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Abstract. We examine the existing resolution systems for quantified Boolean formulas (QBF)
and answer the question which of these calculi can be lifted to the more powerful Dependency
QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of
proof systems Q-Res < IR-calc < IRM-calc, the situation is quite different in DQBF. Q-Res and
likewise universal resolution are too weak: they are not complete. IR-calc has the right strength:
it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies
to long-distance resolution. Conceptually, we use the relation of DQBF to EPR and explain our
new DQBF calculus based on IR-calc as a subsystem of first-order resolution.

1 Introduction

The logic of dependency quantified Boolean formulas (DQBF) [23] generalises the notion
of quantified Boolean formulas (QBF) that allow Boolean quantifiers over a propositional
problem. DQBF is a relaxation of QBF in that the quantifier order is no longer necessarily
linear and the dependencies of the quantifiers are completely specified. This is achieved using
Henkin quantifiers [16], usually put into a Skolem form. DQBF is NEXPTIME-complete [1],
compared to the PSPACE-completeness of QBF [28]. Thus, unless the classes are equal, many
problems that are difficult to express in QBF can be succinctly represented in DQBF.

Recent developments in QBF proof complexity [5–11, 17–19, 27] have increased our the-
oretical understanding of QBF proof systems and proof systems in general and shown there
is an intrinsic link between proof complexity and SAT-,QBF-, and DQBF-solving. Lower
bounds in resolution-based proof systems give lower bounds to CDCL-style algorithms. In
propositional logic there is only one resolution system (although many subsystems have been
studied [24, 29]), but in QBF, resolution can be adapted in different ways to get sound and
complete calculi of varying strengths, modelling different approaches in solving [7, 15,19,30].

The first and best-studied QBF resolution system is Q-Res introduced in [21]. For Q-
Res there are two main enhanced versions: QU-Res [30], which allows resolution on universal
variables, and LD-Q-Res [15], which introduces a process of merging positive and negative
universal literals under certain conditions. These two concepts were combined into a single
calculus LQU+-Res [5].

While these calculi model CDCL solving, a second group of resolution-type systems were
developed with the goal to express ideas from expansion solving. The first and most basic of
these systems is ∀Exp+Res [19], which also uses resolution, but is conceptually very different
from Q-Res. In [7] two further proof systems IR-calc and IRM-calc are introduced, which unify
the CDCL- and expansion-based approaches in the sense that IR-calc simulates both Q-Res
and ∀Exp+Res. The system IRM-calc enhances IR-calc and additionally simulates LD-Q-Res.
The relative strength of these QBF resolution systems can be seen pictorially in Fig. 1.

The aim of this paper is to clarify which of these QBF resolution systems can be lifted to
DQBF. This is motivated both by the theoretical quest to understand which QBF resolution
paradigms are robust enough to work in the more powerful DQBF setting, as well as from the
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Fig. 1. The simulation order of QBF resolution systems [8] and soundness/completeness of their lifted DQBF
versions

practical perspective, where recent advances in DQBF solving [12–14,31] prompt the question
of how to model and analyse these solvers proof-theoretically.

Our starting point is the work of Balabanov, Chiang, and Jiang [3], who show that Q-Res
can be naturally adapted to a sound calculus for DQBF, but it is not strong enough and lacks
completeness. Using an idea from [5] we extend their result to QU-Res, thus showing that the
lifted version of this system to DQBF is not complete either. On the other hand, we present
an example showing that the lifted version of LD-Q-Res is not sound, and this transfers to
the DQBF analogues of the stronger systems LQU+-Res and IRM-calc.

While this rules out most of the existing QBF resolution calculi already—and in fact all
CDCL-based systems (cf. Fig. 1)—we show that IR-calc, lifted in a natural way to a DQBF
calculus D-IR-calc, is indeed sound and complete for DQBF; and in fact this holds as well for
the lifted version of the weaker expansion system ∀Exp+Res.

Conceptually, our soundness and completeness arguments use the known correspondence
of QBF and DQBF to first-order logic [25], and in particular to the fragment of EPR, also
known as the Bernays-Schönfinkel class, which like DQBF is NEXPTIME-complete [22]. In
addition to providing soundness and completeness this explains the semantics of both IR-calc
and D-IR-calc and identifies these systems as a special case of first-order resolution.

2 Preliminaries

A literal is a Boolean variable or its negation. If l is a literal, ¬l denotes the complementary
literal, i.e., ¬¬x = x. A clause is a set of literals understood as their disjunction. The empty
clause is denoted by ⊥, which is semantically equivalent to false. A formula in conjunctive
normal form (CNF) is a conjunction of clauses. For a literal l = x or l = ¬x, we write var(l)
for x and extend this notation to var(C) for a clause C.

A Dependency Quantified Boolean Formula (DQBF) φ in prenex Skolem form consists of
a quantifier prefix Π and a propositional matrix ψ. Here we mainly study DQBFs where ψ
is in CNF. The propositional variables of ψ are partitioned into sets Y and X. Y is the set
of universal variables and X the set of existential variables. For every y ∈ Y , Π contains
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the quantifier ∀y. For every x ∈ X there is a predefined subset Yx ⊆ Y and Π contains the
quantifier ∃x(Yx).

The semantics of DQBF is defined in terms of Skolem functions. A Skolem function fx :
{0, 1}Yx → {0, 1} describes the evaluation of an existential variable x under the possible
assignments to its dependencies Yx. Given a set F = {fx | x ∈ X} of Skolem functions for
all the existential variables and an assignment α : Y → {0, 1} for the universal variables,
the extension of α by F is defined as αF (x) = fx(α�Yx) for x ∈ X and αF (y) = α(y) for
y ∈ Y . A DQBF φ is true if there exist Skolem functions F = {fx | x ∈ X} for the existential
variables such that for every assignment α : Y → {0, 1} to the universal variables the matrix
ψ propositionally evaluates to 1 under the extension αF of α by F .

In QBF, the prefix is commonly described as a sequence of standard quantifiers of the
form ∃x and ∀y. To see that this is a special case of DQBF, we use the sequence from left
to right to assign to every variable in the prefix a unique index ind : X ∪ Y → N, and
make every existential variable x depend on all the preceding universal variables by setting
Yx = {y ∈ Y | ind(y) < ind(x)}.

We now give a brief overview of the main existing resolution-based calculi for QBF. We
start by describing the proof systems modelling CDCL-based QBF solving ; their rules are
summarized in Fig. 2. The most basic and important system is Q-resolution (Q-Res) by
Kleine Büning et al. [21]. It is a resolution-like calculus that operates on QBFs in prenex
form with CNF matrix. In addition to the axioms, Q-Res comprises the resolution rule S∃R
and universal reduction ∀-Red (cf. Fig. 2).

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang and Ma-
lik [32] and was formalized into a calculus by Balabanov and Jiang [4]. It merges comple-
mentary literals of a universal variable u into the special literal u∗. These special literals
prohibit certain resolution steps. In particular, different literals of a universal variable u may
be merged only if ind(x) < ind(u), where x is the pivot variable. LD-Q-Res uses the rules
L∃R, ∀-Red and ∀-Red∗.

QU-resolution (QU-Res) [30] removes the restriction from Q-Res that the resolved variable
must be an existential variable and allows resolution of universal variables. The rules of QU-
Res are S∃R, S∀R and ∀-Red. LQU+-Res [5] extends LD-Q-Res by allowing short and long
distance resolution pivots to be universal, however, the pivot is never a merged literal z∗.
LQU+-Res uses the rules L∃R, L∀R, ∀-Red and ∀-Red∗.

The second type of calculi models expansion-based QBF solving. These calculi are based on
instantiation of universal variables: ∀Exp+Res [20], IR-calc, and IRM-calc [7]. All these calculi
operate on clauses that comprise only existential variables from the original QBF, which are
additionally annotated by a substitution to some universal variables, e.g. ¬x0/u11/u2 . For any
annotated literal lσ, the substitution σ must not make assignments to variables at a higher
quantification index than that of l, i.e., if u ∈ dom(σ), then u is universal and ind(u) < ind(l).

To preserve this invariant we use the following definition. Fix a QBF Π.ψ. Let τ be a
partial assignment of the universal variables Y to {0, 1} and let x be an existential variable.
Then restrictx(τ) is the assignment where dom(restrictx(τ)) = {u ∈ dom(τ) | ind(u) < ind(x)}
and restrictx(τ)(u) = τ(u).

The simplest of the instantiation-based calculi we consider is ∀Exp+Res from [19] (cf. also
[7,8]). The system IR-calc extends ∀Exp+Res by enabling partial assignments in annotations.
To do so, we utilize the auxiliary operation of instantiation. We define instτ (C) to be the
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(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and ind(u) ≥ ind(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

We consider four instantiations of the Res-rule:
S∃R: x is existential. If z ∈ C1, then ¬z /∈ C2. U1 = U2 = U = ∅.
S∀R: x is universal. Otherwise same conditions as S∃R.
L∃R: x is existential. If l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6= z∗. U1, U2 contain only
universal literals with var(U1) = var(U2). ind(x) < ind(u) for each u ∈ var(U1). If w1 ∈ U1, w2 ∈ U2,
var(w1) = var(w2) = u then w1 = ¬w2, w1 = u∗ or w2 = u∗. U = {u∗ | u ∈ var(U1)}.
L∀R: x is universal. Otherwise same conditions as L∃R.

Fig. 2. The rules of CDCL-based proof systems

(Axiom){
xrestrictx(τ) | x ∈ C, x is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where the notation 0/u for
literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

{xτ} ∪ C1 {¬xτ} ∪ C2
(Resolution)

C1 ∪ C2

C (Instantiation)
instτ (C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 3. The rules of IR-calc [7] and of D-IR-calc (Section 4)

clause containing all the literals lrestrictvar(l)(σ), where lξ ∈ C and dom(σ) = dom(ξ) ∪ dom(τ)
and σ(u) = ξ(u) if u ∈ dom(ξ) and σ(u) = τ(u) otherwise.

The calculus IRM-calc from [7] further extends IR-calc by enabling annotations containing
∗, similarly as in LD-Q-Res.

3 Problems with lifting QBF calculi to DQBF

There is no unique method for lifting calculi from QBF to DQBF. However, we can consider
‘natural’ generalisations of these calculi, where we interpret index conditions as dependency
conditions. This means that when a proof system requires for an existential variable x and a
universal variable y with ind(y) < ind(x), this should be interpreted as y ∈ Yx. Analogously
ind(x) < ind(y) should be interpreted as y /∈ Yx. This approach was followed when taking
Q-Resolution to D-Q-Resolution in [3]. Balabanov et al. showed there that D-Q-Resolution is
not complete for DQBF using the following formula.

∀x1∀x2∃y1(x1)∃y2(x2) (1)

{y1, y2, x1} {¬y1,¬y2, x1}
{y1, y2,¬x1,¬x2} {¬y1,¬y2,¬x1,¬x2}
{y1,¬y2,¬x1, x2} {¬y1, y2,¬x1, x2}
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These are easily shown to be false, but no steps are possible in D-Q-Resolution, hence D-Q-
Resolution is not complete [3]. Consider now the following modification of this formula where
the universal variables are doubled:

∀x1∀x′1∀x2∀x′2∃y1(x1, x′1)∃y2(x2, x′2) (2)

{y1, y2, x1, x′1} {¬y1,¬y2, x1, x′1}
{y1, y2,¬x1,¬x′1,¬x2,¬x′2} {¬y1,¬y2,¬x1,¬x′1,¬x2,¬x′2}
{y1,¬y2,¬x1,¬x′1, x2, x′2} {¬y1, y2,¬x1,¬x′1, x2, x′2}.

The falsity of (2) follows from the fact that its hypothetical Skolem model would immediately
yield a Skolem model for (1) using assignments with x1 = x′1, x2 = x′2. But there is no such
model because (1) is false. However, since we have doubled the universal literals we cannot
perform any generalised QU-Res steps to begin a refutation. This technique of doubling literals
was first used in [5].

Now we look at another portion of the calculi from Fig. 1, namely the calculi that utilise
merging. As a specific example we consider LD-Q-Res and show that it is not sound when
lifted to DQBF in the natural way.

To do this we look at the condition of (L∃R) given in Fig. 2. Here instead of requiring
ind(x) < ind(u) as a condition for u becoming merged, we require u /∈ Yx. This is unsound as
we show by the following DQBF:

∀u∀v∃x(u)∃y(v)∃z(u, v).

{x, v, z} {¬x,¬v, z}
{y, u,¬z} {¬y,¬u,¬z}

Its truth is witnessed by the Skolem functions x(u) = u, y(v) = ¬v, and z(u, v) = (u ∧ v) ∨
(¬u ∧ ¬v). However, the lifted version of LD-Q-Res admits a refutation:

{x, v, z} {¬x,¬v, z}
{v∗, z}

{y, u,¬z} {¬y,¬u,¬z}
{u∗,¬z}

{u∗, v∗}
{u∗}
⊥

This shows that LD-Q-Res is unsound for DQBF. Likewise, since IRM-calc, LQU-Res and
LQU+-Res line-wise simulate LD-Q-Res, this proof would also be available, showing that these
are all unsound calculi in the DQBF setting.

4 A sound and complete proof system for DQBF

In this section we introduce the D-IR-calc refutation system and prove its soundness and
completeness for DQBF. The calculus takes inspiration from IR-calc, a system for QBF [7],
which in turn is inspired by first-order translations of QBF. One such translation is to the
EPR fragment, i.e., the universal fragment of first-order logic without function symbols of
non-zero arity (we only allow constants). We broaden this translation to DQBF and then
bring this back down to D-IR-calc in a similar way as in IR-calc.

We adapt annotated literals lτ to DQBF, such that l is an existential literal and τ is an
annotation which is a partial assignment to universal variables in Yx. In QBF, Yx contains all
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universal variables with an index lower than x, and this is exactly the maximal range of the
potential annotation to x literals. Thus our definition of annotated literals generalises those
used in IR-calc.

Definition 1. Fix a DQBF Π.ψ. Let τ be a partial assignment of the universal variables Y to
{0, 1} and let x be an existential variable. restrictx(τ) is the assignment where dom(restrictx(τ))
= dom(τ) ∩ Yx and restrictx(τ)(u) = τ(u).

Definition 2. We define instτ (C) to be the clause containing all the literals lrestrictvar(l)(σ),
where lξ ∈ C and dom(σ) = dom(ξ)∪ dom(τ) and σ(u) = ξ(u) if u ∈ dom(ξ) and σ(u) = τ(u)
otherwise.

With these definitions at hand we can now define the new calculus D-IR-calc. Its rules
are exactly the same as the ones for IR-calc stated in Fig. 3, but with the relaxed notions of
restriction and instantiation as in Definitions 1 and 2 above.

Before analysing D-IR-calc further we present the translation of DQBF into EPR. We use an
adaptation of the translation described for QBF [25], which becomes especially straightforward
in the light of the DQBF semantics based on Skolem functions. The key observation is that
for the intended two valued Boolean domain the Skolem functions can be represented by
predicates.

To translate a DQBF Π · ψ we introduce on the first-order side 1) a predicate symbol p
of arity one and two constant symbols 0 and 1 to describe the Boolean domain, 2) for every
existential variable x ∈ X a predicate symbol px of arity |Yx|, and 3) for every universal
variable y ∈ Y a first-order variable uy.

Now we can define a translation mapping tΠ . It translates each occurrence of an existential
variable x with dependencies Yx = {y1, . . . , yk} to the atom tΠ(x) = px(uy1 , . . . , uyk) (we
assume an arbitrary but fixed order on the dependencies which dictates their placement as
arguments) and each occurrence of a universal variable y to the atom tΠ(y) = p(uy). The
mapping is then homomorphically extended to formulas in the obvious way, i.e. tΠ(¬ψ) =
¬tΠ(ψ), tΠ(ψ1 ∧ ψ2) = tΠ(ψ1) ∧ tΠ(ψ2), etc. The mapping satisfies the following.

Lemma 3. A DQBF Π · ψ is true if and only if tΠ(ψ) ∧ p(1) ∧ ¬p(0) is satisfiable.

For the purpose of analysing D-IR-calc, the mapping is further extended to annotated liter-
als. Given an annotation τ , we define a first-order substitution τ̄ = {uy 7→ τ(y) | y ∈ dom(τ)}.
Thus τ̄ acts on uy in the same way as τ does on y. By a standard convention, it acts as the
identity mapping elsewhere. The extension of tΠ to annotated literals now additionally applies
the substitution τ̄ to the original result: tΠ(xτ ) = tΠ(x)τ̄ for an existential variable x.

First-order resolution. We aim to show soundness and completeness of D-IR-calc by relating
it via the above translation to a first-order resolution calculus FO-res. This calculus consists
of 1) a lazy instantiation rule: given a clause C and a substitution σ derive the instance Cσ,
and 2) the resolution rule: given two clauses C ∪ {L} and D ∪ {¬L}, where L is a first-order
literal, derive the resolvent C∪D. Note that similarly to propositional clauses, we understand
first-order clauses as sets of first-order literals. Thus we do not need any explicit factoring
rule. Also note that we require the pivot literals of the two premises of the resolution rule to
be equal (up to the polarity). Standard first-order resolution, which involves unification on
the pivot, can be simulated in FO-res by combining the instantiation and the resolution rule.

It is clear that FO-res is sound and complete for first-order logic.
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Soundness. Our argument for the soundness of D-IR-calc is the following. Given π = (L1, L2,
. . . , L`), a D-IR-calc derivation of the empty clause L` = ⊥ from DQBF Π · ψ, we show by
induction that tΠ(Ln) is derivable from Ψ = tΠ(ψ) ∧ p(1) ∧ ¬p(0) by FO-res for every n ≤ `.
Because tΠ(⊥) = ⊥ is unsatisfiable, so must Ψ be by soundness of FO-res and therefore Π ·ψ
is false by Lemma 3.

We need to consider the three cases by which a clause is derived in D-IR-calc. First, it is easy
to verify that D-IR-calc instantiation by an annotation τ corresponds to FO-res instantiation
by the substitution τ̄ , i.e. tΠ(instτ (C)) = tΠ(C)τ̄ . Also the D-IR-calc and FO-res resolution
rules correspond one to one in an obvious way. Thus the most interesting case concerns the
Axiom rule.

Intuitively, the Axiom rule of D-IR-calc removes universal variables from a clause while
recording their past presence (and polarity) within the applied annotation τ . We simulate
this step in FO-res by first instantiating the translated clause by τ̄ and then resolving the
obtained clause with the unit p(1) and/or ¬p(0). Here is an example for a DQBF prefix
Π = ∀u ∀v ∀w ∃x(u, v)∃y(v, w):

{x, y,¬u, v}
(D-IR-calc)

{x1/u,0/v, y0/v}
{px(uu, uv), py(uv, uw),¬p(uu), p(uv)}

(FO-res)
{px(1, 0), py(0, uw)}

Theorem 4. D-IR-calc is sound.

Completeness. Let Π ·ψ be a false DQBF and let us consider G(tΠ(ψ)), the set of all ground
instances of clauses in tΠ(ψ). Here, by a ground instance of a clause C we mean the clause
Cσ for some substitution σ : var(C)→ {0, 1}.

By the combination of Lemma 3 and Herbrand’s theorem, G(tΠ(ψ)) ∧ p(1) ∧ ¬p(0) is
unsatisfiable and thus it has a FO-res refutation. Moreover, by completeness of ordered reso-
lution [2], we can assume that 1) the refutation does not contain clauses subsumed by p(1) or
¬p(0), and 2) any clause containing the predicate p is resolved on a literal containing p. From
this it is easy to see that any leaf in the refutation gives rise (in zero, one or two resolution
steps with p(1) or ¬p(0)) to a clause D = tΠ(C) where C can be obtained by D-IR-calc Axiom
from a C0 ∈ ψ. The rest of the refutation consists of FO-res resolution steps which can be
simulated by D-IR-calc. Thus we obtain the following.

Theorem 5. D-IR-calc is refutationally complete for DQBF.

Although one can lift the above argument with ordered resolution to show that the set
{tΠ(C) | C follows by Axiom from some C0 ∈ ψ} is unsatisfiable for any false DQBF Π · ψ,
we only know how to simulate ground FO-res steps by D-IR-calc. That is because a lifted
FO-res derivation may contain instantiation steps which rename variables apart for which
a subsequent resolvent cannot be represented in D-IR-calc. An example is the resolvent
{py(uv), pz(u′v)} of clauses {px(uu), py(uv)} and {¬px(uu), pz(u

′
v)} which is obviously weaker

than the clause {py(uv), pz(uv)}. However, only the latter has a counterpart in D-IR-calc.
We also remark that in a similar way we can also lift to DQBF the QBF calculus ∀Exp+Res

from [19]. It is easily verified that the simulation of ∀Exp+Res by IR-calc shown in [7] di-
rectly transfers from QBF to DQBF. Hence Theorem 4 immediately implies the soundness
of ∀Exp+Res lifted to DQBF. Moreover, because all ground instances are also available in
∀Exp+Res lifted to DQBF, this system is also complete as can be shown by repeating the
argument of Theorem 5.
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