
Spooky Interaction and its Discontents:

Compilers for Succinct Two-Message Argument Systems

Cynthia Dwork∗ Moni Naor† Guy N. Rothblum‡

Abstract

We are interested in constructing short two-message arguments for various languages, where
the complexity of the verifier is small (e.g. linear in the input size, or even sublinear if the input
is coded appropriately).

In 2000 Aiello et al. suggested the tantalizing possibility of obtaining such arguments for all
of NP . These have proved elusive, despite extensive efforts. Our work builds on the compiler
of Kalai and Raz, which takes as input an interactive proof system consisting of several rounds
and produces a two-message argument system. The proof of soundness of their compiler relies
on superpolynomial hardness assumptions.

In this work we obtain a succinct two-message argument system for any language in NC,
where the verifier’s work is linear (or even polylogarithmic). This is the first non trivial two-
message succinct argument system that is based on a standard polynomial-time hardness as-
sumption. We obtain this result by showing that the compiler is sound if the verifier in the
original protocol runs in logarithmic space and public coins. On the other hand, we prove that
under standard assumptions there is a sound interactive proof protocol that, when run through
the compiler, results in a protocol that is not sound.

∗Microsoft Research Silicon Valley.
†Dept of Computer Science and Applied Math, Weizmann Institute of Science. Incumbent of the Judith Kleeman

Professorial Chair. Research supported in part by grants from the Israel Science Foundation, BSF and Israeli Ministry
of Science and Technology and from the I-CORE Program of the Planning and Budgeting Committee and the Israel
Science Foundation (grant No. 4/11). Part of this work was done while visiting Microsoft Research.
‡Samsung Research America.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 49 (2016)

1 Introduction

Imagine going on vacation and upon your return you find that not only has your home computer
ordered the garden robot to mow the lawn but it has also commissioned from some vendor a lengthy
computation that you have been postponing for a while. While verifying that the lawn has been
properly mowed is simple, you are suspicious about the computation and would like to receive a
confirmation that it was performed correctly. Ideally such a proof would be a short certificate
attached to the result of the program. Hence we are interested in proofs or arguments1 that are
either non-interactive or two-message.

The problem of constructing short two-message arguments for various languages where the ver-
ifier is very efficient (e.g. linear in the input size, or even sublinear if it is coded properly) has
received quite a lot of attention over the last twenty years (see Section 1.1). Suppose that we have
a low communication public coins interactive (multi-round) protocol for proving (or arguing) mem-
bership in the language. A possible approach for obtaining short arguments is using a “compiler”
that takes any protocol consisting of several rounds and removes the need for interaction, producing
a two-message argument system.

One approach to constructing such a compiler is having the verifier encrypt and send all of its
(public coin) challenges, where encryption is performed using a very malleable2 scheme, such as
Private Information Retrieval (PIR) or Fully Homomorphic Encryption (FHE)3. The prover uses
the malleability to simulate his actions had the queries been given in plaintext, generating and
sending back the appropriate ciphertexts (which should correspond to encryption of the answers
the prover would give in the plain protocol). This compiler was studied by Kalai and Raz [KR09],
as well as Kalai, Raz, and Rothblum [KRR14].

We investigate whether this compiler can be proved secure under standard cryptographic as-
sumptions. That is, we do not want to base security on assumptions such as “having access to
random oracles” or on so-called “knowledge assumptions”, i.e. that one can extract from any ma-
chine that computes a certain function a value that is seemingly essential to that computation.
Furthermore, we prefer not to rely on “super-polynomial hardness assumptions”, i.e. that a certain
cryptographic primitive is so hard it remains secure even if given enough time to break another
primitive. In particular, such assumptions are not falsifiable in the sense of Naor [Nao03],4 and
they assume a strict hierarchy beyond P 6= NP . Also we want the underlying assumptions to be
simple to state such as “Learning With Errors is hard”. We prove positive and negative results
about the above compiler:

• Assume FHE or PIR exist. Then there exists a sound interactive proof protocol, and there
exists an FHE or PIR (respectively) scheme E, such that when the compiler is applied to the
proof system using E, the resulting two-message argument is insecure. In fact, the compiler
(when applied to this protocol) is insecure using all known FHE schemes. See Theorem 4.2.

1An argument is a “proof” that is sound (under cryptographic assumptions) so long as its creator is computationally
bounded.

2Malleable in the cryptographic sense means that it is possible to manipulate a given ciphertext to generate related
ciphertexts.

3As we shall see, the latter is needed if the prover’s messages in the multi-round protocol depend on super-
logarithmically-many bits sent by the verifier.

4A “falsifiable” cryptographic assumption is one that can be refuted efficiently. Falsifiability is a basic “litmus
test” for cryptographic assumptions.

1

• For any FHE or PIR, if the verifier in the original protocol is log-space and uses only public
coins, then the compiled argument is sound (See Theorem 5.3). Combining this with the
work of Goldwasser et al. [GKR15], we obtain a succinct two-message argument system for
any language in NC, where the verifier’s work is linear (or even polylogarithmic if the input
is coded appropriately). See Theorem 5.5. This is the first succinct two-message argument
based on standard polynomial-time hardness assumptions.

1.1 Background

Obtaining succinct (e.g. sub-linear) two-message proof (or argument) systems has been a long-
standing goal in the literature. Two primary approaches have been explored, both using cryptog-
raphy to transform information-theoretic proof systems (interactive proofs, PCPs, or multi-prover
interactive proofs) into non-interactive or two-message computationally-sound arguments.

Two-message arguments from PIR or FHE. The compiler studied in this work is rooted in
a tantalizing suggestion of Aiello et al. [ABOR00a] in 2000, who proposed combining two powerful
tools: The PCP (probabilistically checkable proofs) Theorem5 and Computational PIR schemes6 in
order to obtain a succinct two-message argument system. In particular, leveraging the full strength
of the PCP theorem, one could hope to obtain such arguments for all of NP. However, shortly
thereafter Dwork et al. [DLN+] pointed out problems in the proof and showed various counter
examples for techniques of proving such a statement (see [ABOR00b]). No direct refutation was
shown.7

Kalai and Raz [KR09] modified the Aiello et al. method, and suggested using it as a general
compiler for turning public-coin interactive proofs (rather than PCPs) into two argument systems
(without increasing the communication significantly, see below). They showed that, for any interac-
tive proof system, one can tailor the compiler to that proof system by taking a large enough security
parameter (polynomial in the communication of the proof system), and obtain a secure two-message
argument. This requires subexponential hardness assumptions about the PIR or FHE. Applying
the compiler to the interactive proofs of Goldwasser, Kalai and Rothblum [GKR08, GKR15] (see
below), they obtain two-message arguments for bounded-depth computations.

Kalai, Raz and Rothblum [KRR14] study no-signalling proof systems, a restricted type of multi-
prover interactive proof. They showed that, fixing any no-signalling proof, the compiler can also
be tailored to that proof system, again giving a secure two-message argument (and also using
sub-exponential hardness assumptions). Since no-signalling proof systems are more powerful than
interactive proofs, they obtain two-message arguments for a larger class of computations (going
from bounded-depth in [KR09] to P in [KRR14]).

Kilian, Micali, et sequelae. In 1992 Kilian [Kil92] suggested a short argument system for any
language in NP. The protocol required 4 messages and the total amount of bits sent was polylog(n),

5That states that for every language L ∈ NP there exist a polynomial size witness/proof that may be verified,
with constant error probability, by probing only a constant number of locations of the proof.

6Enabling a two-party protocol where one party holds a long string S and the other party is interested the value
of the string at a particular location i; the second party does not want to reveal i and the goal is to have a low
communication (much shorter than S) protocol; See Section 2.

7The original Aiello et al. [ABOR00a] protocol had an additional oversight, having to do with verifying the
consistency of query answers. As Dwork et al. [DLN+] showed, this can be corrected using a probabilistic consistency
check.

2

where n is the input length, times a security parameter. The cryptographic assumption needed was
fairly conservative, namely the existence of collision-resistant hash functions. Provided the prover
has a witness, the work done by the prover is polynomial in the instance plus the witness sizes.
In this protocol, the prover first committed to a PCP proof using a hash function provided by the
verifier via a Merkle Tree (first two messages). The verifier then issued queries to the PCP and
the prover needed to open its commitment in the specified locations in a way that would make the
PCP verifier accept8 (requiring two additional messages).

Some time later, Micali [Mic00] suggested using the Fiat-Shamir methodology [FS86] of re-
moving interaction from public-coin protocols using an idealized hash function (random oracle) to
obtain a two-message (or even non-interactive) succinct argument for any language in NP. Micali’s
work raised the issue of whether it is possible to obtain such argument systems in the “real world”
(rather than in an idealized model). Barak and Goldreich [BG08] showed that security for the
4-message protocol could be based on standard (polynomial-time) hardness assumptions, but no
secure instantiation of non-interactive arguments for NP is known under standard cryptographic
assumptions.

Negative results and perspective. On the negative side, Gentry and Wichs [GW11] have
shown that constructing two-message adaptively sound arguments for NP is going to be tricky:
take any short two-message (even designated-verifier) proof system for NP, and assume that there
are exponentially hard one-way functions. Then, paradoxically, any black-box reduction from a
cheating prover to a falsifiable assumption can actually be used to break the assumption. One can
interpret this result in several ways: (i) We need to find non black-box techniques in this realm. (ii)
We should explore the boundaries of the Gentry-Wichs proof, i.e. when can we obtain black-box
reductions and in particular what happens to computation in P (as opposed to NP). (iii) Use a non-
falsifiable assumption. We prefer the first two interpretations, but there are quite a few works taking
approach (iii). Thus, Kalai and Raz [KR09] and Kalai, Raz and Rothblum [KRR14] used super-
polynomial hardness assumptions and obtained two-message succinct protocols for all languages
computable in bounded depth and in P (respectively). Several works, Mie [Mie08], Groth [Gro10],
Bitansky et al. [BCCT12] and Goldwasser et al. [GLR11] used a knowledge assumption (where one
assumes that in order to perform a certain computation another piece of information is necessary
and extractable).

Proofs for Muggles. Goldwasser, Kalai and Rothblum [GKR08, GKR15] were able to obtain a
succinct interactive proof system (with many rounds) for any language that can be computed using
small-depth circuits of polynomial size (NC, or, more generally, bounded-depth circuits). The prover
in their system runs in polynomial time. The verifier runs in nearly-linear time and logarithmic
space, and uses only public-coin. The communication and round complexities are related to the
circuit depth (using bounded fan-in circuits).

Other related works. Paneth and Rothblum [PR14] construct non-interactive arguments in
a common reference string model for any computation in P. Their constructions are based on
efficiently falsifiable assumptions over multilinear maps. Candidates for multilinear maps have
been suggested recently, starting with the work of Garg, Gentry and Halevi [GGH13a], but the

8This is not a precise representation of Kilian’s work, for instance the PCP Theorem did not exist in its ‘final’
form when he proved his result.

3

security of these objects is not yet well understood, and is an active area of research. Looking
ahead, we note that our construction of two-message arguments for bounded-depth computations
is currently the only other construction based on efficiently falsifiable assumptions; we assume only
PIR or FHE, rather than assumptions over multilinear maps. In a different vein, Bitansky et al.
[BGL+15] construct non-interactive arguments using Indistinguishability Obfuscation (IO). This
can be instantiated using the candidate of Garg et al. [GGH+13b] (which itself builds on multilinear
maps).

Gennaro, Gentry and Parno [GGP10] have suggested a combination of garbled circuits and
FHE in order to obtain non-interactive verification of outsourced work. In their setting a long
setup message is sent by the verifier (whose length is proportional to the total amount of work) and
for each subsequent input the verifier only needs to send a message proportional in length to the
input size. The prover sends a short message and verification is quick.

1.2 Our Results

We investigate the compiler for converting public-coin interactive protocols into two-message pro-
tocols and show positive and negative results. On the positive side, we show that if the verifier
uses only public coins and logarithmic space (and in particular, it has no secret memory), then the
compiler is secure. This result can then be used to show that any language in NC has a succinct
two-message protocol based on any FHE. More generally, if the computation involves a circuit of
depth D(n), then it can be proven by sending a message whose length is polynomial in D(n) times
the length of FHE ciphertexts. This is because not only does NC have log-space public-coin inter-
active proofs [FL93], but these can be made succinct, and moreover, such interactive proofs exist
for any bounded-depth computation [GKR15]. These results are described in Section 5.

An application of the positive results could be for cases where exhaustive search is involved,
and the entity performing the search wishes to show that it was unsuccessful or that the given
result is the best possible. (A recent instance of such cases occurs in pools for mining Bitcoins: the
goal is to search for a “nonce” that when added to the current block and hashed yields a certain
number of ending 0’s). Such an entity (in the Bitcoin case, the participant in the pool) can provide
a two-message argument that the computation was properly performed but alas, the search was not
successful; the length of the argument is poly-logarithmic in the space searched (in case of Bitcoin
the argument length would be polynomial in the length of the nonce). See details in Section 5.3.

On the negative side, we show that if FHE schemes exist, then there exists a simple three-
message interactive proof (i.e. with unconditional soundness) that, when compiled, yields an un-
sound argument. In particular, this example means that to instantiate the compiler one must
consider the protocol compiled and take into account the communication and runtimes of the par-
ties. This is described in Section 4.

The Compiler is described in detail in Section 3 and general definitions are given in Section 2.

2 Definitions and basic properties

A function µ : N→ [0, 1] is negligible, denoted by µ = negl(n), if for every polynomial p, there exists
n0 ∈ N such that for every n ≥ n0, µ(n) ≤ 1

p(n) .

4

2.1 Interactive Protocols

In this work, an interactive protocol consists of a pair (P,V) of interactive Turing machines that
are run on a common input x, whose length we denote by n = |x|. The first machine is called the
prover and is denoted by P, and the second machine, which is probabilistic, is called the verifier
and is denoted by V. At the end of the protocol, the verifier accepts or rejects (this is the protocol’s
output).

Public-coin Protocols. An interactive protocol is public coins if each bit sent from the verifier
to the prover is uniformly random and independent of the rest of the communication transcript.

Definition 2.1 (Interactive Proof [GMR89]). An interactive protocol (P,V) (as above) is an In-
teractive Proof for a language L if it satisfies the following two properties:

• completeness: For every x ∈ L, if V interacts with P on common input x, then V accepts
with probability 1.9

• sIP -soundness: For every x /∈ L and every (computationally unbounded) cheating prover
strategy P∗, the probability that the verifier V accepts when interacting with P∗ is at most
sIP = sIP (n), where sIP is called thesoundness error of the proof-system. The probability is
over the verifier’s coin tosses.

A verifier is log-space and public-coin if it is public coin (as above), and uses only a O(log n)-size
memory tape (on top of one-way access to the communication and randomness tapes).

Definition 2.2 (λ-History-Aware Interactive Proof). An interactive proof is λ = λ(n)-history-
aware if on top of the requirements of Definition 2.1, it is also the case that each message sent by
the (honest) prover P is only a function of the last λ bits sent by the verifier.

Note that in the above definition we make no assumptions on the strategies that can be employed
by cheating provers. Note also that we do not use the related “history ignorant” terminology of
[KR09], as we prefer the convenience of the “history-aware” definition.

We add explicit timing and probability parameters to the usual definition of argument systems.

Definition 2.3 (Argument System). An interactive protocol (P,V) (as above) is an Argument
System for L if it is complete, as per Definition 2.1, and satisfies computational soundness:

• sarg-soundness against Targ-time cheating provers: For every x /∈ L and every cheating
prover P∗ whose strategy can be implemented by a Targ = Targ(n)-time Turing Machine, the
probability that the verifier V accepts when interacting with P∗ is at most sarg = sarg(n). The
probability is over the verifier’s coin tosses.

2.2 FHE

Both FHE and PIR schemes allow one party to send to another party a relatively short string that
is an encryption of a query. The second party then computes a ciphertext of a message that is
supposed to be a function of the original message and information that the second party possesses.
In the case of FHE, the query is a vector y in (say) {0, 1}m, the second party possesses a function
f : {0, 1}m → {0, 1}, and the answer-ciphertext is an encryption of f(y).

9More generally, there could be a small completeness error.

5

Definition 2.4 (Fully Homomorphic Encryption). An FHE scheme is defined by algorithms:
KeyGen,Enc,Dec,Eval, who all get as part of their input the security parameter 1κ and an in-
put length parameter m (we omit these two inputs when they are clear from the context). The
KeyGen algorithm outputs a pair of public and secret keys (pk , sk). The encryption algorithm Enc
takes the public key and a vector y ∈ {0, 1}m, and outputs an encryption of y. The Eval algorithm
takes as input the public key pk, an encryption of y (under pk) and a function f : {0, 1}m → {0, 1},
and outputs an encryption of f(y). Finally, the decryption algorithm takes as input the secret key
sk and the encryption of f(y) produced by Eval and outputs the plaintext f(y). We require:

• Completeness: ∀κ,m ∈ N , y ∈ {0, 1}m, for any function f of circuit-size poly(m) and
(pk , sk) generated by KeyGen, we have:

Dec(sk ,Eval(pk , f,Enc(pk , y))) = f(y).

• Semantic Security: ∀κ,m ∈ N , y, y′ ∈ {0, 1}m, the distributions Enc(pk , y) and Enc(pk , y′)
(where pk is generated by KeyGen) are negl(κ)-indistinguishable.

• Complexity: The algorithm KeyGen runs in time poly(κ). The algorithms Enc,Dec run in
time poly(κ,m). The algorithm Eval runs in time poly(κ,m, |f |). The outputs of Enc and
Eval are of length poly(κ,m).

The possible existence of FHE scheme was an open question for many years until Gentry’s
work [Gen09] and we know now that FHE schemes can be constructed under standard lattice
assumptions such as LWE [BV14].

2.3 PIR

Here the query is an index y ∈ [λ], the second party possesses a database Z ∈ {0, 1}λ, and the
answer-ciphertext is an encryption of Zy.

Definition 2.5 (Private Information Retrieval (PIR) Scheme). A PIR scheme is defined by three
algorithms: Enc,Dec,Eval, who all get as part of their input the security parameter 1κ and database
length λ (we omit these two inputs when they are clear from the context). Enc also takes as input an
index y ∈ [λ], and outputs an “encryption” c of y, and a “secret key” sk for decryption. The Eval
algorithm takes as input an encryption of y and a database Z ∈ {0, 1}λ, and outputs an “encryption”
of Zy (the y-th bit of Z). Finally, Dec takes as input the secret key sk and a ciphertext generated
by Eval and outputs Zy. We make the following requirements:

• Completeness: ∀κ, λ ∈ N , y ∈ [λ], Z ∈ {0, 1}λ, and (c, sk)← Enc(y) we have that:

Dec(sk ,Eval(Z, c)) = Zy.

• Semantic Security: ∀κ, λ ∈ N , y, y′ ∈ [λ], taking (c, sk) ← Enc(y) and (c′, sk ′) ← Enc(y′),
the distributions of c and of c′ are negl(κ)-indistinguishable.

• Complexity: The algorithms Enc,Dec run in time poly(κ, log λ). The algorithm Eval runs
in time poly(κ, λ). In particular, the outputs of Enc and Eval are of length poly(κ, log λ).

PIR Schemes exist under a variety of assumptions such as quadratic residuosity [KO97] , Φ-
hiding [CMS99] and Learning with Errors [BV14].

6

3 Detailed Description of The Compiler

3.1 The Compiler: FHE Variant

We now describe the compiler in detail, focusing first on the FHE variant and in Section 3.2 the
PIR variant. The compiler starts with a many-round public-coin interactive proof (PIP ,VIP),
and produces a two-message argument system (Parg,Varg). It is based on that of Kalai and Raz
[KR09]. However, we leave the security parameter free, rather than tailoring it to the Interactive
Proof (PIP ,VIP) to be compiled.10

We denote by Encpk (y) the encryption of y ∈ {0, 1}m under public key pk. Note that this is
really a distribution on ciphertexts. Assume that (PIP ,VIP) consists of k rounds (and 2k messages).
For each round i, in which the verifier should send a random value αi, the (compiled) verifier chooses
an independent key pki from the underlying encryption system. In a single message, it sends the
public keys {pk i}ki=1 and the ciphertexts {ai = Encpk i

(α1, α2, . . . αi)}ki=1. That is, the ciphertext
ai = Encpk i

(α1, α2, . . . αi) is the encryption of the messages sent in rounds 1, . . . , i of the simulated
protocol. The prover uses the ciphertext ai to homomorphically compute an encryption of the
answer that it would have sent given the queries α1, α2, . . . αi, i.e., what it “would have done” at
round i.

Let the (efficiently computable) function that computes the i-th prover message in the interac-
tive protocol be Pi(α1, α2, . . . αi). So the prover computes and sends bi = Encpk i

(Pi(α1, α2, . . . αi)).
This is done simultaneously for all the rounds. The verifier then decrypts the messages it receives,
where βi is the decryption of the ciphertext bi, and accepts if and only if the simulated verifier
accepts the transcript (α1, β1, . . . , αk, βk).

The resulting protocol is given in Figure 1. By construction, it is a two-message protocol.
Completeness rests on the completeness of the FHE scheme, i.e. if the scheme is complete, then so
is the resulting protocol. The communication complexity of the new protocol increases: the verifier
sends k2/2 bit-encryptions and k public keys. The prover responds with k ciphertexts. Letting γ
bound the length of ciphertexts and public keys, the total communication complexity is O(k2 · γ).
The soundness of the resulting protocol is the main issue addressed in this work.

Historical Note: Multi-Prover Proof Systems A related compiler starts with a multi-
prover two-message scheme instead of a single-prover protocol (this is closer to the original idea
of [ABOR00a]). As in the above compiler, the idea is for the verifier to encrypt the queries using
independent keys and then ask that the prover perform the computation it would have done to
answer the queries in the original protocol.

3.2 The Compiler: PIR Variant

The PIR-based variant of the compiler is given in Figure 2. We assume that the interactive proof
to be compiled (PIP ,VIP) is only λ-history-aware, so the prover’s i-th message only depends on
the last λ bits sent by the verifier.

The verifier Varg simulates the interactive verifier VIP to generate its k messages α1, . . . , αk ∈
{0, 1}. For each i ∈ [k], Varg uses the PIR scheme to compute: (ci, sk i) ← Enc(αi−λ+1, . . . , αi),
where we interpret αj as α1 if j < 1 (this will occur when i < λ). For each i ∈ [k], the prover Parg
interprets ci, which encrypts a string of λ′ ≤ λ bits, as a PIR query into a database of size at most

10The compiler can be based on FHE or PIR, see Section 3.2 for the PIR-based variant.

7

Protocol (Parg,Varg)(x, 1κ) for Language L

The compiler uses an FHE scheme, with security parameter κ. Without loss of generality, we
assume that each message in Π = (PIP ,VIP) is only a single bit.

Varg → Parg: The verifier Varg simulates the interactive verifier VIP to generate its k challenges
α1, . . . , αk ∈ {0, 1}. For each i ∈ [k], Varg chooses keys (pk i, sk i) for the PIR or FHE.

Varg then sends the keys and ciphertexts {pk i,Encpk i
(α1, . . . , αi)}i∈[k] (as a single message).

Parg → Varg: The prover Parg simulates the interactive prover PIP , where the function Pi that
computes PIP ’s i-th message is applied to the encrypted challenges sent under pk i. I.e., Parg
homomorphically computes bi = Encpk i

(Pi(α1, . . . , αi)).

Parg then sends th ciphertexts {bi}i∈[k] to Varg (as a single message)

Verification: The verifier Varg decrypts each ciphertext bi to retrieve the message βi. It accepts if
and only if the interactive verifier VIP accepts the transcript (α1, β1, . . . , αk, βk).

Figure 1: Compiler (FHE variant): Compiling k-round Interactive Proof (PIP ,VIP) to 2-msg
argument (Parg,Varg). Based on [KR09].

2λ
′
. For each i, Parg computes a database Z(i) containing all 2λ

′
answers, one for each possible

λ′-bit history that PIP might have encountered in its i-th round in the underlying interactive proof
(PIP ,VIP). Parg responds with bi ← Eval(Z(i), ci), which contains the answer to the λ′-bit history
encrypted in the i-th verifier query.

In the compiled protocol, the honest prover Parg runs in time 2λ. When λ is at most logarithmic
in the input length, the running time of Parg remains polynomial. Indeed, in our positive result we
apply the compiler to the interactive proof of [GKR15], which has a logarithmic λ (see Section 5).
The communication complexity of the new protocol is as follows: the verifier sends k PIR queries
into a database of size 2λ, and the prover responds with k answers to the PIR queries. Letting
γ be the communication complexity of the PIR scheme (the combined length of the PIR query
and response for databases of size 2λ), the total communication complexity is kγ. Note that (for
logarithmic λ) this is an improvement over the O(k2γ) obtained using FHE.

4 The Negative Result: A Protocol that does not Compile Well

We now present a protocol (PIP ,VIP) that does not compile well under the Compiler of Section 3.
We work with the FHE variant of the compiler. The results hold mutatis mutandis for the PIR
variant (see Remark 4.1 below).

This is what we would like to be able to say: “For any possible instantiation of the compiler
with an FHE, there exists an (unconditionally sound) interactive protocol that, when compiled,
yields an unsound two-message argument system.” What we can actually say is: “For any possible
instantiation of the compiler with an FHE, there exist another instantiation of the compiler with a
(different) FHE and an interactive protocol that, when compiled, yields an unsound two-message

8

Protocol (Parg,Varg)(x, 1κ) for Language L

The compiler uses a PIR scheme with security parameter κ. Without loss of generality, we assume
that each message in Π = (PIP ,VIP) is only a single bit.

Varg → Parg: The verifier Varg simulates the interactive verifier VIP to generate its k messages
α1, . . . , αk ∈ {0, 1}. For each i ∈ [k], Varg uses the PIR scheme to compute:

(ci, sk i)← Enc(αi−λ+1, . . . , αi).

Varg then sends the PIR queries {ci}i∈[k] (as a single message).

Parg → Varg: For each i ∈ [k], the prover Parg interprets ci, which encrypts a λ-bit string, as a
PIR query into a database of size 2λ. For each i, Parg computes a database Z(i) containing
all 2λ answers, one for each possible λ-bit history that PIP might have encountered in its i-th
round in the underlying interactive proof (PIP ,VIP).

For each i ∈ [k], Parg computes bi ← Eval(Z(i), ci), and sends the strings {bi}i∈[k] to Varg (as
a single message).

Verification: The verifier Varg decrypts each value bi using the key sk i and retrieves a message βi.
It accepts if and only if the interactive verifier VIP accepts the transcript (α1, β1, . . . , αk, βk).

Figure 2: Compiler (PIR variant). Compiling k-round λ-history-aware interactive proof (PIP ,VIP)
to 2-message argument (Parg,Varg)

argument”. That is, given the FHE we will need to modify it a bit (still getting an FHE), so that
the compiler will fail. We suggest two alternate modifications to the underlying FHE to undermine
the compiler. We stress that the compiler fails under all known implementations of FHE (without
any modification).

The rough idea of the interactive protocol (PIP ,VIP) is for the prover to commit to a string
xp ∈ {0, 1}n in the first round. The verifier then sends a “guess” for this commitment string in
the form of xv ∈ {0, 1}n chosen uniformly at random. Finally the prover opens his commitment to
the string xp. The prover wins if the opening of xp is legitimate (i.e. accepted by the receiver in
the commitment protocol) and xv = xp. Obviously, since xv is chosen after xp, if the commitment
is perfect (there is only one way to open any commitment), then the probability that the prover
succeeds is 1/2n. This as an interactive proof protocol for the empty language.

Perfect and weak commitments. The protocol (PIP ,VIP) uses a public-key encryption scheme
to commit to the string xp. To commit, the prover sends a public key pk and an encryption of xp.
To open the commitment, he sends the randomness used in the encryption. The resulting protocol
is sound so long as the encryption scheme is committing: for every public key, and every ciphertext,
there is only one message-randomness pair that yields that ciphertext.

We cannot base the above protocol on “non-committing” encryption, where some ciphertexts
can be opened to all possible values, as is the case in deniable encryption [CDNO97, SW14]. If we

9

use such an encryption scheme in the above protocol, then the resulting protocol will not be sound
(the prover can win). Simply put, the prover can open the encryption as the string that the verifier
sent.

Nevertheless, we can relax the commitment property a bit. Instead of a perfect commitment,
we can use a weak commitment scheme, where we modify the requirement that there is a unique
opening, to one where there are few openings. If there are at most w different values that can be
opened, then the probability of the prover winning the above game (guessing at most w strings
that include the one chosen by the verifier) is at most w/2n. We can then use any semantically
secure public-key encryption scheme (even a non-committing one) to get a weak commitment as
follows. The commitment is as above (i.e. consists of a public key and a ciphertext). To open
the commitment, the committer sends a decryption key sk corresponding to pk . Assuming the
decryption algorithm is deterministic (which is w.l.o.g, since we can fix the coins), there is a unique
plaintext corresponding to the ciphertext given a candidate for sk .

For this to make sense we need to make sure that the length of the decryption key is much
shorter than n = |x|, and we get a weak commitment as above (the number of possible openings is
bounded from above by the number of decryption keys, w = 2|sk |, much smaller than 2|x|).

4.1 The Protocol (PIP ,VIP)

(PIP ,VIP) is an interactive proof for the empty language, i.e. the verifier should reject any input
w.h.p. The proposed protocol consists of 4 messages and uses public coins, where the first message,
sent by the verifier, is empty. We can base it on any committing encryption scheme as above (and
in parenthesis describe how to deal with non committing encryption). The notation Encpk (x, r)
indicates that the message x is encrypted under public key pk using randomness r.
The protocol (PIP ,VIP) is:

1. V 7→ P: empty message.

2. P 7→ V: The prover uses a committing encryption scheme. It picks public key pkp, string
xp ∈ {0, 1}n, randomness rp and sends (pkp, cp = Encpkp

(xp, rp)).

(same is done in the non-committing case.)

3. V 7→ P: the verifier picks random xv ∈ {0, 1}n and sends it.

4. P 7→ V: the prover sends m = (xp, rp).

Verification. The verifier checks whether xp = xv and cp = Encpkp(xp, rp) and accepts if they are
both satisfied. Note that to perform this check, the verifier needs to “remember” pkp, cp and xv
(we refer to this fact in Section 5).

In the non-committing encryption variant of the protocol, in Step 4 the prover sends the de-
cryption key skp corresponding to pkp. In the verification step, the verifier decrypts cp using skp
and accepts if the answer equals xv.

Theorem 4.1. For any perfectly committing encryption scheme (respectively, non-committing
scheme), the above protocol is complete and sound, with soundness error at most 1/2n (respec-
tively, 2|sk |/2n for the non-commiting variant).

10

4.2 The compiled protocol

Let (Parg,Varg), described next, be the argument system obtained by applying the compiler of
Figure 1 to the interactive proof (PIP ,VIP) for the empty language, described in Section 4.1.

Varg 7→ Parg: Verifier picks and sends pkv,1 (for the first round’s empty message), and pkv,2, cv =
Encpkv,2(xv, rv) (for the verifier’s second message in (PIP ,VIP)).

Parg 7→ Varg: The (honest) prover Parg sends Encpkv,1
((pkp, cp = Encpkp

(xp, rp)), r
′) (for the first

prover message), and Encpkv,2(m = (xp, rp), r
′′) (for the second message).

The verifier decrypts the first prover message using skv,1 to retrieve (pkp, cp), decrypts the second
message using skv,2 to retrieve m = (xp, rp), and accepts if the original protocol’s verifier
accepts.

Speaking intuitively, the compiler will fail because a cheating prover can use the encryption cv
of the message xv that the compiled verifier sends him to come up with a commitment to xp = xv.
The challenge to the cheating prover then is how to obtain an encryption of the randomness rp sent
in Step 3 of (PIP ,VIP). This seems like quite an obstacle for an arbitrary FHE scheme.

Suppose, however, that FHE scheme E “makes the cheating prover’s life easy”. That is, every
encryption also includes an encryption of the randomness r (using freshly chosen randomness radd)
(the decryption algorithm simply ignores the second part of the ciphertext). The cheating prover
for (Parg,Varg) can use this encryption of the randomness rp to break soundness. Any FHE can
be tweaked in this way, without harming its homomorphic or security properties. The case of a
non-committing encryption is handled similarly.

Breaking the compiled protocol. Given pkv,1, pkv,2 and cv = Encpkv,2(xv, rv), the cheating
prover P ∗ sends Encpkv,1

(pkv,2, cv) as its first message, and cv as its second message. Recall that
cv = Encpkv,2(xv, rv), and this includes both an encryption of xv and of rv, since we assumed that
the cryptosystem Enc is such that it also gives an encryption of the random string. Thus, by
following this strategy, P ∗ makes Varg accept with probability 1 (based on perfect completeness of
the encryption scheme).

Alternatively, for non-committing encryption, we assume that the public key includes an en-
cryption of the secret key. Thus, the public key pkv,2 includes Encpkv,2

(skv,2), which can be sent by
the cheating prover P ∗ as its second message to “de-commit” and break security. Thus, we can use
a “circular-secure” FHE scheme, where semantic security holds even when the public key includes
an encryption of the secret key, to show that the compiler fails. We note that it is not known in
general whether “circular security” holds, namely whether including an encryption of the secret
key in the public key always preserves semantic security (see e.g. Rothblum [Rot13]). However,
for known FHE schemes, an encryption of the secret key is already included in the public key to
enable “bootstrapping” (see e.g. Gentry [Gen09]). Thus, the compiler is insecure when instantiated
with all known concrete FHE candidates. Moreover, even if a new (and non-committing) FHE
candidate is discovered, we can modify its public key to include an encryption of the secret key. If
the modified scheme remains semantically secure, then (as above) the compiler fails on (PIP ,VIP).
Thus, proving that the compiler is secure with the modified scheme would require proving that the
original FHE scheme is not circular secure.

We can see that in both cases the cheating prover P ∗ succeeds and the verifier accepts. We
therefor have:

11

Theorem 4.2. If an FHE scheme Enc exists, then there exists an instantiation of the compiler
of Figure 1 with a (possibly) modified FHE scheme and a sound protocol in the public coins model
such that the resulting compiled protocol is not sound.

Remark 4.1. The same protocol “misbehaves” under the PIR-based compiler in Figure 2. The
compiled protocol is unsound when the compiler uses a PIR scheme that is directly based on the
same FHE: where ciphertexts are modified to include encryptions of the randomness (in the perfectly
committing case), or of the secret key (in the weakly committing case). The PIR scheme operates by
sending the (modified) encryption of the index being queried. The Eval algorithm responds with an
answer-ciphertext, and the Dec algorithm simply decrypts this ciphertext using the FHE decryption.

5 Positive Results

We show that the Compiler of Figure 1 is secure when applied to interactive proofs with a public-
coin log-space verifier. More generally, the compiler is secure for interactive proofs where (for any
fixed partial transcript) the optimal continuation strategy, i.e. the strategy that maximizes the
verifier’s success probability, can be computed in polynomial time. We only assume the existence
of standard (polynomially hard) PIR or FHE. This result is in Theorem 5.3 below, which we prove
using a careful analysis of the Kalai-Raz compiler [KR09]. Recall that the negative example of
Section 4 shows that the compiler is insecure for general interactive proofs. In particular, recall
that (as noted above) the verifier needs enough space to “remember” pkp, cp, xv. Thus, we need
to leverage additional structure in order to prove security, and we do so via the space complexity
of the verifier (or the optimal-continuation strategy). Kalai and Raz, in contrast, showed that
security could be obtained by making super-polynomial hardness assumptions and simultaneously
tailoring the compiler’s security parameter to a given interactive proof system (that is, they choose
the security parameter after seeing the interactive proof to be compiled).

Recall that for any language computable by depth D(n) (log-space uniform) circuits, there
exists an interactive proof where the verifier uses logarithmic space and public coins [GKR15].
By applying the compiler to these interactive proofs, we obtain a succinct two-message argument
using any (polynomially-hard) PIR scheme. The communication is Õ(D(n) · γ), where γ is the
communication required by the PIR scheme (for a database of length poly(n)). Similarly to [KR09],
we use the fact that every prover message in the succinct interactive proof only depends on a
logarithmic number of bits sent by the verifier. This result is in Theorem 5.5. In Section 5.3 we
discuss applications to proving the results of an exhaustive search.

5.1 Security of the Compiler

As described above, our main insight is that if there is a polynomial time algorithm that computes
an optimal prover-strategy for any interactive proof, then we can compile the protocol with no
significant soundness error. For a log-space public-coin verifier this is possible and arguments
of this type were used by Condon [Con91] and Fortnow and Sipser (see [For89]) to show that
these proof systems can only compute languages in P. In fact, for any fixed partial transcript
between the prover and verifier, we show how to efficiently compute an optimal prover strategy for
continuing the interaction. The main cause for the super-polynomial security gap in the Kalai-Raz
security reduction was the running time required to compute an optimal prover strategy (for a

12

fixed partial transcript). For general interactive proofs, this requires time that is exponential in
the communication. We leverage the polynomial-time transcript-completion algorithm to obtain a
tighter security reduction and our main result.

We proceed by first defining the optimal transcript completion task for an interactive proof.
We then show that (i) for log-space public-coin interactive proofs, there is an efficient transcript
completion algorithm (Theorem 5.2), and (ii) we can strengthen the Kalai-Raz security reduction
from the security of the argument to the security of the PIR scheme to reduce the loss in security:
rather than exponential in the communication complexity of the interactive proof, as in [KR09], it
is polynomial in the time required for optimal transcript completion and in the security parameter
(Theorem 5.3).

Definition 5.1 (Optimal Transcript Completion). We say that a public-coin interactive proof
(PIP ,VIP) with communication complexity `IP supports optimal transcript completion in time
TIP (n), if there exists an algorithm P ′, running in time TIP (n), that, on input any partial transcript
of communication with the verifier VIP and ending with a message sent by VIP , produces a next
message from the prover to the verifier, satisfying the following guarantee: For any algorithm P∗
(with unbounded running time), the probability that VIP accepts when the transcript is completed
using P∗ is no greater than the probability that VIP accepts when the transcript is completed using
P ′.

Remark 5.1. We note that even if the interactive proof has an efficient (i.e. poly(n)-time) honest
prover, there may not be an efficient optimal transcript completion algorithm P ′. Indeed, we can
build explicit examples under (mild) cryptographic assumptions—e.g. using the Interactive Proof
described in Section 4.

We now show that any interactive proof with a log-space public-coin verifier supports (polyno-
mial time) optimal transcript completion:

Theorem 5.2 (See also [Con91, For89]). Let (PIP ,VIP) be a log-space public-coin interactive proof.
Then (PIP ,VIP) supports optimal transcript completion in poly(n) time.

Proof Sketch. The transcript completion algorithm P ′ constructs the verifier’s directed layered state
graph, where every node is a possible memory configuration for the verifier. We assume w.l.o.g.
that the verifier keeps track of the current round, and that each message in the protocol is a single
bit. Each round consists of a pair of messages: a single random bit sent from the verifier to the
prover, and a single bit sent in response from the prover to the verifier. For round i and memory
configuration u, and round (i + 1) and memory configuration v, there is an edge from (i, u) to
(i + 1, v) iff starting with configuration u just after round i, the verifier can reach configuration
v just after round (i + 1). Since each round consists of two single-bit messages, each node in the
graph has at most 4 successors. This completes the description of the graph, and we note that it
is of poly(n) size (because the verifier runs in O(log n) space).

Now, for any verifier state (i, u) we compute the optimal prover strategy as follows. We start
from terminal nodes and work our way “backwards” in the state graph to nodes corresponding to
states in earlier rounds. For each node/state, we compute the probability that the verifier accepts
once it reaches that state, and the optimal prover response to the next verifier challenge. For node
(i, u) we denote this by a(i, u). For terminal nodes, the acceptance probability is either 0 or 1
(depending on whether this is a rejecting or accepting node). Once the accepting probabilities have
been computed for all round-(i + 1)-states we can compute the accepting probabilities (and best

13

prover responses) for round-i-states. For a non-terminal node (i, u), there are 4 possible transcripts
for round i: 00, 01, 10, 11, where transcript (α, β) leads to state (i + 1, wα,β) (here α, β ∈ {0, 1}).
For each verifier challenge α, the “best response” is the message leading to the state that maximizes
the acceptance probability:

b(α) = argmaxβ∈{0,1}(a(i+ 1, wα,β))

and the (maximal) probability of acceptance is

a(i, u) =
a(i+ 1, w0,b(0)) + a(i+ 1, w1,b(1))

2
.

By construction, this procedure computes an optimal prover strategy for any verifier state.
Given a partial transcript, P ′ can compute the current verifier state and use this procedure to

complete a best-response strategy.

Next, we give a strengthened security analysis for the Kalai-Raz compiler, where the reduction
is parameterized in terms of the time required for optimal transcript completion (see in comparison
Lemma 4.2 of [KR09] where “brute-force” completion is used):

Theorem 5.3. Let Π = (PIP ,VIP) be a public-coin interactive proof for a language L that is
λ(n)-history-aware (as in Definition 2.2), with completeness cIP (n), soundness sIP (n) and com-
munication complexity `IP (n). Let PIR be a PIR scheme with communication `PIR(m,κ).

Then (Parg,Varg), the argument system of Figure 2 instantiated with (PIP ,VIP) and PIR, is
a 2-message argument system for L, with completeness carg = cIP , communication complexity
`arg(n, κ) = `IP (n) · `PIR(2λ(n), κ), and the following properties:

1. Computational Soundness: If the interactive proof supports optimal transcript completion,
as in Definition 5.1, in time TIP (n), and the PIR system is secure against adversaries running
in time TPIR(κ), then the argument system has soundness sarg(n) = (`IP (n) · (sIP (n) +
negl(κ))) against adversaries running in time Targ = TPIR(κ)/poly(n, `IP (n), TIP (n)).

2. Honest Prover Complexity. Parg runs in time poly(TIP (n), κ, 2λ(n)).

Security of the compiler using FHE. An analogous theorem statement holds for the FHE
version of the compiler. The advantage over the PIR version is that there is no need to assume that
the interactive proof is λ-history aware. The disadvantage (other than the stronger assumption) is
the quadratic blowup in the communication complexity (see Section 3).

Proof of Theorem 5.3. We assume w.l.o.g. that the each message sent by the verifier is 1 bit long,
and take k to be the number of rounds. Suppose that there exists an input x∗ /∈ L and a cheating
prover P∗arg that manages to convince Varg with probability ε.

Definition of pi. For i ∈ {0, 1, . . . , k}, define pi to be the success probability of the following pro-
cess called Experimenti: run the argument system with the cheating prover P∗arg. Let {(pk i, sk i)}i∈[k]
be the keys and αi be the bits encrypted in the challenges sent by Varg. Let {bi}i∈[k] be the ci-
phertext answers returned by P∗arg, and let βi be the plaintext value in bi. Fixing the partial
transcript (α1, β1, . . . , αi, βi) for the first i rounds, run the optimal-completion strategy P ′IP with

14

the verifier VIP (who simply generates random messages) to complete the transcript (i.e. for the
last (k − i) rounds), generating messages (α′i+1, β

′
i+1, . . . , α

′
k, β
′
k). Experimenti succeeds if and only

if VIP accepts the resulting transcript (α1, β1, . . . , αi, βi, α
′
i+1, β

′
i+1, . . . , α

′
k, β
′
k).

Claim 5.4. There exists i∗ ∈ [k] s.t.:

pi∗ − pi∗−1 ≥
ε− sIP

k

Proof. The proof is by a hybrid argument. p0 is bounded by the success probability of a cheating
prover in the (sound) interactive proof, and thus it is at most sIP (since x∗ /∈ L). pk is exactly the
success probability of the cheating prover P∗arg in the two-message argument system, and thus by
assumption it is at least ε.

Breaking the Encryption. We show that any P∗arg that succeeds with probability at least ε,
can be used to break semantic security of the encryption scheme with advantage at least (ε−sIP)/k.
We do this by constructing a distinguisher for the following two distributions. In both distributions,
generate keys (pk i, sk i)i∈[k], random bits (α1, . . . , αk), and the challenge ciphertexts {ai}i∈[k]. The
distribution outputs all of the public keys and ciphertexts, the first (i∗ − 1) secret keys, and all
plaintext values except the i∗-th, i.e. {αi}i 6=i∗ . So far the distributions are identical, the only
difference is in a final output value α (see below). In particular, a sample from D1 or D2 is of the
form: (

{pk i, ai}i∈[k], {sk i}i<i∗ , (α1, . . . , αi∗−1, α, αi∗+1, . . . , αk)
)
,

where in D1 we set α = αi∗ , and in D2 we draw a uniformly random and independent bit α′i∗ ,
and set α = α′i∗ . By construction, if the distinguisher distinguishes D1 and D2 with non-negligible
advantage, then semantic security is broken.

We now use the cheating prover P∗arg to construct such a distinguisher. The distinguisher runs
P∗arg on the public keys and ciphertexts (these are distributed identically in D1 and D2). P∗arg out-
puts its response ciphertexts {b1, . . . , bk}, and the distinguisher uses the secret keys {sk i}i<i∗ to re-
trieve the plaintexts (β1, . . . , βi∗−1). Starting with the partial transcript (α1, β1, . . . , αi∗−1, βi∗−1, α),
the distinguisher completes the transcript by simulating the interaction between the “optimal-
completion prover” P ′IP and the verifier VIP . It outputs 1 if the verifier accepts and 0 otherwise.
Observe that:

• On distribution D2, the probability that the distinguisher outputs 1 is exactly pi∗−1: the
distribution of the partial transcript (α1, β1, . . . , αi∗−1, βi∗−1) is identical to Experimenti∗−1.
When drawing according to D2, the i∗-th verifier challenge is α′i∗ , which is uniformly random
and independent of the preceding partial transcript, as it is in Experimenti∗−1. The remain-
der of the transcript is also generated using the optimal-completion strategy, exactly as in
Experimenti∗−1. The verifier accepts with probability pi∗−1.

• On distribution D1, the probability that the distinguisher outputs 1 is at least pi∗ : the dis-
tribution of the the partial transcript (α1, β1, . . . , αi∗−1, βi∗−1) is identical to Experimenti∗ .
When drawing by D1, the i∗-th challenge αi∗ equals the plaintext encrypted in the cipher-
text ai∗ , exactly as in Experimenti∗ . Here, however, the i∗-th prover message β′i∗ is drawn
according to the optimal completion strategy, whereas in Experimenti∗ we use the plaintext
βi∗ generated by P∗arg. Still, since the remainder of the transcript will be computed using ran-
dom verifier queries, replacing the i∗-th prover message with the optimal-completion strategy

15

cannot decrease the probability that the verifier accepts. The verifier accepts with probability
pi∗ .

The above distinguisher runs in time |P∗arg|+k ·TIP (n), and has advantage at least (ε− sIP)/k
in distinguishing the distributions D1 and D2. The theorem follows.

5.2 Succinct Two-Message Arguments

Instantiating the secure compiler of Theorem 5.3 with the Interactive Proof of Theorem 5.6 below,
we obtain succinct two-message arguments for bounded-depth computations:

Theorem 5.5. Assume the existence of a PIR scheme with communication `PIR(m,κ) that is
secure against time TPIR(κ), as per Definition 2.5. Then any language L that can be computed
by logspace-uniform circuits of size poly(n) and depth D(n) ≥ log n has a two-message argument
system (Parg,Varg) with perfect completeness and negligible soundness error against adversaries
that run in time TPIR(κ)/poly(n). The communication complexity is `PIR(poly(n), κ) ·poly(D(n)).
Parg runs in time poly(κ, n) and Varg runs in time n · poly(κ,D(n)).

This represents an exponential improvement in the security of the resulting argument system.
Previously, Kalai and Raz [KR09] showed a similar result, but proved security of the argument
system against adversaries running in time TPIR(κ)/2poly(D(n)).11 Interpreting their result, for a
language L in NC, to obtain any argument system with poly(n) communication complexity and se-
curity against polynomial-time adversaries (i.e., a non-trivial argument system), quasi-polynomial
hardness assumptions are needed (as one needs to have a PIR scheme that is secure against adver-
saries running in time TPIR(κ)� 2poly(D(n))). In comparison, our results show that a PIR scheme
secure against polynomial-time adversaries is sufficient for obtaining poly(n) communication.

Before proving Theorem 5.5, we review the main result of Goldwasser et al. [GKR08, GKR15]:

Theorem 5.6 (GKR Interactive Proof [GKR15]). Any language L that can be computed by logspace-
uniform circuits of size poly(n) and depth D(n) ≥ log n has a multi-round interactive proof
(PIP ,VIP) with perfect completeness, negligible soundness error, and communication complexity
D(n) · polylog(n). Moreover, PIP runs in time poly(n) and is O(log n)-history-aware; VIP is a
public-coin logspace verifier, runs in time n · poly(D(n)), and sends messages of length O(log(n)).

Proof of Theorem 5.5. By Theorem 5.6, the GKR Interactive Proof [GKR15] for L is λ-history-
aware, has a log-space public-coin verifier, and verifier messages of length O(log n). By Theorem 5.2,
we conclude that it supports optimal transcript completion in time poly(n). Plugging this inter-
active proof into the transformation of Figure 2, and using Theorem 5.3, we obtain a two-message
argument with negligible soundness error against poly(n, κ)-time adversaries. The communications
complexity and the prover and verifier running times follow by the parameters of the interactive
proof, the PIR scheme, and Theorem 5.3.

5.3 Application to Exhaustive Search

The methods of this section are appropriate for the verification of a type of computation that is
often distributed among not completely trusted servers, that of exhaustive search. In this setting

11the denominator in their result was super-polynomial in n; In particular, it was at least nD(n).

16

there is some space of solutions S that is partitioned into subspaces {Si}i and processor i is assigned
to search all possible solutions in Si.

Usually it is easy to identify a successful search, say it satisfies some set of constraints. Therefore
it is easy to verify the work of a processor that was successful. But how about verifying the work
of an unsuccessful search? How can such an unlucky processor convince, say a central authority,
that it performed the computation properly?

A good illustrating example to consider is the case of Bitcoin mining (but see caveat below),
used to maintain the so called block chain of transactions. Here the processors (miners) are looking
for a value called a ‘nonce’, such that when the current block content is (cryptographically) hashed
together with the nonce, the result ends with a certain number of leading 0’s (i.e. is numerically
smaller than the current difficulty target)

A successful search is worth a certain number of Bitcoins (25 as of 2015). Now suppose there
is a pool of miners who cooperate in order to reduce the variance in the reward. How can the pool
manager verify that searches over the nonce space that were not successful were properly executed?

Given that exhaustive search is “embarrassingly parallel” (one for which no effort is required to
separate the problem into a number of parallel tasks), it follows that we can apply the framework
of Theorem 5.5.

We can express the search that a processor i should perform of the set Si as a set of constraints
over the set Si, and for each element in Si check whether it satisfies the constraints. The circuit
will be of depth proportional to log |Si| plus the depth of checking whether the set of constraints is
satisfied. By Theorem 5.5, assuming the appropriate PIR scheme exists, we will have an argument
system whose length is proportional to polynomial in log |Si| plus the complexity of checking an
instance. In the context of Bitcoin this means that any participant can provide a proof of search
whose length is proportional to the nonce length plus the complexity of the hash functions.

Bitcoin pools reward members who come up with nearly-satisfying solutions, i.e. partition the
prize according to the closeness. This makes perfect sense in the random oracle world. Our solution
may be viewed as more equitable, and does not rely on random oracles for fairness: everybody gets
rewarded for the work they perform.

Caveat: given that many things in the Bitcoin world are based on heuristics and on modeling
functions as random oracles, the above ideas can probably be thought of as casting pearls before
swine. So we prefer to think of it as an illustrating example rather than an actual application.

Acknowledgments

We thank Pavel Hubáček and Ilan Komargodski for helpful comments on the paper.

References

[ABOR00a] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Fast verification of any remote procedure call: Short witness-
indistinguishable one-round proofs for np. In Ugo Montanari, José D. P. Rolim, and
Emo Welzl, editors, ICALP, volume 1853 of Lecture Notes in Computer Science, pages
463–474. Springer, 2000.

17

[ABOR00b] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Fast verification of any remote procedure call: Short witness-
indistinguishable one-round proofs for np. IACR Cryptology ePrint Archive, 2000:018,
2000.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In Shafi Goldwasser, editor, ITCS, pages 326–349. ACM, 2012.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM
J. Comput., 38(5):1661–1694, 2008.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 439–448, 2015.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption.
In Burton S. Kaliski, editor, CRYPTO, volume 1294 of Lecture Notes in Computer
Science, pages 90–104. Springer, 1997.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private infor-
mation retrieval with polylogarithmic communication. In Advances in Cryptology -
EUROCRYPT ’99, International Conference on the Theory and Application of Cryp-
tographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 402–
414, 1999.

[Con91] Anne Condon. Space-bounded probabilistic game automata. J. ACM, 38:472–494,
April 1991.

[DLN+] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct proofs for NP ander spooky interactions. manuscript,
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/spooky.pdf.

[FL93] Lance Fortnow and Carsten Lund. Interactive proof systems and alternating time-
space complexity. Theor. Comput. Sci., 113(1):55–73, 1993.

[For89] Lance Fortnow. Complexity-theoretic aspects of interactive proof systems. Technical
report, Ph.D. Thesis, Laboratory for Computer Science, MIT, 1989.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

18

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49, 2013.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In Tal Rabin, editor, Advances
in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer
Science, pages 465–482. Springer, 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: Interactive proofs for muggles. J. ACM, 62(4):27, 2015.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-
out rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint
Archive, 2011:456, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT, volume 6477 of Lecture Notes in Computer Sci-
ence, pages 321–340. Springer, 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, STOC,
pages 99–108. ACM, 2011.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
STOC, pages 723–732. ACM, 1992.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th Annual Symposium on Foun-
dations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22,
1997, pages 364–373, 1997.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In CRYPTO,
pages 143–159, 2009.

19

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In STOC 2014, pages 485–494, 2014.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. J. Mathematical Cryptology,
2(4):343–363, 2008.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 96–109. Springer,
2003.

[PR14] Omer Paneth and Guy N. Rothblum. Publicly verifiable non-interactive arguments
for delegating computation. IACR Cryptology ePrint Archive, 2014:981, 2014.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In TCC, pages 579–598,
2013.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, STOC ’14, pages 475–484, New York, NY, USA, 2014. ACM.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

