
1

Completeness for First-Order Properties on Sparse
Structures with Algorithmic Applications

JIAWEI GAO, University of California, San Diego

RUSSELL IMPAGLIAZZO, University of California, San Diego

ANTONINA KOLOKOLOVA, Memorial University of Newfoundland

RYAN WILLIAMS, MIT

Properties de�nable in �rst-order logic are algorithmically interesting for both theoretical and pragmatic

reasons. Many of the most studied algorithmic problems, such as Hi�ing Set and Orthogonal Vectors, are �rst-

order, and the �rst-order properties naturally arise as relational database queries. A relatively straightforward

algorithm for evaluating a property with k + 1 quanti�ers takes time O (mk) and, assuming the Strong

Exponential Time Hypothesis (SETH), some such properties require O (mk−ϵ) time for any ϵ > 0. (Here,m
represents the size of the input structure, i.e. the number of tuples in all relations.)

We give algorithms for every �rst-order property that improves this upper bound to mk/2Θ(
√

logn)
, i.e.,

an improvement by a factor more than any poly-log, but less than the polynomial required to refute SETH.

Moreover, we show that further improvement is equivalent to improving algorithms for sparse instances of the

well-studied Orthogonal Vectors problem. Surprisingly, both results are obtained by showing completeness of

the Sparse Orthogonal Vectors problem for the class of �rst-order properties under �ne-grained reductions.

To obtain improved algorithms, we apply the fast Orthogonal Vectors algorithm of [3, 16].

While �ne-grained reductions (reductions that closely preserve the conjectured complexities of problems)

have been used to relate the hardness of disparate speci�c problems both within P and beyond, this is the �rst

such completeness result for a standard complexity class.

ACM Reference format:
Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. 2016. Completeness for First-Order

Properties on Sparse Structures with Algorithmic Applications. 1, 1, Article 1 (January 2016), 35 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Fine-grained complexity aims to make complexity theory more relevant to algorithm design (and

vice versa) by giving reductions that be�er preserve the times required for solving problems, and

connecting algorithmic progress with complexity theory. While some of the key ideas can be

traced back to parameterized algorithms and complexity ([18, 20]), studies of the exact complexity

of NP-complete problems ([22–24, 29]), and algorithmic consequences of circuit lower bounds

([6, 8, 21, 25, 26, 28, 37]), the full power of this approach has emerged only recently. �is approach

�is research is supported by NSF grant CCF-1213151 from the Division of Computing and Communication Foundations (�rst

two authors) and NSF grant CCF-1552651 (CAREER), last author. Any opinions, �ndings and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily re�ect the views of the National Science Foundation.

�e third author was partially supported by an NSERC Discovery grant. Some of the work was done while visiting UCSD.

�is work was done in part while the authors were visiting the Simons Institute for the �eory of Computing.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. XXXX-XXXX/2016/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 53 (2016)

1:2 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

has given us new circuit lower bounds ([32, 34]), surprising algorithmic improvements using

circuit lower bound techniques ([3, 15, 16, 31]), and many new insights into the relative di�culty

of substantially improving known algorithms for a variety of problems both within and beyond

polynomial time.

One of the strengths of this approach also makes it seemingly more complicated. Fine-grained

reductions o�en cut across traditional complexity hierarchies; for example, many results use a

now-standard reduction from the NP-complete SAT problem down to the �rst-order de�nable

(aka, uniform AC0
) orthogonal vectors problem. (Counterintuitively, this reduces a very hard

problem to a problem in an extremely simple complexity class). On the other hand, di�erent

complete problems for the same complexity class can have di�erent time complexities, meaning

there may not be �ne-grained reductions between them (or at least, that such reductions can be

highly non-trivial.) �us far, �ne-grained complexity has remained focused on speci�c problems,

rather than organizing problems into classes as in traditional complexity. As the �eld has grown,

many fundamental relationships between problems have been discovered, making the graph of

known results a somewhat tangled web of reductions ([1, 2, 5, 9, 11–13, 27, 36]).

Here, we give the �rst results in �ne-grained complexity that apply to an entire complexity

class, namely the class of �rst-order de�nable properties (the uniform version of AC0
.) �is class is

both algorithmically natural in that it contains many standard problems considered before (such

as Hi�ing Set and Orthogonal Vectors), and motivated by its importance in logic and database

theory. It is not di�cult to see that checking whether a property expressible by a �rst-order

formula with k + 1 quanti�ers holds on a given structure withm records can be done inO (mk) time,

and if Strong Exponential Time Hypothesis (SETH) is true, there are such properties that require

mk−o (1)
time to decide.

1
For k = 1, this is linear time and so cannot be improved. For each such

problem with k ≥ 2, we give a algorithm that solves it inmk/2Θ(
√

logm)
time. (�is improves the

standard algorithm by a factor more than any poly-log, but less than the polynomial improvement

needed to refute SETH.) Moreover, we show that any further improvement is equivalent to a similar

algorithmic improvement for the well-studied Orthogonal Vectors problem. Surprisingly, both

results are obtained by showing that (a version of) the Orthogonal Vectors problem is complete
under �ne-grained reductions for the class of all �rst-order properties. �is is the �rst completeness

result for a previously studied complexity class under �ne-grained reducibility. To obtain the

algorithmic results, we then apply the counter-intuitive algorithm for the Orthogonal Vectors

problem of [3, 16], which uses techniques from circuit lower bounds.

In addition to introducing new algorithms and giving completeness results, our results clarify

and simplify our understanding of “complexity within P”. For many of the known SETH-hard

problems of interest such as Edit Distance [9], Longest Common Subsequence [1, 5, 13], Dynamic

Time Warping [1, 13], Fréchet Distance [12], Succinct Stable Matching [27], etc., the reduction from

SAT passes through the Orthogonal Vectors problem. �us, if any of these SETH-hard problems

had substantially improved algorithms, all �rst-order properties would have similarly improved

algorithms. �us FOPC, the hypothesis that some �rst-order property does not have a substantially

faster algorithm, is a useful intermediary between SETH and many of its consequences. FOPC is

both equivalent to conjectures concerning many of the previously studied problems ([11]), and

potentially more plausible to SETH-skeptics since it concerns an entire complexity class, while

having most of the consequences of SETH. �is is summarized in Figure 1. (See Section 2.3 for

de�nitions of problems.)

1
Informally, SETH is a hypothesis that CNF SAT cannot be solved substantially faster than 2

n
time; see the Preliminaries

for a formal statement.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:3

SAT OV

High dimension
2-Set Cover

Sparse OV

High dimension
Sperner Family

Other first-order
properties

Fréchet Distance.
SAT

Low

OV

High dimension

2-Set Cover

Sparse OV

Sperner Family

Other first-order
properties

Moderate
dimension

OV

High dimension High dimension

dimension
Low

dimension

fi
rs

t-
o
rd

er
p
ro

pe
rt

y
p
ro

bl
em

s

High dimension

[11]
problems1

some

[11]
problems2

other

Before: After:
LCS, Edit Distance,

fi
rs

t-
o
rd

er
p
ro

pe
rt

y
p
ro

bl
em

s
Dynamic Time Warping,
Stable Matching,

some [11] problems

1 includes 3-Dominating Set and Bipartite Subset 2-Dominating Set.
2 includes Graph Dominated Vertex, Maximum Simple Family of Sets, and Subset Graph.

Fréchet Distance.
LCS, Edit Distance,

Dynamic Time Warping,
Stable Matching,

Fig. 1. A diagram of reductions. We simplify this picture, and make the reductions to Edit Distance, LCS, etc.
more meaningful.

While we concentrate on the general picture of complexity classes, even special cases of our

results for speci�c problems are of interest. �ere were no similarly improved algorithms for

Orthogonal Vectors with small total Hamming weight (Sparse OV) or related problems such as

Sperner Family and 2-Set Cover (in the sparse high-dimensional case), and it was not previously

known that the sparse versions of these problems were equivalent.

In addition to having a natural and useful complete problem, the class of �rst-order properties is

important in itself. �is class includes many problems studied in the �ne-grained complexity litera-

ture such as Hi�ing Set, Orthogonal Vectors, Sperner Family, Diameter 2, Radius 2, k-Independent

Set, k-Dominating Set and so on. First-order properties are also extensively studied in complexity,

logic (especially �nite model theory and theory of databases) and combinatorics. Algorithms for

model-checking �rst-order properties are inherent in databases (the core of the relational database

language SQL is equivalent to �rst-order properties). Roughly speaking, �rst-order properties are

essentially the uniform version of AC0
in the complexity literature [10].

Since �ne-grained complexity is concerned with exact time complexities (distinguishing e.g. n1.9

time from n2
time), the problem representation is signi�cant. For graph problems, there are two

standard representations: adjacency lists (which are good for sparse graphs), in which running time

is analyzed with respect to the number of edgesm, and adjacency matrices (good for dense graphs),

in which the runtime is a function of the number of vertices, n. For several reasons, we use the

sparse adjacency list (list of tuples) representation. First, many of the problems considered such as

Orthogonal Vectors are hard already on sparse instances. Secondly, the complexity of �rst-order

problems in the dense model is somewhat unclear, at least for numbers of quanti�ers between 3

and 7 ([33]). �ird, the sparse model is more relevant for �rst-order model checking, as databases

are represented as lists of records.

1.1 First-order properties
�e problem of deciding whether a structure satis�es a logical formula is called the model checking

problem. In relational databases, �rst-order model checking plays an important role, as �rst-order

queries capture the expressibility of relational algebra. In contrast to the combined complexity,

where the database and query are both given as input, the data complexity measures the running

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

time when the query is �xed. �e combined complexity of �rst-order queries is PSPACE-complete,

but the data complexity is in LOGSPACE [30]. Moreover, these problems are also major topics

in parameterized complexity theory. In [19], Flum and Grohe organize parameterized �rst-order

model-checking problems (many of which are graph problems) into hierarchical classes based

on their quanti�er structures. Here, we study model checking from the �ne-grained complexity

perspective.

More speci�cally, let φ be a �xed �rst-order sentence containing free predicates of arbitrary con-

stant arity (and no other free variables). For example, the k-Orthogonal Vectors (k-OV) problem can

be expressed by a (k+1)-quanti�er formula φ = (∃v1 ∈ A1) . . . (∃vk ∈ Ak) (∀i)
[∨k

j=1
¬(vj [i] = 1)

]
.

�e model-checking problem for φ, denoted MCφ , is deciding whether φ is true on a given input

structure interpreting predicates in φ (e.g., given k sets of vectors, decide k-OV). We sometimes

refer to structures as “hypergraphs” (“graphs” when all relations are unary or binary), and relations

as edges or hyperedges. We use n to denote size of the universe of the structure and m the total

number of tuples in all its relations (size of the structure). Many graph properties such as k-clique

have natural �rst-order representations, and set problems such as Hi�ing Set are representable in

�rst-order logic using a relation R (u, S) ≡ (u ∈ S).
We use notation MC (Φ) for a class of model-checking problems for φ ∈ Φ, with the main focus

on classes of (k + 1)-quanti�er φ with k ≥ 1 (denoted MC (k + 1)) and restrictions of this class

to speci�c quanti�er pre�xes (e.g., MC (∃∃∀) for 3-quanti�er φ with quanti�er pre�x ∃∃∀ when

wri�en in prenex normal form). For formal de�nitions and more examples see Sections 2.2 and 2.3.

We propose the following conjecture on the hardness of model checking of �rst-order properties.

First-order property conjecture (FOPC): �ere is an integer k ≥ 2, so that there is a (k + 1)-
quanti�er �rst-order property that cannot be decided in O (mk−ϵ) time, for any ϵ > 0.

1.2 Orthogonal Vectors
In the Orthogonal Vectors (OV) problem, we are given a set A of n Boolean vectors of dimension d ,

and must decide if there are u,v ∈ A such that u and v are orthogonal, i.e., u[i] · v[i] = 0 for all

indices i ∈ {1, . . . ,d }. Another (equivalent) version is to decide with two sets A and B of Boolean

vectors whether there are u ∈ A and v ∈ B so that u and v are orthogonal. A naı̈ve algorithm for

OV runs in time O (n2d), and the best known algorithm runs in n2−Ω(1/ log(d/ logn))
[3, 16].

In this paper we introduce a version of OV we call the Sparse Orthogonal Vectors (Sparse OV)
problem, where the input is a list of m vector-index pairs (v, i) for each v[i] = 1 (corresponding to

the adjacency list representation of graphs) and complexity is measured in terms ofm; we usually

consider m = O (n1+γ
) for some 0 ≤ γ < 1. �e popular hardness conjectures on OV restrict the

dimension d to be between ω (logn) (low dimension) and no (1) (moderate dimension); however in

Sparse OV we do not restrict d .

We thus identify three versions of Orthogonal Vector Conjecture, based on the size of the

dimension d . In all three conjectures the complexity is measured in the word RAM model with

O (logn) bit words.

Low-dimension OVC (LDOVC): For all ϵ > 0, there is no O (n2−ϵ) time algorithm for OV with

dimension d = ω (logn).
Moderate-dimension OVC (MDOVC): For all ϵ > 0, there is no O (n2−ϵpoly(d)) time algorithm

that solves OV with dimension d .

Sparse OVC (SOVC): For all ϵ > 0, there is no O (m2−ϵ) time algorithm for Sparse OV wherem is

the total Hamming weight of input vectors.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:5

It is known that SETH implies LDOVC[31]. Because MDOVC is a weakening of LDOVC, it

follows from the la�er.
2

Like LDOVC, MDOVC also implies the hardness of problems including

Edit Distance, LCS, etc. Here we further show that MDOVC and SOVC are equivalent (see Lemma

1.1).

OV can be extended to the k-OV problem for any integer k ≥ 2: given k sets A1, . . . ,Ak of

Boolean vectors, determine if there are k di�erent vectors v1 ∈ A1, . . . ,vk ∈ Ak so that for all

indices i ,
∏k

j=1
vj [i] = 0 (that is, their inner product is 0). We naturally de�ne a sparse version of

k-OV similar to Sparse OV, where all ones in the vectors are given in a list.

1.3 Main Results
Completeness. First, we show that conjectures for OV de�ned on dense (moderate-dimension)

and sparse models are equivalent under �ne-grained reductions, which means MDOVC is true i�

SOVC is true (see Lemma 6.2). �is also holds for k-OV.

Lemma 1.1. For any integer k ≥ 2, there exist δ , ϵ > 0 and a O (nk−ϵ) time algorithm solving k-OV
with dimension d = nδ , if and only if there is an ϵ ′ > 0 and a O (mk−ϵ ′) time algorithm for Sparse
k-OV, wherem is the total Hamming weight of all input vectors.

Our main result establishes an equivalence of MDOVC and FOPC, showing the completeness of

Sparse OV and hardness of (dense) OV for the class of �rst-order property problems.

Theorem 1.2. MDOVC, SOVC and FOPC are equivalent.

�is paper also proves a hardness and completeness result fork-OV, connecting one combinatorial

problem to a large and natural class of logical problems. �e following theorem states that Sparse

k-OV is complete for MC (∃k∀) (and its negation form MC (∀k∃)), and hard for MC (∀∃k−1∀) (and

its negation form MC (∃∀k−1∃)) under �ne-grained reductions.

Theorem 1.3. If Sparse k-OV with total Hamming weightm can be solved in time O (mk−ϵ) for
some ϵ > 0, then all problems in MC (∃k∀), MC (∀k∃), MC (∀∃k−1∀) and MC (∃∀k−1∃) are solvable
in time O (mk−ϵ ′) for some ϵ ′ > 0.

MC (∃k∀) and MC (∀k∃) are interesting sub-classes of MC (k + 1): if Nondeterministic SETH is

true, then all SETH-hard problems in MC (k + 1) are contained in MC (∃k∀) or MC (∀k∃) ([14]).

We will also show that the 2-Set Cover problem and the Sperner Family problem, both in

MC (∃∃∀), are equivalent to Sparse OV under �ne-grained reductions, and thus complete for

�rst-order properties under �ne-grained reductions.

Algorithmic results. Combining our reductions with the surprisingly fast algorithm for Orthogo-

nal Vectors by [3] and [16], we obtain improved algorithms for every problem representable as a

(k + 1)-quanti�er �rst-order property.

Theorem 1.4. �ere is an algorithm solvingMC (k + 1) in timemk/2Θ(
√

logm) .

Let us consider the above results in context with prior work on the �ne-grained complexity of

�rst-order properties. In [33], Ryan Williams studied the �ne-grained complexity of dense instances

of �rst-order graph properties. He gave an nk+o (1)-time algorithm for MC (k + 1) on graphs when k
is a su�ciently large constant, and showed that MC (k+1) requires at least nk−o (1) time under SETH.

His algorithms only apply to graphs (they look di�cult to generalize to even ternary relations), and

it seems di�cult to point to a speci�c simple complete problem in this se�ing. To compare, our

2
Although dimension d is not restricted, we call it “moderate dimension” because such an algorithm only improves on the

naive algorithm if d = nO (ϵ)
.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

results show that the sparse case of MC (k + 1) (for all c-ary relations, for all constants c) is captured

by very simple problems (e.g. sparse Orthogonal Vectors), which also leads to an algorithmic

improvement for all c-ary relations.

1.4 Organization of this paper
Section 1 introduced the motivation, some de�nitions and statements of the main results. In

Section 2, we give the formal de�nitions of the reductions we use, as well as detailed de�nitions

of �rst-order properties, with �rst-order representations of common problems in �ne-grained

complexity. We present a general outline of the proofs in Section 3, and a high-level explanation of

key techniques in Section 4.

�e full proof starts with the reduction from MC (∃k∀) to k-OV (Section 5), with randomized

universe-shrinking self-reduction described in Section 5.1, which is then derandomized in Sec-

tion 6. Section 8 presents the reduction from MC (∀∃k−1∀) to k-OV, and Section 10 discusses the

mk/2Θ(
√

logm)
time algorithm for Sparse OV and, therefore, MC (k + 1). We conclude with open

problems in Section 11.

2 PRELIMINARIES
2.1 Reductions
To establish the relationship between complexities of di�erent problems, we use the notion of

�ne-grained reductions as de�ned in [36]. �ese reductions establish conditional hardness results of

the form “If one problem has substantially faster algorithms, so does another problem”. We will

also use exact complexity reductions (see de�nition 2.2), which strengthen the above claim to “if

one problem has algorithms improved by a factor s (m), then another problem can be improved

by a factor sc (m)” for some constant c . (Note that some �ne-grained reductions already have this

property.) �e underlying computational model is the Word RAM with O (logn) bit words.

De�nition 2.1. (Fine-grained reduction (≤FGR))
3

Assume that L1 and L2 are languages and T1 and T2 are their conjectured running time lower

bounds respectively, where constant factors may be omi�ed. �en we say (L1,T1) ≤FGR (L2,T2)
if for every ϵ > 0, there exists ϵ ′ > 0, and an algorithm AL1

for L1 which runs in time T1 (n)
1−ϵ ′

on inputs of length n, making q calls to an oracle for L2 with query lengths n1, . . . ,nq , where∑q
i=1

(T2 (ni))
1−ϵ ≤ (T1 (n))

1−ϵ ′
.

�us, if L2 has an algorithm substantially faster than T2, L1 can be solved substantially faster

than T1.
4

To simplify transferring algorithmic results, we de�ne a stricter variant of �ne-grained reductions,

which we call exact reductions. �ese reductions satisfy a stronger reducibility notion.

De�nition 2.2. (Exact complexity reduction (≤EC))

Let L1 and L2 be languages and let T1, T2 denote time bounds. �en (L1,T1) ≤EC (L2,T2) if there

3
To be more precise, this is the �ne-grained Turing reduction. For the mapping reductions that preserve �ne-grained

complexity, we refer to them as �ne-grained mapping reductions.

4
In almost all �ne-grained reductions, T1 ≥ T2, that is, we usually reduce from harder problems to easier problems, which

may seem counter-intuitive. A harder problem L1 can be reduced to a easier problem L2 with T1 > T2 in two ways: by

making multiple calls to an algorithm solving L2 and/or by blowing up the size of the L2 instance (e.g., the reduction from

CNF-SAT to OV [31]). All reductions from higher complexity to lower complexity problems in this paper belong to the �rst

type.

Actually, it is harder to �ne-grained reduce from a problem with lower time complexity to a problem with higher time

complexity (e.g., prove that (MC (k),mk−1) ≤FGR (MC (k +1),mk)), because this direction o�en needs creating instances

with size much smaller than the original instance size.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:7

exists an algorithm AL1
for L1 running in timeT1 (n) on inputs of length n, making calls to oracle of

L2 with query lengths n1, . . . ,nq , where q is the number of calls and

∑q
i=1

T2 (ni) ≤ T1 (n).

�at is, if L2 is solvable in time T2 (n), then AL1
solves L1 in time T1 (n).

2.2 Model checking for first-order logic
Let R1, . . . ,Rr be predicates of constant arities a1, . . . ,ar (a vocabulary). A �nite structure over the

vocabulary R1, . . . ,Rr consists of a universe U of size n together with r lists, one for every Ri , ofmi
tuples of elements fromU on which Ri holds. Letm =

∑r
i=1

mi ; viewing the structure as a database,

m is the total number of records in all tables (relations).

We loosely use the term hypergraph to denote an arbitrary structure; in this case, we refer to its

universe as a set of vertices V = {v1, . . . ,vn } and call tuples (v1, . . . ,vai) such that Ri (v1, . . . ,vai)
holds hyperedges (labeled Ri). A set of all Ri -labeled hyperedges in a given hypergraph is denoted

by ERi or just Ei ; the structure is denoted by G = (V ,E1, . . . ,Er). Similarly, we use the term

graph for structures with only unary and binary relations (edges); here, we mean edge-labeled

vertex-labeled directed graphs with possible self-loops, as we allow multiple binary and unary

relations and relations do not have to be symmetric. �is allows us to use graph terminology such

as a degree (the number of (hyper)edges containing a given vertex) or a neighbourhood of a vertex.

Letφ be a �rst-order sentence (i.e. formula without free �rst-order variables) containing predicates

R1, . . . ,Rr . Let k be the number of quanti�ers in φ. Without changing k , we can write φ in prenex

form. �emodel-checking problem for a �rst-order property φ,MCφ , is: given a structure (hypergraph)

G, determine whether φ holds on G (denoted by G |= φ). For a class of formulas Φ, we use the

notation MC (Φ) for a class of model-checking problems for φ ∈ Φ, with shortcuts MC (k) for Φ =
k-quanti�er �rst-order formulas in prenex form, and MC (Q1 . . .Qk) for �rst-order prenex formulas

with quanti�er pre�x Q1 . . .Qk , with a shortcut Qc
i denoting c consecutive occurrences of Q (e.g.

MC (∃k∀)).
We assume that (hyper)graphs are given as a list ofm (hyper)edges, with each hyperedge encoded

by listing its elements. In the Word RAM model with O (logn) bit words, the size of an encoding of

a hypergraph is O (n +m) words, and an algorithm can access a hyperedge in constant time. With

additional O (m) time preprocessing, we can compute degrees and lists of incident edges for each

vertex, and store them in a hash table for a constant-time look-up; edges incident to a vertex can

then be listed in time proportional to its degree. We also assume that m ≥ n, with every vertex

incident to some edge, because the interesting instances are in this case. Moreover, we assume the

(hyper)graph is k-partite where k is the number of variables in φ, so that each variable is selected

from a distinct vertex set. From any (hyper)graph, the construction of this k-partite graph needs a

linear time, linear space blowup preprocessing which creates at most k duplicates of the vertices

and k2
duplicates of the edges. Finally, we treat domains of quanti�ers as disjoint sets forming a

partition of the universe; any structure can be converted into this form with constant increase of

the universe size. We also view predicates on di�erent variable sets (e.g., R (x1,x2) vs. R (x2,x4)
vs. R (x4,x4)) as di�erent predicates, and partition corresponding edge sets appropriately.

�e focus of this paper is on sparse structures, that is, the case when m ≤ O (n1+γ) for some γ
such that 0 ≤ γ < 1. In particular, all Ei are sparse relations; we use the term co-sparse to refer to

complements of sparse relations. We will usually measure complexity as a function of m. From the

following baseline algorithm which will be proved in Section 9.1, the sparse assumption is without

loss of generality.

Claim 2.1 (Baseline algorithm). MC (k + 1) is solvable in time O (nk−1m).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:8 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

2.3 Common problems and conjectures
In CNF-SAT problem, given a Boolean formula F in CNF form (conjunction of disjunctions of

(possibly negated) variables), the goal is to determine whether there is an assignment of Boolean

values to variables of F which makes F true. In k-CNF-SAT, every clause (disjunction) can have at

most k literals. We refer to the following conjecture about complexity of solving CNF-SAT:

Strong Exponential Time Hypothesis (SETH)5: For every ϵ > 0, there exists a k ≥ 2 so that

k-CNF-SAT cannot be solved in time O (2n (1−ϵ)).

Below we list some problems studied in �ne-grained complexity, with their �rst-order de�nitions

on structures with unary and binary relations.

• Graph problems. �e input structure isG = (V ,E) with a universeV and a binary relation

E.

1. Diameter-2: (∀x1) (∀x2) (∃x3) [E (x1,x3) ∧ E (x3,x2)].
2. Radius-2: (∃x1) (∀x2) (∃x3) [E (x1,x3) ∧ E (x3,x2)].

3. k-Clique: (∃x1) . . . (∃xk)
[∧

i, j ∈{1, ...,k },i,j E (xi ,x j)
]
. More generally, for a �xed graph

H of k vertices, deciding if H is a subgraph or induced subgraph of the input graph G
(e.g., the k-Independent Set problem) can be expressed in a similar way.

4. k-Dominating Set:(∃x1) . . . (∃xk) (∀xk+1)
[∨k

i=1
E (xi ,xk+1)

]
.

• Set problems. �e inputs are set families S or S1, . . . ,Sk over a universeU . Here, all sets

are given explicitly and represented by �rst-order variables. �ese structures contain a

single binary predicate ∈.

1. Hi�ing Set: 6 (∃H ∈ S) (∀S ∈ S) (∃x) [(x ∈ H) ∧ (x ∈ S)].

2. k-Set Packing: (∃S1 ∈ S) . . . (∃Sk ∈ S) (∀x)
[∨k

i=1

(
(x ∈ Si) →

∧
j,i (x < S j)

)]
.

3. k-Empty Intersection (k-OV): (∃S1 ∈ S1) . . . (∃Sk ∈ Sk) (∀u ∈ U)
[∨k

i=1
¬(u ∈ Si)

]
.

4. k-Set Cover : (∃S1 ∈ S1) . . . (∃Sk ∈ Sk) (∀u ∈ U)
[∨k

i=1
(u ∈ Si)

]
.

5. Set Containment: (∃S1 ∈ S1) (∃S2 ∈ S2) (∀u ∈ U) [(¬(u ∈ S1)) ∨ (u ∈ S2)].

k-Empty Intersection is equivalent to k-OV, and Set Containment is equivalent to Sperner Family

problem. See Section 1.2 for de�nitions and conjectures for variants of the Orthogonal Vectors

problem.

�e Hitting Set Conjecture states that∀ϵ > 0 there is noO (n2−ϵ) time algorithm for the Hi�ing

Set problem with set sizes bounded by d = ω (logn). It implies LDOVC; subquadratic approximation

algorithms for Diameter-2 and Radius-2 would respectively refute the LDOVC and the Hi�ing Set

Conjecture. [4]

3 OVERVIEW
�e main technical part of this paper is in the proof of �eorem 1.3 showing hardness of k-OV

for model-checking of ∃k∀ formulas under �ne-grained reductions. �e idea is to represent ∃k∀

formulas using combinations of basic “k-OV like” problems, each of which is either easy (solvable

substantially faster than mk
time for sparse instances) or can be �ne-grained reduced to k-OV. �e

la�er is achieved using a universe-shrinking self-reduction, which converts a given instance of a

basic problem to a denser instance on a smaller universe, thus reducing Sparse k-OV to k-OV with

dimension nδ and proving Lemma 1.1. Converting an MC (∃k∀) to the “hybrid problem” combining

5
Some de�ne SETH over randomized algorithms instead of deterministic ones

6
Other versions of Hi�ing Set where the sets are not given explicitly are second-order logic problems. Our de�nition here is

consistent with the version in the Hi�ing Set Conjecture.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:9

MC(k)MC(k + 1)

MC(3)

. . .

(solvable in O(m3/2))

Hybrid
Problem

BP [00] ∧BP [01] ∧BP [10] ∧BP [11]

Basic Problems





∀∃∀ or ∃∀∃

∃∃∀ or ∀∀∃

∃∃∀ or ∀∀∃
on graphs

Others

Lemma 5.3

Exhaustive search

(OV) (Set Containment) (2-Set Cover)

small-universe Basic Problems
BP [01] BP [10] BP [11]

BP [00] = OV

Lemma 5.2

Lemma 7.1

Lem
ma 5.4

L
em

m
a
5
.1

Lemma 5.5

Fig. 2. Overview of the reduction process for Theorem 1.2.

all 2
k

basic problems is done for graphs (all relations have arity at most 2), however we show that

this is the hardest case. Additionally, MC (∀∃k−1∀) is reduced to MC (∃k∀).
In �eorem 1.2 and �eorem 1.4, we consider the class of all k +1-quanti�er �rst-order properties

MC (k + 1), and reduce it to 2-OV, proceeding to use a faster algorithm for 2-OV to speed up

model checking. �e �rst step is to brute-force over �rst k − 2 quanti�ed variables, reducing to

three-quanti�er case at the cost O (nk−2). �e quanti�er pre�x ∃∃∀, with 2-OV and other basic

problems (to be de�ned in Section 5.1), is the hardest (∃3
, ∀∃∃ and their complements are easy, and

the rest reduce to ∃∃∀). Appealing to lemmas in the proof of �eorem 1.3 with k = 2 completes

the proof of �eorem 1.2 (see �gure 2 for details), and applying the OV algorithm in [3, 16] gives

�eorem 1.4.

3.1 Reduction fromMC (k + 1) to OV
�e following outlines the reduction from any arbitrary problem in MC (k +1) to OV for any integer

k ≥ 2, thus proving that FOPC implies SOVC. For the other direction of this eqiuvalence, SOVC

implies FOPC because Sparse OV is in MC (3). �e equivalence between SOVC and MDOVC is

proven in Lemma 1.1, which in turn follows from Lemma 5.2, Lemma 6.2, and corollary 5.3.

(1) With brute-force over tuples of �rst k − 2 variables, we reduce from the (k + 1)-quanti�er

problem MCφ down to a 3-quanti�er problem MCφ ′ . �us, improving the O (m2) algorithm

for MCφ ′ implies improving the O (mk) algorithm for MCφ .

(2) If MCφ ′ belongs to one of MC (∃∃∃), MC (∀∀∀), MC (∀∃∃), MC (∃∀∀), we solve it directly

in timeO (m3/2), using ideas similar to triangle detection algorithms. If φ ′ has the quanti�er

structure ∀∃∀ (or its negated form ∃∀∃), we reduce MCφ ′ to MCφ ′′ where φ ′′ has quanti�er

structure ∃∃∀, using Lemma 8.1. Otherwise, φ ′ is already in ∃∃∀ or equivalent form.

(3) We reduce a general model checking problem for φ ′′ of the quanti�er structure ∃∃∀ to a

graph property problem of the same quanti�er structure.

(4) Using Lemma 5.6, we reduce formulas of form ∃∃∀ to a “hybrid” problem, which by Lemma

5.5 can be reduced to a combination of Sparse OV, Set Containment and 2-Set Cover (which

we call Basic Problems).
(5) We use a “universe-shrinking” technique (Lemmas 5.2, 6.1, and 6.2) on each of the Basic

Problems, to transform a sparse instance into an equivalent one of small dimension.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

(6) A�er applying this to the Hybrid Problem, we can complement edge relations as needed to

transform all Basic Problems into OV (Lemmas 5.4 and 6.3).

(7) By applying the [3, 16] algorithm to the instance of low-dimension OV, we get an improved

algorithm.

Figure 2 shows a diagram of the above reduction process.

Moreover, Lemmas 8.1, 5.6, 5.5 and 5.1 also work for any constant k ≥ 2. So for a problem in

MC (∃k∀) or MC (∀∃k−1∀), we can reduce it to k-OV as follows:

(1) If the problem belongs to MC (∀∃k−1∀), reduce it to MC (∃k∀) using Lemma 8.1.

(2) Eliminate hyperedges, then reduce the MC (∃k∀) to the Hybrid problem using Lemma 5.6.

(3) Reduce from the Hybrid Problem to a combination of 2
k

Basic Problems, using Lemma 5.5.

(4) Reduce all Basic Problems to k-OV, using Lemma 5.1.

�is completes the proof of �eorem 1.3.

4 THE BUILDING BLOCKS
Before the formal presentation of the reduction algorithms, this section gives an intuitive and

high-level view of the techniques used to reduce a �rst-order property problem to OV, in the proofs

of �eorems 1.2, 1.3 and 1.4. Because of Lemma 1.1, in the remainder of this paper, unless speci�ed,

we will use “OV” and “k-OV” to refer to sparse versions of these problems.

4.1 Complementing sparse relations
Recall the de�nitions of the k-Empty Intersection, k-Set Cover and Set Containment problems

7
from

Section 2.3. �ese problems have very similar structure: given set families S1 . . .Sk containing

sets over elements of the universeU , each of them asks whether there is a tuple of sets, one in each

family, such that a formula is satis�ed for every element u of the universe. Moreover, the formulas

themselves are disjunctions of u ∈ Si or u < Si , with one predicate for each i . �e only di�erence is

the polarity of the ∈ relation (whether or not it is negated). We will refer to these types of problems

as the Basic Problems; they will be our main building blocks.

For k = 2, this gives us four basic problems: Set Disjointness, 2-Set Cover and two versions

of Set Containment (direct and reversed). In each of them, the input consists of two set families

S1,S2 of sizes n1, n2, respectively, and the universe U of size nu . �e goal is to decide if there exist

sets S1 ∈ S1 and S2 ∈ S2 such that for every u ∈ U , the corresponding formula ψ` holds. Here,

` ∈ {00, 01, 10, 11} codes the sequence of polarities of occurrences of ∈. �is naturally generalizes

to arbitrary k , with a Basic Problem for each ` ∈ {0, 1}k ; see Section 5.1 for formal de�nitions.

�at is, Set Disjointness, 2-Set Cover and Set Containment can be stated as follows. Decide if

∃S1 ∈ S1∃S2 ∈ S2∀u ∈ Uψ` holds, whereψ` is:

Set Disjointness: �ere is no common element in S1 and S2: ψ` = ψ00 = ¬(u ∈ S1) ∨ ¬(u ∈
S2).

2-Set Cover: Union of S1 and S2 covers all of U : ψ` = ψ11 = (u ∈ S1) ∨ (u ∈ S2).
Set Containment: For S1 ⊆ S2, ψ` = ψ01 = ¬(u ∈ S1) ∨ (u ∈ S2). Similarly, in reversed Set

Containment with S2 ⊆ S1,ψ` = ψ10 = (u ∈ S1) ∨ ¬(u ∈ S2).

All these problems are �rst-order properties: we can use unary relations to partition the vertex

set into (S1, . . . ,Sk ,U), and consider the relation “∈” as a binary relation. We will use the context

of hypergraphs to describe the input structure, as in Section 2.2. We let n (corresponding to the

number of vertices in the input graph) be the sum of n1, . . . ,nk and nu , and let the input size m

7
OV is also 2-EI or Set Disjointess: k-EI is equivalent to k-OV, where vectors are represented by sets containing their 1s.

Set Containment is equivalent to the Sperner Family, and k-Set Cover to k-Dominating Set under linear-time reductions.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:11

(corresponding to the number of edges in the input graph) be the sum of all sets’ sizes in all set

families. Borassi et al. [11] showed that when k = 2, these Basic Problems require time m2−o (1)

under SETH, and that if the size of universe U is poly-logarithmic in the input size, then the three

problems are equivalent under subquadratic-time reductions. �e main idea of the reductions

between these problems is to complement all sets in S1, or S2, or both. It is easy to see that

S1∩S2 = ∅ ⇐⇒ S1

{∪S2

{ = U ⇐⇒ S1 ⊆ S2

{ ⇐⇒ S2 ⊆ S1

{
. �erefore, if we could complement

the sets, we can easily prove the equivalences between the three Basic Problems. However we

cannot do this when nu is large.

For a sparse binary relation such as (u ∈ S1), we say that its complement, such as (u < S1), is

co-sparse. Suppose we want to enumerate all tuples (S1,u) s.t. u ∈ S1; for that, we can go through all

relations (aka edges) between U and S1, which takes time linear inm. On the contrary, if we want

to enumerate all pairs (S1,u) s.t. u < S1, we cannot do this in linear time, because we cannot touch

the pairs by touching edges between them. Moreover, when nu is as large as Ω(n), the number of

such pairs can reach Θ(m2). When k = 2, a �ne-grained reduction between O (m2)-time problems

allows neither quadratic time reductions, nor quadratic size problem instances.

Because of the above argument, it is hard to directly reduce between the Basic Problems, so

instead we reduce each problem to a highly-asymmetric instance of the same problem, where

sparse relations are easily complemented to relations that are also sparse. Observe that when the

size of universe U is small enough, complementing all sets can be done in time O (m · |U |), which

can be substantially faster than O (m2). �e new instance created also has size O (m · |U |), so that

it is only slightly larger than m. So by carefully choosing the size of U , we can construct truly

subquadratic time reduction algorithms that preserve the improved factor in running time. Using

this technique which we call universe-shrinking self-reduction, we can show that OV, 2-Set Cover

and Set Containment are equivalent under �ne-grained reductions.

�e self-reduction employs the “high-degree low-degree” trick, which has been also used in

other sparse graph algorithms [7]. First, consider sets of large cardinality: there cannot be too

many of them, because the structure is sparse. �us we can do exhaustive search over these sets

to check if any of them is in a solution. For sets of small cardinality, we hash the universe U to a

smaller universe, where complementing the sets does not take too much time and space. From this

reduction, the claim follows:

Claim 4.1. If any one of OV, 2-Set Cover and Set Containment has truly subquadratic time algorithms,
then the other two are also solvable in subquadratic time. �us these problems are all hard forMC (3).

Claim 4.1 is itself an interesting result: in [11], conditional lower bounds for many problems

stem from the above three problems, forming a tree of reductions. By our equivalence, the root of

the tree can be replaced by the quadratic-time hardness conjecture on any of the three problems,

simplifying the reduction tree. Claim 4.1 also shows that an improved algorithm for any of these

three problems implies improved algorithms for the other two.

Claim 4.1 is proven by derandomizing Lemma 5.1 for k = 2; see Section 6 for details. In Section 5

we give randomized reductions for an arbitrary k .

4.2 Sparse and co-sparse relations
Having shown how to reduce any two Basic Problems with the same k to each other, we will now

reduce generic �rst-order properties to the Basic Problems. �e detailed processes are complicated,

so here we start with a high-level idea in reductions and algorithm design throughout the paper.

Our algorithms o�en need to iterate over all tuples or pairs (xi ,x j) satisfying some conditions,

to list such tuples, or to count the number of them, performing �rst-order query processing. A

set of such tuples (pairs) (xi ,x j) can be considered a result of a �rst-order query de�ned by an

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:12 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

intermediate formula φ ′ on the (hyper)graph G (or some intermediate structures). Our reduction

algorithms o�en generate such queries, evaluate them, and combine the results (e.g. by counting)

to compute the solutions.

�ere are three possible outcomes of such queries: the result can be a sparse set of tuples, a co-

sparse set, or neither. If the result of the query is a sparse relation such as [R1 (x1,x2) ∧¬R2 (x1,x2)],
we can iterate over the tuples (say, �rst enumerate all pairs satisfying R1 (x1,x2), then check for

which of them R2 (x1,x2) is false). �en, we can do further operations on the sparse set of (x1,x2)
tuples resulting from the query. When the result of the query is a co-sparse set such as for

[¬R1 (x1,x2) ∧ ¬R2 (x1,x2)], we cannot directly iterate over pairs satisfying the query. Instead, we

work on its complement (which is sparse, instead of co-sparse), but then do some further processing

to �lter out those pairs from future use (say, �nd all pairs (x1,x2) so that at least one of R1 (x1,x2)
or R2 (x1,x2) is true, then exclude those pairs from future use). Sometimes, the result of a query is

neither sparse nor co-sparse, but we will show it is always a combination of sparse and co-sparse

relations. �us we need to distinguish them and deal with the sparse and co-sparse parts separately.

We exemplify this process by considering the query [¬R1 (x1,x2)∨¬R2 (x1,x2)]. For a pair (x1,x2),
to make the formula true, predicates R1,R2 can be assigned values from {(True, False), (False, True),
(False, False)}. In the �rst two cases, the sets of pairs (x1,x2) satisfying [R1 (x1,x2)∧¬R2 (x1,x2)] and

[¬R1 (x1,x2) ∧ R2 (x1,x2)] are sparse, while in the last case, the set of pairs satisfying [¬R1 (x1,x2) ∧
¬R2 (x1,x2)] is co-sparse. So if we want to work on the tuples satisfying this query, we list tuples

satisfying the �rst two cases directly by enumerating edges, and enumerate the tuples not satisfying

the third case (i.e., the tuples where either R1 (x1,x2) or R2 (x1,x2) is true), in order to exclude them

from future use.

In general, a query can be wri�en as a DNF, where the result of each term is a conjunction of

predicates and negated predicates, and therefore either sparse or co-sparse. �en we can deal with

the sparse and co-sparse cases separately. We will use this technique for constructing the Hybrid

Problem in Section 5.2.

Now, we would like to reduce MCφ to OV for an arbitrary φ = (∃x) (∃y) (∀z)ψ (x ,y, z). First,

suppose that all predicates R1 . . .Rr in ψ are at most binary, and all binary predicates involve z.

One a�empt is to create a set Sx for each element x and a set Sy for each element y. �en, we

create elements in universe U by creating 2
r

elements u (z,0r), . . . ,u (z,1r) for each z, where r is the

number of di�erent predicates inψ , and the length-r strings in the subscripts correspond to the 2
r

truth assignments of all these predicates. We construct the sets so that Sx (or Sy) contains element

u (z,a) i� the assignment a falsi�esψ and the relations between x (or y) and z agree with a. In this

way, sets Sx and Sy both contain some element u (z,a) in U i� there is some z such that x ,y, z do

not satisfyψ . �en, if there exists such pair of disjoint sets Sx and Sy , the corresponding x and y
satisfy that for all z,ψ is true.

However, we cannot touch all z’s for each x or y for creating this instance in substantially less

than n2
time. So, we divide the relations of this Set Disjointness instance into sparse and co-sparse

ones. For that, we introduce a Hybrid Problem which is a combination of Basic Problems. Depending

on the four combinations of sparsity or co-sparsity on the relations between variables x , z and

y, z, we reduce MCφ not only to OV, but to a combination of OV, Set Containment, reversed Set

Containment (i.e. �nding S2 ⊆ S1 instead of S1 ⊆ S2), and 2-Set Cover. (Namely, the sub-problem

Set Disjointness deals with the case where the relations between x and z and between y and z are

both sparse; the sub-problems Set Containment, reversed Set Containment and 2-Set Cover deals

with the cases where these relations are sparse and co-sparse, co-sparse and sparse, co-sparse and

co-sparse respectively.) We decide if there is a pair of sets being the solutions of all sub-problems.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:13

Finally, because these Basic Problems can be reduced to each other, we can use the algorithm for

OV to solve the instance of the Hybrid Problem, and then to solve MCφ .

�is approach takes care of binary predicates involving z; to handle relations among existentially

quanti�ed variables, additional tools are needed. �us, the Hybrid Problem de�nition also involves

a relation R (x ,y) and a ”sparsity type” designation, specifying whether R codes a sparse relation

between x and y, or its sparse complement. However, this additional information can be modeled

by adding new elements to the universe and strategically placing them in the corresponding sets,

thus reducing the more complex case to a combination of four Basic Problems.

See Lemma 5.6 for the proof that covers more complicated cases.

5 COMPLETENESS OF K-OV INMC (∃K∀)

�is section will prove the completeness of k-OV in MC (∃k∀) problems. Here we only consider

the input structures that are graphs, i.e. where all relations are either unary or binary; see Section 7

of this paper for the reduction from hypergraphs to graphs. First, we introduce a class of Basic

Problems, and prove that these problems are equivalent to k-OV under exact complexity reductions.

�en, we show that any problem in MC (∃k∀) can be reduced to a combination of Basic Problems

(aka. the Hybrid Problem).

5.1 How to complement a sparse relation: Basic Problems, and reductions between
them

In this section we de�ne the Basic Problems for k ≥ 2, generalizing k-OV, k-Set Cover and Set

Containment problems, and prove that these problems are �ne-grained reducible to each other

under randomized reductions. In Section 6 we will give deterministic reductions for k = 2.

Let k ≥ 2. We introduce 2
k

Basic Problems labeled by k-bit binary strings from 0
k

to 1
k
. �e

input of these problems is the same as that of k-EI de�ned in Section 2.3: k set families S1 . . .Sk of

size n1, . . . ,nk on a universe U of size nu . We de�ne 2
k

quanti�er-free formulasψ
0
k , . . . ,ψ

1
k such

that

ψ` =
(∨

i, `[i]=0
(¬(u ∈ Si))

)
∨

(∨
i, `[i]=1

(u ∈ Si)
)
.

Here, i ∈ {1, . . . ,k } and `[i], the i-th bit of label `, speci�es whether u is in each Si or not in the

i-th term ofψ` .

For each `, let φ` = (∃S1 ∈ S1) . . . (∃Sk ∈ Sk) (∀u ∈ U)ψ` . For simplicity, we will omit the

domains of the variables in these formulas. We call MCφ
0
k , . . . ,MCφ

1
k the Basic Problems. We

refer to the Basic Problem MCφ` as BP[`]. �ese problems are special cases of �rst-order model

checking on graphs, where sets and elements correspond to vertices, and membership relations

correspond to edges. Note that BP[0
k

] is k-EI, and BP[1
k

] is k-Set Cover. When k = 2, BP[01] and

BP[10] are Set Containment problems, and BP[00] is the Set Disjointness problem. For a k-tuple

(S1 ∈ S1, . . . , Sk ∈ Sk) satisfying (∀u)ψ` , we call it a solution of the corresponding Basic Problem

BP[`].
We present a randomized

8
�ne-grained mapping reduction between any two Basic Problems,

thus proving the following lemma, which generalizes Claim 4.1 to k > 2.

Lemma 5.1. Let s (m) be a non-decreasing function such that 2
Ω(
√

logm) ≤ s (m) < m1/5. For
any `1, `2 ∈ {0, 1}k , there is a randomized exact complexity reduction (BP[`1],mk/(s (m))1/6) ≤EC
(BP[`2],mk/s (m)).

8
�e deterministic reduction will be presented in Section 6.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:14 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

For problems BP[`1] and BP[`2] where `1 and `2 only di�er in the i-th bit, if we are allowed

to complement all sets in Si , we can easily reduce between them. Similarly, if `1 and `2 di�er

in more than one bit, we can complement all the sets in corresponding set families. However,

complementing the sets in Si takes time O (ninu), which might be as large as Θ(m2). To solve this,

we self-reduce BP[`1] on the universe U to the same problem on a smaller universe U ′, and then

complement sets on U ′. For any given δ , if the size of U ′ is n′u = O (mδ), then complementing all

sets in Si only takes time and spacem ·O (mδ) = O (m1+δ).

Lemma 5.2. (Randomized universe-shrinking self-reductions of Basic Problems)

Let label ` be any binary string in {0, 1}k . For any s (m) = 2
Ω(
√

logm) , given a BP[`] instance I of size
m and universe U of size nu , we can either solve it in time O (mk/s (m)), or use time O (mk/s (m)) to
create a BP[`] instance I ′ of size O (m · s (m)5) on universe U ′ whose size is n′u = O (s (m)5), so that
I ∈ BP[`] i� I ′ ∈ BP[`] with error probability bounded by O (1/s (m)).

Note that the self-reduction of k-OV actually reduces the Sparse k-OV to a moderate-dimension

version of k-OV, implying Lemma 1.1. �e other direction (moderate-dimension k-OV to Sparse

k-OV) is easy since if the dimension d = nδ , thenm is at most d · n = n1+δ
, as required.

Corollary 5.3. (Reverse direction of Lemma 1.1)

Suppose that for any k ≥ 2 there exists δ , ϵ > 0 and a (randomized) O (nk−ϵ) algorithm solving k-OV
with dimension d = nδ . �en there is an ϵ ′ > 0 and a (randomized) O (mk−ϵ ′) time algorithm solving
Sparse k-OV.

Proof. �e algorithm converts an instance of Sparse k-OV to an instance of k-OV of dimension

nδ using universe-shrinking self-reduction (Lemma 5.2) and then applies assumed O (nk−ϵ) time

algorithm to the reduced instance. More speci�cally, let m = O (n1+γ), where n is the number of

vectors. Choosing s (m) = O (mδ /5(1+γ)) for some δ > 0 creates an instance of OV with dimension

n′u = O (s (m)5) = O (nδ), and sizem′ = O (n1+δ+γ); number of vectors n remains unchanged. Now,

the reduction takes timeO (mk/(s (m))5) = O (mk−δ /(1+γ)), and running theO (nk−ϵ) time algorithm

on the reduced instance takesO (nk−ϵ) ≤ O (mk−ϵ/(1+γ)) time. Se�ing ϵ ′ = min{δ/(1+γ), ϵ/(1+γ)}
completes the proof. �

We will present the randomized self-reductions for problems BP[`] s.t. ` , 1
k

in Section 5.1.1.

For BP[1
k

], we will prove that it is either easy to solve or easy to complement in Section 5.1.2.

A�er shrinking the universe, we complement the sets to reduce between two Basic Problems

BP[`1] and BP[`2] according to the following lemma.

Lemma 5.4. (Reduction between di�erent Basic Problems)

For two di�erent labels `1, `2 ∈ {0, 1}k , given set families S1, . . . ,Sk , let S′1, . . . ,S
′
k be de�ned such

that

S′i =



{
Si

{ | Si ∈ Si
}
, if `1[i] , `2[i]

Si , otherwise
,

then, (∃S1 ∈ S1) . . . (∃Sk ∈ Sk) (∀u)ψ`1
i� (∃S ′

1
∈ S′

1
) . . . (∃S ′k ∈ S

′
k) (∀u)ψ`2

.

�e proof of correctness is straightforward.

Proof of Lemma 5.1. Pick s ′(m) = s (m)1/(6k) . Using Lemma 5.2, we shrink the universe to size

n′u = s
′(m)5. So the time complexity in this step is bounded by O (m · s ′(m)5), which is signi�cantly

less thanmk/s (m) even if k = 2.

Let new instance size be m′. So m′ = m · s ′(m)5. Given that the constructed instance can be

decided in timem′k/s (m′), we getm′k/s (m′) < (m(s (m)1/(6k))5)k/s (m) < mk/s (m)1/6
. �us, by the

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:15

two-step �ne-grained mapping reductions given by Lemma 5.2 and Lemma 5.4, we have an exact

complexity reduction between any two Basic Problems, completing the proof for Lemma 5.1. �

5.1.1 Randomized universe-shrinking self-reduction of BP[`] where ` , 1
k . �is section proves

part of Lemma 5.2, by giving a randomized universe-shrinking self-reduction of BP[`] where ` , 1
k

.

�e main idea is to divide the sets into large and small ones. For large sets, there are not too many of

them in the sparse structure, so we can work on them directly. For small sets, we use a Bloom Filter

mapping each element in U to some elements in U ′ at random, and then for each set on universe

U , we compute the corresponding set on universe U ′. Next we can decide the same problem on

these newly computed sets, instead of sets on U . ([17] used a similar technique in reducing from

Orthogonal Range Search to the Subset �ery problem.) Because the sets are small, it is unlikely

that some elements in two di�erent sets on U are mapped to the same element on U ′, bounding

the error probability.

• Step 1: Large sets. Let d = s (m). For sets of size at least d , we directly check if they are

in any solutions. �ere are at most O (m/d) = O (m/s (m)) of such large sets. In the outer

loop, we enumerate all large sets in S1, . . . ,Sk . If their sizes are pre-computed, we can do

the enumeration in O (m/s (m)). Assume the current large set is Si ∈ Si . Because variables

quanti�ed by ∃ are interchangeable, we can interchange the order of variables, and let Si be

the outermost quanti�ed variable S1. On each such Si (or S1 a�er interchanging), we create

a new formulaψS1
on variables S2, . . . , Sk ,u from formulaψ , by replacing u ∈ S1 (u < S1) by

a unary relation on u. �en, we decide if the graph induced by S2, . . . ,Sk and U satis�es

(∃S2) . . . (∃Sk) (∀u)ψS1
, using the baseline algorithm, which takes time O (mk−1) for each

such large set S1. �us the overall running time is O (m/s (m)) ·O (mk−1) = O (mk/s (m)). If

no solution is found in this step, proceed to Step 2.

• Step 2: Small sets. Now we can exclude all the sets of size at least d . For sets of size

smaller than d , we do the self-reduction to universeU ′ of size n′u = s (m)5. Let t = s (m), and

let h : U → U ′t be a function that independently maps each element u ∈ U to t elements in

U ′ at random. On set S ⊆ U , we overload the notation h by de�ning h(S) =
⋃

u ∈S h(u). For

all set families Si , we compute new sets h(Si) for all Si ∈ Si . �en, we decide whether the

new sets satisfy the following sentence, which is another BP[`] problem:

(∃S1) . . . (∃Sk) (∀u)
∨

i, `[i]=0
¬(u ∈ h(Si)) ∨

∨
i, `[i]=1

(u ∈ h(Si))

�e size of the new instance is O (nt) = O (m · s (m)), and the running time of the self-

reduction is also O (nt) = O (m · s (m)). So it is a �ne-grained mapping reduction for any

k ≥ 2.

Figure 3 illustrates an example of the universe-shrinking self-reduction for BP[01], where we

look for S1, S2 so that S1 ⊆ S2. If they exist, then a�er the self-reduction, it is always true that

h(S1) ⊆ h(S2). Still, it might happen that some S1 * S2 but h(S1) ⊆ h(S2). In this case, a false

positive occurs. In BP[00], a false negative may occur when there are two disjoint sets, but some

elements in S1∩S2 are mapped to the same element inU ′. Next we will analyze the error probability

of this reduction.

Analysis. Because variables quanti�ed by ∃ are interchangeable, w.l.o.g. for ` containing i (i ≥ 1)

zeros and k − i ones, assume BP[`] is de�ned by

(∃S1) . . . (∃Sk) (∀u)
[(∨i

j=1
(u < S j)

)
∨

(∨k
j=i+1

(u ∈ S j)
)]
,

equivalently, (∃S1) . . . (∃Sk)
[(⋂i

j=1
S j

)
⊆

(⋃k
j=i+1

S j
)]
.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:16 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

S1 S2

U

U ′

h

h(S1) h(S2)

a b c

a′ b′ c′ d′ e′

Fig. 3. The universe-shrinking process. S1 = {a,b} and S2 = {a,b, c}. A�er the mapping h, the new sets are
h(S1) = {a

′,b ′, c ′,d ′} and h(S2) = {a
′,b ′, c ′,d ′, e ′}.

Let sets A =
⋂i

j=1
S j and B =

⋃k
j=i+1

S j . �en the problem is to decide whether there exists

(S1, . . . , Sk) so that A ⊆ B. A�er the self-reduction, let A′ =
⋂i

j=1
h(S j) and B′ =

⋃k
j=i+1

h(S j), and

decide if there exists (S1, . . . , Sk) such that A′ ⊆ B′.

• False positive. A false positive occurs when ∀(S1, . . . , Sk),A * B, but ∃(S1, . . . , Sk),A
′ ⊆

B′. For a �xed tuple (S1, . . . , Sk) such that A * B, an error occurs when h(u) ⊆ B′ for

all u ∈ A − B. �e size of B′ is at most kdt . So the error probability Pr[h(u) ⊆ B′] ≤
(kdt/n′u)

t = (ks (m) · s (m)/s (m)5)t < s (m)−t . �e size of A − B is bounded by kd , so the

probability Pr[∃u ∈ A−B,h(u) ⊆ B′] ≤ kd · s (m)−t . �ere areO (mk) tuples of (S1, . . . , Sk),
so the total error probability is at mostO (mk) ·kd · s (m)−t = O (mk · s (m)/s (m)s (m)), which

is exponentially small.

• False negative. A false negative occurs when ∃(S1, . . . , Sk),A ⊆ B, but ∀(S1, . . . , Sk),A
′ *

B′. Fix any tuple (S1, ..., Sk) that satis�es A ⊆ B in the original instance, and consider the

distribution on the corresponding h(S1), ..,h(Sk). By de�nition, B′ =
⋃

u ∈B h(u), and so

contains

⋃
u ∈A h(u). So if A′ ⊆

⋃
u ∈A h(u), we will have A′ ⊆ B′, and there will not be a

false negative. If not, then there is some u ′ ∈ A′ =
⋂i

j=1
h(S j), such that u ′ <

⋃
u ∈A h(u).

�en for each j ∈ {1, . . . , i}, in each S j there is a uj ∈ S j with u ′ ∈ h(uj), but not all uj are

identical. (Otherwise the uj ∈ A, so u ′ ∈ h(uj) ⊆
⋃

u ∈A h(u), contradicting u ′ <
⋃

u ∈A h(u)).
In particular, this means that for some j1, j2, there are uj1 ∈ S j1 ,uj2 ∈ S j2 , such that

h(uj1)∩h(uj2) , ∅. So the error probability is bounded byk2 ·Pr[∃(u1 ∈ S j1 ,u2 ∈ S j2),h(u1)∩
h(u2) , ∅]. Because |S j1 | and |S j2 | are at most d , by Birthday Paradox, the probability is at

most O (k2d2t2/n′u) = O (s (m)−1). �is is the upper bound of the error probability for the

�xed (S1, . . . , Sk) tuple. �en, the probability of the event “∀(S1, . . . , Sk),A
′ * B′” is even

smaller.

5.1.2 Deterministic universe-shrinking self-reduction of BP[1
k

]. �is section proves the remaining

part of Lemma 5.2, by showing BP[1
k

] is either easy to solve or easy to complement. BP[1
k

] is the

k-Set Cover problem, which decides whether there exist k sets covering the universeU . It is special

in the Basic Problems: when nu is small, the sets are easy to complement; when nu is large, the

problem is easy to solve.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:17

• Case 1: Large universe. If nu > s (m), then in a solution of this problem, at least one

set has size at least nu/k . �ere are at most m/(k/nu) = O (m/s (m)) such large sets, thus

they can be listed in time O (m/s (m)), a�er pre-computation on the sizes of all sets. Our

algorithm exhaustively searches all such large sets. And then, similarly to “Step 1” in

Section 5.1.1, for each of the large sets, we run the baseline algorithm to �nd the remaining

k − 1 sets in the k-set cover, which takes time O (mk−1). So the overall running time is

O (m/s (m)) ·O (mk−1) = O (mk/s (m)).
• Case 2: Small universe. If nu ≤ s (m), then we do not need a universe-shrinking self-

reduction, because the universe is already small enough.

5.2 Hybrid Problem
Next we reduce general MC (∃k∀) problems to an intermediate problem called the Hybrid Problem,

which is a combination of 2
k

Basic Problems. �en by reducing from the Hybrid Problem to Basic

Problems, we can set up a connection between MC (∃k∀) and OV.

Let k ≥ 2. �e input to the Hybrid Problem is:

(1) Set families S1 . . .Sk de�ned on universe U , where U is partitioned into 2
k

disjoint sub-

universes: U =
⋃

`∈{0,1}k U` .

(2) A binary relation R de�ned on pairs of sets from any two distinct set families. R is a

symmetric relation (R (Si , S j) i� R (S j , Si)).

(3) type is binary string of length

(
k
2

)
, indexed by two integers [i, j], s.t. i, j ∈ {1, . . . ,k } and

i < j.

�e goal of the problem is to decide if there exist S1 ∈ S1, . . . , Sk ∈ Sk such that both of the

following constraints are true:

(A) For each ` ∈ {0, 1}k , (S1, . . . Sk) is a solution of BP[`] de�ned on sub-universe U` .

(B) For all pairs of indices i, j ∈ {1, . . . ,k }, i < j, we have that R (Si , S j) = true i� type[i, j] = 1.

We let n be the sum of |S1 |, . . . , |Sk | and U , and letm be the number of tuples in all unary and

binary relations. �e Hybrid Problem is a �rst-order property on graphs with additional constraints.

As usual, we assume all relations in the Hybrid Problem are sparse (m ≤ n1+o (1)
). Figure 4 shows a

solution to a Hybrid Problem instance when k = 2.

Intuition behind the Hybrid Problem. In the Hybrid Problem, the set families S1, . . . , Sk encode

the conditions on relations involving xk+1, while the binary relation R and the types encode the

conditions on relations not involving xk+1. We mentioned in Section 4 that any �rst-order query

containing two variables can be wri�en in a “normal form”, which is a combination of sparse and

co-sparse relations. �e Hybrid Problem is designed for separating sparse relations from co-sparse

ones, for all pairs of variables in formula φ.

�e relation between the pair of variables (xi ,xk+1) where 1 ≤ i ≤ k can be either sparse or co-

sparse. Because there arek such variablesxi , there are 2
k

cases for a combination ((x1,xk+1), . . . , (xk ,xk+1)).
�ese cases correspond to the 2

k
Basic Problems. In each Basic Problem, we deal with one of the

2
k

cases.

For a relation between the pair of variables (xi ,x j) where 1 ≤ i < j ≤ k , it also can be either

sparse or co-sparse. We use type[i, j] to distinguish the two cases: when it is set to 1, we expect a

sparse relation for (xi ,x j), otherwise a co-sparse relation.

5.2.1 Reduction to Basic Problems.

Lemma 5.5. Let s (m) be a non-decreasing function such that 2
Ω(
√

logm) ≤ s (m) < m1/5. �en,
(Hybrid Problem,mk/(s (m))1/6) ≤EC (k-OV,mk/(s (m))).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:18 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

U00 U01 U10 U11

S1 S2

R[S1, S2] = true
type[1, 2] = 1

S1 ∩ S2 = ∅ S1 ⊆ S2 S1 ⊇ S2 S1 ∪ S2 = U11

Fig. 4. An example of a solution to a Hybrid Problem instance, when k = 2. In sub-universesU00,U01,U10,U11,
sets S1 and S2 are solutions of BP[00](Set Disjointness), BP[01](Set Containment), BP[10](Set Containment
in the reversed direction) and BP[11](2-Set Cover), respectively. Furthermore, type[1, 2] = 1 specifies that the
predicate R on (S1, S2) must be true.

Given an instance of the Hybrid Problem, we can do the following modi�cation in time O (m).
For each pair of indices i, j where 1 ≤ i < j ≤ k , we construct auxiliary elements depending on the

value of type[i, j].
• Case 1: If type[i, j] = 0, then if a pair Si ∈ Si , S j ∈ Sj occurs in a solution to the Hybrid Problem,

then there should be no edge R (Si , S j). Let ` be the length-k binary string where the i-th and j-th
bits are zeros and all other bits are ones. For each edge R (Si , S j) on Si ∈ Si and S j ∈ Sj , we add an

extra element uSiSj in U` and let uSiSj ∈ Si , uSiSj ∈ S j . �us, S ′i ∈ Si and S ′j ∈ Sj can both appear

in the solution only when for all uSiSj , (uSiSj < S
′
i) ∨ (uSiSj < S

′
j), and this holds i� R (S ′i , S

′
j) = false.

• Case 2: If type[i, j] = 1, then in a solution to the Hybrid Problem, Si and S j should have an edge

R (Si , S j) between them. Let ` be the length-k binary string where the j-th bit is zero and all other

bits are ones. For each S j ∈ Sj , we add an extra element uSj in U` and let uSj ∈ S j . For each edge

R (Si , S j), we let uSj ∈ Si . �us, S ′i ∈ Si and S ′j ∈ Sj can both appear in the solution only when for

all uSj , (uSj < S
′
j) ∨ (uSj ∈ S

′
i), and it holds i� R (S ′i , S

′
j) = true.

A�er the above construction, we can drop the constraint (B) of the Hybrid Problem. We will

ignore the relation R and type in the Hybrid Problem. �e problem now is to decide whether there

exists tuple (S1, . . . , Sk) being a solution to all 2
k

Basic Problems. �en we can use the reductions

in Lemma 5.1 to reduce all these Basic Problems to BP[0
k

], and then combine the 2
k

instances to a

large BP[0
k

] instance. Because the reductions do not change the solutions S1, . . . , Sk , there exists

a solution to the large BP[0
k
] instance i� there exists a solution simultaneously to all the Basic

Problem instances. Let U`
′

be the sub-universe of the BP[0
k
] instance reduced from the BP[`]

sub-problem. (S1, . . . , Sk) is a solution to all Basic Problems i� their intersection is empty on every

sub-universe U ′
`
, i� their intersection is empty on universe

⋃
`∈{0,1}k U

′
`
, i.e., it is a solution of a

BP[0
k

] instance.

Multiplying the error probability in the reductions between Basic Problems by 2
k
, which is a

constant number, and then taking a union bound, we get similar bounds of error probability for the

Hybrid Problem.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:19

5.2.2 Turing reduction from generalMC (∃k∀) problems to the Hybrid Problem. �e following

lemma provides the last piece of the proof that sparse k-OV is complete for MC (∃k∀) under

�ne-grained Turing reductions. �e result follows by combining this lemma with Lemma 5.5.

Lemma 5.6. For any integer k ≥ 2, any problem inMC (∃k∀) is linear-time Turing reducible to the
Hybrid Problem, namely, (MC (∃k∀),T (m)) ≤EC (Hybrid Problem,T (O (m))).

Consider the problem MCφ where φ = (∃x1) . . . (∃xk) (∀xk+1)ψ (x1, . . . ,xk+1). An input graph

G can be preprocessed in linear time to ensure that it is a (k + 1)-partite graph on vertices V =
(V1, . . . ,Vk+1), for example by creating k + 1 copies of original vertex set.

W.l.o.g, we assume that for each occurrence of binary predicate Rt (xi ,x j), i ≤ j. Let Pk+1 be the

set of unary and binary predicates inψ that involve variable xk+1, and let Pk+1
denote the set of the

other predicates not including xk+1. A partial interpretation α for Pk+1
is a binary string of length

|Pk+1
|, that encodes the truth values assigned to all predicates in Pk+1

. For each i s.t. 1 ≤ i ≤ |Pk+1
|,

if the i-th predicate in Pk+1
is assigned to true, then we set the i-th bit of α to one, otherwise

we set it to zero. For a tuple (v1, . . . ,vk), we say it implies α (denoted by (v1, . . . ,vk) |= α) i�

when (x1 ← v1, . . . ,xk ← vk), the evaluations of all predicates in Pk+1
are the same as the values

speci�ed by α .

For each α ∈ {0, 1}Pk+1 , we create a distinct Hybrid Problem instance Hα . If any of the Hybrid

Problems accepts, we accept. Letψ |α (x1, . . . ,xk+1) beψ a�er replacing all occurrences of predicates

in Pk+1
by their corresponding truth values speci�ed by α . �e following steps show how to create

Hα from α andψ |α (x1, . . . ,xk+1).

Step 1: Construction of sets.
We introduce colors, which are partial interpretations de�ned on some speci�c subsets of the

predicates concerning variable xk+1. We call them “colors” because they can be considered as a

kind of labels on (vi ,vk+1) pairs. For each i ∈ {1, . . . ,k }, we give all the unary predicated de�ned

on xi and binary predicates de�ned on (xi ,xk+1) (including those on (xk+1,xi)) a canonical order.

We use Pi to denote the set of these predicates for each i . Let a color be a partial interpretation for

Pi , which is a binary string of length |Pi |, encoding the truth values assigned to all predicates in Pi .
For each j s.t. 1 ≤ j ≤ |Pi |, if the j-th predicate in Pi is assigned to true, then we set the j-th bit of

the color to one, otherwise we set it to zero. For a color ci ∈ {0, 1}
|Pi |

, we say (vi ,vk+1) |= ci i�

when xi ← vi and xk+1 ← vk+1, the values of all predicates in Pi are the same as the corresponding

bits of ci . We refer to the colors where all bits are zeros as the background colors. �ese colors

are special because they correspond to interpretations where all predicates in Pi are false, i.e., we

cannot directly go through all pairs (vi ,vk+1) where (vi ,vk+1) |= 0
|Pi |

, since this is a co-sparse

relation. So we need to deal with these pairs separately.

For a vertex combination (v1, . . . ,vk+1) where (vi ,vk+1) |= ci on all 1 ≤ i ≤ k , the k-color-

tuple (c1, . . . , ck) forms a color combination, which corresponds to truth values assigned to all the

predicates in Pk+1.

For each vi ∈ Vi where 1 ≤ i ≤ k , we create set Svi in the set family Si . For each vk+1 ∈ Vk+1,

and each color combination (c1, . . . , ck) s.t. ci ∈ {0, 1}
|Pi |

and the values of all predicates speci�ed

by (c1, . . . , ck) makeψ |α evaluate to false (in which case we say (c1, . . . , ck) does not satisfyψ |α),

we create an element u (vk+1
,c1, ...,ck) in U . We call a string C ∈ {0, 1}k an encoding of a color

combination (c1, . . . , ck) when on all indices i ∈ {1, . . . ,k }, C[i] = 1 i� ci = 0
|Pi |

. We put each

element u (vk+1
,c1, ...,ck) in the sub-universe UC i� C is an encoding of (c1, . . . , ck).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:20 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

u(vk+1,c1,...,ck)

Sv1 Sv2 Svk

U0k

u(vk+1,0|P1|,c2,0|P3|,c4,...,ck)

U1010k−3

Sv1 Sv2 Svk.Sv3 Sv4 Sv3 Sv4

Fig. 5. The formula is satisfied i� there exists (Sv1
, Sv2
, . . . , Svk) so that there does not exist such an element

u in any of the sub-universes: the le� figure illustrates the case where none of c1, . . . , ck is a background color.
The right is the case where only c1 and c3 are background colors. (The dashed lines stand for non-existing
edges.)

Next we will construct the sets. For each vi ∈ Vi , let Svi be

Svi = {u (vk+1
,c1, ...,ck) | (c1, . . . , ck) does not satisfyψ |α , and

((ci , 0
|Pi |, (vi ,vk+1) |= ci), or (ci = 0

|Pi |, (vi ,vk+1) 6 |= ci = 0
|Pi |))}.

To construct such sets, for each edge on (xi ,xk+1) (and (xk+1,xi)), we do the following. Assume

the current vertex pair is (vi ,vk+1).
(1) First, let set Svi contain all elements u (vk+1

,c1, ...,ck) in U where ci is a �xed color such that

(vi ,vk+1) |= ci , and the other colors c j can be any string in {0, 1} |Pj | .

(2) Next, let set Svi contain all elements u (vk+1
,c1, ...,ck) in U where ci = 0

|Pi |
(here (vi ,vk+1) 6 |=

ci = 0
|Pi |

because there is some edge connecting vi and vk+1, meaning at least one bit in ci
is 1), and the other colors c j can be any string in {0, 1} |Pj | .

In other words, in the sub-universe labeled by 0
k
, which is made up of elements u (vk+1

,c1, ...,ck)

such that none of the ci equals 0
|Pi |

, and that (c1, . . . , ck) does not satisfy ψ |α , a set Svi contains

an element u (vk+1
,c1, ...,ck) i� (vi ,vk+1) |= ci . On the other hand, in any sub-universe labeled

by C where the i-th bit of C is 1, i.e. those are made up of elements u (vk+1
,c1, ...,ck) such that

ci = 0
|Pi |

and that (c1, . . . , ck) does not satisfyψ |α , a set Svi contains an element u (vk+1
,c1, ...,ck) i�

(vi ,vk+1) 6 |= ci = 0
|Pi |

.

Analysis. Now we show the above construction achieves constraint (A) in the de�nition of the

Hybrid Problem.

• Assume that (v1, . . . ,vk) does not satisfy (∀vk+1)ψ |α (x1, . . . ,xk+1), i.e., there exists some vk+1 ∈

Vk+1 such thatψ |α (v1, . . . ,vk+1) is false. �en consider the speci�c color combination (c1, . . . , ck)
where on each i , (vi ,vk+1) |= ci . So (c1, . . . , ck) does not satisfyψ |α (x1, . . . ,xk+1). �us there exists

an element u (vk+1
,c1, ...,ck) in U .

If none of the colors in combination (c1, . . . , ck) is the background color, then the encoding

of (c1, . . . , ck) is the string 0
k
. �us, the element u (vk+1

,c1, ...,ck) is in sub-universe U
0
k . By our

construction, u (vk+1
,c1, ...,ck) is contained in all of Sv1

, . . . , Svk , as shown on the le� side of Figure

5. �is is because when we went through all the edges, at the edge between (vi ,vk+1), we put

u (vk+1
,c1, ...,ck) in Svi , since none of the colors is background. �us (∃u ∈ U

0
k)

[∧k
i=1

(u ∈ Svi)
]
, so

it is not the case that (∀u ∈ U
0
k)

[∨k
i=1
¬(u ∈ Svi)

]
, which means Sv1

, . . . , Svk is not a solution of

BP[0
k

] on sub-universe U
0
k .

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:21

If some of the colors ci in the color combination (c1, . . . , ck) equal the background color 0
|Pi |

, then

in the encoding C of (c1, . . . , ck), C[i] = 1. �us, the element u (vk+1
,c1, ...,ck) is in the sub-universe

UC . By our construction, u (vk+1
,c1, ...,ck) is contained in sets Svi for all indices i where ci is not the

background color 0
|Pi |

, and is not contained in sets Svj for all indices j where c j is the background

color 0
|Pj |

. �e la�er case is because for each index j where c j is the background color, there is no

edge connecting the pair of vertices (vj ,vk+1). So we did not put u (vk+1
,c1, ...,ck) in Svj .

(�e right side of Figure 5 demonstrates the example where c1 and c3 are the background colors

while other colors are not.)

�us

(∃u ∈ UC)
[∧

i ∈{1, ...,k },C[i]=0
(u ∈ Svi) ∧

∧
i ∈{1, ...,k },C[i]=1

(¬(u ∈ Svi))
]
,

so it is not the case that

(∀u ∈ UC)
[∨

i ∈{1, ...,k },C[i]=0
(¬(u ∈ Svi)) ∨

∨
i ∈{1, ...,k },C[i]=1

(u ∈ Svi)
]
,

which means Sv1
, . . . , Svk is not a solution of BP[C] on sub-universe UC .

• On the other hand, assume that (v1, . . . ,vk) satis�es (∀vk+1)ψ |α (v1, . . . ,vk+1). We claim that for

all ` ∈ {0, 1}k , (Sv1
, . . . , Svk) is a solution to Basic Problem BP[`].

Consider the sub-universe UC for each C ∈ {0, 1}k . If C = 0
k
, i.e., the sub-universe is U

0
k corre-

sponding to BP[0
k

], then none of the elements u (vk+1
,c1, ...,ck) inU

0
k contains any background color

among its c1, . . . , ck . For the sake of contradiction, suppose there exists an element u (vk+1
,c1, ...,ck)

that is contained in all sets Sv1
, . . . , Svk . So by our construction of sets, for each i ∈ {1, . . . ,k },

(vi ,vk+1) |= ci . Recall that the color combination (c1, . . . , ck) in any element u (vk+1
,c1, ...,ck) does

not satisfyψ |α . �en this means the vertex vk+1 does not satisfyψ |α (v1, . . . ,vk ,vk+1), which leads

to a contradiction.

�us on (Sv1
, . . . , Svk), it is not the case that (∃u ∈ U

0
k)

[∧k
i=1

(u ∈ Svi)
]
, implying (Sv1

, . . . , Svk)

satis�es (∀u ∈ U
0
k)

[∨k
i=1
¬(u ∈ Svi)

]
. So it is a solution of the Basic Problem BP[0

k
] on sub-

universe U
0
k .

If C , 0
k

, for the sake of contradiction, suppose there exists an element u (vk+1
,c1, ...,ck) such that

among Sv1
, . . . , Svk , it is contained in set Svi i�C[i] = 0. �en by our construction of sets, this means

for all i such that C[i] = 0, (vi ,vk+1) |= ci ; while for all i such that C[i] , 0, (vi ,vk+1) |= 0
|Pi | = ci .

Combining the two statements, for all i , (vi ,vk+1) |= ci . Recall again that the color combination

(c1, . . . , ck) in any element u (vk+1
,c1, ...,ck) does not satisfy ψ |α . �is implies the vertex vk+1 does

not satisfyψ |α (v1, . . . ,vk+1), which leads to a contradiction.

�us on (Sv1
, . . . , Svk), it is not the case that

(∃u ∈ UC)
[∧

i ∈{1, ...,k },C[i]=0
(u ∈ Svi) ∧

∧
i ∈{1, ...,k },C[i]=1

(¬(u ∈ Svi))
]
,

implying (Sv1
, . . . , Svk) satis�es

(∀u ∈ UC)
[∨

i ∈{1, ...,k },C[i]=0
(¬(u ∈ Svi)) ∨

∨
i ∈{1, ...,k },C[i]=1

(u ∈ Svi)
]
.

So it is a solution of the Basic Problem BP[C] on sub-universe UC .

In summary, there exists a tuple (v1, . . . ,vk) such that (∀vk+1)ψ |α (v1, . . . ,vk ,vk+1) holds true,

i� there exist sets (Sv1
, . . . , Svk) such that for all ` ∈ {0, 1}k , (Sv1

, . . . , Svk) is a solution of Basic

Problem BP[`] on sub-universe U` . �us our reduction satis�es constraint (A) of the Hybrid

Problem.

Step 2: Construction of R and type.
Next, we consider the predicates in Pk+1

, which are predicates unrelated to variable xk+1. We create

edges for predicate R according to the current partial interpretation α .

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:22 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

For a pair of vertices vi ∈ Vi and vj ∈ Vj where 1 ≤ i < j ≤ k , we say (vi ,vj) agrees with α if

the evaluations of all predicates on (xi ,x j) (including (x j ,xi)) when xi ← vi ,x j ← vj , equals the

truth values of corresponding predicates speci�ed by α .

• Case 1: At least one predicate on (xi ,x j) in α is true. (i.e., (xi ,x j) is in a sparse relation) For

all edges (vi ,vj) (including (vj ,vi)) where vi ∈ Vi and vj ∈ Vj and i < j ≤ k , if (vi ,vj) agrees with

α , then we create edge R (Svi , Svj). Finally we make type[i, j] = 1 in the Hybrid Problem Hα .

• Case 2: All predicates on (xi ,x j) in α are false. (i.e., (xi ,x j) is in a co-sparse relation) For all

edges (vi ,vj) (including (vj ,vi)) where vi ∈ Vi and vj ∈ Vj and i < j ≤ k , if (vi ,vj) does not agree

with α , then we create edge R (Svi , Svj). Finally we make type[i, j] = 0 in the Hybrid Problem Hα .

Analysis. We prove that (vi ,vj) can appear in the solution of Hα only if when it agrees with α . If

(vi ,vj) does not agree with α , we should not let them be in any solution of Hα . �is is done by the

relation R and the string type.
Consider the two cases. If in α some predicates on (xi ,x j) are true (i.e., set of tuples that agree

with α is sparse), then in any (vi ,vj) that agrees with α , there must be an edge in G connecting

vi and vj . So we can add an edge (de�ned by relation R) on the corresponding sets Svi , Svj and

require there must be such an edge in the solution (i.e., type being 1).

On the other hand, if all predicates on (xi ,x j) in α are false (i.e., set of tuples agreeing with α is

co-sparse), then in any (vi ,vj) that agrees with α , there should not be any edge connecting vi and

vj . In this case we turn to consider the tuples (vi ,vj) that do not agree with α (which is a sparse

relation, instead of co-sparse). We create edges on the corresponding sets Svi , Svj and require there

must not be such an edge in the solution (i.e., type being 0).

�erefore, a tuple (v1, . . . ,vk) implies α i� for all i, j ∈ {1, . . . ,k }, i < j , the truth value of relation

R (Svi , Svj) equals whether type[i, j] = 1. �us our reduction satis�es constraint (B) of the Hybrid

Problem.

From the analyses of the two steps, we have justi�ed that: there exists (v1, . . . ,vk) so that

(v1, . . . ,vk) |= α , andψ |α holds for all vk+1 ∈ Vk+1, i� there exists (Sv1
, . . . , Svk) being a solution

to the Hybrid Problem Hα . �us, if for any α ∈ {0, 1}Pk+1 , the Hybrid Problem Hα accepts, then

there exists a solution (v1, . . . ,vk) so thatψ (v1, . . . ,vk ,vk+1) holds for all vk+1 ∈ Vk+1. Otherwise

there does not exist such a solution. From the above argument, we have proved the following claim.

Claim 5.1. �e two propositions are equivalent:
(1) MCφ has a solution x1 ← v1, . . . ,xk ← vk such that (∀vk+1 ∈ Vk+1)ψ (v1, . . . ,vk+1) is satis�ed.
(2) �ere exists an α ∈ {0, 1}Pk+1 so that (Sv1

, . . . , Svk) |= α , and Sv1
, . . . , Svk is a solution to the

Hybrid Problem Hα .

�e running time of the whole reduction process is linear in the total number of edges in the

graph, because the number of predicates is constant. �us Lemma 5.6 follows.

6 DERANDOMIZATION
We derandomize the reduction in Section 5 for the k = 2 case, so that the whole proof of �eorems

1.2 and 1.4 is determistic. �e derandomization of the randomized universe-shrinking self-reduction

uses the technique of nearly disjoint sets similar to the construction of pseudorandom generator by

Nisan and Widgerson in [28].

In this section, for simplicity we use SC (x) (resp. SD (x)) to denote Set Containment, a.k.a. the

Basic Problem BP[01] (resp. Set Disjointness, a.k.a. the Basic Problem [00] or Sparse OV) on

universe of size x , and use HP for the Hybrid Problem.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:23

Lemma 6.1. For any 2
Ω(
√

logn) ≤ s < m1/3, there is a deterministic universe-shrinking self-reduction
for SC such that (SC (n),m2/s) ≤EC (SC (O (s2

log
2 n/ log

2 s),m2/s3 log
2 n

log
2 s
)).

Lemma 6.2. For any 2
Ω(
√

logn) ≤ s < m1/3, there is a deterministic universe-shrinking self-reduction
for SD such that (SD (n),m2/s) ≤EC (SD (O (s2

logn/ log s),m2/s3 logn
log s)).

�e following reduction from the Hybrid Problem to Set Disjointness implies the model checking

for any ∃∃∀ sentences on sparse structures can be reduced to moderate-dimension SD, and then to

OV.

Lemma 6.3. For any 2
Ω(
√

logn) ≤ s < m1/3, wherem is the input size to the Hybrid Problem, there is
a deterministic reduction algorithm such that (HP ,m2/s) ≤EC (SD (O (s2

log
2 n/ log

2 s),m2/s7 log
3 n

log
3 s
)).

6.1 Proof of Lemma 6.1
�is section presents the derandomization of the universe-shrinking self-reduction in Sections 5.1.1

for the Basic Problem BP[01] (and equivalently BP[10]), i.e. when the corresponding Basic Problem

is the Set Containment problem.

Pick ` = O (logn/ log s) and prime number q = O (s logn/ log s), so that s` < q and q` > n. By

Bertrand’s postulate and that PRIMES is in P, we can �nd such a q in time Õ (s logn/ log s).
First, we use the algorithm in Section 5.1.1 to decide if there is a solution containing a set of size

at least s , which takes time O (m2/s). So next we only consider sets of size smaller than s .
We create a new universe U ′ of size q2

. Let U ′ be GF (q) ×GF (q). Let element u in universe U
correspond to a unique polynomial pu overGF (q) of degree `. �e number of di�erent polynomials

is q` . Since q` > n, the number of di�erent polynomials is greater than the number of elements of

U .

Leth be a hash function so that each element inU is mapped to a seth(u) = {〈i,pu (i)〉 | i ∈ GF (q)}
of size q. For set S ⊆ U , de�ne h(S) =

⋃
u ∈S h(u). Finally, S′

1
= {h(S) |S ∈ S1}, and S′

2
is constructed

similarly. �en we decide the SC (q2) instance that takes S′
1

and S′
2

as input.

If S1 ⊆ S2, then h(S1) ⊆ h(S2), and the call to the SC (q2) instance returns true.

If S1 * S2 for all sets, we need to show that for each element u1 ∈ S1\S2, |h(u1) ∩ h(S2) | < q.

�en because |h(u1) | = q, some element in h(u1) is not in h(S2), therefore h(S1) * h(S2). To

show |h(u1) ∩ h(S2) | < q, observe that for each element u2 ∈ S2, the intersection h(u1) ∩ h(u2)
has size at most `, the degree of polynomial pu1

− pu2
. �ere are at most s elements in S2, thus

|h(u1) ∩ h(S2) | ≤ s` < q.

�us, there exist S1 ⊆ S2 in the original instance i� there exist h(S1) ⊆ h(S2) in the constructed

instance.

�e time to create the new set is O (mq`), which is less than O (m2/s). And its size is m′ ≤ mq.

�us, if we can solve it in time O (m′2/poly(s)) where s < mϵ
for all ϵ > 0, we can solve it in time

O (m2q2/poly(s)) = O (m2/poly(s)).

6.2 Proof of Lemma 6.2
First, we use the algorithm in Section 5.1.1 to decide if there is a solution containing a set of size at

least s , which takes time O (m2/s). So next we only consider sets of size smaller than s .

Let ` = O (logn/ log s), and let q be a prime ≥ s2`, thus q = O (s2`) = O (s2 logn
log s). So q` > n. By

Bertrand’s postulate, we can �nd such a q in time O (s2 logn
log s). We create a universe U ′ of size q.

Each element u of U , which is a string of length logn, can be viewed as the encoding of a

polynomial pu over GF (q) of degree
logn
logq ≤

logn
log s = `.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:24 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

Let a be an element in groupGF (q). For each element u inU , we let hash function ha (u) = pu (a).
For set S ⊆ U , de�ne ha (S) =

⋃
u ∈S {ha (u)}. �e algorithm in the outermost loop enumerates all

elements a ∈ GF (q). For each a, we compute ha (S) for all sets S in the input. �en we decide if there

are two disjoint sets in the new instance. �e algorithm makes q queries to SD (q) instances of input

sizem, each taking timeT (m) =m2/s3 logn
log s =m

2/sq, the running time for moderate-dimension OV.

�e total time is qT (m) = O (m2/s).
For each pair of di�erent elements u and v in U , the number of elements a in GF (q) so that

pu (a) = pv (a) is at most their degree l < logn. Suppose S1 ∈ S1 and S2 ∈ S2 are a pair of disjoint

sets. ha (S1) and ha (S2) are disjoint if all pairs of their elements are mapped to di�erent elements in

GF (q). �e total number of possible collisions is at most s2
logn. Because q > s2

logn, there exists

at least one element a in GF (q) so that all pairs of elements in S1 and S2 are mapped to di�erent

elements by ha .

If there are no disjoint sets, then for each S1 ∈ S1 and S2 ∈ S2, h(S1∩S2) ⊆ h(S1)∩h(S2), so h(S1)
and h(S2) are not disjoint. �us, for every a ∈ GF (q), the call to the SD (logn) instance returns

false.

6.3 Hybrid Problem
In this section we combine the above two deterministic reductions to solve the Hybrid Problem,

which yields a deterministic reduction for �eorem 1.2 and �eorem 1.4. Here we use a similar

version of the Hybrid Problem as de�ned in Section 5.2 but without the relation R and the string

type . More formally, we consider the Hybrid Problem de�ned as follows:

Problem HP
Input: S1,S2, each a set family of sets Si = Ai ∪ Bi ∪Ci ∪ Di where Ai ,Bi ,Ci ,Di are subsets of

disjoint universes UA,UB ,UC ,UD respectively.

Output: Whether there exist Si ∈ S1 and S j ∈ S2 so that

(1) Ai ∩Aj = ∅ (Set Disjointness)

(2) Bi ⊆ Bj (Set Containment)

(3) Ci ⊇ Cj (Set Containment reversed)

(4) Di ∪ D j = UD (2-Set Cover)

�e results in Section 5.2 can be applied to this version of Hybrid Problem, so that the model

checking for �rst-order sentences of form ∃∃∀ can be reduced to the Hybrid Problem. More

precisely, (MC (∃∃∀),T (O (m))) ≤ (HP ,T (m)).

Proof of Lemma 6.3.
First, we decide if there is a solution containing a set of size at least s , as described in the previous

subsections, using time O (m2/s). So next we only consider sets of size smaller than s .
If |UD | ≥ 2s , then for all pairs of i, j, Di and D j cannot cover UD , so we return false. Otherwise

for i and all j we create sets UD\Di and UD\D j . So D1 ∪ D2 = UD i� (UD\Di) ∩ (UD\D j) = ∅. �e

resulting instance size is O (ms).
�en, we use Lemma 6.1 self-reductions for Set Containment on the B’s and C’s, so the created

sets B′i ,B
′
j andCi ,Cj are on universes of sizeO (s2 log

2 n
log

2 s
). For each j , we create setUB\B

′
j , so Bi ⊆ Bj

i� B′i ⊆ B′j i� B′i ∩ (UB\B
′
j) = ∅. Similarly for each i we create UC\C

′
i , so Ci ⊇ Cj i� C ′i ⊇ C ′j i�

(UC\C
′
i) ∩C

′
j = ∅. �e resulting instance size is O (m · s2 log

2 n
log

2 s
).

Finally, we use Lemma 6.2 self-reductions for Set Disjointness on the original A’s. So in each

call to the oracle, the created sets A′i ,A
′
j are on universes of size O (s2 logn

log s). For each i and each

j, we create sets S ′i = A′i ∪ B′i ∪ (UC\C
′
i) ∪ (UD\Di) and S ′j = A′j ∪ (UB\B

′
j) ∪ C

′
j ∪ (UD\D j). By

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:25

the argument above, S ′i ∩ S ′j = ∅ i� A′i ∩ A′j = ∅ and Bi ⊆ Bj and Ci ⊇ Cj and Di ∪ D j = UD . If

Ai ∩Aj = ∅, then in at least one call to the oracle A′i ∩A
′
j = ∅ and thus the call will return true as

long as the conditions on B,C,D’s are satis�ed. If Ai ∩Aj , ∅, all calls return false.

�e size of the new instance is O (m · s2 log
2 n

log
2 s
). In the reduction we make s2 logn

logd calls to the

algorithm for Set Disjointness on small universe. �us if SD (O (s2 log
2 n

log
2 s
)) has algorithms in time

O (m2/s7 log
5 n

log
5 s
), we get running time s2 logn

logd ·O ((m · s2 log
2 n

log
2 s
)2/s7 log

5 n
log

5 s
) = O (m2/s). �

�is gives a reduction from the general �rst-order model checking problems to the Hybrid

Problem.

6.4 Extending to more quantifiers
�e derandomization can be extended to quanti�ers k +1 for integer k ≥ 2. �e reduction combines

the reductions for Set Containment and Set Disjointness.

Recall from Section 5.1, a Basic Problem BP[`] where ` , 1
k

can be considered as deciding

(∃S1) . . . (∃Sk) (∀u)
[(∨i

j=1
(u < S j)

)
∨

(∨k
j=i+1

(u ∈ S j)
)]
, or equivalently (∃S1) . . . (∃Sk)[(⋂i

j=1
S j

)
⊆

(⋃k
j=i+1

S j
)]
. for some i such that 0 ≤ i ≤ k . Again, we map each element in U to a

set of elements in a small universe U ′ by some function h, and thus map each set S in U to a set

h(S) in U ′.
Let q1, q2 be the q de�ned in Sections 6.1 and 6.2 respectively. Here q2 is a prime number

larger than sk−i`. For each element u, for each element a ∈ GF (q2) we map it to a set of tuples

h(u) = {〈uSC ,uSD〉 | uSC ∈ hSC (u),uSD ∈ hSDa (u)}, where hSC and hSDa are the functions h and

ha de�ned in Sections 6.1 and 6.2 respectively, and then we make a query for the BP[`] instance

created from the mapping h. �us we make q2 queries in all, and accept if at least one of the queries

is accepted.

If there exist sets S1, . . . , Sk such that

⋂i
j=1

S j ⊆
⋃k

j=i+1
S j , by generalizing the analysis in Section

6.2, in at least one query, the set

⋂i
j=1

h(S j) does not contain any element not in h(
⋂i

j=1
S j). And by

generalizing the analysis in Section 6.1, in each query, the set

⋃k
j=i+1

h(S j) = h(
⋂i

j=1
S j) is always

contained in h(
⋃k

j=i+1
S j) which is contained in

⋃k
j=i+1

h(S j). So we get the following reduction:

(BP[`](n),mk/s) ≤EC (BP[`](poly(s)),mk/poly(s)).

7 EXTENDING ALGORITHMS AND HARDNESS RESULTS TO HYPERGRAPHS
�is section gives a reduction from MC (∃∃∀), i.e., the model checking for ∃∃∀ formulas on hyper-

graphs, to the model checking for ∃∃∀ formulas on graphs, where there are only unary and binary

relations. We will prove the following lemma.

Lemma 7.1. If MC (∃k∀) on graphs is solvable in time T (m), then MC (∃k∀) on hypergraphs is
solvable in T (O (m)) +O (mk−1/2).

For a three-quanti�er formula (∃x) (∃y) (∀z) ψ (x ,y, z) where x ∈ X ,y ∈ Y , z ∈ Z , we prove that

it can be decided in time O (m3/2 +T (O (m))), where T is the running time for the model checking

of three-quanti�er formulas on graphs.
Let relationN (x ,y) be the edges of the Gaifman graph, which meansN (x ,y) = true i� there exists

some z such that there is a hyperedge Ri (x ,y, z) = true (the order of x ,y, z can be interchanged).

Note that each tuple in the relations contributes to only constantly many tuples of N . So |N | = O (m),
and we can construct N in linear time.

Let ψ (x ,y, z) be a quanti�er-free formula. We de�ne ψ ∗ (x ,y, z) be ψ (x ,y, z) where all oc-

currences of ternary predicates are replaced by false. �us, it contains only unary and binary

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:26 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

predicates. Formula (∃x) (∃y) (∀z)ψ (x ,y, z) is equivalent to (∃x) (∃y) (∀z)[N (x ,y) ∧ψ (x ,y, z)] ∨
(∃x) (∃y) (∀z)[¬N (x ,y) ∧ψ ∗ (x ,y, z)].

We can decide (∃x) (∃y) (∀z)[¬N (x ,y) ∧ψ ∗ (x ,y, z)] using the algorithm for graphs, because all

relations are binary. To decide (∃x) (∃y) (∀z)[N (x ,y) ∧ψ (x ,y, z)], we consider three types of x ’s

and y’s. Let deд(x) be the degree of x in the Gaifman graph.

• Type 1: deд(x) ≥
√
m. It is similar to deciding “large sets” for Basic Problems in Section

5.1.1. In the outer loop, enumerate all such x ’s. For each x , we modify the model checking

problem to an instance of MC (2), by treating x as a constant. �e number of such x ’s is at most

O (m/
√
m) = O (

√
m), and deciding an MC (2) problem runs in time O (m). So the total running time

is O (
√
m ·m) = O (m3/2).

• Type 2: deд(y) ≥
√
m. Use the same method as above by exchanging the order of x and y. �e

running time is also O (m3/2).
• Type 3: deд(x) <

√
m and deд(y) <

√
m. Enumerate all pairs of such x ’s and y’s. �en in the

inner loop, we enumerate all their neighbors in Z . In this way, for each z ∈ Z such that z is a

neighbor of x or y, we can categorize it by the truth value of all predicates. For all other z’s, we

know all the predicates are false. �us we can decide if all z ∈ Z satisfyψ . Because all these x ’s and

y’s are adjacent, the time for enumerating pairs of x and y is O (m), and the time for enumerating

all their neighbors in Z is O (
√
m). So the total running time is O (

√
m ·m) = O (m3/2).

�us, for each pair (x ,y) whereN (x ,y) = true, we can decide the model checking for (∀z)ψ (x ,y, z)
in timeO (m3/2). For each pair (x ,y) where N (x ,y) = false, (∀z)ψ (x ,y, z) is true i� (∀z)[¬N (x ,y)∧
ψ ∗ (x ,y, z)].

Similarly, for MC (∃k∀) problems where φ = (∃x1) . . . (∃xk) (∀xk+1)ψ (x1, . . . ,xk+1), we still

consider the cases whether there exist some hyperedge between any pair of xi ,x j , where i, j ≤ k .

We de�ne relation N (xi ,x j) = true i� there exists some xk such that there is some hyperedge

containing vertices xi ,x j . We also de�neψ ∗ (x1, . . . ,xk+1) beψ (x1, . . . ,xk+1) where all occurrences

of predicates with arities greater than two are replaced by false. So

φ =(∃x1) . . . (∃xk) (∀xk+1)



∨
i, j ∈{1, ...,k },i,j

(N (xi ,x j) ∧ψ (x1, . . . ,xk+1)



∨



*.
,

∧
i, j ∈{1, ...,k },i,j

¬N (xi ,x j)
+/
-
∧ψ ∗ (x1, . . . ,xk+1)


=

∨
i, j ∈{1, ...,k },i,j

[
(∃x1) . . . (∃xk) (∀xk+1)[N (xi ,x j) ∧ψ (x1, . . . ,xk+1)]

]

∨ (∃x1) . . . (∃xk) (∀xk+1)



*.
,

∧
i, j ∈{1, ...,k },i,j

¬N (xi ,x j)
+/
-
∧ψ ∗ (x1, . . . ,xk+1)


To decide (∃x1) . . . (∃xk) (∀xk+1)[N (xi ,x j) ∧ψ (x1, . . . ,xk+1)], we do exhaustive search on the

k − 2 variables other than xi and x j (which in essence is a quanti�er-eliminating downward

reduction), which takes a factor of O (mk−2) in the running time. �en we process the variables xi ,
x j , xk in the same way as variables x , y, z in the three-quanti�er problem, that takes time O (m3/2).

�e total running time is O (mk−1/2).

To decide(∃x1) . . . (∃xk) (∀xk+1)
[(∧

i, j ∈{1, ...,k },i,j ¬N (xi ,x j)
)
∧ψ ∗ (x1, . . . ,xk+1)

]
, we can use

the algorithm for MC (∃k∀) problems on graphs, because the new formula has only unary and

binary relations.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:27

8 HARDNESS OF K-OV FORMC (∀∃K−1∀)

In this section we present an exact complexity reduction from any MC (∀∃k−1∀) problem to a

MC (∃k∀) problem, establishing the hardness of k-OV for these problems. �is reduction gives an

extension of the reduction from Hi�ing Set to Orthogonal Vectors in [4] to sparse structures.

Lemma 8.1. For k ≥ 2 and s (m) a non-decreasing function such that 2
Ω(
√

logm) ≤ s (m) < m1/5, let
φ ′ = (∃x2) . . . (∃xk) (∀xk+1)ψ (x1, . . . ,xk+1). �ere is an exact complexity reduction

(MC (∀x1)φ ′,
mk

s (
√
m)

) ≤EC (MC (∃x1)φ ′,
mk

s (m)).

First, we show that in problemMC (∃x1)φ ′ , if graphG satis�es (∃x1)φ
′
, then we can �nd a satisfying

value v1 for variable x1 by binary search. We divide the set V1 into two halves, take each half of V1

and query whether (∃x1)φ
′

holds true on the graph induced by this half of V1 together with the

original sets V2, . . . ,Vk+1. If any half of V1 works, then we can shrink the set of candidate values

for x1 by a half, and then recursively query again, until there is only one vertex v1 le�. So it takes

O (log |V1 |) calls to �nd a v1 in some solution. �is means as long as there is a solution for MC∃x1φ ′ ,

we can �nd a satisfying v1 e�ciently, with O (logm) queries to the decision problem.

Step 1: Large degree vertices. Let t = m(k−1)/k
. We deal with vertices in V1 . . .Vk with degree

greater than t . �ere are at mostm/t =m1/k
such vertices. A�er pre-computing the sizes of all the

sets, these large sets can be listed in time O (m1/k).
• Step 1-1: Large degree vertices inV1. For each vertexv1 ∈ V1 with degree at least t , we create a

formulaψv1
on variables x2, . . . ,xk+1 from formulaψ , by replacing occurrences of unary predicates

in ψ on x1 by constants, and replacing occurrences of binary predicates involving x1 by unary

predicates on the other variables. �en we check if the graph induced by V2, . . . ,Vk+1 satis�es

(∃x2) . . . (∃xk) (∀xk+1)ψv1
(x2, . . . ,xk+1) by running the baseline algorithm in time O (mk−1). If the

new formula is satis�ed, then we markv1 as “good”. �e total time complexity isO (m1/k)·O (mk−1) =
O (mk−1+1/k).
• Step 1-2: Large degree vertices in V2, . . . ,Vk . Now we exhaustively search over all vertices

v1 ∈ V1 with degree less than t in the outermost loop. For each such v1, we �nd out all vertices

vi ∈ Vi for 2 ≤ i ≤ k , with degree at least t . Again, there are at most O (m1/k) of them.

◦ Case 1: k > 2. Because variables x2 through xk are all quanti�ed by ∃, we interchange their order

so that the variable xi becomes the second-outermost variable x2 (and thus the current vi becomes

v2). Next, for each v1 and v2 we construct a new formula ψ (v1,v2) on variables x3, . . . ,xk+1, by

regarding x1 and x2 as �xed valuesv1 andv2, and then modifyψ intoψ (v1,v2) similarly to the previous

step. Again, we run the baseline algorithm to check whether the graph induced by the current

V3, . . . ,Vk+1 satis�es (∃x3) . . . (∃xk+1)ψ (v1,v2) (x3, . . . ,xk+1), using time O (mk−2). If the formula is

satis�ed, we mark the current v1 as “good”. �e total time complexity is O (m ·m1/k) · (mk−2) =
O (mk−1+1/k).
◦ Case 2: k = 2. For each vertex v2, we mark all the v1’s satisfying ∀x3ψ (v1,v2,x3) as “good”. �is

can be done in O (m) using the algorithm for the base case of the baseline algorithm, by treating

the current v2 as constant. So this process runs in time O (m1/k) ·O (m) = O (m3/2).

If not all vertices in V1 with degree at least t are marked “good”, we reject. Otherwise, go to Step

2.

Step 2: Small degree vertices. First we exclude all the large vertices from the graph. �en for

the “good” vertices found in the previous step, we also exclude them from V1.

Now all vertices have degree at most t . In each of V1, . . . ,Vk , we pack their vertices into groups

where in each group the total degree of vertices is at most t . �en the total number of groups is

bounded by O (m/t).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:28 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

For each k-tuple of groups (G1, . . . ,Gk) where G1 ⊆ V1, . . . ,Gk ⊆ Vk , we query the oracle

deciding MC (∃x1)φ ′ whether it accepts on the subgraph induced by vertices in G1, . . . ,Gk . If so,

then we �nd a vertex v1 in V1 so that when x1 ← v1, the current subgraph satis�es φ ′. We remove

this v1 from V1. �en we repeat this process to �nd new satisfying v1’s in V1, and remove these

v1’s from V1. When V1 is empty, or when no new solution is found a�er all group combinations are

exhausted, the algorithm terminates. If in the end V1 is empty, then all v1 ∈ V1 are in solutions of

MC∃x1φ ′ , so we accept. Otherwise we reject.

Each query to MC∃x1φ ′ has size m′ = O (kt) = O (t). Because the number of di�erent k-tuples

of groups is O (m/t)k = O ((m/t)k), the number of queries made is O ((m/t)k + |V1 |) ·O (logm) =
O ((m1/k)k + |V1 |) · O (logm) = O (m logm) times. If MC∃x1φ ′ on input size m′ is solvable in time

O (m′k/s (m′)), then the running time for MC∀x1φ ′ is O (m logm) · O (m′k/s (m′)) = O (m logm ·

(m(k−1)/k)k/s (m(k−1)/k) ≤ O (mk/s (
√
m) · logm). �e exponent of m is less than k . �us this is a

�ne-grained Turing reduction. Lemma 8.1 follows.

Note that this reduction works not only on graphs but also on structures with relations of arity

greater than two.

9 BASELINE AND IMPROVED ALGORITHMS
In this section, we �rst present a baseline algorithm for MC (k + 1) that runs in time O (nk−1m),
which also implicitly gives us a quanti�er-eliminating downward reduction from any MC (k + 1)
problem to MC (k) problems for k ≥ 2. �en, we show how to get an improved algorithm in time

mk/2Θ(
√

logm)
using our reductions and the result by [3, 16]. Finally, we present the algorithms for

some speci�c quanti�er structures in O (m3/2), so that these problems are easy cases in �rst-order

property problems.

9.1 Baseline algorithm for first-order properties
�is section gives an O (nk−1m) time algorithm solving MC (k + 1) with any quanti�er structure for

k ≥ 1, thus proving Lemma 9.1.

Lemma 9.1. (�anti�er-eliminating downward reduction for MC (k + 1))
Let the running time of MC (k + 1) on graphs of n vertices andm edges be Tk (n,m). We have the
recurrence

Tk (n,m) ≤ n ·Tk−1 (n,O (m)) +O (m), for k ≥ 2.

T1 (n,m) = O (m).

By this lemma, if all problems in MC (k) have algorithms in time T (n,m), then any problem in

MC (k + 1) can be solved in time n ·T (n,m).

Base Case. We prove that when k = 1, Tk (n,m) = m. For each v1 ∈ V1, the algorithm computes

#(v1) = |{v2 ∈ V2 | (v1,v2) |= ψ }|. �us we can list the sets of v1 s.t. #(v1) > 0 (if the inner

quanti�er is ∃), or those that satisfy #(v1) = |V2 | (if it is ∀).

Let there be p1 di�erent unary predicates on v1 and p2 di�erent unary predicates on v2. We

partition the universes V1 and V2 respectively into 2
p1

and 2
p2

subsets, based on the truth values of

all the unary predicates of the corresponding variable. �e number of di�erent pairs of subsets is a

constant. Each time, we pick a pair consisting of one subset from V1 and one subset from V2, and

replace the unary predicates by constants. In this way, we can just consider binary predicates in

the following argument.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:29

Let
¯ψ (v1,v2) be the formula where each occurrence of each negated binary relation Ri (v1,v2) is

replaced by false. We enumerate all tuples (v1,v2) connected by at least one edge. For each tuple,

we evaluateψ (v1,v2) and
¯ψ (v1,v2). Let

#ψ (v1) =
∑
v2 adjacent to v1

([ψ (v1,v2) = true] − [
¯ψ (v1,v2) = true])

(in which the brackets are Iverson brackets). It can be computed by enumerating all tuples (v1,v2)
connected by at least one edge. Next, because in

¯ψ there are no occurrences of negated binary

predicates, we can compute

#
¯ψ (v1) =�e number of v2 s.t.

¯ψ (v1,v2) holds

by �rst enumerating all tuples (v1,v2) connected by at least one edge and checking if
¯ψ (v1,v2)

holds, and then considering the number of non-neighboringv2’s for eachv1, if being a non-neighbor

of v1 also makes
¯ψ (v1,v2) true. Finally, let #(v1) = #ψ (v1) + #

¯ψ (v1).
�is algorithm is correct, because whenever a pair (v1,v2) satis�esψ (v1,v2), there are two cases.

�e �rst is that there exists an edge between v1 and v2. In this case, when we enumerate all edges,

[ψ (v1,v2) = true] equals one and [
¯ψ (v1,v2) = true] equals its contribution to #

¯ψ (v1). On the other

hand, if there does not exist an edge between v1 and v2, then the contribution of (v1,v2) to #ψ (v1)
is 0 and to #

¯ψ (v1) is 1.

Whenever a pair (v1,v2) does not satisfy ψ (v1,v2), there are also two cases. If there exists

an edge between v1 and v2, when we enumerate all edges, [ψ (v1,v2) = true] equals zero and

[
¯ψ (v1,v2) = true] equals its contribution to #

¯ψ (v1). On the other hand, if there does not exist an

edge between v1 and v2, the contributions of (v1,v2) to #ψ (v1) and to #
¯ψ (v1) are both 0.

Inductive Step. For k ≥ 2, we give a quanti�er-eliminating downward reduction, thus proving

the recurrence relation. Assume φ = (Q1x1) . . . (Qk+1xk+1)ψ (x1, . . . ,xk+1) For each v1 ∈ V1, create

new formula φv1
= (Q2x2) . . . (Qk+1xk+1)ψ (x2, . . . ,xk+1), and inψ we replace each occurrence of

unary predicate Ri (x1) with a constant Ri (v1), and replace each occurrence of binary predicate

Ri (x1,x j) (or Ri (x j ,x1)) with unary predicate R′i (x j) whose value equals Ri (v1,x j) (or Ri (x j ,v1)),
etc. Our algorithm enumerates all v1 ∈ V1, and then computes if the graph induced by V2, . . . ,Vk+1

satis�es φv1
. If x1 is quanti�ed by ∃, we accept i� any of them accepts. Otherwise we accept i� all

of them accept. �e construction of φv1
takes time O (m). �e created graph has O (n) vertices and

O (m) edges. �us the recursion follows.

�is process is a quanti�er-eliminating downward reduction from an MC (k + 1) problem to an

MC (k) problem. It makes O (m) queries, each of size O (m). �en if problems in MC (k) are solvable

in timeO (mk−1−ϵ), then problems in MC (k +1) are solvable in timem ·O (mk−1−ϵ) = O (mk−ϵ). �is

quanti�er-eliminating downward reduction implies that if all MC (k) have T (n,m) time algorithms,

then all MC (k + 1) problems have n ·T (n,m) time algorithms.

From the recursion and the base case, we have the running time O (nk−1m) by induction. �e

quanti�er-eliminating downward reduction from MC (k + 1) to MC (3) in Lemma 9.1 also works

for hypergraphs. We exhaustively search the �rst k − 2 quanti�ed variables, and by replacing the

occurrences of these variables by constants in the formula, we can reduce the arities of relations.

A�er the reduction, we get a hypergraph of max arity at most three.

9.2 Algorithms for easy cases
In this section we show that any (k + 1)-quanti�er problem with a quanti�er sequence ending with

∃∃ or ∀∀ is solvable in time O (mk−1/2). First of all, we use the quanti�er-eliminating downward

reduction to reduce the problem to a MC (3) problem. �en from the next subsections we see that

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:30 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

ψ2 = E (x ,y) ∧ E (x , z) ψ2+ = E (x ,y) ∧ E (x , z) ∧ E (y, z) ψ2− = E (x ,y) ∧ E (x , z) ∧ ¬E (y, z)
ψ1 = E (x ,y) ∧ ¬E (x , z) ψ1+ = E (x ,y) ∧ ¬E (x , z) ∧ E (y, z) ψ1− = E (x ,y) ∧ ¬E (x , z) ∧ ¬E (y, z)
ψ0 = ¬E (x ,y) ∧ ¬E (x , z) ψ0+ = ¬E (x ,y) ∧ ¬E (x , z) ∧ E (y, z) ψ0− = ¬E (x ,y) ∧ ¬E (x , z) ∧ ¬E (y, z)

Table 1. Atomic Problems

these problems are solvable in O (m3/2). [35] shows improved algorithms that run in time O (m1.41)
for detecting triangles and detecting induced paths of length 2, which are special cases of MC (∃∃∃).

Lemma 9.2. Problems inMC (∃∃∃),MC (∀∀∀),MC (∀∃∃) andMC (∃∀∀) are solvable in O (m3/2).

In the �rst two subsections, we consider when the input structures are graphs. �en in the last

subsection, we consider the cases when the input structures have higher arity relations.

9.2.1 Problems inMC (∃∃∃) andMC (∀∀∀). For problems in MC (∀∀∀), we decide its negation,

which is a MC (∃∃∃) problem.

We de�ne nine Atomic Problems, which are special MC (3) problems. Let the Atomic Problem

labeled by ` to be MC (∃x ∈X) (∃y∈Y) (∃z∈Z)ψ`
, and referred to as ∆[`]. It is de�ned on a tripartite

graph on vertex sets (X ,Y ,Z), whose edge sets are EXY ,EYZ ,EXZ de�ned on (X ,Y), (Y ,Z), (X ,Z)
respectively. �e graph is undirected, i.e., EXY ,EYZ and EXZ are symmetric relations. For simplicity

we de�ne an edge predicate E so that E (v1,v2) is true i� there is an edge in any of EXY ,EYZ ,EXZ
connecting (v1,v2) or (v2,v1). Besides, we use deдY (x) to denote the number of x ’s neighbors in Y .

�e ψ` for all Atomic Problems are de�ned in Table 1. For problem MCφ where φ = (∃x ∈
X) (∃y ∈ Y) (∃z ∈ Z)ψ (x ,y, z), we writeψ as a DNF, and split the terms. �en we decide if there

is a term so that there exist x ,y, z satisfying this term. On each term t , which is a conjunction of

predicates and negated predicates, we work on the induced subgraph whose vertices satisfy all

the positive unary predicates and falsify all the negated unary predicates de�ned on them in t .
�en we can remove all unary predicates from the conjunction, which is now a conjunction of

binary predicates or their negations. (If the conjunction is a single predicate or a single negated

predicate, then we can deal with it easily, so we don’t consider this case here.) If we de�ne

E (x ,y) =
∧

R is a positive binary predicate in t R (x ,y) ∧
∧

R is a negative binary predicate in t ¬R (x ,y), and de�ne

E (y, z) and E (x , z) similarly, then t becomes equivalent with some Atomic Problem, or a disjunction

of Atomic Problems (because variables y and z are interchangeable, the Atomic Problems and their

disjunctions cover all possible cases).

In our algorithm for each problem ∆[`], instead of deciding the existence of satisfying x ,y, z, we

consider these problems as counting problems, where for each x we compute

#` (x) = ��{(y, z) | x ,y, z satisfyψ` }��.
Problems ∆[2],∆[1],∆[0] can be computed straightforwardly.

• In ∆[2], #2 (x) = deдY (x) × deдZ (x).
• In ∆[1], #1 (x) = deдY (x) × (|Z | − deдZ (x)).
• In ∆[0], #0 (x) = (|Y | − deдY (x)) × (|Z | − deдZ (x)).

Next we show for labels ` ∈ {2+, 1+, 0+, 2−, 1−, 0−}, problems ∆[`] can be computed in O (m3/2).
Algorithm 1 solves ∆[2+],that is, for each x , counting the number of triangles that contain x .

�e �rst part of the algorithm only considers small degree y. On each iteration of the outer loop,

the inner loop is run for at most

√
m times. �e second part only considers large degree y. Because

there are at most

√
m of them, the outer loop is run for at most

√
m times. �erefore the running

time of the algorithm is O (m3/2).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:31

Algorithm 1 ∆[2+]

1: for all (x ,y) ∈ EXY do . Small degree y
2: if deдZ (y) ≤

√
m then

3: for all z s.t. (y, z) ∈ EYZ do
4: if (x , z) ∈ EXZ then
5: #2+ (x) ← #2+ (x) + 1

6: end if
7: end for
8: end if
9: end for

10: for all y ∈ Y s.t. deдZ (y) >
√
m do . Large degree y

11: for all (x , z) ∈ EXZ do
12: if (x ,y) ∈ EXY and (y, z) ∈ EYZ then
13: #2+ (x) ← #2+ (x) + 1

14: end if
15: end for
16: end for
17: if #2+ (x) > 0 for some x ∈ X then Accept

18: else Reject

19: end if

Algorithm 2 solves ∆[1+], which for each x counts (x − y − z) paths where there is no edge

between x and z. �e �rst part is similar as ∆[2+]. �e second part �rst over-counts (x − y − z)
paths for all large degree y without restricting the edge between x and z, and then counts the

number of over-counted cases in order to exclude them from the �nal result. In the �rst block, the

inner loop is run for at most

√
m times for each edge in EXY . �e second block takes time O (m).

�e outer loop of the third block is run for at most

√
m times, because there are at most

√
m sets

with degree at least

√
m. So in all, the running time is O (m3/2).

For ∆[0+], we �rst compute #2+ (x) which is the result of ∆[2+], and then compute #1+ (x) and

#
′
1+ (x), which are results of ∆[1+] on vertex sets (X ,Y ,Z) and (X ,Z ,Y) respectively. Finally let

#0+ (x) ← |EYZ | − (#2+ (x) + #1+ (x) + #
′
1+ (x)).

#2− (x), #1− (x), #0− (x) can be computed by respectively taking the di�erences of #2 (x), #1 (x), #0 (x)
and #2+ (x), #1+ (x), #0+ (x).

9.2.2 Problems inMC (∀∃∃) andMC (∃∀∀). For problems in MC (∃∀∀), we decide its negation,

which is a MC (∀∃∃) problem.

For problem MCφ where φ = (∀x ∈ X) (∃y ∈ Y) (∃z ∈ Z)ψ (x ,y, z), we use the same algorithm to

compute #` (x) for all x ∈ X . If the value of #` (x) is greater than zero for all x ∈ X , then we accept,

otherwise reject. Again, we writeψ as a DNF, and split the terms. By the same argument as the

previous lemma, we transform the problem to a disjunction of Atomic Problems. If for all x ∈ X , at

least in one of the Atomic Problem, #` (x) is greater than zero, then we accept, otherwise reject.

9.2.3 Structures with higher arity relations. �e above algorithms can be extended to structures

with relations of arity greater than two. First, we write the quanti�er-free partψ in DNF and split

each term to a separate ∃∃∃ problem (or ∀∃∃ respectively). �en for each term ψt , we decide

if there exist x1,x2,x3 satisfying it. Let ψt1 be the part of the conjunction containing all ternary

predicates inψt , andψt2 be the rest of termψt . �usψt = ψt1 ∧ψt2.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:32 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

Algorithm 2 ∆[1+]

1: for all (x ,y) ∈ EXY do . Small degree y
2: if deдZ (y) ≤

√
m then

3: for all z s.t. (y, z) ∈ EYZ do
4: if (x , z) < EXZ then
5: #1+ (x) ← #1+ (x) + 1

6: end if
7: end for
8: end if
9: end for

10: for all (x ,y) ∈ EXY do . Large degree y
11: if deдZ (y) ≥

√
m then . Over-counting

12: #1+ (x) = #1+ (x) + deдZ (y)
13: end if
14: end for
15: for all y ∈ Y s.t. deдZ (y) >

√
m do

16: for all (x , z) ∈ EXZ do
17: if (x ,y) ∈ EXY and (y, z) ∈ EYZ then
18: #1+ (x) ← #1+ (x) − 1

19: . if we just over-counted the pair (y, z),then we exclude the pair by subtracting one.

20: end if
21: end for
22: end for
23: if #1+ (x) > 0 for some x ∈ X then Accept

24: else Reject

25: end if

If inψt , some ternary predicate occurs positively, we can just count #(x1) on the subgraph where

ψt1 is true.

If all ternary predicates inψt occur negatively, then we �rst count #(x1) satisfying formulaψt2,

and then we count #
′(x1) on the subgraph whereψt1 is true. Finally, we subtract #

′(x1) from #(x1)
for each x1.

Ifψt has no ternary relations, we just count #(x1) using the algorithm for graphs.

10 IMPROVED ALGORITHMS
In this section we present an algorithm solving Sparse OV in time m2/2Θ(

√
logm)

. It is based on the

papers [3, 16], which solves dense OV for vectors of dimension d in time n2−Ω(1/ log(d/ logn))
.

Consider the universe-shrinking self-reduction for Sparse OV (Set Disjointness) in Section 6. We

show that for s (m) = 2
Θ(
√

logm)
, by the above theorem, this reduction gives an algorithm in time

m2/2Θ(
√

logm)
. We deal with large sets and small sets separately. For sets of size at least s (m), we

check if each of them is disjoint with some other set. From the argument for large sets, this is in

timem2/s (m). �en, for sets of size less than s (m), we use the universe-shrinking self-reduction

to reduce this instance to a Sparse OV instance on universe of size s (m)
5

6k (in which case k = 2).

Using the algorithm from [3, 16], we can solve it in time n2−Θ(1/ log(s (m)
5

6k)) ≤ m2−Θ(1/ log(s (m)) ≤

m2/2Θ(logm/ log s (m)) =m2/2Θ(
√

logm)
. So the total running time is bounded bym2/2Θ(

√
logm)

.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:33

By the above argument and �eorem 1.2, since all the Basic Problems are solvable in time

m2/2Θ(
√

logm)
, so is any other problem in MC (∃∃∀). �e reduction from MC (∀∃∀) to MC (∃∃∀)

in Section 8 gives 2
Θ(
√

logm)
savings for MC (∀∃∀) problems. Reducing to three-quanti�er case by

brute-forcing over the �rst k − 2 variables we get �eorem 1.4, that states all MC (k + 1) problems

can be solved inmk/2Θ(
√

logm)
time.

11 OPEN PROBLEMS
An obvious open problem is whether a similar kind of equivalence exists for the dense case of OV.

Is it ”�ne-grained equivalent” to some natural complexity class?

Our results raise the possibility that many other classes have complete problems under �ne-

grained reducibility, and that this will be a general method for establishing the plausibility of

conjectures on the �ne-grained complexity of problems. �ere is a number of candidates for such

classes. We could drop the restriction that the formula has k quanti�ers in all, and look at formulas

with quanti�er depth k9
. We could also stratify the �rst-order formulas by variable complexity,

the number of distinct variable names in a formula, rather than number of quanti�ers. (Variable

complexity arises naturally in database theory, because the variable complexity determines the

arity of some relation in any way of expressing the query as a sequence of sub-queries.) First-order

logic is rather limited, so we could look at augmentations that increase its reach, such as allowing a

total ordering on elements, or allowing the logic to take transitive closures of relations (e.g., to talk

about the reachability relation in a sparse directed graph), or more generally, introduce monotone

�xed point operations. Alternatively, rather than varying the types of formulas we could restrict

the types of structures, for example considering structures of bounded treewidth.

It would be interesting to �nd more reductions between and equivalences among the problems

that are proven hard under some conjecture. For example, Edit Distance, Fréchet Distance, and

Longest Common Subsequence are all almost quadratically hard assuming SETH. Are there any re-

ductions between these problems? Are they all equivalent as far as having subquadratic algorithms?

All of these problems have similar dynamic programming formulations. Can we formalize a class of

problems with such dynamic programming algorithms and �nd complete problems for this class?

More generally, we would like taxonomies of the problems within P that would classify more of the

problems that have conjectured hardness, or have provable hardness based on conjectures about

other problems. Such a taxonomy might have to be based on the structure of the conjectured best

algorithms for the problems rather than on resource limitations.

ACKNOWLEDGMENTS
First of all, we thank Virginia Vassilevska Williams for her inspiring ideas. We would like to thank

Marco Carmosino, Anant Dhayal, Ivan Mihajlin and Victor Vianu for proofreading and suggestions

on this paper. We also thank Valentine Kabanets, Ramamohan Paturi, Ramyaa Ramyaa and Stefan

Schneider for many useful discussions. Finally, we really appreciate the suggestions from the

referees about the writing and expression.

REFERENCES
[1] A. Abboud, A. Backurs, and V. V. Williams. �adratic-time hardness of LCS and other sequence similarity measures.

CoRR, abs/1501.07053, 2015.

[2] A. Abboud, T. D. Hansen, V. V. Williams, and R. Williams. Simulating branching programs with edit distance and

friends: Or: A polylog shaved is a lower bound made. In Proc. STOC, pages 375–388. ACM, 2016.

9
For example, ∃(x) (∃y (∃zψ1 (x, y, z) ∧ ∀zψ2 (x, y, z)) ∧ ∀y (∃zψ3 (x, y, z) ∨ ∀zψ4 (x, y, z))) has quanti�er depth 3.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:34 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams

[3] A. Abboud, R. Williams, and H. Yu. More applications of the polynomial method to algorithm design. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 218–230. SIAM, 2015.

[4] A. Abboud, V. V. Williams, and J. Wang. Approximation and �xed parameter subquadratic algorithms for radius and

diameter in sparse graphs. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms,
pages 377–391. SIAM, 2016.

[5] A. Abboud, V. V. Williams, and O. Weimann. Consequences of faster alignment of sequences. In Automata, Languages,
and Programming, pages 39–51. Springer, 2014.

[6] M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic constant depth circuits. In Foundations of
Computer Science, 1985., 26th Annual Symposium on, pages 11–19. IEEE, 1985.

[7] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM (JACM), 42(4):844–856, 1995.

[8] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless EXPTIME has

publishable proofs. Computational Complexity, 3:307–318, 1993.

[9] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In

Proceedings of the Forty-Seventh Annual ACM on Symposium on �eory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 51–58, 2015.

[10] D. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1
. J. Comput. Syst. Sci., 41(3):274 – 306,

1990.

[11] M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity of some quadratic-time solvable problems.

Electr. Notes �eor. Comput. Sci., 322:51–67, 2016.

[12] K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless seth

fails. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 661–670. IEEE, 2014.

[13] K. Bringmann and M. Kunnemann. �adratic conditional lower bounds for string problems and dynamic time warping.

In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 79–97. IEEE, 2015.

[14] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Nondeterministic extensions of the

strong exponential time hypothesis and consequences for non-reducibility. In Proceedings of the 2016 ACM Conference
on Innovations in �eoretical Computer Science, pages 261–270. ACM, 2016.

[15] M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. Learning algorithms from natural proofs. In 31st
Conference on Computational Complexity, 2016.

[16] T. M. Chan and R. Williams. Deterministic APSP, Orthogonal Vectors, and More: �ickly derandomizing Razborov-

Smolensky. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1246–1255. SIAM, 2016.

[17] M. Charikar, P. Indyk, and R. Panigrahy. New algorithms for subset query, partial match, orthogonal range searching,

and related problems. In Automata, Languages and Programming, pages 451–462. Springer, 2002.

[18] R. G. Downey and M. R. Fellows. Fixed-parameter intractability. In Structure in Complexity �eory Conference, 1992.,
Proceedings of the Seventh Annual, pages 36–49. IEEE, 1992.

[19] J. Flum and M. Grohe. Parameterized complexity theory, volume xiv of texts in theoretical computer science. an eatcs

series, 2006.

[20] L. R. Ford Jr. Network �ow theory. Technical report, DTIC Document, 1956.

[21] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Exponential versus probabilistic time.

Journal of Computer and System Sciences, 65(69):672–694, 2002.

[22] R. Impagliazzo and R. Paturi. Complexity of k -SAT. In Computational Complexity, 1999. Proceedings. Fourteenth Annual
IEEE Conference on, pages 237–240. IEEE, 1999.

[23] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? In Foundations of
Computer Science, 1998. Proceedings. 39th Annual Symposium on, pages 653–662. IEEE, 1998.

[24] D. S. Johnson and M. Szegedy. What are the least tractable instances of max independent set? In Proceedings of
the tenth annual ACM-SIAM symposium on Discrete algorithms, pages 927–928. Society for Industrial and Applied

Mathematics, 1999.

[25] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds.

Computational Complexity, 13(1��2):1–46, 2004.

[26] N. Linial, Y. Mansour, and N. Nisan. Constant Depth Circuits, Fourier Transform, and Learnability. J. ACM, 40(3):607–

620, 1993.

[27] D. Moeller, R. Paturi, and S. Schneider. Subquadratic algorithms for succinct stable matching. In International Computer
Science Symposium in Russia, pages 294–308. Springer, 2016.

[28] N. Nisan and A. Wigderson. Hardness vs. Randomness. Journal of Computer and System Sciences, 49:149–167, 1994.

[29] R. E. Stearns and H. B. Hunt III. Power indices and easier hard problems. Mathematical Systems �eory, 23(1):209–225,

1990.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Completeness for FO properties on sparse structures 1:35

[30] M. Y. Vardi. �e complexity of relational query languages. In Proceedings of the fourteenth annual ACM symposium on
�eory of computing, pages 137–146. ACM, 1982.

[31] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. �eoretical Computer Science,
348(2):357–365, 2005.

[32] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM Journal on Computing,

42(3):1218–1244, 2013.

[33] R. Williams. Faster decision of �rst-order graph properties. In Proceedings of the Joint Meeting of the Twenty-�ird
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), page 80. ACM, 2014.

[34] R. Williams. Nonuniform ACC Circuit Lower Bounds. J. ACM, 61(1):2:1–2:32, 2014.

[35] V. V. Williams. CS267 lecture 1, algorithms for �xed subgraph isomorphism. h�p://theory.stanford.edu/∼virgi/cs267/

lecture1.pdf, 2016.

[36] V. V. Williams and R. Williams. Subcubic equivalences between path, matrix and triangle problems. In Foundations of
Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

[37] A. C. Yao. �eory and applications of trapdoor functions. In Foundations of Computer Science (FOCS), pages 80–91,

1982.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://theory.stanford.edu/~virgi/cs267/lecture1.pdf
http://theory.stanford.edu/~virgi/cs267/lecture1.pdf

