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Abstract

Properties definable in first-order logic are algorithmically interesting for both theoretical
and pragmatic reasons. Many of the most studied algorithmic problems, such as Hitting Set and
Orthogonal Vectors, are first-order, and the first-order properties naturally arise as relational
database queries. A relatively straightforward algorithm for evaluating a property with k + 1
quantifiers takes time O(mk) and, assuming the Strong Exponential Time Hypothesis (SETH),
some such properties require O(mk−ε) time for any ε > 0. (Here, m represents the size of the
input structure, i.e. the number of tuples in all relations.)

We give algorithms for every first-order property that improves this upper bound tomk/2Θ(
√

logn),
i.e., an improvement by a factor more than any poly-log, but less than the polynomial required
to refute SETH. Moreover, we show that further improvement is equivalent to improving algo-
rithms for sparse instances of the well-studied Orthogonal Vectors problem. Surprisingly, both
results are obtained by showing completeness of the Sparse Orthogonal Vectors problem for the
class of first-order properties under fine-grained reductions. To obtain improved algorithms, we
apply the fast Orthogonal Vectors algorithm of [3, 16].

While fine-grained reductions (reductions that closely preserve the conjectured complexities
of problems) have been used to relate the hardness of disparate specific problems both within
P and beyond, this is the first such completeness result for a standard complexity class.

1 Introduction

Fine-grained complexity aims to make complexity theory more relevant to algorithm design (and
vice versa) by giving reductions that better preserve the times required for solving problems, and
connecting algorithmic progress with complexity theory. While some of the key ideas can be traced
back to parameterized algorithms and complexity ([20, 18]), studies of the exact complexity of
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NP-complete problems ([29, 23, 24, 22]), and algorithmic consequences of circuit lower bounds ([6,
37, 26, 28, 8, 21, 25]), the full power of this approach has emerged only recently. This approach has
given us new circuit lower bounds ([32, 34]), surprising algorithmic improvements using circuit lower
bound techniques ([3, 31, 16, 15]), and many new insights into the relative difficulty of substantially
improving known algorithms for a variety of problems both within and beyond polynomial time.

One of the strengths of this approach also makes it seemingly more complicated. Fine-grained
reductions often cut across traditional complexity hierarchies; for example, many results use a
now-standard reduction from the NP-complete SAT problem down to the first-order definable (aka,
uniform AC0) orthogonal vectors problem. (Counterintuitively, this reduces a very hard problem
to a problem in an extremely simple complexity class). On the other hand, different complete
problems for the same complexity class can have different time complexities, meaning there may
not be fine-grained reductions between them (or at least, that such reductions can be highly non-
trivial.) Thus far, fine-grained complexity has remained focused on specific problems, rather than
organizing problems into classes as in traditional complexity. As the field has grown, many funda-
mental relationships between problems have been discovered, making the graph of known results a
somewhat tangled web of reductions ([36, 5, 9, 11, 12, 1, 13, 2, 27]).

Here, we give the first results in fine-grained complexity that apply to an entire complexity
class, namely the class of first-order definable properties (the uniform version of AC0.) This class is
both algorithmically natural in that it contains many standard problems considered before (such as
Hitting Set and Orthogonal Vectors), and motivated by its importance in logic and database theory.
It is not difficult to see that checking whether a property expressible by a first-order formula with
k+1 quantifiers holds on a given structure with m records can be done in O(mk) time, and if Strong
Exponential Time Hypothesis (SETH) is true, there are such properties that require mk−o(1) time to
decide.1 For k = 1, this is linear time and so cannot be improved. For each such problem with k ≥ 2,
we give a algorithm that solves it in mk/2Θ(

√
logm) time. (This improves the standard algorithm by

a factor more than any poly-log, but less than the polynomial improvement needed to refute SETH.)
Moreover, we show that any further improvement is equivalent to a similar algorithmic improvement
for the well-studied Orthogonal Vectors problem. Surprisingly, both results are obtained by showing
that (a version of) the Orthogonal Vectors problem is complete under fine-grained reductions for
the class of all first-order properties. This is the first completeness result for a previously studied
complexity class under fine-grained reducibility. To obtain the algorithmic results, we then apply
the counter-intuitive algorithm for the Orthogonal Vectors problem of [3, 16], which uses techniques
from circuit lower bounds.

In addition to introducing new algorithms and giving completeness results, our results clarify
and simplify our understanding of “complexity within P”. For many of the known SETH-hard
problems of interest such as Edit Distance [9], Longest Common Subsequence [5, 1, 13], Dynamic
Time Warping [1, 13], Fréchet Distance [12], Succinct Stable Matching [27], etc., the reduction
from SAT passes through the Orthogonal Vectors problem. Thus, if any of these SETH-hard
problems had substantially improved algorithms, all first-order properties would have similarly
improved algorithms. Thus FOPC, the hypothesis that some first-order property does not have a
substantially faster algorithm, is a useful intermediary between SETH and many of its consequences.
FOPC is both equivalent to conjectures concerning many of the previously studied problems ([11]),
and potentially more plausible to SETH-skeptics since it concerns an entire complexity class, while
having most of the consequences of SETH. This is summarized in Figure 1. (See Section 2.3 for
definitions of problems.)

1Informally, SETH is a hypothesis that CNF SAT cannot be solved substantially faster than 2n time; see the
Preliminaries for a formal statement.
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Figure 1: A diagram of reductions. We simplify this picture, and make the reductions to Edit Distance,
LCS, etc. more meaningful.

While we concentrate on the general picture of complexity classes, even special cases of our
results for specific problems are of interest. There were no similarly improved algorithms for
Orthogonal Vectors with small total Hamming weight (Sparse OV) or related problems such as
Sperner Family and 2-Set Cover (in the sparse high-dimensional case), and it was not previously
known that the sparse versions of these problems were equivalent.

In addition to having a natural and useful complete problem, the class of first-order properties
is important in itself. This class includes many problems studied in the fine-grained complexity
literature such as Hitting Set, Orthogonal Vectors, Sperner Family, Diameter 2, Radius 2, k-
Independent Set, k-Dominating Set and so on. First-order properties are also extensively studied
in complexity, logic (especially finite model theory and theory of databases) and combinatorics.
Algorithms for model-checking first-order properties are inherent in databases (the core of the
relational database language SQL is equivalent to first-order properties). Roughly speaking, first-
order properties are essentially the uniform version of AC0 in the complexity literature [10].

Since fine-grained complexity is concerned with exact time complexities (distinguishing e.g. n1.9

time from n2 time), the problem representation is significant. For graph problems, there are two
standard representations: adjacency lists (which are good for sparse graphs), in which running
time is analyzed with respect to the number of edges m, and adjacency matrices (good for dense
graphs), in which the runtime is a function of the number of vertices, n. For several reasons, we
use the sparse adjacency list (list of tuples) representation. First, many of the problems considered
such as Orthogonal Vectors have hard instances that are already sparse. Secondly, the complexity
of first-order problems in the dense model is somewhat unclear, at least for numbers of quantifiers
between 3 and 7 ([33]). Third, the sparse model is more relevant for first-order model checking, as
databases are represented as lists of records.

1.1 First-order properties

The problem of deciding whether a structure satisfies a logical formula is called the model checking
problem. In relational databases, first-order model checking plays an important role, as first-order
queries capture the expressibility of relational algebra. In contrast to the combined complexity,
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where the database and query are both given as input, the data complexity measures the running
time when the query is fixed. The combined complexity of first-order queries is PSPACE-complete,
but the data complexity is in LOGSPACE [30]. Moreover, these problems are also major topics
in parameterized complexity theory. In [19], Flum and Grohe organize parameterized first-order
model-checking problems (many of which are graph problems) into hierarchical classes based on
their quantifier structures. Here, we study model checking from the fine-grained complexity per-
spective.

More specifically, let ϕ be a fixed first-order sentence containing free predicates of arbitrary con-
stant arity (and no other free variables). For example, the k-Orthogonal Vectors (k-OV) problem

can be expressed by a (k+1)-quantifier formula ϕ = (∃v1 ∈ A1) . . . (∃vk ∈ Ak)(∀i)
[∨k

j=1 ¬(vj [i] = 1)
]
.

The model-checking problem for ϕ, denoted MCϕ, is deciding whether ϕ is true on a given input
structure interpreting predicates in ϕ (e.g., given k sets of vectors, decide k-OV). We sometimes re-
fer to structures as “hypergraphs” (“graphs” when all relations are unary or binary), and relations
as edges or hyperedges. We use n to denote size of the universe of the structure and m the total
number of tuples in all its relations (size of the structure). Many graph properties such as k-clique
have natural first-order representations, and set problems such as Hitting Set are representable in
first-order logic using a relation R(u, S) ≡ (u ∈ S).

We use notation MC(Φ) for a class of model-checking problems for ϕ ∈ Φ, with the main focus
on classes of (k + 1)-quantifier ϕ with k ≥ 1 (denoted MC(k + 1)) and restrictions of this class
to specific quantifier prefixes (e.g., MC(∃∃∀) for 3-quantifier ϕ with quantifier prefix ∃∃∀ when
written in prenex normal form). For formal definitions and more examples see Sections 2.2 and 2.3.

We propose the following conjecture on the hardness of model checking of first-order properties.
First-order property conjecture (FOPC): There is an integer k ≥ 2, so that ∀ε > 0, there is
a (k+ 1)-quantifier first-order property that cannot be decided by any algorithm in O(mk−ε) time.

1.2 Orthogonal Vectors

In the Orthogonal Vectors (OV) problem, we are given a set A of n Boolean vectors of dimension
d, and must decide if there are u, v ∈ A such that u and v are orthogonal, i.e., u[i] · v[i] = 0 for all
indices i ∈ {1, . . . , d}. Another (equivalent) version is to decide with two sets A and B of Boolean
vectors whether there are u ∈ A and v ∈ B so that u and v are orthogonal. A näıve algorithm for
OV runs in time O(n2d), and the best known algorithm runs in n2−Ω(1/ log(d/ logn)) [3, 16].

In this paper we introduce a version of OV we call the Sparse Orthogonal Vectors (Sparse OV)
problem, where the input is a list of m vector-index pairs (v, i) for each v[i] = 1 (corresponding to
the adjacency list representation of graphs) and complexity is measured in terms of m; we usually
consider m = O(n1+γ) for some 0 ≤ γ < 1. The popular hardness conjectures on OV restrict the
dimension d to be between ω(log n) (low dimension) and no(1) (moderate dimension); however in
Sparse OV we do not restrict d.

We thus identify three versions of Orthogonal Vector Conjecture, based on the size of the
dimension d. In all three conjectures the complexity is measured in the word RAM model with
O(log n) bit words.
Low-dimension OVC (LDOVC): For all ε > 0, there is no O(n2−ε) time algorithm for OV with

dimension d = ω(log n).
Moderate-dimension OVC (MDOVC): For all ε > 0, there is no O(n2−εpoly(d)) time algo-

rithm that solves OV with dimension d.
Sparse OVC (SOVC): For all ε > 0, there is no O(m2−ε) time algorithm for Sparse OV where

m is the total Hamming weight of input vectors.
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It is known that SETH implies LDOVC[31]. Because MDOVC is a weakening of LDOVC, it
follows from the latter.2 Like LDOVC, MDOVC also implies the hardness of problems including
Edit Distance, LCS, etc. Here we further show that MDOVC and SOVC are equivalent (see Lemma
1.1).

OV can be extended to the k-OV problem for any integer k ≥ 2: given k sets A1, . . . , Ak of
Boolean vectors, determine if there are k different vectors v1 ∈ A1, . . . , vk ∈ Ak so that for all
indices i,

∏k
j=1 vj [i] = 0 (that is, their inner product is 0). We naturally define a sparse version of

k-OV similar to Sparse OV, where all ones in the vectors are given in a list.

1.3 Main Results

Completeness. First, we show that conjectures for OV defined on dense (moderate-dimension)
and sparse models are equivalent under fine-grained reductions, which means MDOVC is true iff
SOVC is true (see Lemma 6.2). This also holds for k-OV.

Lemma 1.1. For any integer k ≥ 2, there exist δ, ε > 0 and a O(nk−ε) time algorithm solving
k-OV with dimension d = nδ, if and only if there is an ε′ > 0 and a O(mk−ε′) time algorithm for
Sparse k-OV, where m is the total Hamming weight of all input vectors.

Our main result establishes an equivalence of MDOVC and FOPC, showing the completeness
of Sparse OV and hardness of (dense) OV for the class of first-order property problems.

Theorem 1. MDOVC, SOVC and FOPC are equivalent.

This paper also proves a hardness and completeness result for k-OV, connecting one combina-
torial problem to a large and natural class of logical problems. The following theorem states that
Sparse k-OV is complete for MC(∃k∀) (and its negation form MC(∀k∃)), and hard for MC(∀∃k−1∀)
(and its negation form MC(∃∀k−1∃)) under fine-grained reductions.

Theorem 2. If Sparse k-OV with total Hamming weight m can be solved in time O(mk−ε) for some
ε > 0, then all problems in MC(∃k∀), MC(∀k∃), MC(∀∃k−1∀) and MC(∃∀k−1∃) are solvable in
time O(mk−ε′) for some ε′ > 0.

MC(∃k∀) and MC(∀k∃) are interesting sub-classes of MC(k + 1): if Nondeterministic SETH
is true, then all SETH-hard problems in MC(k+ 1) are contained in MC(∃k∀) or MC(∀k∃) ([14]).

We will also show that the 2-Set Cover problem and the Sperner Family problem, both in
MC(∃∃∀), are equivalent to Sparse OV under fine-grained reductions, and thus complete for first-
order properties under fine-grained reductions.

Algorithmic results. Combining our reductions with the surprisingly fast algorithm for Orthog-
onal Vectors by [3] and [16], we obtain improved algorithms for every problem representable as a
(k + 1)-quantifier first-order property.

Theorem 3. There is an algorithm solving MC(k + 1) in time mk/2Θ(
√

logm).

Let us consider the above results in context with prior work on the fine-grained complexity of
first-order properties. In [33], Ryan Williams studied the fine-grained complexity of dense instances
of first-order graph properties. He gave an nk+o(1)-time algorithm for MC(k+1) on graphs when k is
a sufficiently large constant, and showed that MC(k+1) requires at least nk−o(1) time under SETH.

2Although dimension d is not restricted, we call it “moderate dimension” because such an algorithm only improves
on the naive algorithm if d = nO(ε).
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His algorithms only apply to graphs (they look difficult to generalize to even ternary relations),
and it seems difficult to point to a specific simple complete problem in this setting. To compare,
our results show that the sparse case of MC(k + 1) (for all c-ary relations, for all constants
c) is captured by very simple problems (e.g. sparse Orthogonal Vectors), which also leads to an
algorithmic improvement for all c-ary relations.

1.4 Organization of this paper

Section 1 introduced the motivation, some definitions and statements of the main results. In Sec-
tion 2, we give the formal definitions of the reductions we use, as well as detailed definitions of
first-order properties, with first-order representations of common problems in fine-grained complex-
ity. We present a general outline of the proofs in Section 3, and a high-level explanation of key
techniques in Section 4.

The full proof starts with the reduction from MC(∃k∀) to k-OV (Section 5), with random-
ized universe-shrinking self-reduction described in Section 5.1, which is then derandomized in Sec-
tion 6. Section 8 presents the reduction from MC(∀∃k−1∀) to k-OV, and Section 10 discusses the
mk/2Θ(

√
logm) time algorithm for Sparse OV and, therefore, MC(k + 1). We conclude with open

problems in Section 11.

2 Preliminaries

2.1 Reductions

To establish the relationship between complexities of different problems, we use the notion of fine-
grained reductions as defined in [36]. These reductions establish conditional hardness results of
the form “If one problem has substantially faster algorithms, so does another problem”. We will
also use exact complexity reductions (see definition 2.2), which strengthen the above claim to “if
one problem has algorithms improved by a factor s(m), then another problem can be improved
by a factor sc(m)” for some constant c. (Note that some fine-grained reductions already have this
property.) The underlying computational model is the Word RAM with O(log n) bit words.

Definition 2.1. (Fine-grained reduction (≤FGR))
Assume that L1 and L2 are languages and T1 and T2 are their conjectured running time lower
bounds, respectively. Then we say (L1, T1) ≤FGR (L2, T2) if for every ε > 0, there exists ε′ > 0,
and an algorithm AL1 for L1 which runs in time T1(n)1−ε′ on inputs of length n, making q calls to
an oracle for L2 with query lengths n1, . . . , nq, where

∑q
i=1(T2(ni))

1−ε ≤ (T1(n))1−ε′ .

Thus, if L2 has an algorithm substantially faster than T2, L1 can be solved substantially faster
than T1. 3

To simplify transferring algorithmic results, we define a stricter variant of fine-grained reduc-
tions, which we call exact reductions. These reductions satisfy a stronger reducibility notion.

3In almost all fine-grained reductions, T1 ≥ T2, that is, we usually reduce from harder problems to easier problems,
which may seem counter-intuitive. A harder problem L1 can be reduced to a easier problem L2 with T1 > T2 in two
ways: by making multiple calls to an algorithm solving L2 and/or by blowing up the size of the L2 instance (e.g., the
reduction from CNF-SAT to OV [31]). All reductions from higher complexity to lower complexity problems in this
paper belong to the first type.

Actually, it is harder to fine-grained reduce from a problem with lower time complexity to a problem with higher
time complexity (e.g., prove that (MC(k),mk−1) ≤FGR (MC(k+1),mk)), because this direction often needs creating
instances with size much smaller than the original instance size.
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Definition 2.2. (Exact complexity reduction (≤EC))
Let L1 and L2 be languages and let T1, T2 denote time bounds. Then (L1, T1) ≤EC (L2, T2) if
there exists an algorithm AL1 for L1 running in time T1(n) on inputs of length n, making q calls
to oracle of L2 with query lengths n1, . . . , nq, where

∑q
i=1 T2(ni) ≤ T1(n).

That is, if L2 is solvable in time T2(n), then AL1 solves L1 in time T1(n).

2.2 Model checking for first-order logic

Let R1, . . . , Rr be predicates of constant arities a1, . . . , ar (a vocabulary). A finite structure over
the vocabulary R1, . . . , Rr consists of a universe U of size n together with r lists, one for every Ri,
of mi tuples of elements from U on which Ri holds. Let m =

∑r
i=1mi; viewing the structure as a

database, m is the total number of records in all tables (relations).
We loosely use the term hypergraph to denote an arbitrary structure; in this case, we refer to its

universe as a set of vertices V = {v1, . . . , vn} and call tuples (v1, . . . , vai) such that Ri(v1, . . . , vai)
holds hyperedges (labeled Ri). A set of all Ri-labeled hyperedges in a given hypergraph is denoted
by ERi or just Ei; the structure is denoted by G = (V,E1, . . . , Er). Similarly, we use the term
graph for structures with only unary and binary relations (edges); here, we mean edge-labeled
vertex-labeled directed graphs with possible self-loops, as we allow multiple binary and unary
relations and relations do not have to be symmetric. This allows us to use graph terminology such
as a degree (the number of (hyper)edges containing a given vertex) or a neighbourhood of a vertex.

Let ϕ be a first-order sentence (i.e. formula without free first-order variables) containing predi-
cates R1, . . . , Rr. Let k be the number of quantifiers in ϕ. Without changing k, we can write ϕ in
prenex form. The model-checking problem for a first-order property ϕ, MCϕ, is: given a structure
(hypergraph) G, determine whether ϕ holds on G (denoted by G |= ϕ). For a class of formulas Φ, we
use the notation MC(Φ) for a class of model-checking problems for ϕ ∈ Φ, with shortcuts MC(k)
for Φ = k-quantifier first-order formulas in prenex form, and MC(Q1 . . . Qk) for first-order prenex
formulas with quantifier prefix Q1 . . . Qk, with a shortcut Qci denoting c consecutive occurrences of
Q (e.g. MC(∃k∀)).

We assume that (hyper)graphs are given as a list of m (hyper)edges, with each hyperedge
encoded by listing its elements. In the Word RAM model with O(log n) bit words, the size of an
encoding of a hypergraph is O(n+m) words, and an algorithm can access a hyperedge in constant
time. With additional O(m) time preprocessing, we can compute degrees and lists of incident edges
for each vertex, and store them in a hash table for a constant-time look-up; edges incident to a
vertex can then be listed in time proportional to its degree. We also assume that m ≥ n, with
every vertex incident to some edge, because the interesting instances are in this case. Moreover, we
assume the (hyper)graph is k-partite where k is the number of variables in ϕ, so that each variable
is selected from a distinct vertex set. From any (hyper)graph, the construction of this k-partite
graph needs a linear time, linear space blowup preprocessing which creates at most k duplicates of
the vertices and k2 duplicates of the edges. Finally, we treat domains of quantifiers as disjoint sets
forming a partition of the universe; any structure can be converted into this form with constant
increase of the universe size. We also view predicates on different variable sets (e.g., R(x1, x2) vs.
R(x2, x4) vs. R(x4, x4)) as different predicates, and partition corresponding edge sets appropriately.

The focus of this paper is on sparse structures, that is, the case when m ≤ O(n1+γ) for some γ
such that 0 ≤ γ < 1. In particular, all Ei are sparse relations; we use the term co-sparse to refer
to complements of sparse relations. We will usually measure complexity as a function of m.
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2.3 Common problems and conjectures

In CNF-SAT problem, given a Boolean formula F in CNF form (conjunction of disjunctions of
(possibly negated) variables), the goal is to determine whether there is an assignment of Boolean
values to variables of F which makes F true. In k-CNF-SAT, every clause (disjunction) can have
at most k literals. We refer to the following conjecture about complexity of solving CNF-SAT:

Strong Exponential Time Hypothesis (SETH)4: For every ε > 0, there exists a k ≥ 2 so
that k-CNF-SAT cannot be solved in time O(2n(1−ε)).

Below we list some problems studied in fine-grained complexity, with their first-order definitions
on structures with unary and binary relations.

• Graph problems. The input structure is G = (V,E) with a universe V and a binary relation
E.

1. Diameter-2: (∀x1)(∀x2)(∃x3) [E(x1, x3) ∧ E(x3, x2)].
2. Radius-2: (∃x1)(∀x2)(∃x3) [E(x1, x3) ∧ E(x3, x2)].

3. k-Clique: (∃x1) . . . (∃xk)
[∧

i,j∈{1,...,k},i 6=j E(xi, xj)
]
. More generally, for a fixed graph H

of k vertices, deciding if H is a subgraph or induced subgraph of the input graph G (e.g., the
k-Independent Set problem) can be expressed in a similar way.

4. k-Dominating Set :(∃x1) . . . (∃xk)(∀xk+1)
[∨k

i=1E(xi, xk+1)
]
.

• Set problems. The inputs are set families S or S1, . . . ,Sk over a universe U . Here, all sets
are given explicitly and represented by first-order variables. These structures contain a single
binary predicate ∈.

1. Hitting Set : 5 (∃H ∈ S)(∀S ∈ S)(∃x) [(x ∈ H) ∧ (x ∈ S)].

2. k-Set Packing: (∃S1 ∈ S) . . . (∃Sk ∈ S) (∀x)
[∨k

i=1

(
(x ∈ Si)→

∧
j 6=i(x /∈ Sj)

)]
.

3. k-Empty Intersection k-OV): (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u ∈ U)
[∨k

i=1 ¬(u ∈ Si)
]
.

4. k-Set Cover : (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u ∈ U)
[∨k

i=1(u ∈ Si)
]
.

5. Set Containment : (∃S1 ∈ S1)(∃S2 ∈ S2) (∀u ∈ U) [(¬(u ∈ S1)) ∨ (u ∈ S2)].

k-Empty Intersection is equivalent to k-OV, and Set Containment is equivalent to Sperner
Family problem. See Section 1.2 for definitions and conjectures for variants of the Orthogonal
Vectors problem.

The Hitting Set Conjecture states that ∀ε > 0 there is no O(n2−ε) time algorithm for the
Hitting Set problem with set sizes bounded by d = ω(log n). It implies LDOVC; subquadratic
approximation algorithms for Diameter-2 and Radius-2 would respectively refute the LDOVC and
the Hitting Set Conjecture. [4]

3 Overview

The main technical part of this paper is in the proof of Theorem 2 showing hardness of k-OV
for model-checking of ∃k∀ formulas under fine-grained reductions. The idea is to represent ∃k∀

4Some define SETH over randomized algorithms instead of deterministic ones
5Other versions of Hitting Set where the sets are not given explicitly are second-order logic problems. Our

definition here is consistent with the version in the Hitting Set Conjecture.
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Figure 2: Overview of the reduction process for Theorem 1.

formulas using combinations of basic “k-OV like” problems, each of which is either easy (solvable
substantially faster than mk time for sparse instances) or can be fine-grained reduced to k-OV. The
latter is achieved using a universe-shrinking self-reduction, which converts a given instance of a
basic problem to a denser instance on a smaller universe, thus reducing Sparse k-OV to k-OV with
dimension nδ and proving Lemma 1.1. Converting an MC(∃k∀) to the “hybrid problem” combining
all 2k basic problems is done for graphs (all relations have arity at most 2), however we show that
this is the hardest case. Additionally, MC(∀∃k−1∀) is reduced to MC(∃k∀).

In Theorem 1 and Theorem 3, we consider the class of all k+ 1-quantifier first-order properties
MC(k + 1), and reduce it to 2-OV, proceeding to use a faster algorithm for 2-OV to speed up
model checking. The first step is to brute-force over first k − 2 quantified variables, reducing to
three-quantifier case at the cost O(nk−2). The quantifier prefix ∃∃∀, with 2-OV and other basic
problems (to be defined in Section 5.1), is the hardest (∃3, ∀∃∃ and their complements are easy,
and the rest reduce to ∃∃∀). Appealing to lemmas in the proof of Theorem 2 with k = 2 completes
the proof of Theorem 1 (see figure 2 for details), and applying the OV algorithm in [3, 16] gives
Theorem 3.

3.1 Reduction from MC(k+1) to OV

The following outlines the reduction from any arbitrary problem in MC(k+1) to OV for any integer
k ≥ 2, thus proving that FOPC implies SOVC. For the other direction of this eqiuvalence, SOVC
implies FOPC because Sparse OV is in MC(3). The equivalence between SOVC and MDOVC is
proven in lemma 1.1, which in turn follows from lemma 5.2, lemma 6.2, and corollary 5.1.

1. With brute-force over tuples of first k − 2 variables, we reduce from the (k + 1)-quantifier
problem MCϕ down to a 3-quantifier problem MCϕ′ . Thus, improving the O(m2) algorithm
for MCϕ′ implies improving the O(mk) algorithm for MCϕ.

2. If MCϕ′ belongs to one of MC(∃∃∃), MC(∀∀∀), MC(∀∃∃), MC(∃∀∀), we solve it directly
in time O(m3/2), using ideas similar to triangle detection algorithms. If ϕ′ has the quantifier
structure ∀∃∀ (or its negated form ∃∀∃), we reduce MCϕ′ to MCϕ′′ where ϕ′′ has quantifier
structure ∃∃∀, using Lemma 8.1. Otherwise, ϕ′ is already in ∃∃∀ or equivalent form.

3. We reduce a general model checking problem for ϕ′′ of the quantifier structure ∃∃∀ to a graph
property problem of the same quantifier structure.
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4. Using Lemma 5.5, we reduce formulas of form ∃∃∀ to a “hybrid” problem, which by Lemma
5.4 can be reduced to a combination of Sparse OV, Set Containment and 2-Set Cover (which
we call Basic Problems).

5. We use a “universe-shrinking” technique (lemmas 5.2, 6.1, and 6.2 ) on each of the Basic
Problems, to transform a sparse instance into an equivalent one of small dimension.

6. After applying this to the Hybrid Problem, we can complement edge relations as needed to
transform all Basic Problems into OV (lemmas 5.3 and 6.3 ).

7. By applying the [3, 16] algorithm to the instance of low-dimension OV, we get an improved
algorithm.

Figure 2 shows a diagram of the above reduction process.
Moreover, Lemmas 8.1, 5.5, 5.4 and 5.1 also work for any constant k ≥ 2. So for a problem in

MC(∃k∀) or MC(∀∃k−1∀), we can reduce it to k-OV as follows:
1. If the problem belongs to MC(∀∃k−1∀), reduce it to MC(∃k∀) using Lemma 8.1.

2. Eliminate hyperedges, then reduce the MC(∃k∀) to the Hybrid problem using Lemma 5.5.

3. Reduce from the Hybrid Problem to a combination of 2k Basic Problems, using Lemma 5.4.

4. Reduce all Basic Problems to k-OV, using Lemma 5.1.
This completes the proof of Theorem 2.

4 The building blocks

Before the formal presentation of the reduction algorithms, this section gives an intuitive and high-
level view of the techniques used to reduce a first-order property problem to OV, in the proofs of
Theorems 1, 2 and 3. Because of Lemma 1.1, in the remainder of this paper, unless specified, we
will use “OV” and “k-OV” to refer to sparse versions of these problems.

4.1 A baseline algorithm for MC(k + 1)

Before we get into details of faster algorithms for special cases of MC(k + 1), let us present a
simpler algorithm that solves MC(k + 1) in time O(nk−1m). We use this baseline algorithm as a
subroutine in reductions.

Claim 4.1 (Baseline algorithm). MC(k + 1) is solvable in time O(nk−1m).

Proof. Let the input be a hypergraph G = (V,E1, . . . , Er), and let ϕ(x1, . . . , xk+1) be a first-
order formula with k + 1 quantifiers. The baseline algorithm evaluates ϕ on G as follows. If
k ≥ 2, recursively evaluate ϕ(v, x2, . . . , xk+1) for each v ∈ V , and take AND or OR of the answers
depending whether the first quantifier is ∀ or ∃. At the tail of the recursion, this creates nk−1

instances of MC(2).
Let ϕ(x, y) = Q1x Q2y ψ(x, y). We evaluate ϕ(x, y) on G by counting, for each v, the number

#(v) of u such that ψ(v, u) holds. Assume that there are only binary predicates remaining in ψ
(if there are unary predicates, partition the universe according to their values and solve on each
subuniverse). Viewing ψ(x, y) as a DNF, set ψ(x, y) to be a subformula of ψ containing all terms
where all relations occur positively. Now, #(v) can be computed by iterating over all neighbours
of v, as well as all u such that ψ(v, u) holds. Checking if #(v) = |V | (for Q2 = ∀) or #(v) > 0 (if
Q2 = ∃) for some v (resp. all v, depending on Q1) provides the answer. Iterating over all edges
and pairs satisfying ψ can be done in O(m) time.
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4.2 Complementing sparse relations

Recall the definitions of the k-Empty Intersection, k-Set Cover and Set Containment problems6 from
Section 2.3. These problems have very similar structure: given set families S1 . . .Sk containing sets
over elements of the universe U , each of them asks whether there is a tuple of sets, one in each
family, such that a formula is satisfied for every element u of the universe. Moreover, the formulas
themselves are disjunctions of u ∈ Si or u 6∈ Si, with one predicate for each i. The only difference
is the polarity of the ∈ relation (whether or not it is negated). We will refer to these types of
problems as the Basic Problems; they will be our main building blocks.

For k = 2, this gives us four basic problems: Set Disjointness, 2-Set Cover and two versions
of Set Containment (direct and reversed). In each of them, the input consists of two set families
S1,S2 of sizes n1, n2, respectively, and the universe U of size nu. The goal is to decide if there exist
sets S1 ∈ S1 and S2 ∈ S2 such that for every u ∈ U , the corresponding formula ψ` holds. Here,
` ∈ {00, 01, 10, 11} codes the sequence of polarities of occurrences of ∈. This naturally generalizes
to arbitrary k, with a Basic Problem for each ` ∈ {0, 1}k; see Section 5.1 for formal definitions.

That is, Set Disjointness, 2-Set Cover and Set Containment can be states as follows. Decide if
∃S1 ∈ S1∃S2 ∈ S2∀u ∈ Uψ` holds, where ψ` is:

Set Disjointness: There is no common element in S1 and S2: ψ` = ψ00 = ¬(u ∈ S1)∨¬(u ∈ S2).

2-Set Cover: Union of S1 and S2 covers all of U : ψ` = ψ11 = (u ∈ S1) ∨ (u ∈ S2).

Set Containment: For S1 ⊆ S2, ψ` = ψ01 = ¬(u ∈ S1) ∨ (u ∈ S2). Similarly, in reversed Set
Containment with S2 ⊆ S1, ψ` = ψ10 = (u ∈ S1) ∨ ¬(u ∈ S2).

All these problems are first-order properties: we can use unary relations to partition the vertex
set into (S1, . . . ,Sk, U), and consider the relation “∈” as a binary relation. We will use the context
of hypergraphs to describe the input structure, as in Section 2.2. We let n (corresponding to the
number of vertices in the input graph) be the sum of n1, . . . , nk and nu, and let the input size m
(corresponding to the number of edges in the input graph) be the sum of all sets’ sizes in all set
families. Borassi et al. [11] showed that when k = 2, these Basic Problems require time m2−o(1)

under SETH, and that if the size of universe U is poly-logarithmic in the input size, then the three
problems are equivalent under subquadratic-time reductions. The main idea of the reductions
between these problems is to complement all sets in S1, or S2, or both. It is easy to see that
S1∩S2 = ∅ ⇐⇒ S1

{∪S2
{ = U ⇐⇒ S1 ⊆ S2

{ ⇐⇒ S2 ⊆ S1
{. Therefore, if we could complement

the sets, we can easily prove the equivalences between the three Basic Problems. However we
cannot do this when nu is large.

For a sparse binary relation such as (u ∈ S1), we say that its complement, such as (u /∈ S1),
is co-sparse. Suppose we want to enumerate all tuples (S1, u) s.t. u ∈ S1; for that, we can go
through all relations (aka edges) between U and S1, which takes time linear in m. On the contrary,
if we want to enumerate all pairs (S1, u) s.t. u /∈ S1, we cannot do this in linear time, because we
cannot touch the pairs by touching edges between them. Moreover, when nu is as large as Ω(n), the
number of such pairs can reach Θ(m2). When k = 2, a fine-grained reduction between O(m2)-time
problems allows neither quadratic time reductions, nor quadratic size problem instances.

Because of the above argument, it is hard to directly reduce between the Basic Problems, so
instead we reduce each problem to a highly-asymmetric instance of the same problem, where sparse

6OV is also 2-EI or Set Disjointess: k-EI is equivalent to k-OV, where vectors are represented by sets containing
their 1s. Set Containment is equivalent to the Sperner Family, and k-Set Cover to k-Dominating Set under linear-time
reductions.
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relations are easily complemented to relations that are also sparse. Observe that when the size of
universe U is small enough, complementing all sets can be done in time O(m · |U |), which can
be substantially faster than O(m2). The new instance created also has size O(m · |U |), so that
it is only slightly larger than m. So by carefully choosing the size of U , we can construct truly
subquadratic time reduction algorithms that preserve the improved factor in running time. Using
this technique which we call universe-shrinking self-reduction, we can show that OV, 2-Set Cover
and Set Containment are equivalent under fine-grained reductions.

The self-reduction employs the “high-degree low-degree” trick, which has been also used in
other sparse graph algorithms [7]. First, consider sets of large cardinality: there cannot be too
many of them, because the structure is sparse. Thus we can do exhaustive search over these sets
to check if any of them is in a solution. For sets of small cardinality, we hash the universe U to a
smaller universe, where complementing the sets does not take too much time and space. From this
reduction, the claim follows:

Claim 4.2. If any one of OV, 2-Set Cover and Set Containment has truly subquadratic time
algorithms, then the other two are also solvable in subquadratic time. Thus these problems are all
hard for MC(3).

Claim 4.2 is itself an interesting result: in [11], conditional lower bounds for many problems
stem from the above three problems, forming a tree of reductions. By our equivalence, the root of
the tree can be replaced by the quadratic-time hardness conjecture on any of the three problems,
simplifying the reduction tree. Claim 4.2 also shows that an improved algorithm for any of these
three problems implies improved algorithms for the other two.

Claim 4.2 is proven by derandomizing Lemma 5.1 for k = 2; see Section 6 for details. In Section
5 we give randomized reductions for an arbitrary k.

4.3 Sparse and co-sparse relations

Having shown how to reduce any two Basic Problems with the same k to each other, we will now
reduce generic first-order properties to the Basic Problems. The detailed processes are complicated,
so here we start with a high-level idea in reductions and algorithm design throughout the paper.

Our algorithms often need to iterate over all tuples or pairs (xi, xj) satisfying some conditions,
to list such tuples, or to count the number of them, performing first-order query processing. A
set of such tuples (pairs) (xi, xj) can be considered a result of a first-order query defined by an
intermediate formula ϕ′ on the (hyper)graph G (or some intermediate structures). Our reduction
algorithms often generate such queries, evaluate them, and combine the results (e.g. by counting)
to compute the solutions.

There are three possible outcomes of such queries: the result can be a sparse set of tuples, a co-
sparse set, or neither. If the result of the query is a sparse relation such as [R1(x1, x2)∧¬R2(x1, x2)],
we can iterate over the tuples (say, first enumerate all pairs satisfying R1(x1, x2), then check
for which of them R2(x1, x2) is false). Then, we can do further operations on the sparse set of
(x1, x2) tuples resulting from the query. When the result of the query is a co-sparse set such as for
[¬R1(x1, x2) ∧ ¬R2(x1, x2)], we cannot directly iterate over pairs satisfying the query. Instead, we
work on its complement (which is sparse, instead of co-sparse), but then do some further processing
to filter out those pairs from future use (say, find all pairs (x1, x2) so that either R1(x1, x2) or
R2(x1, x2) is true, then exclude those pairs from future use). Sometimes, the result of a query is
neither sparse nor co-sparse, but we will show it is always a combination of sparse and co-sparse
relations. Thus we need to distinguish them and deal with the sparse and co-sparse parts separately.

12



We exemplify this process by considering the query [¬R1(x1, x2) ∨ ¬R2(x1, x2)]. For a pair
(x1, x2), to make the formula true, predicates R1, R2 can be assigned values from {(True,False),
(False,True), (False,False)}. In the first two cases, the sets of pairs (x1, x2) satisfying [R1(x1, x2)∧
¬R2(x1, x2)] and [¬R1(x1, x2) ∧ R2(x1, x2)] are sparse, while in the last case, the set of pairs
satisfying [¬R1(x1, x2) ∧ ¬R2(x1, x2)] is co-sparse. So if we want to work on the tuples satisfying
this query, we list tuples satisfying the first two cases directly by enumerating edges, and enumerate
the tuples not satisfying the third case (i.e., the tuples where either R1(x1, x2) or R2(x1, x2) is true),
in order to exclude them from future use.

In general, a query can be written as a DNF, where the result of each term is a conjunction of
predicates and negated predicates, and therefore either sparse or co-sparse. Then we can deal with
the sparse and co-sparse cases separately. We will use this technique for constructing the Hybrid
Problem in Section 5.2.

Now, we would like to reduce MCϕ to OV for an arbitrary ϕ = (∃x)(∃y)(∀z)ψ(x, y, z). First,
suppose that all predicates R1 . . . Rr in ψ are at most binary, and all binary predicates involve z.
One attempt is to create a set Sx for each element x and a set Sy for each element y. Then, we
create elements in universe U by creating 2r elements u(z,0r), . . . , uz,(1r) for each z, where r is the
number of different predicates in ψ, and the length-r strings in the subscripts correspond to the 2r

truth assignments of all these predicates. We construct the sets so that Sx (or Sy) contains element
u(z,a) iff the assignment a falsifies ψ and the relations between x (or y) and z agree with a. In this
way, sets Sx and Sy both contain some element uz,a in U iff there is some z such that x, y, z do
not satisfy ψ. Then, if there exists such pair of disjoint sets Sx and Sy, the corresponding x and y
satisfy that for all z, ψ is true.

However, we cannot touch all z’s for each x or y for creating this instance in substantially less
than n2 time. So, we divide the relations of this Set Disjointness instance into sparse and co-
sparse ones. For that, we introduce a Hybrid Problem which is a combination of Basic Problems.
Depending on the four combinations of sparsity or co-sparsity on the relations between variables
x, z and y, z, we reduce MCϕ not only to OV, but to a combination of OV, Set Containment,
reversed Set Containment (i.e. finding S2 ⊆ S1 instead of S1 ⊆ S2), and 2-Set Cover. (Namely, the
sub-problem Set Disjointness deals with the case where the relations between x and z and between
y and z are both sparse; the sub-problems Set Containment, reversed Set Containment and 2-Set
Cover deals with the cases where these relations are sparse and co-sparse, co-sparse and sparse,
co-sparse and co-sparse respectively.) We decide if there is a pair of sets being the solutions of all
sub-problems. Finally, because these Basic Problems can be reduced to each other, we can use the
algorithm for OV to solve the instance of the Hybrid Problem, and then to solve MCϕ.

This approach takes care of binary predicates involving z; to handle relations among existentially
quantified variables, additional tools are needed. Thus, the Hybrid Problem definition also involves
a relation R(x, y) and a ”sparsity type” designation, specifying whether R codes a sparse relation
between x and y, or its sparse complement. However, this additional information can be modeled
by adding new elements to the universe and strategically placing them in the corresponding sets,
thus reducing the more complex case to a combination of four Basic Problems.

See Lemma 5.5 for the proof that covers more complicated cases.

5 Completeness of k-OV in MC(∃k∀)
This section will prove the completeness of k-OV in MC(∃k∀) problems. Here we only consider
the input structures that are graphs, i.e. where all relations are either unary or binary; see Section
7 of this paper for the reduction from hypergraphs to graphs. First, we introduce a class of Basic
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Problems, and prove that these problems are equivalent to k-OV under exact complexity reductions.
Then, we show that any problem in MC(∃k∀) can be reduced to a combination of Basic Problems
(aka. the Hybrid Problem).

5.1 How to complement a sparse relation: Basic Problems, and reductions
between them

In this section we define the Basic Problems for k ≥ 2, generalizing k-OV, k-Set Cover and Set
Containment problems, and prove that these problems are fine-grained reducible to each other
under randomized reductions. In Section 6 we will give deterministic reductions for k = 2.

Let k ≥ 2. We introduce 2k Basic Problems labeled by k-bit binary strings from 0k to 1k. The
input of these problems is the same as that of k-EI defined in Section 2.3: k set families S1 . . .Sk of
size n1, . . . , nk on a universe U of size nu. We define 2k quantifier-free formulas ψ0k , . . . , ψ1k such
that

ψ` =
(∨

i,`[i]=0(¬(u ∈ Si))
)
∨
(∨

i,`[i]=1(u ∈ Si)
)
.

Here, i ∈ {1, . . . , k} and `[i], the i-th bit of label `, specifies whether u is in each Si or not in the
i-th term of ψ`.

For each `, let ϕ` = (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u ∈ U)ψ`. For simplicity, we will omit the
domains of the variables in these formulas. We call MCϕ

0k
, . . . ,MCϕ

1k
the Basic Problems. We

refer to the Basic Problem MCϕ` as BP [`]. These problems are special cases of first-order model
checking on graphs, where sets and elements correspond to vertices, and membership relations
correspond to edges. Note that BP [0k] is k-EI, and BP [1k] is k-Set Cover. When k = 2, BP [01]
and BP [10] are Set Containment problems, and BP [00] is the Set Disjointness problem. For a
k-tuple (S1 ∈ S1, . . . , Sk ∈ Sk) satisfying (∀u)ψ`, we call it a solution of the corresponding Basic
Problem BP [`].

We present a randomized7 fine-grained mapping reduction between any two Basic Problems,
thus proving the following lemma, which generalizes Claim 4.2 to k > 2.

Lemma 5.1. Let s(m) be a non-decreasing function such that 2Ω(
√

logm) ≤ s(m) < m1/5. For
any `1, `2 ∈ {0, 1}k, there is a randomized exact complexity reduction (BP [`1],mk/(s(m))1/6) ≤EC
(BP [`2],mk/s(m)).

For problems BP [`1] and BP [`2] where `1 and `2 only differ in the i-th bit, if we are allowed to
complement all sets in Si, we can easily reduce between them. Similarly, if `1 and `2 differ in more
than one bit, we can complement all the sets in corresponding set families. However, complementing
the sets in Si takes time O(ninu), which might be as large as Θ(m2). To solve this, we self-reduce
BP [`1] on the universe U to the same problem on a smaller universe U ′, and then complement sets
on U ′. For any given δ, if the size of U ′ is n′u = O(mδ), then complementing all sets in Si only
takes time and space m ·O(mδ) = O(m1+δ).

Lemma 5.2. (Randomized universe-shrinking self-reductions of Basic Problems)
Let label ` be any binary string in {0, 1}k. For any s(m) = 2Ω(

√
logm), given a BP [`] instance

I of size m and universe U of size nu, we can either solve it in time O(mk/s(m)), or use time
O(mk/s(m)) to create a BP [`] instance I ′ of size O(m · s(m)5) on universe U ′ whose size is
n′u = O(s(m)5), so that I ∈ BP [`] iff I ′ ∈ BP [`] with error probability bounded by O(1/s(m)).

7The deterministic reduction will be presented in Section 6.
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Note that the self-reduction of k-OV actually reduces the Sparse k-OV to a moderate-dimension
version of k-OV, implying Lemma 1.1. The other direction (moderate-dimension k-OV to Sparse
k-OV) is easy since if the dimension d = nδ, then maximal possible m = d · n = n1+δ, as required.

Corollary 5.1. Reverse direction of Lemma 1.1
Suppose that for any k ≥ 2 there exists δ, ε > 0 and a (randomized) O(nk−ε) algorithm solving
k-OV with dimension d = nδ. Then there is an ε′ > 0 and a (randomized) O(mk−ε′) time algorithm
solving Sparse k-OV.

Proof. The algorithm converts an instance of Sparse k-OV to an instance of k-OV of dimension
nδ using universe-shrinking self-reduction (Lemma 5.2) and then applies assumed O(nk−ε) time
algorithm to the reduced instance. More specifically, let m = O(n1+γ), where n is the number of
vectors. Choosing s(m) = O(mδ/5(1+γ)) for some δ > 0 creates an instance of OV with dimension
n′u = O(s(m)5) = O(nδ), and size m′ = O(n1+δ+γ); number of vectors n remains unchanged. Now,
the reduction takes time O(mk/(s(m))5) = O(mk−δ/(1+γ)), and running the O(nk−ε) time algorithm
on the reduced instance takes O(nk−ε) ≤ O(mk−ε/(1+γ)) time. Setting ε′ = min{δ/(1+γ), ε/(1+γ)}
completes the proof.

We will present the randomized self-reductions for problems BP [`] s.t. ` 6= 1k in Section 5.1.1.
For BP [1k], we will prove that it is either easy to solve or easy to complement in Section 5.1.2.

After shrinking the universe, we complement the sets to reduce between two Basic Problems
BP [`1] and BP [`2] according to the following lemma.

Lemma 5.3. Reduction between different Basic Problems
For two different labels `1, `2 ∈ {0, 1}k, given set families S1, . . . ,Sk, let S ′1, . . . ,S ′k be defined such
that

S ′i =

{{
Si
{ | Si ∈ Si

}
, if `1[i] 6= `2[i]

Si, otherwise
,

then, (∃S1 ∈ S1) . . . (∃Sk ∈ Sk)(∀u)ψ`1 iff (∃S′1 ∈ S ′1) . . . (∃S′k ∈ S ′k)(∀u)ψ`2.

The proof of correctness is straightforward.

Proof of Lemma 5.1. Pick s′(m) = s(m)1/(6k). Using Lemma 5.2, we shrink the universe to size
n′u = s′(m)5. So the time complexity in this step is bounded by O(m ·s′(m)5), which is significantly
less than mk/s(m) even if k = 2.

Let new instance size be m′. So m′ = m · s′(m)5. Given that the constructed instance can
be decided in time m′k/s(m′), we get m′k/s(m′) < (m(s(m)1/(6k))5)k/s(m) < mk/s(m)1/6. Thus,
by the two-step fine-grained mapping reductions given by Lemma 5.2 and Lemma 5.3, we have
an exact complexity reduction between any two Basic Problems, completing the proof for Lemma
5.1.

5.1.1 Randomized universe-shrinking self-reduction of BP [`] where ` 6= 1k

This section proves part of Lemma 5.2, by giving a randomized universe-shrinking self-reduction of
BP [`] where ` 6= 1k. The main idea is to divide the sets into large and small ones. For large sets,
there are not too many of them in the sparse structure, so we can work on them directly. For small
sets, we use a Bloom Filter mapping each element in U to some elements in U ′ at random, and
then for each set on universe U , we compute the corresponding set on universe U ′. Next we can
decide the same problem on these newly computed sets, instead of sets on U . ([17] used a similar
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technique in reducing from Orthogonal Range Search to the Subset Query problem.) Because the
sets are small, it is unlikely that some elements in two different sets on U are mapped to the same
element on U ′, bounding the error probability.

• Step 1: Large sets. Let d = s(m). For sets of size at least d, we directly check if they are
in any solutions. There are at most O(m/d) = O(m/s(m)) of such large sets. In the outer
loop, we enumerate all large sets in S1, . . . ,Sk. If their sizes are pre-computed, we can do
the enumeration in O(m/s(m)). Assume the current large set is Si ∈ Si. Because variables
quantified by ∃ are interchangeable, we can interchange the order of variables, and let Si be
the outermost quantified variable S1. On each such Si (or S1 after interchanging), we create
a new formula ψS1 on variables S2, . . . , Sk, u from formula ψ, by replacing u ∈ S1 (u /∈ S1)
by a unary relation on u. Then, we decide if the graph induced by S2, . . . ,Sk and U satisfies
(∃S2) . . . (∃Sk)(∀u)ψS1 , using the baseline algorithm, which takes time O(mk−1) for each such
large set S1. Thus the overall running time is O(m/s(m)) · O(mk−1) = O(mk/s(m)). If no
solution is found in this step, proceed to Step 2.

• Step 2: Small sets. Now we can exclude all the sets of size at least d. For sets of size
smaller than d, we do the self-reduction to universe U ′ of size n′u = s(m)5. Let t = s(m), and
let h : U → U ′t be a function that independently maps each element u ∈ U to t elements in
U ′ at random. On set S ⊆ U , we overload the notation h by defining h(S) =

⋃
u∈S h(u). For

all set families Si, we compute new sets h(Si) for all Si ∈ Si. Then, we decide whether the
new sets satisfy the following sentence, which is another BP [`] problem:

(∃S1) . . . (∃Sk)(∀u)
∨
i,`[i]=0 ¬(u ∈ h(Si)) ∨

∨
i,`[i]=1(u ∈ h(Si))

The size of the new instance is O(nt) = O(m·s(m)), and the running time of the self-reduction
is also O(nt) = O(m · s(m)). So it is a fine-grained mapping reduction for any k ≥ 2.

Figure 3 illustrates an example of the universe-shrinking self-reduction for BP [01], where we
look for S1, S2 so that S1 ⊆ S2. If they exist, then after the self-reduction, it is always true that
h(S1) ⊆ h(S2). Still, it might happen that some S1 6⊆ S2 but h(S1) ⊆ h(S2). In this case, a
false positive occurs. In BP [00], a false negative may occur when there are two disjoint sets, but
some elements in S1 ∩ S2 are mapped to the same element in U ′. Next we will analyze the error
probability of this reduction.

Analysis. Because variables quantified by ∃ are interchangeable, w.l.o.g. for ` containing i (i ≥ 1)
zeros and k − i ones, assume BP [`] is defined by

(∃S1) . . . (∃Sk)(∀u)
[(∨i

j=1(u /∈ Sj)
)
∨
(∨k

j=i+1(u ∈ Sj)
)]
,

equivalently, (∃S1) . . . (∃Sk)
[(⋂i

j=1 Sj

)
⊆
(⋃k

j=i+1 Sj

)]
.

Let sets A =
⋂i
j=1 Sj and B =

⋃k
j=i+1 Sj . Then the problem is to decide whether there exists

(S1, . . . , Sk) so that A ⊆ B. After the self-reduction, let A′ =
⋂i
j=1 h(Sj) and B′ =

⋃k
j=i+1 h(Sj),

and decide if there exists (S1, . . . , Sk) such that A′ ⊆ B′.

• False positive. A false positive occurs when ∀(S1, . . . , Sk), A * B, but ∃(S1, . . . , Sk), A
′ ⊆

B′. For a fixed tuple (S1, . . . , Sk) such that A * B, an error occurs when ∀u ∈ A − B such
that h(u) ⊆ B′. The size of B′ is at most kdt. So the error probability Pr[h(u) ⊆ B′] ≤
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S1 S2

U

U ′

h

h(S1) h(S2)

a b c

a′ b′ c′ d′ e′

Figure 3: The universe-shrinking process. S1 = {a, b} and S2 = {a, b, c}. After the mapping h, the new
sets are h(S1) = {a′, b′, c′, d′} and h(S2) = {a′, b′, c′, d′, e′}.

(kdt/n′u)t = (ks(m) · s(m)/s(m)5)t < s(m)−t. The size of A − B is bounded by kd, so the
probability Pr[∃u ∈ A−B, h(u) ⊆ B′] ≤ kd · s(m)−t. There are O(mk) tuples of (S1, . . . , Sk),
so the total error probability is at most O(mk) · kd · s(m)−t = O(mk · s(m)/s(m)s(m)), which
is exponentially small.

• False negative. A false negative occurs when ∃(S1, . . . , Sk), A ⊆ B, but ∀(S1, . . . , Sk), A
′ *

B′. Fix any tuple (S1, ..., Sk) that satisfies A ⊆ B in the original instance, and consider the
distribution on the corresponding h(S1), .., h(Sk). By definition, B′ =

⋃
u∈B h(u), and so

contains
⋃
u∈A h(u). So if A′ ⊆ ⋃u∈A h(u), we will have A′ ⊆ B′, and there will not be a

false negative. If not, then there is some u′ ∈ A′ =
⋂i
j=1 h(Sj), such that u′ /∈ ⋃u∈A h(u).

Then for each j ∈ {1, . . . , i}, in each Sj there is a uj ∈ Sj with u′ ∈ h(uj), but not all uj are
identical. (Otherwise the uj ∈ A, so u′ ∈ h(uj) ⊆

⋃
u∈A h(u), contradicting u′ /∈ ⋃u∈A h(u)).

In particular, this means that for some j1, j2, there are uj1 ∈ Sj1 , uj2 ∈ Sj2 , such that
h(uj1)∩h(uj2) 6= ∅. So the error probability is bounded by k2 ·Pr[∃(u1 ∈ Sj1 , u2 ∈ Sj2), h(u1)∩
h(u2) 6= ∅]. Because |Sj1 | and |Sj2 | are at most d, by Birthday Paradox, the probability is at
most O(k2d2t2/n′u) = O(s(m)−1). This is the upper bound of the error probability for the
fixed (S1, . . . , Sk) tuple. Then, the probability of the event “∀(S1, . . . , Sk), A

′ * B′” is even
smaller.

5.1.2 Deterministic universe-shrinking self-reduction of BP [1k]

This section proves the remaining part of Lemma 5.2, by showing BP [1k] is either easy to solve or
easy to complement. BP [1k] is the k-Set Cover problem, which decides whether there exist k sets
covering the universe U . It is special in the Basic Problems: when nu is small, the sets are easy to
complement; when nu is large, the problem is easy to solve.

• Case 1: Large universe. If nu > s(m), then in a solution of this problem, at least one
set has size at least nu/k. There are at most m/(k/nu) = O(m/s(m)) such large sets,
thus they can be listed in time O(m/s(m)), after pre-computation on the sizes of all sets.
Our algorithm exhaustively searches all such large sets. And then, similarly to “Step 1” in
Section 5.1.1, for each of the large sets, we run the baseline algorithm to find the remaining
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U00 U01 U10 U11

S1 S2

R[S1, S2] = true
type[1, 2] = 1

S1 ∩ S2 = ∅ S1 ⊆ S2 S1 ⊇ S2 S1 ∩ S2 = U11

Figure 4: An example of a solution to a Hybrid Problem instance, when k = 2. In sub-universes
U00, U01, U10, U11, sets S1 and S2 are solutions of BP [00](Set Disjointness), BP [01](Set Containment),
BP [10](Set Containment in the reversed direction) and BP [11](2-Set Cover), respectively. And type[1, 2] = 1
specifies that the predicate R on (S1, S2) must be true.

k − 1 sets in the k-set cover, which takes time O(mk−1). So the overall running time is
O(m/s(m)) ·O(mk−1) = O(mk/s(m)).

• Case 2: Small universe. If nu ≤ s(m), then we do not need a universe-shrinking self-
reduction, because the universe is already small enough.

5.2 Hybrid Problem

Next we reduce general MC(∃k∀) problems to an intermediate problem called the Hybrid Problem,
which is a combination of 2k Basic Problems. Then by reducing from the Hybrid Problem to Basic
Problems, we can set up a connection between MC(∃k∀) and OV.

Let k ≥ 2. The input to the Hybrid Problem is:
1. Set families S1 . . .Sk defined on universe U , where U is partitioned into 2k disjoint sub-

universes: U =
⋃
`∈{0,1}k U`.

2. A binary relation R defined on pairs of sets from any two distinct set families. R is a symmetric
relation (R(Si, Sj) iff R(Sj , Si)).

3. type is binary string of length
(
k
2

)
, indexed by two integers [i, j], s.t. i, j ∈ {1, . . . , k} and

i < j.

The goal of the problem is to decide if there exist S1 ∈ S1, . . . , Sk ∈ Sk such that both of the
following constraints are true:
(A) For each ` ∈ {0, 1}k, (S1, . . . Sk) is a solution of BP [`] defined on sub-universe U`.
(B) For all pairs of indices i, j ∈ {1, . . . , k}, i < j, we have that R(Si, Sj) = true iff type[i, j] = 1.

We let n be the sum of |S1|, . . . , |Sk| and U , and let m be the number of all unary and binary
relations. The Hybrid Problem is a first-order property on graphs with additional constraints. As
usual, we assume all relations in the Hybrid Problem are sparse (m ≤ n1+o(1)). Figure 4 shows a
solution to a Hybrid Problem instance when k = 2.

Intuition behind the Hybrid Problem. We mentioned in Section 4 that any first-order query
containing two variables can be written in a “normal form”, which is a combination of sparse and
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co-sparse relations. The Hybrid Problem is designed for separating sparse relations from co-sparse
ones, for all pairs of variables in formula ϕ.

The relation between the pair of variables (xi, xk+1) where 1 ≤ i ≤ k can be either sparse
or co-sparse. Because there are k of such variables xi, there are 2k cases for a combination
((x1, xk+1), . . . , (xk, xk+1)). These cases correspond to the 2k Basic Problems. In each Basic Prob-
lem, we deal with one of the 2k cases.

For a relation between the pair of variables (xi, xj) where 1 ≤ i < j ≤ k, it also can be either
sparse or co-sparse. We use type[i, j] to distinguish the two cases: when it is set to 1, we expect a
sparse relation for (xi, xj), otherwise a co-sparse relation.

5.2.1 Reduction to Basic Problems

Lemma 5.4. Let s(m) be a non-decreasing function such that 2Ω(
√

logm) ≤ s(m) < m1/5. Then,
(Hybrid Problem,mk/(s(m))1/6) ≤EC (k-OV,mk/(s(m))).

Given an instance of the Hybrid Problem, we can do the following modification in time O(m).
For each pair of indices i, j where 1 ≤ i < j ≤ k, we construct auxiliary elements depending on the
value of type[i, j].
• Case 1: If type[i, j] = 0, then if a pair Si ∈ Si, Sj ∈ Sj occurs in a solution to the Hybrid
Problem, then there should be no edge R(Si, Sj). Let ` be the length-k binary string where the
i-th and j-th bits are zeros and all other bits are ones. For each edge R(Si, Sj) on Si ∈ Si and
Sj ∈ Sj , we add an extra element uSiSj in U` and let uSiSj ∈ Si, uSiSj ∈ Sj . Thus, S′i ∈ Si and
S′j ∈ Sj can both appear in the solution only when for all uSiSj , (uSiSj /∈ S′i) ∨ (uSiSj /∈ S′j), and it
holds iff R(S′i, S

′
j) = false.

• Case 2: If type[i, j] = 1, then in a solution to the Hybrid Problem, Si and Sj should have an
edge R(Si, Sj) between them. Let ` be the length-k binary string where the j-th bit is zero and
all other bits are ones. For each Sj ∈ Sj , we add an extra element uSj in U` and let uSj ∈ Sj . For
each edge R(Si, Sj), we let uSj ∈ Si. Thus, S′i ∈ Si and S′j ∈ Sj can both appear in the solution
only when for all uSj , (uSj /∈ S′j) ∨ (uSj ∈ S′i), and it holds iff R(S′i, S

′
j) = true.

After the above construction, we can drop the constraint (B) of the Hybrid Problem. We will
ignore the relation R and type in the Hybrid Problem. The problem now is to decide whether
there exists tuple (S1, . . . , Sk) being a solution to all 2k Basic Problems. Then we can use Lemma
5.1 to reduce all these Basic Problems to BP [0k]. Let U`

′ be the sub-universe of the BP [0k]
instance reduced from the BP [`] sub-problem. (S1, . . . , Sk) is a solution to all Basic Problems
iff their intersection is empty on every sub-universe U ′`, iff their intersection is empty on universe⋃
`∈{0,1}k U

′
`, i.e., it is a solution of a BP [0k] instance.

Multiplying the error probability in the reductions between Basic Problems by 2k, which is a
constant number, and then taking a union bound, we get similar bounds of error probability for
the Hybrid Problem.

5.2.2 Turing reduction from general MC(∃k∀) problems to the Hybrid Problem

The following lemma provides the last piece of the proof that sparse k-OV is complete for MC(∃k∀)
under fine-grained Turing reductions. The result follows by combining this lemma with lemma 5.4.

Lemma 5.5. For any integer k ≥ 2, any problem in MC(∃k∀) is linear-time Turing reducible to
the Hybrid Problem, namely, (MC(∃k∀), T (m)) ≤EC (Hybrid Problem, T (O(m))).
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Consider the problem MCϕ where ϕ = (∃x1) . . . (∃xk)(∀xk+1)ψ(x1, . . . , xk+1). An input graph
G can be preprocessed in linear time to ensure that it is a (k + 1)-partite graph on vertices V =
(V1, . . . , Vk+1), for example by creating k + 1 copies of original vertex set.

W.l.o.g, we assume that for each binary predicate Rt(xi, xj), i ≤ j. Let Pk+1 be the set of
unary and binary predicates in ψ that involve variable xk+1, and let Pk+1 denote the set of the other
predicates not including xk+1. A partial interpretation α for Pk+1 is a binary string of length |Pk+1|,
that encodes the truth values assigned to all predicates in Pk+1. For each i s.t. 1 ≤ i ≤ |Pk+1|,
if the i-th predicate in Pk+1 is assigned to true, then we set the i-th bit of α to one, otherwise
we set it to zero. For a tuple (v1, . . . , vk), we say it implies α (denoted by (v1, . . . , vk) |= α) iff
when (x1 ← v1, . . . , xk ← vk), the evaluations of all predicates in Pk+1 are the same as the values
specified by α.

For each α ∈ {0, 1}Pk+1 , we create a distinct Hybrid Problem instance Hα. If any of the
Hybrid Problems accepts, we accept. Let ψ|α(x1, . . . , xk+1) be ψ after replacing all occurrences of
predicates in Pk+1 by their corresponding truth values specified by α. The following steps show
how to create Hα from α and ψ|α(x1, . . . , xk+1).

Step 1: Construction of sets.
We introduce colors, which are partial interpretations defined on some specific subsets of the pred-
icates concerning variable xk+1. We call them “colors” because they can be considered as a kind
of labels on (vi, vk+1) pairs. For each i ∈ {1, . . . , k}, we give all the unary and binary predicates
defined on (xi, xk+1) (including those on (xk+1, xi)) a canonical order. We use Pi to denote the set
of these predicates for each i. Let a color be a partial interpretation for Pi, which is a binary string
of length |Pi|, encoding the truth values assigned to all predicates in Pi. For each j s.t. 1 ≤ j ≤ |Pi|,
if the j-th predicate in Pi is assigned to true, then we set the j-th bit of the color to one, otherwise
we set it to zero. For a color ci ∈ {0, 1}|Pi|, we say (vi, vk+1) |= ci iff when xi ← vi and xk+1 ← vk+1,
the values of all predicates in Pi are the same as the corresponding bits of ci. We refer to the colors
where all bits are zeros as the background colors. These colors are special because they correspond
to interpretations where all predicates in Pi are false, i.e., we cannot directly go through all pairs
(vi, vk+1) where (vi, vk+1) |= 0|Pi|, since this is a co-sparse relation. So we need to deal with these
pairs separately.

For a vertex combination (v1, . . . , vk+1) where (vi, vk+1) |= ci on all 1 ≤ i ≤ k, the k-color-
tuple (c1, . . . , ck) forms a color combination, which corresponds to truth values assigned to all the
predicates in Pk+1.

For each vi ∈ Vi where 1 ≤ i ≤ k, we create set Svi in the set family Si. For each vk+1 ∈ Vk+1,
and each color combination (c1, . . . , ck) s.t. ci ∈ {0, 1}|Pi| and the values of all predicates specified
by (c1, . . . , ck) make ψ|α evaluate to false (in which case we say (c1, . . . , ck) does not satisfy ψ|α),
we create an element u(vk+1,c1,...,ck) in U . We call a string C ∈ {0, 1}k an encoding of a color

combination (c1, . . . , ck) when on all indices i ∈ {1, . . . , k}, C[i] = 1 iff ci = 0|Pi|. We put each
element u(vk+1,c1,...,ck) in the sub-universe UC iff C is an encoding of (c1, . . . , ck).

Next we will construct the sets. For each vi ∈ Vi, let Svi be

Svi = {u(vk+1,c1,...,ck) | (c1, . . . , ck) does not satisfy ψ|α, and

((ci 6= 0|Pi|, (vi, vk+1) |= ci), or (ci = 0|Pi|, (vi, vk+1) 6|= ci = 0|Pi|))}.

To construct such sets, for each edge on (xi, xk+1) (and (xk+1, xi)), we do the following. Assume
the current vertex pair is (vi, vk+1).

1. First, let set Svi contain all elements u(vk+1,c1,...,ck) in U where ci is a fixed color such that

(vi, vk+1) |= ci, and the other colors cj can be any string in {0, 1}|Pj |.
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u(vk+1,c1,...,ck)

Sv1 Sv2 Svk

U0k

u(vk+1,0|P1|,c2,0|P3|,c4,...,ck)

U1010k−3

Sv1 Sv2 Svk. . . . . .Sv3 Sv4 Sv3 Sv4

Figure 5: The formula is satisfied iff there exists (Sv1 , Sv2 , . . . , Svk) so that there does not exist such
an element u in any of the sub-universes: the left figure illustrates the case where none of c1, . . . , ck is a
background color. The right is the case where only c1 and c3 are background colors. (The dashed lines stand
for non-existing edges.)

2. Next, let set Svi contain all elements u(vk+1,c1,...,ck) in U where ci = 0|Pi| (here (vi, vk+1) 6|=
ci = 0|Pi| because there is some edge connecting vi and vk+1, meaning at least one bit in ci is
1), and the other colors cj can be any string in {0, 1}|Pj |.

In other words, in the sub-universe labeled by 0k, which is made up of elements u(vk+1,c1,...,ck)

such that none of the ci equals 0|Pi|, and that (c1, . . . , ck) does not satisfy ψ|α, a set Svi contains
an element u(vk+1,c1,...,ck) iff (vi, vk+1) |= ci. On the other hand, in the sub-universe labeled by C

where the i-th bit of C is 1, which is made up of elements u(vk+1,c1,...,ck) such that ci = 0|Pi| and that

(c1, . . . , ck) does not satisfy ψ|α, a set Svi contains an element u(vk+1,c1,...,ck) iff (vi, vk+1) 6|= ci = 0|Pi|.

Analysis. Now we show the above construction achieves constraint (A) in the definition of the
Hybrid Problem.
• Assume that (v1, . . . , vk) does not satisfy (∀vk+1)ψ|α(x1, . . . , xk+1), i.e., there exists some vk+1 ∈
Vk+1 such that ψ|α(v1, . . . , vk+1) is false. Then consider the specific color combination (c1, . . . , ck)
where on each i, (vi, vk+1) |= ci. So (c1, . . . , ck) does not satisfy ψ|α(x1, . . . , xk+1). Thus there
exists an element u(vk+1,c1,...,ck) in U .

If none of the colors in combination (c1, . . . , ck) is the background color, then the encoding
of (c1, . . . , ck) is the string 0k. Thus, the element u(vk+1,c1,...,ck) is in sub-universe U0k . By our
construction, u(vk+1,c1,...,ck) is contained in all of Sv1 , . . . , Svk , as shown on the left side of Figure
5. This is because for when we went through all the edges, at the edge between (vi, vk+1), we put

u(vk+1,c1,...,ck) in Svi , since none of the colors is background. Thus (∃u ∈ U0k)
[∧k

i=1(u ∈ Svi)
]
, so

it is not the case that (∀u ∈ U0k)
[∨k

i=1 ¬(u ∈ Svi)
]
, which means Sv1 , . . . , Svk is not a solution of

BP [0k] on sub-universe U0k .
If some of the colors ci in the color combination (c1, . . . , ck) equal the background color 0|Pi|,

then in the encoding C of (c1, . . . , ck), C[i] = 1. Thus, the element u(vk+1,c1,...,ck) is in the sub-
universe UC . By our construction, u(vk+1,c1,...,ck) is contained in sets Svi for all indices i where ci

is not the background color 0|Pi|, and is not contained in sets Svj for all indices j where cj is the

background color 0|Pj |. The latter case is because for each index j where cj is the background color,
there is no edge connecting the pair of vertices (vj , vk+1). So we did not put u(vk+1,c1,...,ck) in Svj .

(The right side of Figure 5 demonstrates the example where c1 and c3 are the background colors
while other colors are not.)

Thus

(∃u ∈ UC)
[∧

i∈{1,...,k},C[i]=0(u ∈ Svi) ∧
∧
i∈{1,...,k},C[i]=1(¬(u ∈ Svi))

]
,

21



so it is not the case that

(∀u ∈ UC)
[∨

i∈{1,...,k},C[i]=0(¬(u ∈ Svi)) ∨
∨
i∈{1,...,k},C[i]=1(u ∈ Svi)

]
,

which means Sv1 , . . . , Svk is not a solution of BP [C] on sub-universe UC .
• On the other hand, assume that (v1, . . . , vk) satisfies (∀vk+1)ψ|α(v1, . . . , vk+1). We claim that for
all ` ∈ {0, 1}k, (Sv1 , . . . , Svk) is a solution to Basic Problem BP [`].

Consider the sub-universe UC for each C ∈ {0, 1}k. If C = 0k, i.e., the sub-universe is U0k corre-
sponding to BP [0k], then none of the elements u(vk+1,c1,...,ck) in U0k contains any background color
among its c1, . . . , ck. For the sake of contradiction, suppose there exists an element u(vk+1,c1,...,ck)

that is contained in all sets Sv1 , . . . , Svk . So by our construction of sets, for each i ∈ {1, . . . , k},
(vi, vk+1) |= ci. Recall that the color combination (c1, . . . , ck) in any element u(vk+1,c1,...,ck) does not
satisfy ψ|α. Then this means the vertex vk+1 does not satisfy ψ|α(v1, . . . , vk, vk+1), which leads to
a contradiction.

Thus on (Sv1 , . . . , Svk), it is not the case that (∃u ∈ U0k)
[∧k

i=1(u ∈ Svi)
]
, implying (Sv1 , . . . , Svk)

satisfies (∀u ∈ U0k)
[∨k

i=1 ¬(u ∈ Svi)
]
. So it is a solution of the Basic Problem BP [0k] on sub-

universe U0k .
If C 6= 0k, for the sake of contradiction, suppose there exists an element u(vk+1,c1,...,ck) such

that among Sv1 , . . . , Svk , it is contained in set Svi iff C[i] = 0. Then by our construction of
sets, this means for all i such that C[i] = 0, (vi, vk+1) |= ci; while for all i such that C[i] 6= 0,
(vi, vk+1) |= 0|Pi| = ci. Combining the two statements, for all i, (vi, vk+1) |= ci. Recall again that
the color combination (c1, . . . , ck) in any element u(vk+1,c1,...,ck) does not satisfy ψ|α. This implies
the vertex vk+1 does not satisfy ψ|α(v1, . . . , vk+1), which leads to a contradiction.

Thus on (Sv1 , . . . , Svk), it is not the case that

(∃u ∈ UC)
[∧

i∈{1,...,k},C[i]=0(u ∈ Svi) ∧
∧
i∈{1,...,k},C[i]=1(¬(u ∈ Svi))

]
,

implying (Sv1 , . . . , Svk) satisfies

(∀u ∈ UC)
[∨

i∈{1,...,k},C[i]=0(¬(u ∈ Svi)) ∨
∨
i∈{1,...,k},C[i]=1(u ∈ Svi)

]
.

So it is a solution of the Basic Problem BP [C] on sub-universe UC .

In summary, there exists tuple (v1, . . . , vk) such that (∀vk+1)ψ|α(v1, . . . , vk, vk+1) holds true,
iff there exist sets (Sv1 , . . . , Svk) such that for all ` ∈ {0, 1}k, (Sv1 , . . . , Svk) is a solution of Basic
Problem BP [`] on sub-universe U`. Thus our reduction satisfies constraint (A) of the Hybrid
Problem.

Step 2: Construction of R and type.
Next, we consider the predicates in Pk+1, which are predicates unrelated to variable xk+1. We
create edges for predicate R according to the current partial interpretation α.

For a pair of vertices vi ∈ Vi and vj ∈ Vj where 1 ≤ i < j ≤ k, we say (vi, vj) agrees with α if
the evaluations of all predicates on (xi, xj) (including (xj , xi)) when xi ← vi, xj ← vj , equals the
truth values of corresponding predicates specified by α.
• Case 1: At least one predicate on (xi, xj) in α is true. (i.e., (xi, xj) is in a sparse relation)
For all edges (vi, vj) (including (vj , vi)) where vi ∈ Vi and vj ∈ Vj and i < j ≤ k, if (vi, vj) agrees
with α, then we create edge R(Svi , Svj ). Finally we make type[i, j] = 1 in the Hybrid Problem Hα.
• Case 2: All predicates on (xi, xj) in α are false. (i.e., (xi, xj) is in a co-sparse relation)
For all edges (vi, vj) (including (vj , vi)) where vi ∈ Vi and vj ∈ Vj and i < j ≤ k, if (vi, vj) does
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not agree with α, then we create edge R(Svi , Svj ). Finally we make type[i, j] = 0 in the Hybrid
Problem Hα.
Analysis. We prove that (vi, vj) can appear in the solution of Hα only if when it agrees with α.
If (vi, vj) does not agree with α, we should not let them be in any solution of Hα. This is done by
the relation R and the string type.

Consider the two cases. If in α some predicates on (xi, xj) are true (i.e., set of tuples that agree
with α is sparse), then in any (vi, vj) that agrees with α, there must be an edge in G connecting
vi and vj . So we can add an edge (defined by relation R) on the corresponding sets Svi , Svj and
require there must be such an edge in the solution (i.e., type being 1).

On the other hand, if all predicates on (xi, xj) in α are false (i.e., set of tuples agreeing with α is
co-sparse), then in any (vi, vj) that agrees with α, there should not be any edge connecting vi and
vj . In this case we turn to consider the tuples (vi, vj) that do not agree with α (which is a sparse
relation, instead of co-sparse). We create edges on the corresponding sets Svi , Svj and require there
must not be such an edge in the solution (i.e., type being 0).

Therefore, a tuple (v1, . . . , vk) implies α iff for all i, j ∈ {1, . . . , k}, i < j, the truth value of
relation R(Svi , Svj ) equals whether type[i, j] = 1. Thus our reduction satisfies constraint (B) of the
Hybrid Problem.

From the analyses of the two steps, we have justified that: there exists (v1, . . . , vk) so that
(v1, . . . , vk) |= α, and ψ|α holds for all vk+1 ∈ Vk+1, iff there exists (Sv1 , . . . , Svk) being a solution
to the Hybrid Problem Hα. Thus, if for any α ∈ {0, 1}Pk+1 , the Hybrid Problem Hα accepts, then
there exists a solution (v1, . . . , vk) so that ψ(v1, . . . , vk, vk+1) holds for all vk+1 ∈ Vk+1. Otherwise
there does not exist such a solution. From the above argument, we have proved the following claim.

Claim 5.1. The two propositions are equivalent:
(1) MCϕ has a solution x1 ← v1, . . . , xk ← vk such that (∀vk+1 ∈ Vk+1)ψ(v1, . . . , vk+1) is satisfied.
(2) There exists an α ∈ {0, 1}Pk+1 so that (Sv1 , . . . , Svk) |= α, and Sv1 , . . . , Svk is a solution to the

Hybrid Problem Hα.

The analysis of correctness will be left to the full version of this paper.
The running time of the whole reduction process is linear in the total number of edges in the

graph, because the number of predicates is constant. Thus Lemma 5.5 follows.

6 Derandomization

We derandomize the reduction in Section 5 for the k = 2 case, so that the whole proof of Theorems
1 and 3 is determistic. The derandomization of the randomized universe-shrinking self-reduction
uses the technique of nearly disjoint sets similar to the construction of pseudorandom generator by
Nisan and Widgerson in [28].

In this section, for simplicity we use SC(x) (resp. SD(x)) to denote Set Containment, a.k.a.
the Basic Problem BP [01] (resp. Set Disjointness, a.k.a. the Basic Problem [00] or Sparse OV) on
universe of size x, and use HP for the Hybrid Problem.

Lemma 6.1. For any 2Ω(
√

logn) ≤ s < m1/3, there is a deterministic universe-shrinking self-

reduction for SC such that (SC(n),m2/s) ≤EC (SC(O(s2 log2 n/ log2 s),m2/s3 log2 n
log2 s

)).

Lemma 6.2. For any 2Ω(
√

logn) ≤ s < m1/3, there is a deterministic universe-shrinking self-
reduction for SD such that (SD(n),m2/s) ≤EC (SD(O(s2 log n/ log s),m2/s3 logn

log s )).
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The following reduction from the Hybrid Problem to Set Disjointness implies the model checking
for any ∃∃∀ sentences on sparse structures can be reduced to moderate-dimension SD, and then to
OV.

Lemma 6.3. For any 2Ω(
√

logn) ≤ s < m1/3, where m is the input size to the Hybrid Problem, there

is a deterministic reduction algorithm such that (HP,m2/s) ≤EC (SD(O(s2 log2 n/ log2 s),m2/s4 log3 n
log3 s

)).

6.1 Proof of Lemma 6.1

This section presents the derandomization of the universe-shrinking self-reduction in Sections 5.1.1
for the Basic Problem BP [01] (and equivalently BP [10]), i.e. when the corresponding Basic Prob-
lem is the Set Containment problem.

Pick ` = O(log n/ log s) and prime number q = O(s log n/ log s), so that s` < q and q` > n. By
Bertrand’s postulate, we can find such a q in time O(s log n/ log s).

First, we use the algorithm in Section 5.1.1 to decide if there is a solution containing a set of
size at least s, which takes time O(m2/s). So next we only consider sets of size smaller than s.

We create a new universe U ′ of size q2. Let U ′ be GF (q)×GF (q). Let element u in universe U
correspond to a unique polynomial pu over GF (q) of degree `. The number of different polynomials
is q`. Since q` > n, the number of different polynomials is greater than the number of elements of
U .

Let h be a hash function so that each element in U is mapped to a set h(u) = {〈i, pu(i)〉 | i ∈
GF (q)} of size q. For set S ⊆ U , define h(S) =

⋃
u∈S h(u). Finally, S ′1 = {h(S)|S ∈ S1}, and S ′2 is

constructed similarly. Then we decide the SC(q2) instance that takes S ′1 and S ′2 as input.
If S1 ⊆ S2, then h(S1) ⊆ h(S2), and the call to the SC(q2) instance returns true.
If S1 6⊆ S2 for all sets, we need to show that for each element u1 ∈ S1\S2, |h(u1) ∩ h(S2)| < q.

Then because |h(u1)| = q, some element in h(u1) is not in h(S2), therefore h(S1) 6⊆ h(S2). To
show |h(u1) ∩ h(S2)| < q, observe that for each element u2 ∈ S2, the intersection h(u1) ∩ h(u2)
has size at most `, the degree of polynomial pu1 − pu2 . There are at most s elements in S2, thus
|h(u1) ∩ h(S2)| ≤ s` < q.

Thus, there exist S1 ⊆ S2 in the original instance iff there exist h(S1) ⊆ h(S2) in the constructed
instance.

The time to create the new set is O(mq`), which is less than than O(m2/s). And its size is
m′ ≤ mq. Thus, if we can solve it in time O(m′2/poly(s)) where s < mε for all ε > 0, we can solve
it in time O(m2q2/poly(s)) = O(m2/poly(s)).

6.2 Proof of Lemma 6.2

First, we use the algorithm in Section 5.1.1 to decide if there is a solution containing a set of size
at least s, which takes time O(m2/s). So next we only consider sets of size smaller than s.

Let ` = O(log n/ log s), and let q be a prime ≥ s2`, thus q = O(s2`) = O(s2 logn
log s ). So q` > n.

By Bertrand’s postulate, we can find such a q in time O(s2 logn
log s ). We create a universe U ′ of size q.

Each element u of U , which is a string of length log n, can be viewed as the encoding of a
polynomial pu over GF (q) of degree logn

log q ≤
logn
log s = `.

Let a be an element in group GF (q). For each element u in U , we let hash function ha(u) =
pu(a). For set S ⊆ U , define ha(S) =

⋃
u∈S{ha(u)}. The algorithm in the outermost loop enumer-

ates all elements a ∈ GF (q). For each a, we compute ha(S) for all sets S in the input. Then we
decide if there are two disjoint sets in the new instance. The algorithm makes q queries to SD(q)
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instances of input size m, each taking time T (m) = m2/s3 logn
log s = m2/sq, the running time for

moderate-dimension OV. The total time is qT (m) = O(m2/s).
For each pair of different elements u and v in U , the number of elements a in GF (q) so that

pu(a) = pv(a) is at most their degree l < log n. Suppose S1 ∈ S1 and S2 ∈ S2 are a pair of disjoint
sets. ha(S1) and ha(S2) are disjoint if all pairs of their elements are mapped to different elements
in GF (q). The total number of possible collisions is at most s2 log n. Because q > s2 log n, there
exists at least one element a in GF (q) so that all pairs of elements in S1 and S2 are mapped to
different elements by ha.

If there are no disjoint sets, then for each S1 ∈ S1 and S2 ∈ S2, h(S1 ∩ S2) ⊆ h(S1) ∩ h(S2),
so h(S1) and h(S2) are not disjoint. Thus, for every a ∈ GF (q), the call to the SD(log n) instance
returns false.

6.3 Hybrid Problem

In this section we combine the above two deterministic reductions to solve the Hybrid Problem,
which yields a deterministic reduction for Theorem 1 and Theorem 3. Here we use a similar version
of the Hybrid Problem as defined in Section 5.2 but without the relation R and the string type.
More formally, we consider the Hybrid Problem defined as follows:
Problem HP
Input: S1,S2, each a set family of sets Si = Ai ∪ Bi ∪ Ci ∪Di where Ai, Bi, Ci, Di are subsets of
disjoint universes UA, UB, UC , UD respectively.
Output: Whether there exist Si ∈ S1 and Sj ∈ S2 so that

1. Ai ∩Aj = ∅ (Set Disjointness)
2. Bi ⊆ Bj (Set Containment)
3. Ci ⊇ Cj (Set Containment reversed)
4. Di ∪Dj = UD (2-Set Cover)
From the results in Section 5.2, the model checking for first-order sentences of form ∃∃∀ can be

reduced to the Hybrid Problem. More precisely, (MC(∃∃∀), T (O(m))) ≤ (HP, T (m)).

Proof of Lemma 6.3.
First, we decide if there is a solution containing a set of size at least s, as described in the

previous subsections, using time O(m2/s). So next we only consider sets of size smaller than s.
If |UD| ≥ 2s, then for all pairs of i, j, Di and Dj cannot cover UD, so we return false. Otherwise

for i and all j we create sets UD\Di and UD\Dj . So D1 ∪D2 = UD iff (UD\Di) ∩ (UD\Dj) = ∅.
The resulting instance size is O(ms).

Then, we use Lemma 6.1 self-reductions for Set Containment on the B’s and C’s, so the created

sets B′i, B
′
j and Ci, Cj are on universes of size O(s2 log2 n

log2 s
). For each j, we create set UB\B′j , so

Bi ⊆ Bj iff B′i ⊆ B′j iff B′i ∩ (UB\B′j) = ∅. Similarly for each i we create UC\C ′i, so Ci ⊇ Cj iff

C ′i ⊇ C ′j iff (UC\C ′i) ∩ C ′j = ∅. The resulting instance size is O(m · s2 log2 n
log2 s

).

Finally, we use Lemma 6.2 self-reductions for Set Disjointness on the original A’s. So in each
call to the oracle, the created sets A′i, A

′
j are on universes of size O(s2 logn

log s ). For each i and each

j, we create sets S′i = A′i ∪ B′i ∪ (UC\C ′i) ∪ (UD\Di) and S′j = A′j ∪ (UB\B′j) ∪ C ′j ∪ (UD\Dj). By
the argument above, S′i ∩ S′j = ∅ iff A′i ∩ A′j = ∅ and Bi ⊆ Bj and Ci ⊇ Cj and Di ∪Dj = UD. If
Ai ∩ Aj = ∅, then in at least one call to the oracle A′i ∩ A′j = ∅ and thus the call will return true
as long as the conditions on B,C,D’s are satisfied. If Ai ∩Aj 6= ∅, all calls return false.

The size of the new instance is O(m · s2 log2 n
log2 s

). In the reduction we make s2 logn
log d calls to the

algorithm for Set Disjointness on small universe. Thus if SD(O(s2 log2 n
log2 s

) has algorithms in time
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m2/s7 log5 n
log5 s

), we get running time s2 logn
log d ·O((m · s2 log2 n

log2 s
)2/s7 log5 n

log5 s
) = O(m2/s). �

This gives a reduction from the general first-order model checking problems to the Hybrid
Problem.

6.4 Extending to more quantifiers

The derandomization can be extended to quantifiers k+1 for integer k ≥ 2. The reduction combines
the reductions for Set Containment and Set Disjointness.

Recall from Section 5.1, a Basic Problem BP [`] where ` 6= 1k can be considered as de-

ciding (∃S1) . . . (∃Sk)(∀u)
[(∨i

j=1(u /∈ Sj)
)
∨
(∨k

j=i+1(u ∈ Sj)
)]
, or equivalently (∃S1) . . . (∃Sk)[(⋂i

j=1 Sj

)
⊆
(⋃k

j=i+1 Sj

)]
. for some i such that 0 ≤ i ≤ k. Again, we map each element in U to

a set of elements in a small universe U ′ by function h, and thus map each set S in U to a set h(S)
in U ′.

Let q1, q2 be the q defined in Sections 6.1 and 6.2 respectively. Here q2 is a prime number
larger than sk−i`. For each element u, for each element a ∈ GF (q2) we map it to a set of tuples
h(u) = {〈uSC , uSD〉 | uSC ∈ hSC(u), uSD ∈ hSDa (u)}, where hSC and hSDa are the functions h and
ha defined in Sections 6.1 and 6.2 respectively, and then we make a query for the BP [`] instance
created from the mapping h. Thus we make q2 queries in all, and accept if at least one of the
queries is accepted.

If there exist sets S1, . . . , Sk such that
⋂i
j=1 Sj ⊆

⋃k
j=i+1 Sj , by generalizing the analysis in

Section 6.2, in at least one query, the set
⋂i
j=1 h(Sj) does not contain any element not in h(

⋂i
j=1 Sj).

And by generalizing the analysis in Section 6.1, in each query, the set
⋃k
j=i+1 h(Sj) = h(

⋂i
j=1 Sj)

is always contained in h(
⋃k
j=i+1 Sj) which is contained in

⋃k
j=i+1 h(Sj). So we get the following

reduction: (BP [`](n),mk/s) ≤EC (BP [`](poly(s)),mk/poly(s)).

7 Extending algorithms and hardness results to hypergraphs

This section gives a reduction from MC(∃∃∀), i.e., the model checking for ∃∃∀ formulas on hyper-
graphs, to the model checking for ∃∃∀ formulas on graphs, where there are only unary and binary
relations. We will prove the following lemma.

Lemma 7.1. If MC(∃k∀) on graphs is solvable in time T (m), then MC(∃k∀) on hypergraphs is
solvable in T (O(m)) +O(mk−1/2).

For a three-quantifier formula (∃x)(∃y)(∀z) ψ(x, y, z) where x ∈ X, y ∈ Y, z ∈ Z, we prove that
it can be decided in time O(m3/2 + T (O(m))), where T is the running time for the model checking
of three-quantifier formulas on graphs.

Define N(x, y) be a new relation such that N(x, y) = true iff there exists some z such that
there is a hyperedge Ri(x, y, z) = true (the order of x, y, z can be interchanged). Note that each
tuple in the relations contributes to only constantly many tuples of N . So |N | = O(m), and we
can construct N in linear time.

Let ψ(x, y, z) be a quantifier-free formula. We define ψ∗(x, y, z) be ψ(x, y, z) where all oc-
currences of ternary predicates are replaced by false. Thus, it contains only unary and binary
predicates. Formula (∃x)(∃y)(∀z)ψ(x, y, z) is equivalent to (∃x)(∃y)(∀z)[N(x, y) ∧ ψ(x, y, z)] ∨
(∃x)(∃y)(∀z)[¬N(x, y) ∧ ψ∗(x, y, z)].
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We can decide (∃x)(∃y)(∀z)[¬N(x, y) ∧ ψ∗(x, y, z)] using the algorithm for graphs, because all
relations are binary. To decide (∃x)(∃y)(∀z)[N(x, y)∧ψ(x, y, z)], we consider three types of x’s and
y’s.
• Type 1: deg(x) ≥ √m. It is similar to deciding “large sets” for Basic Problems in Section
5.1.1. In the outer loop, enumerate all such x’s. For each x, we modify the model checking
problem to an instance of MC(2), by treating x as a constant. The number of such x’s is at most
O(m/

√
m) = O(

√
m), and deciding an MC(2) problem runs in time O(m). So the total running

time is O(
√
m ·m) = O(m3/2).

• Type 2: deg(y) ≥ √m. Use the same method as above by exchanging the order of x and y. The
running time is also O(m3/2).
• Type 3: deg(x) <

√
m and deg(y) <

√
m. Enumerate all pairs of such x’s and y’s. Then

in the inner loop, we enumerate all their neighbors in Z. In this way, for each z ∈ Z such that
z is a neighbor of x or y, we can categorize it by the truth value of all predicates. For all other
z’s, we know all the predicates are false. Thus we can decide if all z ∈ Z satisfy ψ. Because all
these x’s and y’s are adjacent, the time for enumerating pairs of x and y is O(m), and the time for
enumerating all their neighbors in Z is O(

√
m). So the total running time is O(

√
m ·m) = O(m3/2).

Thus, for each pair (x, y) whereN(x, y) = true, we can decide the model checking for (∀z)ψ(x, y, z)
in time O(m3/2). For each pair (x, y) where N(x, y) = false, (∀z)ψ(x, y, z) is true iff (∀z)[¬N(x, y)∧
ψ∗(x, y, z)].

Similarly, for MC(∃k∀) problems where ϕ = (∃x1) . . . (∃xk)(∀xk+1)ψ(x1, . . . , xk+1), we still
consider the cases whether there exist some hyperedge between any pair of xi, xj , where i, j ≤ k.
We define relation N(xi, xj) = true iff there exists some xk such that there is some hyperedge
containing vertices xi, xj . We also define ψ∗(x1, . . . , xk+1) be ψ(x1, . . . , xk+1) where all occurrences
of predicates with arities greater than two are replaced by false. So

ϕ =(∃x1) . . . (∃xk)(∀xk+1)


 ∨

i,j∈{1,...,k},i 6=j

(N(xi, xj) ∧ ψ(x1, . . . , xk+1)




∨




 ∧

i,j∈{1,...,k},i 6=j

¬N(xi, xj)


 ∧ ψ∗(x1, . . . , xk+1)




=
∨

i,j∈{1,...,k},i 6=j

[(∃x1) . . . (∃xk)(∀xk+1)[N(xi, xj) ∧ ψ(x1, . . . , xk+1)]]

∨ (∃x1) . . . (∃xk)(∀xk+1)




 ∧

i,j∈{1,...,k},i 6=j

¬N(xi, xj)


 ∧ ψ∗(x1, . . . , xk+1)




To decide (∃x1) . . . (∃xk)(∀xk+1)[N(xi, xj)∧ψ(x1, . . . , xk+1)], we do exhaustive search on the k−
2 variables other than xi and xj (which in essence is a quantifier-eliminating downward reduction),
which takes a factor of O(mk−2) in the running time. Then we process the variables xi, xj , xk in
the same way as variables x, y, z in the three-quantifier problem, that takes time O(m3/2). The
total running time is O(mk−1/2).

To decide(∃x1) . . . (∃xk)(∀xk+1)
[(∧

i,j∈{1,...,k},i 6=j ¬N(xi, xj)
)
∧ ψ∗(x1, . . . , xk+1)

]
, we can use

the algorithm for MC(∃k∀) problems on graphs, because the new formula has only unary and
binary relations.
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8 Hardness of k-OV for MC(∀∃k−1∀)
In this section we present an exact complexity reduction from any MC(∀∃k−1∀) problem to a
MC(∃k∀) problem, establishing the hardness of k-OV for these problems. This reduction gives an
extension of the reduction from Hitting Set to Orthogonal Vectors in [4] to sparse structures.

Lemma 8.1. For k ≥ 2 and s(m) a non-decreasing function such that 2Ω(
√

logm) ≤ s(m) < m1/5,
let ϕ′ = (∃x2) . . . (∃xk)(∀xk+1)ψ(x1, . . . , xk+1). There is an exact complexity reduction

(MC(∀x1)ϕ′ ,
mk

s(
√
m)

) ≤EC (MC(∃x1)ϕ′ ,
mk

s(m)).

First, we show that in problem MC(∃x1)ϕ′ , if graph G satisfies (∃x1)ϕ′, then we can find a
satisfying value v1 for variable x1 by binary search. We divide the set V1 into two halves, take each
half of V1 and query whether (∃x1)ϕ′ holds true on the graph induced by this half of V1 together
with the original sets V2, . . . , Vk+1. If any half of V1 works, then we can shrink the set of candidate
values for x1 by a half, and then recursively query again, until there is only one vertex v1 left. So
it takes O(log |V1|) calls to find a v1 in some solution. This means as long as there is a solution for
MC∃x1ϕ′ , we can find a satisfying v1 efficiently, with O(logm) queries to the decision problem.

Step 1: Large degree vertices. Let t = m(k−1)/k. We deal with vertices in V1 . . . Vk with degree
greater than t. There are at most m/t = m1/k such vertices. After pre-computing the sizes of all
the sets, these large sets can be listed in time O(m1/k).
• Step 1-1: Large degree vertices in V1. For each vertex v1 ∈ V1 with degree at least t, we
create a formula ψv1 on variables x2, . . . , xk+1 from formula ψ, by replacing occurrences of unary
predicates in ψ on x1 by constants, and replacing occurrences of binary predicates involving x1 by
unary predicates on the other variables. Then we check if the graph induced by V2, . . . , Vk+1 satisfies
(∃x2) . . . (∃xk)(∀xk+1)ψv1(x2, . . . , xk+1) by running the baseline algorithm in time O(mk−1). If the
new formula is satisfied, then we mark v1 as “good”. The total time complexity is O(m1/k) ·
O(mk−1) = O(mk−1+1/k).
• Step 1-2: Large degree vertices in V2, . . . , Vk. Now we exhaustively search over all vertices
v1 ∈ V1 with degree less than t in the outermost loop. For each such v1, we find out all vertices
vi ∈ Vi for 2 ≤ i ≤ k, with degree at least t. Again, there are at most O(m1/k) of them.
◦ Case 1: k > 2. Because variables x2 through xk are all quantified by ∃, we interchange their
order so that the variable xi becomes the second-outermost variable x2 (and thus the current vi
becomes v2). Next, for each v1 and v2 we construct a new formula ψ(v1,v2) on variables x3, . . . , xk+1,
by regarding x1 and x2 as fixed values v1 and v2, and then modify ψ into ψ(v1,v2) similarly to the
previous step. Again, we run the baseline algorithm to check whether the graph induced by the
current V3, . . . , Vk+1 satisfies (∃x3) . . . (∃xk+1)ψ(v1,v2)(x3, . . . , xk+1), using time O(mk−2). If the

formula is satisfied, we mark the current v1 as “good”. The total time complexity is O(m ·m1/k) ·
(mk−2) = O(mk−1+1/k).
◦ Case 2: k = 2. For each vertex v2, we mark all the v1’s satisfying ∀x3ψ(x1, x2, x3) as “good”.
This can be done in O(m) using the algorithm for the base case of the baseline algorithm, by
treating the current v2 as constant. So this process runs in time O(m1/k) ·O(m) = O(m3/2).

If not all vertices in V1 with degree at least t are marked “good”, we reject. Otherwise, go to
Step 2.
Step 2: Small degree vertices. First we exclude all the large vertices from the graph. Then for
the “good” vertices found in the previous step, we also exclude them from V1.

Now all vertices have degree at most t. In each of V1, . . . , Vk, we pack their vertices into groups
where in each group the total degree of vertices is at most t. Then the total number of groups is
bounded by O(m/t).
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For each k-tuple of groups (G1, . . . , Gk) where G1 ⊆ V1, . . . , Gk ⊆ Vk, we query the oracle
deciding MC(∃x1)ϕ′ whether it accepts on the subgraph induced by vertices in G1, . . . , Gk. If so,
then we find a vertex v1 in V1 so that when x1 ← v1, the current subgraph satisfies ϕ′. We remove
this v1 from V1. Then we repeat this process to find new satisfying v1’s in V1, and remove these
v1’s from V1. When V1 is empty, or when no new solution is found after all group combinations are
exhausted, the algorithm terminates. If in the end V1 is empty, then all v1 ∈ V1 are in solutions of
MC∃x1ϕ′ , so we accept. Otherwise we reject.

Each query to MC∃x1ϕ′ has size m′ = O(kt) = O(t). Because the number of different k-
tuples of groups is O(m/t)k = O((m/t)k), the number of queries made is O((m/t)k + |V1|) ·
O(logm) = O((m1/k)k + |V1|) · O(logm) = O(m logm) times. If MC∃x1ϕ′ on input size m′ is
solvable in time O(m′k/s(m′)), then the running time for MC∀x1ϕ′ is O(m logm) ·O(m′k/s(m′)) =
O((m(k−1)/k)k/s(m(k−1/k)) · logm) ≤ O(mk/s(

√
m) · logm). The exponent of m is less than k. Thus

this is a fine-grained Turing reduction. Lemma 8.1 follows.

Note that this reduction works not only on graphs but also on structures with relations of arity
greater than two.

9 Baseline and improved algorithms

In this section, we first present a baseline algorithm for MC(k + 1) that runs in time O(nk−1m),
which also implicitly gives us a quantifier-eliminating downward reduction from any MC(k + 1)
problem to MC(k) problems for k ≥ 2. Then, we show how to get an improved algorithm in time
mk/2Θ(

√
logm) using our reductions and the result by [3, 16]. Finally, we present the algorithms for

some specific quantifier structures in O(m3/2), so that these problems are easy cases in first-order
property problems.

9.1 Baseline algorithm for first-order properties

This section gives an O(nk−1m) time algorithm solving MC(k + 1) with any quantifier structure
for k ≥ 1, thus proving Lemma 9.1.

Lemma 9.1. (Quantifier-eliminating downward reduction for MC(k + 1))
Let the running time of MC(k+ 1) on graphs of n vertices and m edges be Tk(n,m). We have the
recurrence

Tk(n,m) ≤ n · Tk−1(n,O(m)) +O(m), for k ≥ 2.

T1(n,m) = O(m).

By this lemma, if all problems in MC(k) have algorithms in time T (n,m), then any problem
in MC(k + 1) can be solved in time n · T (n,m).

Base Case. We prove that when k = 1, Tk(n,m) = m. For each v1 ∈ V1, the algorithm computes
#(v1) = |{v2 ∈ V2 | (v1, v2) |= ψ}|. Thus we can list the sets of v1 s.t. #(v1) > 0 (if the inner
quantifier is ∃), or those that satisfy #(v1) = |V2| (if it is ∀).

Let there be p1 different unary predicates on v1 and p2 different unary predicates on v2. We
partition the universes V1 and V2 respectively into 2p1 and 2p2 subsets, based on the truth values
of all the unary predicates of the corresponding variable. The number of different pairs of subsets
is a constant. Each time, we pick a pair consisting of one subset from V1 and one subset from V2,
and replace the unary predicates by constants. In this way, we can just consider binary predicates
in the following argument.
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Let ψ̄(v1, v2) be the formula where each occurrence of each negated binary relation Ri(v1, v2) is
replaced by false. We enumerate all tuples (v1, v2) connected by at least one edge. For each tuple,
we evaluate ψ(v1, v2) and ψ̄(v1, v2). Let

ψ(v1) =
∑

v2 adjacent to v1
([ψ(v1, v2) = true]− [ψ̄(v1, v2) = true])

(in which the brackets are Iverson brackets). It can be computed by enumerating all tuples (v1, v2)
connected by at least one edge. Next, because in ψ̄ there are no occurrences of negated binary
predicates, we can compute

#ψ̄(v1) = The number of v2 s.t. ψ̄(v1, v2) holds

by first enumerating all tuples (v1, v2) connected by at least one edge and checking if ψ̄(v1, v2)
holds, and then considering the number of non-neighboring v2’s for each v1, if being a non-neighbor
of v1 also makes ψ̄(v1, v2) true. Finally, let #(v1) = #ψ(v1) + #ψ̄(v1).

This algorithm is correct, because whenever a pair (v1, v2) satisfies ψ(v1, v2), there are two cases.
The first is that there exists an edge between v1 and v2. In this case, when we enumerate all edges,
[ψ(v1, v2) = true] equals one and [ψ̄(v1, v2) = true] equals its contribution to #ψ̄(v1). On the other
hand, if there does not exist an edge between v1 and v2, then the contribution of (v1, v2) to #ψ(v1)
is 0 and to #ψ(v1) is 1.

Whenever a pair (v1, v2) does not satisfy ψ(v1, v2), there are also two cases. If there exists
an edge between v1 and v2. So when we enumerate all edges, [ψ(v1, v2) = true] equals zero and
[ψ̄(v1, v2) = true] equals its contribution to #ψ̄(v1). On the other hand, if there does not exist an
edge between v1 and v2, the contributions of (v1, v2) to #ψ(v1) and to #ψ(v1) are both 0.

Inductive Step. For k ≥ 2, we give a quantifier-eliminating downward reduction, thus proving
the recurrence relation. Assume ϕ = (Q1x1) . . . (Qk+1xk+1)ψ(x1, . . . , xk+1) For each v1 ∈ V1, create
new formula ϕv1 = (Q2x2) . . . (Qk+1xk+1)ψ(x2, . . . , xk+1), and in ψ we replace each occurrence of
unary predicate Ri(x1) with a constant Ri(v1), and replace each occurrence of binary predicate
Ri(x1, xj) (or Ri(xj , x1)) with unary predicate R′i(xj) whose value equals Ri(v1, xj) (or Ri(xj , v1)),
etc. Our algorithm enumerates all v1 ∈ V1, and then computes if the graph induced by V2, . . . , Vk+1

satisfies ϕv1 . If x1 is quantified by ∃, we accept iff any of them accepts. Otherwise we accept iff all
of them accepts. The construction of ϕv1 takes time O(m). The created graph has O(n) vertices
and O(m) edges. Thus the recursion follows.

This process is a quantifier-eliminating downward reduction from a MC(k + 1) problem to a
MC(k) problem. It makes O(m) queries, each of size O(m). Then if problems inMC(k) are solvable
in timeO(mk−1−ε), then problems inMC(k+1) are solvable in timem·O(mk−1−ε) = O(mk−ε). This
quantifier-eliminating downward reduction implies that if all MC(k) have T (n,m) time algorithms,
then all MC(k + 1) problems have n · T (n,m) time algorithms.

From the recursion and the base case, we have the running time O(nk−1m) by induction. The
quantifier-eliminating downward reduction from MC(k + 1) to MC(3) in Lemma 9.1 also works
for hypergraphs. We exhaustively search the first k − 2 quantified variables, and by replacing the
occurrences of these variables by constants in the formula, we can reduce the arities of relations.
After the reduction, we get a hypergraph of max arity at most three.

9.2 Algorithms for easy cases

In this section we show that any (k+ 1)-quantifier problem with a quantifier sequence ending with
∃∃ or ∀∀ is solvable in time O(mk−1/2). First of all, we use the quantifier-eliminating downward
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ψ2 = E(x, y) ∧ E(x, z) ψ2+ = E(x, y) ∧ E(x, z) ∧ E(y, z) ψ2− = E(x, y) ∧ E(x, z) ∧ ¬E(y, z)

ψ1 = E(x, y) ∧ ¬E(x, z) ψ1+ = E(x, y) ∧ ¬E(x, z) ∧ E(y, z) ψ1− = E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z)

ψ0 = ¬E(x, y) ∧ ¬E(x, z) ψ0+ = ¬E(x, y) ∧ ¬E(x, z) ∧ E(y, z) ψ0− = ¬E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z)

Table 1: Atomic Problems

reduction to reduce the problem to a MC(3) problem. Then from the next subsections we see that
these problems are solvable in O(m3/2). [35] shows improved algorithms that run in time O(m1.41)
for detecting triangles and detecting induced paths of length 2, which are special cases of MC(∃∃∃).
Lemma 9.2. Problems in MC(∃∃∃), MC(∀∀∀), MC(∀∃∃) and MC(∃∀∀) are solvable in O(m3/2).

In the first two subsections, we consider when the input structures are graphs. Then in the last
subsection, we consider the cases when the input structures have higher arity relations.

9.2.1 Problems in MC(∃∃∃) and MC(∀∀∀)
For problems in MC(∀∀∀), we decide its negation, which is a MC(∃∃∃) problem.

We define nine Atomic Problems, which are special MC(3) problems. Let the Atomic Problem
labeled by ` to be MC(∃x∈X)(∃y∈Y )(∃z∈Z)ψ` , and referred to as ∆[`]. It is defined on a tripartite
graph on vertex sets (X,Y, Z), whose edge sets are EXY , EY Z , EXZ defined on (X,Y ), (Y, Z), (X,Z)
respectively. The graph is undirected, i.e., EXY , EY Z and EXZ are symmetric relations. For
simplicity we define an edge predicate E so that E(v1, v2) is true iff there is an edge in any of
EXY , EY Z , EXZ connecting (v1, v2) or (v2, v1). Besides, we use degY (x) to denote the number of
x’s neighbors in Y .

The ψ` for all Atomic Problems are defined in Table 1. For problem MCϕ where ϕ = (∃x ∈
X)(∃y ∈ Y )(∃z ∈ Z)ψ(x, y, z), we write ψ as a DNF, and split the terms. Then we decide if there
is a term so that there exist x, y, z satisfying this term. On each term t, which is a conjunction
of predicates and negated predicates, we work on the induced subgraph whose vertices satisfy all
the positive unary predicates and falsify all the negated unary predicates defined on them in t.
Then we can remove all unary predicates from the conjunction, which is now a conjunction of
binary predicates or their negations. (If the conjunction is a single predicate or a single negated
predicate, then we can deal with it easily, so we don’t consider this case here.) If we define E(x, y) =∧
R is a positive binary predicate in tR(x, y)∧∧R is a negative binary predicate in t ¬R(x, y), and define E(y, z)

and E(x, z) similarly, then t becomes equivalent with some Atomic Problem, or a disjunction of
Atomic Problems (because variables y and z are interchangeable, the Atomic Problems and their
disjunctions cover all possible cases).

In our algorithm for each problem ∆[`], instead of deciding the existence of satisfying x, y, z,
we consider these problems as counting problems, where for each x we compute

#`(x) = |{(y, z) | x, y, z satisfy ψ`}|.
Problems ∆[2],∆[1],∆[0] can be computed straightforwardly.
• In ∆[2], #2(x) = degY (x)× degZ(x).
• In ∆[1], #1(x) = degY (x)× (|Z| − degZ(x)).
• In ∆[0], #0(x) = (|Y | − degY (x))× (|Z| − degZ(x)).
Next we show for labels ` ∈ {2+, 1+, 0+, 2−, 1−, 0−}, problems ∆[`] can be computed in

O(m3/2).
Algorithm 1 solves ∆[2+],that is, for each x, counting the number of triangles that contain x.

The first part of the algorithm only considers small degree y. On each iteration of the outer loop,
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the inner loop is run for at most
√
m times. The second part only considers large degree y. Because

there are at most
√
m of them, the outer loop is run for at most

√
m times. Therefore the running

time of the algorithm is O(m3/2).

Algorithm 1 ∆[2+]

1: for all (x, y) ∈ EXY do . Small degree y
2: if degZ(y) ≤ √m then
3: for all z s.t. (y, z) ∈ EY Z do
4: if (x, z) ∈ EXZ then
5: #2+(x)← #2+(x) + 1
6: end if
7: end for
8: end if
9: end for

10: for all y ∈ Y s.t. degZ(y) >
√
m do . Large degree y

11: for all (x, z) ∈ EXZ do
12: if (x, y) ∈ EXY and (y, z) ∈ EY Z then
13: #2+(x)← #2+(x) + 1
14: end if
15: end for
16: end for
17: if #2+(x) > 0 for some x ∈ X then Accept
18: else Reject
19: end if

Algorithm 2 solves ∆[1+], which for each x counts (x − y − z) paths where there is no edge
between x and z. The first part is similar as ∆[2+]. The second part first over-counts (x− y − z)
paths for all large degree y without restricting the edge between x and z, and then counts the
number of over-counted cases in order to exclude them from the final result. In the first block, the
inner loop is run for at most

√
m times for each edge in EXY . The second block takes time O(m).

The outer loop of the third block is run for at most
√
m times, because there are at most

√
m sets

with degree at least
√
m. So in all, the running time is O(m3/2).

For ∆[0+], we first compute #2+(x) which is the result of ∆[2+], and then compute #1+(x)
and #′1+(x), which are results of ∆[1+] on vertex sets (X,Y, Z) and (X,Z, Y ) respectively. Finally
let #0+(x)← |EY Z | − (#2+(x) + #1+(x) + #′1+(x)).

#2−(x),#1−(x),#0−(x) can be computed by respectively taking the differences of #2(x),#1(x),#0(x)
and #2+(x),#1+(x),#0+(x).

9.2.2 Problems in MC(∀∃∃) and MC(∃∀∀)
For problems in MC(∃∀∀), we decide its negation, which is a MC(∀∃∃) problem.

For problem MCϕ where ϕ = (∀x ∈ X)(∃y ∈ Y )(∃z ∈ Z)ψ(x, y, z), we use the same algorithm
to compute #`(x) for all x ∈ X. If the value of #`(x) is greater than zero for all x ∈ X, then we
accept, otherwise reject. Again, we write ψ as a DNF, and split the terms. By the same argument
as the previous lemma, we transform the problem to a disjunction of Atomic Problems. If for all
x ∈ X, at least in one of the Atomic Problem, #`(x) is greater than zero, then we accept, otherwise
reject.
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Algorithm 2 ∆[1+]

1: for all (x, y) ∈ EXY do . Small degree y
2: if degZ(y) ≤ √m then
3: for all z s.t. (y, z) ∈ EY Z do
4: if (x, z) /∈ EXZ then
5: #1+(x)← #1+(x) + 1
6: end if
7: end for
8: end if
9: end for

10: for all (x, y) ∈ EXY do . Large degree y
11: if degZ(y) ≥ √m then . Over-counting
12: #1+(x) = #1+(x) + degZ(y)
13: end if
14: end for
15: for all y ∈ Y s.t. degZ(y) >

√
m do

16: for all (x, z) ∈ EXZ do
17: if (x, y) ∈ EXY and (y, z) ∈ EY Z then
18: #1+(x)← #1+(x)− 1
19: . if we just over-counted the pair (y, z),then we exclude the pair by subtracting one.
20: end if
21: end for
22: end for
23: if #1+(x) > 0 for some x ∈ X then Accept
24: else Reject
25: end if
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9.2.3 Structures with higher arity relations

The above algorithms can be extended to structures with relations of arity greater than two. First,
we write the quantifier-free part ψ in DNF and split each term to a separate ∃∃∃ problem. Then for
each term ψt, we decide if there exist x1, x2, x3 satisfying it. Let ψt1 be the part of the conjunction
containing all ternary predicates in ψt, and ψt2 be the rest of term ψt. Thus ψt = ψt1 ∧ ψt2.

If in ψt, some ternary predicate occurs positively, we can just count #(x1) on the subgraph
where ψt1 is true.

If all ternary predicates in ψt occur negatively, then we first count #(x1) satisfying formula ψt2,
and then we count #′(x1) on the subgraph where ψt1 is true. Finally, we subtract #′(x1) from
#(x1) for each x1.

If ψt has no ternary relations, we just count #(x1) using the algorithm for graphs.

10 Improved Algorithms

In this section we present an algorithm solving Sparse OV in time m2/2Θ(
√

logm). It is based on
the papers [3, 16], which solves dense OV for vectors of dimension d in time n2−Ω(1/ log(d/ logn)).

Consider the universe-shrinking self-reduction for Sparse OV (Set Disjointness) in Section 6.
We show that for s(m) = 2Θ(

√
logm), by the above theorem, this reduction gives an algorithm in

time m2/2Θ(
√

logm). We deal with large sets and small sets separately. For sets of size at least s(m),
we check if each of them is disjoint with some other set. From the argument for large sets, this is
in time m2/s(m). Then, for sets of size less than s(m), we use the universe-shrinking self-reduction

to reduce this instance to a Sparse OV instance on universe of size s(m)
5
6k (in which case k = 2).

Using the algorithm from [3, 16], we can solve it in time n2−Θ(1/ log(s(m)
5
6k )) ≤ m2−Θ(1/ log(s(m)) ≤

m2/2Θ(logm/ log s(m)) = m2/2Θ(
√

logm). So the total running time is bounded by m2/2Θ(
√

logm).
By the above argument and Theorem 1, since all the Basic Problems are solvable in time

m2/2Θ(
√

logm), so is any other problem in MC(∃∃∀). The reduction from MC(∀∃∀) to MC(∃∃∀)
in Section 8 gives 2Θ(

√
logm) savings for MC(∀∃∀) problems. Reducing to three-quantifier case by

brute-forcing over the first k − 2 variables we get Theorem 3, that states all MC(k + 1) problems
can be solved in mk/2Θ(

√
logm) time.

11 Open Problems

An obvious open problem is whether a similar kind of equivalence exists for the dense case of OV.
Is it ”fine-grained equivalent” to some natural complexity class?

Our results raise the possibility that many other classes have complete problems under fine-
grained reducibility, and that this will be a general method for establishing the plausibility of
conjectures on the fine-grained complexity of problems. There is a number of candidates for such
classes. We could drop the restriction that the formula has k quantifiers in all, and look at formulas
with quantifier depth k8. We could also stratify the first-order formulas by variable complexity, the
number of distinct variable names in a formula, rather than number of quantifiers. (Variable
complexity arises naturally in database theory, because the variable complexity determines the
arity of some relation in any way of expressing the query as a sequence of sub-queries.) First-order
logic is rather limited, so we could look at augmentations that increase its reach, such as allowing a
total ordering on elements, or allowing the logic to take transitive closures of relations (e.g., to talk

8For example, ∃(x)(∃y(∃zψ1(x, y, z) ∧ ∀zψ2(x, y, z)) ∧ ∀y(∃zψ3(x, y, z) ∨ ∀zψ4(x, y, z))) has quantifier depth 3.
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about the reachability relation in a sparse directed graph), or more generally, introduce monotone
fixed point operations. Alternatively, rather than varying the types of formulas we could restrict
the types of structures, for example considering structures of bounded treewidth.

It would be interesting to find more reductions between and equivalences among the problems
that are proven hard under some conjecture. For example, Edit Distance, Fréchet Distance, and
Longest Common Subsequence are all almost quadratically hard assuming SETH. Are there any
reductions between these problems? Are they all equivalent as far as having subquadratic algo-
rithms? All of these problems have similar dynamic programming formulations. Can we formalize
a class of problems with such dynamic programming algorithms and find complete problems for this
class? More generally, we would like taxonomies of the problems within P that would classify more
of the problems that have conjectured hardness, or have provable hardness based on conjectures
about other problems. Such a taxonomy might have to be based on the structure of the conjectured
best algorithms for the problems rather than on resource limitations.
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