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Abstract

Fine-grained reductions, introduced by Vassilevska-Williams and Williams, preserve any
improvement in the known algorithms. These have been used very successfully in relating
the exact complexities of a wide range of problems, from NP-complete problems like SAT to
important quadratic time solvable problems within P such as Edit Distance. However, until now,
there have been few equivalences between problems and in particular, no problems that were
complete for natural classes under fine-grained reductions. We give the first such completeness
results. We consider the class of first-order graph property problems, viewing the input in
adjacency list format (aka “sparse graph representation”). For this class, we show that the
sparse Orthogonal Vectors problem is complete under randomized fine-grained reductions. In
proving completeness for this problem, we also show that this sparse problem is equivalent to the
standard Orthogonal Vectors problem when the number of dimensions is polynomially related
to the number of vectors. Finally, we also establish a completeness and hardness result for
k-Orthogonal Vectors.

Our results imply that the conjecture “not every first-order graph problem has an improved
algorithm” is a useful intermediary between SETH and the conjectured hardness of problems
such as Edit Distance. It follows that, if Edit Distance has a substantially subquadratic algo-
rithm, then every first order graph problem has an improved algorithm. On the other hand,
if first order graph property problems have improved algorithms, this falsifies SETH (and even
some weaker versions of SETH) and gives new circuit lower bounds. We hope that this is the be-
ginning of extending fine-grained complexity to include classes of problems as well as individual
problems.
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1 Introduction

Most of computational complexity has been aimed at making rather coarse distinctions between
problems, separating those that are very expensive in terms of time or other resources from those
that are moderate in cost. For example, in traditional complexity we distinguish between problems
that are NP-hard, and so likely require exponential time, from those solvable in P. In contrast,
“fine-grained complexity” aims at making finer distinctions between problems based on more exact
quantitative evaluations of the required resources, such as distinguishing problems requiring O(n3)
time from those solvable in O(n2) time. While fine-grained complexity is not a new idea (for a
variety of approaches see e.g., [SHI90, GO95, DF92, NRS95, JS99, IPZ98], progress in recent years
has been extremely rapid and impressive.

However, as the field has grown, it has become much more complex. Underlying progress
are many conjectures concerning a vast variety of computational problems, such as ETH [IPZ98],
SETH [IP99], the 3-SUM Conjecture [GO95], the Orthogonal Vectors Conjecture [Wil05], the APSP
Conjecture [WW10], the Hitting Set Conjecture [AWW15], and conjectures about various versions
of matrix multiplication (e.g., [HKNS15]). Unlike for coarse-grained complexity, where P 6= NP
is widely believed, there is no consensus about the truth or falsity of these conjectures. While
each conjecture definitely represents an algorithmic challenge that has withstood much attention
from algorithm designers, is is still very possible that several of the conjectures are false and will
eventually fall to improved algorithm techniques. For example, many researchers in the area have
stated their belief that SETH is in fact false, and have worked on disproving it.

As such conjectures proliferate, it becomes more difficult to discern how believable each conjec-
ture is. There are three types of evidence that have been given for the various conjectures:

1. The amount of effort that has been put into (unsuccessfully) attempting to discover improved
algorithms for the problem in question.

2. That the negation of the conjecture would have interesting complexity-theoretic consequences.
3. That the conjecture in question follows from other, more established, conjectures.
We feel the first two types of evidence are unreliable. The literature is full of unexpected algo-

rithmic breakthroughs on well-studied problems (e.g., Babai’s recent graph isomorphism algorithm).
The main complexity-theoretic consequences of the failure of these hypotheses is to establish cir-
cuit lower bounds within NEXP or a similar class [Wil13, JMV15]. While the possibility of proving
such a circuit lower bound via an improved algorithm makes such an algorithm more desirable, it
doesn’t actually argue for the impossibility of such algorithms, since the circuit bounds in question
are almost certainly true. This leaves exploring implications between the various conjectures to tell
which are the most likely.

The good news is that many such implications are known. The bad news is that there are
relatively few equivalences ([WW10] being an exception), and the known implications seem to
make the picture more complex rather than less. (In fact, [CGI+16] presents a technical obstacle
that often prevents proofs of such equivalences by direct reductions.)

Looking back at traditional complexity for guidance, we could hope to organize the problems
that are the object of these conjectures into classes and identify complete problems for some of
these classes. In this paper, we take a first step towards such a classification. However, the fine-
grained world seems to be quite different from that for traditional complexity classes. Traditional
complexity classes are typically defined in terms of models of computation and budgets of allowable
resources, such as time, memory, non-determinism, randomness or parallelism. Complete problems
then capture what is solvable in these models with limited resources available.

This is really useful in unifying two goals of complexity: a problem-centric goal of identifying the
resources required to solve particular problems, and a resource-centric goal of deciding relationships
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Figure 1: A diagram of reductions. We simplify this picture, and make the reductions to Edit Distance,
LCS, etc. more meaningful. (The “other problems” are problems given in [BCH14]. Many of them are also
first-order graph properties.)

between the computational power of different models of computation with different resource bounds.
If problem Π is complete for the class of problems CM,R solvable in model M with resource limit R,
then Π is solvable in model M ′ with resource limit R′ if and only if CM,R is contained in CM ′,R′ .
Unfortunately, a resource-centric taxonomy seems to be inadequate for fine-grained complexity.
Some of the strongest results are obtained by reducing very hard problems (such as SAT, an
NP-complete problem) to problems solvable in very low-level complexity classes (such as the AC0-
computable Orthogonal Vectors problem that we will be considering). This is possible because
the reductions increase the size of the problems substantially, but is counter-intuitive and makes
divisions of conjectures into classes based on resources and model strength difficult. In principle, we
could argue that, e.g., a problem is complete under linear-time reductions for the class defined by a
larger polynomial-time bound and evoke the Time-Hierarchy Theorem to prove a strong polynomial
lower bound on its complexity. However, this does not seem to be the case for any of the natural
problems that have arisen so far.

Instead, we here look to descriptive complexity as opposed to resource-oriented complexity, and
consider classes defined in terms of the logical form of the problems to be solved. In particular,
we consider the class of all first-order graph properties, a rich but structured class of problems.
As shown in Figure 1, we identify several complete problems for this class (under randomized
fine-grained reductions defined in Section 2.1). In fact, these problems are equivalent to a version
of the previously studied Orthogonal Vectors problem. It follows from standard arguments that
these complete problems are intermediates between SETH and many of the hardness results proved
assuming SETH, such as near-quadratic hardness for Edit Distance [BI15], Fréchet Distance [Bri14],
LCS and Dynamic Time Warping [ABW15, BK15], and Succinct Stable Matching [MPS15]. Thus,
if say Edit Distance were solvable in substantially subquadratic time, not only would an improved
algorithm follow for SAT, but improved algorithms would follow for every problem in a broad,
natural class of graph problems. (And also we would get circuit lower bounds by [Wil13, JMV15].)
This seems to us strong evidence in believing that algorithms for these problems cannot be improved.
(Our results are similar in spirit but incomparable to those of [AHWW15] , who give implications
to stronger forms of SAT algorithms.) Our completeness result also simplifies the tree structure of
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reductions between many SETH-hard problems given in [BCH14].
In addition to having a very natural and useful complete problem, the class we analyse, first-

order graph property problems, is important in itself. While we call the class “graph problems”,
our class can model any property that involves any types of binary and unary relations, such
as set families with the element relation. In this way, this class includes many of the problems
considered previously in the fine-grained complexity literature, such as Hitting Set, Orthogonal
Vectors, Sperner Family, Diameter 2, Radius 2, k-Independent Set, k-Dominating Set and so on.
(Unfortunately, it does not include numerical problems such as k-SUM.) Secondly, this class has
been very well-studied in both the complexity and combinatorics literature. For example, the
first zero-one law for random graphs was proved for first-order graph properties on finite models
([Fag76]), and Ajtai’s lower bound for AC0 [Ajt83] (proved independently by Furst, Saxe, and Sipser
([FSS84])) was motivated and stated as a result about inexpressibility in first-order logic. First-
order properties are also widely used as the uniform version of AC0 in the complexity literature.
Finally, algorithms for model-checking first-order properties are very important to query evaluation
in databases. The core of the fundamental relational database language SQL is equivalent to first-
order properties. So understanding the limits of the best possible algorithms for various types of
first-order properties illuminates the worst-case performance of any database system in evaluating
these queries. (There are some differences between our setting and the typical database setting.
Query evaluation processes are not allowed to use arbitrary algorithms, only those representable
as series of queries. Also, while many database systems convert higher arity relations to binary
relations as a first step, doing so changes the quantifier structure of the query, so our results are
not directly applicable to queries with higher arity relations.)

In fine-grained complexity, since we are talking about exact complexities, problem representation
is significant. For graph problems, there are two standard representations: adjacency lists (which
are a good fit for sparse graphs) and adjacency matrices (good for dense graphs). The main
difference between the two is whether we perform the analysis in terms of the number of edges
m or the number of vertices n. For several reasons, we study the adjacency list, or sparse graph,
representation. First, many of the problems considered such as Orthogonal Vectors have hard
instances that are sparse. Secondly, the complexity of problems in the dense model is somewhat
unclear, at least for numbers of quantifiers between 3 and 7 ([Wil14]). Third, the sparse model is
more relevant for model checking, since the input to database problems is given as a list of tuples.s

We also build on recent work by Ryan Williams looking at the dense case of first-order graph
properties [Wil14] and of Abboud et al. [AWW15] which reduces the Hitting Set problem to the
Orthogonal Vectors problem.

1.1 Orthogonal Vectors, and conjectures

The Orthogonal Vectors problem (OV) gives a set A of n Boolean vectors of dimension d, and
decides if there exist vectors u, v ∈ A such that u and v are orthogonal, i.e., u[i] · v[i] = 0 for all
indices i ∈ {1, . . . , d}. Another equivalent version is to decide in two sets A and B of Boolean
vectors, each of size n, whether there exist u ∈ A and v ∈ B so that u and v are orthogonal. A
näıve algorithm for OV runs in time O(n2d), and the best algorithm runs in O(n2−Ω(1/ log(d/ logn)))
[AWY15].

The popular hardness conjectures on OV usually specify dimension d to be between ω(log n)
and no(1), so we call them low-dimension OVC. In contrast to the dense model of OV defined above,
where the vectors are given explicitly (thus analogous to the adjacency matrix representation of
graphs), this paper introduces a sparse version of OV, where the input is a list of vector-index pairs
(v, i) for each v[i] = 1 (which corresponds to the adjacency list representation of graphs). In sparse
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OV, the length of input equals the sum of Hamming weight over all vectors. Here we do not restrict
the dimension d of vectors. So we call this problem “sparse high-dimension OV”, or “sparse OV”
for short.

Based on the size of d, we give three versions of Orthogonal Vector Conjectures. In all three
conjectures the complexity is measured in the word RAM model with O(log n) bit words.

Low-dimension OVC (LDOVC): ∀ε > 0, there is no O(n2−ε) time randomized algorithm for
OV with dimension d = ω(log n).

Moderate-dimension OVC (MDOVC): ∀ε > 0, there is no O(n2−εpoly(d)) time randomized
algorithm that solves OV with dimension d. (Although dimension d is not restricted, we call
it “moderate dimension” because such an algorithm only improves on the naive algorithm if
d = nO(ε).)

Sparse high-dimension OVC (SHDOVC): ∀ε > 0, there is no O(m2−ε) time randomized al-
gorithm for sparse OV where m is the total Hamming weight of all the input vectors.

SETH implies LDOVC [Wil05]. Because MDOVC is an extension of LDOVC, it can be implied
from the latter. Like LDOVC, MDOVC can also imply the hardness of problems including Edit
Distance, LCS, etc. In this paper we will further show MDOVC and SHDOVC are equivalent.

OV can be extended to the k-OV problem for any integer k ≥ 2, that gives k sets A1, . . . , Ak
of Boolean vectors, and asks if there exist k different vectors v1 ∈ A1, . . . , vk ∈ Ak so that for all
indices i,

∏k
j=1 vj [i] = 0. We also introduce a sparse version of k-OV similar to sparse OV, where

all the ones in the vectors are given in a list. In first-order logic, the sparse k-OV problem can be

expressed by (∃v1 ∈ A1) . . . (∃vk ∈ Ak)(∀i)
[∨k

j=1 ¬(vj [i] = 1)
]
.

1.2 First-order graph property problems

The problem of deciding whether a structure satisfies a logical formula is called the model check-
ing problem. It is well-studied in finite model theory. In relational databases, first-order model
checking plays an important role, because first-order queries capture the expressibility of relational
algebra. In contrast to the combined complexity, where the database and query are both given as
input, the data complexity studies the running time when the query is fixed. The combined com-
plexity of first-order queries is PSPACE-complete, but the data complexity is in LOGSPACE [Var82].
Moreover, these problems are also major topics in parameterized complexity theory. [FG06] orga-
nizes parameterized first-order model checking problems (many of which are graph problems) into
hierarchical classes based on their quantifier structures. Our work will study the model checking
problems in a more fine-grained manner.

A graph can be considered as a logical structure with only unary and binary predicates. A
first-order graph property problem is to decide whether an input graph satisfies a fixed first-order
formula with only unary and binary predicates and no free variables. So it is a special type of
model checking problem. Below we list some examples.

• Many classical graph problems are first-order expressible, including1:

1. Graph Diameter-2: (∀x1)(∀x2)(∃x3) [E(x1, x3) ∧ E(x3, x2)]
2. Graph Radius-2: (∃x1)(∀x2)(∃x3) [E(x1, x3) ∧ E(x3, x2)]

3. k-Clique: (∃x1) . . . (∃xk)
[∧

i,j∈{1,...,k},i 6=j E(xi, xj)
]
. More generally, for a fixed graph H

of k vertices, deciding if H is a subgraph or induced subgraph of the input graph G
(e.g., the k-Independent Set problem) can be expressed in a similar way.

1Diameter-2 and radius-2 are not “artificial”: easy approximation algorithms for these problems would respectively
refute the OV Conjecture and the Hitting Set Conjecture [AWW15].

4



4. k-Dominating Set: (∃x1) . . . (∃xk)(∀xk+1)
[∨k

i=1E(xi, xk+1)
]
.

• Many non-graph problems defined by first-order formulas with only unary and binary relations
can also be considered as graph problems. OV and k-OV, of course, are examples of these
problems. If we consider the relation “∈” as a binary predicate, we also have:

1. The Hitting Set problem, where all the sets are given explicitly in a set family S: (∃H ∈
S)(∀S ∈ S)(∃x) [(x ∈ H) ∧ (x ∈ S)]. (Other versions of Hitting Set where the sets are
not given explicitly, are second-order logic problems. Our definition here is consistent
with the version in the Hitting Set Conjecture.)

2. The k-Set Packing problem, where all the sets are given explicitly in a set family S:

(∃S1 ∈ S) . . . (∃Sk ∈ S)(∀x)
[∨k

i=1

(
(x ∈ Si)→

∧
j 6=i(x /∈ Sj)

)]
.

3. k-Empty Intersection, k-Set Cover, Set Containment and Sperner Family, defined in
Section 2.2.

Let ϕ be a first-order sentence containing only unary and binary predicates. Assume ϕ is in
prenex normal form with (k + 1) ≥ 3 distinct quantified variables and no free variables, i.e., ϕ =
(Q1x1) . . . (Qk+1xk+1)ψ(x1, . . . , xk+1), in which Qi ∈ {∃, ∀}, and ψ is quantifier-free. A first-order
graph property problem (which is a model checking problem) denoted by MCϕ, is to decide whether
an input graph G = (V,E) satisfies ϕ (i.e., whether G |= ϕ), where x1, . . . , xk+1 ∈ V . Each binary
predicate R in ϕ corresponds to a subset ER of edges, such that R(xi, xj) = true iff (xi, xj) ∈ ER.
Each unary relation in ϕ can also be considered as a set of arity-one edges (or self-loops). So for
simplicity we refer to both unary and binary relations as “edges”. The input graph G is given by a
list of all unary and binary edges. Let n be the total number of vertices, and m be the number of
edges in G. We assume that m ≥ n and that every vertex is in an edge. So the input length is m,
and thus we can replace n with m in all complexity upper bounds. We also assume m = n1+o(1)

(the graph is always sparse). This assumption is without loss of generality, by the argument in
Section 3.1.

We use MC(k) for the class of graph property problems MCϕ where ϕ has k quantifiers (thus
k variables, since ϕ is in prenex normal form). We also use the notations of form MC(Q1 . . . Qk+1)
to represent the class of problems MCϕ where ϕ = (Q1x1) . . . (Qk+1xk+1) ψ(x1, . . . , xk+1). Besides,
we will use ∃c and ∀c to represent c consecutive quantifiers. For example, MC(∃k∀) = {MCϕ | ϕ =
(∃x1) . . . (∃xk)(∀xk+1)ψ(x1, . . . , xk+1)}.

An obvious fact is that MCϕ and MC¬ϕ are reducible to each other, by negating the answer.
Finally we state a conjecture on the hardness of the first-order graph property problems. Again

we measure the complexity in the word RAM model with O(log n) bit words.

First-order graph property conjecture (FOC): There is some integer k ≥ 2, so that ∀ε > 0,
some problem in MC(k + 1) cannot be solved by any randomized algorithm in O(mk−ε) time.

1.3 Main Results

First, we show that conjectures for OV defined on dense and sparse models are equivalent under
randomized reductions, which means MDOVC is true iff SHDOVC is true. (The lemma is implied
by Lemma 4.2 in Section 4.1.)

Lemma 1.1. For any integer k ≥ 2, there exist δ, ε > 0 and an O(nk−ε) time randomized algorithm
solving k-OV with dimension d = nδ, if and only if there is some ε′ > 0 and an O(mk−ε′) time
randomized algorithm solving sparse k-OV with m being the total Hamming weight of all the input
vectors.
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Our main result establishes an equivalence of MDOVC and FOC, showing the completeness of
sparse OV, and hardness of dense OV, for the class of first-order graph property problems.

Theorem 1. The following two propositions are equivalent:

(A) There exist δ, ε > 0 so that OV of dimension d = nδ can be solved in randomized time O(n2−ε).
(i.e., MDOVC is false)

(B) For any integer k ≥ 2, for any first-order property L with unary and binary relations expressible
with k + 1 quantifiers in prenex normal form, there exists ε > 0 so that L can be decided in
randomized time O(mk−ε). (i.e., FOC is false)

Besides, this paper will also prove a hardness and completeness result for k-OV, connecting
one combinatorial problem to a large and natural class of logical problems. Using the notion of
fine-grained reductions, the following theorem indicates that sparse k-OV (and therefore also dense
k-OV) is complete for MC(∃k∀) (and its negation form MC(∀k∃)), and hard for MC(∀∃k−1∀) (and
its negation form MC(∃∀k−1∃)) under randomized fine-grained reductions.

Theorem 2. If sparse k-OV with total Hamming weight m can be solved in randomized O(mk−ε)
time for some ε > 0, then all the problems in MC(∃k∀), MC(∀k∃), MC(∀∃k−1∀) and MC(∃∀k−1∃)
are solvable in randomized time O(mk−ε′) for some ε′ > 0.

MC(∃k∀) and MC(∀k∃) are interesting sub-classes of MC(k + 1): If Nondeterministic SETH
is true, then all the SETH-hard problems in MC(k + 1) are contained in MC(∃k∀) or MC(∀k∃)
([CGI+16]).

We will also show that the 2-Set Cover problem and the Sperner Family problem, both in
MC(∃∃∀), are equivalent to sparse OV under randomized reductions, and thus hard for first-order
graph property problems.

1.4 Organization of this paper

In Section 2, we define the fine-grained reductions, and present the high-level ideas for techniques
of reducing from a first-order graph property problem to OV. Section 3 outlines the proofs for
Theorem 1 and Theorem 2. We present the reduction from MC(∃k∀) to k-OV in Section 4. And
then we present the reduction from MC(∀∃k−1∀) to k-OV in Section 5. Finally in Section 6 we talk
about open problems. Appendix A gives a baseline algorithm for MC(k+ 1) with time complexity
O(nk−1m). Appendix B solves the easy cases in MC(k + 1) by giving O(mk−1/2) algorithms for
them.

2 Preliminaries

2.1 Fine-grained reductions

To formalize the reductions, we use the notion fine-grained reductions, which was introduced by
Vassilevska-Williams [Wil]. In these reductions, we carefully preserve the conjectured time com-
plexities of different problems. Assume L1 and L2 are languages and T1 and T2 are their conjectured
running time lower bounds respectively.

Definition 2.1 (Fine-grained Turing reduction (≤FGT )). (L1, T1) ≤FGT (L2, T2) if for any ε > 0,
there exists ε′ > 0, and an algorithm running in time T1(n)1−ε′ on input of length n. The algorithm
makes q calls to oracle of L2 with query lengths n1, . . . , nq, such that

∑q
i=1(T2(ni))

1−ε ≤ (T1(n))1−ε′ .
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Then, if L2 has an algorithm substantially faster than T2, L1 can be solved substantially faster
than T1. In almost all fine-grained reductions, T1 ≥ T2, i.e., we usually reduce from harder problems
to easier problems, which may seem counter-intuitive. A harder problem L1 can be reduced to a
easier problem L2 with T1 > T2 in two ways.

1. The reduction makes multiple calls to an algorithm solving L2.
2. The reduction blows up the size of the L2 instance.2 (e.g., the reduction from CNF-SAT to

OV is an example of this technique.)
All the reductions from higher complexity to lower complexity problems in this paper belong to
the first type.

Note that in the case when T1 = T2, we cannot blowup the size of the problem instances, or the
query lengths by even a small polynomial factor. This is an important point, thus we emphasize
this case by defining fine-grained mapping reduction from L1 to L2 on running time T = T1 = T2.

Definition 2.2 (Fine-grained mapping reduction (≤FGM )). L1 ≤TFGM L2 if for any δ > 0, there
exists ε′ > 0, and algorithm running in time T (n)1−ε′ on input x of length n, computing f(x) of
length O(n1+δ), so that x ∈ L1 iff f(x) ∈ L2.

Then if L1 ≤TFGM L2 and L2 is solvable in time O(T (n)1−ε) for some ε > 0, then we pick δ < ε
so that L1 is solvable in time O(T (n)1−ε′ + T (n(1+δ)(1−ε))) = O(T (n)1−ε′ + T (n)1−(ε−δ)). This is
why we need to be able to create instances whose size is as small as nδ for arbitrarily small δ > 0.
We can also similarly define randomized fine-grained reductions ≤rFGT and ≤rFGM , where the
reduction algorithms are randomized.

2.2 Sparsity and co-sparsity

This section gives an intuitive and high-level view about the techniques of reducing a first-order
graph property problem to OV, for the proof of Theorem 1 and Theorem 2. Because of Lemma 1.1,
in the remainder of this paper, unless specified, we will use “OV” and “k-OV” to refer to sparse ver-
sions of these problems. The sparse k-OV problem can be reformulated as the k-Empty Intersection
(k-EI) problem, where sets correspond to vectors and elements correspond to dimensions:

Problem: k-Empty Intersection (k-EI)(Equivalent to k-OV.)
Input: A universe U of size nu, and k families of sets S1 . . .Sk on U , of size n1, . . . nk.
Output: Whether there exist S1 ∈ S1, . . . , Sk ∈ Sk such that

⋂k
i=1 Si = ∅.

Logical expression: ϕ = (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u ∈ U)
[∨k

i=1 ¬(u ∈ Si)
]
.

Next, we introduce two similar problems that act as important intermediate problems in our
reduction process.

Problem: Set Containment (Equivalent3 to Sperner Family.)
Input: A universe U of size nu, and two families of sets S1,S2 on U , of size n1, n2.
Output: Whether there exist S1 ∈ S1, S2 ∈ S2 such that S1 ⊆ S2.
Logical expression: ϕ = (∃S1 ∈ S1)(∃S2 ∈ S2)(∀u ∈ U) [(¬(u ∈ S1)) ∨ (u ∈ S2)].

Problem: k-Set Cover (Equivalent to k-Dominating Set.)
Input: A universe U of size nu, and k families of sets S1 . . .Sk on U , of size n1, . . . nk.
Output: Whether there exist S1 ∈ S1, . . . , Sk ∈ Sk such that

⋃k
i=1 Si = U .

Logical expression: ϕ = (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u ∈ U)
[∨k

i=1(u ∈ Si)
]
.

2Actually it is harder to fine-grained reduce from a problem with lower time complexity to a problem with higher
time complexity (e.g., prove that (MC(k),mk−1) ≤FGT (MC(k+1),mk)), because this direction often needs creating
instances with size much smaller than the original instance size.

3Equivalent under linear-time reductions. It is the same for the k-Set Cover problem below.
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All these problems are first-order graph property problems: we can use unary predicates to
partition the vertex set into (S1, . . . ,Sk, U), and consider the relation “∈” as a binary predicate.
We let n (corresponding to the number of nodes in the input graph) be the sum of n1, . . . , nk and
nu, and let the input size m (corresponding to the number of edges in the input graph) be the sum
of all sets’ sizes in all set families. We call 2-Set Cover, Set Containment and OV(or equivalently
2-EI), the Basic Problems, which will be formally defined and generalized in Section 4.1. [BCH14]
proved that when k = 2, these Basic Problems require time m2−o(1) under SETH, and that if
the size of universe U is polylogarithmic to the input size, then the three problems are equivalent
under subquadratic-time reductions. The main idea of the reductions between these problems is
to complement all sets in S1, or S2, or both. It is easy to see that S1 ∩ S2 = ∅ ⇐⇒ S1

{ ∪ S2
{ =

U ⇐⇒ S1 ⊆ S2
{ ⇐⇒ S2 ⊆ S1

{. Therefore, if we could complement the sets, we can easily prove
the equivalence between the three Basic Problems. However we cannot do this when nu is large.

For a sparse binary relation like (u ∈ S1), we say its complement, like (u /∈ S1), is co-sparse.
Suppose we want to enumerate all tuples (S1, u) s.t. u ∈ S1, we can go through all relations
(aka edges) between U and S1. So we can do this in linear time. On the contrary, if we want
to enumerate all pairs (S1, u) s.t. u /∈ S1, we cannot do this in linear time, because we cannot
touch the pairs by touching edges between them. What is even worse, when nu is as large as n,
the number of such pairs can reach m2. When k = 2, a fine-grained mapping reduction between
m2-time problems allows neither quadratic time reductions, nor quadratic size problem instances.
Essentially, a major technical obstacle in our reductions is to efficiently deal with co-sparsity.

Switching between sparsity and co-sparsity. Because of the above argument, it is hard
to directly reduce between the Basic Problems, so instead we reduce each problem to a highly-
asymmetric instance of the same problem, where sparse relations are easily complemented to rela-
tions that are also sparse. Observe that when the size of U is mδ for some δ < 1, complementing all
sets can be done in O(m1+δ), which is substantially faster than O(m2). The new instance created
also has size O(m1+δ). If we can do this for arbitrarily small δ > 0, we can make it a fine-grained
mapping reduction. Using this technique which we call universe-shrinking self-reduction, we can
show that OV, 2-Set Cover and Set Containment are equivalent under ≤m2

FGM .

Claim 2.1. If any one of OV, 2-Set Cover and Set Containment (or Sperner Family) has sub-
quadratic time randomized algorithms, then the other two are also solvable in randomized sub-
quadratic time. Thus the three problems are all hard for MC(k) with k ≥ 3.

This claim itself is an interesting result: in [BCH14], conditional lower bounds for many prob-
lems stem from the above three problems, forming a tree of reductions. By the equivalence result,
the root of the tree can be replaced by the quadratic-time hardness conjecture on any of the three
problems, thus the reduction tree is simplified.

The above claim is a special case of Lemma 4.1. In Section 4 we will prove a more general
version of equivalence. Note that the universe-shrinking self-reduction is the only randomized step.
All the other reductions in this paper are deterministic.

Dealing with co-sparsity. Having been able to reduce between the three Basic Problems, what
should we do for general problems with arbitrary formulas? The detailed processes are complicated,
so here we talk about a high-level idea in not only reductions but also algorithm design throughout
the paper.

Our algorithms often need to iterate over all pairs (xi, xj) satisfying some conditions, so as to
get the pairs, or to count the number of them. These “conditions” we need are first-order. So
these algorithms can be considered as query processing. A set of pairs (xi, xj) can be considered
as the result of a first-order query defined by an intermediate formula ϕ′ on the graph G (or some
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intermediate structures). What our reduction algorithms usually do is to generate such queries,
evaluate the queries, and use the results in the future process.

For any such query, there are three cases. If the result of the query is a sparse relation like
[¬R1(x1, x2) ∧ R2(x1, x2)], we can iterate over them (say, first enumerate all edges in ER2 so that
R2(x1, x2) is true, and then check if R1(x1, x2) is false). Then, we can do further operations on these
(x1, x2) tuples resulted from the query. When the result of the query is a co-sparse relation like
[¬R1(x1, x2) ∧ ¬R2(x1, x2)], we cannot directly iterate over them. So we work on its complement
(which is sparse, instead of co-sparse), but then do some further processing to filter those pairs
out from future use (say, work on all edges in ER1 ∪ER2 so that R1(x1, x2) is true or R2(x1, x2) is
true, then exclude those pairs from future use). Sometimes, the result of a query is neither sparse
nor co-sparse, but we will see it is always a combination of sparse and co-sparse relations. Thus
we need to distinguish them and deal with the sparse and co-sparse parts separately, which will be
explained next.

Separating sparse and co-sparse relations. We exemplify this technique by considering the
query [¬R1(x1, x2) ∨¬R2(x1, x2)]. For a pair (x1, x2), to make the formula true, predicates R1, R2

can be assigned values from {(True,False), (False,True), (False,False)}. In the first two cases, the
pairs (x1, x2) satisfying [R1(x1, x2) ∧ ¬R2(x1, x2)] and [¬R1(x1, x2) ∧ R2(x1, x2)] are sparse, while
in the last case, the pairs satisfying [¬R1(x1, x2) ∧ ¬R2(x1, x2)] are co-sparse. So if we want to
work on the tuples satisfying this query, we work on tuples satisfying the first two cases directly
by enumerating edges, and then work on the tuples not satisfying the third case (i.e., the tuples
where either R1(x1, x2) or R2(x1, x2) is true), in order to exclude them from future use.

In general, a query can be written as a DNF, where the result of each term is a conjunction of
predicates and negated predicates, and therefore either sparse or co-sparse. Then we can deal with
the sparse and co-sparse cases separately. We will use this technique for constructing the Hybrid
Problem in Section 4.2 (where the “future use” refers to “constructing gadgets from these pairs”),
and for the baseline algorithm presented in Appendix A (where the “future use” refers to “counting
the number of these pairs”).

3 Proof Overview

3.1 O(nk−1m) Baseline algorithm

We will present a O(nk−1m) baseline algorithm solving MC(k + 1) for k ≥ 1, in Appendix A. So
we can solve any (k + 1)-quantifier problem in time O(mk), which matches our conjectured lower
bound. A central step used in the algorithm is the following lemma, called the quantifier-eliminating
downward reduction, that will be proved in Appendix A.

Lemma 3.1 (Quantifier-eliminating downward reduction for MC(k+ 1)). Let the running time of
MC(k + 1) on graphs of n vertices and m edges be Tk(n,m). We have the recurrence

Tk(n,m) ≤ n · Tk−1(n,O(m)) +O(m), for k ≥ 2.

T1(n,m) = O(m).

By this lemma, for any problem L1 ∈ MC(k + 1), there exists a problem L2 ∈ MC(k) such
that (L1,m

k) ≤FGT (L2,m
k−1). (See Appendix A.)

For problems in MC(2), the algorithm runs in O(m) time, and cannot be further improved.
Therefore this paper considers two-quantifier problems as trivial cases, and only talks about prob-
lems with at least three quantifiers.
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Figure 2: Overview of the reduction process for Theorem 1.

Also, in our definition of first-order graph property problems, it is safe to assume m ≤ n1+ε for
any ε > 0, for otherwise we can run the baseline algorithm in O(nk−1m) time to beat mk time.

3.2 Completeness of OV

Following is the outline of reduction from a problem in MC(k + 1) to OV for any integer k ≥ 2,
thus proving the direction from (A) to (B) in Theorem 1. The direction from (B) to (A) is
straightforward, because sparse OV is in MC(3).

1. Using the quantifier-eliminating downward reduction in Lemma 3.1, reduce from the (k+ 1)-
quantifier problem down to a 3-quantifier problem.

2. Based on the exact quantifier structure,
• MC(∃∃∃), MC(∀∀∀), MC(∀∃∃) andMC(∃∀∀) are solvable in O(m3/2), using algorithms

in Appendix B.
• For MC(∀∃∀) or its negation MC(∃∀∃), reduce the problem to MC(∃∃∀) using Lemma

5.1, and then reduce it to the Hybrid Problem using Lemma 4.5.
• For MC(∃∃∀) or its negation MC(∀∀∃), reduce the problem to the Hybrid Problem,

using Lemma 4.5.

3. Reduce from the Hybrid Problem to a combination of 4 Basic Problems, using Lemma 4.4.

4. Reduce all Basic Problems to OV, using Lemma 4.1: First do universe-shrinking self-reductions
on each Basic Problem (Lemma 4.2), and then complement the sets and get OV (Lemma 4.3).

Figure 2 shows a diagram of the above reduction process.
Moreover, Lemmas 5.1, 4.5, 4.4 and 4.1 also work for any constant k ≥ 2. So for a MC(∃k∀)

or MC(∀∃k−1∀) problem, we can reduce it to k-OV as follows:
1. If the problems belongs to MC(∀∃k−1∀), reduce it to MC(∃k∀) using Lemma 5.1.

2. Reduce the MC(∃k∀) problem to the Hybrid problem, using Lemma 4.5.

3. Reduce from the Hybrid Problem to a combination of 2k Basic Problems, using Lemma 4.4.

4. Reduce all Basic Problems to k-OV, using Lemma 4.1
Thus we have proved Theorem 2.
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4 Completeness of k-OV in MC(∃k∀)
This section will prove the completeness of k-OV in MC(∃k∀) problems. First, we introduce a

class of Basic Problems, and prove these problems are equivalent to k-OV under ≤mkFGM . Then, we
show that any problem in MC(∃k∀) can be reduced to a combination of Basic Problems (aka. the
Hybrid Problem).

4.1 How to complement a sparse relation: Basic Problems, and reductions
between them

In this section we define the Basic Problems, which have similar logical expressions to k-OV (or k-
EI), k-Set Cover and Set Containment problems. We will prove that these problems are fine-grained
reducible to each other.

Let k ≥ 2. We introduce 2k Basic Problems labeled by k-bit binary strings from 0k to 1k. The
input of these problems is the same as that of k-EI defined in Section 2.2: k set families S1 . . .Sk of
size n1, . . . , nk on a universe U of size nu. We define 2k quantifier-free formulas ψ0k , . . . , ψ1k such
that

ψ` =
(∨

i∈{1,...,k},`[i]=0(¬(u ∈ Si))
)
∨
(∨

i∈{1,...,k},`[i]=1(u ∈ Si)
)
.

Here, `[i], the i-th bit of label `, specifies whether u is in each Si or not, in the i-th term of ψ`.
For each `, let ϕ` = (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u ∈ U)ψ`. For simplicity, we will omit the

domains of the variables in these formulas. We call MCϕ
0k
, . . . ,MCϕ

1k
the Basic Problems. We

refer to the Basic Problem MCϕ` as BP [`]. These problems are special cases of first-order model
checking on graphs, where sets and elements correspond to vertices, and membership relations
correspond to edges. Note that BP [0k] is k-EI, and BP [1k] is k-Set Cover. When k = 2, BP [01]
and BP [10] are Set Containment problems. For a k-tuple (S1 ∈ S1, . . . , Sk ∈ Sk) satisfying (∀u)ψ`,
we call it a solution of the corresponding Basic Problem BP [`].

We present a randomized fine-grained mapping reduction between any two Basic Problems,
thus proving the following lemma, which is a generalized version of Claim 2.1.

Lemma 4.1. For any `1, `2 ∈ {0, 1}k, there is a randomized fine-grained mapping reduction

BP [`1] ≤mkrFGM BP [`2].

For problems BP [`1] and BP [`2] where `1 and `2 only differ in the i-th bit, if we are allowed
to complement all sets in Si, we can easily reduce between them. Similarly, if `1 and `2 differ
in more than one bit, we can complement all the sets in corresponding set families. However,
complementing the sets in Si takes time O(ninu), which might be as large as m2. To solve this,
we self-reduce BP [`1] on the universe U to the same problem on a smaller universe U ′, and then
complement sets on U ′. For any given δ, if the size of U ′ is n′u = O(mδ), then complementing all
sets in Si only takes time and space m ·O(mδ) = O(m1+δ).

Lemma 4.2 (Universe-shrinking self-reductions of Basic Problems). Let label ` be any binary string
in {0, 1}k. For any ε > 0, given a BP [`] instance I of size m and universe U of size nu, we can
either solve it in time O(mk−ε), or use time O(mk−ε) to create a BP [`] instance I ′ of size O(m1+ε)
on universe U ′ whose size is n′u = O(m5ε), so that I ∈ BP [`] iff I ′ ∈ BP [`] with error probability
bounded by O(m−ε).

Note that the self-reduction of k-OV actually reduces the sparse OV to the dense and low-
dimension version of OV, implying Lemma 1.1.
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We will present the randomized self-reductions for problems BP [`] s.t. ` 6= 1k in Section 4.1.1.
For BP [1k], we will prove that it is either easy to solve or easy to complement in Section 4.1.2.

After shrinking the universe, we complement the sets to reduce between two Basic Problems
BP [`1] and BP [`2] according to the following lemma.

Lemma 4.3 (Reduction between different Basic Problems). For two different labels `1, `2 ∈ {0, 1}k,
given set families S1, . . . ,Sk, let S ′1, . . . ,S ′k be defined such that

S ′i =

{{
Si

{ | Si ∈ Si
}
, if `1[i] 6= `2[i]

Si, otherwise
, for i ∈ {1, . . . , k}

then, (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u)ψ`1 iff (∃S′1 ∈ S ′1) . . . (∃S′k ∈ S ′k)(∀u)ψ`2.

The proof of correctness is straightforward. For any ε > 0, after the universe-shrinking self-
reduction by Lemma 4.2, the new universe size n′u has become O(m5ε). So the time complexity in
this step is bounded by O(m1+5ε), which is significantly less than mk even if k = 2.

Let new instance size be m′. We need to show that when we apply an algorithm better than
(m′)k algorithm on the constructed instance, we get an algorithm better than than mk, i.e., for any
δ there is a γ, so that (m′)k−δ < mk−γ . Since m′ = m1+5ε for an arbitrarily small constant ε, this
will be true if we pick ε = δ/10k.

Finally, by the two-step fine-grained mapping reductions given by Lemma 4.2 and Lemma 4.3,
we have a fine-grained mapping reduction between any two Basic Problems, completing the proof
for Lemma 4.1.

When k = 2, Orthogonal Vectors (BP [00]), Set Containment (BP [01] and BP [10]) and 2-Set
Cover (BP [11]) are reducible to each other in subquadratic time. Thus Claim 2.1 follows.

4.1.1 Randomized universe-shrinking self-reduction of BP [`] where ` 6= 1k

The main idea is to divide the sets into large and small ones. For large sets, there are not too
many of them in the sparse structure, so we can work on them directly. For small sets, we use a
Bloom Filter mapping each element in U to some elements in U ′ at random, and then for each set
on universe U , we compute the corresponding set on universe U ′. Next we can decide the same
problem on these newly computed sets, instead of sets on U . ([CIP02] used a similar technique in
reducing from Orthogonal Range Search to the Subset Query problem.) Because the sets are small,
it is unlikely that some elements in two different sets on U are mapped to the same element on U ′,
so the error probability of the reduction algorithm is small.

Step 1: Large sets. Let d = mε. For sets of size at least d, we directly check if they are in
any solutions. There are at most O(m/d) = O(m1−ε) of such large sets. In the outer
loop, we enumerate all large sets in S1, . . . ,Sk. If their sizes are pre-computed, we can
do the enumeration in O(m1−ε). Assume the current large set is Si ∈ Si. Because variables
quantified by ∃ are interchangeable, we can interchange the order of variables, and let Si be the
outermost quantified variable S1. On each such Si (or S1 after interchanging), we create new
formula ψS1 on variables S2, . . . , Sk, u from formula ψ, by replacing each occurrence of unary
predicate on S1 with a constant, and replacing each occurrence of binary predicate R(S1, Sj)
(or R(Sj , S1)) with unary predicate R′(Sj) whose value equals R(S1, Sj) (or R(Sj , S1)). Then,
we decide if the graph induced by S2, . . . ,Sk and U satisfies (∃S2) . . . (∃Sk)(∀u)ψS1 , using the
baseline algorithm, which takes time O(mk−1) for each such large set S1. Thus the overall
running time is O(m1−ε) · O(mk−1) = O(mk−ε). If no solution is found in this step, proceed
to Step 2.
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S1 S2

U

U ′

h

h(S1) h(S2)

a b c

a′ b′ c′ d′ e′

Figure 3: The universe-shrinking process. S1 = {a, b} and S2 = {a, b, c}. After the mapping h, the new
sets are h(S1) = {a′, b′, c′, d′} and h(S2) = {a′, b′, c′, d′, e′}.

Step 2: Small sets. Now we can exclude all the sets of size at least d. For sets of size smaller than
d, we do the self-reduction to universe U ′ of size n′u = m5ε. Let t = mε, and let h : U → U ′t

be a function that independently maps each element u ∈ U to t elements in U ′ at random.
On set S ⊆ U , we overload the notation h by defining h(S) =

⋃
u∈S h(u). For all set families

Si, we compute new sets h(Si) for all Si ∈ Si. Then, we decide whether the new sets satisfy
the following sentence, which is another BP [`] problem:

(∃S1) . . . (∃Sk)(∀u)
[(∨

i∈{1,...,k},`[i]=0(¬(u ∈ h(Si)))
)
∨
(∨

i∈{1,...,k},`[i]=1(u ∈ h(Si))
)]

The size of the new instance is O(nt) = O(m1+ε), and the running time of the self-reduction
is also O(nt) = O(m1+ε). So it is a fine-grained mapping reduction for any k ≥ 2.

Figure 3 illustrates an example of the universe-shrinking self reduction for problem BP [01],
where we look for S1, S2 so that S1 ⊆ S2. If they exist, then after the self-reduction, it is
always true that h(S1) ⊆ h(S2). Still, it might happen that some S1 6⊆ S2 but h(S1) ⊆ h(S2).
In this case, a false positive occurs. In problem BP [00] where we decide whether there exist
Si and Sj so that they are disjoint, a false negative may occur when there are two disjoint sets
but some elements in S1 ∩ S2 are mapped to the same element in U ′. Next we will analyze
the error probability of this reduction.

Analysis. Because variables quantified by ∃ are interchangeable, w.l.o.g. for ` containing i (i ≥ 1)
zeros and k − i ones, we can assume BP [`] is defined by

(∃S1) . . . (∃Sk)(∀u)
[(∨i

j=1(u /∈ Sj)
)
∨
(∨k

j=i+1(u ∈ Sj)
)]

,

or equivalently,

(∃S1) . . . (∃Sk)
[(⋂i

j=1 Sj

)
⊆
(⋃k

j=i+1 Sj

)]
.

Let sets A =
⋂i
j=1 Sj and B =

⋃k
j=i+1 Sj . Then the problem is to decide whether there exists

(S1, . . . , Sk) so that A ⊆ B. After the self-reduction, we let sets A′ =
⋂i
j=1 h(Sj) and B′ =⋃k

j=i+1 h(Sj), and decide if there exists (S1, . . . , Sk) such that A′ ⊆ B′.
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1. False positive. A false positive occurs when

∀(S1, . . . , Sk), A * B, but ∃(S1, . . . , Sk), A
′ ⊆ B′.

For a fixed tuple (S1, . . . , Sk) such that A * B, an error occurs when ∃u ∈ A − B such
that h(u) ⊆ B′. The size of B′ is at most kdt. So the error probability Pr[h(u) ⊆ B′] ≤
(kdt/n′u)t = (kmεmε/m5ε)t < m−εt. The size of A − B is bounded by kd, so the probability
Pr[∃u ∈ A− B, h(u) ⊆ B′] ≤ kd ·m−εt. There are O(mk) tuples of (S1, . . . , Sk), so the total
error probability is at most O(mk) · kd ·m−εt = O(mk+ε−εmε), which is exponentially small.

2. False negative. A false negative occurs when

∃(S1, . . . , Sk), A ⊆ B, but ∀(S1, . . . , Sk), A
′ * B′.

Fix any tuple (S1, ..., Sk) that satisfies A ⊆ B in the original instance, and consider the
distribution on the corresponding h(S1), .., h(Sk). By definition, B′ =

⋃
u∈B h(u), and so

contains
⋃
u∈A h(u). So if A′ ⊆ ⋃u∈A h(u), we will have A′ ⊆ B′, and there will not be a

false negative. If not, then there is some u′ ∈ A′ =
⋂i
j=1 h(Sj), such that u′ /∈ ⋃u∈A h(u).

Then for each j ∈ {1, . . . , i}, in each Sj there is a uj ∈ Sj with u′ ∈ h(uj), but not all uj are
identical. (Otherwise the uj ∈ A, so u′ ∈ h(uj) ⊆

⋃
u∈A h(u), contradicting u′ /∈ ⋃u∈A h(u)).

In particular, this means that for some j1, j2, there are uj1 ∈ Sj1 , uj2 ∈ Sj2 , such that
h(uj1)∩h(uj2) 6= ∅. So the error probability is bounded by k2 ·Pr[∃(u1 ∈ Sj1 , u2 ∈ Sj2), h(u1)∩
h(u2) 6= ∅]. Because |Sj1 | and |Sj2 | are at most d, by Birthday Paradox, the probability is
at most O(k2d2t2/n′u) = O(m−ε). This is the upper bound of the error probability for the
fixed (S1, . . . , Sk) tuple. Then, the probability of the event “∀(S1, . . . , Sk), A

′ * B′” is even
smaller.

4.1.2 Deterministic universe-shrinking self-reduction of BP [1k]

BP [1k] is the k-Set Cover problem, which decides whether there exist k sets covering the universe
U . It is special in the Basic Problems: when nu is small, the sets are easy to complement; when
nu is large, the problem is easy to solve.

Case 1: Large universe. If nu > mε, then in a solution of this problem, at least one set has size
at least nu/k. There are at most m/(k/nu) = O(m1−ε) such large sets, thus they can be listed
in time O(m1−ε), after pre-computation on the sizes of all sets. Our algorithm exhaustively
searches all such large sets. And then, similarly to “Step 1” in Section 4.1.1, for each of the
large sets, we run the baseline algorithm to find the remaining k − 1 sets in the k-set cover,
which takes time O(mk−1). So the overall running time is O(m1−ε) ·O(mk−1) = O(mk−ε).

Case 2: Small universe. If nu ≤ mε, then we do not need a universe-shrinking self-reduction,
because the universe is already small enough.

4.2 Hybrid Problem

Next we reduce general MC(∃k∀) problems to an intermediate problem called the Hybrid Problem,
which is a combination of 2k Basic Problems. Then by reducing from the Hybrid Problem to Basic
Problems, we can set up a connection between MC(∃k∀) and OV.

Let k ≥ 2. The input to the Hybrid Problem includes four parts:
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U00 U01 U10 U11

S1 S2

R[S1, S2] = true
type[1, 2] = 1

S1 ∩ S2 = ∅ S1 ⊆ S2 S1 ⊇ S2 S1 ∩ S2 = U11

Figure 4: An example of a solution to a Hybrid Problem instance, when k = 2. In sub-universes
U00, U01, U10, U11, sets S1 and S2 are solutions of BP [00](2-Empty Intersection), BP [01](Set Containment),
BP [10](Set Containment in the reversed direction) and BP [11](2-Set Cover), respectively. And type[1, 2] = 1
specifies that the predicate R on (S1, S2) must be true.

1. Set families S1 . . .Sk defined on universe U , where U is partitioned into 2k disjoint sub-
universes: U =

⋃
`∈{0,1}k U`.

2. A binary predicate R defined on pairs of sets from any two distinct set families. R is a
symmetric relation (R(Si, Sj) iff R(Sj , Si)).

3. type is binary string of length
(
k
2

)
, indexed by two integers [i, j], s.t. i, j ∈ {1, . . . , k} and

i < j.

The goal of the problem is to decide if there exist S1 ∈ S1, . . . , Sk ∈ Sk such that both of the
following constraints are true:
(A) For each ` ∈ {0, 1}k, (S1, . . . Sk) is a solution of BP [`] defined on sub-universe U`.
(B) For all pairs of indices i, j ∈ {1, . . . , k}, i < j, we have that R(Si, Sj) = true iff type[i, j] = 1.

We let n be the sum of |S1|, . . . , |Sk| and U , and let m be the number of all unary and binary
relations. The Hybrid Problem is a first-order graph property problem with additional constraints.
As usual, we assume all relations in the Hybrid Problem are sparse (m ≤ n1+o(1)). Figure 4 shows
a solution to a Hybrid Problem instance when k = 2.

Intuition behind the Hybrid Problem. We mentioned in Section 2.2 that any first-order query
containing two variables can be written in a “normal form”, which is a combination of sparse and
co-sparse relations. The Hybrid Problem is designed for separating sparse relations from co-sparse
ones, for all pairs of variables in formula ϕ.

The relation between the pair of variables (xi, xk+1) where 1 ≤ i ≤ k can be either sparse
or co-sparse. Because there are k of such variables xi, there are 2k cases for a combination
((x1, xk+1), . . . , (xk, xk+1)). These cases correspond to the 2k Basic Problems. In each Basic Prob-
lem, we deal with one of the 2k cases.

For a relations between the pair of variables (xi, xj) where 1 ≤ i < j ≤ k, it also can be either
sparse or co-sparse. We use type[i, j] to distinguish the two cases: when it is set to 1, we expect a
sparse relation for (xi, xj), otherwise we expect a co-sparse relation.

15



4.2.1 Reduction to Basic Problems

Lemma 4.4. (Hybrid Problem,mk) ≤rFGT (OV,mk).

Given an instance of the Hybrid Problem, we can do the following modification in time O(m).
For each pair of indices i, j where 1 ≤ i < j ≤ k, we construct auxiliary elements depending on the
value of type[i, j].

Case 1: If type[i, j] = 0, then in a solution to the Hybrid Problem, Si and Sj should not have an
edge R(Si, Sj) between them. Let ` be the length-k binary string where the i-th and j-th bits
are zeros and all other bits are ones. For each edge R(Si, Sj), we add an extra element uij
in U` and let uij ∈ Si, uij ∈ Sj . Thus, Si and Sj can both appear in the solution only when
(uij /∈ Si) ∨ (uij /∈ Sj), and it holds iff R(Si, Sj) = false.

Case 2: If type[i, j] = 1, then in a solution to the Hybrid Problem, Si and Sj should have an edge
R(Si, Sj) between them. Let ` be the length-k binary string where the j-th bit is zero and all
other bits are ones. For each Sj ∈ Sj , we add an extra element uj in U` and let uj ∈ Sj . For
each edge R(Si, Sj), we let uj ∈ Si. Thus, Si and Sj can both appear in the solution only
when (uj /∈ Sj) ∨ (uj ∈ Si), and it holds iff R(Si, Sj) = true.

After the above construction, we can drop the constraint (B) of the Hybrid Problem. We will ignore
the relation R and type in the Hybrid Problem. The problem now is to decide whether there exists
tuple (S1, . . . , Sk) being a solution to all 2k Basic Problems. Then we can use Lemma 4.1 to reduce
all these Basic Problems to BP [0k]. Let U`

′ be the sub-universe of the BP [0k] instance reduced
from the BP [`] sub-problem. (S1, . . . , Sk) is a solution to all Basic Problems iff their intersection
is empty on every sub-universe U ′`, iff their intersection is empty on universe

⋃
`∈{0,1}k U

′
`, i.e., it is

a solution of a BP [0k] instance.
Multiplying the error probability in the reductions between Basic Problems by 2k, which is a

constant number, and then taking a union bound, we get similar bounds of error probability for
the Hybrid Problem.

4.2.2 Assumptions on the input graph

In the remainder of this paper, we will work on generalized input graph G. We adopt the following
conventions.

We use letter ϕ to represent formulas with quantifiers, and letter ψ for quantifier-free formulas.
Unlike in database theory where “relations” refers to tables and “tuples” refers to rows in tables,
we say “relations” to mean the rows, i.e., edges in graphs that correspond to binary predicates in
ϕ. We use the word “tuple” (or “pair” for binary tuples) for any possible combinations of variables
or vertices. To avoid ambiguity, we let x1, . . . , xk+1 stand for variables in ϕ, and let v1, . . . , vk+1

be the concrete values assigned to the variables (i.e., vertices). Let xi ← vi denote that variable xi
is assigned the value vi.

Without loss of generality we make the following assumptions about the input graph:
• G is a (k+1)-partite directed graph, whose vertex set is partitioned into V1, . . . , Vk+1, of sizes
n1, . . . , nk+1 respectively. For each i ∈ {1, . . . , k + 1}, Vi is the set of candidate values for xi.
In other words, we want to decide whether (∃x1 ∈ V1) . . . (∃xk ∈ Vk+1)ψ(x1, . . . , xk+1). This
assumption can be achieved by creating nodes and adding unary predicates, which can be
done in time linear to m.
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• There is a data structure where we can both check the existence of an edge (whether a relation
holds) in constant time, and enumerate the incident edges of a vertex in time proportional to
its degree (e.g., a hash table of edges together with a linked list of edges for each vertex).

• If any predicate occurs multiple times with different argument lists, we rename it to different
predicates, and split the corresponding set of edges. For example, we can replace a sub-
formula [(¬R(x1, x2)∧R(x2, x3))∨R(x1, x2)] by [(¬R1(x1, x2)∧R2(x2, x3))∨R1(x1, x2)], and
then move the ER edges on (V1, V2) to edge set ER1 , and the edges on (V2, V3) to ER2 . This
modification can be done in linear time.

4.2.3 Turing reduction from general MC(∃k∀) problems to the Hybrid Problem

Lemma 4.5. For any integer k ≥ 2, any problem in MC(∃k∀) is linear-time Turing reducible to
the Hybrid Problem.

Consider the problem MCϕ where ϕ = (∃x1) . . . (∃xk)(∀xk+1)ψ(x1, . . . , xk+1). Let Pk+1 be the
set of unary and binary predicates in ψ that involve variable xk+1, and let Pk+1 denote the set of
the other predicates not including xk+1. We give all predicates in Pk+1 a canonical order. A partial
interpretation α for Pk+1 is a binary string of length |Pk+1|, that encodes the truth values assigned
to all predicates in Pk+1. For each i s.t. 1 ≤ i ≤ |Pk+1|, if the i-th predicate in Pk+1 is assigned to
true, then we set the i-th bit of α to one, otherwise we set it to zero. For a tuple (v1, . . . , vk), we
say it implies α (denoted by (v1, . . . , vk) |= α) iff when (x1 ← v1, . . . , xk ← vk). the evaluations of
all predicates in Pk+1 are the same as the values specified by α.

For each α ∈ {0, 1}Pk+1 , we create a distinct Hybrid Problem instance Hα. If any of the
Hybrid Problems accepts, we accept. Let ψ|α(x1, . . . , xk+1) be ψ after replacing all occurrences of
predicates in Pk+1 by their corresponding truth values specified by α. The following steps show
how to create Hα from α and ψ|α(x1, . . . , xk+1).

Step 1: Construction of sets. We introduce colors, which are partial interpretations defined
on some specific subsets of the predicates concerning variable xk+1. We call them “colors”
because they can be considered as a kind of labels on (vi, vk+1) pairs. For each i ∈ {1, . . . , k},
we give all the unary and binary predicates defined on (xi, xk+1) (including those on (xk+1, xi))
a canonical order. We use Pi to denote the set of these predicates for each i. Let a color be a
partial interpretation for Pi, which is a binary string of length |Pi|, encoding the truth values
assigned to all predicates in Pi. For each j s.t. 1 ≤ j ≤ |Pi|, if the j-th predicate in Pi is
assigned to true, then we set the j-th bit of the color to one, otherwise we set it to zero. For
a color ci ∈ {0, 1}|Pi|, we say (vi, vk+1) |= ci iff when xi ← vi and xk+1 ← vk+1, the values of
all predicates in Pi are the same as the corresponding bits of ci. We refer to the colors where
all bits are zeros as the background colors. These colors are special because they correspond
to interpretations where all predicates in Pi are false, i.e., we cannot directly go through all
pairs (vi, vk+1) where (vi, vk+1) |= 0|Pi|, since this is a co-sparse relation. So we need to deal
with these pairs separately.

For a vertex combination (v1, . . . , vk+1) where (vi, vk+1) |= ci on all 1 ≤ i ≤ k, the k-color-
tuple (c1, . . . , ck) form a color combination, which corresponds to truth values assigned to all
the predicates in Pk+1.

For each vi ∈ Vi where 1 ≤ i ≤ k, we create set Svi in the set family Si. For each vk+1 ∈ Vk+1,
and each color combination (c1, . . . , ck) s.t. ci ∈ {0, 1}|Pi| and the values of all predicates
specified by (c1, . . . , ck) make ψ|α evaluate to false (in which case we say (c1, . . . , ck) does
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u(vk+1,c1,...,ck)

Sv1 Sv2 Svk

U0k

u(vk+1,0|P1|,c2,0|P3|,c4,...,ck)

U1010k−3

Sv1 Sv2 Svk. . . . . .Sv3 Sv4 Sv3 Sv4

Figure 5: The formula is satisfied iff there exists (Sv1 , Sv2 , . . . , Svk) so that there does not exist such
an element u in any of the sub-universes: the left figure illustrates the case where none of c1, . . . , ck is a
background color. The right is the case where only c1 and c3 are background colors. (The dashed lines stand
for non-existing edges.)

not satisfy ψ|α), we create an element u(vk+1,c1,...,ck) in U . We call a string C ∈ {0, 1}k an
encoding of a color combination (c1, . . . , ck) when on all indices i ∈ {1, . . . , k}, C[i] = 1 iff
ci = 0|Pi|. We put each element u(vk+1,c1,...,ck) in the sub-universe UC iff C is an encoding of
(c1, . . . , ck).

Next we will construct the sets. For each vi ∈ Vi, let Svi be

Svi = {u(vk+1,c1,...,ck) | (c1, . . . , ck) does not satisfy ψ|α, and

((ci 6= 0|Pi|, (vi, vk+1) |= ci), or (ci = 0|Pi|, (vi, vk+1) 6|= ci = 0|Pi|))}.

To construct such sets, for each edge on (xi, xk+1) (and (xk+1, xi)), we do the following.
Assume the current vertex pair is (vi, vk+1).

1. First, let set Svi contain all elements u(vk+1,c1,...,ck) in U where ci is a fixed color such

that (vi, vk+1) |= ci, and the other colors cj can be any string in {0, 1}|Pj |.
2. Next, let set Svi contain all elements u(vk+1,c1,...,ck) in U where ci = 0|Pi| (here (vi, vk+1) 6|=
ci = 0|Pi| because there is some edge connecting vi and vk+1, meaning at least one bit in
ci is 1), and the other colors cj can be any string in {0, 1}|Pj |.

In other words, in the sub-universe labeled by 0k, which is made up of elements u(vk+1,c1,...,ck)

such that none of the ci equals 0|Pi|, and that (c1, . . . , ck) does not satisfy ψ|α, a set Svi
contains an element u(vk+1,c1,...,ck) iff (vi, vk+1) |= ci. On the other hand, in the sub-universe
labeled by C where the i-th bit of C is 1, which is made up of elements u(vk+1,c1,...,ck) such that

ci = 0|Pi| and that (c1, . . . , ck) does not satisfy ψ|α, a set Svi contains an element u(vk+1,c1,...,ck)

iff (vi, vk+1) 6|= ci = 0|Pi|.

Analysis. Now we show the above construction achieves constraint (A) in the definition of
the Hybrid Problem.

• Assume that (v1, . . . , vk) does not satisfy (∀vk+1)ψ|α(v1, . . . , vk+1), i.e., there exists some
vk+1 ∈ Vk+1 such that ψ|α(v1, . . . , vk+1) is false. Then consider the specific color com-
bination (c1, . . . , ck) where on each i, (vi, vk+1) |= ci. So (c1, . . . , ck) does not satisfy
ψ|α(x1, . . . , xk+1). Thus there exists an element u(vk+1,c1,...,ck) in U .

If none of the colors in combination (c1, . . . , ck) is the background color, then the encod-
ing of (c1, . . . , ck) is the string 0k. Thus, the element u(vk+1,c1,...,ck) is in sub-universe U0k .
By our construction, u(vk+1,c1,...,ck) is contained in all of Sv1 , . . . , Svk , as shown on the
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left side of Figure 5. This is because for when we went through all the edges, at the edge
between (vi, vk+1), we put u(vk+1,c1,...,ck) in Svi , since none of the colors is background.

Thus (∃u ∈ U0k)
[∧k

i=1(u ∈ Svi)
]
, so it is not the case that (∀u ∈ U0k)

[∨k
i=1 ¬(u ∈ Svi)

]
,

which means Sv1 , . . . , Svk is not a solution of BP [0k] on sub-universe U0k .

If some of the colors ci in the color combination (c1, . . . , ck) equal the background color
0|Pi|, then in the encoding C of (c1, . . . , ck), C[i] = 1. Thus, the element u(vk+1,c1,...,ck)

is in the sub-universe UC . By our construction, u(vk+1,c1,...,ck) is contained in sets Svi for

all indices i where ci is not the background color 0|Pi|, and is not contained in sets Svj
for all indices j where cj is the background color 0|Pj |. The latter case is because for
each index j where cj is the background color, there is no edge connecting the pair of
vertices (vj , vk+1). So we did not put u(vk+1,c1,...,ck) in Svj . (The right side of Figure 5
demonstrates the example where c1 and c3 are the background colors while other colors
are not.) Thus

(∃u ∈ UC)
[∧

i∈{1,...,k},C[i]=0(u ∈ Svi) ∧
∧
i∈{1,...,k},C[i]=1(¬(u ∈ Svi))

]
,

so it is not the case that

(∀u ∈ UC)
[∨

i∈{1,...,k},C[i]=0(¬(u ∈ Svi)) ∨
∨
i∈{1,...,k},C[i]=1(u ∈ Svi)

]
,

which means Sv1 , . . . , Svk is not a solution of BP [C] on sub-universe UC .

• On the other hand, assume that (v1, . . . , vk) satisfies (∀vk+1)ψ|α(v1, . . . , vk+1). We claim
that for all ` ∈ {0, 1}k, (Sv1 , . . . , Svk) is a solution to Basic Problem BP [`].

Consider the sub-universe UC for each C ∈ {0, 1}k. If C = 0k, i.e., the sub-universe is
U0k corresponding to BP [0k], then none of the elements u(vk+1,c1,...,ck) in U0k contains any
background color among its c1, . . . , ck. For the sake of contradiction, suppose there exists
an element u(vk+1,c1,...,ck) that is contained in all sets Sv1 , . . . , Svk . So by our construction
of sets, for each i ∈ {1, . . . , k}, (vi, vk+1) |= ci. Recall that the color combination
(c1, . . . , ck) in any element u(vk+1,c1,...,ck) does not satisfy ψ|α. Then this means the
vertex vk+1 does not satisfy ψ|α(v1, . . . , vk, vk+1), which leads to a contradiction.

Thus on (Sv1 , . . . , Svk), it is not the case that (∃u ∈ U0k)
[∧k

i=1(u ∈ Svi)
]
, implying

(Sv1 , . . . , Svk) satisfies (∀u ∈ U0k)
[∨k

i=1 ¬(u ∈ Svi)
]
. So it is a solution of the Basic

Problem BP [0k] on sub-universe U0k .

If C 6= 0k, for the sake of contradiction, suppose there exists an element u(vk+1,c1,...,ck)

such that among Sv1 , . . . , Svk , it is contained in set Svi iff C[i] = 0. Then by our
construction of sets, this means for all i such that C[i] = 0, (vi, vk+1) |= ci; while
for all i such that C[i] 6= 0, (vi, vk+1) |= 0|Pi| = ci. Combining the two statements,
for all i, (vi, vk+1) |= ci. Recall again that the color combination (c1, . . . , ck) in any
element u(vk+1,c1,...,ck) does not satisfy ψ|α. This implies the vertex vk+1 does not satisfy
ψ|α(v1, . . . , vk+1), which leads to a contradiction.

Thus on (Sv1 , . . . , Svk), it is not the case that

(∃u ∈ UC)
[∧

i∈{1,...,k},C[i]=0(u ∈ Svi) ∧
∧
i∈{1,...,k},C[i]=1(¬(u ∈ Svi))

]
,

implying (Sv1 , . . . , Svk) satisfies

(∀u ∈ UC)
[∨

i∈{1,...,k},C[i]=0(¬(u ∈ Svi)) ∨
∨
i∈{1,...,k},C[i]=1(u ∈ Svi)

]
.

19



So it is a solution of the Basic Problem BP [C] on sub-universe UC .

In summary, there exists tuple (v1, . . . , vk) such that (∀vk+1)ψ|α(v1, . . . , vk, vk+1) holds true,
iff there exist sets (Sv1 , . . . , Svk) such that for all ` ∈ {0, 1}k, (Sv1 , . . . , Svk) is a solution of
Basic Problem BP [`] on sub-universe U`. Thus our reduction satisfies constraint (A) of the
Hybrid Problem.

Step 2: Construction of relation R and string type. Next, we consider the predicates in Pk+1,
which are predicates unrelated to variable xk+1. We create edges for predicate R according
to the current partial interpretation α.

For a pair of vertices vi ∈ Vi and vj ∈ Vj where 1 ≤ i < j ≤ k, we say (vi, vj) agrees with α if
the evaluations of all predicates on (xi, xj) (including (xj , xi)) when xi ← vi, xj ← vj , is the
same as the truth values of corresponding predicates specified by α.

Case 1: At least one predicate on (xi, xj) in α is true. (i.e., (xi, xj) is in a sparse re-
lation) For all edges (vi, vj) (including (vj , vi)) where vi ∈ Vi and vj ∈ Vj and i < j ≤ k,
if (vi, vj) agrees with α, then we create edge R(Svi , Svj ). Finally we make type[i, j] = 1
in the Hybrid Problem Hα.

Case 2: All predicates on (xi, xj) in α are false. (i.e., (xi, xj) is in a co-sparse relation)
For all edges (vi, vj) (including (vj , vi)) where vi ∈ Vi and vj ∈ Vj and i < j ≤ k, if (vi, vj)
does not agree with α, then we create edge R(Svi , Svj ). Finally we make type[i, j] = 0
in the Hybrid Problem Hα.

Analysis. We prove that (vi, vj) can appear in the solution of Hα only if when it agrees with
α. If (vi, vj) does not agree with α, we should not let them be in any solution of Hα. This is
done by the relation R and the string type.

Consider the two cases. If in α some predicates on (xi, xj) are true (i.e., tuples that agree with
α is sparse), then in any (vi, vj) that agrees with α, there must be an edge in G connecting
vi and vj . So we can add an edge (defined by relation R) on the corresponding sets Svi , Svj
and require there must be such an edge in the solution (i.e., type being 1).

On the other hand, if all predicates on (xi, xj) in α are false (i.e., tuples agreeing with α is
co-sparse), then in any (vi, vj) that agrees with α, there should not be any edge connecting
vi and vj . In this case we turn to consider the tuples (vi, vj) that do not agree with α (which
is a sparse relation, instead of co-sparse). We create edges on the corresponding sets Svi , Svj
and require there must not be such an edge in the solution (i.e., type being 0).

Therefore, a tuple (v1, . . . , vk) implies α iff for all i, j ∈ {1, . . . , k}, i < j, the truth value of
relation R(Svi , Svj ) equals whether type[i, j] = 1. Thus our reduction satisfies constraint (B)
of the Hybrid Problem.

From the analyses of the two steps, we have justified that: there exists (v1, . . . , vk) so that
(v1, . . . , vk) |= α, and ψ|α holds for all vk+1 ∈ Vk+1, iff there exists (Sv1 , . . . , Svk) being a solution
to the Hybrid Problem Hα. Thus, if for any α ∈ {0, 1}Pk+1 , the Hybrid Problem Hα accepts, then
there exists a solution (v1, . . . , vk) so that ψ(v1, . . . , vk, vk+1) holds for all vk+1 ∈ Vk+1. Otherwise
there does not exist such a solution. The argument proves the following claim.

Claim 4.1. The two propositions are equivalent:
(1) MCϕ has a solution x1 ← v1, . . . , xk ← vk such that (∀vk+1 ∈ Vk+1)ψ(v1, . . . , vk+1) is satisfied.
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(2) There exists an α ∈ {0, 1}Pk+1 so that (Sv1 , . . . , Svk) |= α, and Sv1 , . . . , Svk is a solution to the
Hybrid Problem Hα.

The running time of the whole reduction process is linear in the total number of edges in the
graph, because the number of predicates is constant. Thus Lemma 4.5 follows.

5 Hardness of k-OV for MC(∀∃k−1∀)
In this section we extend the reduction from Hitting Set to Orthogonal Vectors in [AWW15] to
sparse structures, giving a fine-grained Turing reduction from any MC(∀∃k−1∀) problem to a
MC(∃k∀) problem, establishing the hardness of k-OV for these problems.

Lemma 5.1. For k ≥ 2, let ϕ′ = (∃x2) . . . (∃xk)(∀xk+1)ψ(x1, . . . , xk+1). There is a fine-grained
Turing reduction

(MC(∀x1)ϕ′ ,m
k) ≤FGT (MC(∃x1)ϕ′ ,m

k).

We continue to use the conventions and assumptions in Section 4.2.2. First, we show that
in problem MC(∃x1)ϕ′ , if graph G satisfies (∃x1)ϕ′, then we can find a satisfying value v1 for
variable x1 by binary search. We divide the set V1 into two halves, take each half of V1 and query
whether (∃x1)ϕ′ holds true on the graph induced by this half of V1 together with the original sets
V2, . . . , Vk+1. If any half of V1 works, then we can shrink the set of candidate values for x1 by a
half, and then recursively query again, until there is only one vertex v1 left. So it takes O(log |V1|)
calls to find a v1 in some solution. This means as long as there is a solution for MC∃x1ϕ′ , we can
find a satisfying v1 efficiently, with O(logm) queries to the decision problem.

Step 1: Large degree vertices. Let t = m(k−1)/k. We deal with vertices in V1 . . . Vk with degree
greater than t. There are at most m/t = m1/k such vertices. After pre-computing the sizes
of all the sets, these large sets can be listed in time O(m1/k).

Step 1-1: Large degree vertices in V1. For each vertex v1 ∈ V1 with degree at least t, we
create a formula ψv1 on variables x2, . . . , xk+1 from formula ψ, by replacing occurrences of
unary predicates in ψ on x1 by constants, and replacing occurrences of binary predicates
involving x1 by unary predicates on the other variables. Then we check if the graph
induced by V2, . . . , Vk+1 satisfies (∃x2) . . . (∃xk)(∀xk+1)ψv1(x2, . . . , xk+1) by running the
baseline algorithm in time O(mk−1). If the new formula is satisfied, then we mark v1 as
“good”. The total time complexity is O(m1/k) ·O(mk−1) = O(mk−1+1/k).

Step 1-2: Large degree vertices in V2, . . . , Vk. Now we exhaustively search over all ver-
tices v1 ∈ V1 with degree less than t in the outermost loop. For each such v1, we find
out all vertices vi ∈ Vi for 2 ≤ i ≤ k, with degree at least t. Again, there are at most
O(m1/k) of them.

Case 1: k > 2. Because variables x2 through xk are all quantified by ∃, we in-
terchange their order so that the variable xi becomes the second-outermost variable
x2 (and thus the current vi becomes v2). Next, for each v1 and v2 we construct a
new formula ψ(v1,v2) on variables x3, . . . , xk+1, by regarding x1 and x2 as fixed val-
ues v1 and v2, and then modify ψ into ψ(v1,v2) similarly to the previous step. Again,
we run the baseline algorithm to check whether the graph induced by the current
V3, . . . , Vk+1 satisfies (∃x3) . . . (∃xk+1)ψ(v1,v2)(x3, . . . , xk+1), using time O(mk−2). If the
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formula is satisfied, we mark the current v1 as “good”. The total time complexity is
O(m ·m1/k) · (mk−2) = O(mk−1+1/k).

Case 2: k = 2. For each vertex v2, we mark all the v1’s satisfying ∀x3ψ(x1, x2, x3)
as “good”. This can be done in O(m) using the algorithm for the base case of the
baseline algorithm, by treating the current v2 as constant. So this process runs in time
O(m1/k) ·O(m) = O(m3/2).

If not all vertices in V1 with degree at least t are marked “good”, we reject. Otherwise proceed
to Step 2.

Step 2: Small degree vertices. First we exclude all the large vertices from the graph. Then for
the “good” vertices found in the previous step, we also exclude them from V1.

Now all vertices have degree at most t. In each of V1, . . . , Vk, we pack their vertices into
groups where in each group the total degree of vertices is at most t. Then the total number
of groups is bounded by O(m/t).

For each k-tuple of groups (G1, . . . , Gk) where G1 ⊆ V1, . . . , Gk ⊆ Vk, we query the oracle
deciding MC(∃x1)ϕ′ whether it accepts on the subgraph induced by vertices in G1, . . . , Gk. If
so, then we find a vertex v1 in V1 so that when x1 ← v1, the current subgraph satisfies ϕ′.
We remove this v1 from V1. Then we repeat this process to find new satisfying v1’s in V1,
and remove these v1’s from V1. When V1 is empty, or when no new solution is found after all
group combinations are exhausted, the algorithm terminates. If in the end V1 is empty, then
all v1 ∈ V1 are in solutions of MC∃x1ϕ′ , so we accept. Otherwise we reject.

Each query to MC∃x1ϕ′ has size m′ = O(kt) = O(t). Because the number of different k-
tuples of groups is O(m/t)k = O((m/t)k), the number of queries made is O((m/t)k + |V1|) ·
O(logm) = O((m1/k)k + |V1|) · O(logm) = O(m logm) times. If MC∃x1ϕ′ on input size m′

is solvable in time O(m′k−ε), then the running time for MC∀x1ϕ′ is O(m logm) ·O(m′k−ε) =
O(m1+((k−1)/k)(k−ε) logm) = O(mk−(1−1/k)ε logm). The exponent of m is less than k. Thus
this is a fine-grained Turing reduction. Lemma 5.1 follows.

6 Open Problems

One obvious open problem is to derandomize our universe-shrinking self-reductions, or show that
this is not possible. One delicate point is that we cannot increase the running times by even a small
polynomial factor.

Our results raise the possibility that many other classes have complete problems under fine-
grained reducibility, and that this will be a general method for establishing the plausibility of
conjectures on the fine-grained complexity of problems. There are some obvious candidates for
such classes. We could drop the restriction that all relations are binary or unary, and look at
first-order “hypergraph” properties. While it is possible to reduce such problems to first-order
graph properties, and even in a way that preserves the number of edges up to constant factors,
doing so usually introduces more quantifiers and variables, and so is not in general a fine-grained
reduction. We could also stratify the first-order formulas by variable complexity, the number of
distinct variable names in a formula, rather than number of quantifiers. (Variable complexity
arises naturally in database theory, because the variable complexity determines the arity of some
relation in any way of expressing the query as a sequence of sub-queries.) First-order logic is rather
limited, so we could look at augmentations that increase its reach, such as allowing a total ordering
on elements, or allowing the logic to take transitive closures of relations (e.g., to talk about the
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reachability relation in a sparse directed graph), or more generally, introduce monotone fixed point
operations.

We’d like to find more reductions between and equivalences among the problems that are proven
hard under some conjecture. For example, Edit Distance, Fréchet Distance, and Longest Common
Subsequence are all almost quadratically hard assuming SETH. Are there any reductions between
these problems? Are they all equivalent as far as having subquadratic algorithms? All of these
problems have similar dynamic programming formulations. Can we formalize a class of problems
with such dynamic programming algorithms problems and find complete problems for this class?
More generally, we would like taxonomies of the problems within P that would classify more of the
problems that have conjectured hardness, or have provable hardness based on conjectures about
other problems. Such a taxonomy might have to be based on the structure of the conjectured best
algorithms for the problems rather than on resource limitations.
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Appendix A Baseline algorithm

This section gives an O(nk−1m) time algorithm solving MC(k + 1) with any quantifier structure
for k ≥ 1, thus proving Lemma 3.1, which states that the running time Tk(n,m) of MC(k + 1) on
graphs of n vertices and m edges follows the recurrence

Tk(n,m) ≤ n · Tk−1(n,O(m)) +O(m), for k ≥ 2.

T1(n,m) = O(m).

In this section we will use the conventions and assumptions given in Section 4.2.2.

Base Case. We prove that when k = 1, Tk(n,m) = m. For each v1 ∈ V1, the algorithm computes
#(v1) = |{v2 ∈ V2 | (v1, v2) |= ψ}|. Thus we can list the sets of v1 s.t #(v1) > 0 (if the inner
quantifier is ∃), or those that satisfy #(v1) = |V2| (if it is ∀).
Algorithm 1 shows the details for counting #(v1) for all v1. Let P be the set of all predicates
in ψ. Similarly to the proof of Lemma 4.5, we consider the 2|P | different truth assignments
of all predicates in P . Let an interpretation α be a binary string of length |P |, that encodes
all truth values assigned to all predicates in P . Different interpretations are disjoint cases,
so we treat them separately. For each interpretation α satisfying ϕ, we count the number

25

http://theory.stanford.edu/~virgi/stoctutorial.html
http://theory.stanford.edu/~virgi/stoctutorial.html


of v2’s for each v1 so that (v1, v2) |= α. We consider two cases based on whether all binary
predicates are false in α: If some binary predicate R(x1, x2) is true as specified by α, then
we can directly go through all edges in ER incident on v1, and enumerate the v2’s satisfying
α. Otherwise if all binary predicates are false (so that α specifies there should be no edges
connecting x1 and x2, i.e., the co-sparse case), then we can first over-count number of v2, and
then go through all edges incident on v1 so as to exclude the over-counted v2’s.

Note that because 2|P | is a constant number, the running time is linear to the sum of degrees
of each v1, or O(m).

Algorithm 1: Counting #(v1) for MC(Q1x1)(Q2x2)ψ(x1,x2)

1 for Each interpretation α ∈ {0, 1}|P | do
2 if α satisfies ψ then
3 if Some binary predicates are true in α then // Sparse case
4 for Each v1 ∈ V1 that agrees with all unary predicates on x1 specified by α do
5 Let #α(v1) be the number of v2 ∈ V2 that agrees with all unary predicates on

x2, and that (v1, v2) agrees with all binary predicates on (x1, x2) and (x2, x1)
specified by α

6 #(v1) = #(v1) + #α(v1)

7 else // co-sparse case
8 Let #1(v1) be the number of v2 ∈ V2 that agrees with all unary predicates on x2

specified by α // over-counting
9 for Each v1 ∈ V1 that agrees with all unary predicates on x1 specified by α do

10 Let #2(v1) be the number of v2 ∈ V2 incident with v1 that agrees with all
unary predicates on x2 specified by α // excluding v2’s that are adjacent to
v1

11 Let #α(v1)← #1(v1)−#2(v1)
12 #(v1) = #(v1) + #α(v2)

Inductive Step. For k ≥ 2, we give a quantifier-eliminating downward reduction, thus proving
the recurrence relation. Assume ϕ = (Q1x1) . . . (Qk+1xk+1)ψ(x1, . . . , xk+1) For each v1 ∈ V1,
create new formula ϕv1 = (Q2x2) . . . (Qk+1xk+1)ψ(x2, . . . , xk+1), and in ψ we replace each
occurrence of unary predicate Ri(x1) with a constant Ri(v1), and replace each occurrence of
binary predicate Ri(x1, xj) (or Ri(xj , x1)) with unary predicate R′i(xj) whose value equals
Ri(v1, xj) (or Ri(xj , v1)). Our algorithm enumerates all v1 ∈ V1, and then computes if the
graph induced by V2, . . . , Vk+1 satisfies ϕv1 . If x1 is quantified by ∃, we accept iff any of them
accepts. Otherwise we accept iff all of them accepts. The construction of ϕv1 takes time
O(m). The created graph has O(n) vertices and O(m) edges. Thus the recursion follows.

This process is a quantifier-eliminating downward reduction from a MC(k + 1) problem
to a MC(k) problem. It makes O(m) queries, each of size O(m). Then if problems in
MC(k) are solvable in time O(mk−1−ε), then problems in MC(k + 1) are solvable in time
m ·O(mk−1−ε) = O(mk−ε). This quantifier-eliminating downward reduction implies that for
problem L1 ∈MC(k + 1), there exists L2 ∈MC(k) so that (L1,m

k) ≤FGT (L2,m
k−1).

From the recursion and the base case, we have the running time O(nk−1m) by induction.
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Appendix B Algorithms for easy cases

In this section we show that any (k + 1)-quantifer problem with a quantifier sequence ending with
∃∃ or ∀∀ is solvable in time O(mk−0.5). First of all, we use the quantiferi-eliminating downward
reduction to reduce the problem to a MC(3) problem. Then from the next two subsections we see
that these problems are solvable in O(m1.5).

Lemma B.1. Problems in MC(∃∃∃) and MC(∀∀∀) are solvable in O(m1.5).

For problems in MC(∀∀∀), we decide its negation, which is a MC(∃∃∃) problem.
We define nine Atomic Problems, which are special MC(3) problems. Let the Atomic Problem

labeled by ` to be MC(∃x∈X)(∃y∈Y )(∃z∈Z)ψ` , and referred to as ∆[`]. It is defined on a tripartite
graph on vertex sets (X,Y, Z), whose edge sets are EXY , EY Z , EXZ defined on (X,Y ), (Y,Z), (X,Z)
respectively. The graph is undirected, i.e., EXY , EY Z and EXZ are symmetric relations. For
simplicity we define an edge predicate E so that E(v1, v2) is true iff there is an edge in any of
EXY , EY Z , EXZ connecting (v1, v2) or (v2, v1). Besides, we use degY (x) to denote the number of
x’s neighbors in Y .

The ψ` for all Atomic Problems are defined in the following table.

ψ2 = E(x, y) ∧ E(x, z) ψ2+ = E(x, y) ∧ E(x, z) ∧ E(y, z) ψ2− = E(x, y) ∧ E(x, z) ∧ ¬E(y, z)
ψ1 = E(x, y) ∧ ¬E(x, z) ψ1+ = E(x, y) ∧ ¬E(x, z) ∧ E(y, z) ψ1− = E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z)
ψ0 = ¬E(x, y) ∧ ¬E(x, z) ψ0+ = ¬E(x, y) ∧ ¬E(x, z) ∧ E(y, z) ψ0− = ¬E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z)

For problem MCϕ where ϕ = (∃x ∈ X)(∃y ∈ Y )(∃z ∈ Z)ψ(x, y, z), we write ψ as a DNF, and split
the terms. Then we decide if there is a term so that there exist x, y, z satisfying this term. On each
term t, which is a conjunction of predicates and negated predicates, we work on the induced sub-
graph whose vertices satisfy all the true unary predicates and unsatisfy all the false unary predicates
defined on them in t. Then we can remove all unary predicates from the conjunction, which is now
a conjunction of binary predicates or their negations. (If the conjunction is a single predicate or a
single negated predicate, then we can deal with it easily, so we don’t consider this case here.) If we
define E(x, y) =

∧
R is a positive binary predicate in tR(x, y) ∧ ∧R is a negative binary predicate in t ¬R(x, y),

and define E(y, z) and E(x, z) similarly, then t becomes equivalent with some Atomic Problem,
or a disjunction of Atomic Problems (because variables y and z are interchangeable, the Atomic
Problems and their disjunctions cover all possible cases).

In our algorithm for each problem ∆[`], instead of deciding the existence of satisfying x, y, z,
we consider these problems as counting problems, where for each x we compute

#`(x) = |{(y, z) | x, y, z satisfy ψ`}|.

Problems ∆[2],∆[1],∆[0] can be computed straightforwardly.
• In ∆[2], #2(x) = degY (x)× degZ(x).
• In ∆[1], #1(x) = degY (x)× (|Z| − degZ(x)).
• In ∆[0], #0(x) = (|Y | − degY (x))× (|Z| − degZ(x)).
Next we show for labels ` ∈ {2+, 1+, 0+, 2−, 1−, 0−}, problems ∆[`] can be computed in

O(m1.5).
Algorithm 2 solves ∆[2+], which is the triangle detection problem. The first part of the algo-

rithm only considers small degree y. On each iteration of the outer loop, the inner loop is run for
at most

√
m times. The second part only considers large degree y. Because there are at most

√
m

of them, the outer loop is run for at most
√
m times. Therefore the running time of the algorithm

is O(m1.5).
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Algorithm 2: ∆[2+]

1 for all (x, y) ∈ EXY do // Small degree y
2 if degZ(y) ≤ √m then
3 for all z s.t. (y, z) ∈ EY Z do
4 if (x, z) ∈ EXZ then
5 #2+(x)← #2+(x) + 1

6 for all y ∈ Y s.t. degZ(y) >
√
m do // Large degree y

7 for all (x, z) ∈ EXZ do
8 if (x, y) ∈ EXY and (y, z) ∈ EY Z then
9 #2+(x)← #2+(x) + 1

10 if #2+(x) > 0 for some x ∈ X then accept else reject

Algorithm 3 solves ∆[1+], which detects (x − y − z) paths where there is no edge between x
and z. The first part is similar as ∆[2+]. The second part first over-counts (x − y − z) paths for
all large degree y without restricting the edge between x and z, and then counts the number of
over-counted cases in order to exclude them from the final result. In the first block, the inner loop
is run for at most

√
m times for each edge in EXY . The second block takes time O(m). The outer

loop of the third block is run for at most
√
m times, because there are at most

√
m sets with degree

at least
√
m. So in all, the running time is O(m1.5).

Algorithm 3: ∆[1+]

1 for all (x, y) ∈ EXY do // Small degree y
2 if degZ(y) ≤ √m then
3 for all z s.t. (y, z) ∈ EY Z do
4 if (x, z) /∈ EXZ then
5 #1+(x)← #1+(x) + 1

6 for all (x, y) ∈ EXY do // Large degree y
7 if degZ(y) ≥ √m then // Over-counting
8 #1+(x) = #1+(x) + degZ(y)

9 for all y ∈ Y s.t. degZ(y) >
√
m do

10 for all (x, z) ∈ EXZ do // for all z connected to x
11 if (x, y) ∈ EXY and (y, z) ∈ EY Z then // if we just over-counted the pair (y, z)
12 #1+(x)← #1+(x)− 1 // then we exclude the pair by subtracting one.

13 if #1+(x) > 0 for some x ∈ X then accept else reject

For ∆[0+], we first compute #2+(x) which is the result of ∆[2+], and then compute #1+(x)
and #′1+(x), which are results of ∆[1+] on vertex sets (X,Y, Z) and (X,Z, Y ) respectively. Finally
let #0+(x)← |EY Z | − (#2+(x) + #1+(x) + #′1+(x)).

#2−(x),#1−(x),#0−(x) can be computed by respectively taking the differences of #2(x),#1(x),#0(x)
and #2+(x),#1+(x),#0+(x).
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Lemma B.2. Problems in MC(∀∃∃) and MC(∃∀∀) are solvable in O(m1.5).

For problems in MC(∃∀∀), we decide its negation, which is a MC(∀∃∃) problem.
For problem MCϕ where ϕ = (∀x ∈ X)(∃y ∈ Y )(∃z ∈ Z)ψ(x, y, z), we use the same algorithm

to compute #`(x) for all x ∈ X. If the value of #`(x) is greater than zero for all x ∈ X, then we
accept, otherwise reject. Again, we write ψ as a DNF, and split the terms. By the same argument
as the previous lemma, we transform the problem to a disjunction of Atomic Problems. If for all
x ∈ X, at least in one of the Atomic Problem, #`(x) is greater than zero, then we accept, otherwise
reject.
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