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Abstract
A typical obstacle one faces when constructing pseudorandom objects is undesired

correlations between random variables. Identifying this obstacle and constructing cer-
tain types of “correlation breakers” was central for recent exciting advances in the
construction of multi-source and non-malleable extractors. One instantiation of corre-
lation breakers is correlation breakers with advice. These are algorithms that break the
correlation a “bad” random variable Y ′ has with a “good” random variable Y using
an “advice” – a fixed string α that is associated with Y which is guaranteed to be dis-
tinct from the corresponding string α′ associated with Y ′. Prior to this work, explicit
constructions of correlation breakers with advice require the entropy of the involved
random variables to depend linearly on the advice length.

In this work, building on independence-preserving mergers, a pseudorandom primi-
tive that was recently introduced by Cohen and Schulman, we devise a new construction
of correlation breakers with advice that has optimal, logarithmic, dependence on the
advice length. This enables us to obtain the following results.

• We construct an extractor for 5 independent n-bit sources with min-entropy
(log n)1+o(1). This result puts us tantalizingly close to the goal of constructing
extractors for 2 sources with min-entropy O(log n), which would have exciting
implications to Ramsey theory.

• We construct non-malleable extractors with error guarantee ε for n-bit sources,
with seed length d = O(log n) + (log(1/ε))1+o(1) for any min-entropy k = Ω(d).
Prior to this work, all constructions require either very high min-entropy or other-
wise have seed length ω(log n) for any ε. Further, our extractor has near-optimal
output length. Prior constructions that achieve comparable output length work
only for very high min-entropy k ≈ n/2.

• By instantiating the Dodis-Wichs framework with our non-malleable extractor,
we obtain near-optimal privacy amplification protocols against active adversaries,
improving upon all (incomparable) known protocols.

∗This paper subsumes the technical report Non-Malleable Extractors with Logarithmic Seeds [Coh16].
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1 Introduction

When constructing pseudorandom objects, such as various types of extractors, mergers,
condensers, and so forth, one often faces undesired correlations between random variables.
At some point in the construction and its analysis, a pair of random variables Xgood, Xbad is
obtained. Although one can show that Xgood is uniform (or, more generally, that Xgood is
“well behaved”), Xbad may correlate arbitrarily with Xgood, preventing one from proceeding
with the construction and analysis. In some cases, working around the undesired correlation
between Xgood and Xbad can be done by exploiting more information about the nature of
the correlation [GRS06, Li11b, CS15]. More typically, one is careful enough to avoid the
presence of correlations to begin with, though such a cautious strategy is sometimes costly
and may rule out what could have been a natural and direct construction.

Although a recurring theme, the problem of efficiently breaking arbitrary correlations
a random variable has with a uniformly distributed random variable, using (unavoidably)
an auxiliary source of randomness, was first explicitly studied by [Coh15a] in the form of
an object called a local correlation breaker. The construction of the latter is based on
the alternating extraction technique [DP07, DW09], and is influenced by [Li13b]. 1 By
adapting the construction of local correlation breakers, Chattopadhyay et al. [CGL15]
gave a construction for a different type of correlation breakers, which we call a correlation
breaker with advice. This primitive is the main component, both conceptually and in terms
of technical effort, in existing constructions of non-malleable extractors [CGL15, Coh15b,
Coh16]. Although only recently introduced, correlation breakers with advice already found
further applications [CS16].

We turn to give the formal definition of correlation breakers with advice. We assume
familiarity with standard notions from the literature such as statistical distance, min-entropy,
weak-sources, and seeded extractors. The unfamiliar reader may consult the Preliminaries
(Section 5).

Definition 1.1 (Correlation breakers with advice). A function

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

is called a (k, ε)-correlation breaker with advice if the following holds. Let Y be a random
variable that is uniformly distribution over `-bit strings, and let Y ′ be an `-bit random vari-
able that may be arbitrarily correlated with Y . Let X be an (n, k)-source that is arbitrarily
correlated with an n-bit random variable X ′. Assume that the joint distribution of X,X ′ is
independent of the joint distribution of Y, Y ′. Then, for any pair of distinct a-bit strings
α, α′,

(AdvCB (X, Y, α) ,AdvCB (X ′, Y ′, α′)) ≈ε (U,AdvCB (X ′, Y ′, α′)) .

Although every effort was made to keep Definition 1.1 to its most succinct form, the
definition is still somewhat involved. Thus, we proceed by providing some informal remarks

1In his pioneer work on multi-source extractors [Li13b], Li developed a technique for breaking correlations
between a pair of random variables assuming both of which are uniform.
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that are meant to clarify the definition. We think of Y in Definition 1.1 as being the good
random variable. By “good” we mean that Y is uniformly distributed. The role of the “bad”
random variable is formalized by Y ′ that, according to the definition, is allowed to correlate
with Y in an arbitrary manner. The third random variable X is a weak-source of randomness
that, as it turns out, is required for the purpose of breaking the arbitrary correlation Y ′ may
have with Y . We think of X as an auxiliary, or external, source of randomness as it is
independent of the joint distribution of Y, Y ′. Note that one does not have to use the same
source X when applying AdvCB to Y ′ with α′. In fact, X ′ can be arbitrarily correlated with
X, as long as their joint distribution is independent of the joint distribution of Y, Y ′. For
the sake of simplicity, in the remaining of this section we put less emphasis on the output
length m.

We think of the fixed a-bit string α as the advice that is given to the correlation breaker,
with the guarantee that the a-bit string α′ that is associated with Y ′ is different than α.
Such an advice, of course, is unavoidable (think of Y = Y ′, X = X ′). We remark that in
some cases, the variables Y and Y ′ are explicitly computed by our algorithm and in such
case a, a′ can be taken to be some labeling of these variables. In other cases, one consider Y ′

only in the analysis, in which case a, a′ are sometimes computed, or generated, by applying
some function f to Y and (in the analysis) to Y ′, respectively.

The quality of a correlation breaker with advice is determined by the min-entropy k that
it requires from its auxiliary weak-source of randomness X, and by the length ` of Y (which
can be thought of as the entropy of Y ). Thus, given n, a, and a desired error guarantee
ε > 0, the goal is to construct (k, ε)-correlation breakers with advice with k, ` as small as
possible.

A straightforward probabilistic argument can be used to show that for all integers n, a,
and for any ε > 0, there exists a (k, ε)-correlation breaker with advice for

k = 2 log(1/ε) +O(1),

` = log a+ log(n− k) + 2 log(1/ε) +O(1).

By adapting the construction of local correlation breakers [Coh15a], Chattopadhyay et al.
[CGL15] gave an explicit construction of a (k, ε)-correlation breaker with advice with

k, ` = O
(
a · log

(an
ε

))
.

Note that both k, ` grow linearly with the advice length a (in fact, the dependence on a is
super-linear). Moreover, a is multiplied by (rather than added to) log(n/ε), which turns out
to be the bottleneck for applications to non-malleable extractors.

2 Our Contribution

The main technical contribution of this work is an explicit construction of a correlation
breaker with advice that has logarithmic and additive dependence on the advice length,
significantly improving upon known results.
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Theorem 2.1 (Main technical result). For all integers n, a,m, for any ε > 0, and for any
constant α > 0 such that a < 2n/ε 2, there exists an explicit (k, ε)-correlation breaker with
advice, with

` = O (log a+ log n) + (log(1/ε))1+o(1),

k = (2 + α)m+O(`).

Note that the requirement from ` in our construction is optimal (up to constant factors)
but for the slight sub-optimal dependence on ε. Note further that the dependencies on each
parameter n, a, ε add rather than multiply. Moreover, our correlation breaker supports a
very low min-entropy k. Building on Theorem 2.1, we obtain the following results:

5-source extractors for near-logarithmic entropy. We construct an extractor for 5 in-
dependent n-bit sources with min-entropy (log n)1+o(1). This result puts us tantalizingly
close to the goal of constructing extractors for 2 independent sources with min-entropy
O(log n), which would have exciting implications to Ramsey theory. See Theorem 2.2.

Near-optimal non-malleable extractors. We construct non-malleable extractors with
error guarantee ε for n-bit sources, having seed length d = O(log n) + (log(1/ε))1+o(1)

for any min-entropy k = Ω(d). Prior to our work, all known constructions require either
very high min-entropy or otherwise have seed length ω(log n) regardless of the error
guarantee. Furthermore, our extractor can be set to have output length k/(2 + α) for
any constant α > 0, which is very close to the optimal k/2 bound. Prior to this work,
constructions that achieve output length Ω(k) work only for very high min-entropy
k ≈ n/2. See Theorem 2.4.

Near-optimal privacy amplification protocols. By instantiating the Dodis-Wichs frame-
work [DW09] with our non-malleable extractor, we obtain near-optimal privacy ampli-
fication protocols in the active setting. In particular, the entropy-loss of the induced
two-round protocol is O(log n) + λ1+o(1) for security parameter λ. See Theorem 2.5.

In the following sections we elaborate on our results, put them in context, and compare
with known results.

2.1 A 5-source extractor for near-logarithmic min-entropy

For an integer s ≥ 1, a (k, ε) s-source extractor [CG88, BIW06] is a function Ext : ({0, 1}n)s →
{0, 1}m with the following property. For any s independent (n, k)-sources X1, . . . , Xs, the
random variable Ext(X1, . . . , Xs) is ε-close to uniform. In this paper we focus on constant
error guarantee ε, and m = 1 output bits. It is easy to see that a one-source extractor does

2This assumption is made mainly for the sake of presentation. We stress that this restriction is (more
than) flexible enough so as to capture the advice length of current applications. Furthermore, one can easily
relax this bound further to, say, double or triple-exponential in n/ε. We remark that in some cases, n is not
proportional to the input size of the problem, and so one may want to consider such advice length.
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not exist even for min-entropy as high as k = n − 1. On the other hand, there exists a
two-source extractor for min-entropy as low as k = log n+O(1) [CG88]

Besides being a natural problem, finding explicit two-source extractors for logarithmic
min-entropy would resolve a classical problem in combinatorics, namely, matching Erdős
proof for the existence of Ramsey graphs [Erd47] with a constructive proof. In fact, it
suffices to construct a two-source disperser for the same min-entropy, where a disperser is
a weakening of an extractor in which the output is only required to be non-constant, as
apposed to being close to uniform.

Recall that an undirected graph on n vertices is called k-Ramsey if it contains no clique
or independent set of size k. Ramsey [Ram28] proved that there does not exist a 0.5 log n-
Ramsey graph on n vertices. This result was later complemented by Erdős [Erd47], who
proved that most graphs on n vertices are (2 + o(1)) log n-Ramsey.

In a long line of research [CG88, BIW06, Bou05, Raz05, Rao09, BRSW12, BSZ11, Li11a,
Li13b, Li13a] that has accumulated to [Li15b] (see Table 1 in Appendix A), Li constructed
a three-source extractor for min-entropy polylog n. Based on this extractor and on the
challenge-response mechanism [BKS+05, BRSW12], the first two-source disperser for min-
entropy polylog n was constructed in [Coh15c]. Subsequently, Chattopadhyay and Zuck-
erman [CZ15] (followed by some improvements [Li15a, Mek15]) constructed a two-source
extractor for min-entropy polylog n.

Although exciting, these results are still polynomially far from optimal. This fairly
modest gap is far more significant when considering the implications to Ramsey theory.
Indeed, the constructions of [Coh15c, CZ15] induce explicit k-Ramsey graph on n vertices
with k = 2poly log logn, as apposed to the desired k = O(log n). The most natural goal today
is to obtain k-Ramsey graphs on n vertices with k = polylog n. Such graphs correspond to
two-source dispersers that support min-entropy O(log n).

Aiming towards this goal, Cohen and Schulman [CS16] observed that previous tech-
niques for constructing s-source extractors and dispersers break below min-entropy (log n)2

for any constant s. Based on a new primitive they introduced, called independence-preserving
mergers, a construction of an extractor for O(s)-sources with min-entropy (log n)1+1/s was
obtained [CS16], breaking the “log2 n barrier”, and paving the way towards constructing
extractors for near-logarithmic min-entropy. Continuing this research path, based on Theo-
rem 1.1 and on revising the framework for constructing multi-source extractor set by [CS16],
we obtain a 5-source extractor for near-logarithmic min-entropy.

Theorem 2.2. For all n there exists an explicit extractor 5Ext : ({0, 1}n)5 → {0, 1} for
min-entropy (log n)1+o(1).

Building on the framework set by [CS16], Chattopadhyay and Li [CL16] obtained, in-
dependently of our work and using different ideas, an extractor for s-sources, each with
min-entropy (log n)1+o(1), where s is some universal constant. The number of sources s,
although constant, is quite large – it is proportional to the inverse of the constant β > 0 for
which Bourgain’s two-source extractor [Bou05] can support min-entropy rate 1/2− β. 3

3To the best of our knowledge, taking into account recent points-lines incidence theorems over finite
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2.2 Non-malleable extractors

As mentioned, correlation breakers with advice were introduced in the context of non-
malleable extractors [CGL15]. As we improve upon previous constructions of correlation
breakers with advice, we readily obtain improved constructions of non-malleable extractors.
In this section we recall the definition of non-malleable extractors, give an account for explicit
constructions of non-malleable extractors from the literature, and state our result.

A non-malleable extractor is a seeded extractor with a very strong guarantee concerning
the correlations (or, more precisely, the lack thereof) of the outputs of the extractor when
fed with different seeds. The notion of a non-malleable extractor was introduced by Dodis
and Wichs [DW09], motivated by the problem of devising privacy amplification protocols
against active adversaries (see Section 2.3). More recently, non-malleable extractors played
a key role in the construction of two-source extractors [CZ15].

Definition 2.3 (Non-malleable extractors [DW09]). A function nmExt : {0, 1}n×{0, 1}d →
{0, 1}m is called a (k, ε)-non-malleable extractor if for any (n, k)-source X and any function
A : {0, 1}d → {0, 1}d with no fixed points, it holds that

(nmExt(X, Y ), nmExt(X,A(Y )), Y ) ≈ε (U, nmExt(X,A(Y )), Y ),

where Y is uniformly distributed over {0, 1}d independently of X.

Computational aspects aside, for any integer n and ε > 0, Dodis and Wichs [DW09]
proved the existence of (k, ε)-non-malleable extractors having m output bits and seed length
d = log(n− k) + 2 log(1/ε) +O(1) for any k > 2m+ 2 log(1/ε) + log d+O(1). Although the
mere existence of non-malleable extractors, and with such great parameters, is somewhat
surprising, 4 explicit constructions are far more desirable.

Constructing non-malleable extractors gained a significant attention in the literature (see
Table 2 in Appendix A). However, up until this work, all constructions require very high
min-entropy or otherwise have seed length ω(log n) regardless of the error guarantee. More
precisely, to support min-entropy polylog n (or even min-entropy n0.99), the seed length of
all prior constructions is super logarithmic in n and, at best, has dependence of the order of
log2(1/ε) on the error guarantee ε. 5

Building on Theorem 2.1 we obtained the following result.

Theorem 2.4. For any integer n, any ε > 0, and any constant α > 0, there exists an
efficiently-computable (k, ε)-non-malleable extractor nmExt : {0, 1}n×{0, 1}d → {0, 1}k/(2+α)

with seed length d = O(log n) + (log(1/ε))1+o(1) for any k = Ω(d).

fields [Jon12, RNRS14], together with Bourgain’s application of this result [Bou05, Rao07], and the way
Bourgain’s extractor is applied by [CS16], s ≥ 1000.

4In fact, atypically, the proof is non-trivial. We observe that an alternative existential proof follows by the
straightforward existential proof for correlation breakers with advice combined with the [CGL15] framework
and the “switch” idea of [Coh15b].

5This work subsumes a technical report by the author [Coh16] in which a non-malleable extractor with
seed length O(log n+ log3(1/ε)) is obtained.
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Using different techniques, and independently of our work, Chattopadhyay and Li [CL16]
obtained a non-malleable extractor with seed length (log(n/ε))1+o(1) and output length

k/2
√

log log(n/ε). Note that the seed length of [CL16] is super-logarithmic in n even for constant
ε (and, in fact, the dependence on n is not as good as previously known results [Coh15b]).
Further, the number of output bits of their construction is o(k), whereas we obtain output
length which can be taken arbitrarily close to the optimal k/2 bound.

The precise dependence of the seed length on the error guarantee, as well as the depen-

dence obtained by [CL16], is log(1/ε) · c
√

log log(1/ε) for some constant c > 1. Interestingly,
this similar dependence is due to different reasons. In fact, it seems that by combining ideas
from both works, one can slightly improve the result and obtain a construction with seed
length O(log n) + log(1/ε) · c(log log(1/ε))1/3 . 6 Although an insignificant quantitative improve-
ment, it does suggest that different ideas are used in both works. Indeed, the strategy taken
by [CL16] is to construct a variant of independence-preserving mergers, and in particular,
Chattopadhyay and Li do not attempt to obtain improved correlation breakers with advice.

2.3 Privacy amplification protocols

In the classical problem of privacy amplification [BBR85, Mau93, BBCM95] two parties,
Alice and Bob, share a secret that is “somewhat random” from the point of view of an
adversary Eve. Formally, the secret is modeled by an (n, k)-source X. In the classical setting,
Alice and Bob can communicate over an authenticated channel that is eavesdropped by Eve.
Put differently, Eve is a passive adversary, and cannot tamper with the communication.
Throughout the paper we consider only the information-theoretic setting in which Eve is
computationally unbounded. Further, we assume that both Alice and Bob have local (that
is, non-shared) randomness that is independent of X.

The goal of Alice and Bob is to agree on an m-bit string R that is ε-close to uniform even
conditioned on the transcript of the protocol, that is visible to Eve. We refer to λ = log(1/ε)
as the security parameter of the protocol. The quality of a privacy amplification protocol is
measured by the following parameters:

Round complexity. The number of rounds required by the protocol.

Entropy-loss. The amount of min-entropy that is lost during the protocol, namely, k−m.

Communication complexity. The total number of bits that are communicated.

Supported min-entropy. The least value k for which the protocol is secure.

A strong seeded extractor yields a one-round privacy amplification protocol: Given a
(k, ε)-strong seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, Alice samples s ∼ Ud and
sends s to Bob. Alice and Bob then compute R = Ext(X, s). As Ext is strong, R is ε-close
to uniform even conditioned on s, the transcript of the protocol.

6This assertion was not verified as carefully as the proofs in this paper, and should be trusted accordingly.
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Note that the entropy-loss of the protocol equals the entropy-loss of the extractor. The
communication complexity is the seed length d, and the supported min-entropy of the proto-
col is that supported by Ext. By instantiating the protocol with explicit near-optimal strong
seeded extractors [GUV09], for any k = Ω(λ), one obtains an explicit one-round protocol
with entropy-loss O(λ) and communication complexity O(log n+ (λ+ log k) · log k).

2.3.1 Privacy amplification protocols against an active adversary

A significantly more challenging problem is to devise privacy amplification protocols when
Eve has full control over the communication channel, and can therefore tamper with the
communication to her liking. That is, when the channel is unauthenticated. We allow
ourselves to be somewhat informal regarding the exact requirement from a protocol in this
setting and refer the reader to, say, [DW09] for a formal treatment. We only emphasize
the difficulty that a protocol for this model has to overcome: not only R must be close to
uniform from Eve’s point of view, but also Alice and Bob must agree on the same string R,
if possible, and otherwise (and only if necessary) declare that the communication has been
tampered with.

The problem of devising privacy amplification protocols in the active setting was first
studied by Maurer and Wolf [MW97] who constructed a one-round protocol for k > 2n/3.
Subsequently, Dodis et al. [DKRS06] relaxed the bound to k > n/2. The entropy-loss and
communication complexity of these protocols is n−k, which is significantly larger than what
was obtained in the passive setting. Unfortunately, a one-round protocol cannot support
min-entropy k < n/2 [DW09], and so unlike in the passive adversary model, to avoid high
entropy-loss and to save on communication, in the active adversary setting, one must resort
to multiple round protocols, even for large k. Following [MW97], a long line of research
studied the problem of devising privacy amplification protocols against active adversaries
(see [MW97, DKRS06, RW03, DW09, KR09, CKOR14, Li12a, Li12b] and references therein),
though until the work of Dodis and Wichs [DW09], all protocols required more than two
rounds.

Dodis and Wichs [DW09] suggested an elegant framework for constructing two-round
privacy amplification protocols in the active setting. Much like the framework for the pas-
sive setting, the Dodis-Wichs framework is also instantiated with an extractor, and the
parameters of the protocol are determined by those of the extractor. However, to han-
dle active adversaries, the extractor used by the Dodis-Wichs framework is required to be
non-malleable.

To be more precise, the Dodis-Wichs framework also requires a strong seeded extrac-
tor, though we “hardwire” a known construction of almost optimal strong seeded extrac-
tors [GUV09]. Further, the protocol can in fact be instantiated with a weaker object than
a full-blown non-malleable extractor, called a look-ahead extractor, though then one has
to use other more sophisticated primitives (a special type of message authenticated codes)
which results in a protocol with weaker parameters.

The Dodis-Wichs framework motivated the study of non-malleable extractors. Although
Dodis and Wichs proved the existence of such extractors, an explicit construction was not
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obtained in [DW09] and, as covered in Section 2.2, a significant attention was given for
matching the existential result with a constructive proof. Further, Li [Li12a, Li12b] devised
a privacy amplification protocol for the active setting which only requires a non-malleable
condenser – a weaker object than a non-malleable extractor. Li was able to construct such
condensers and thus, due to the lack of good enough non-malleable extractors at the time,
obtained improved privacy amplification protocols.

We do not present the Dodis-Wichs protocol in this paper, and are content with relating
the parameters of the protocol with that of the non-malleable extractor that is being used.
The entropy-loss is O(d), where d is the seed length of the non-malleable extractor applied to
n-bit strings and set with error guarantee ε. The communication complexity of the protocol
is O(d+(λ+log k) · log k), and the supported min-entropy is that supported by the extractor.

Prior to this work, the best explicit non-malleable extractor [Coh15b] (which has better
parameters than known non-malleable condensers [Li12a, Li12b]) requires a seed of length
Ω(log(n/ε) · log(log(n)/ε)) and thus induces a protocol with entropy-loss Ω(λ2 + λ log n +
log n · log log n). By instantiating the Dodis-Wichs framework with the non-malleable ex-
tractor that is given by Theorem 2.4, we obtain the following near-optimal protocol that, in
particular, has entropy-loss of the order of λ1+o(1) + log n.

Theorem 2.5. For all n, λ, there exists an explicit two-round privacy amplification protocol
against active adversaries that supports min-entropy k = Ω(d), with entropy-loss O(d), and
communication complexity O(d+ (λ+ log k) · log k), where d = λ1+o(1) +O(log n).

Based on their non-malleable extractor [CL16], Chattopadhyay and Li obtained privacy
amplification protocols with higher entropy-loss and communication complexity as a function
of n.

3 Proof Outline

Our construction of correlation breakers with advice that is given by Theorem 2.1 heavily
relies on the notion of independence-preserving mergers – a pseudorandom primitive that
was introduced recently by [CS16] for the construction of multi-source extractors. We also
make use of the notion of hierarchy of independence. To outline our proof, we must first
present these two concepts.

3.1 Independence-preserving mergers

Informally speaking, an independence-preserving merger is a function that mergers a se-
quence of random variables to a single random variable while preserving some form of inde-
pendence that sequence has with a second sequence of random variables. To be more precise,
we make use of the notion of somewhere-independent matrices [CS16].

We say that a sequence of random variables X1, . . . , Xr is somewhere-independent of the
sequence Y1, . . . , Yr if the following two conditions are met:

• There exists g ∈ [r] such that Xg is close to uniform even conditioned on Yg;
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• For all i ∈ [r], the random variable Xi is close to uniform.

We typically consider random variables on, say, `-bit strings, and stack the random variables
in the sequence X1, . . . , Xr (resp. Y1, . . . , Yr) as the rows of an r × ` matrix X (resp. Y ).
We say that X is somewhere-independent of Y .

An independence-preserving merger is a function of the form

IPMerg : {0, 1}r×` × {0, 1}n → {0, 1}`,

that has the following property: if X is somewhere-independent of Y then IPMerg applied
to X is close to uniform even conditioned on the corresponding application to Y . Note that
IPMerg has two arguments. The first is the matrix whose rows we want to merger. The
second argument is fed with a sample from an auxiliary weak-source of randomness that is
required for the purpose of the merging process. The actual construction that we use (see
Theorem 6.4) requires a sample from a second weak-source that is allowed to correlate with
the matrix. This is done for technical reasons that we prefer to avoid delving into in this
section.

In [CS16], a construction of independence-preserving mergers was given that requires the
row length `, as well as the min-entropy of the auxiliary source of randomness, to be of order
r · log(n/ε), where ε measures the statistical closeness of the output of IPMerg applied to
X from the uniform distribution conditioned on the corresponding output applied to Y (see
Theorem 6.4). We make an extensive black-box use of this construction.

3.2 Hierarchy of independence

The notion of hierarchy of independence is captured by a pair of functions

a(y, x) : {0, 1}` × {0, 1}n → {0, 1}`,
b(y, x) : {0, 1}` × {0, 1}n → {0, 1}`,

that has the following property. Let Y, Y ′ be arbitrarily correlated `-bit random variables
such that Y is uniform. Let X,X ′ be arbitrarily correlated n-bit random variables such that
X has sufficiently high min-entropy. Assume further that the joint distribution (X,X ′) is
independent of the joint distribution (Y, Y ′). Then, the following holds:

• a(Y,X) is close to uniform, and

• b(Y,X) is close to uniform even conditioned on a(Y,X), a(Y ′, X ′).

That is, the variable b(Y,X), which we think of as being in the higher level of the hierarchy,
is uniform even conditioned on the random variables a(Y,X), a(Y ′, X ′) in the lower level of
the hierarchy. Thus, in this hierarchic-sense, the pair (a, b) allows one to break correlations
between random variables. Based on the alternating extraction technique, one can efficiently
construct such a pair of functions. In fact, for technical reasons, the function b requires one
more argument. We refer the reader to Section 6.2 for more details.
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3.3 The general strategy and context

With independence-preserving mergers and the notion of hierarchy of independence in hand,
we are ready to outline the proof of Theorem 2.1. Our construction can be divided to three
modular steps. We give a short description for each of these steps, and elaborate further in
Section 4.

Step 1 – Constructing a base correlation breaker. First, we construct a correlation
breaker with advice to which we refer to as the base correlation breaker with advice. More
precisely, we construct a (k, ε)-correlation breaker with advice

BaseAdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

with ` = O (log n+ a · log (a/ε)) and k = 3m+O(`).
Note that BaseAdvCB already modestly improves upon the existing construction as the

advice length a is added to log n, rather than being multiplied by log n, 7 though it is not
the reason we bother constructing a new correlation breaker with advice. We do so mainly
for the sake of completeness. Indeed, the existing construction of correlation breakers with
advice is only implicit in [CGL15]. The explicit definition was coined only subsequently
in [Coh15b], referring to [CGL15] for a proof. Having the definition and formal statement
in one source and the proof, implicitly, in a second source is far from ideal. Moreover, one
needs to be careful when adopting the proof of [CGL15] due to the dependence on the error
guarantee. We give a completely different construction which we believe to be simpler and
more direct given independence-preserving mergers.

An informal description of the construction of the base correlation breaker with advice
is given in Section 4.1.

Step 2 – Stepping-up correlation breakers with advice. The base correlation breaker
with advice that we construct in the Step 1 requires min-entropy that is linear in the advice
length a. In the second step, we design an efficient algorithm that transforms, in a black-
box manner, one correlation breaker with advice AdvCBin to another AdvCBout, with better
dependence on the advice length (as long as the dependence is not “too good” to begin
with). By applying this transformation repeatedly, each time with the previously generated
correlation breaker, we obtain a correlation breaker with advice that only requires min-
entropy 2O(

√
log a) · log(n/ε). The stepping-up algorithm, as well as the construction of the

base correlation breaker, makes use of independence-preserving mergers. For more details,
see Section 4.2.

Step 3 – Condensing the advice. Although the correlation breaker with advice that is
obtained in Step 2 already significantly improves upon the known construction, it still has

7By applying a more careful analysis, one can show that the construction of the base correlation breaker

with advice only requires ` = O
(

log n+ a+ a
log a · log(1/ε)

)
. However, we do not benefit from this given

the stepping-up algorithm that we present in Step 2.
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a super logarithmic, and multiplicative, dependence on the advice length a. Unfortunately,
we do not know how to improve the dependence on the advice length, at least not without
having access to a better independence-preserving merger. Instead, we take a completely
different approach – we make the advice shorter!

More precisely, in the third step we devise an efficient algorithm that is given as input an
advice of length a, and outputs a new advice of length log(1/ε)+τ(a). Here, ε is a bound on
the probability that the new (allegedly) advice will fail to remain a valid advice – namely,
be distinct from the value obtained by applying the same procedure to any different a-bit
string. The function τ(a) is an extremely slowly growing function of a. In particular, if a is
bounded above by, say, 2n/ε or even by an expression which is double or triple exponential
in n/ε, the affect τ(a) has is negligible.

Putting it all together. The seed length and min-entropy required for the advice con-
denser is O(log(na/ε)). Thus, by condensing the advice prior to the application of the
correlation breaker with advice that is obtained in Step 2, one only requires `, k of order

log(an) + 2
√

log(τ(a)+log(1/ε)) · log(n/ε). (3.1)

This is not quite what is stated in Theorem 2.1. In particular, note the undesired multiplica-
tive dependence. This dependence can be removed by applying the “switch” idea [Coh15b].
More precisely, before applying the correlation breaker with advice, and after condensing
the advice, we apply some transformation to the source and the seed so to obtain a new
source and a new seed, both of length ≈ log(n/ε). Thus, informally speaking, the quanti-
tative affect this transformation has on the seed length is that any appearance of n on the
right summand of Equation (3.1) is replaced by log(n/ε). Using the fact that τ(a) is a very
slowly growing function of n, a short calculation shows that the multiplicative dependence
is bounded by the additive terms as stated in Theorem 2.1.

4 A More Detailed Proof Outline

In this section we elaborate a bit further on each of the three steps that were presented in
the previous section.

4.1 Step 1 – the base correlation breaker

As mentioned, in the first step we construct the base (k, ε)-correlation breaker with advice

BaseAdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m,

where ` = O (log n+ a · log (a/ε)) and k = 3m + O(`). In this section we give an informal
description of the construction.

11



On input x ∈ {0, 1}n, y ∈ {0, 1}`, and α ∈ {0, 1}a, the first step for computing
BaseAdvCB(x, y, α) is constructing a matrix m = m(x, y, α) with 2a rows, as follows. For
every i ∈ [a], if αi = 0 we set

m2i−1 = a(y, x),

m2i = b(y, x).

Otherwise, if αi = 1, we set

m2i−1 = b(y, x),

m2i = a(y, x).

Observe that by doing so, one is guaranteed that M = m(X, Y, α) is somewhere-independent
of M ′ = m(X ′, Y ′, α′) for any α 6= α′ and any random variables X, Y,X ′, Y ′ as described
above. Indeed, by construction, one of the rows of M contains b(Y,X) while the correspond-
ing row of M ′ contains a(Y ′, X ′). By the hierarchy of independence, that row of M is close
to uniform even conditioned on the corresponding row of M ′. Moreover, note that every row
of M is close to uniform, and so indeed M is somewhere-independent of M ′.

At this point, one can apply the independence-preserving merger to M so to obtain the
output Z. The corresponding application to M ′ will result in a random variable Z ′ with the
guarantee that Z is close to uniform even conditioned on Z ′, as desired.

To be more precise, one should use only, say, a prefix of Y for the construction of the
matrix M so not to exhaust all the min-entropy of Y , and leaving some for the independence-
preserving merger. We consider this issue to be a technicality and prefer not to delve into
the details in this section. The precise statement and proof appear in Section 7.

4.2 Step 2 – stepping-up correlation breakers with advice

The base correlation breaker with advice that was constructed in Step 1 requires entropy
that is linear in the advice length. In the second step, we devise an efficient algorithm that
transforms, in a black-box manner, one correlation breaker with advice AdvCBin to another
AdvCBout, with a better dependence of the required entropy on the advice length.

The high-level idea is as follows. Given x ∈ {0, 1}n, y ∈ {0, 1}`, and α ∈ {0, 1}a, we
partition the a-bit advice string α to b substrings, or blocks, of equal length which we denote
by α1, . . . , αb. We then apply AdvCBin to each of the b blocks and stack all the results in
a matrix with b rows. To that matrix we apply the independence-preserving merger so to
obtain the final output.

Again, we are being intentionally blur regarding the exact way we use x, y. Indeed, one
must leave enough entropy in the random variables after one computation so to meet the
requirement of the next. Further, the independence between (X,X ′) and (Y, Y ′) must always
be preserved.

Let us consider this transformation when applied to the base correlation breaker with
advice, with b =

√
a. As the advice passed to AdvCBin is of length a/b =

√
a, the required
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entropy for computing the matrix is roughly of order
√
a · log(n/ε). The obtained matrix

has
√
a rows, and so the independence-preserving merger requires only

√
a · log(n/ε) entropy

from its sources. All in all, we have managed to reduce the entropy dependence on the advice
length from linear in a to O(

√
a).

Applying the transformation again, now to the newly obtained correlation breaker with
advice, this time with b = a1/3, one obtains a third correlation breaker with advice that only
requires entropy O(a1/3 · log(n/ε)). We continue to apply this sequence of improvements
where on the j’th iteration, we set b = a1/(j+1). After v iterations, the required entropy is
roughly of the form 2O(v) · a1/v · log(n/ε). By setting v =

√
log a, we obtain a correlation

breaker with advice that only requires entropy 2
√

log a · log(n/ε). For more details, we refer
the reader to Section 8.

4.3 Step 3 – condensing the advice

Somewhat orthogonally to the ideas presented so far, in the third step we show how to
shorten, or condense, a given advice, at least as long the advice is longer than log(1/ε).
More precisely, we devise an algorithm to which we call an advice condenser

AdvCond : {0, 1}ain × {0, 1}n × {0, 1}d → {0, 1}aout

that has the following property. For any X,X ′, Y, Y ′ as above, and for any distinct fixed
ain-bit strings α, α′, it holds that

Pr [AdvCond(α,X, Y ) = AdvCond(α′, X ′, Y ′)] ≤ ε.

Moreover, aout = O(log(1/ε)+ τ(ain)), where τ(ain) = log(c)(ain) is the c-iterated log function
applied to ain.

8

For any constant c, the entropy required from X, Y for the purpose of condensing the
advice is only O(log(na/ε)), which we are willing to pay. Hence, informally speaking, by
having our advice condenser, one can always assume that the advice has length of order
min(a, log(1/ε) + τ(n)). In particular, the advice length can be assumed to grow extremely
slowly as a function of n. This is quite a strong assumption whereas, somewhat surpris-
ingly, the construction of our advice condenser, which is influenced by the advice generator
of [CGL15], is fairly simple (see Section 9).

5 Preliminaries

In this section we set some notations that will be used throughout the paper and recall some
of the more standard results from the literature that we apply frequently. In Section 6 we
present some more recent results from the literature that we make use of.

8The c-iterated log function is defined as follows. First, log(0)(x) = x, and for any integer c > 0, define

log(c)(x) = log(log(c−1)(x)) recursively.
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Setting some standard notations. Unless stated otherwise, the logarithm in this paper
is always taken base 2. For every natural number n ≥ 1, define [n] = {1, 2, . . . , n}. Through-
out the paper, whenever possible, we avoid the use of floor and ceiling in order not to make
the equations cumbersome. Whenever we say that a function is efficiently-computable we
mean that the corresponding family of functions can be computed by a (uniform) algorithm
that runs in polynomial-time in the input length.

Random variables and distributions. We sometimes abuse notation and syntactically
treat random variables and their distribution as equal, specifically, we denote by Um a random
variable that is uniformly distributed over {0, 1}m. Furthermore, if Um appears in a joint
distribution (Um, X) then Um should be understood as being independent of X. When m
is clear from context, we omit it from the subscript and write U . The support of a random
variable X is denoted by supp(X). Let X, Y be two random variables. We say that Y is
a deterministic function of X if the value of X determines the value of Y . Namely, there
exists a function f such that Y = f(X).

Statistical distance. The statistical distance between two distributions X, Y on the same
domain D is defined by

SD (X, Y ) = max
A⊆D
{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X, Y ) ≤ ε we write X ≈ε Y and say that X and Y are ε-close.
We make frequent use of the following lemma.

Lemma 5.1. Let X,X ′ be two random variables on the same domain. Let Y, Z be a random
variables such that for any y ∈ supp(Y ), the random variables X | Y = y, Z | Y = y are
independent and the random variables X ′ | Y = y, Z | Y = y are independent. Then,

SD ((X, Y ), (X ′, Y )) = SD ((X,Z, Y ), (X ′, Z, Y )) .

Min-entropy. The min-entropy of a random variable X, denoted by H∞(X), is defined
by

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In such
case, if X has min-entropy k or more, we say that X is an (n, k)-source. When wish to refer
to an (n, k)-source without specifying the quantitative parameters, we sometimes use the
standard terms source or weak-source.

Average conditional min-entropy. Let X,W be two random variables. The average
conditional min-entropy of X given W is defined as

H̃∞(X | W ) = − log2

(
E

w∼W

[
2−H∞(X|W=w)

])
.

We make frequent use of the following lemmas.
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Lemma 5.2 ([DORS08]). Let X, Y, Z be random variables such that Y has support size at
most 2`. Then,

H̃∞(X | (Y, Z)) ≥ H̃∞((X, Y ) | Z)− ` ≥ H̃∞(X | Z)− `.

In particular, H̃∞(X | Y ) ≥ H∞(X)− `.

Lemma 5.3 ([DORS08]). For any two random variables X, Y and any ε > 0, it holds that

Pr
y∼Y

[
H∞(X | Y = y) < H̃∞(X | Y )− log(1/ε)

]
≤ ε.

Lemma 5.4. Let X, Y, Z be random variables such that for any y ∈ supp(Y ) it holds that

X | Y = y and Z | Y = y are independent. Then, H̃∞(X | (Y, Z)) = H̃∞(X | Y ). In

particular, if X and Z are independent then H̃∞(X | Z) = H∞(X).

Extractors. We provide standard definitions of extractors and state some of the results
we use.

Definition 5.5 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a
(k, ε)-seeded extractor if for any (n, k)-source X it holds that Ext(X,S) ≈ε Um, where S is
uniformly distributed over {0, 1}d and is independent of X. We say that Ext is a strong if
(Ext(X,S), S) ≈ε Um+d.

We sometimes say that an extractor Ext supports min-entropy k. By that we mean that
Ext is an extractor for min-entropy k. Throughout the paper we make use of the following
explicit strong seeded extractors.

Theorem 5.6 ([GUV09]). There exists a universal constant cGUV > 0 such that the following
holds. For all positive integers n, k and ε > 0, there exists an efficiently-computable (k, ε)-
strong seeded-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m having seed length d = cGUV · log(n/ε)
and m = k/2 output bits.

The following theorem readily follows by Theorem 4 in [Raz05] and Theorem 5.6.

Theorem 5.7. There exist universal constants cRaz, c
′
Raz such that the following holds. Let

n, k be integers and let ε > 0. Set d = cRaz · log(n/ε). For all k ≥ c′Razd, there exists an
efficiently-computable function

Raz : {0, 1}n × {0, 1}d → {0, 1}k/2

with the following property. Let X be an (n, k)-source, and let Y be an independent (d, 0.6d)-
source. Then, (Raz(X, Y ), Y ) ≈ε (U, Y ).

We make use of the following lemma. A proof and a short discussion regarding this
lemma can be found in [CS16].
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Lemma 5.8. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-strong seeded extractor. Let
W,S be random variables over n-bit strings and d-bit strings, respectively. Let H be some
random variable such that

H̃∞ (W | H) ≥ k + log(1/ε),

(S,H) ≈δ (U,H) .

Assume further that conditioned on H, the random variables W,S are independent. Then,

(Ext(W,S), S,H) ≈δ+2ε (U, S,H) .

Error correcting codes. We also need the following standard definition of an error cor-
recting code.

Definition 5.9. Let Σ be some set. A mapping ECC : Σk → Σn is called an error correcting
code with relative-distance δ if for any x, y ∈ Σk, it holds that the Hamming distance between
ECC(x) and ECC(y) is at least δn. The rate of the code, denoted by ρ, is defined by ρ = k/n.
We say that the alphabet size of the code is |Σ|.

Theorem 5.10 ([GS95] (see also [Sti09])). Let p be any prime number and let m be an even
integer. Set q = pm. For every ρ ∈ [0, 1] and for any large enough integer n, there exists
an efficiently-computable rate ρ linear error correcting code ECC : Fρnq → Fnq with relative
distance δ such that

ρ+ δ ≥ 1− 1
√
q − 1

.

6 Less Familiar Preliminaries

In this section we cover two components that we use throughout the paper. Unlike error
correcting codes and extractors, that were covered in the previous section, and with which
the reader is probably familiar, in this section we recall newer and less familiar concepts
such as somewhere-independent matrices and independence-preserving mergers [CS16] as
well as the notion of hierarchy of independence which is based on alternating extraction. We
start this section by giving a formal definition for correlation breakers with advice, which is
slightly more complete than the one given in the introduction.

6.1 Correlation breakers with advice

The following definition was first used, implicity, in [CGL15] and was later formalized ex-
plicitly in [Coh15b].

Definition 6.1 (Correlation breakers with advice). A function

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m
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is called a (k, ε)-correlation breaker with advice if the following holds. Let Y, Y ′ be `-bit
random variables such that Y uniform. Let X,X ′ be n-bit random variables with H∞(X) ≥ k,
and such that (X,X ′) is independent of (Y, Y ′). Then, for any pair of distinct a-bit strings
α, α′,

(AdvCB (X, Y, α) ,AdvCB (X ′, Y ′, α′)) ≈ε (U,AdvCB (X ′, Y ′, α′)) .

Further, we say that AdvCB is strong if

(AdvCB (X, Y, α) ,AdvCB (X ′, Y ′, α′) , Y, Y ′) ≈ε (U,AdvCB (X ′, Y ′, α′) , Y, Y ′) .

6.2 Hierarchy of independence

Let cGUV be the constant that is given by Theorem 5.6. Let n1, n2, b be some integers, and
let ε > 0. Let s1 = cGUV · log(n1/ε) be a length that suffices for a seed of the strong seeded
extractor that is given by Theorem 5.6 when fed with a sample from an n1-bit source and
when set with error guarantee ε. Similarly, we define s2 = cGUV · log(n2/ε) to be a length
that suffices for a seed of the extractor that is given by Theorem 5.6 when fed with a sample
from an n2-bit source and when set with error guarantee ε. We further assume that b ≥ s1.
Let

Ext1 : {0, 1}n1 × {0, 1}s1 → {0, 1}s2

be the (2s2, ε)-strong seeded extractor that is given by Theorem 5.6. Let

Ext2 : {0, 1}n2 × {0, 1}s2 → {0, 1}b

be the (2b, ε)-strong seeded extractor that is given by Theorem 5.6. We let

Ext3 : {0, 1}n2 × {0, 1}s2 → {0, 1}s1

be the function that is obtained by applying Ext2 and taking only the length s1 prefix of the
output (recall that b ≥ s1). We define a pair of functions

a : {0, 1}s2 × {0, 1}n2 → {0, 1}b,
b : {0, 1}s2 × {0, 1}n1 × {0, 1}n2 → {0, 1}b,

as follows. For v ∈ {0, 1}s2 , z ∈ {0, 1}n1 , and w ∈ {0, 1}n2 ,

a(v, w) = Ext2(w, v),

b(v, z, w) = Ext2(w,Ext1(z,Ext3(w, v))).

The following lemma appears with different twists in several previous works [DP07,
DW09, Li13a, Li15b, Coh15a, CS16].

Lemma 6.2. Let Y = (Y, Y ′) be a pair of s2-bit random variables such that

(Y, Y ′,H) ≈δ (U, Y ′,H).

Let Z = (Z,Z ′) be a pair of n1-bit random variables, and let W = (W,W ′) be a pair of n2-bit
random variables, such that
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• H̃∞(Z | H) ≥ 5s2.

• H̃∞(W | H) ≥ 5b.

• For any h ∈ supp(H), the random variable W | (H = h) is independent of the joint
distribution of Y | (H = h), Z | (H = h).

Write

Â = a(Y,W ), a(Y ′,W ′),

Ẑ = Ext1(Z,Ext3(W,Y )),Ext1(Z ′,Ext3(W ′, Y ′)). (6.1)

Then, the following holds:

1. (a(Y,W ),Z,Y ,H) ≈δ+2ε (U,Z,Y ,H) ,

2.
(
b(Y, Z,W ), a(Y ′,W ′),Z, Ẑ, Â,Y ,H

)
≈δ+6ε

(
U, a(Y ′,W ′),Z, Ẑ, Â,Y ,H

)
.

Furthermore,

3. H̃∞

(
Z | Ẑ, Â,Y ,H

)
≥ H̃∞ (Z | H)− 5s2,

4. H̃∞

(
W | Ẑ, Â,Y ,H

)
≥ H̃∞ (W | H)− 5b.

6.3 Independence-preserving mergers

Definition 6.3 (Somewhere-independent matrices [CS16]). Let M,M ′ be random variables
in the form of r × ` matrices. Let H be a random variable and let δ > 0. We say that M is
(δ,H)-somewhere independent of M ′ if the following holds:

• There exists g ∈ [r] such that
(
Mg,M

′
g,H

)
≈δ
(
U,M ′

g,H
)
. For any such g we say that

M is (δ,H)-independent of M ′ at g.

• For any i ∈ [r], (Mi,H) ≈δ (U,H) .

Theorem 6.4 ([CS16]). There exists a universal constant cIPM ≥ 1 such that the following
holds. Let n, r,m be integers such that r is an even power of 2. Let ε, δ > 0, and set
s = cGUV · log(n/ε), where cGUV is the constant given by Theorem 5.6. Then, there exists an
efficiently-computable function

IPMerg : {0, 1}r×s × {0, 1}n × {0, 1}n → {0, 1}m

with the following property. Let M = (M,M ′) be a pair of random variables in the form of
r × s matrices such that M is (δ,H)-somewhere independent of M ′. Denote v = cIPM · r ·
log(n/ε). Let Z = (Z,Z ′) and W = (W,W ′) be two pairs of n-bit random variables such that
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• H̃∞ (Z | H) ≥ v.

• H̃∞ (W | H) ≥ v + 2m.

• For any h ∈ supp(H), the random variable W | (H = h) is independent of the joint
distribution of M | (H = h), Z | (H = h).

Set N = IPMerg(M,Z,W ), N ′ = IPMerg(M ′, Z ′,W ′), and set N = (N,N ′). Then, there
exists a random variable H′ such that the following holds:

• (N,N ′,H′) ≈(δ+12ε)r (U,N ′,H′).

• H̃∞ (Z | H′) ≥ H̃∞ (Z | H)− v.

• H̃∞ (W | H′) ≥ H̃∞ (W | H)− v.

• For any h ∈ supp(H′), the random variable Z | (H′ = h) is independent of the joint
distribution of N | (H′ = h), W | (H′ = h).

7 The Base Correlation Breaker with Advice

The main result of this section is given by the following lemma. We remark that one can easily
relax the condition k = 3m+ c′base` in the statement of the lemma to k = (2 + α)m+ c′base`
for any constant α > 0.

Lemma 7.1. There exist universal constants cbase, c
′
base ≥ 1 such that the following holds.

For all integers n, a,m, and for any ε > 0, set

` = cbase · (log n+ a · log (a/ε)) .

Then, there exists an explicit (k, ε)-strong correlation breaker with advice

BaseAdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m,

with k = 3m+ c′base`.

Proof of Lemma 7.1. Let cGUV be the constant that is given by Theorem 5.6, and let cRaz be
the constant that is given by Theorem 5.7. Set

b = cGUV · log(`/ε),

`1 = cGUV · log(n/ε),

`2 = 5`1,

`3 = max (10`2, cRaz · log(n/ε)) .

We further assume that ` ≥ 10`3. For an `-bit string y, and for i = 1, 2, 3, we denote by yi
the `i-bit prefix of y. Note that y1 is a prefix of y2 which, in turn, is a prefix of y3. Further,
observe that the constant cbase can be taken large enough (with respect to cGUV and cRaz) so
that `1, `2, `3, and ` could be set the way we described above.
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Building blocks. For the construction of BaseAdvCB we make use of the following building
blocks:

• Let a : {0, 1}`1 × {0, 1}n → {0, 1}b and b : {0, 1}`1 × {0, 1}`2 × {0, 1}n → {0, 1}b be the
pair of functions that are defined in Section 6.2, set with error guarantee ε. Note that
`1 was set according to Lemma 6.2. Further, as ` ≥ `2, the parameter b is large enough
as required by Lemma 6.2.

• Let Raz : {0, 1}n × {0, 1}`3 → {0, 1}` be the (2`, ε)-extractor with weak seeds that is
given by Theorem 5.7. Note that `3 was chosen to be sufficiently large as required by
Theorem 5.7.

• Let IPMerg : {0, 1}(2a)×b × {0, 1}` × {0, 1}` → {0, 1}`1 be the independence-preserving
merger that is given by Theorem 6.4, set with error guarantee ε. Note that b was set
according to Theorem 6.4.

• Let Ext : {0, 1}n × {0, 1}`1 → {0, 1}m be the (2m, ε)-strong seeded extractor that is
given by Theorem 5.6. Note that `1 is sufficiently large are required by Theorem 5.6.

The construction. On input x ∈ {0, 1}n, y ∈ {0, 1}`, α ∈ {0, 1}a, the first step in the
computation of BaseAdvCB(x, y, α) is constructing a (2a)× b matrix m = m(x, y2, α) that is
defined as follows 9. For i ∈ [2a], the i’th row of the matrix m is given by

m(x, y2, α)i =

{
a(y1, x), i 6= αdi/2e (mod 2);
b(y1, y2, x), i = αdi/2e (mod 2).

We then compute
z = IPMerg (m (x, y2, α) ,Raz (x, y3) , y) .

Finally, we define
BaseAdvCB(x, y, α) = Ext (x, z) .

Analysis. Let X,X ′ be a pair of n-bit random variables such that H∞(X) ≥ k. Let Y, Y ′

be a pair of `-bit random variables that are jointly independent of the joint distribution
(X,X ′), and such that Y is uniformly distributed. Let α, α′ be distinct, fixed, a-bit strings.

Set M = m(X, Y2, α) and M ′ = m(X ′, Y ′2 , α
′). Let i ∈ [a] be such that αi 6= α′i. Set

g = 2i − αi, and observe that Mg = b(Y1, Y2, X) whereas M ′
g = a(Y ′1 , X

′). By our choice
of `2, and since k ≥ 5b, we can apply Lemma 6.2 with Y = (Y1, Y

′
1), Z = (Y2, Y

′
2), and

W = (X,X ′), and conclude, by Item 2 of the lemma, that(
Mg,M

′
g, Y2, Y

′
2

)
≈6ε

(
U,M ′

g, Y2, Y
′

2

)
, (7.1)

9By convention, the output length of BaseAdvCB is also denoted by m though this should cause no
confusion.
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Moreover, by Item 1 and Item 2 of Lemma 6.2 it follows that for every i ∈ [2a],

(Mi, Y2, Y
′

2) ≈6ε (U, Y2, Y
′

2) . (7.2)

Equation (7.1) and Equation (7.2) then imply that M is (6ε, (Y2, Y
′

2))-independent of M ′ at
g.

By Item 4 of Lemma 6.2,

H̃∞ (X | Y2, Y
′

2) ≥ k − 5b ≥ max (2`, c′Raz`3) + log(1/ε),

where the last inequality follows by setting the constant c′base large enough. Further, by
Lemma 5.2 and Lemma 5.4, and since the random variables M,M ′ are deterministic functions
of Y2, Y

′
2 and X,X ′,

H̃∞ (Y3 | Y2, Y
′

2) ≥ `3 − 2`2 ≥ 0.8`3. (7.3)

Equation (7.3) and Equation (7.3), together with the fact that X is independent of Y3

conditioned on any fixing of Y2, Y
′

2 allows us to apply Theorem 5.7 and Lemma 5.8, and
conclude that

(Raz(X, Y3), Y3, Y2, Y
′

2) ≈2ε (U, Y3, Y2, Y
′

2) .

Note that conditioned on Y3, Y2, Y
′

2 , the random variable Raz(X, Y3) is independent of Y ′3 .
Thus, we may apply Lemma 5.4 to conclude that

(Raz(X, Y3), Y3, Y
′

3) ≈2ε (U, Y3, Y
′

3) ,

where we have used the fact that Y2 and Y ′2 are prefixes of Y3 and Y ′3 , respectively.
Recall that M is (6ε, (Y2, Y

′
2))-somewhere independent of M ′. As the joint distribution of

M,M ′ is independent of the joint distribution of Y3, Y
′

3 conditioned on any fixing of Y2, Y
′

2 ,
it holds that M is (6ε, (Y3, Y

′
3))-somewhere independent of M ′. By Lemma 5.2 and by the

fact that ` ≥ 10`3, it is possible to set the constant cbase large enough with respect to the
constant cIPM that is given by Theorem 6.4, so to guarantee that

H̃∞ (Y | Y3, Y
′

3) ≥ `− 2`3

≥ 0.8`

≥ cIPM · 2a · log (`/ε) ,

Note further that

H̃∞(X | Y3, Y
′

3) = H̃∞(X | Y2, Y
′

2)

≥ k − 5b

≥ cIPM · 2a · log(`/ε) + 2`1.

Thus, we are in a position to apply Theorem 6.4 to conclude that there exists a random
variable H such that

(Z,Z ′,H) ≈O(aε) (U,Z ′,H) , (7.4)
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where

Z = IPMerg (M,Raz(X, Y3), Y ) ,

Z ′ = IPMerg (M ′,Raz(X ′, Y ′3), Y ′) .

Furthermore, conditioned on H, both Z and Z ′ are deterministic functions of Y, Y ′ which,
in turn, are jointly independent of the joint distribution (X,X ′). Thus, conditioned on
Z ′,H, the random variable Z is independent of Ext(X,Z ′), and so by Equation (7.4) and
Lemma 5.1,

(Z,Ext(X ′, Z ′), Z ′,H) ≈O(aε) (U,Ext(X ′, Z ′), Z ′,H) . (7.5)

Now, as Ext(X ′, Z ′) consists of m bits, Raz(X, Y3) and Raz(X ′, Y ′3) each consists of ` bits,
and since each of M,M ′ has only 2 distinct random variables that occupy its length b rows,
we have that

H̃∞ (X | Ext(X ′, Z ′), Z ′,H) ≥ H̃∞ (X | Z ′,H)−m
= H̃∞ (X | H)−m
≥ H̃∞ (X | H)−m− 4b− 2`

≥ 2m+ log(1/ε).

Therefore, by Theorem 5.6, Lemma 5.8, and by Equation (7.5), it holds that

(Ext(X,Z),Ext(X ′, Z ′), Z, Z ′,H) ≈O(aε) (U,Ext(X ′, Z ′), Z, Z ′,H) .

Conditioned on Ext(X ′, Z ′), Z, Z ′,H, the random variables Ext(X,Z) is independent of
the joint distribution of Y, Y ′. Thus, by Lemma 5.3,

(BaseAdvCB(X, Y, α),BaseAdvCB(X ′, Y ′, α′), Y, Y ′) ≈O(aε) (U,BaseAdvCB(X ′, Y ′, α′), Y, Y ′) .

The proof then follows by setting the error guarantee of all building blocks we have used to
βε/a for some small enough constant β > 0 so to reduce the total error from O(aε) to ε.

8 Stepping-Up Correlation Breakers with Advice

In this section we devise an algorithm that transforms, in a black-box manner, a given
correlation breaker with advice to one with better dependence on the advice length. This is
the content of Lemma 8.1. Then, in Lemma 8.3 we apply this transformation, repeatedly,
starting with the base correlation breaker with advice that is given by Lemma 7.1.

Lemma 8.1. There exists a universal constant cSU ≥ 1 such that the following holds. Let
n, aout,mout, b, `in, kin be integers and let εin > 0. Set

ain = aout/b,

`out = 3mout + cSU · (`in + log n+ b · log (b/εin)) ,

min = cGUV · log(`out/εin),
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where cGUV is the constant that is given by Theorem 5.6. Let

AdvCBin : {0, 1}n × {0, 1}`in × {0, 1}ain → {0, 1}min

be an explicit (kin, εin)-strong correlation breaker with advice. Then, there exists an explicit
(kout, εout)-strong correlation breaker with advice

AdvCBout : {0, 1}n × {0, 1}`out × {0, 1}aout → {0, 1}mout

with

kout = max (kin, 4`out) ,

εout = cSU · b
√
εin.

Proof. For a string y ∈ {0, 1}`out , let y1, y2 denote the length `in, `Raz prefixes of y, respectively,
where we recall that `in is the length of the second argument of AdvCBin, and define

`Raz = max (10`in, cRaz · log(n/εin)) ,

where cRaz is the constant that is given by Theorem 5.7. We further assume that `out ≥ 10`Raz.
This assumption can be met by taking cSU to be a large enough constant (compared to the
constant cRaz).

Building blocks. On top of AdvCBin, for the construction of AdvCBout we make use of the
following building blocks:

• Let Raz : {0, 1}n × {0, 1}`Raz → {0, 1}`out be the (2`out, εin)-extractor with weak-seeds
that is given by Theorem 5.7. Note that `Raz was set to have sufficient length as
required by Theorem 5.7.

• Set d = cGUV · log(n/εin), and let IPMerg : {0, 1}b×min × {0, 1}`out × {0, 1}`out → {0, 1}d
be the independence-preserving merger that is given by Theorem 6.4, set with error
guarantee εin. Recall that min = cGUV · log(`out/εin), as required by Theorem 6.4.

• Let Ext : {0, 1}n × {0, 1}d → {0, 1}mout be the (2mout, εin)-strong seeded extractor that
is given by Theorem 5.6. Note that d suffices so as to be used as a seed length for Ext.

The construction. Let x ∈ {0, 1}n, y ∈ {0, 1}`out , and let α be an aout-bit string. We
partition α to b consecutive equal length substrings, or blocks, α = α1 ◦ · · · ◦ αb. Note that
for any i ∈ [b], |αi| = ain. Define the b×min matrix m(x, y1) as follows. For i ∈ [b], the i’th
row of m(x, y1) is given by

m(x, y1)i = AdvCBin(x, y1, αi).

Define
z = IPMerg (m(x, y1),Raz(x, y2), y) .

Finally, define
AdvCBout(x, y, α) = Ext (x, z) .
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Analysis. Let X,X ′ be n-bit random variables such that H∞(X) ≥ kout. Let Y, Y ′ be
`out-bit random variables such that Y is uniform, and such that (X,X ′) is independent of
(Y, Y ′). Let α 6= α′ be distinct, fixed, aout-bit strings. As α 6= α′, there exists g ∈ [b] such
that αg 6= α′g. As kout ≥ kin and since AdvCBin is a (kin, εin)-strong correlation breaker with
advice,(

AdvCBin(X, Y1, αg),AdvCBin(X
′, Y ′1 , α

′
g), Y1, Y

′
1

)
≈εin

(
U,AdvCBin(X

′, Y ′1 , α
′
g), Y1, Y

′
1

)
.

Further, note that for any i ∈ [b],

(AdvCBin(X, Y1, αi), Y1, Y
′

1) ≈εin (U, Y1, Y
′

1) . (8.1)

Indeed, pick any string β 6= αi and observe that

(AdvCBin(X, Y1, αi),AdvCBin(X
′, Y ′1 , β), Y1, Y

′
1) ≈εin (U,AdvCBin(X

′, Y ′1 , β), Y1, Y
′

1) ,

which, in particular implies Equation (8.1). Thus, m(X, Y1) is (εin,H)-somewhere indepen-
dent of m(X ′, Y ′1), where H = Y1, Y

′
1 .

By Lemma 5.2,
H̃∞ (Y2 | H) ≥ `Raz − 2`in ≥ 0.8`Raz,

and so, by Lemma 5.3, except with probability O(εin) over the fixing of H, the random
variable Y2 has min-entropy rate 0.7. Thus, by Theorem 5.7, and since

kout ≥ max (2`out, c
′
Raz`Raz) + log(1/εin),

we have that
(Raz(X, Y2), Y2,H) ≈O(εin) (U, Y2,H) .

Note that conditioned on any fixing of Y2,H, the random variable Raz(X, Y2) is indepen-
dent of Y ′2 . Therefore, by Lemma 5.1,

(Raz(X, Y2),H′) ≈O(εin) (U,H′) ,

where H′ = Y2, Y
′

2 . Note further that by Lemma 5.2,

H̃∞ (Y | H′) ≥ `out − 2`Raz ≥ 0.8`out.

Thus, by Lemma 5.3, except with probability O(εin) over the fixing ofH′, the random variable
Y has min-entropy 0.7`out. Note further that m(X, Y1) is (εin,H′)-somewhere independent
of m(X, Y ′1) (as apposed to just being (εin,H)-somewhere independent).

One can now apply Markov’s inequality and the union bound over all rows of m(X, Y1)
to conclude that except with probability O(b

√
εin) over the fixing of H′, the following holds.

• m(X, Y1) is O(
√
εin)-somewhere independent of m(X ′, Y ′1).

• Raz(X, Y2) is O(
√
εin)-close to uniform.

24



• The random variables m(X, Y1), m(X ′, Y ′1), Raz(X, Y2), and Raz(X ′, Y ′2) are all deter-
ministic functions of (X,X ′), and in particular are jointly independent of (Y, Y ′).

• H∞(Y ) ≥ 0.7`out.

This, together with our choice of `out, allows us to apply Theorem 6.4, and conclude that

(Z,Z ′,H′′) ≈O(b
√
εin) (U,Z ′,H′′) ,

where

Z = IPMerg (m(X, Y1),Raz(X, Y2), Y ) ,

Z ′ = IPMerg (m(X ′, Y ′1),Raz(X ′, Y ′2), Y ′) ,

and H′′ is a random variable such that conditioned on any fixing of H′′, each of the random
variables Z,Z ′ is a deterministic function of Y, Y ′, respectively. Further, conditioned on H′′
the joint distribution of the random variables X,X ′ is independent of the joint distribution
of Y, Y ′. Thus, by Lemma 5.1,

(Z,Ext(X ′, Z ′), Z ′,H′′) ≈O(b
√
εin) (U,Ext(X ′, Z ′), Z ′,H′′) . (8.2)

Now, as each of m(X, Y1), m(X ′, Y ′1) consists of bmin bits and since Raz, Ext have output
lengths `out, mout, respectively, Lemma 5.2 implies that

H̃∞ (X | Ext(X ′, Z ′), Z ′,H′′) ≥ kout − 2(bmin + `out)−mout

≥ 2mout + log(1/εin), (8.3)

where the last inequality holds by taking the constant cSU large enough. Equation (8.2),
Equation (8.3), together with the fact that X is independent of Z conditioned on any fixing
of Ext(X ′, Z ′), Z ′, H′′ imply that

(Ext(X,Z), Z,Ext(X ′, Z ′), Z ′,H′′) ≈O(b
√
εin) (U,Z,Ext(X ′, Z ′), Z ′,H′′) .

Conditioned on the fixings of Z,Ext(X ′, Z ′), Z ′,H′′, the random variable Ext(X,Z) is
independent of the joint distribution of Y, Y ′. Hence, by Lemma 5.1,

(AdvCBout(X, Y, α),AdvCBout(X
′, Y ′, α′), Y, Y ′) ≈O(b

√
ε) (U,AdvCBout(X

′, Y ′, α′), Y, Y ′) .

This concludes the proof.

The following corollary readily follows by Lemma 8.1. The proof is by a straightforward
induction. The base case is obtained by taking AdvCB1 to be the base correlation breaker
with advice BaseAdvCB that is given by Lemma 7.1. For the inductive step, we apply
Lemma 8.1 to AdvCBv as AdvCBin to obtain AdvCBv+1 = AdvCBout, with b = a1/v. We omit
the tedious technical details.
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Corollary 8.2. There exists universal constants c, c′ ≥ 1 such that the following holds.
For all n, a,m, all ε > 0, and for any v = o(log a), there exists an explicit (kv, ε)-strong
correlation breaker with advice

AdvCBv : {0, 1}n × {0, 1}`v × {0, 1}a → {0, 1}m,

with

`v = cv ·
(
log n+ a1/v · log (a/ε)

)
,

kv = c′`v + 3m.

By setting v = O(
√

log a), Corollary 8.2 readily implies the following lemma.

Lemma 8.3. There exist universal constants c′SU, c
′′
SU ≥ 1 such that the following holds.

For all integers n, a, and for any ε > 0, there exists an efficiently-computable (k, ε)-strong
correlation breaker with advice

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m,

where ` = (c′SU)
√

log a · log(n/ε) and k = 3m+ c′′SU`.

9 Advice Condensers

In this section we formally define, and construct, advice condensers.

Definition 9.1 (Advice condensers). A function

AdvCond : {0, 1}ain × {0, 1}n × {0, 1}d → {0, 1}aout

is called a (k, ε)-advice condenser if the following holds. Let X,X ′ be n-bit random variables
such that H∞(X) ≥ k. Let Y, Y ′ be d-bit random variables such that Y is uniform. Assume
further that the joint distribution of X,X ′ is independent of the joint distribution of Y, Y ′.
Then, for any pair of distinct a-bit strings α, α′, it holds that

Pr [AdvCond(α,X, Y ) = AdvCond(α′, X ′, Y ′)] ≤ ε.

The main result of this section is the following lemma. Note that the lemma makes use
of the iterated logarithm function. Recall that for an integer c ≥ 0, the function log(c)(x)
stands for the c-iterated log(·) function. That is, log(0)(x) = x, and for an integer c > 0,
log(c)(x) = log(log(c−1)(x)). All of our logarithms are taken base 2.

Lemma 9.2. There exists a universal constant cAC ≥ 1 such that the following holds. For all
integers n, ain, c ≥ 1, and for any ε > 0, there exists an efficiently-computable (k, ε)-advice
condenser

AdvCondc : {0, 1}ain × {0, 1}n × {0, 1}d → {0, 1}aout ,
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with

aout = log(c)(ain) + ccAC · log(1/ε),

d = ccAC · log(ainn/ε),

k = ccAC · log(ainn/ε).

For the proof of Lemma 9.2 we start by constructing what we call the base advice con-
denser, which will be used in our final construction. Technically, this function does not have
a third input, though we still refer to it as an advice condenser. More precisely, naturally,
we call it a (0, ε)-advice condenser as one may think of the third source as being some fixed
constant string, having no entropy.

Lemma 9.3. For any integer ain and for any ε > 0, there exists an efficiently-computable
(0, ε)-advice condenser

BaseAdvCond : {0, 1}ain × {0, 1}d → {0, 1}aout ,

with

d = log(ain/ε) + 2,

aout = log ain + 3 log(1/ε) + 7,

Proof of Lemma 9.3. Set q to be the least even power of two that is larger than (2/ε +
1)2. Identify {0, 1}ain with some arbitrary subset of Fainq . Let ECC : Fainq → Fbq be the error
correcting code that is given by Theorem 5.10 set with relative distance δ = 1 − ε. By
Theorem 5.10, such an explicit code exists with rate ρ ≥ ε/2, and so b ≤ 2ain/ε.

For α ∈ {0, 1}ain and y ∈ {0, 1}d, define

BaseAdvCond(α, y) = ECC(α)y ◦ y.

Note that d was chosen large enough so as to be used as an index for entries in the codeword
ECC(α). Furthermore, as q ≤ 4 · (2/ε+ 1)2 ≤ 32/ε2, the output length of BaseAdvCond is

|ECC(α)y|+ |y| ≤ log q + log b ≤ log ain + 3 log(1/ε) + 7 = m.

Further, d ≤ log b ≤ log(ain/ε) + 2, as stated. Now,

Pr [BaseAdvCond(α, Y ) = BaseAdvCond(α′, Y ′)] = Pr [ECC(α)Y ◦ Y = ECC(α′)Y ′ ◦ Y ′]

=
∑
y

Pr
[
ECC(α)y ◦ y = ECC(α′)Y ′y ◦ Y

′
y

]
,

where Y ′y denotes the random variable Y ′ | (Y = y). Note that for every y,

Pr
[
ECC(α)y ◦ y = ECC(α′)Y ′y ◦ Y

′
y

]
≤ Pr

[
ECC(α)y ◦ y = ECC(α′)Y ′y ◦ Y

′
y | Y ′y = y

]
= Pr [ECC(α)y = ECC(α′)y] .
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Thus,

Pr [BaseAdvCond(α, Y ) = BaseAdvCond(α′, Y ′)] ≤
∑
y

Pr [ECC(α)y = ECC(α′)y] ≤ ε.

The proof of Lemma 9.2 readily follows by the following lemma.

Lemma 9.4. Let

AdvCondin : {0, 1}a × {0, 1}n × {0, 1}din → {0, 1}ain

be an explicit (kin, εin)-advice condenser. Then, there exists an explicit (kout, εout)-advice
condenser

AdvCondout : {0, 1}a × {0, 1}n × {0, 1}dout → {0, 1}aout

with

dout = max (10 · (din + log(1/εin)), cRaz · log(n/εin)) ,

kout = max (kin, 2ain + c′Razdout + log(1/εin), 2ain + 2 log(ain) + 3 log(1/εin) + 4) ,

aout = log ain + 3 log(1/εin) + 7,

εout = O(
√
εin),

where the constant cRaz in the definition of dout is the constant that appears in the statement
of Theorem 5.7.

Proof of Lemma 9.4. Recall that dout ≥ din. Given a dout-bit string y, we denote its din-bit
prefix by y1. On top of AdvCondin, for the construction of AdvCondout we make use of the
following components.

Building blocks.

• Set dbase = log(ain/εin) + 2, and let BaseAdvCond : {0, 1}ain × {0, 1}dbase → {0, 1}aout be
the (0, εin)-advice condenser that is given by Lemma 9.3. Note that both dbase and aout
were set according to Lemma 9.3.

• Let Raz : {0, 1}n × {0, 1}dout → {0, 1}dbase be the (2dbase, εin)-extractor with weak-seeds
that is given by Theorem 5.7. Note that dout is sufficiently large, as required by
Theorem 5.7.

The construction. On input α ∈ {0, 1}a, x ∈ {0, 1}n, and y ∈ {0, 1}dout , we define

AdvCondout(α, x, y) = BaseAdvCond (AdvCondin (α, x, y1) ,Raz (x, y)) .
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Analysis. Let X,X ′ be n-bit random variables such that H∞(X) ≥ kout. Let Y, Y ′ be
dout-bit random variables such that Y is uniform. Assume that the joint distribution (X,X ′)
is independent of the joint distribution (Y, Y ′). Let α, α′ be distinct, fixed, a-bit strings.

As kout ≥ kin and since AdvCBin is a (kin, εin)-advice condenser, we have that

Pr [AdvCondin (α,X, Y1) = AdvCondin (α′, X ′, Y ′1)] ≤ εin.

Thus, by Markov’s inequality, except with probability
√
εin over (y1, y

′
1) ∼ (Y1, Y

′
1), it holds

that
Pr [AdvCondin (α,X, y1) = AdvCondin (α′, X ′, y′1)] ≤

√
εin.

We further condition on the fixings of β ∼ AdvCondin (α,X, y1) and β′ ∼ AdvCondin (α′, X ′, y′1).
Note that conditioned on the fixings of Y1, Y

′
1 , the random variables AdvCondin (α,X, Y1),

AdvCondin (α,X ′, Y ′1) are deterministic functions of (X,X ′) and so this further conditioning
does not introduce dependencies between (X,X ′) and (Y, Y ′). Set

H = AdvCondin (α,X, Y1) ,AdvCondin (α′, X ′, Y ′1) , Y1, Y
′

1 .

By Lemma 5.2, Lemma 5.4, and by our choice of dout, din,

H̃∞ (Y | H) = H̃∞ (Y | Y1, Y
′

1)

≥ dout − 2din

≥ 0.8dout

≥ 0.7dout + log(1/εin).

Thus, by Lemma 5.3, except with probability εin over the fixings of H, the random variable
Y has min-entropy rate 0.7. Furthermore, by Lemma 5.2 and Lemma 5.4,

H̃∞ (X | H) = H̃∞ (X | AdvCondin (α,X, Y1) ,AdvCondin (α′, X ′, Y ′1))

≥ kout − 2ain

≥ max (2dbase, c
′
Razdout) + log(1/εin).

This, together with the fact that dout ≥ cRaz · log(n/ε), implies that

(Raz(X, Y ),H) ≈2εin (U,H) .

By Markov’s inequality, except with probability O(
√
εin) over the fixing of H, it holds that

Raz(X, Y ) ≈√εin U .
To summarize, by the union bound, except with probability O(

√
εin) over the fixing of H,

we have that β 6= β′ and that Raz(X, Y ) is O(
√
εin)-close to uniform. Thus, by Lemma 9.3,

Pr [AdvCondout (α,X, Y ) = AdvCondout (α′, X ′, Y ′)] = O (
√
εin) .

This concludes the proof.
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10 Proof of Theorem 2.1

After developing all the required components in previous sections, in this section we finally
turn to prove Theorem 2.1. The proof of Theorem 2.1 follows by the following lemma applied
with c = 4. Note that we prove the theorem with k = 3m. This can be easily relaxed to
k = (2 + α)m for any constant α > 0. We state the result as is for simplicity.

Lemma 10.1. There exists a universal constant c′ > 1 such that the following holds. For all
integers n, a, for any ε > 0, and for any constant integer c ≥ 1, there exists an efficiently-
computable (k, ε)-strong correlation breaker with advice

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

with

` = c′ log(an) + (c′)

√
log(log(c)(a)+log(1/ε)) ·

(
log(c)(a) + log(1/ε)

)
,

k = 3m+ c′`.

Proof of Lemma 10.1. Let cGUV, cRaz, cSU, cAC be the constants that appear in the statements
of Theorem 5.6, Theorem 5.7, Lemma 8.3, and Lemma 9.2, respectively. Set

a′ = log(c)(a) + ccAC · log(1/ε),

m′ = cGUV · log(n/ε),

`′ = (c′SU)
√

log a′ · log(`/ε),

`1 = ccAC · log(an/ε),

`2 = max (10`1 + 10 log(1/ε), cRaz · log(n/ε)) .

Note that our hypothesis of ` implies that ` ≥ `2. Given an `-bit string y, we denote its
length `1 prefix by y1 and its length `2 prefix by y2. For the proof of Lemma 10.1 we make
use of the following building blocks.

Building blocks.

• Let AdvCB′ : {0, 1}` × {0, 1}`′ × {0, 1}a′ → {0, 1}m′ be the (`/2, ε)-strong correlation
breaker with advice that is given by Lemma 8.3. Note that `′ was set according to
Lemma 8.3. Moreover, the min-entropy `/2 is large enough as required by Lemma 8.3
as it can be easily verified that, by our hypothesis, ` = Ω(`′).

• Let Raz : {0, 1}n × {0, 1}`2 → {0, 1}`′ be the (2`′, ε)-extractors with weak-seeds that is
given by Theorem 5.7. Note that `2 was set large enough as required by Theorem 5.7.

• Let AdvCond : {0, 1}a × {0, 1}n × {0, 1}`1 → {0, 1}a′ be the (k, ε)-advice condenser
that is given by Lemma 9.2. Note that `1 is large enough as required by Lemma 9.2.
Furthermore, a′ was set according to Lemma 9.2.

• Let Ext : {0, 1}n × {0, 1}m′ → {0, 1}m be the (2m, ε)-strong seeded extractor that is
given by Theorem 5.6. Note that m′ has sufficient length as required by Theorem 5.6.
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The construction. On input x ∈ {0, 1}n, y ∈ {0, 1}`, and α ∈ {0, 1}a, we define

AdvCB(x, y, α) = Ext (x, z) ,

where
z = AdvCB′ (y,Raz(x, y2),AdvCond(α, x, y1)) .

Analysis. Let X,X ′ be n-bit random variables such that H∞(X) ≥ k. Let Y, Y ′ be `-bit
random variables such that Y is uniform. We further assume that the joint distribution
(X,X ′) is independent of the joint distribution (Y, Y ′). Let α, α′ be two distinct, fixed, a-bit
strings.

As k ≥ cAC · log a+ ccAC · log(1/ε), we can apply Lemma 9.2 and conclude that

Pr [AdvCond(α,X, Y1) = AdvCond(α′, X ′, Y ′1)] ≤ ε.

By Markov’s inequality, except with probability
√
ε over the fixings (y1, y

′
1) ∼ (Y1, Y

′
1), it

holds that
Pr [AdvCond(α,X, y1) = AdvCond(α′, X ′, y′1)] ≤

√
ε.

We now further condition on the fixings of β = AdvCond(α,X, y1), β′ = AdvCond(α′, X ′, y′1).
Note that conditioned on the fixings of Y1, Y

′
1 , the random variables AdvCond(α,X, Y1),

AdvCond(α′, X ′, Y ′1) are deterministic functions of (X,X ′), and so the latter conditioning
does not introduce dependencies between (X,X ′) and (Y, Y ′).

Set
H = Y1, Y

′
1 ,AdvCond(α,X, Y1),AdvCond(α′, X ′, Y ′1).

By Lemma 5.4 and Lemma 5.2,

H̃∞ (Y2 | H) = H̃∞ (Y2 | Y1, Y
′

1)

≥ `2 − 2`1

≥ 0.8`2. (10.1)

Hence, by Lemma 5.3, except with probability ε over the fixings of (Y1, Y
′

1), it holds that Y2

has min-entropy rate 0.7. Moreover, as AdvCond has output length a′, Lemma 5.2 together
with Lemma 5.4 imply that

H̃∞ (X | H) = H̃∞ (X | AdvCond(α,X, Y1),AdvCond(α′, X ′, Y ′1))

≥ k − 2a′

≥ max (2`′, c′Raz`2) + log(1/ε). (10.2)

By Equation (10.1), Equation (10.2), and Theorem 5.7, and since X and Y2 are indepen-
dent conditined on H,

(Raz(X, Y2), Y2,H) ≈O(ε) (U, Y2,H) .

31



As conditioned on Y2,H, the random variables Raz(X, Y2) and Y ′2 are independent, Lemma 5.1
implies that

(Raz(X, Y2), Y ′2 , Y2,H) ≈O(ε) (U, Y ′2 , Y2,H) .

Now, by Lemma 5.2,

H̃∞ (Y | Y ′2 , Y2,H) = H̃∞ (Y | Y ′2 , Y2)

≥ `− 2`2

≥ `/2 + log(1/ε).

Thus, by Lemma 5.3, except with probability ε over the fixings of Y ′2 , Y2,H, the random
variable Y has min-entropy `/2.

To recap, by the union bound, except with probability O(
√
ε) over the fixings ofH, Y2, Y

′
2 ,

the following holds:

• β, β′ are distinct, fixed, strings.

• Raz(X, Y2) is O(
√
ε)-close to uniform.

• H∞(Y ) ≥ `/2.

• The joint distribution (Y, Y ′) is independent of the joint distribution of Raz(X, Y2) and
Raz(X ′, Y ′2).

Hence, as `/2 ≥ c′′SU`
′+ 3m′, we are in a position to apply Lemma 8.3, which implies that

(Z,H′) ≈O(
√
ε) (U,H′) ,

where

Z = AdvCB′ (Y,Raz(X, Y2),AdvCond(α,X, Y1)) ,

Z ′ = AdvCB′ (Y ′,Raz(X ′, Y ′2),AdvCond(α′, X ′, Y ′1)) ,

H′ = Z ′,Raz(X, Y2),Raz(X ′, Y ′2), Y ′2 , Y2,H.

Conditioned on H′, the random variable Z is a deterministic function of Y whereas
Ext(X ′, Z ′) is independent of Y . Thus, by Lemma 5.1,

(Z,Ext(X ′, Z ′),H′) ≈O(
√
ε) (U,Ext(X ′, Z ′),H′) .

By applying Lemma 5.2, Lemma 5.4, together with Equation (10.2), we have that

H̃∞ (X | Ext(X ′, Z ′),H′) ≥ H̃∞ (X | H)−m− 2`′

≥ k − 2a′ −m− 2`′

≥ 2m+ log(1/ε).
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Thus, by Theorem 5.6,

(Ext(X,Z), Z,Ext(X ′, Z ′),H′) ≈O(
√
ε) (U,Z,Ext(X ′, Z ′),H′) .

To conclude the proof, recall that Ext(X,Z) = AdvCB(X, Y, α), Ext(X ′, Z ′) = AdvCB(X ′, Y ′, α′),
and that conditioned on Z,Ext(X ′, Z ′),H′, the random variable Ext(X,Z) is independent of
Y, Y ′. Thus,

(AdvCB(X, Y, α),AdvCB(X ′, Y ′, α′), Y, Y ′) ≈O(
√
ε) (U,AdvCB(X ′, Y ′, α′), Y, Y ′) .

As usual, the error can be reduced to ε by taking primitives with a lower error guarantee.
This has no affect on the theorem statement.

11 A 5-Source Extractor for Near Logarithmic Min-

Entropy

In this section we prove Theorem 2.2. The proof relies on a generalization of correlation
breakers with advice.

Definition 11.1 (t-Correlation breakers with advice). A function

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

is called a (k, ε) t-correlation breaker with advice if the following holds. Let Y be a random
variable that is uniformly distribution over `-bit strings, and let Y1, . . . , Yt be `-bit random
variables that are arbitrarily correlated with Y . Let X be an (n, k)-source that is arbitrarily
correlated with the n-bit random variables X1, . . . , Xt. Assume that the joint distribution of
X,X1, . . . , Xt is independent of the joint distribution of Y, Y1, . . . , Yt. Then, for any a-bit
strings α, α1, . . . , αt such that α 6∈ {αi}ti=1,(

AdvCB (X, Y, α) , {AdvCB (Xi, Yi, αi)}ti=1

)
≈ε
(
U, {AdvCB (Xi, Yi, αi)}ti=1

)
.

The proof of Theorem 2.1 can be extended in a straightforward manner to prove the
following theorem and so we omit the details.

Theorem 11.2. For any constant integer t ≥ 1 there exist constants cACB, c
′
ACB ≥ 1 such

that the following holds. For all integers n,m, a, and for any ε > 0 such that a < 2n/ε, there
exists an explicit (k, ε) t-correlation breaker with advice AdvCB : {0, 1}n×{0, 1}`×{0, 1}a →
{0, 1}m, with

` = cACB · log(an) + log(1/ε) · c
√

log log(1/ε)

ACB ,

k = c′ACB · (m+ `).

The proof of Theorem 2.2 makes use of a fair number of components and results from
the literature. We begin by introducing them, starting with seeded condensers.
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Definition 11.3 (Seeded condensers). A function Cond : {0, 1}n × {0, 1}d → {0, 1}m is
said to be a k →ε k

′ condenser if for any (n, k)-source X and for any independent random
variable S that is uniformly distributed over d-bit strings, it holds that Cond(X,S) is ε-close
to a random variable with min-entropy k′. The function Cond is called a lossless condenser
if k′ = k + d.

Theorem 11.4 ([GUV09]). For any constant τ > 0 (τ can be taken to be larger than 1),
all integers n, k such that k ≤ n, and for any ε > 0, there exists an efficiently-computable
k →ε k + d (lossless) condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m having seed length d =
(1 + 1/τ) log(nk/ε) +O(1) and m = (1 + τ)k + 2d output bits.

We make use of the following lemma that, informally speaking, states that any seeded
condenser is also strong.

Lemma 11.5 ([Li11a, CS16]). Let Cond : {0, 1}n×{0, 1}d → {0, 1}m be a k →ε k
′ condenser.

Let X be an (n, k)-source and let S be an independent random variable that is uniformly
distributed over d-bit strings. Then, for any δ > 0, with probability 1− δ over s ∼ S it holds
that Cond(X, s) is (2ε/δ)-close to having min-entropy k′ − d− log(2/δ).

Barak et al. [BIW06] proved a useful lemma which states that taking the bitwise XOR
of t independent n-bit random variables, each is ε-close to uniform, results in a random
variable that is εt-close to uniform. We need to slightly generalize this lemma. The proof is
essentially the same as the proof given by [BIW06].

Lemma 11.6. Let X1, . . . , Xt be independent n-bit random variables such that each Xi is
ε-close to having min-entropy k. Then, X = ⊕ti=1Xi is εt-close to having min-entropy k.

Proof. For each j ∈ [t], one can write Xj as a convex combination Xj = (1 − ε)Gj + εEj,
where Gj has min-entropy k and Ej is some distribution. These convex combinations induce
a representation of X as a convex combination in the natural way. By collecting terms, one
can write X as (1− εt)G+ εtE, where E = ⊕tj=1Ej, and G contains all other terms, namely,
all terms that contain at least one Gj. To conclude the proof, observe that any such term
has min-entropy k, and that a convex combination of random variables with min-entropy k
has min-entropy k.

We also make use of the following lemma.

Lemma 11.7 ([Li12b]). Let X,X ′ be random variables with a common range such that
SD(X,X ′) ≤ ε. Let (X, Y ) be a joint distribution. Then, there exists a joint distribution
(X ′, Y ) such that SD((X, Y ), (X ′, Y )) ≤ ε.

With these components and results from the literature, we are ready to prove the following
lemma, which we later use for the proof of Theorem 2.2.

Lemma 11.8. For all integers n, `, there exists an efficiently-computable function

f : ({0, 1}n)3 → {0, 1}r×`,
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with r = poly(n), having the following property. For any three independent (n, k)-sources
X1, X2, X3, with k = Ω(` + log n), there exists B ⊆ [r] of size |B| ≤ 3r0.4, and a random
variable M in the form of an r × ` matrix, such that the following holds:

• f(X1, X2, X3) is r−0.05-close to M .

• For any i ∈ [r] \B, the random variable Mi has min-entropy rate 1/300.

Proof. Set τ = 100 and ε = n−100. Let r = 2d where d = (1 + 1/τ) log(nk/ε) + O(1) is
the seed length of the seeded condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m that is given
by Theorem 11.4 when applied with τ, ε as chosen above to (n, k)-sources. Let ` = (1 +
τ)k+ 2d be the output length of the condenser from Theorem 11.4 when applied with these
parameters. Set δ = r−0.6.

The construction. On input x1, x2, x3 ∈ {0, 1}n, for each i ∈ [r] we define

f(x1, x2, x3)i = Cond(x1, i)⊕ Cond(x2, i)⊕ Cond(x3, i),

where we identify [r] with {0, 1}d (and so we think of i as a seed for Cond).

Analysis. Let X1, X2, X3 be independent (n, k)-sources. Let j ∈ [3]. By Theorem 11.4 and
by Lemma 11.5, there exists a set Bj ⊂ [r], of size |Bj| ≤ δr = r0.4 such that for any i 6∈ Bj

it holds that Cond(Xj, i) is (2ε/δ)-close to having min-entropy k−d− log(2/δ) ≥ k/2, where
the last inequality follows by taking k to be larger than a large enough constant multiple of
log n. One can verify that by our choice of parameters 2ε/δ < r−0.35. Thus, for any i 6∈ Bj

it holds that Cond(Xj, i) is r−0.35-close to having min-entropy rate k/(2`) ≥ 1/300.
Set B = B1 ∪ B2 ∪ B3, and note that |B| ≤ 3r0.4. By Lemma 11.6, for each i 6∈ B, we

have that f(X1, X2, X3)i is (r−0.35)3 = r−1.05-close to having min-entropy rate 1/300. Thus,
by Lemma 11.7, applied one by one to all rows in [r] \ B, it holds that f(X1, X2, X3) is
r · r−1.05 = r−0.05-close to a random variable M in the form of an r × ` matrix such that for
any i 6∈ B it holds that Mi has min-entropy rate 1/300. This concludes the proof.

For the proof of Theorem 2.2 we make use of the following lemmas.

Lemma 11.9 ([Vio14]). Let Y1, . . . , Yr be a sequence of {0, 1} random variables. Let α > 0
be some constant. Assume that there exists B ⊆ [r], with |B| ≤ r1/2−α, such that the random
variables {Yi | i ∈ [r] \B} are t-wise independent and uniform. Then,

bias (Majority(Y1, . . . , Yr)) = O

(
log t√
t

+ r−α
)
. (11.1)

Lemma 11.10 ([AGM03]). Let X1, . . . , Xn be {0, 1} random variables. Assume that for any
∅ 6= I ⊆ [n], with size |I| ≤ t, the joint distribution of {Xi}i∈I is ε-close to uniform. Then,
X1, . . . , Xn is (nt · ε)-close to a t-wise independent distribution.
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Theorem 11.11 ([Raz05, BKS+05, Zuc07]). For every constant δ > 0, there exists an
efficiently-computable function Cond : {0, 1}n → {0, 1}r×`, with r = O(1) and ` = Θ(n) such
that the following holds. If X is an (n, δn)-source, then Cond(X) is 2−Ω(n)-close to a convex
combination of distributions, each of which has some row with min-entropy rate 0.9.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. For a large enough constant c to be fixed later on, set ` = log n ·
c
√

log logn. For the construction of 5Ext we make use of the following building blocks.

Building blocks.

• Let f : ({0, 1}n)3 → {0, 1}r×` be the function that is given by Lemma 11.8. Recall that
by Lemma 11.8, r = poly(n).

• Let Cond : {0, 1}` → {0, 1}r′×`′ be the somewhere-condenser that is given by Theo-
rem 11.11 set with δ = 1/300. By Theorem 11.11, r′ = O(1) and `′ = Θ(`).

• Set `′′ = (c′Raz/2) · `′. Let Raz : {0, 1}n×{0, 1}`′ → {0, 1}`′′ be the (2`′′, r−2)-extractors
with weak-seeds that is given by Theorem 5.7. Note that by our choice of `′′, such an
explicit extractor does indeed exist.

• Let t ≥ 1 be a constant whose value we choose later on. Set a = log(rr′) and let
AdvCB : {0, 1}n×{0, 1}`′′ ×{0, 1}a → {0, 1} be the (k, ε) (tr′)-correlation breaker with
advice that is given by Theorem 11.2 set with error guarantee ε = r−(t+1). Note that
by setting the constant c in the definition of ` to be large enough, `′′ is large enough
as required by Theorem 11.2.

The construction. On input x1, . . . , x5 ∈ {0, 1}n, we define 5Ext(x1, . . . , x5) as follows:

1. Let m be the r × ` matrix whose i’th row is given by mi = f(x1, x2, x3)i.

2. For each i ∈ [r] define the r′ × `′ matrix mi = Cond(mi).

3. For each i ∈ [r] define the r′ × `′′ matrix (m′)i whose j’th row is given by (m′)ij =
Raz(x4,m

i
j).

4. For each i ∈ [r] let vi ∈ {0, 1}r′ be the vector whose j’th entry is defined as (vi)j =
AdvCB(x5, (m

′)ij, (i, j)), where we think of (i, j) as a log(rr′)-bit string.

5. For each i ∈ [r] define yi = ⊕r′j=1(vi)j.

6. Finally, we define 5Ext(x1, . . . , x5) = Majority(y1, . . . , yr).
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Analysis. Let X1, . . . , X5 be independent (n, k)-sources, with k = c′′`, where c′′ is some
large enough constant. By Lemma 11.8, which is applicable by our assumption on k, there
exists a set B ⊆ [r], of size |B| ≤ 3r0.4 and a random variable M in the form of an r × `
matrix, such that

• f(X1, X2, X3) is r−0.05-close to M .

• For any i 6∈ B, the random variable Mi has min-entropy rate 1/300.

From here on we assume that f(X1, X2, X3) itself has the second the property above,
namely, for any i 6∈ B, the random variable f(X1, X2, X3)i has min-entropy rate 1/300. We
do so for the ease of reading, and aggregate the negligible expression r−0.05 to the total error.

For i ∈ [r], let M i = Cond(f(X1, X2, X3)i). Fix i ∈ [r] \ B. By Theorem 11.11, M i is
2−Ω(`)-close to a convex combination of distributions over r′× `′ matrices, each of which has
some row with min-entropy rate 0.9. For ease of reading, we make the simplifying assumption
that there exists g(i) ∈ [r′] such that (M i)g(i) is 2−Ω(`)-close to a having min-entropy rate
0.9. A more formal treatment would require as to introduce cumbersome notation for the
different summands of the convex combination, which we prefer to avoid.

By Lemma 11.7 applied repeatedly to all i ∈ [r]\B, the sequence of matrices M1, . . . ,M r

is (r · 2−Ω(`))-close to a second sequence of matrices M̄1, . . . , M̄ r such that for any i ∈ [r] \B
it holds that (M̄ i)g(i) has min-entropy rate 0.9. To avoid introducing further notations, we
abuse notation and identify M i with M̄ i. This simplifying assumption can be made at the
cost of aggregating r · 2−Ω(`) = o(1) to the total error.

For i ∈ [r] and j ∈ [r′], let (M ′)ij = Raz(X4,M
i
j). Let i ∈ [r] \ B. As M i

g(i) has min-

entropy rate 0.9 and since H∞(X4) = k ≥ 2`′′, Theorem 5.7 implies that for any i ∈ [r] \ B
it holds that (M ′)ig(i) ≈r−2 U. Thus, by Lemma 11.7, up to a negligible error of r−1 which we

aggregate, we have that for all i ∈ [r] \B it holds that (M ′)ig(i) is uniform.

For i ∈ [r] and j ∈ [r′], let (V i)j = AdvCB(X5, (M
′)ij, (i, j)). By Theorem 11.2 and as

AdvCB is a (tr′)-correlation breaker with advice set with error guarantee r−(t+1), we have
that for all 1 ≤ v ≤ t and for any distinct i1, . . . , iv ∈ [r] \B,(

(V i1)g(i1), . . . , (V
iv)g(iv),

{
(V i1)j

}
j∈[r′]\g(i1)

, . . . ,
{

(V iv)j
}
j∈[r′]\g(iv)

)
≈O(r−(t+1))(

Uv,
{

(V i1)j
}
j∈[r′]\g(i1)

, . . . ,
{

(V iv)j
}
j∈[r′]\g(iv)

)
.

Hence,
(Yi1 , . . . , Yiv) ≈O(r−(t+1)) U.

Therefore, by Lemma 11.10, the sequence of random variables {Yi}i∈[r]\B is O(r−1)-close to a
sequence of uniform and t-wise independent random variables. As |B| ≤ 3r0.4, Lemma 11.9
completes the proof.
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12 Non-Malleable Extractors

In this section we prove the following theorem which readily implies Theorem 2.4. As men-
tioned, the proof follows by plugging-in our correlation breaker with advice, that is given by
Theorem 2.1, to the [CGL15] framework for constructing non-malleable extractors applied
together with the “switch” idea [Coh15b]. The theorem is stated with extractors that have
k/4 output bits. This can be easily improved to k/(2 + α) for any constant α > 0.

Theorem 12.1. There exist constants c, c′ ≥ 1 such that the following holds. For any integer
n and for any ε > 0, there exists an efficiently-computable (k, ε)-non-malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}k/4 with seed length d = c log n+ log(1/ε) · c
√

log log(1/ε) for
any k ≥ c′d.

Proof. Let cGUV, cRaz be the constants that are given by Theorem 5.6 and Theorem 5.7,
respectively. Set

d1 = cGUV · log(n/ε),

d2 = max (10d1, cRaz · log(n/ε)) .

For a d-bit string y, let y1 denote the length d1 prefix of y. Similarly, let y2 denote the
length d2 prefix of y. We further assume that d ≥ 10d2. Note that this assumption can be
met by taking the constant c large enough with respect to the constants cGUV, cRaz. For the
construction of nmExt we make use of the following building blocks.

Building blocks.

• Let q be the least even prime power of 2 that is larger or equal than 5/ε2. Note that
q ≤ 20/ε2. Let r be the least integer such that qr ≥ d. We identify [d] with an arbitrary
subset of Frq. Set v = 2r/ε and let ECC : Frq → Fvq be the error correcting code that
is given by Theorem 5.10, set with relative distance δ = 1 − ε. By Theorem 5.10,
an explicit code with these parameters (namely, relative distance 1− ε, rate 2/ε, and
alphabet size q ≤ 20/ε2) exists.

• Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}log v be the (2 log v, ε)-strong seeded extractor that
is given by Theorem 5.6. Note that d1 was defined to be of sufficient length so as to
be used as a seed for Ext. We identify the output of Ext as an element of [v].

• Let 0 < α < 1 be a constant whose value we set later on. Let Raz : {0, 1}n×{0, 1}d2 →
{0, 1}αd be the (2αd, ε)-extractor with weak-seeds that is given by Theorem 5.7. Note
that d2 was chosen large enough as required by Theorem 5.7.

• Set a = d1 + log q. Let AdvCB : {0, 1}d × {0, 1}αd × {0, 1}a → {0, 1}d1 be the (k, ε)-
correlation breaker with advice that is given by Theorem 2.1.

• Let Ext′ : {0, 1}n × {0, 1}d1 → {0, 1}k/4 be the (k/2, ε)-strong seeded extractor that is
given by Theorem 5.6. Note that d1 is large enough as required by Theorem 5.6.
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The construction. On input x ∈ {0, 1}n, y ∈ {0, 1}d, we define nmExt(x, y) as follows.
First we compute the function

AdvGen(x, y) = y1 ◦ ECC(y)Ext(x,y1).

In the expression above, by ECC(y)Ext(x,y1) we mean the following – we interpret the output
of Ext as an index i ∈ [v] of the codeword ECC(y). Then, ECC(y)i refers to the content in
that i’th entry interpreted as a (log q)-bit string. Define

z = AdvCB (y,Raz(x, y2),AdvGen(x, y)) .

Finally, we define
nmExt(x, y) = Ext′(x, z).

Analysis. Let X be an (n, k)-source, let Y be a random variable that is uniformly dis-
tributed over d-bit strings, independently of X, and let A : {0, 1}d → {0, 1}d be a function
with no fixed points. Denote y′ = A(y). We start by proving the following claim.

Claim 12.2.
Pr

(x,y)∼(X,Y )
[AdvGen(x, y) = AdvGen(x, y′)] = O(

√
ε).

Proof. As Ext is a (k, ε)-strong seeded extractor,

(Ext(X, Y1), Y1) ≈ε (U, Y1) .

Conditioned on any fixing of Y1, the random variables X, Y ′1 are independent. Thus, by
Lemma 5.1,

(Ext(X, Y1), Y ′1 , Y1) ≈ε (U, Y ′1 , Y1) .

Therefore, by Markov’s inequality, except with probability
√
ε over the fixings of (y1, y

′
1) ∼

(Y1, Y
′

1), it holds that
Ext(X, y1) ≈√ε U. (12.1)

By aggregating an error of
√
ε to the total error, we condition on the event (Y1, Y

′
1) = (y1, y

′
1)

for which Equation (12.1) holds.
Observe that whenever y1 6= y′1, it holds that AdvGen(X, Y ) 6= AdvGen(X, Y ′), and so,

to bound the probability that AdvGen(X, Y ) = AdvGen(X, Y ′), we only need to consider the
case y1 = y′1.

Recall that Y 6= Y ′ and so, as ECC has relative distance δ = 1 − ε, the codewords
ECC(Y ),ECC(Y ′) ∈ Fvq agree on at most ε fraction of the coordinates. Let

I = {i ∈ [v] | ECC(Y )i = ECC(Y ′)i}

be the random variable that consists of all indices on which the two codewords agree. By the
above, |I| ≤ εv. As Ext(X, y1) is

√
ε-close to uniform and since Ext(X, y1) is independent of

I (as I is a deterministic function of Y ), we have that

Pr
X,Y

[Ext(X, y1) ∈ I] ≤ ε.
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We can now conclude the proof of the claim by taking back into account the event that y1

is not a good seed for X.

By Lemma 5.2, by our choice of parameters, and as ECC has alphabet size q,

H̃∞ (Y2 | AdvGen(X, Y ),AdvGen(X, Y ′)) ≥ d2 − 2(d1 + log q) ≥ 0.6d2.

Further,

H̃∞ (X | AdvGen(X, Y ),AdvGen(X, Y ′)) ≥ k − 2 log v

≥ max (2d, c′Razd2) + log(1/ε),

where the last inequality holds for a large enough constant c′.
Observe that one can condition on the fixings of AdvGen(X, Y ), AdvGen(X, Y ′) while

maintaining the independence between X and Y . Indeed, after conditioning on Y1, Y
′

1 , the
random variables Ext(X, Y1), Ext(X, Y ′1) are deterministic functions of X, and so one can
further condition on these random variables without introducing dependencies between X
and Y . Conditioned on Y1, Y ′1 , Ext(X, Y1), Ext(X, Y ′1), the random variables AdvGen(X, Y ),
AdvGen(X, Y ′) are deterministic functions of Y , and so condition on these variables does not
introduce dependencies between X, Y .

By the above, we can apply Theorem 5.7 and conclude that

(Raz(X, Y2), Y2,AdvGen(X, Y ),AdvGen(X, Y ′)) ≈O(ε) (U, Y2,AdvGen(X, Y ),AdvGen(X, Y ′)) .

By Lemma 5.1, and since Raz(X, Y2) is independent of Y ′2 when conditioned on any fixing of
Y2, AdvGen(X, Y ), AdvGen(X, Y ′), we have that

(Raz(X, Y2),H) ≈O(ε) (U,H) ,

where H = Y ′2 , Y2,AdvGen(X, Y ),AdvGen(X, Y ′).
By Lemma 5.2,

H̃∞ (Y | H) ≥ d− 2(d2 + log q) ≥ d/2.

By applying Lemma 5.3, we have that except with probability O(
√
ε) over the fixing of

H, the following holds.

• The joint distribution of Raz(X, Y2) and Raz(X, Y ′2) is independent of the joint distri-
bution of Y, Y ′.

• Raz(X, Y2) is O(
√
ε)-close to uniform.

• By setting the constant α to be small enough, d/2 is sufficient min-entropy as required
by Theorem 2.1.

• AdvGen(X, Y ) and AdvGen(X, Y ′) are distinct, fixed, strings.
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Thus, we can apply Theorem 2.1 to conclude that

(Z,H′) ≈O(
√
ε) (U,H′) ,

where

Z = AdvCB(Y,Raz(X, Y2),AdvGen(X, Y )),

Z ′ = AdvCB(Y ′,Raz(X, Y ′2),AdvGen(X, Y ′)),

H′ = Z ′,Raz(X, Y2),Raz(X, Y ′2),H.

Note that conditioned on the fixing of H′, the random variables Z and Ext′(X,Z ′) are
independent. Thus, by Lemma 5.1,

(Z,Ext′(X,Z ′),H′) ≈O(
√
ε) (U,Ext′(X,Z ′),H′) .

By Lemma 5.2 and since Ext′ has k/4 output bits,

H̃∞(X | Ext′(X,Z ′),H′) ≥ k − k/4− 2(d+ log v) ≥ k/2 + log(1/ε).

Thus, by Lemma 5.8,

(Ext′(X,Z), Z,Ext′(X,Z ′),H′) ≈O(
√
ε) (U,Z,Ext′(X,Z ′),H′) .

By the definition of nmExt and since conditioned on Z, Ext′(X,Z ′), H′, the random variable
Ext′(X,Z) is independent of Y , we have that

(nmExt(X, Y ), nmExt(X, Y ′), Y ) ≈O(
√
ε) (U, nmExt(X, Y ′), Y ) ,

as desired.
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A Multi-Source and Non-Malleable Extractors From

the Literature

In the following tables we give a summary of explicit non-malleable extractors and multi-
source from the literature as well as our contribution. For the sake of readability, whenever
possible, the supported min-entropy is written accurately only up to multiplicative constant
factors. Further, information concerning the number of output bits is omitted. We further
omit the dependence on the error guarantee from the table regarding multi-source extractors.
Any appearance of δ should be considered with a universal quantifier. Unless otherwise
stated, δ must be taken as a constant. Any appearance of β is meant under an existential
quantifier.
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Construction Min-entropy Number of sources Comments

[CG88] (1/2 + δ)n 2

[CG88] o(n) 2 conditional

[BIW06] δn poly(1/δ)

[BKS+05] o(n) 3

[Bou05] (0.5− β)n 2

[Raz05] (0.5 + δ)n, log n 2

[Raz05, Rao09] δn, log n, log n 3

[Rao09, BRSW12] max (k, (log n)10) O (log n/ log k)

[BSZ11] 0.4n 2 conditional

[Li11a] n0.5+δ 3

[Li13b] max (k, (log n)4) O (log (log n/ log k))

[Li13a] (log n)2+δ O(1/δ) +O(1)

[Li15b] (log n)2+δ d14/δe+ 2

[Li15b] (log n)12 3

[Coh15a] (log n)7 3

[Coh15a] δn, log n, log log n 3

[CZ15] (log n)74 2

[Li15a] polylog n 2

[Mek15] (log n)10 2

[CS16] (log n)1+δ 2/δ +O(1) δ may depend on n

[CL16] log n · 2O(
√

log logn) O(1) independent work

Theorem 2.2 log n · 2O(
√

log logn) 5

Optimal log n+O(1) 2

Table 1: Explicit constructions of multi-source extractors from the literature.
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Construction Seed length d
Supported en-
tropy

[DW09] (non-constructive) log(n) +O(1) Ω(log log n)

[LWZ11] n (0.5 + δ) · n

[CRS14, DLWZ14, Li12a] log(n/ε) (0.5 + δ) · n

[Li12c] log(n/ε) (0.5− β) · n

[CGL15] log2(n/ε) Ω(d)

[Coh15b] log(n/ε) · log(log(n)/ε) Ω(d)

[Coh16] log n+ log3(1/ε) Ω(d)

[CL16] (log(n/ε))1+o(1) Ω(d)

Theorem 2.4 log n+ (log(1/ε))1+o(1) Ω(d)

Table 2: Explicit constructions of non-malleable extractors from the literature.
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