
Amortized Dynamic Cell-Probe Lower Bounds from Four-Party
Communication

Omri Weinstein∗ Huacheng Yu†

Abstract

This paper develops a new technique for proving amortized, randomized cell-probe lower bounds on
dynamic data structure problems. We introduce a new randomized nondeterministic four-party commu-
nication model that enables “accelerated”, error-preserving simulations of dynamic data structures.

We use this technique to prove an Ω(n (log n/ log log n)
2
) cell-probe lower bound for the dynamic

2D weighted orthogonal range counting problem (2D-ORC) with n/poly log n updates and n queries,
that holds even for data structures with exp(−Ω̃(n)) success probability. This result not only proves the
highest amortized lower bound to date, but is also tight in the strongest possible sense, as a matching
upper bound can be obtained by a deterministic data structure with worst-case operational time. This is
the first demonstration of a “sharp threshold” phenomenon for dynamic data structures.

Our broader motivation is that cell-probe lower bounds for exponentially small success facilitate re-
ductions from dynamic to static data structures. As a proof-of-concept, we show that a slightly strength-
ened version of our lower bound would imply an Ω((log n/ log log n)2) lower bound for the static
3D-ORC problem with O(n logO(1) n) space. Such result would give a near quadratic improvement
over the highest known static cell-probe lower bound, and break the long standing Ω(log n) barrier for
static data structures.

∗Department of Computer Science, New York University. Supported by a Simons Society Junior Fellowship.
†Department of Computer Science, Stanford University. Supported by NSF CCF-1212372.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 54 (2016)

1 Introduction

Understanding the limitations of data structures in the cell-probe model [Yao81] is one of the holy grails of
theoretical computer science, primarily since this model imposes very weak implementation constraints and
hence captures essentially any imaginable data structure. Unfortunately, this abstraction makes it notoriously
difficult to obtain lower bounds on the operational time of data structures, in spite of nearly four decades
of active research. For dynamic data structures, where a sequence of n database operations (interleaved
updates and queries) is to be correctly maintained, the highest amortized cell-probe lower bound to date is
Ω(log n) per operation, i.e., Ω(n log n) for a sequence of Θ(n) operations (Pǎtraşcu and Demaine [PD06]1).
The breakthrough work of Larsen [Lar12] brought a near-quadratic improvement for worst-case number
of probes per operation. Larsen gave an Ω((log n/ log log n)2) query time lower bound for the dynamic
weighted orthogonal range counting problem in two-dimensional space (2D-ORC), which holds for any data
structure with at most polylogarithmic update time. In this fundamental problem, the data structure needs to
maintain a set of weighted points in the two-dimensional plane, and support the following operations:

• update(r, c, w): insert a point at (r, c) with weight w,

• query(r, c): the sum of weights of points dominated by (r, c),2

where r, c, w ∈ [n].3 Larsen’s aforementioned bound is tight when O(log2+ε n) update time is allowed,
as there is a deterministic data structure that solves the problem using O(δ log2 n) probes per update and
O((logδ n)2) probes per query in the worst-case for any δ > 1. However, it is often the case that amortization
can reduce the average cell-probe complexity (a notable example is the Union Find problem [Tar75, Blu85]),
especially when randomization is permitted and the data structure is allowed to err with constant probability
per query.

Indeed, one particular shortcoming of all known dynamic data structure lower bounds is that they are
not robust to error: All previous lower bounds only apply to deterministic, Las-Vegas or at most constant-
error randomized data structures (e.g., [FS89, PD06, PT11, Yu15]). A more robust question, which we
motivate below, is to study the rate of decay of success probability in answering all (or most) of the queries,
as a function of the allocated resources (in our context, the total number of probes). The distinction above
is similar in spirit to the difference between “direct sum” theorems in complexity theory (e.g., [FKNN95,
KKN95, PT06, BBCR10]) which assert a lower bound on the number of resources required for solving
multiple instances of a given problem with constant overall success, and “direct product” theorems such as
the celebrated parallel repetition theorem [Raz98] and Yao’s XOR lemma [Yao82], which further asserts an
exponential decay in the success probability if insufficient resources are provided. Beyond unravelling the
nature of “parallel computation”, one of the primary motivations of direct product theorems is black-box
hardness amplification (see e.g., [DS14] and references therein). In the context of the cell-probe model, we
argue that such theorems open a new path for proving both dynamic and static data structure lower bounds,
via reductions (more on this below).

Despite the long history of direct product theorems in complexity theory (see e.g. [JPY12] and refer-
ences therein), we are not aware of any such result in the cell-probe model.4 Indeed, a crucial assumption

1Notably, this bound holds only for high-probability data structures which succeed on solving all queries with probability
1− n−Ω(1).

2A point (r′, c′) is dominated by (r, c) if r′ ≤ r and c′ ≤ c.
3[n] stands for the set of integers {1, 2, . . . , n}.
4It is noteworthy that, unlike direct product theorems in other computational models such as two-prover games [Raz98], circuit

complexity [Yao82] and interactive models and proof systems [JPY12, BRWY13], the dynamic cell-probe model is closer to the
setting of sequential repetition, since the model is online: The data structure needs to provide answers to one query before it
receives the next. This feature potentially makes the problem harder than “parallel repetition” (where all problem instances appear
in a “batch”).

1

which direct sum and product theorems rely on is the premise that all copies of the problem are independent
of each other. Alas, in the dynamic data structure model, all q queries Q1, Q2, . . . , Qq are essentially with
respect to the same (or slightly modified) database X! Due to this (asymmetric) correlation, one should
not expect generic (“black-box”) direct product theorems for arbitrary dynamic data structure problems,
and such a surprising result may only be true due to the specific structure of the underlying problem. The
main result of this paper asserts that the 2D-ORC problem exhibits such interesting structure, leading to the
following strong amortized lower bound:

Theorem 1 (Amortized Lower Bound for 2D-ORC). For any integer n, 1 ≤ c < o(log n/ log logn), and
any (randomized) data structure D in the cell-probe model with word-size Θ(log n), there is a sequence of
n/ logc n updates and n − n/ logc n queries for the 2D-ORC problem, for which the probability (over the
randomness of D) that

• D probes o(n (log n/c log logn)2) cells in total, and

• D is correct on all n− n/ logc n queries

is at most 2−n/ logc+O(1) n.

Theorem 1 not only provides a near quadratic improvement over the previous highest amortized cell-
probe lower bound, but it is also tight in the strongest possible sense, as it exhibits a “sharp threshold”
phenomenon for 2D-ORC: while O(n (log n/c log log n)2) probes are sufficient to solve the problem deter-
ministically, Theorem 1 asserts that any dynamic data structure that spends�n (log n/c log logn)2 probes
will have success probability which is hardly any better than the trivial success probability of randomly
guessing the answers to all queries! To best of our knowledge, this is the first result of its kind in the
cell-probe model.

We note that it is possible to modify our proof of Theorem 1 so that the lower bound holds even if
the second condition is relaxed to “D is correct on 99% of the n − n/ logc n queries”. In many realistic
dynamic scenarios, where the data structure is executed as a sub-procedure that supports a long sequence of
(possibly multi-user) applications (e.g., routing, navigation and other network computations), this relaxed
error criteria is more suitable and much less restrictive than requiring the data structure to succeed on all
queries with an overall probability of 99%. Nevertheless, this “Chernoff-type” variant of Theorem 1 rules
out efficient dynamic data structures for 2D-ORC even under this substantially more modest and realistic
requirement.

The broader agenda we suggest and promote in this paper is that proving dynamic cell-probe lower
bounds for data structures with exponentially small success probability facilitates reductions from dynamic
to static data structure problems. The general outline of such reduction is as follows: suppose we can
show that any (randomized) dynamic data structure for a problem P that has at least exp(−u) success
probability in answering a sequence of queries with u updates, must probe at least t cells. We would like to
argue that a static data structure D with a too-good query time for some static problem related to P , must
use a lot of space. Indeed, D can be used to solve the dynamic problem P with > exp(−u) probability,
simply by guessing all u updates, preprocessing them and storing in the memory in advance, which in turn
would imply that D must use a at least Ω(t) memory cells. Since in the dynamic problem P , updates and
queries are interleaved, answering the ith query Qi requires knowing precisely those updates preceding Qi
in the sequence. This means that D must guess (and store) not only the updates themselves, but also the
time (i.e., order) at which they occurred. One way to incorporate this extra information is to add an extra
“time coordinate” to each query and update of the problem P , which results in a slightly augmented (static)
problem P+. In general, P+ might not correspond to any natural data structure problem, however, when
P = 2D-ORC, this extra “time coordinate” can be embedded as a third dimension of the (weighted, two-
dimensional) points, in which case the augmented static problem P+ corresponds to nothing else but the

2

three-dimensional weighted orthogonal range counting problem (3D-ORC). As a proof-of-concept of the
approach above, we show that if the bound in Theorem 1 can be slightly strengthened so that it holds for even
smaller success probability (by a polylogarithmic factor in the exponent), then the following breakthrough
result would follow for static 3D-ORC:

Proposition 1 (From dynamic 2D-ORC to static 3D-ORC). Suppose the probability in Theorem 1 can be
further reduced to n−3n/ logc n = 2−3n/ logc−1 n. Then any (zero-error) static data structure for 3D-ORC
that uses n logO(1) n space, requires Ω

(
(log n/ log log n)2

)
query time.

In contrast, the best static lower bound to date for orthogonal range counting (in any dimension) is only
Ω(log n/ log logn), even for linear-space data structures. In fact, no ω(logm) lower bound is known for any
static data structure problem, wherem is the range of the queries (e.g.,m = n2 for 2D-ORC andm = n3 for
3D-ORC). So while the slightly stronger premise of Proposition 1 appears to be non-trivial to prove (see the
discussion in Appendix A.1), if this approach can be realized, it would yield a near-quadratic improvement
in static cell-probe lower bounds. The formal proof of Proposition 1 can be found in Appendix A.

We remark that the aforementioned reduction is merely an example, while other reductions (e.g., be-
tween different dynamic problems) may be possible via similar outline. More generally, if one can show
that, conditioned on some (low probability) eventW , a solution to problemA produces a solution to problem
B, then ruling out efficient data structures for problem B with ≈ p(W) success, would yield a cell-probe
lower bound for A as well.

In the remaining subsections of this introduction, we provide a brief outline of the new techniques we
develop en-route to proving Theorem 1, and how they overcome limitations of previous techniques used in
the dynamic cell-probe model.

1.1 Related work and previous techniques

Several techniques have been developed along the years for proving lower bounds on the cell-probe com-
plexity of dynamic data structure problems. This line of work was aimed not just at proving lower bounds
for a broader class of problems, but also at facilitating higher lower bounds for stronger and more realistic
data structures (e.g., randomized, amortized). In most problems and applications, it is natural to assume that
the description of an operation can fit in O(1) words, and the most natural assumption on the word-size of
the cell-probe model is w = Θ(log n). In this regime, Fredman and Saks [FS89] first introduced the chrono-
gram method, and used it to prove an Ω(log n/ log logn) lower bound for the 0-1 partial sum problem. This
lower bound stood as a record for 15 years, until Pǎtraşcu and Demaine [PD04] introduced the information
transfer tree technique which led to a tight Ω(log n) lower bound for general partial sum, improving the
highest lower bound by a factor of log log n. About a decade later, Larsen [Lar12] showed how to combine
the chronogram method with the cell-sampling technique (which was used for proving static data structure
lower bounds [PTW10]), and proved an Ω((log n/ log logn)2) worst-case lower bound for 2D-ORC. In the
natural regime, this is also the highest lower bound proved for any explicit problem hitherto. In the remain-
der of this subsection, we outline Larsen’s approach and the challenges in extending his techniques to the
type of dynamic lower bounds we seek.

We remark that other lower bounds have been proved for the regime where w = ω(log n). In particular,
Pǎtraşcu [Pat07] proved a matching Ω((log n/ log logn)2) lower bound for the 2D-ORC problem, but only
when both the weights of points and word-size are log2+ε n bits long (we elaborate on the connection
between this result and our techniques in Section 1.2).

Larsen’s approach. To prove the aforementioned Ω((log n/ log log n)2) lower bound for 2D-ORC, one
considers a sequence of n random updates. The idea is to show that after these n updates have been
performed, a random query must probe many cells. More specifically, the n updates are partitioned into

3

Θ(log n/ log logn) epochs: . . . ,Ui, . . . ,U2,U1, where the i-th epoch Ui consists of βi updates for β =
poly log n. The goal is to show that in expectation, a random query must read Ω(log n/ log log n) memory
cells that are written during epoch i, but never overwritten later. Let us restrict the attention to epoch i and
assume that all updates in other epochs are fixed arbitrarily (i.e., only Ui is random). Let Si denote the set
of cells whose last update occurred in epoch i. Indeed, any cell that is written before epoch i cannot contain
any information about Ui, while the construction guarantees that there are few cells written after epoch i,
due to the exponential decay in the lengths of epochs. Thus, one concludes that “most” of the information
the data structure learns about Ui comes from cell-probes to Si. Then the basic idea is to sample a subset
Ci ⊆ Si of a fixed size. Then for each query, the fewer cells in Si the data structure probes when answering
it, the more likely that all of them will belong to the random subset Ci. Thus, if a random query probes too
few cells in Si (in expectation), there will be too many queries that can be answered without probing any
cell in Si \ Ci. One then argues that the answers to these queries reveal too much information about Ui,
even more than they should: all cells in Ci can contain at most |Ci| · w bits of information. This yields a
lower bound on the number of cells a random query must probe in Si, and implies a query time lower bound.

The above approach relies on the fact that update time has a worst-case upper bound. Indeed, the
statement that “very few cells are probed after Ui” may no longer hold when we only have an amortized
guarantee on the update time, because the data structure could spend a long time on epoch U1 (say). In
fact, if we allow amortization for updates, the above sequence of operations is no longer hard, since the
data structure can simply record each update until the last one, and then spend O(n log n) time to construct
a static 2D-ORC data structure that operates in O(log n) query time. Over the n updates, it only spends
O(log n) time per update “on average”. Obviously, this is not a good dynamic data structure in general,
because it is not even in a ready-to-query state until the very end.

To prove an amortized lower bound, it is therefore necessary to interleave queries and updates as
in [PD04, PD06, PT11, Yu15]. We observe that a variation of Larsen’s approach can be adapted to prove a
zero-error-data-structure version of Lemma 10. Combining this version of the lemma with our proof of The-
orem 1 would yield an alternate proof of our amortized lower bound for zero-error data structures. However,
it seems highly non-trivial to generalize this proof so that it applies to data structures with exponentially
small success probability. Roughly speaking, on the one hand, the cell-sampling technique appears to be in-
applicable for simultaneous analysis of multiple queries as it only applies to a fixed memory state, whereas
in our setup different queries are performed on different memory states. On the other hand, the “direct
product” lower bound we seek requires analyzing the conditional success probability (and performance) of
a given query, conditioned on success in previous queries. Conditioning on this event may leak a lot of
information about previous updates, making the proof much more subtle and hard to analyze (note that this
was not an issue for zero-error data structures!).

1.1.1 Communication-based techniques for dynamic lower bounds

One of the successful approaches for proving dynamic data structure lower bounds relies on reductions
from the communication complexity model, where the general idea is to partition the operation sequence
between Alice and Bob and the communication task is to answer all queries in Bob’s operation interval. To
prove a (meaningful) lower bound on the number of probes required by any data structure operating over
the operation sequence, one needs to show that Alice and Bob can efficiently simulate any data structure for
the dynamic problem, so that a data structure with too few probes induces a too-good-to-be-true protocol
for the communication game (the problem then boils down to proving a communication lower bound for the
communication problem, which is often easier to analyze). For the simulation to be fast, Bob needs to be
able to efficiently obtain the (memory contents of) “relevant” cells probed in his interval that were updated
during Alice’s operation interval.

4

Indeed, the choice of the communication model is crucial for the simulation argument: If the com-
munication model is too weak, the simulation would be “too slow” for proving a strong (or even mean-
ingful) cell-probe lower bound; On the other hand, if the communication model is too strong, proving a
high lower bound on the amount of communication may be extremely difficult or even impossible (as we
elaborate below). Pǎtraşcu [Pat07] used the standard two-party randomized communication model to prove
an Ω((log n/ log logn)2) cell-probe lower bound on 2D-ORC, but only for (somewhat unnatural) weight-
size and word-size w = Θ(log2+ε n). This caveat stems from his simulation being “too slow”: Pǎtraşcu’s
simulation argument requires Alice to send a very long message (a Bloom Filter of length ≈ log2 n bits
per operation) in order for Bob to figure out the aforementioned set of “relevant” cells, hence for the sim-
ulation to produce a non-trivial communication lower bound, Alice’s input had better dominate the latter
communication step, which is precisely why points are chosen to have (log2+ε n)-bit weights.

Pǎtraşcu and Thorup [PT11] somewhat remedied this by introducing simulation in the two-party non-
deterministic communication model, in which a know-all “prover” (Merlin) can help the players reduce
their communication by providing some (untrusted) advice which requires verification. While this tech-
nique can be used to speed up the simulation process (leading to new dynamic lower bound for several data
structure problems), it turns out to be still too slow for the type of lower bounds we seek (in particular for
range-counting problems). But even more importantly, the nondeterministic reduction of [PT11] does not
readily extend beyond zero-error (Las-Vegas) data structures. Indeed, when the data structure and hence the
simulating protocol are allowed to err, the simulation above naturally leads to randomized nondeterministic
communication models such as MAcc ∩ coMAcc. Proving strong lower bounds on such powerful models
is a notoriously hard open problem (see e.g., [Kla11]), and in our case may even be impossible (indeed,
the 2D-ORC problem is related to computation of inner-products over finite fields, which in turn admits a
surprisingly efficient (Õ(

√
n) bit) MA-protocol [AW08]).

1.2 Our techniques and the 4ANC communication model

We introduce a new randomized nondeterministic communication model (which we hence term 4ANC)
that solves both problems above, namely, it enables faster (error-preserving5) simulations of randomized
data structures, yet in some aspect is much weaker than MAcc, and hence amenable to substantial lower
bounds. To enable a faster simulation (than [PT11, Yu15]), our model includes two provers (hence four
parties in total) who are communicating only with Bob: The first prover (Merlin) is trusted but has limited
“communication budget”, while the second prover (Megan) is untrusted, yet has unlimited “communication
budget”. More precisely, the model requires Alice and Bob’s computation to be correct only when Merlin
is “honest”, but charges for each bit sent by Merlin (hence the model is only meaningful for computing
two-party functions with large range, as Merlin can always send the final answer and the players would be
done). In contrast, the model doesn’t charge for Megan’s message length, but requires Bob to verify that her
message is correct (with probability 1!). Intuitively, the model allows Bob to receive some short “seed” of
his choice (sent by Merlin), in such way that this “seed” can be used to extract much more information (a
longer message sent by Megan) in a verifiable (i.e., consistent) way.

We show that this model can indeed help the players “speed up” their simulation: Merlin can send a
succinct message (the “seed”, which in the data structure simulation would correspond to some “succinct
encoding” of memory addresses of the relevant (intersecting) cells probed by the data structure in both Alice
and Bob’s operation intervals), after which Megan can afford to send a significantly longer message (which
is supposed to be the actual memory addresses of the aforementioned cells). Alice can then send Bob all the
relevant content of these cells (using communication proportional to the number of “relevant” cells probed
by the data structure (times w)). If both Merlin and Megan are honest, Bob has all the necessary information

5When seeking lower bound for data structures with tiny (exponentially small) success, such reductions must not introduce any
(non-negligible) error, or else the soundness of the reduction is doomed to fail.

5

to answer his queries. Otherwise, if Megan is cheating (by sending inconsistent addresses with Merlin’s
seed), we argue that Bob can detect this during his simulation given all the information he received from
Merlin and Alice, yielding a fast and admissible 4ANC protocol.

For our setting of the parameters, this simulation saves a poly log(n) factor of communication for Alice,
and ≈ log n factor of communication for Bob, compared to the standard nondeterministic simulations of
[PT11, Yu15]. We stress that this speed-up is essential to prove the cell-probe lower bound we seek on
2D-ORC, and is most likely to be important in future applications.

To solve the second problem, namely, to limit the power of the model (so that it is amenable to substantial
lower bounds), we impose two important constraints on the non-deterministic advice of Merlin and Megan:
Firstly, the provers can only talk to Bob, hence the model is asymmetric ; Secondly and most importantly, we
require that the provers’ advice are unambiguous, i.e., Merlin’s (honest) message is uniquely determined by
some pre-specified function of the player’s inputs, and similarly, for each message sent by Merlin (whether
he tells the truth or not), Megan’s (honest) message is uniquely specified by the players’ inputs and Merlin’s
message. These restrictions are tailored for data structure simulations, since for any (deterministic) data
structure D, the aforementioned set of “relevant” memory cells probed by D is indeed a deterministic
function of the operation sequence.

We show that these two features imply a generic structural fact about 4ANC protocols, namely, that
low-communication protocols with any nontrivial success probability in this model induce large biased (i.e.,
“semi-monochromatic”) rectangles in the underlying communication matrix (see Lemma 2). Intuitively,
this follows from the uniqueness property of the model, which in turn implies that for any fixed messages
sent by Merlin, the resulting protocol induces a partition of the input matrix into disjoint biased rectangles.
In contrast, we remark that rectangles induced by MAcc protocols may overlap (as there may be multiple
transcripts that correspond to the same input (x, y)), which is part of why proving strong lower bounds on
MAcc is so difficult.

Therefore, ruling out efficient randomized communication protocols (and hence a too-good-to-be-true
data structure) for a given communication problem boils down to ruling out large biased rectangles of the
corresponding communication matrix. Since we wish to prove a lower bound for protocols with tiny (ex-
ponentially small) success for 2D-ORC, we must rule out rectangles with exponentially small “bias”. This
“direct-product” type result for 2D-ORC in the 4ANC model (Lemma 5) is one of the main steps of the proof
of Theorem 1.

1.3 Organization

We begin by formally defining the 4ANC model in Section 3. We then prove that 4ANC protocols can effi-
ciently simulate dynamic data structures (Section 3.1), and on the other hand, that efficient 4ANC protocols
induce large biased rectangles of the underlying communication matrix (Section 3.2). In Section 4 we prove
our main technical lemma which rules out such rectangles (even with exponentially small bias) for 2D-ORC
(Lemma 5), and finally tie the pieces together to conclude the proof of Theorem 1.

2 Preliminaries

2.1 The Cell-Probe Model

A dynamic data structure in the cell-probe model consists of an array of memory cells, each of which can
store w bits. Each memory cell is identified by a w-bit address, so the set of possible addresses is [2w]. It is
natural to assume that each cell has enough space to address (index) all update operations performed on it,
hence we assume that w = Ω(log n) when analyzing a sequence of n operations.

6

Upon an update operation, the data structure can perform read and write operations to its memory so
as to reflect the update, by probing a subset of memory cells. This subset may be an arbitrary function of
the update and the content of the memory cells previously probed during this process. The update time
of a data structure is the number of probes made when processing an update (this complexity measure can
be measured in worst-case or in an amortized sense). Similarly, upon a query operation, the data structure
can perform a sequence of probes to read a subset of the memory cells in order to answer the query. Once
again, this subset may by an arbitrary (adaptive) function of the query and previous cells probed during the
processing of the query. The query time of a data structure is the number of probes made when processing
a query.

2.2 Communication Complexity

In the classical two-party communication complexity model [Yao79], two players (Alice and Bob) receive
inputs x ∈ X and y ∈ Y respectively (possibly from some joint distribution (x, y) ∼ µ), and need to
collaborate to solve some joint function f : X × Y → Z of their inputs. To do so, they engage in an
interactive communication protocol π. In round i, one player (which must be specified by the protocol)
sends the other player a message mi. In a deterministic protocol, mi is a function of the previous transcript
m<i and the input of the player (x if Alice is the speaker in round i and y if Bob is the speaker). In
a (public-coin) randomized protocol, messages may further depend on a public random string r which is
observed by both players (when the protocol or inputs are randomized, we sometimes use Π to denote the
(random variable) corresponding to the transcript of π). The communication cost of π is the (worst-case)
number of bits transmitted in the protocol in any execution of π (over x, y, r).

The distributional communication complexity of f with respect to input distribution µ and success δ is
the minimum communication cost of a (deterministic) protocol which correctly solves f(x, y) with prob-
ability ≥ δ over µ. The randomized communication complexity of f is the minimum communication cost
of a protocol which correctly solves f(x, y) for all inputs x, y, with probability ≥ δ over the public ran-
domness r of the protocol. The two measures are related via Yao’s minimax theorem [Yao77, Yao79]. The
following basic definitions and properties of communication protocols are well known (see [KN97] for a
more thorough exposition).

Definition 1 (Communication matrix). The communication matrix M(f) of a two-party function f : X ×
Y → Z , is the matrix indexed by rows and columns x ∈ X , y ∈ Y , whose entries are M(f)x,y = f(x, y).

Definition 2 (Combinatorial rectangles and monochromatic rectangles). A combinatorial rectangle (or sim-
ply, a rectangle) of M(f) is a subset R = X × Y of inputs, such that X ⊆ X , Y ⊆ Y . A rectangle R is
said to be monochromatic if f ’s value is fixed on all inputs (x, y) ∈ R.

The following weaker definition will be more suitable for measuring error in the asymmetric randomized
4ANC model we define in this paper:

Definition 3 (α-column-monochromatic rectangles). Let µ be a joint distribution over inputs (x, y). A
rectangleR = X×Y ofM(f) is said to be α-column-monochromatic with respect to µ, if for every y ∈ Y ,
at least an α-fraction of the entries in column y of R have the same value in M(f), i.e., there is some
function value vy ∈ Z such that µ((X × {y}) ∩ {f−1(vy)}) ≥ αµ(X × {y}).

A basic fact in communication complexity is that a c-bit communication protocols that computes f(x, y)
in the determinisitc model, induces a partition of M(f) into at most 2c monochromatic rectangles. Each
rectangle corresponds to a transcript of π (i.e., the set of inputs for which this transcript will occur forms a
rectangle). A similar characterization holds in the randomized or distributional models, where rectangles are
“nearly” monochromatic. We will show that protocols in the 4ANC model also induce a similar structure on

7

M(f), in terms of biased column-monochromatic rectangles (see Lemma 2). Hence ruling out large biased
column-monochromatic rectangles in M(f) can be used to prove communication lower bounds on f in the
4ANC model.

3 4ANC: A New Four-Party Nondeterministic Communication Model

We now formally define the 4ANC model, which is a randomized, asymmetric, non-deterministic commu-
nication model involving four players: Alice, Bob, Merlin and Megan. Let µ be a distribution over input
pairs (x, y) ∈ X × Y to Alice and Bob (respectively). A 4ANC protocol P proceeds as follows: In the
first stage, Alice and Bob use shared randomness to sample a public random string r (of infinite length),
which is visible to all four players (Merlin, Megan, Alice and Bob). Merlin and Megan observe (x, y, r),
and can each send, in turn, a message (“advice”) to Bob before the communication proceeds in a stan-
dard fashion between Alice and Bob. As part of the protocol, P specifies, for each input pair and public
string r, a unique message Mmer(x, y, r) that Merlin is supposed to send given that input pair and random
string (Merlin may not be honest, but we will only require the computation to be correct when he sends the
correct message Mmer(x, y, r)). After Merlin sends Bob his message mmer (which may or may not be the
“correct” message Mmer(x, y, r)), it is Megan’s turn to send Bob a message. Once again, P specifies (at
most) one message6 Mmeg(x, y,mmer, r) that Megan is supposed to send to Bob, given x, y, r and Merlin’s
message mmer (as we shall see, the difference between Merlin and Megan’s role is that, unlike the case with
Merlin’s message, the players are responsible to verify that Megan’s message is indeed correct, i.e., that
mmeg = Mmeg(x, y,mmer, r), no matter whether mmer = Mmer(x, y, r) or not!). In the next stage, Alice and
Bob communicate in the standard public-coin communication model, after which Bob decides to “proceed”
or “reject” (this is the verification step of Megan’s message). Finally, if Bob chooses to proceed, he outputs
a value v for f(x, y). These stages are formally described in Figure 1.

Honest Protocol P̃ . Throughout the paper, we denote by P̃ the honest execution of a 4ANC proto-
col P . More formally, we define p̃(x, y, r, τ) to be the joint probability distribution of x, y, r and P ’s
transcript τ , when Merlin and Megan send the honest messages (i.e., when mmer = Mmer(x, y, r) and
mmeg = Mmeg(x, y,mmer, r)). Note that p̃ induces a well defined distribution on transcripts τ , since the
transcript of P is completely determined by (x, y, r) in this case.

Definition 4 (Valid protocols). A 4ANC protocol P is said to be valid if

• Bob proceeds if and only if mmeg = Mmeg(x, y,mmer, r) (with probability 1).

Definition 5 (Computation and notation in the 4ANC model). We say that a 4ANC protocol P δ-solves a
two-party function f : X × Y −→ Z with communication cost (cA, cB, cM) under input distribution µ if
the following conditions hold.

1. (Perfect verification of Megan) P is a valid protocol.

2. (Communication and correctness) With probability at least δ (over the “honest” distribution p̃ and
input distribution µ), the honest protocol P̃ satisfies that Alice sends no more than cA bits, Bob
sends no more than cB bits, Merlin sends no more than cM bits, and Bob outputs the correct value
(v = f(x, y)).

6Instead of unique, Mmeg can be undefined for obviously wrong mmer. But Mmeg(x, y,Mmer(x, y, r), r) is always defined.

8

A 4-party communication protocol P

0. Alice and Bob generate a public random string r, visible to all four players.

1. Merlin sends a message mmer to Bob (mmer is visible to Megan).

2. Megan sends a message mmeg to Bob.

3. Alice and Bob communicate based on their own inputs and mmer and mmeg as if they were in the
classic communication setting with public randomness.

4. Bob decides to proceed or reject.

5. If Bob chooses to proceed, he outputs a value v.

Figure 1: A communication protocol P in the 4ANC model.

For a two-party function f : X × Y −→ Z and parameters cM , cA, cB , we denote by

Sucfµ (cA, cB, cM)

the largest probability δ for which there is a 4ANC protocol that δ-solves f under µ with communication
cost (cA, cB, cM).

Remark. A few remarks about the model are in order :

1. Any function f : X × Y −→ Z admits the following three trivial 4ANC protocols:

• Alice sends Bob x: costs (log |X |, 0, 0).

• Bob sends Alice y: costs (log |Z|, log |Y|, 0).

• Merlin sends f(x, y): costs (0, 0, log |Z|).

2. The players always trust Merlin (since the 4ANC model requires the protocol to be correct only when
he is honest). Nevertheless, Merlin is still allowed to cheat (mmer 6= Mmer). Even in this case, there
is always at most one “correct” message Megan should send. This property will be crucial for the
characterization of 4ANC protocols in terms of monochromatic rectangles (see Subsection 3.2).

3. It is important that Bob is able to verify Megan’s message with probability 1, but could be wrong on
outputting the function value. This corresponds to the requirement that the players need to simulate
the data structure perfectly, while the data structure itself might succeed with very small probability.

4. Megan is only useful when her advice (mmeg) is significantly longer than Merlin’s advice (mmer), as
otherwise Merlin might as well send Megan’s message (and she can remain silent). The benefit here
is that the model doesn’t charge the protocol for Megan’s message length (only for verifying it is
correct), so when Merlin is honest, Megan helps the players “speed up” the protocol.

9

3.1 Data structure simulation in the 4ANC model

In this subsection, we show that it is possible to efficiently simulate any dynamic data structure on any
sequence of operations in the 4ANC model with no additional error. To this end, consider a (deterministic)
data structureD for some problem P , and fix a sequenceO of operations. Let IA and IB be two consecutive
intervals of operations in O such that IA occurs right before IB . Let PD(IA) and PD(IB) be the set of cells
probed by D during IA and IB respectively (when D is clear from context, we shall simply write P (IA)
and P (IB)). Alice is given all operations except for the ones in IB , Bob is given all operations except for
the ones in IA. We now describe an 4ANC protocol that simulates D on O and has the same output as D on
all queries in IB .

The naive approach for this simulation is to let Bob simulate the data structure upto the beginning of IA,
then skip IA and continue the simulation in IB . To collect the “relevant” information on what happened in
IA, each time D probes a cell that has not been probed in IB before, Bob asks Alice whether this cell was
previously probed in IA, and if it was, he asks Alice to send the new content of that cell. Unfortunately,
this approach requires Bob to send |P (IB)| · w bits and Alice to send |P (IB)|+ |P (IA) ∩ P (IB)| · w bits.
However, the players can do much better with Merlin’s and Megan’s help: Merlin reports Bob, upfront,
which cells in P (IB) are probed in IA in some succinct encoding. Given Merlin’s succinct message, Megan
can send Bob the actual memory addresses of these cells, and the players will be able to easily verify these
addresses are consistent with the “seed” sent by Merlin, as the model requires. With this information in
hand, Bob only needs to ask Alice for the contents of relevant cells in his simulation, instead of every cell in
P (IB). Moreover, it allows Bob to send this set of cells in batch, further reducing his message length. We
turn to describe the formal simulation.

Protocol SIMD for Simulating D:

1. (Protocol specification ofMmer.) Merlin simulatesD upto the end of IB , and generates P (IA), P (IB).
He sends Bob the sizes |P (IA)|, |P (IB)| and |P (IA) ∩ P (IB)|.7 Then he writes downs the sequence
of cells probed during IB in the chronological order (if a cell is probed more than once, he keeps only
the first occurrence). Each cell in the sequence is associated with a bit, indicating whether this cell is
also in P (IA). By definition, this sequence has length |P (IB)|, in which |P (IA) ∩ P (IB)| cells are
associated with a “1”. Merlin sends Bob the set of indices in the sequence associated with a “1”. In
total, Merlin sends

O(log |P (IA)|+ log |P (IB)|) + log

(
|P (IB)|

|P (IA) ∩ P (IB)|

)
≤ |P (IA) ∩ P (IB)| · log

e|P (IB)|
|P (IA) ∩ P (IB)|

+O (log n)

bits. Note that Merlin’s message encodes for each i, whether the i-th time (during IB) that D probes
a new cell, it was previously probed during IA.

2. (Protocol specification of Mmeg.) Megan simulates D upto the beginning of IA, saves a copy of the
memoryMA, and continues the simulation upto the beginning of IB , saves a copy of the memoryMB .
Then she continues to simulateD on IB from MA with the advice from Merlin. That is, whenever she
needs to probe a cell that has not been probed in IB before, if this is the i-th time that this happens and
Merlin’s message has i encoded in the set, Megan copies the content of the cell fromMB to the current
memory, writes down the address of the cell and continues the simulation. Basically Megan simulates

7Note that although Bob knows all the operations in IB , he still does not know P (IB), since the operations in IA are unknown
to him, and the data structure can be adaptive.

10

D assuming Merlin’s claim about which cells probed in IB are probed in IA is correct. If there is
anything inconsistent during the simulation, Mmeg is undefined, e.g., |P (IB)| or |P (IA) ∩ P (IB)|
is different from what Merlin claims, or D breaks during the simulation due to the wrong contents
of the memory, etc. As long as Merlin’s message is consistent with Megan’s simulation, she sends
the set of actual memory addresses of cells she has written down during the simulation (i.e., the set
P (IA) ∩ P (IB) from Merlin’s advice) using |P (IA) ∩ P (IB)| · w bits.

3. (Bob asks the contents of P (IA) ∩ P (IB).) Denote the set of addresses received from Megan by S.
If |S| 6= |P (IA) ∩ P (IB)|, Bob rejects. Alice and Bob use public randomness to sample a random
(hash) function h : [2w]→ [|P (IA)|]. Bob sends Alice the set of hash-values h(S) using

log

(
|P (IA)|

|P (IA) ∩ P (IB)|

)
≤ |P (IA) ∩ P (IB)| · log

e|P (IA)|
|P (IA) ∩ P (IB)|

bits.

4. (Alice replies with the contents.) Alice simulates D and obtains the set P (IA). For each hash-value
b ∈ h(S), Alice sends Bob both addresses and contents of all cells in P (IA) that are mapped to
this value (i.e., of h−1(b) ∩ P (IA)). Alice sends 4|P (IA) ∩ P (IB)| · w bits in expectation (over the
randomness of the hash function).

5. (Bob simulates D and verifies Megan.) Bob checks whether Alice sends the information about all
cells in S. If not, he rejects. Otherwise, he simulates the data structure up to the beginning of IA, and
then updates all cells in S to the new values. Bob continues the simulation on IB from this memory
state. At last, Bob checks whether the simulation matches Merlin’s claim and whether S is exactly
the set P (IA) ∩ P (IB) according to the simulation. If either check fails, he rejects. Otherwise, he
proceeds, and generates the output of D on all queries in IB .

Lemma 1. Let O be an operation sequence, IA, IB ⊆ O be any consecutive operation intervals. Then for
any deterministic data structure D operating over O, SIMD(IA, IB) is a valid 4ANC protocol. Moreover,
the honest protocol S̃IMD has precisely the same output as D on all queries in IB , with Alice sending

4|P (IA) ∩ P (IB)| · w

bits in expectation, Bob sending at most

|P (IA) ∩ P (IB)| · log
e|P (IA)|

|P (IA) ∩ P (IB)|

bits, and Merlin sending at most

|P (IA) ∩ P (IB)| · log
e|P (IB)|

|P (IA) ∩ P (IB)|
+O (log n)

bits.

Proof. The claimed communication cost of the protocol can be directly verified from steps 1,3 and 4 respec-
tively, so we only need to argue about the correctness and validity of the protocol. By construction, when
both Merlin and Megan are honest, Bob has all the up-to-date information (i.e., latest memory state) of the
cells P (IA)∩P (IB) probed by D during his operation interval, hence by definition of step 5, S̃IMD has the
same output as D on queries in IB . It therefore remains to show that SIMD is a valid 4ANC protocol.

11

To this end, recall that we need to show that for any message mmer sent by Merlin, Bob proceeds
iff Mmeg(O,mmer) = mmeg. When Megan is honest (follows the protocol) and sends the set S, Bob’s
simulation of D in step 5 will be exactly the same as Megan’s in step 2. By definition, S is the exact set
of cells that Megan uses the contents from MB instead of MA. By copying the contents of S from Alice’s
memory state (MB) to Bob’s memory state (MA), he recovers Megan’s simulation, which is consistent with
Merlin’s message. Thus, Bob will proceed.

When Mmeg(O,mmer) is undefined and Megan follows the protocol and sends the set S she generates
in step 2 (but finds inconsistency), by the same argument as above, Bob recovers Megan’s simulation, thus
will find the same inconsistency as Megan does and reject.

The only case left is when Megan chooses to send a different set S′ than S (no matter whetherMmeg(O,mmer)
is defined). Let Pmmer(IB) be the set of cells probed during IB as specified in step 2, given Merlin’s advice
mmer. By definition, S ⊆ Pmmer(IB). If S′ ∩ Pmmer(IB) = S and S′ 6= S, then by the same argument
again, Bob recovers the simulation specified in step 2. In the end, he will find that not every cell in S′ is
probed and reject. Otherwise, consider the symmetric difference (S′ ∩ Pmmer(IB))4S. Let C be the first
cell in the symmetric difference in the chronological order of probing cells in Pmmer(IB), which is the j-th
new cell probed. Thus, Bob will successfully recover the simulation until he is about to probe cell C. By
definition, C /∈ S′, if and only if C ∈ S, if and only if j is encoded in mmer. Thus, on cell C, Bob will find
the simulation does not match Merlin’s claim, and thus reject.

3.2 Efficient 4ANC protocols induce large biased rectangles

Let P be a four-party communication protocol computing f over a product input distribution µ = µx × µy
in the 4ANC communication model, with cost (cA, cB, cM) and success probability δ. In this section, we
are going to prove that if P is efficient (has low communication) and has any “non-trivial” accuracy in
computing the underlying function f , then there must be a large biased-column-monochromatic rectangle
in the communication matrix of f (see Definition 3 for the formal definition). We note that a variant of this
lemma can be proved for general (non-product) distributions.

Lemma 2 (4ANC protocols imply large biased rectangles for product distributions). M(f) has a rectangle
R = X × Y such that

1. R is δ
2 · 2

−cM -column-monochromatic;

2. µx(X) ≥ δ
4 · 2

−(cM+cA+cB);

3. µy(Y) ≥ δ
4 · 2

−(cM+cB).

Proof. Recall that P̃ denotes the honest execution of the protocol P , and by definition of the 4ANC model,
the probability that P̃ correctly computes f(x, y) and communicates at most (cA, cB, cM) bits respectively,
is at least δ. Since we are working over a fixed input distribution µ, we may fix the public randomness of
P to some fixed value (r = r∗) so that these conditions continue to hold for the deterministic protocol Pr∗
(over the input distribution µ). Define S to be the set of good input pairs (x, y) for which P̃r∗ correctly
computes f(x, y) and the the protocol communicates (cA, cB, cM) bits respectively. By definition,

µ(S) ≥ δ.

For the remainder of the proof, we assume P is deterministic (i.e., we implicitly consider the protocol
P = Pr∗). Now consider a transcript τ = (π,mmeg) of the deterministic protocol P , where mmeg denotes
Megan’s message to Bob, and π = (mmer, πA, πB) denotes the message from Merlin and the transcript
between Alice and Bob. For a given message mmer sent by Merlin, the set of input pairs that will generate

12

the transcript τ (and for which Bob “proceeds”) form a combinatorial rectangle Rτ = Xτ ×Yτ .8 Assuming
Bob “proceeds” in τ , he is supposed to output a value after the communication, which may depend on the
transcript and his input y ∈ Yτ . That is, conditioned on Merlin sending mmer (which, once again, may not
be the “honest” message), for each column y of the rectangle Rτ Bob will output the same value. Now,
recall that for each input (x, y) and mmer there is at most one message mmeg = Mmeg(x, y,mmer) that will
make Bob accept (i.e., (x, y,mmer) uniquely determine mmeg, and hence the entire transcript τ). Since P is
deterministic, this fact implies that if we fix mmer, all rectangles {Rτ} are disjoint from each other.

Furthermore, since Alice does not observe Megan’s message (only Bob does), the set Xτ does not
depend on mmeg. This means that if we fix π and vary over all mmeg consistent with π, all rectangles
corresponding to resulting transcripts τ will have the same Xτ . Let Rπ =

⋃
τ=(π,mmeg)Rτ be the (disjoint)

union of these rectangles, which is a rectangle itself, and let Xπ × Yπ = Rπ. In this notation, for any
τ = (π,mmeg) we have that Xπ = Xτ , and Yπ =

⋃
τ=(π,mmeg) Yτ . The following claim asserts that every

column y of Rπ will have the same output:

Claim 1. For each transcript π = (mmer, πA, πB) and y ∈ Yπ, Mmeg(x, y,mmer) is fixed across x ∈ Xπ.

Proof. Suppose towards contradiction that there is some y0 ∈ Yπ and x1, x2 ∈ Xπ, such that

Mmeg(x1, y0,mmer) 6= Mmeg(x2, y0,mmer).

Now, givenmmeg, Bob’s decision whether to “proceed” or not only depends on his input y0 and the transcript
π which, by definition, is the same for both inout pairs (x1, y0), (x2, y0). This means that for at least one of
the input pairs, say (x1, y0), Bob will “proceed” even when mmeg = Mmeg(x2, y0,mmer), contradicting the
definition of the 4ANC model (proposition (1) in Definition 5).

Indeed, the above claim asserts that Bob’s output is only a function of (π, y), so let us henceforth denote
by v(π, y) the output of column y of Rπ. Once again, note that for a fixed value of mmer, the rectangles
{Rπ} are all disjoint. In particular, this fact implies∑

π=(mmer,πA,πB):

|mmer|≤cM ,|πA|≤cA,|πB |≤cB

µ(Rπ) ≤ 2cM . (1)

Now, by definition, every good input pair (x, y) ∈ S is contained in some rectangle Rπ, where mmer =
Mmer(x, y), |Mmer(x, y)| ≤ cM , |πA| ≤ cA, |πB| ≤ cB and v(π, y) = f(x, y) (by definition of S).
Therefore, we have ∑

π=(mmer,πA,πB):

|mmer|≤cM ,|πA|≤cA,|πB |≤cB

µ(Rπ ∩ S ∩M−1
mer(mmer)) = µ(S) ≥ δ. (2)

By Equation (1) and (2), we expect that “on average”, each rectangle has roughly δ ·2−cM fraction of the
pairs that are good and match the mmer value of the rectangle. By Markov’s inequality, we can indeed show
that many rectangles have many columns with at least this fraction (up to a constant factor). More formally,
for each Merlin’s message, define

Ỹπ =

{
y ∈ Yπ : µ

(
(Xπ × {y}) ∩ S ∩M−1

mer(mmer)
)
≥ δ

2
· 2−cM · µ(Xπ × {y})

}
8Note that not necessarily every pair in the Rτ has Mmer = mmer, as P is not required to verify whether Merlin sends the correct

message!

13

to be the set of columns in Rπ with many good input pairs and matching mmer,

R̃π = Xπ × Ỹπ

to be the union of these columns,

Rmmer =
{
R̃π : |πA| ≤ cA, |πB| ≤ cB

}
,

and let
R =

⋃
mmer : |mmer|≤cM

Rmmer

be the set of rectangles with “sufficiently many” good input pairs and matching mmer in every column.
Again, by definition, for (x, y) ∈ S, when mmer = Mmer(x, y), the protocol outputs the correct function

value f(x, y). Thus, every column of each rectangle R̃π has at least δ2 · 2
−cM fraction of the inputs having

the same function value, i.e., each R̃π is δ
2 · 2

−cM -column-monochromatic.
It remains to show that at least one of these rectangles is large (satisfying propositions 2 and 3 of the

lemma). Indeed, by Equation (1) and (2), we have∑
R̃π∈R

µ(R̃π) ≥
∑
R̃π∈R

µ(R̃π ∩ S ∩M−1
mer(mmer))

=
∑

π=(mmer,πA,πB):

|mmer|≤cM ,|πA|≤cA,|πB |≤cB

µ(R̃π ∩ S ∩M−1
mer(mmer))

≥ δ −
∑

π=(mmer,πA,πB):

|mmer|≤cM ,|πA|≤cA,|πB |≤cB

µ((Rπ \ R̃π) ∩ S ∩M−1
mer(mmer)) (by (2))

≥ δ − δ

2
· 2−cM

∑
π=(mmer,πA,πB):

|mmer|≤cM ,|πA|≤cA,|πB |≤cB

µ(Rπ \ R̃π) (by definition of R̃π)

≥ δ − δ/2 = δ/2. (by (1))

In particular, there is one m̂mer such that∑
R̃π∈Rm̂mer

µ(R̃π) ≥ (δ/2) · 2−cM . (3)

From now on, let us fix Merlin’s message to be m̂mer, and focus onRm̂mer . Recall that, by definition, for
each R̃π ∈ Rm̂mer with π = (m̂mer, πA, πB), we have |πA| ≤ cA and |πB| ≤ cB . For every x ∈ X , let

Sm̂mer
x := {π : R̃π ∈ Rm̂mer , x ∈ Xπ}

be the set of all possible transcripts π ∈ Rm̂mer that can be generated by x, m̂mer (and any y). Intuitively,
since Bob sends at most cB bits in π, Sm̂mer

x can be of size at most 2cB . This is the content of the following
simple claim:

Claim 2. For every x ∈ X , |Sm̂mer
x | ≤ 2cB .

Proof. Let (Π|Rm̂mer) denote a uniformly random transcript π ∈ Rm̂mer . Since P is deterministic, the
random variable (Π|x,Rm̂mer) is uniformly distributed over Sm̂mer

x . Thus, |Sm̂mer
x | = 2H(Π|x,Rm̂mer). Let Πi

denote the i’th message (not necessarily bit) sent in π (assuming messages are prefix-free). Then we may

14

assume, without loss of generality, that Alice speaks in odd rounds of π and Bob speaks in even rounds. By
the chain rule for entropy, we have

H(Π|x,Rm̂mer) =
∑

round i

H(Πi|Π<i, x,Rm̂mer)

=
∑
even i

H(Πi|Π<i, x,Rm̂mer) ≤
∑
even i

|(Πi|Rm̂mer)| ≤ cB,

where in the second transition we used the fact that for messages Πi sent by Alice, we haveH(Πi|Π<i, x,Rm̂mer) =
0 since Π is deterministic, and the last transition follows from the assumption that |πB| ≤ cB for every
π ∈ Rm̂mer . This completes the proof.

With this claim in hand, we can now bound the fraction of rectangles in Rm̂mer with a “small Bob side”
(Ỹπ):

∑
R̃π∈Rm̂mer :

µy(Ỹπ)<(δ/4)·2−cM−cB

µ(R̃π) =
∑

R̃π∈Rm̂mer :

µy(Ỹπ)<(δ/4)·2−cM−cB

µx(Xπ) · µy(Ỹπ) (4)

<
∑
x∈X

∑
R̃π∈Rm̂mer :

µy(Ỹπ)<(δ/4)·2−cM−cB

µx(x) · 1Xπ(x) · (δ/4) · 2−cM−cB

≤
∑
x∈X

∑
π∈Sm̂mer

x

µx(x) · (δ/4) · 2−cM−cB

≤
∑
x∈X

µx(x) · 2cB · (δ/4) · 2−cM−cB (by Claim 2)

= (δ/4) · 2−cM . (5)

We now bound the fraction of rectangles in Rm̂mer with a “small Alice side” (Xπ). To this end, recall
that |Rm̂mer | ≤ 2cA+cB , and therefore

∑
R̃π∈Rm̂mer :

µx(Xπ)<(δ/4)·2−cM−cA−cB

µ(R̃π)

≤
∑

R̃π∈Rm̂mer :

µx(Xπ)<(δ/4)·2−cM−cA−cB

µx(Xπ) < (δ/4) · 2−cM . (6)

But by (3), we know that
∑

R̃π∈Rm̂mer
µ(R̃π) ≥ (δ/2) ·2−cM , hence there exists some R̃π ∈ Rm̂mer such

that both µy(Ỹπ) ≥ (δ/4) · 2−cM−cB and µx(Xπ) ≥ (δ/4) · 2−cM−cA−cB .

Lemma 3. Let P be a 4ANC protocol that δ-solves f : X × Y → Z under a product distribution µ =
µx × µy. Let GX ⊆ X and GY ⊆ Y be subsets of inputs such that Prµ[X ∈ GX ∧ Y ∈ GY] ≥ 1− ε. Then
M(f) has a rectangle Rπ = Xπ × Yπ such that

1. Xπ ⊆ GX and Yπ ⊆ GY ;

2. Rπ is ((δ − ε)/2) · 2−cM -column-monochromatic;

15

3. µx(Xπ) ≥ (1− ε)((δ − ε)/4) · 2−(cM+cA+cB);

4. µy(Yπ) ≥ (1− ε)((δ − ε)/4) · 2−(cM+cB).

Proof. The claim follows directly from Lemma 2 by considering the distribution µ′ := (µx|GX)× (µy|GY).
Note that µ′ is still a product distribution, and that P must succeed in solving f under µ′ with probability
at least (δ − ε) (or else it will have success < δ under µ), so we may indeed apply Lemma 2 with µ′ and
δ′ := δ − ε to obtain a rectangle R = X × Y ⊆ GX × GY with µ′x(X) ≥ ((δ − ε)/4) · 2−(cM+cA+cB) and
µ′y(Y) ≥ ((δ − ε)/4) · 2−(cM+cB). Finally, since µ′x(X) ≤ µx(X)/µx(GX) ≤ µx(X)/(1 − ε), it follows
that µx(X) ≥ (1 − ε)µ′x(X) ≥ (1 − ε)((δ − ε)/4) · 2−(cM+cA+cB). The same argument applied to µ′y(Y)
completes the proof.

Remark (General (non-product) distributions). The only step in the proof of Lemma 2 that uses the inde-
pendence of x and y (i.e., the product assumption on µ), is the transition in equation (4). It is not hard to see
that, following a similar calculation to that of Equation (6), it is possible to obtain a similar (yet weaker)
lower bound on the measure of an induced rectangle Rπ = Xπ × Yπ under arbitrary (general) distributions
µ, namely, that µ(R) & δ · 2−cM−cA−cB . Note that such bound does not distinguish between the measure of
“Alice’s side” (Xπ) and “Bob’s side” (Yπ), so it may be less useful to “lopsided” communication problems
that typically arise from data structure reductions. Nevertheless, we stress that the lemma above is more
general than stated.

4 The Amortized Dynamic Cell-Probe Complexity of 2D-ORC

In this section, we prove our main theorem, an amortized lower bound for 2-dimensional weighted orthog-
onal range counting (2D-ORC) problem.

Theorem 1 (restate). For any integer n, 1 ≤ c < o(log n/ log logn), and any (randomized) data structure
D in the cell-probe model with word-size Θ(log n), there is a sequence of n/ logc n updates and n−n/ logc n
queries for the 2D-ORC problem, for which the probability (over the randomness of D) that

• D probes o(n (log n/c log logn)2) cells in total, and

• D is correct on all n− n/ logc n queries

is at most 2−n/ logc+O(1) n.

Remark. In particular, the theorem implies the following: If D probes o(n (log n/c log logn)2) cells in ex-
pectation on any sequence ofO(n/ logc n) updates andO(n) queries, then there is some operation sequence
such that the probability D is correct on all queries is at most 2−n/ logc+O(1) n.

Plan. To prove the theorem, we first define a hard distribution D on the operation sequence for 2D-ORC,
and fix a data structure D. By Yao’s Minimax Principle [Yao77], we can always fix the random bits used by
D, so that the probability that D is correct on all queries and makes too few probes is preserved. We may
assume D is deterministic from now on. Consider the execution of D on a random sequence of operations.
We shall decompose this sequence into many communication games in the 4ANC model, in a way that
guarantees that if D is fast and has decent success probability, then most of the games can be solved with
low communication cost and non-trivial success probability. On the other hand, we prove that non of these
induced games can be solved both efficiently and with non-trivial accuracy. Combining these two facts
together, we conclude that no data structure can be fast and have decent success probability simultaneously.

In the following, we first define the hard distribution D, and its corresponding communication game
G2D-ORC. In Section 4.1, we propose a protocol for G2D-ORC given data structure D. In Section 4.2, we
prove a lower bound for G2D-ORC. In Section 4.3, we combine the results and prove Theorem 1.

16

Hard distributionD. The sequence always has n/ logc n updates and n−n/ logc n queries such that there
are (about) logc n queries between two consecutive updates. Every update inserts a point at a uniformly
random location in the [n] × [n] grid with a random weight uniformly chosen from [n]. Each query is a
uniformly random point in the [n] × [n] grid. The random sequence is independent across the updates and
the queries.

More formally, let DU be the uniform distribution over all possible n3 updates, DQ be the uniform
distribution over all possible n2 queries. Let Di be the distribution for i-th operation, i.e., Di = DU if i is
multiple of logc n, and Di = DQ otherwise. Let D = D1 × D2 × · · · × Dn be our hard distribution over
sequences of n operations. We will focus on D in the following.

The Distributional Communication Game G2D-ORC(k, q, n). Let X be the set of k-tuples of weighted
points in [n]× [n] with weights from [n], Y be the set of q-tuples of unweighted points in [n]× [n]. Let the
input distribution µ = µx×µy be the uniform distribution over X ×Y . Then, x = ((x1, w1), . . . , (xk, wk))
is a k-tuple of weighted points and y = (y1, . . . , yq) is a q-tuple of unweighted points. Let 2D-ORC(x, y) :
([n]2 × [n])k × ([n]2)q → [kn]q denote the function whose output is a q-tuple of numbers from [kn], whose
i-th coordinate is the sum of wj’s for which xj ≤ yi,9 i.e.,

2D-ORC(x, y)i :=
∑

j:xj≤yi

wj .

4.1 Efficient data-structure simulation in the 4ANC model

Consider the communication game G2D-ORC(k, q, n) in the 4ANC model. Let IA and IB be two consecutive
intervals in a random operation sequence sampled from D, such that the number of updates in IA equals to
k and the number of queries in IB equals to q, i.e., k ∼ |IA| · log−c n and q ∼ |IB|.10 We shall embed the
game into a sequence of operations in the dynamic cell-probe model, so that the answers to all queries in
the sequence produces a solution to communication game. In particular, if there is an efficient data structure
D for the corresponding operation sequence, Alice and Bob can simulate D using the protocol SIMD from
Section 3.1, which in turn would yield a too-good-to-be-true 4ANC protocol for G2D-ORC.

To this end, fix a deterministic data structure D, and all operations before IA. Both D and these oper-
ations are publicly known to the players and therefore can be hard-wired to the protocol. Let P (IA) and
P (IB) be the set of cells probed by D during IA and IB respectively. We now provide a 4ANC protocol that
simulates D and solves G2D-ORC(k, q, n).

The simulation protocol PD for G2D-ORC(k, q, n):

1. (Generate the operations) The number of updates in IA equals to k. The number of queries in IB
equals to q. Alice sets i-th update in IA in chronological order to be update(xi, wi). Bob sets
j-th query in IB to be query(yj). They use public randomness to sample queries in IA and updates
in IB uniformly and independently.

2. (Simulate D on O) Let O be the sequence of operations obtained by concatenating the hard-wired
operations before IA, and the operations in IA and in IB generated in the first step. Run SIMD from
Section 3.1 on O.

3. (Bob recovers the answer to G2D-ORC(k, q, n)) For each query in IB , the answer to the query from
the simulation is the sum of weights of points updated and dominated by the query. This includes the

9xj ≤ yi means both coordinates of xj are no larger than the corresponding coordinates of yi.
10Throughout the paper, f ∼ g stands for f = g + o(g) when n goes to infinity.

17

points updated before IA, in IA and in IB but before the query. Bob knows exactly the updates before
IA and in IB . By subtracting the sum of weights of points in those time periods and dominated by the
query, Bob gets the sum of weights of points updated in IA and dominated by the query. This sum is
precisely the answer to the communication game.

By Lemma 1, we have the following conclusion on protocol PD.

Lemma 4. For protocol PD, we have that

1. it is a valid protocol in 4ANC;

2. Alice sends at most 4|P (IA) ∩ P (IB)| · w bits in expectation;

3. Bob sends at most |P (IA) ∩ P (IB)| · log e|P (IA)|
|P (IA)∩P (IB)| bits;

4. Merlin sends at most |P (IA) ∩ P (IB)| · log e|P (IB)|
|P (IA)∩P (IB)| +O (log n) bits;

5. when the input pair (x, y) are sampled from µ, operations generated in IA and IB will follow distri-
bution D;

6. the protocol outputs a correct answer for G2D-ORC if and only if D is correct on all queries in IB in
O.

4.2 4ANC communication complexity of orthogonal range counting

In this section we prove Lemma 5, asserting that the probability of any 4ANC protocol with communication
(o(
√
kq), o(q log n), o(q log n)) in solving all q queries of G2D-ORC correctly, is hardly any better than the

trivial probability obtained by randomly guessing the answers.

Lemma 5 (“Direct Product” for 2D-ORC in the 4ANC model). For n large enough, k ≥
√
n and k/q ∼

log1000 n,
SucG2D-ORC

µ

(
0.5
√
kq, 0.005q log n, 0.0005q log n

)
≤ 2−0.2q log logn.

The obvious strategy for proving this lemma is to use the argument in Section 3.2, which asserts that
an efficient 4ANC protocol implies a large column-monochromatic rectangle. Therefore, ruling out the
existence of a large column-monochromatic rectangle in M(G2D-ORC) would give us a communication
lower bound on G2D-ORC.

Unfortunately, G2D-ORC(k, q, n) does in fact contain large column-monochromatic rectangles. For
example, when all of Bob’s q points have r-coordinate smaller than n/ logΘ(1) n, Alice does not have
to tell Bob any information about her points with r-coordinate greater than that quantity. Thus, in ex-
pectation, Alice only needs to speak k/ logΘ(1) n bits, and this case happens with 2−Θ(q log logn) prob-
ability over a random Bob’s input. In the other word, there is a column-monochromatic rectangle of
size 2−k/ logΘ(1) n × 2−Θ(q log logn). We cannot hope to prove a communication lower bound higher than
(k/ logΘ(1) n,Θ(q log log n), 0) using this approach alone.

To circumvent such inputs from breaking the argument, and for other technical reasons, we only consider
Alice’s evenly-spreading inputs and Bob’s well-separated inputs, which we will define in the following.
Consider the following B + 1 ways of partitioning [n]2 into blocks of area A: for each 0 ≤ i ≤ B, Gi
partitions [n]2 into blocks of size ∼ (Aαi/n)× (n/αi).

18

G0 G1

· · ·

GB

We set the parameters/notations in the following way:

• let the coordinate of a point on [n]× [n] be (r, c);

• let the ratio of number of Alice’s points to Bob’s points be β = k/q ∼ log1000 n.

• let the area A ∼ (4n2 log n)/k;

• let the ratio α ∼ β/ log3 n, i.e., Aα ∼ 4n2/q log2 n;

• let B = log(n2/A)/ logα ∼ log k/997 log log n, so that each block in GB has size exactly n×A/n.

We ensure that n2/A is an integer and B is an integer.

Definition 6 (Evenly-spreading tuples). We say that a k-tuple S of points in [n] × [n] is evenly-spreading,
if in every Gi, all but ≤

√
kq of the blocks have some points in it.

The following lemma ensures that a uniformly random S is evenly-spreading with extremely high prob-
ability.

Lemma 6. A uniformly random k-tuple S of points is evenly-spreading with probability ≥ 1− 2−q log500 n.

Proof. For each Gi, the probability that it has ≥
√
kq empty blocks is at most:(

n2/A√
kq

)
·
(

1−
√
kq

n2/A

)k
≤
(

ek

4
√
kq log n

)√kq
· e−4

√
kq logn

≤ 2
√
kq(500 log logn−4 logn)

≤ 2−q log501 n.

Hence a union bound implies that the probability S is not evenly-spreading is at most:

B2−q log501 n ≤ 2−q log500 n.

Definition 7 (Far points). Two points in [n]× [n] are far from each other, if they are not in any axis-parallel
rectangle of area Aα, i.e., the product of differences in two coordinates is at least Aα.

Definition 8 (Isolated tuples). A tuple Q̃ of points in [n]× [n] is isolated, if every pair of points in Q̃ are far
from each other.

Definition 9 (Well-separated tuples). A q-tuple Q of points on [n] × [n] is well-separated, if it contains an
isolated subtuple Q̃ with |Q̃| ≥ q/2.

19

The following lemma ensures that a uniformly random q-tuple points is well-separated with extremely
high probability.

Lemma 7. A uniformly random q-tuple Q of points is well-separated with probability ≥ 1− 2−0.4q log logn.

Proof. The area of region that is not far from a given point p0 can be bounded as follows:

4
n∑
i=0

min{n,Aα/i} ≤ 4(n+Aα
n∑
i=1

1/i)

≤ 4(n+ 4n2(1 + log n)/q log2 n)

≤ 17n2/q log n.

Pick all points that do not land in the above region of any point before it in the tuple. For each point, the
probability that it is picked is at least 1−17 log−1 n. The probability that no more than q/2 points are picked
is at most:

2q
(
17 log−1 n

)q/2 (
1− 17 log−1 n

)q ≤ 2−0.4q log logn.

Lemma 8. Let Q̃ be a tuple of isolated points. Then

• the r-coordinates of all points,

• the set of blocks containing each point in each Gi (for 0 ≤ i ≤ B), and

• the c-offset of each point within the block in GB

together uniquely determine the locations of all points in Q̃.

Proof. Given the r-coordinate of a point p, there are α blocks of G1 that could contain it without providing
any extra information. Since Q̃ is isolated, and these α blocks together form a rectangle of area Aα, there
can be no other points from Q̃ in any of them. Therefore, given the set of blocks inG1 containing Q̃, exactly
one of the α blocks will belong to this set, i.e., the block containing p. This reduces the range of c-coordinate
that p could be in by a factor of α. Given this information, there are α blocks of G2 that could contain p.
For the same exact reason, knowing the set of blocks in G2 containing Q̃ reduces the range by a factor of α
further.

Given all sets, we get to know for each point, the r-coordinate and the block in GB containing it.
Therefore, knowing the offsets within GB uniquely determines the locations of all points.

We are now ready to prove our main lemma for the G2D-ORC communication game, asserting that
M(G2D-ORC) does not contain any large rectangle with even a slightly better bias than the trivial one (n−q):

Lemma 9. There is no rectangle R = X × Y in M(G2D-ORC) satisfying all of the following conditions:

1. every x ∈ X is evenly-spreading, every y ∈ Y is well-separated;

2. R is n−0.001q-column-monochromatic;

3. µx(X) ≥ 2−
√
kq;

4. µy(Y) ≥ 2−0.01q logn.

20

Let us first think about the case where R is 1-column-monochromatic and µx is the uniform distribution
over k points with fixed locations (only the weights vary). In this case, all entries in every column y ∈ Y
have exactly the same function value in R. Given y and its function value, it can be seen as imposing q
linear constraints to the k weights, i.e., each query with the answer tells us that the sum of some points
should equal to some number. Intuitively, if |Y | is too large, it will be inevitable that the union of all queries
appeared in Y “hit everywhere” in [n]× [n]. Even if different q-tuples y ∈ Y may have overlaps in queries,
it is still impossible to pack too many y’s in a small area. However, if the union of all queries in Y hit too
many places in [n] × [n], they will impose many independent linear constraints on the k weights, and thus
|X| must be small.

In general, we are going to focus on how many different regions of [n] × [n] Y “hits”. If it hits very
few, we show that |Y | must be small, by encoding each y ∈ Y using very few bits. This encoding scheme
is a variation of the encoding argument by Larsen [Lar12]. On the other hand, if Y does hit many different
regions, we show |X| must be small. To show it, we will describe a new encoding scheme which encodes
x ∈ X using very few bits. The main idea is to use public randomness (which can be seen by both the
encoder and the decoder, and is independent of x) to sample a few regions in [n] × [n], then with decent
probability, Y “hits” all these regions, and the function value is correct for some y hitting some of the
regions, due to the slight bias of the rectangle. They view the public randomness as infinite such samples,
and the encoder just writes down the ID of the first sample that has the above property. Then the decoder
will be able to “learn” q linear equations on x from it. The point here is that if the probability that a random
sample has the above property is not too low, the ID of the first success sample will have less than q log n
bits. Thus we will be able to use less bits compared to the naive encoding. At last, we show that if we do this
multiple times, each time the q linear equations the decoder learns will be independent from the previous
ones with high probability. This ensures us that it is possible to apply the sampling many times to save even
more bits, which would allow us to prove the lemma.

Proof. Consider a well-separated y, and its lexicographically first11 isolated q/2-subtuple Q̃(y) (we might
use Q̃ instead of Q̃(y) in the following, when there is no ambiguity). In everyGi, the q/2 points in Q̃ appear
in q/2 different blocks due to its isolation. Let Hi(y) denote the set of q/2 blocks in Gi containing a point
from Q̃. CallHi(y) the hitting pattern of y on Gi. Let

H(y) :=
B⋃
i=0

Hi(y)

be the hitting pattern of y. We shall see that this combinatorial object (H(y)) captures the delicate structure
of a set of q queries.

Let us fix a rectangle R = X × Y that is n−0.001q-column-monochromatic. We are going to show that
either |X| is small or |Y | is small, as the lemma predicts. To this end, consider the set

T = {H(y) : y ∈ Y }
11“Lexicographically first” is only used for the unambiguity of the definition.

21

of hitting patterns for all y ∈ Y . A trivial upper bound on |T | is(
n2/A

q/2

)B+1

= 2
(B+1) log (n

2/A
q/2)

= 2(B+1)q/2·log Θ(n2/Aq)

= 2(1+o(1)) log(n2/A)/ logα·q/2·log β

= 2(1+o(1)) 1000
997
|Q̃| log(n2/A)

= 2(1+o(1)) 500
997

q log k,

simply because there can only be that many different hitting patterns in total. However, we are going to
show that if

|T | ≤
(
n2/A

q/2

)0.95B

,

polynomially fewer than the potential number of patterns, then |Y |must be small. Otherwise, if |T | is large,
then |X| must be small.

Case 1 : |T | smaller than the threshold. This case intuitively says that if Y can only generate a small
number of hitting-patterns, then Y itself cannot be too large (since Hi(y) can be used to determine y by
Lemma 8). To formalize this intuition, we will show how to encode each y ∈ Y using no more than
1.99q log n bits, which implies |Y | ≤ 21.99q logn and µy(Y) ≤ 2−0.01q logn. Given a y ∈ Y , which is a
q-tuple of points, we apply the following encoding scheme:

1. Write down the r-coordinates of all points.

2. Write down one bit for each point in y, indicating whether it belongs to the set Q̃ or not. For each
point not in Q̃, also write down its c-coordinate.

3. Write down the hitting patternH(y).

4. For each point in Q̃, write down its c-offset within the block in GB .

Decoding: The scheme above writes down the coordinates of all points not in Q̃, so they can clearly be
decoded correctly. For points in Q̃, it writes down the r-coordinates, the set of blocks containing them in
each Gi, and the c-offsets within the block in GB . By Lemma 8, it uniquely determines the locations of all
well-separated points, and hence determines y.

Analysis: Now let us estimate the number of bits it uses. Let us analyze the number of bits used in each
step:

1. It takes q log n bits to write down all the r-coordinates.

2. It takes 1 bit for each point, and extra log n bits for each point not in Q̃. This step takes q + (q −
|Q̃|) log n bits in total.

3. Since we know y ∈ Y , andH(y) ∈ T , this step takes log |T | bits.

4. This step takes |Q̃| log(A/n) bits.

22

When |T | is smaller than the threshold, step 3 and 4 take

log |T |+ |Q̃| log(A/n) = 0.95(1 + o(1))
1000

997
|Q̃| log(n2/A) + |Q̃| log(A/n)

≤ 0.955|Q̃| log(n2/A) + |Q̃| log(A/n)

= |Q̃| log n− 0.045|Q̃| log(n2/A)

bits. Thus, the encoding takes

q log n+ (q + (q − |Q̃|) log n) + (|Q̃| log n− 0.045|Q̃| log(n2/A))

≤ 2q log n+ q − 0.045|Q̃| log(n2/A)

≤ 2q log n− 0.01q log n = 1.99q log n

bits in total. We have µy(Y) = |Y | · 2−2q logn ≤ 2−0.01q logn as desired.

Case 2: |T | greater than the threshold. The main idea for this case is to efficiently encode an x
assuming there is a shared random tape between the encoder and the decoder. They use the randomness to
sample random hitting patterns, and hope there is one that happens to be the hitting pattern of some y ∈ Y ,
and (x, y) is correct in R. Specifying one such hitting pattern is a way to identify a correct entry in row
x of the rectangle, which reveals some information about x to the decoder. The nature of hitting patterns
guarantees that independent samples with the above property reveal “different” information about x with
high probability. This allows us to encode x using very few bits by repeating the above procedure multiple
times, and obtain an upper bound on |X|. To this end, first consider the following probabilistic argument:

1. sample a hitting pattern over all
(n2/A
q/2

)B+1
possibilities uniformly at random, i.e., for each 0 ≤ i ≤ B,

sample a set Si of q/2 blocks in Gi uniformly and independently,

2. independent of step 1, sample a uniformly random x ∈ X .

Then the probability p that

1. ∃y ∈ Y , such that Si = Hi(y) for all i, and

2. the lexicographically first such y has 2D-ORC(x, y)-value matching the color of column y of R,

is at least

p ≥ |T |(n2/A
q/2

)B+1
· n−0.001q

≥
(
n2/A

q/2

)−0.05B−1

· 2−0.001q logn

= 2−0.05(1+o(1)) 500
997

q log k−0.001q logn

≥ 2−0.026q log k−0.001q logn

≥ 2−0.027q logn,

where the first transition is by the assumption that R is n−0.001q-column-monochromatic, and the second
transition is by the assumption on |T |. By Markov’s inequality, there are at least p/2-fraction of the x’s in
X that with probability at least p/2 (over the randomn choice of hitting pattern {Si}), both conditions hold.

23

Let this set of x’s be X . We are going exhibit a randomized encoding scheme for each x ∈ X that uses
very few bits in expectation (over the public randomness of the scheme). This will imply an upper bound
on |X|, which in turn will imply an upper bound on |X|. Given an x ∈ X , which is a k-tuple of weighted
points, we apply the following encoding scheme:

1. Write down the locations of each point in x.

2. View the infinitely long public random string as infinite samples of {Si}0≤i≤B . Write down the index
of the first sample such that {Si} ∈ T , and the lexicographically first y with H(y) = {Si} satisfies
that 2D-ORC(x, y) matches the color of column y of R. This implicitly encodes the answers to q
queries in y on x for some y.

3. Repeat Step 2 for
√
k/q times (using fresh randomness each time).

4. Find all the possible x ∈ X that are consistent with all answers encoded in Step 2, sort them in
lexicographical order. Write down the index of the x that we are trying to encode in this sorted list.

Deocoding: Assuming the above encoding scheme terminates and outputs an encoding, it is easy to see
that we can recover each x ∈ X . It is because in Step 4, we find all x’s that are still possible, and explicitly
specify which one it is.

Analysis: To show the encoding scheme uses very few bits in expectation, it will be useful to view each
x as a vector vx ∈ Rk, where i-th coordinate encodes the weight of i-th point in x. Since the locations of
all points are written down explicitly in Step 1, each query point yj in y can also be viewed as a 0-1 vector
uyj ∈ Rk, where i-th coordinate indicates whether the i-th point is dominated by this point.12 Call vx the
weight vector of x, uyj the dominance vector of yi. In this notation, the sum of weights of dominated points
in x is just the inner product 〈vx, uyj 〉 of these two vectors. In this sense, every execution of Step 2 implicitly
encodes q linear constraints on x. Let L denote the number of linearly independent constraints encoded in
total (note that L is a random variable). We have the following cost for each step:

1. It takes 2k log n bits to write down all the locations.

2. Each time we run this step, it takes log 2/p ≤ 0.027q log n bits in expectation.

3. In total, all executions of Step 2 take 0.027
√
kq log n bits in expectation.

4. Since there are≤ nk−L different x’s satisfying all linear constraints, this step takes (k−L) log n bits.

In order to conclude that the scheme uses a small number of bits, it remains show that L will be large in
expectation. This is the content of the following technical claim.

Claim 3. E[L] ≥ 0.06
√
kq.

Assuming Claim 3, the expected total cost of the encoding scheme is at most

2k log n+ 0.027
√
kq log n+ (k − E[L]) log n ≤ 3k log n− 0.033

√
kq log n.

Thus, we have |X| ≤ 23k logn−0.033
√
kq logn, µx(X) = |X| · 2−3k logn ≤ 2−0.033

√
kq logn. Therefore, we

have
µx(X) ≤ 2−0.033

√
kq logn+0.01q logn � 2

√
kq,

which proves the lemma.
12The vector uyj depends on not only on yj but also on the locations of all points in x.

24

Figure 2: Gi

The only part left is to prove Claim 3. We show that each time we run Step 2, it creates many new
constraints linearly independent from the previous ones with high probability. To this end, let us fix a Gi
and consider a block in it, e.g., the block in Figure 2. It is not hard to see that different query points
in the block may have different dominance vectors (the 0-1 vector in Rk). However, if we only focus on
the coordinates corresponding to points from x in the blocks,13 all query points in block have the
same values in these coordinates. In general, Gi can be viewed as a meta-grid with n2/Aαi rows and αi

columns. For each block in Gi, all dominance vectors of points in the block have the same values, in the
coordinates corresponding to points in blocks with opposite row and column parities in the meta-grid (the

coordinates). Define the dominance vector of a block to be the dominance vector of some query point
in it, restricted to all those coordinates. By the above argument, the dominance vector of a block is well-
defined. Note that, different blocks in Gi may have dominance vectors defined to take values in different
codomains. For example, the dominance vector of a or block only has coordinates, and vice
versa. But all blocks with the same row and column parities in the meta-grid have the same codomain for
their dominance vectors.

Now let us focus on all (∼ n2/4A) dominance vectors of (and) blocks. Except a few of them,
all others are linearly independent. More specifically, we first remove all dominance vectors of blocks
(∼ αi/2) in the first row of the meta-grid. Then by evenly-spreading of the input x, there are at most

√
kq

blocks in Gi having no points from x. For every such block, we remove the dominance vector of its
immediate lower-right block, e.g., if the block has no points from x, we remove the dominance vector
of the block. All the remaining vectors are linearly independent. This is because if we sort all these
vectors in the upper-lower left-right order of their blocks, every dominance vector has a non-zero value
in some coordinate corresponding to points in its immediate upper-left block, while all previous vectors
have zeros in these coordinates, i.e., every vector is independent from the vectors before it in the sorted
list. In general, for all four possibilities of row and column parities in the meta-grid, among the ∼ n2/4A
dominance vectors, we can remove at most∼

√
kq+αi/2+n2/2Aαi of them, so that the remaining vectors

are all linearly independent.
Using the above connection between the geometry of the points and linear independence, we will be

able to show that each execution of step 2 creates many new linearly independent constraints with high
probability. Intuitively, among the q/2 blocks in Si, at least q/8 of them have the row and column parities,
say they are all blocks. Then we restrict all <

√
kq dominance vectors from previous executions of Step

2 to the coordinates. There are many independent dominance vectors among those of the blocks.
Thus, except with exponentially small probability, at least q/16 of dominance vectors of the sampled blocks
will be independent from the previous ones. If there is a y that H(y) = {Si}, then y must have one query
point in each of the q/8 sampled blocks. The dominance vector of a query point takes same values as
that of the block it is in in the coordinates. At least q/16 of the query points in y will create new

13We may use “ coordinates” to indicate these coordinates in the following.

25

independent linear constraints, as their dominance vectors are independent from the previous ones, even
restricted to coordinates.

More formally, in Step 2 of the encoding scheme, imagine that instead of sampling Si directly, we first
randomly generate the numbers of blocks in Si with different row and column parities in the meta-grid, then
sample Si conditioned on these four numbers. There must be one row and column parity that has at least
q/8 blocks in Si. Without loss of generality, we assume that at least q/8 blocks sampled will be in odd rows
and odd columns. From now on, let us focus on sampling these ≥ q/8 blocks.

Imagine that we sample the ≥ q/8 blocks in Si one by one independently. Before sampling each
block, consider all dominance vectors of query points created by previous executions of Step 2, restricted
to all coordinates corresponding to points in blocks with opposite parities (blocks in even rows and even
columns), together with all dominance vectors of blocks just sampled. There are no more than

√
kq such

dominance vectors in total, i.e., among all ≥ n2/4A −
√
kq − αi/2 − n2/2Aαi independent dominance

vectors, at least ≥ n2/4A − 2
√
kq − αi/2 − n2/2Aαi of them are linearly independent from the previous

ones. Thus, the dominance vector of the new sampled block is independent from the previous ones with
probability at least 1 − (2

√
kq + αi/2 + n2/2Aαi)/(n2/4A). Among the q/8 blocks in Si, if there are at

least q/16 of them whose dominance vectors are independent from the previous ones, andH(y) = {Si} for
some y, then y creates at least q/16 new independent linear constraints. Since there is one query point in
each block in Si, including the q/16 of them with dominance vector independent from the previous ones,
these q/16 points create one independent constraint each.

Thus, if H(y) = {Si} and y imposes at most q/16 new independent constraint, then it must be the case
that in every Si, the dominance vectors of no more than q/16 of the blocks are independent from the previous
ones. Since all Si’s are sampled independently and when 0.001B ≤ i ≤ 0.999B, 2

√
kq+αi/2+n2/2Aαi ≤

2
√
kq + k1−Ω(1) ≤ 3

√
kq. , the probability of the latter is at most((

3
√
kq

n2/4A

)q/16

2q/8

)0.998B

≤

((
200
√
kq

k/ log n

)q/16
)0.998B

≤
(

(200β−1/2 log n)q/16
)0.998B

≤ 2(0.998qB/16)(8−0.5 log β+log logn)

≤ 2
− (1+o(1))0.998q log k·499 log logn

16·997 log logn

≤ 2−0.031q log k.

The probability that a sample {Si} succeeds is at least p/2 ≥ 2−0.026q log k−0.001q logn � 2−0.031q log k.
Thus, each time we run step 2, with 1−o(1) probability, y gives us at least q/16 new constraints. Therefore,
the expected value of L is at least

√
k/q · (1− o(1))q/16 ≥ 0.06

√
kq, as claimed.

Proof of Lemma 5. Assume there is a 4ANC protocol 2−0.2q log logn-solves G2D-ORC(k, q, n) with commu-
nication cost (0.5

√
kq, 0.005q log n, 0.0005q log n). By Lemma 6 and Lemma 7, the probability that in a

random input pair (x, y) sampled from µ, x is not evenly-spreading or y is not well-separated is at most
1−2−0.4q log logn−2−q log500 n. By Lemma 3, for large enough n, M(G2D-ORC) has a rectangleR = X×Y
such that

1. every x ∈ X is evenly-spreading and every y ∈ Y is well-separated;

2. R is 2−0.0006q logn-column-monochromatic;

3. µx(X) ≥ 2−0.6
√
kq;

26

4. µy(Y) ≥ 2−0.006q logn.

However, by Lemma 9, such rectangle cannot exist in M(G2D-ORC). We have a contradiction.

4.3 Proof of Theorem 1

Combining the communication lower bound forG2D-ORC(k, q, n) (Lemma 5) with Lemma 4 (the simulation
argument in Section 4.1) gives us a lower bound on the efficiency and accuracy of D in IA and IB .

Lemma 10. Let O be a random sequence of operations sampled from D, let IA and IB be two consecutive
intervals in O, such that |IB| ≥

√
n and |IA| ∼ |IB| logc+1000 n, and denote by O<IA the sequence of

operations preceding IA. Then conditioned on O<IA , the probability that all of the following events occur
simultaneously

1. |P (IA)| ≤ |IA| log2 n,

2. |P (IB)| ≤ |IB| log2 n,

3. |P (IA) ∩ P (IB)| ≤ |IB| logn
200(c+1002) log logn , and

4. D answers all queries in IB correctly

is at most 2 · 2−0.2|IB | log logn.

Proof. Let p denote the probability that all four events above occur. Consider the protocol PD on intervals
IA and IB , solving G2D-ORC(k, q, n) for k ∼ |IA| · log−c n and q ∼ |IB|. Note that when the input pairs for
G2D-ORC(k, q, n) are sampled uniformly at random (i.e., according to µ), the corresponding operations IA
and IB in the simulation PD are distributed according to D. By Lemma 4, the first three conditions in the
statement imply that the protocol PD satisfies the following conditions:

1. Alice sends at most 4q log2 n
200(c+1002) log logn � 0.1

√
kq bits in expectation,

2. Bob sends

|P (IA) ∩ P (IB)| · log
e|P (IA)|

|P (IA) ∩ P (IB)|
≤ 0.005q log n

bits (since the function f(u, v) = u · log v
u is increasing in both u and v when v > eu),

3. Merlin sends

|P (IA) ∩ P (IB)| · log
e|P (IB)|

|P (IA) ∩ P (IB)|
+O (log n) < 0.0005q log n

bits.

Conditioned on the the three events above, with probability at least 1/2, Alice sends no more than
0.2
√
kq bits. Thus, by Lemma 5, p/2 ≤ 2−0.2q log logn. This proves the lemma.

Using the above lemma, we are finally ready to prove our data structure lower bound for 2D-ORC
(Theorem 1). Intuitively, if the data structure D correctly answers all queries under D, then Lemma 10 is
essentially saying either |P (IA)| or |P (IB)| is large, or during IB ,D reads at least Ω(|IB|·log n/c log log n)
cells that are also probed in IA. If the former happens too often, it is not hard to see that D makes too many
probes in total. Otherwise, “on average” for every operation in IB ,D must read at least Ω(log n/c log log n)
cells whose last probe was in IA. This argument holds as long as |IA| ∼ |IB| · logc+O(1) n and |IB| ≥

√
n.

27

Thus, during an operation, “on average” D has to read Ω(log n/c log log n) cells whose last probe was
anywhere between

√
n and

√
n · logc+O(1) n operations ago, Ω(log n/c log log n) cells whose last probe

was between
√
n · logc+O(1) n and

√
n · log2(c+O(1)) n operations ago, and so on. All these sets of cells

are disjoint, and there are Ω(log n/c log logn) such sets. This gives us that “on average”, each operation
has to probe Ω((log n/c log log n)2) cells in total. While Lemma 10 does not account for the number of
cells probed during any particular operation (but only the total number of probes), summing up the lower
bounds for relevant interval pairs, the above argument gives an amortized lower bound assumingD correctly
answers all queries.

When D is allowed to err, a natural approach is to partition the sequence into disjoint intervals {I}, and
interpret the overall success probability as the product of conditional success probabilities for queries in I
conditioned on the event that D succeeds on all queries preceding I . When the overall success probability
is “non-trivial”, there will be a constant fraction of I’s with “non-trivial” success probability conditioned
on succeeding on all previous intervals. As Lemma 10 also holds for D that is correct with exponentially
in |IB| log log n small probability, the argument outlined in the last paragraph still goes through. A more
careful argument proves the theorem. We now turn to formalize the intuition above, by showing how to
combine the arguments in the last two paragraphs.

Proof of Theorem 1. We shall decompose the operation sequence into many (possibly overlapping) consec-
utive intervals, and then apply Lemma 10 to obtain a lower bound on the operational time (in terms of
probes) the data structure spends on each interval. Summing the lower bounds together will yield the de-
sired lower bound on the total number of probes. To this end, for γ = logc+1000 n, consider the following
decomposition:

• For any (consecutive) interval of operations I , define DEC(I) := (IA, IB), where IA is the first
|I| − d|I|/γe operations in I and IB is the last d|I|/γe operations in I . We have IA ∩ IB = ∅,
IA ∪ IB = I , and |IA| ∼ |IB| · γ for any large enough |I|.

• Let I0 = {DEC(O)} be the singleton set (IA, IB), where IA is the first n−dn/γe operations and IB
is the last dn/γe operations in a random sequence O sampled from D.

• For i > 0, let us recursively define

Ii = {DEC(I) = (IA, IB) : |IB| ≥
√
n s.t ∃I ′, (I, I ′) ∈ Ii−1 ∨ (I ′, I) ∈ Ii−1}

to be the decomposition into (disjoint) intervals obtained by “refining” the decomposition Ii−1 (as in
the following illustration).

I0 : IA IB

I1 : IA IB IA IB

...

The following claim, whose proof is deferred to Appendix B, states that for small enough i’s, the total
number of operations in “Bob’s intervals” (IB) when summing up over all interval pairs in the set Ii, is
large:

Claim 4. For i ≤ 0.1γ log n/ log γ, we have ∑
(IA,IB)∈Ii

|IB| ≥
n

2γ
.

28

Now, let D be any dynamic data structure for 2D-ORC, and define E(IA, IB) to be the event that all
four conditions of Lemma 10 occur with respect to a specific interval pair IA, IB and the data structure D,
namely:

1. |P (IA)| ≤ |IA| log2 n,

2. |P (IB)| ≤ |IB| log2 n,

3. |P (IA) ∩ P (IB)| ≤ |IB| logn
200(c+1002) log logn , and

4. D answers all queries in IB correctly.

Consider the event Ei that all queries are answered correctly and “most” of (IA, IB) ∈ Ii are efficient:

1.
∑

(IA,IB)∈Ii |P (IA)| ≤ n log2 n
8 ,

2.
∑

(IA,IB)∈Ii |P (IB)| ≤ n log2 n
8γ ,

3.
∑

(IA,IB)∈Ii |P (IA) ∩ P (IB)| ≤ n logn
1600(c+1002)γ log logn , and

4. D answers all queries in the sequence correctly.

By Markov’s inequality, Ei implies that

∑
(IA,IB)∈Ii:

|P (IA)|>|IA| log2 n

|IB| ≤
1

γ log2 n

∑
(IA,IB)∈Ii:

|P (IA)|>|IA| log2 n

|P (IA)| ≤ 1

γ log2 n
· n log2 n

8
=

n

8γ
.

Similarly, we have∑
(IA,IB)∈Ii:

|P (IB)|>|IB | log2 n

|IB| ≤
n

8γ
and

∑
(IA,IB)∈Ii:

|P (IA)∩P (IB)|>|IB | logn
200(c+1002) log logn

|IB| ≤
n

8γ
.

Therefore, by Claim 4 and a union bound, the event Ei implies the event “
∑

(IA,IB)∈Ii:E(IA,IB) |IB| ≥
n
8γ ”

whenever i ≤ 0.1γ log n/ log γ.
We now want to use this fact together with Lemma 10 to conclude that Ei cannot occur too often. Indeed,

Lemma 10 asserts that the event E(IA, IB) occurs with extremely low probability, even conditioned on all
operations before IA. Since all the intervals in Ii are disjoint by construction, this gives us an upper bound

29

on the probability of Ei :

Pr[Ei] ≤ Pr

 ∑
(IA,IB)∈Ii:E(IA,IB)

|IB| ≥
n

8γ


= Pr

∃S ⊆ Ii, ∑
(IA,IB)∈S

|IB| ≥
n

8γ
,∀(IA, IB) ∈ S, E(IA, IB)


≤

∑
S⊆Ii,∑

(IA,IB)∈S |IB |≥
n
8γ

Pr

 ∧
(IA,IB)∈S

E(IA, IB)

 (by union bound)

=
∑
S⊆Ii,∑

(IA,IB)∈S |IB |≥
n
8γ

∏
(IA,IB)∈S

Pr

E(IA, IB)

∣∣∣∣∣∣∣∣∣
∧

(I′
A
,I′
B

)∈S
(I′A,I

′
B) before (IA,IB)

E(I ′A, I
′
B)


≤

∑
S⊆Ii,∑

(IA,IB)∈S |IB |≥
n
8γ

∏
(IA,IB)∈S

(
2 · 2−0.2|IB | log logn

)
(by Lemma 10)

≤
∑
S⊆Ii,∑

(IA,IB)∈S |IB |≥
n
8γ

2|S|2
−0.025n

γ
log logn

≤ 4|Ii|2
−0.025n

γ
log logn

.

Since all IB’s in Ii are disjoint and have length at least
√
n, |Ii| ≤

√
n. Thus, for n large enough,

Pr[Ei] ≤ 2
−0.02n

γ
log logn.

Finally, recall that Ei is the event that all queries are answered correctly and most interval pairs in Ii are
efficient. To finish the proof, we claim that the efficiency of interval pairs in all Ii characterizes the overall
efficiency:

Claim 5. If D probes o(n(log n/c log logn)2) cells and is correct on all queries, then for some i ≤
0.1γ log n/ log γ, Ei occurs.

Indeed, consider the contrapositive statement that non of Ei occurs. Then at least one of the following
events must occur :

1. Some query is not answered correctly.

2. For some i,
∑

(IA,IB)∈Ii |P (IA)| > n log2 n
8 . Since all IA’s are disjoint, this already implies that D

probes at too many cells.

3. There are least 0.05γ log n/ log γ different i’s for which
∑

(IA,IB)∈Ii |P (IB)| > n log2 n
8γ . Since each

operation can only appear in ≤ log n/ log γ different IB’s, the total number of probes is at least

log γ

log n
· (0.05γ log n/ log γ) · n log2 n

8γ
≥ Ω(n log2 n).

30

4. There are least 0.05γ log n/ log γ different i’s for which∑
(IA,IB)∈Ii

|P (IA) ∩ P (IB)| > n log n

200(c+ 1002)γ log log n
.

By construction of the Ii’s, each probe will appear only once across all interval pairs. The total
number of probes is at least

0.05γ log n/ log γ · n log n

200(c+ 1002)γ log logn
≥ Ω

(
n

(
log n

c log log n

)2
)
.

The above asserts that either D is wrong on some query or D probes Ω(n(log n/c log logn)2) cells,
which finishes the proof of Claim 5.

By a union bound over all Ei’s, we conclude that the probability that D probes o(n(log n/c log log n)2)
cells and is correct on all queries is at most∑

i<0.1γ logn/ log γ

Pr[Ei] < 2−n/ logc+O(1) n,

which completes the proof of the entire theorem.

References

[AW08] Scott Aaronson and Avi Wigderson. Algebrization: a new barrier in complexity theory. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 731–740,
2008.

[BBCR10] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive commu-
nication. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
pages 67–76, 2010.

[Blu85] Norbert Blum. On the single-operation worst-case time complexity on the disjoint set union
problem. In STACS 85, 2nd Symposium of Theoretical Aspects of Computer Science, pages
32–38, 1985.

[BRWY13] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products in com-
munication complexity. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, pages 746–755, 2013.

[DS14] Irit Dinur and David Steurer. Direct product testing. In IEEE 29th Conference on Computa-
tional Complexity, CCC 2014, pages 188–196, 2014.

[FKNN95] Tomàs Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communication com-
plexity. SIAM Journal on Computing, 24(4):736–750, 1995. Prelim version by Feder, Kushile-
vitz, Naor FOCS 1991.

[FS89] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data struc-
tures. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages
345–354, 1989.

31

[JPY12] Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for the two-party
bounded-round public-coin communication complexity. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, pages 167–176, 2012.

[KKN95] Mauricio Karchmer, Eyal Kushilevitz, and Noam Nisan. Fractional covers and communication
complexity. SIAM J. Discrete Math., 8(1):76–92, 1995.

[Kla11] Hartmut Klauck. On arthur merlin games in communication complexity. In Proceedings of
the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, pages 189–199,
2011.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

[Lar12] Kasper Green Larsen. The cell probe complexity of dynamic range counting. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, pages 85–94, 2012.

[Pat07] Mihai Patrascu. Lower bounds for 2-dimensional range counting. In Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, STOC 2007, pages 40–46, 2007.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the partial-sums problem. In Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004,
pages 20–29, 2004.

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM
J. Comput., 35(4):932–963, 2006.

[PT06] Mihai Patrascu and Mikkel Thorup. Higher lower bounds for near-neighbor and further rich
problems. In 47th Annual IEEE Symposium on Foundations of Computer Science FOCS 2006,
pages 646–654, 2006.

[PT11] Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, pages 559–
568, 2011.

[PTW10] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near neighbor search via
metric expansion. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, pages 805–814, 2010.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803, June
1998. Prelim version in STOC ’95.

[Tar75] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, 1975.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science, pages 222–227, 1977.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In Pro-
ceedings of the 11h Annual ACM Symposium on Theory of Computing, pages 209–213, 1979.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28(3):615–628, 1981.

32

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, FOCS 1982, pages 80–91, 1982.

[Yu15] Huacheng Yu. Cell-probe lower bounds for dynamic problems via a new communication model.
CoRR, abs/1512.01293, 2015.

A Proof of Proposition 1

Let Dstat be a (zero-error) data structure for the static 3D-ORC problem, that uses s(m) memory cells and
tstat(m) probes to answer any query on m points. To solve the dynamic 2D-ORC problem on a sequence
of n/ logc n updates and n − n/ logc n queries, we guess all updates before the first operation. Let the i-th
update we guessed be update(ri, ci, wi). Then we use Dstat to build a static data structure on points
(i, ri, ci) with weight wi, and write to the memory. This step costs s(n/ logc n) probes. Note that the cell-
probe model does not charge for the actual construction time of the data structure, but only for the number
of probes to the memory. In addition, we also maintain a counter q in the memory, recording the number of
updates performed so far, which is initialized to be 0.

To do an update, we simply increment the counter q by one. To answer a query query(r, c), we
first read the value of q from the memory, then query Dstat the sum of weights of points dominated by
(q, r, c). This corresponds to asking Dstat what is the sum of weights of points appeared in the first q
updates (we guessed) that are dominated by (r, c), which costs tstat(n/ logc n) probes. In total, we spend
s(n/ logc n) + n/ logc n+ n · tstat(n/ logc n) probes.

If we happen to guess all n/ logc n update correctly, then all n − n/ logc n queries will be answered
correctly, which happens with probability n−3n/ logc n. This is an upper bound on the probability asserted by
the strengthened version of Theorem 1, that all queries are answered correctly and o(n(log n/c log log n)2)
cells are probed. In particular, we then must have

s(n/ logc n) + n · tstat(n/ logc n) ≥ Ω(n(log n/c log log n)2).

Thus, if s(m) ≤ O(m logcm), we must have tstat(m) ≥ Ω((logm/c log logm)2).

A.1 Challenges in improving Theorem 1

Although only a slightly strengthened version of Theorem 1 is required by Proposition 1, making the im-
provement still seems non-trivial, as it forces us to break Yao’s Minimax Principle in the cell-probe model.
In the cell-probe model, one direction of the principle is still true: A lower bound for deterministic data
structures on a fixed hard input distribution is always a lower bound for any randomized data structure on
its worst-case input. This is the direction that we (and also many previous works) use in the proof. But the
other direction may no longer hold. One way to see it is that when we try to fix the random bits used by
a randomized data structure, its running time may drop significantly. If the random bits are fixed, they can
be hard-wired to the data structure, and can be accessed during the operations for free. On the other hand,
if they are generated on the fly during previous operations, the data structure has to probe memory cells to
recover them, because it does not remember anything across the operations by definition. A randomized
data structure is a convex combination of deterministic data structures. Thus, in the cell-probe model, the
function that maps a data structure to its performance on a fixed input may not be linear, i.e., the perfor-
mance of a convex combination of deterministic data structures can be strictly larger than the same convex
combination of the performances of deterministic data structures on a fixed input. In contrast, the proof of
Yao’s Minimax Principle relies on the linearity of this function.

Indeed, for the dynamic 2D-ORC problem and any distribution over operation sequences with n/ logc n
updates and n−n/ logc n queries, we can solve it trivially if only n−3n/ logc n correct probability is required:

33

hard-wire the most-likely sequence of n/ logc n updates, and answer all queries based on it. Thus, each
update and query can be done in constant time. When the most-likely sequence of updates occurs (with
probability ≥ n−3n/ logc n), all queries will be answered correctly. Thus, to improve Theorem 1, one would
have to design a “data-structure-dependent” hard distribution, adversarially tailored to each data structure
we are analyzing, and carrying out such argument seems to require new ideas.

B Proof of Claim 4

Proof of Claim 4. The procedure of generating the sets Ii can be modelled as a binary tree. The root of
the tree is (IA, IB) = DEC(O). Its left child is DEC(IA), and its right child is DEC(IB). In general, for
each node (I, I ′), its left child is DEC(I) and its right child is DEC(I ′). We keep expanding until either
|I ′| <

√
n or the node is in depth i. It is easy to verify that

• the sum of |IB| over all leaves (IA, IB) is ∼ n/γ,

•
∑

(IA,IB)∈Ii |IB| is just the sum of |IB| over all leaves with |IB| ≥
√
n.

Thus, it is sufficient to bound the number of leaves (IA, IB) with |IB| <
√
n. Fix a leaf, consider the

path from root to it. Every time the path follows a left-child-edge, |IB| shrinks by a factor of 1−1/γ. Every
time it follows a right-child-edge, |IB| shrinks by a factor of 1/γ. Since we stop expanding the tree as soon
as |IB| <

√
n, the path can follow a right-child-edge at most dlog(

√
n/γ)/ log γe times (and stops as soon

as it follows the dlog(
√
n/γ)/ log γe one). Thus, there are at most(
≤ 0.1γ log n/ log γ

≤ dlog(
√
n/γ)/ log γe − 1

)
≤
(
≤ 0.1γ log n/ log γ

≤ log(
√
n/γ)/ log γ

)
≤ (0.2eγ)log(

√
n/γ)/ log γ

< 0.6log(
√
n/γ)/ log γ ·

√
n

γ
�
√
n

2γ

leaves in total. By above observation,
∑

(IA,IB)∈Ii |IB| ≥ n/γ −
√
n ·
√
n/2γ ≥ n/2γ.

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

