt ,băt , ytq` δ ¨
t´1
ź

i“1

|ΣGi |.

To conclude we observe that

E

pxďt ,yďtq

ÿ

aăt ,băt

t´1
ź

i“1

V pai ,bi ,xi , yiqf pxăt ,aăt ,xtq ¨ gpyăt ,băt , ytq (45)

is at most ValpG11b . . .bG
1
t´1q, as for any fixed pxt , ytq the functions f p¨,xtq : X 11ˆA

1
1ˆ . . .ˆX

1
t´1ˆ

A1t´1 Ñ r0,1s and gp¨, ytq : Y 11ˆB
1
1ˆ. . .ˆY

1
t´1ˆB

1
t´1 Ñ r0,1s are valid strategies inG11b. . .bG

1
t´1.

Remark 4.2. Theorem 3.3 immediately follows from Proposition 4.1 by taking t “ 2 and consid-
ering the trivial concatenation G11 “ G1, G12 “ G2.

Theorem 3.4 follows easily.

Proof of Theorem 3.4. We prove (36) as the proof of (37) is similar.

The proof is by induction on m. The case m“ 1 is clear. By the induction hypothesis we have

ValpG1bpm´1q
q ď pValpGq` εqm´1` δ ¨ pm´ 2q|ΣG|

m´2.

Note that we can assume ValpGq ` ε ă 1 otherwise (36) holds trivially. Applying Proposition 4.1
we see that

ValpG1bmq ď pValpGq` εq ¨ValpG1bpm´1q
q` δ ¨ |ΣG|

m´1

ď pValpGq` εqm` δ ¨ pValpGq` εq ¨ pm´ 2q|ΣG|
m´2` δ ¨ |ΣG|

m´1

ď pValpGq` εqm` δ ¨ pm´ 1q ¨ |ΣG|
m´1.
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5 Classical Fortification
In this section we prove our main theorem regarding the fortification of classical games. Beside
providing a short and self-contained treatment of the main result of [Mos14, BSVV15], it serves
as preparation for the analysis of Section 7.

Theorem (Theorem 1.2 restated). Let G be a biregular game, M and P two bipartite λ-spectral ex-

panders. If λ ď ε
2

b

δ
2 , then the concatenated game G1 “ pM ˝G ˝ P q is pε,δq weakly fortified against

classical substrategies.

We note that it follows from [BSVV15, Appendix C] that the dependence λ and δ in Theorem
1.2 is up to constant factors optimal. On the other hand, the tightness of dependence of ε and δ
does not seem to follow from [BSVV15] lower bound (however, δ is by far the more significant of
the two parameters).

5.1 Proof of Theorem 1.2

We start with a simple claim whose proof we will defer to the end of the subsection.

Claim 5.1. Let M “ pX 1 ˆ X,Eq and N “ pY 1 ˆ Y ,Fq be two biregular bipartite graphs that are λ-
spectral expanders. Let µ be a distribution on X ˆ Y such that both marginals of µ are uniform. Let
f : X 1 Ñ R and g : Y 1 Ñ R be any functions, and denote f : X Ñ R and g : Y Ñ R the functions
f : x ÞÑ Ex1„N pxq f pxq, g : y ÞÑ Ey1„N pyq gpyq respectively. Then

E

px1,y1q„µ

ˇ

ˇ

ˇ
f px1qgpy1q´ E

px2,y2q„µ
f px2qgpy2q

ˇ

ˇ

ˇ
ď 2

?
2λ

´

E

x1„X1
|f px1q|2

¯1{2´

E

y1„Y 1
|gpy1q|2

¯1{2

and
ˇ

ˇ

ˇ
E

x1„X
f pxq E

y1„Y
gpy1q´ E

px2,y2q„µ
f px2qgpy2q

ˇ

ˇ

ˇ
ď 2λ2

´

E

x1„X1
|f px1q|2

¯1{2´

E

y1„Y 1
|gpy1q|2

¯1{2
.

We prove a slightly stronger statement which implies Theorem 1.2. Let f ,g be any substrate-
gies for G, and let γ “ Epx,yq„µ f pxqgpyq. We claim that

ValpG1, f ,gq ď ValpGqγ ` 2
?

2λ
?
γ ` 4λ2. (46)

To deduce the bound claimed in Theorem 1.2 from (46) we distinguish two cases. Either γ ď δ, in
which case using the trivial estimate ValpG1, f ,gq ď γ the bound immediately follows. Or γ ą δ,
in which case

ValpGqγ ` 2
?

2λ
?
γ ` 4λ2 ď γpValpGq` 2

?
2λδ´1{2q` 4λ2

ď γpValpGq` εq` δ

given the relation between ε,δ and λ expressed in the theorem.

It remains to prove (46). Fix substrategies f and g. We have

ValpG1, f ,gq “ E

px,yq„µ

ÿ

V pa,b,x,yq“1

f px,aq ¨ gpy,bq

“ E

px,yq„µ
f pxqgpyq

ÿ

V pa,b,x,yq“1

f px,aq

f pxq
¨
gpy,bq

gpyq
,
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where we adopt the convention that 0{0“ 0. Using the triangle inequality,

ValpG1, f ,gq ď γ E

px,yq„µ

ÿ

V pa,b,x,yq“1

f px,aq

f pxq
¨
gpy,bq

gpyq
` E

px,yq„µ

ˇ

ˇf pxqgpyq´γ
ˇ

ˇ

ď γValpGq` E

px,yq„µ

ˇ

ˇf pxqgpyq´γ
ˇ

ˇ, (47)

where the second inequality follows since px,aq ÞÑ f px,aq{f pxq and py,bq ÞÑ gpy,bq{gpyq form a
valid pair of strategies for G. It remains to estimate the second term above. Applying the first
inequality in Claim 5.1,

E

px,yq„µ

ˇ

ˇf pxqgpyq´γ
ˇ

ˇď 2
?

2λ
´

E

x1„X1
|f px1q|2

¯1{2´

E

y1„Y 1
|gpy1q|2

¯1{2

ď 2
?

2λ
´

E

x1„X1
f px1q E

y1„Y 1
gpy1q

¯1{2

ď 2
?

2λ
b

γ ` 2λ2

ď 2
?

2λp
?
γ `

?
2λq

“ 2
?

2λ
?
γ ` 4λ2,

where in the second inequality we used 0 ď f px1q, gpy1q ď 1 for all x1, y1 and the third uses the
second inequality in Claim 5.1. Together with (47) this proves (46).

Finally, we prove Claim 5.1.

Proof of Claim 5.1. For the first inequality, write

E

px1,y1q„µ

ˇ

ˇf px1qgpy1q´ E

px2,y2q„µ
f px2qgpy2q

ˇ

ˇ

ď E

px1,y1q,px2,y2q„µ

`

|f px1q´ f px2q||gpy1q| ` |f px2q||gpy1q´ gpy2q|
˘

ď

´

E

x1,x2„X
|f px1q´ f px2q|

2
¯1{2´

E

y1„Y
|gpy1q|

2
¯1{2

`

´

E

x2„X
|f px2q|

2
¯1{2´

E

y1,y2„Y
|gpy1q´ gpy2q|

2
¯1{2

ď λ
´

E

x11,x
1
2„X

1
|f px11q´ f px

1
2q|

2
¯1{2´

E

y11„Y
1
|gpy11q|

2
¯1{2

`λ
´

E

x12„X
1
|f px12q|

2
¯1{2´

E

y11,y
1
2„Y

1
|gpy11q´ gpy

1
2q|

2
¯1{2

,

where the last inequality uses Proposition 2.13. Now note thatEx11,x12„X1 |f px
1
1q´f px

1
2q|

2 ď 2Ex1„X1 |f px1q|2.
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Applying a similar bound for g gives us the first inequality. For the second, write
ˇ

ˇ

E

px2,y2q„µ
f px2qgpy2q E

x1„X
f pxq E

y1„Y
gpy1q

ˇ

ˇ

“
ˇ

ˇ

E

px2,y2q„µ,x1„X,y1„Y
pf px1q´ f px2qqpgpy1q´ gpy2qq

ˇ

ˇ

ď

´

E

x1,x2„X
pf px1q´ f px2qq

2
¯1{2´

E

y1,y2„Y
pgpy1q´ gpy2qq

2
¯1{2

ď λ2
´

E

x11,x
1
2„X

1
pf px1q´ f px2qq

2
¯1{2´

E

y11,y
1
2„Y

1
pgpy11q´ gpy

1
2qq

2
¯1{2

ď 2λ2
´

E

x1„X1
|f px1q|2

¯1{2´

E

y1„Y 1
|gpy1q|2

¯1{2
.

5.2 A simple multiplayer fortification

The following is a simple fortification theorem for k-player games. Since Theorem 3.4 applies
equally well to the multiplayer setting, we get a hardness amplification result for classical multi-
player games.

Theorem 5.2. Let G be a k-player game. Suppose G1 is given by composing each of the k sides of G by a
λ-spectral expander where λď 2δ{k. Then G1 is a p0,δq fortified game.12

Proof. Consider a classical substrategy for G1 given by fi : X 1iˆA
1
i ÑR

` for i “ 1,2, . . . , k. As usual,
denote fi : Xi ˆAi ÑR

` the projection of fi to the inner game G. By definition,

ValpG,tfiu
k
i“1q “ E

px1,...,xkq

ÿ

a1,a2,...,ak

V pa1, . . . , ak ,x1, . . . ,xkq ¨ f1px1, a1q ¨ fxpx2, a2q . . . fkpxk , akq.

We can rewrite the above as

E

px1,...,xkq

k
ź

i“1

fipxiq
ÿ

a1,...,ak

V pa1, . . . , ak ,x1, . . . ,xkq ¨
f1px1, a1q ¨ fxpx2, a2q . . . fkpxk , akq

f px1q ¨ f px2q . . . ¨ f pxkq
.

Let γ “ Epx1,...,xkq
śk
i“1 fipxiq. Applying the triangle inequality,

ValpG,tfiu
k
i“1q ď γ ¨ValpGq` E

px1,...,xkq
|

k
ź

i“1

fipxiq´γ|.

12Although there is no ε dependence in the above, when applied to 2-player games the theorem is still weaker than
Theorem 1.2 because of the worse dependence on δ – which is the more crucial parameter than ε.
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To conclude it will suffice to show the second term above is at most δ. Let fi “ Exi f pxiq. Then

E

px1,...,xkq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

fipxiq´γ

ˇ

ˇ

ˇ

ˇ

ˇ

ď E
x1,...,xk

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

fipxiq´
k
ź

i“1

fi

ˇ

ˇ

ˇ

ˇ

ˇ

` E

px1,...,xkq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

fi ´γ

ˇ

ˇ

ˇ

ˇ

ˇ

“ E

px1,...,xkq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

fipxiq´
k
ź

i“1

fi

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

fi ´ E
x1,...,xk

k
ź

i“1

fipxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 ¨ E

px1,...,xkq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

fipxiq´
k
ź

i“1

fi

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
k
ÿ

i“1

E
xi
|fipxiq´ fi |,

where the first equality is by definition of γ , the second inequality by convexity of | ¨ |, and the last
follows from

|f1px1qf2px2q . . . fkpxkq´ f1f2 . . . fk| ď
k
ÿ

`“1

ˇ

ˇ

ˇ

ˇ

ˇ

`´1
ź

i“1

fipxiq ¨
k
ź

i“`

fi ´
ź̀

i“1

fipxiq ¨
k
ź

i“``1

fi

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

i“1

E
xi
|fipxiq´ fi |.

Hence,

E
x1,...,xk

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

fipxiq´γ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2
k
ÿ

i“1

ˆ

E
xi
pfipxiq´ fiq

2
˙1{2

ď 2λ
k
ÿ

i“1

˜

E

x1i
pfipx

1
iq´ fiq

2

¸1{2

ď 2λk.

The desired result follows.

6 Reducing Strong to Weak Fortification for Entangled Games
In this section, we start working toward the problem of fortifying games in the entangled case. In
particular, we show how Theorem 1.5 follows from Theorem 1.3. Let G “ pXˆY ,AˆB,µ,V q be a
two-player game.

Definition 6.1. For a game G and integer l PN let G‘l denote the disjoint union of l copies of G.

Suppose thatM and P are regular bipartite graphs overX 1ˆX and Y 1ˆY , respectively. Suppose
further that M and P are balanced, i.e. |X 1| “ |X| and |Y 1| “ |Y |. Let dM and dN denote the degree
of vertices M and P , respectively. (Note that since the graphs are balanced and regular, the left
and right degrees are the same.)

Following [BSVV15], we assume that M and P are explicit bipartite almost-Ramanujan ex-
panders, as provided e.g. by [BL06], for which the second-largest singular values λM and λP of
AM and AP (the normalized adjacency matrices) respectively satisfy

λM “O

˜

polyplogdMq
a

dM

¸

, λP “O

˜

polyplogdP q
a

dP

¸

. (48)

Note that if dM ,dP “ rΩp 1
ε2δ q then Theorem 1.3 implies that G1 “ pM ˝ G ˝ P q is pε,δq weakly-

fortified. Next we recall the definition of G1OF from the introduction.
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Ordered fortification. Let G, M, P and G1 “ pM ˝G ˝ P q be as above. let l “maxtdM ,dP u. In G1OFl
(or simply G1OF where l “maxtdM ,dP u) the referee samples questions px,yq as in G and selects two
random neighbors x1 P X 1 and y1 P Y 1 of x and y in M and P respectively. Then the referee selects
two random injective maps rx1 :N px1q Ñ rls and sy1 :N py1q Ñ rls under the condition rx1pxq “ sy1pyq.
Alice’s question then is the pair px1, rx1q and Bob’s is the pair py1, sy1q. Alice outputs an answer tuple
a1 :N px1q Ñ A and Bob b1 :N py1q Ñ B. The players win if V pa1pxq,b1pyq,x,yq “ 1.

Remark 6.2. Note that G1OF has exactly the same answer alphabet size as G1, the question sizes
|X 1OF | and |Y 1OF | are larger than in G1. This blow-up can be mitigated as follows. It turns out that
in Definition 6.3 the use of the complete set Spd,lq is unnecessary. More precisely, from the proof
of the main claim of this section, Claim 6.6 below, it will be clear that the only condition required
is that the permutations be chosen from a pairwise independent subset of Spd,lq. Selecting the
smallest possible such subset lets us reduce the blow-up in the size of the question sets from a
multiplicative D! down to polypDq “ polyp 1

ε2δ q. We omit the details.

Although it may not be immediately apparent, it is possible to view G1OF as a concatenated
game. Let G‘l be as in Definition 6.1. Note that G‘l has exactly the same classical and entangled
value as G. Let SpdM ,lq denote the set of all injective maps from rdMs Ñ rls. Fix maps ux1 : N px1q Ñ
rdMs and vy1 :N py1q Ñ rdMs ordering the neighborhoods of each x1, y1 in an arbitrary way.

Definition 6.3. Let M be a regular bipartite graph over X 1ˆX as above . We define ĂM as a bipartite
graph over X 1OF :“ X 1ˆ SpdM ,lq and XOF :“ Xˆrls where

px1,πq „M̃ px, iq ðñ πpux1pxqq “ i.

We define rP from P in a similar way.

Note that here π ˝ ux1 exactly corresponds to rx1 : N px1q Ñ rls map from the original definition
of G1OF . Hence, we obtain the following alternative characterization of G1OF .

Proposition 6.4. The game G1OF constructed above is a concatenated game given by

G1OF “ p
ĂM ˝G‘l ˝ rP q.

Next, we show that ordered fortification preserves the entangled value (the classical value is
also preserved but that is not important here).

Proposition 6.5. We have Val*pG1OFq “ Val
*pGq.

Proof. In one direction we have Val
*pG1OFq ď Val

*pG‘lq “ Val
*pGq where we used Propositions

2.6 and 6.4. For the other direction, consider any entangled strategy p|ψy,tAaxu,tB
b
yuq for G. We

construct a strategy for G1‘ that achieves the same value. The provers share l copies of the state
|ψy, and each copy is assigned a unique label i P rls. Alice and Bob receive questions px1, rx1q and
py1, sy1q, respectively. For each x PN px1q, Alice applies tAaxu to the rx1pxq-th copy of |ψy. Bob applies
a similar strategy.

Since by construction the “true questions” x˚ and y˚ are given the same label, the distribution
of answers obtained for x˚ and y˚ is identical to the distribution of answers obtained while playing
G using p|ψy,tAaxu,tB

b
yuq, hence achieving the same winning probability.
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The main technical step in reducing Theorem 1.5 to Theorem 1.3 is an analysis of the singular
values of ĂM, rN in terms of the singular values of M and N . We prove the following.

Claim 6.6. LetM be a bipartite graph overX 1ˆX as above and let λM denote the second largest singular
value of M. Let M̃ be as in Definition 6.3. Then,

λM̃ ďmax

#

λM ,
1

a

dM ´ 1

+

.

Since in our case λM “ O ppolyplogdMq{dMq, Claim 6.6 implies that λM̃ satisfies the same
bound. Also note that a similar statement of course applies to P̃ and λP̃ . So we see that Theorem
1.3, Propositions 6.5 and 6.4, and Claim 6.6 together imply Theorem 1.5; it remains to prove the
latter.

Proof of Claim 6.6. Recall that by assumptionM is a regular balanced bipartite graph. Let d :“ dM
the degree of vertices in M. The normalized adjacency matrix of M̃ is given by

AM̃ppx
1,πq,px, iqq “

#

1
d ¨

b

pl´dq!
pl´1q! px1,πq „M̃ px, iq

0 px1,πq �M̃ px, iq
. (49)

We relate the second largest singular value λM of AM and the second largest singular value λM̃
of M̃ by relating the eigenvalues of B “ AJMAM and C “ AJ

M̃
AM̃ . We can explicitly compute the

entries of B and C. For B,

Bpx1,x2q “
|tx1 P X 1 : tx1,x2u ĂN px

1qu|

d2 , (50)

and in particular Bpx,xq “ 1
d for all x P X. To compute entries of C, first note that when x1 ‰ x2

and i ‰ j we have

Cppx1, iq,px2, jqq “
|tx1 P X 1 : tx1,x2u ĂN px

1qu| ¨ pl´ dq!
d2pl´ 1q!

¨
pl´ 2q!
pl´ dq!

“
Bpx1,x2q

l´ 1
. (51)

Finally, observe the following special cases:

• Cppx, iq,px, iqq “ 1
d .

• Cppx1, iq,px2, iqq “ 0 if x1 ‰ x2.

• Cppx, iq,px, jqq “ 0 when i ‰ j.

Let rB“ B´ 1
d Id and rC “ C´ 1

d Id. Let rJ “ 1
l´1pJ ´ Idq be the lˆ l matrix that is pl´1q´1 in the

off-diagonal entries, and 0 along the diagonal. Then it is easy to see that

rC “ rBb rJ. (52)
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The matrix rJ has a single eigenvalue equal to 1 and l ´ 1 eigenvalues equal to ´ 1
l´1 , and rB has a

single eigenvalue equal to 1´1{d and the remaining are in the range r´ 1
d ,λ

2
M´

1
d s. It follows that

the top eigenvalue of C “ rC` 1
d Id is 1 (as expected) and the next one satisfies

λM̃ ďmax

#

λM ,

d

1
dpl´ 1q

`
1
d

+

,

which is bounded by max
!

λM ,
1?
d´1

)

since l ě d.

7 Weak Fortification of Entangled Games
Our goal in this section is to prove the following.

Theorem (Theorem 1.3 restated). Let G1 “ pM ˝G ˝ P q be a concatenated game obtained by concate-
nating two sides of a game G with some λ-spectral expanders M and P . If λ ď ε2δ

56 , then G1 is pε,δq
weakly-fortified against entangled substrategies.

We need some basic matrix analytic facts.

7.1 Basic lemmas

Choi-Jamiolkowski isomorphism. We make use of the correspondence between bipartite states
|ψy P H1 bH2 and linear operators L : H˚2 Ñ H1 given by the Choi-Jamiolkowski isomorphism.
Explicitly, let |ψy P Cd bCd be a quantum state and consider a Schmidt basis for |ψy so we have
|ψy “

řd
i“1

a

λi |iy|iy where λi PRě0, up to a local change of basis. Set

ρ :“
d
ÿ

i“1

λi |iyxi|. (53)

Proposition 7.1. Let Z,W be two linear operators acting on Cd and let |ψy and ρ be as above. Then,

xψ|Z bW |ψy “ TrpZρ1{2W T ρ1{2q.

Proof. Both expressions evaluate to
řd
i,j“1

b

λiλj Zij ¨Wij .

For a density matrix ρ and a matrix A for convenience we sometimes denote TrpAρq by TrρpAq.

Matrix norms and inequalities. The Frobenius norm of a matrix A P Cnˆm is defined as }A}F “
a

TrpAA:q. The trace norm is defined as }A}tr “ Tr
?
AA:. The following analogue of Proposi-

tion 2.13 will be used repeatedly in our argument.

Claim 7.2. Let M be a bipartite λ-spectral expander on vertex set X 1 Y X. Let tAx1ux1PX1 and ρ be
positive semidefinite matrices. For all x P X, define Ax “ Ex1„N pxqAx1 and define A“ Ex„µAx. Then

E
x„µ

TrρppAx´Aq
2q ď 2λ2 ¨ E

x1„µ1
TrρpA

2
x1q. (54)
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Proof. Define Sx1 “ ρ1{2Ax1 , Sx “ ρ1{2Ax, and S “ Ex Sx “ ρ1{2A. Using that M is a bipartite
λ-spectral expander, for any fixed entry pi, jq

E
x
|pSxqij ´ Sij |

2 ď λ2 ¨E
x1
|pSx1qij ´ Sij |

2 ď 2λ2 ¨E
x1
|pSx1qij |

2 (55)

Summing over all entries,

E
x

ÿ

i,j

|pSxqij ´ Sij |
2 “ E

x
}Sx´ S}

2
F ď 2λ2

E

x1

ÿ

i,j

|pSx1qij |
2 “ 2λ2

E

x1
}Sx1}

2
F . (56)

Observing that TrρppAx´Aq2q “ }Sx´S}
2
F and }Sx1}

2
F “ TrρpA

2
x1q, we obtain the desired result.

If A has singular value decomposition A “ UJV : its pseudo-inverse is A´1 “ V J´1U :, where
J´1 is obtained from J by taking the reciprocal of non-zero diagonal entries. A simple consequence
of the singular value decomposition is the following:

Fact 7.3. Let A be an nˆ n matrix. Then there exists a unitary matrix U such that UA is positive
semi-definite.

Proof. Write the SVD as A“UJV :, and choose U “ VU :.

We make frequent use of the matrix Cauchy-Schwarz inequality.

Proposition 7.4. For any two matrices S,T we have

TrpST :q ď TrpSS:q1{2 ¨TrpT T :q1{2 “ }S}F}T }F .

If S and T are Hermitian,
TrpST ST q ď TrpS2T 2q.

Finally, we need a variant of Powers-Størmer inequality due to Kittaneh [Kit86]. This also
played a role in the analysis of [DSV14].

Lemma 7.5 ([Kit86]). Let X,Y be positive semidefinite matrices. Then

Tr
´

pX´Y q4
¯

ď Tr
`

pX2´Y 2q2
˘

.

7.2 Proof of Theorem 1.3

At a high level, the proof of Theorem 1.3 follows the same outline as the classical proof of Sec-
tion 5.

Consider a substrategy tAa
1

x1upx1,a1qPX1ˆA1 , tB
b1
y1upy1,b1qPY 1ˆB1 for G1. Define Ax “ Ex„N px1qAx1 and

By “ Ey„N py1qBy1 .13 Define A “ Ex„µX Ax and B “ Ey„µY By . To prove Theorem 1.3 we must

13In what follows, we assume without loss of generality that allAx1 and By1 are invertible. Note that proving Theorem
1.3 for this subset of substrategies suffices. This follows by a limiting argument because of the continuity of (25) in Ax1
and By1 .
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analyze the following expression:

Val
*pG1,tAa

1

x1u,tB
b1
y1uq “ E

px,yq„µ
E

x1„N pxq,y1„N pyq

ÿ

a1,b1
V pa1x1pxq,b

1
y1pyq,x,yq ¨TrpAa

1

x1ρ
1{2Bb

1

y1ρ
1{2q

“ E

px,yq„µ

ÿ

a,b

V pa,b,x,yq ¨TrpAaxρ
1{2Bbyρ

1{2q

“ E

px,yq„µ
TrpAxρ

1{2Byρ
1{2q ¨

ÿ

V pa,b,x,yq“1

TrpAaxρ
1{2Bbyρ

1{2q

TrpAxρ1{2Byρ1{2q
,

where Aax and Bby are defined as in (11), and we use the convention that 0{0“ 0. Our analysis splits
into two cases. First let us consider the small case. This is handled by the following proposition.

Proposition 7.6. Suppose Trpρ1{2Aρ1{2Bq ă δ{2. Then Val
*pG1,tAa

1

x1u,tB
b1
y1uq ă δ.

Proof. First of all we have

Val
*pG1,tAa

1

x1u,tB
b1
y1uq “ E

x,y

ÿ

V pa,b,x,yq“1

TrpAaxρ
1{2Bbyρ

1{2q ď E
x,y

TrpAxρ
1{2Byρ

1{2q.

Subtracting TrpAρ1{2Bρ1{2q,

E
x,y

TrpAxρ
1{2Byρ

1{2q´TrpAρ1{2Bρ1{2q “ E
x,y

TrppAx´Aqρ
1{2pBy ´Bqρ

1{2q.

By applying Cauchy-Schwarz to the latter expression and using Claim 7.2 it follows that

Val
*pG1,tAa

1

x1u,tB
b1
y1uq ď δ{2`λ

2;

this is smaller than δ by the choice of λ.

The large case. In this case, the hypothesis of Proposition 7.6 is not satisfied and without loss of
generality we assume that

min
 

TrρpAq, TrρpBq
(

ě TrpAρ1{2Bρ1{2q ě δ{2. (57)

Let
γ :“ E

px,yq„µ
TrpAxρ

1{2Byρ
1{2q. (58)

By the triangle inequality,

Val
*pG1,Ax1 ,By1q ď E

px,yq„µ
|TrpAxρ

1{2Byρ
1{2q´γ| `γ ¨ E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpAaxρ
1{2Bbyρ

1{2q

TrpAxρ1{2Byρ1{2q
. (59)

To bound the first term, we use the triangle inequality to get

|TrpAxρ
1{2Byρ

1{2q´γ| ď |TrpAxρ
1{2Byρ

1{2´Aρ1{2Bρ1{2q| ` |TrpAρ1{2Bρ1{2q´γ|. (60)
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The first term on the right-hand side of (60) can be bounded as

E

px,yq„µ
|TrpAxρ

1{2Byρ
1{2´Aρ1{2Bρ1{2q|

ď E

px,yq„µ
|TrpAxρ

1{2pBy ´Bqρ
1{2q| `E

x
|TrppAx´Aqρ

1{2Bρ1{2q|

ď E

px,yq„µ

”

TrρpA
2
xq

1{2 ¨TrρppBy ´Bq
2q1{2

ı

`E
x

”

TrρpB
2q1{2 ¨TrρppAx´Aq

2q1{2
ı

ď

´

E
x

TrρpA
2
xq

¯1{2
¨

ˆ

E
y

TrρppBy ´Bq
2q

˙1{2

`TrρpB
2q1{2 ¨

´

E
x

TrρppAx´Aq
2q

¯1{2

ď 4 ¨λ, (61)

where the first inequality is the triangle inequality, the next two follow from Cauchy-Schwarz,
and the last from Claim 7.2 and the trivial bounds TrρpA2

xq,TrρpB2q ď Trpρq “ 1. To bound the
second term on the right-hand side of (60) we note that

|TrpAρ1{2Bρ1{2q´γ| “ | E

px,yq„µ
TrppAx´Aqρ

1{2pBy ´Bqρ
1{2q|

ď pE
x

TrρrpAx´Aq
2sq1{2 ¨ pE

y
TrρrpBy ´Bq

2sq1{2,

and the latter is again bounded by 2λ by Claim 7.2. In total we have

E

px,yq„µ
|TrpAxρ

1{2Byρ
1{2q´γ| ď 4λ` 2λ2 ď δ, (62)

which provides an upper bound on the first term in the right-hand side of (59).

To bound the second term term in the right-hand side of (59) we use a strategy inspired in part
by the parallel repetition theorem of [DSV14]. Let Ux,Vy ,U,V be a family of unitaries such that
the operators

Λx “Ux
a

Axρ
1{4, Λ“U

?
Aρ1{4, Γy “ Vy

b

Byρ
1{4, Γ “ V

?
Bρ1{4 (63)

are all positive semidefinite, which is possible by Fact 7.3. Note that this in particular implies that
Λx “Λ

:
x and hence

Λ2
x “Λ

:
xΛx “ ρ

1{4
a

AxU
:
xUx

a

Axρ
1{4 “ ρ1{4Axρ

1{4, (64)

and similarly Λ2 “ ρ1{4Aρ1{4, Γ 2 “ ρ1{4Bρ1{4 and so on.

Define “rescaled” strategies by

xAax “UxA
´1{2
x AaxA

´1{2
x U :x ,

xBby “ VyB
´1{2
y BbyB

´1{2
y V :y , (65)

whereA´1
x ,B´1

y ’s are the pseudo-inverses ofAx,By . Note that the operators (65) satisfy xAx “
ř

a
xAax,

xBy “
ř

b
xBby ď Id as required. Let

Kxy “
UxA

1{2
x ρ1{2B

1{2
y V :y

b

TrpAxρ1{2Byρ1{2q

, K “
UA1{2ρ1{2B1{2V :
b

TrpAρ1{2Bρ1{2q

. (66)

28



By definition of Λx,Γy ,X,Y we see that the above is equivalent to

Kxy “
ΛxΓy

b

TrpΛ2
xΓ

2
y q

, K “
ΛΓ

a

TrpΛ2Γ 2q
. (67)

Now note the following identity

TrpAaxρ
1{2Bbyρ

1{2q

TrpAxρ1{2Byρ1{2q
“ TrpxAaxKxy

xBbyK
:
xyq. (68)

So to finish the argument it suffices to estimate

E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpxAaxKxy
xBbyK

:
xyq. (69)

To this end note that since TrpKK:q “ 1 it follows from the definition of Val*pGq that

E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpKxAaxK
:xBbyq ď Val

*pGq. (70)

To conclude we use the following proposition.

Proposition 7.7. Let Kxy and K be as above. Then

E

px,yq„µ
}Kxy ´K}

2
F ď

12λ
δ
. (71)

Before proving the proposition let us see how it implies the desired bound on the second term
of (59).

|TrpKxyxA
a
xK

:
xy
xBbyq´TrpKxAaxK

:xBbyq|

ď |TrppKxy ´KqxA
a
xK

:
xy
xBbyq| ` |TrpKxAaxpK

:
xy ´K

:q
xBbyq|

ď TrppKxy ´KqxA
a
xpKxy ´Kq

:xBbyq
1{2 ¨TrpKxyxA

a
xK

:
xy
xBbyq

1{2

`TrppKxy ´KqxA
a
xpKxy ´Kq

:xBbyq
1{2 ¨TrpKxAaxK

:xBbyq
1{2. (72)

Averaging withEpx,yq„µ
ř

V pa,b,x,yq“1 and applying Cauchy-Schwarz we see that (72) is bounded by

”

E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrppKxy ´KqxA
a
xpKxy ´Kq

:xBbyq
ı1{2

¨

”

`

E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpKxyxA
a
xK

:
xy
xBbyq

˘1{2

`
`

E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpKxAaxK
:xBbyq

˘1{2
ı

. (73)

We claim that the second term in brackets is at most 2. To see this note that replacing the sum from
ř

V pa,b,x,yq“1 to a
ř

a,b only increase the term, and the claim follows from TrpKxyK
:
xyq “ TrpKK:q “
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1. To bound the first term in (73), we again relax the summation from
ř

V pa,b,x,yq“1 to
ř

a,b. This

is valid because all the operators of the form pKxy ´ KqxA
a
xpKxy ´ Kq

:,By ě 0 and hence all the
additional terms introduced in the sum are nonnegative. The desired result follows because

E

px,yq„µ

ÿ

a,b

TrppKxy ´KqxA
a
xpKxy ´Kq

:xBbyq ď E

px,yq„µ
TrppKx,y ´KqpKx,y ´Kq

:q “ E
x,y
}Kx,y ´K}

2
F , (74)

which is bounded by Proposition 7.7. Combining all bounds, from (72) we get

E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpAaxρ
1{2Bbyρ

1{2q

TrpAxρ1{2Byρ1{2q
“ E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpxAaxKxy
xBbyK

:
xyq

ď E

px,yq„µ

ÿ

V pa,b,x,yq“1

TrpxAaxK
xBbyK

:q

` |TrpKxyxA
a
xK

:
xy
xBbyq´TrpKxAaxK

:xBbyq|

ď Val
*pGq` 2 ¨

ˆ

E

px,yq„µ
}Kxy ´K}

2
F

˙1{2

ď Val
*pGq` 2

c

12λ
δ
.

The latter is bounded by ε by the choice of λ. It only remains to prove Proposition 7.7.

Proof of Proposition 7.7. We have

}Kxy ´K}F ď

›

›

›

›

ΛxΓy
b

TrpΛ2
xΓ

2
y q

´
ΛΓ

a

TrpΛ2Γ 2q

›

›

›

›

F
`

›

›

›

›

ΛxΓy
a

TrpΛ2Γ 2q
´

ΛΓ
a

TrpΛ2Γ 2q

›

›

›

›

F
. (75)

For the first term,

E

px,yq„µ

›

›

›

›

ΛxΓy
b

TrpΛ2
xΓ

2
y q

´
ΛxΓy

a

TrpΛ2Γ 2q

›

›

›

›

2

F
“ E

px,yq„µ
TrpΛ2

xΓ
2
y q ¨

ˆ

1
b

TrpΛ2
xΓ

2
y q

´
1

a

TrpΛ2Γ 2q

˙2

“
1

TrpΛ2Γ 2q
E

px,yq„µ

ˆ

b

TrpΛ2
xΓ

2
y q´

b

TrpΛ2Γ 2q

˙2

ď
1

TrpΛ2Γ 2q
E

px,yq„µ
|TrpΛ2

xΓ
2
y q´TrpΛ2Γ 2q|

ď
1

TrpΛ2Γ 2q
E

px,yq„µ
|TrppΛ2

x ´Λ2qΓ 2
y q| ` |TrpΛ2pΓ 2

y ´Y
2qq|

ď
1

TrpΛ2Γ 2q

ˇ

ˇ

ˇ
E
x
rTrppΛ2

x ´Λ2q2qs

ˇ

ˇ

ˇ

1{2
¨

ˇ

ˇ

ˇ

ˇ

E
y
rTrpΓ 4

y qs

ˇ

ˇ

ˇ

ˇ

1{2

(76)

`
1

TrpΛ2Γ 2q

ˇ

ˇ

ˇ
E
x
rTrppΓ 2

y ´ Γ 2q2qs

ˇ

ˇ

ˇ

1{2
¨TrpΛ4q1{2, (77)
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where the last step follows from two applications of Cauchy-Schwarz. Rewriting the above in
terms of Ax,By and ρ using (64) and its analogues we see that the term in (76) equals

1
TrpAρ1{2Bρ1{2q

ˇ

ˇ

ˇ
E
x
rTrppAx´Aqρ

1{2pAx´Aqρ
1{2qs

ˇ

ˇ

ˇ

1{2
¨

ˇ

ˇ

ˇ

ˇ

E
y
rTrpByρ

1{2Byρ
1{2q

ˇ

ˇ

ˇ

ˇ

1{2

(78)

Bounding the last term TrpByρ1{2Byρ
1{2q by 1 and the first term by 2λ (which follows by applying

Fact 7.4 and Claim 7.2) and doing the same analysis for (77) we see that

E

px,yq„µ

›

›

›

›

ΛxΓy
b

TrpΛ2
xΓ

2
y q

´
ΛxΓy

a

TrpΛ2Γ 2q

›

›

›

›

2

F
ď

8λ
δ
. (79)

To bound the second term in (75) we argue as follows:

}ΛxΓy ´ΛΓ }2F ď 2 ¨ }pΛx´ΛqΓy}
2
F ` 2 ¨ }pΓy ´ Γ qX}2F

“ 2 ¨TrpΓ 2
y pΛx´Λq2q` 2 ¨TrppΓy ´ Γ q2X2q (80)

ď 2 ¨TrpΓ 4
y q

1{2 ¨TrppΛx´Λq4q1{2` 2 ¨TrpΛ4q1{2 ¨TrppΓy ´ Γ q4q1{2 (81)

ď 2 ¨TrpΓ 4
y q

1{2 ¨TrrpΛ2
x ´Λ2q2s1{2` 2 ¨TrpΛ4q1{2 ¨TrrpΓ 2

y ´ Γ 2q2s1{2, (82)

where in the last step we used Lemma 7.5. Using the same bound on the above terms as in the
above we see that

E

px,yq„µ
}ΛxΓy ´ΛΓ }2F ď 8λ. (83)

Since in the large case TrpAρ1{2Bρ1{2q ě δ
2 the result follows.

8 Discussion and open problems
An obvious open problem is to extend our results to the case of multiplayer entangled games. This
is likely to be achievable by combining the ideas of Sections 5.2 and 7. However, some subtleties
arise with respect to the use of the Choi-Jamiolkowski isomorphism, and we leave this for future
work.

An important (and somewhat surprising) message of our work is that there is a modified form
of game concatenation with no adverse effect on the entangled value. This is notable because or-
dinary concatenation may appear to be not very well-behaved with respect to quantum strategies:
we typically do not expect that entangled players would be able to answer a number of questions
from a game G simultaneously, while preserving the same question/answer statistics as in G, as
players’ measurement operators associated with different questions generally do not commute.

The concatenation and composition of games play an important role in the classical setting in
the context of PCPs [AS98, Din07] and multiprover interactive proof systems [BFL90]. It remains
to be seen whether ideas related to our ordered fortification can be useful in lifting some of these
techniques to the quantum world.
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A Biregularization
In this section, we prove Lemmas 2.8 and 2.10. We start by the second lemma on the graphical
games and then derive the general case by reduction.

Graphical games. Suppose G is a graphical game: there is a set of edges E Ď X ˆ Y such that
µpx,yq “ 1

|E| for all px,yq P E. In this case we have

µpxq “
|N pxq|
|E|

, µpyq “
|N pyq|

|E|
, @x P X, y P Y . (84)

Let dx :“ |N pxq| denote the degree of x, and set Sx be the set txuˆ rdxs. Define

Xint “
ď

x„X

Sx.

Note that |Xint| “ |E| ď |X||Y |. Define Mintppx, iq,xq “
1
dx

for i P t1, . . . ,dxu, and 0 otherwise. Con-
struct Yint and Pint similarly.

Proposition A.1. Let Gint “Mint ˝G˝Pint. Then marginal of µint induced on Xint and Yint is uniform.
Moreover, we have

ValpGintq “ ValpGq, Val
˚pGintq “ Val

˚pGq. (85)

Proof. It is easy to see that for all Xint “ px, iq P Xint we have µintpxintq “
1
|E| and similarly for

all yint P Yint. The claims ValpGintq “ ValpGq and Val
˚pGintq ď Val

˚pGq are true for all concate-
nated games in general. The final claim Val

˚pGintq ě Val
˚pGq follows by considering the strategy

Apx,iq “ Ax, Bpy,jq “ By which achieves the same value as pAx,Byq in G.

General case. Although graphical games include many games considered in applications, it would
nevertheless still be nice to extend the above construction to all games. We do not know how to
do this exactly, but we can achieve an approximate variant.

The idea is essentially to approximate a general game by a graphical game. More formally, let
τ P p0,1q be an error parameter and q an integer such that |E|τ ď q ď

2|E|
τ . We have

τ
2|E|

ď
1
q
ď

τ
|E|
. (86)

We would like to define a game G̃ in which all probabilities in the underlying distribution
µ̃px,yq are fractions with denominator q. Let X̃ “ X Y txnulu and Ỹ “ Y Y tynulu. For every
px,yq P XˆY set

µ̃px,yq “
tq ¨µpx,yqu

q
. (87)

Finally let µ̃pxnul , ynulq such that µ̃ is a proper probability distribution (i.e. by transferring the
excess probabilities to pxnul , ynulq) and put an arbitrary winnable predicate on pxnul , ynulq.
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Proposition A.2. The game G̃ is a graphical game with q (possibly parallel) edges. Moreover, we have

ValpGq ď ValpG̃q ď ValpGq` τ, Val
˚pGq ď Val

˚pG̃q ď Val
˚pGq` τ. (88)

A few remarks are in order: firstly, since the previous construction for graphical games applies
equally well in the presence of multiples edges, we can combine it with the above preprocessing
to prove Lemma 2.8. Secondly, note that the operation G Ñ G̃ is value-increasing and hence
preserves perfect completeness. Thirdly, note that the right scale for the error parameter τ is c´s

2
where c´ s is the completeness-soundness gap.

Proof. By construction all µ̃px,yq are integer multiples of 1
q . This ensures that the same is true for

µ̃pxnul , ynulq. Since µpx,yq ě µ̃px,yq for all px,yq, for any strategy pf ,gq for G we have

1´ValpG,f ,gq “ E

px,yq„µ

ÿ

V pa,b,x,yq“0

f px,aq ¨ gpy,bq ě 1´ValpG̃, f ,gq,

which shows that ValpGq ď ValpG̃q. For the other direction, consider an optimal strategy pf ,gq
for G̃ (which necessarily always wins on pxnul , ynulq). We have,

1´ValpGq ď 1´ValpG,f ,gq “ E

px,yq„µ

ÿ

V pa,b,x,yq“0

f px,aq ¨ gpy,bq

ď
ÿ

x,y

µ̃px,yq
ÿ

V pa,b,x,yq“0

f px,aq ¨ gpy,bq`
ÿ

px,yqPE

pµpx,yq´ µ̃px,yqq

ď 1´ValpG̃q` τ

The quantum case is similar.
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