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Abstract

We study the two-party communication complexity of finding an approximate Brouwer fixed
point of a composition of two Lipschitz functions g◦f : [0, 1]n → [0, 1]n, where Alice holds f and
Bob holds g. We prove an exponential (in n) lower bound on the deterministic communication
complexity of this problem. Our technical approach is to adapt the Raz-McKenzie simulation
theorem (FOCS 1999) into geometric settings, thereby “smoothly lifting” the deterministic
query lower bound for finding an approximate fixed point (Hirsch, Papadimitriou and Vavasis,
Complexity 1989) from the oracle model to the two-party model.

Our results also suggest an approach to the well-known open problem of proving strong
lower bounds on the communication complexity of computing approximate Nash equilibria.
Specifically, we show that a slightly “smoother” version of our fixed-point computation lower
bound (by an absolute constant factor) would imply that:

• The deterministic two-party communication complexity of finding an ε = Ω(1/ log2N)-
approximate Nash equilibrium in an N × N bimatrix game (where each player knows
only his own payoff matrix) is at least Nγ for some constant γ > 0. (In contrast, the
nondeterministic communication complexity of this problem is only O(log6N)).

• The deterministic (Number-In-Hand) multiparty communication complexity of finding an
ε = Ω(1)-Nash equilibrium in a k-player constant-action game is at least 2Ω(k/ log k) (while
the nondeterministic communication complexity is only O(k)).
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1 Introduction

Brouwer’s fixed-point theorem states that every continuous function h from a closed convex set C to
itself has at least one fixed point — that h(x) = x for some x ∈ C. This result, and generalizations
thereof such as Kakutani’s fixed-point theorem and the Borsuk-Ulam theorem, have countless
applications in mathematics and economics ([Bor85, Mat07]). To give just one example, all known
proofs of the existence of Nash equilibria in general finite games rely on such fixed-point theorems.

Due to its fundamental nature, the problem of computing (approximate) Brouwer fixed points
has been studied for half a century, beginning with Scarf [Sca67], who adapted ideas of Lemke
and Howson [LH64] to obtain an (exponential-time) algorithm for the problem. Previous work
provides a fairly sharp understanding of the complexity of finding approximate fixed-points in two
computational models: Hirsch, Papadimitriou, and Vavasis [HPV89] pioneered the study of the
query complexity of the problem in the “black-box” oracle model, where an algorithm can only
interact with the function h by (adaptively) querying it at different points in the domain (i.e., no
explicit description is provided). The main result of [HPV89], which is a tour de force, is that every
deterministic algorithm for computing an ε-approximate fixed point of a function h mapping the n-
dimensional cube to itself has worst-case query complexity (1

ε )Θ(n), even when the function h has a
Lipschitz constant arbitrarily close to 1. Babichenko [Bab14] recently extended this lower bound to
randomized query algorithms (decision-trees) as well. In parallel to this line of work, Papadimitriou
[Pap94] considered the computational complexity of computing approximate Brouwer fixed points
for explicitly described functions,1 i.e., in a “white-box” model, and proved that the problem is
complete for the complexity class PPAD in 3 or more dimensions [Pap94]. The two-dimensional
version of the problem also turned out to be PPAD-complete [CD09].

This paper initiates the study of the two-party (and multiparty) communication complexity
of computing approximate Brouwer fixed points. That is, we study the problem in a “grey-box”
model of computation. We consider the natural version of the problem in which Alice’s input
is an explicitly described function f : C1 → C2, Bob’s input is an explicitly described function
g : C2 → C1, and the task is to compute an approximate fixed point of the composed function
g ◦ f : C1 → C1. Our lower bounds are for the case where C1 and C2 are discretized hypercubes
(of possibly different dimensions), with every coordinate of every point a multiple of some (small)
constant α. The goal is to compute some x ∈ C1 with ‖h(x) − x‖∞ ≤ ε (if one exists).2 We will
generally think of ε as a small constant (e.g., 10−3) and α as a much smaller constant (e.g., 10−6).

The communication complexity of this problem varies with the approximation parameter ε
and also with the geometry (amount of structure) imposed on the input functions f and g. We
interpolate between easy and hard versions of the problem through Lipschitz constraints on the
functions f and g. Specifically, we assume that Alice’s function f is λ1-Lipschitz (meaning ‖f(x)−
f(y)‖∞ ≤ λ‖x − y‖∞ for all x, y ∈ C1) and Bob’s function g is λ2-Lipschitz. If we only constrain

λ1, λ2 = O( εα) and hence λ1λ2 = Θ( ε
2

α2 ), then it is easy to prove strong lower bounds on the problem
(e.g., via a reduction from set disjointness). On the other hand, if λ1λ2 < 1 (i.e., when g ◦ f is a
“contraction” over the domain C1), Alice and Bob can easily find an ε-approximate fixed point in
C1 whenever it exists3 by iteratively evaluating the function using only O(log 1/ε) many rounds of
communication. So the problem transitions from easy to hard as λ1λ2 varies from small to large
— where does the transition occur?

1For example, one can describe a function on a finite set of points, and use some canonical interpolation to define
a continuous real-valued function.

2A protocol is allowed to behave arbitrarily on inputs that have no approximate fixed points.
3When C1 is an (equally spaced) grid over [0, 1]n, it is easy to see that any “contracting” function must in fact be

constant (and in particular must have an exact fixed point), so the argument for grids is trivial in this case.
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Our main result is an exponential (in the dimension) lower bound on the deterministic com-
munication complexity of computing an ε-approximate fixed point, even when λ1λ2 is as small as
43 εα (i.e., the values of g ◦ f on neighboring α-grid points differ by at most 43ε). Put differently,
our lower bound applies to the regime where the approximation parameter ε is independent of
the “discretization parameter” α (and in particular when limα→0

ε
α = ∞). Since our lower bound

trivially implies an exponential lower bound on the deterministic query complexity of computing
an ε-approximate fixed point for λ1λ2-Lipschitz functions h — the main result in [HPV89], mod-
ulo polynomial factors — we do not expect a simple proof of this result (see our proof outline in
Section 2.1.1).

In addition to its basic nature, a second motivation for studying the problem of computing fixed
points is its tight connections to other problems, such as computing a Nash equilibrium in strategic
games. For both query and computational complexity, lower bounds for the former problem were
crucial prerequisites to lower bounds for the latter problem [Bab14, CCT15, CDT09, DGP09].4

What about distributed computation of (approximate) Nash equilibria in the (realistic) scenario
where each player only knows his own payoff matrix? This question was advocated before due
to its implications on the rate of convergence of uncoupled market dynamics [HMC02, HM10].
We stress that lower bounds in the communication complexity model isolate the information-
theoretic bottleneck faced by such dynamics, as opposed to, e.g., conditional lower bounds based on
“bounded-rationality”-type assumptions (see e.g., [Sha64] and Section IV in [HMC02]).

Conitzer and Sandholm [CS04] were the first to study the communication complexity of equi-
libria. In N ×N bimatrix games, they proved an Ω(N2) communication complexity lower bound
for the problem of deciding whether or not a game has a pure Nash equilibrium (via a reduction
from set disjointness). Hart and Mansour [HM10] focused on the search problem of finding a mixed
Nash equilibrium in an n-player game with binary strategy sets and proved that the communication
complexity of finding an exact Nash equilibrium is 2n (note that the input size of each player is 2n,
as there are 2n joint strategy profiles). It is noteworthy that both of these lower bounds hold also
for the nondeterministic communication complexity of the problem.

Almost nothing is known about the communication complexity of computing ε-approximate
Nash equilibria (ε-ANE) for small positive values of ε. This is not a coincidence: In sharp contrast
to the problems above, the nondeterministic communication complexity of this problem is only
logarithmic in the size of the game description (and quadratic in 1

ε ) [LMM03]. Moreover, for ε
sufficiently large, the problem turns out to be easy – Goldberg and Pastink [GP13] and subsequent
improvements due to Czumaj et al. [?] show that finding an ε = 0.382-ANE in a bimatrix game
can be done using only poly log(N) deterministic communication, suggesting that the problem is
subtle (as any lower bound has to inherently rely on ε being sufficiently small). [GP13] proved
strong lower bounds only for the one-way communication complexity of the problem, but there are
no known non-trivial lower bounds in the unbounded-round communication model for any ε > 0
(for both the two-payer and the multi-player settings).

We propose a path to proving strong lower bounds on the communication complexity of com-
puting ε-approximate Nash equilibria. Specifically, in both the bimatrix and multi-player cases, we
show how to use a protocol for computing approximate Nash equilibria to compute ε-approximate
fixed points for input functions f and g with Lipschitz constants that satisfy λ1λ2 ≤ 1

2
ε
α (this

reduction holds for both deterministic and randomized communication). Thus, a constant-factor
(namely, 86) improvement in the Lipschitz constraint in our main result immediately implies strong

4For query complexity, there is an exponential (in the number of players) lower bound even for ε-approximate
Nash equilibria with constant ε [Bab14, CCT15]. The computational complexity remains open for the constant ε
case; it is known to be quasi-polynomial-time solvable [LMM03] and there are plausible conjectures under which no
faster algorithm exists [BPR16].
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deterministic communication complexity lower bounds for computing approximate Nash equilibria.
As explained in [HM10], such a lower bound would rule out the fast convergence of any form of
deterministic uncoupled dynamics that converges even to an approximately stable market state.

2 Overview of Results

Let AFPCα,(n,λ1),(m,λ2),ε denote the two-party search problem of finding an ε-fixed-point of g ◦ f ,
where Alice holds (the truth table of) a λ1-Lipschitz function f : Gα,n 7→ Gα,m and Bob holds a
λ2-Lipschitz function g : Gα,m 7→ Gα,n. (Gα,n denotes the α-grid of the n-dimensional solid cube
[0, 1]n, see the formal definition of the problem in Section 4.)

Our first and main result asserts that every deterministic communication protocol that finds a
(λ1λ2α/43)-fixed-point of the composed function g ◦ f requires exponential communication in the
dimension n (with m = O(n)).

Theorem 2.1 (Deterministic communication lower bound for AFPC). There are universal con-
stants α ∈ (0, 1), λ1, λ2 > 1 such that for every n ≥ 3 and m = Oα(n),

DCC
(
AFPC

α,(n,λ1),(m,λ2),
λ1λ2α

43

)
≥ 2Ωα(n).

We stress that that parameters in the result above are such that λ1λ2 = Θ(1/α), that is,
the approximation parameter ε = (λ1λ2α/43) for which we prove the lower bound is an absolute
constant independent of the grid size (i.e., the “discretization parameter”) α, and in particular, ε
can be much larger than α.

Our second contribution is a reduction from AFPC to the problem of computing an approx-
imate Nash equilibrium (ANE). This result shows that any communication lower bound (de-
terministic or randomized) on finding a (2λ1λ2α)-fixed-point of g ◦ f translates to two different
lower bounds: (i) on the two-party communication complexity of finding an Ω(1/ log2K)-ANE
in a 2-player bimatrix game with K = exp(n) actions ; (ii) on the k-party (Number-In-Hand)
communication complexity of finding an Ω(1)-ANE in a k-player constant-action game.

Theorem 2.2 (From approximate fixed points to approximate Nash, informal). For every m ≥
n ∈ N, any constants λ1, λ2, α ∈ (0, 1), and any error parameter ρ ≥ 0:

• (Two-player games)

RCC
ρ

(
ANEK,Ω(1/ log2K)

)
≥ RCC

ρ

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
, where K = (1/α)m.

• (k-player games)
RCC

ρ

(
k-ANE1/α,3α3/16

)
≥ RCC

ρ

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
, where k = Oα(m logm).

Theorem 2.2 implies that a slightly stronger version of Theorem 2.1 (where the approximation
parameter is larger only by an absolute constant factor) would imply near-optimal deterministic
communication lower bounds for finding approximate Nash equilibria in both two-player and k-
player games. In turn, this would rule out any efficient distributed dynamics that converges even
to an approximately stable state (see Corollary 6.4 for the formal statement and a more elaborate
discussion on this direction in Section 7).
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2.1 Overview of Proofs and Techniques

“Lifting”: Communication Lower Bounds from Query Lower Bounds. To prove
Theorem 2.1, we follow an approach that converts lower bounds in the weaker (and simpler-to-
understand) query complexity world ([BdW02]) into two-party lower bounds in the communication
complexity world (e.g., [NW95, BdW02, GLM+15, RM99, GPW15]). This approach is based on
a technique known as “lifting,” where the inputs to the (query) problem are distributed in some
carefully chosen fashion (using a 2-party “gadget”) between Alice and Bob, who are then required
to solve the resulting distributed search problem.

More formally, let S : ΣN −→ Σ be some search problem (sometimes called the “outer func-
tion”). The g-lift of S is the two-party communication problem defined by

S ◦ gN (x,y) := S(g(x1, y1), . . . , g(xN , yN )),

where the gadget g : X × Y −→ Σ is typically some “small” two-party function. Clearly, the
communication complexity of solving S ◦ gN is at most log (min{|X |, |Y|}) · (query complexity(S)),
since Alice and Bob can always simulate any decision tree for S by sequentially having the player
with the shorter input send his corresponding coordinate to the other, who then evaluates the query.
Proving the other direction, namely, that such communication protocols are essentially optimal, is
a highly nontrivial result, commonly referred to as a simulation theorem (e.g., [RM99, GPW15,
GLM+15, GP14]). The gadget g plays a crucial role in such results, as it ensures Alice and Bob
cannot take “short-cuts” by avoiding queries made by the decision tree.5 Thus the gadget g must be
a sufficiently “hard” function to rule out such manipulations. We elaborate more on this in Section
5.4. We remark that simulation theorems have recently led to breakthrough results in complexity
theory, including the resolution of the long-standing “Clique vs. Independent Set” problem [Göö15,
GPW15], separation theorems between various deterministic and non-deterministic communication
measures [GPW15, ABB+15], and the separation of the monotone circuit hierarchy [RM99].

The most relevant result to our problem is the simulation theorem of Raz and McKenzie
([RM99]) and its recent generalization due to Goos, Pitassi and Watson ([GPW15]), who showed
that, for any search problem S : ΣN 7→ Σ, if the input z = (z1, . . . , zN ) to S is “lifted” using the
index gadget

IND(xi, yi) := yi[xi]

(i.e., Alice’s input is a set of indices x = {xi}Ni=1 ∈ [k]N , Bob’s input is a set of vectors y = {yi}Ni=1 ∈
(Σk)N for k = poly(N), such that yi[xi] = zi for every i ∈ [N ]), then the “lifted” communication
problem remains as hard as the corresponding query problem:

Theorem 2.3 ([RM99, GPW15], informal). For any search problem S, the deterministic commu-
nication complexity of the two-party problem S ◦ INDN (x,y) := S(y1[x1], . . . , yN [xN ]) is at least
Ω(log k) times the deterministic query complexity of S.

In the next subsections, we explain the relevance of this theorem to the distributed approximate
fixed-point problem (AFPC), and provide a streamlined overview of the proofs of our main results
(Theorem 2.2 and Theorem 2.1).

5For example, if S is the AND function
∧N
i=1 zi and g is chosen as an AND-gadget itself, i.e., g(xi, yi) = xi ∧ yi,

then it is easy to see that the deterministic query complexity of S is N , but S ◦ gN =
∧
i(xi ∧ yi) ≡

(∧
i xi
)
∧
(∧

i yi
)

and therefore the communication complexity of S ◦ gN is 0!
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2.1.1 A High-Level Proof Overview of Theorem 2.1

The approximate fixed-point problem that we study (AFPC) has a “geometric” aspect to it, in
that both of the input functions are required to be O(1)-Lipschitz.6 The Lipschitz condition implies
that if, for example, Alice sends Bob a value f(x), then Bob automatically learns information about
the value of f on inputs close to x. Dealing with this geometric aspect of the problem is the most
challenging and subtle aspect of the proof.

As mentioned above, the key step of the proof is showing that the deterministic communication
complexity of AFPC is bounded from below by the deterministic query complexity of the search
problem of finding an approximate fixed point of a λ-Lipschitz function h : [0, 1]n 7→ [0, 1]n (we
denote this problem by AFP). Fortunately, the query complexity of this problem was previously
studied by Hirsch, Papadimitriou and Vavasis [HPV89], who showed (using a highly nontrivial
geometric construction, see Section 5.1 and Figure 1) that any (deterministic) decision tree solving
this problem requires 2Ωλ(n) queries, for any Lipschitz constant λ > 1. (This lower bound was
recently generalized to the randomized query model by Babichenko [Bab14]).

A natural approach at this point is to try and use simulation theorems to “lift” the aforemen-
tioned lower bound from the query setup to the communication setup. Alas, as discussed above,
simulation theorems rely on a carefully chosen gadget g, and thus the “lifted” communication prob-
lem S ◦ gN typically corresponds to some contrived two-party problem, even when S is a natural
problem. Fortunately, the lifting gadget in the Raz-McKenzie simulation theorem is (almost) ex-
actly what we were looking for: Our simple but central observation is that, letting S denote the
search problem of finding an approximate fixed point of a (discrete) function h : [0, 1]n 7→ [0, 1]n (i.e.,
S := AFP), and letting the domain [N ] denote (some finite discretization of) the domain [0, 1]n

(i.e., N = 2O(n)), the “lifted” communication problem AFP ◦ INDN (x,y) essentially corresponds
to AFPC, albeit with unbounded Lipschitz constraints on f and g. That is:

Key Observation: When the input vectors x and y are interpreted as the truth tables of
(discrete) functions f : [0, 1]n 7→ [0, 1]m and g : [0, 1]m 7→ [0, 1]n respectively, the index gadget
IND(xi,y) = y[xi] = g(f(i)) encodes the truth table of the composed function h := g ◦ f .

Unfortunately, Theorem 2.3 cannot be invoked in a black-box fashion to conclude Theorem 2.1,
the main reason being that the decomposition h(x) = g(f(x)) produced by these proofs does not
obey any (nontrivial) Lipschitz constraints on f and g (even when h := g ◦ f is known to be
Lipschitz, as in in the [HPV89] construction). We elaborate more on this in Section 5.2.

Embedding these geometric Lipschitz constraints into the Raz-Mackenzie simulation theorem
is a substantial conceptual and technical obstruction, since the simulation argument (of both
[GPW15], [RM99]) heavily relies on the invariant that the unqueried coordinates in the simu-
lating decision-tree can retain any potential value (intuitively, this invariant ensures that there’s
enough remaining “entropy” in the inputs so that the simulating decision tree does not get “stuck”).
This property essentially requires the set of inputs of Alice and Bob to have a product structure
(which in our context means that f, g assign independent values to each point in their domain, i.e.,
f ∈ ×xB(x) and g ∈ ×yB(y), where B(x) (resp. B(y)) are some predetermined sets of values to
which each x (resp. y) is mapped to).

We show how to modify the [GPW15] simulation argument so that the decomposition (lifting)
of h into g ◦ f accommodates simultaneously the Lipschitz constraints on f and g (as claimed in

6The problem is not interesting without the Lipschitz requirement. Intuitively, if f and g are random functions
(say), then there are no non-trivial communication protocols for the problem. It is not difficult to turn this intuition
into a strong lower bound.
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Theorem 2.1) and the product-structure constraint on f, g, at the price of slightly increasing the
dimension m of the “intermediate” domain (i.e., the range of f) so that m� n yet still m = O(n).

Indeed, increasing the dimension of f ’s range enables us to replace the global Lipschitz con-
straints on f with local “displacement-like” conditions of the form f(x) ∈ B(x) where B(x) is some
large enough “local” neighborhood of x in [0, 1]m.7 Replacing the Lipschitz constraint on f with
the above local-displacement constraint has another important feature, namely, it ensures that f
is in fact bi-Lipschitz, which is necessary to facilitate the desired Lipschitz constraint on g. To
accommodate the Lipschitz property of g in a similar product-structure fashion, we rely on the
local-displacement property of the composed function h of [HPV89] and on so-called Lipschitz-
extension arguments, which allow us to extend any partial Lipschitz function g from any subset
of points to its entire domain ([0, 1]m) without increasing g’s Lipschitz constant. A more detailed
description of our construction can be found in Section 5.3.

The lower bound we obtain in Theorem 2.1 holds for (the promise problem of) finding a
λ1λ2α/43-fixed-point of g ◦f . The constant-factor loss is the cost that we pay to retain the product
structure necessary for a simulation theorem. Improving our lower bound further so that it holds
for larger approximation parameters (ideally, even for 2λ1λ2α) requires decomposing h into g ◦ f
in a slightly “smoother” fashion, so that λ1λ2 is smaller by an absolute constant factor (ideally, 86
or more). We discuss this direction further in Section 7 of the Appendix.8

Figure 1: An illustration of the geometric construction of [HPV89] (cf. [Bab14]). The arrows in the
figure correspond to displacements h(x)− x. Each function h ∈ H is a “continuous interpolation”
of an (exponentially long) discrete path on a finite grid of [0, 1]n, whose endpoint is the unique
hard-to-find fixed-point of h. The “geometric simulation theorem” we prove decomposes h (i.e.,
each arrow in the picture) into g ◦ f using the “index” gadget, in a way that ensures both f and g
are both Lipschitz and have a product structure.

7Intuitively, since distances are measured in the `∞ norm, allowing the dimension of the range of f to be � n
allows us to “embed” exponentially large local balls into [0, 1]m, one for each x in the domain of f , and these disjoint
local neighborhoods form the range of all possible functions f Alice may receive. See also Figure 4 in Section 5.3.

8In short, the main reason we believe such improvement is plausible is that our current proof does not make direct
use of the premise that the “lifted” function h = g ◦ f is itself guaranteed to be λ-Lipschitz (for a constant λ > 1
arbitrarily close to 1), but only uses a weaker property, namely, that h has “local displacements”: ‖h(x) − x‖∞ ≤
5ε ∀x.
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2.1.2 From AFPC to ANE : A High-level Proof Overview of Theorem 2.2

We sketch the proof of the reduction for the two-player case, which shows that any (deterministic
or randomized) two-party communication protocol that finds an Ω(1/ log2N)-ANE in an N × N
game, can be used, with no extra communication, to recover a (2λ1λ2α)-approximate Brouwer
fixed-point of g ◦ f , assuming f and g are λ1 and λ2 Lipschitz, respectively.9

Our reduction is inspired by a recent reduction due to Babichenko [Bab14] (in turn inspired
by a blog post of Shmaya [Shm12]), who used it to relate the approximate Nash problem to the
approximate fixed-point problem in the weaker query oracle model. The basic idea behind the
reduction is that Alice and Bob can translate their respective input functions (f, g resp.) to the
fixed-point problem, into convex payoff functions in which Alice’s goal is to match the image of Bob’s
action under her function f , and similarly Bob’s goal is to match the image of Alice’s action under
his function g, where “pure actions” are points in some finite (α > 0) grid of the m-dimensional
(resp. n-dimensional) cubes. More formally, Alice and Bob can use their respective input functions
to define (using no communication at all!) a two-player game with the following payoff functions:

uA(x, y) = − 1

m
· ‖x− f(y)‖22 , uB(x, y) = − 1

n
· ‖g(x)− y‖22.

Crucially, defining these payoff functions requires no interaction, since Alice’s payoff only depends
on f , and similarly for Bob (note that the size of the game is N = (1/α)m as this is the number of
α-grid points in the m (resp. n) dimensional cube, and that the normalization by m (n) ensures
that payoffs are in [−1, 1]).

Now consider, for the sake of simplicity, that Alice and Bob have some protocol π that finds an
exact Nash equilibrium (µ, σ) of the above game. Intuitively, (µ, σ) must be a pure equilibrium:
Indeed, by definition of Alice’s payoff and the convexity of the `2 norm, it is easy to see that
for any equilibrium strategy σ played by Bob, Alice has a unique best response x∗ := Ey∼σ[f(y)]
(this is essentially the well-known fact that expectation is the minimizer of the variance). An
analogues argument shows that Bob’s unique best response to any strategy µ played by Alice is
y∗ := Ex∼µ[g(x)]. Since x∗ and y∗ are pure strategies, this means that any (exact) equilibrium
must have the form x∗ = f(y∗) and y∗ = g(x∗). Combining the two together, we have y∗ = g(x∗) =
g(f(y∗)), so y∗ is an exact fixed-point of g ◦ f .

Alas, the argument above has a subtle flaw: the point x∗ := Ey∼σ[f(y)] might not lie on
the (α) grid, in which case it is not a legitimate pure strategy of Alice (similarly for Bob’s best
response y∗), so the argument above is not precise (this is no surprise, as g ◦ f need not have
an exact fixed-point on the discrete grid). However, what does turn out to be true is that any
“good enough” (≈ 1/n2 = Θα(1/ log2N)) approximate Nash equilibrium (µ, σ) of the above game,
must be entirely supported on the unique grid cubes C(x∗), C(y∗) that contain the points x∗, y∗

respectively. In fact, we show this more generally for any good enough approximate well-supported
(mixed) equilibrium (see Section 6.1 for the definition), and then use an argument due to [Bab14]
that allows us to convert it to a (standard) ANE (we remark that the analogues step for the k-player
reduction involves a more sophisticated argument recently shown by [CCT15], which we show can
be implemented in a distributed fashion). One can then use the Lipschitz properties of f and g to
argue that “rounding” the “exact fixed-point” y∗ := Ex∼µ[g(x)] on Bob’s corresponding grid-cube
(found by the protocol π), incurs an additive precision-loss of ≈ λ1λ2α, hence π can be used to
recover a (2λ1λ2α)-approximate fixed-point of g ◦ f . The formal proof can be found in Section 6.3.

9The claim for k-player constant-action games follows a similar-in-spirit reduction from a multiparty variant of
the AFPC problem which in turn admits an easy reduction from the two-party AFPC problem, but this time the
reduction applies even to k-party protocols that merely find an Ω(1)-ANE in k-player constant-action games. See
Section 6.3.2 for more details.
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3 Preliminaries

We denote by ‖x‖∞ := maxi |xi| the `∞ (max) norm, and by ‖x‖2 the `2 (Euclidean) norm. For
a multi-set S of [n], U(S) denotes the uniform distribution over S. The family of all distributions
over a set S is denoted ∆(S) (for example, ∆([n]) is the family of all distributions over [n], and
U([n]) ∈ ∆([n])). We let ei denote the i’th vector in the standard n-dimensional basis.

3.1 Geometric Definitions and Notation

Our results involve geometric concepts and constructions. Since communication complexity is a
discrete model, we consider (standard) discrete analogues of continuous geometric concepts, and
make a recurring use of discretization throughout the paper. We denote by

Gδ,n : {x ∈ [0, 1]n : xi ∈ δN}

the δ-grid on the n-dimensional solid cube. A set C ⊆ Gδ,n is called a δ-grid-cube (or simply
cube) if there is some x ∈ Gδ,n such that C = {x + δ · ei | i ∈ [n]}. For a point x′ ∈ [0, 1]n, we
sometimes use the shorthand Cδ(x

′) to denote the (unique) δ-grid-cube containing x′.10 We denote
by C := ×i∈[n] [x, x+ δ · ei] the (continuous) subcube of the solid cube [0, 1]n induced by C.

Definition 3.1 (Lipschitz functions). We say that a mapping f : Rn 7→ Rm is λ-Lipschitz if for
every x, y ∈ [0, 1]n,

‖f(x)− f(y)‖∞ ≤ λ‖x− y‖∞.

Note that the above condition is well defined even when m 6= n. When the domain of f is
discrete, say f : Gδ,n 7→ [0, 1]m, the condition above ranges over all points (x, y) ∈ G2

δ,n, and in this
case (whenever not clear from context) we will say that f is λ-Lipschitz on Gδ,n. The following
simple proposition follows directly from the triangle inequality.

Proposition 3.2 (Transitivity of Lipschitz continuity). If f : Rn 7→ Rm is λ1-Lipschitz, g : Rm 7→
Rn is λ2-Lipschitz, then the composed function g ◦ f : Rn 7→ Rn is (λ1λ2)-Lipschitz.

Lipschitz Extensions. The following known lemma asserts that it is possible to extend any (`∞)
Lipschitz function from an arbitrary subset of points in its domain to any superset containing it,
in a continuous fashion without increasing the Lipschitz constant of the function.11

Lemma 3.3 (Lipschitz Extension, essentially [Whi33]). Let A ⊂ Rn be a non-empty set. If f :
A 7→ Rm is λ-Lipschitz on A (in the `∞ sense), then the function f̄ : Rn 7→ Rm whose coordinates
are defined by

f̄i(x) := inf
z∈A
{fi(z) + λ · ‖x− z‖∞}

is λ-Lipschitz on Rn.

An immediate proof of this lemma using [Whi33] can be found in Section A of the Appendix.
For subsets A ⊆ B ⊆ Rn, we denote the MLE-extension of a function f : A 7→ Gδ,m from A to
B by f̄ . The MLE extension may produce real-valued points, and we define df̄e as the “rounded
MLE-extension” of f̄ to Gδ,m, obtained by rounding the coordinates of f̄ up to the nearest multiples
of δ. A standard triangle inequality argument implies that, if B ⊆ Gα,n and f is λ-Lipschitz on A,
then df̄e is ≤ (λ+ δ/α)-Lipschitz on B.

10If a coordinate xi is a multiple of δ, associate it with the subcube for which xi is the minimum value of the ith
coordinate (for example).

11Analogous extension theorems for arbitrary metric spaces in Rm are generally false, in the sense that the Lipschitz
constant resulting from any extension might strictly increase (see [ACJ04] for a survey on extension theorems).
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Conventions. Every discrete function f : Gα,n 7→ Gα,m (i.e., a mapping from Rn to Rm) can be

encoded using a vector ∈ GGα,nα,m . Throughout the paper, we shall refer to this vector of values as
the truth table of f .

3.2 Complexity Measures Notation

Definition 3.4 (Search Problems (Relations)). A search problem S(x) is defined by a subset S ⊆
X × Z. A search problem is called total if for all x ∈ X there is at least one z ∈ Z for which
(x, z) ∈ S (otherwise, S is a promise search problem). We say that a decision tree solves S(x) if
for any input x, it outputs some z ∈ Z such that (x, z) ∈ S.

Similarly, a two-party search-problem S(x, y) is defined by a subset S ⊆ X × Y × Z, and
S is a total search problem if for all x, y there is at least one z for which (x, y, z) ∈ S. We
say that a communication protocol solves a total relation S(x, y) if for any input pair (x, y), it
outputs some z ∈ Z such that (x, y, z) ∈ S. An analogous definition applies to k-party relations
S ⊆ X1 ×X2 × . . .×Xk ×Z.

We will be interested in the following complexity measures for a search problem S ⊆ X × Z:

• DQC (S) denotes the deterministic query complexity of S, i.e., the smallest depth of a decision
tree that outputs a correct solution for S on every input.

• RQC
ρ (S) denotes the (worst-case) depth of a randomized decision tree that outputs a correct

solution for S with probability ≥ 1− ρ for every input.

For a two-party search problem S ⊆ X × Y × Z,

• NDCC (S) denotes the cheapest non-deterministic communication protocol12 which solves S.

• DCC (S) denotes the cheapest deterministic communication protocol which solves S.

• RCC
ρ (S) denotes the (worst-case) communication cost of the cheapest randomized two-party

communication protocol which outputs a correct solution for S(x, y) with probability ≥ 1−ρ
for all inputs (x, y) ∈ X × Y, over the randomness of the protocol.

By abuse of notation, for a k-party relation S ⊆ X1 × X2 × . . . × Xk × Z, we use the same
communication complexity measures (NDCC (S) ,DCC (S) and RCC

ρ (S)) to denote, respectively, the
k-party Number-In-Hand (NIH) non-deterministic, deterministic and randomized communication
complexity of the k-party problem S, where the input of player i ∈ [k] is xi ∈ Xi.

4 Two-Party Deterministic Communication Complexity of Ap-
proximate Fixed Points

We now formally define AFPC, the two-party problem of finding an approximate Brouwer fixed
point of a composition of two Lipschitz functions. The problem is defined in Figure 2.

12A non-deterministic communication protocol for S is a protocol π in which a referee (Merlin) who has access to
both player’s inputs (x, y), can initially give Alice and Bob an advice a = a(x, y), and after this step the protocol π
proceeds as usual. The protocol should output a valid solution z to S (s.t (x, y, z) ∈ S or ⊥ if no such z exists) for
any input pair (x, y). The cost of the protocol is the sum of bits communicated in both a and π. (For a more formal
definition and a thorough overview of non-deterministic communication complexity and its importance and relations
to other models of computation, see [KN97]).
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AFPCα,(n,λ1),(m,λ2),ε

Let α ∈ (0, 1), m ≥ n, λ1, λ2 ≥ 0, and ε ∈ (0, 1] be publicly known parameters.

INPUTS : Alice receives a truth table of a λ1-Lipschitz function f : Gα,n 7→ Gα,m. Bob receives
a truth table of a λ2-Lipschitz function g : Gα,m 7→ Gα,n.

OUTPUT: x ∈ Gα,n such that ‖g(f(x))− x‖∞ ≤ ε, i.e., an ε-fixed point of g ◦ f (or ⊥ if such
point doesn’t exist).

Figure 2: The two-party communication problem of finding an approximate fixed point of g ◦ f .

Note that, whenever ε ≥ 2λ1λ2α, AFPCα,(n,λ1),(m,λ2),ε is a total search problem: Indeed, Proposi-
tion 3.2 guarantees that the composed function h := g ◦ f : Gα,n 7→ Gα,n is λ1λ2-Lipschitz on Gα,n,
hence Lemma A.1 (i.e., the (rounded) MLE extension of h) ensures it is possible to extend h to the
entire solid cube [0, 1]n in a way that it remains (2λ1λ2)-Lipschitz on the solid cube. By Brouwer’s
fixed-point theorem, the extended function must have an exact Brouwer fixed point x ∈ [0, 1]n, so
rounding x to the closest grid point x′ ∈ Gα,n ensures (via a standard triangle-inequality argument)
that x′ is a 2λ2λ1α ≤ ε-fixed point of g ◦ f . We conclude that such an approximate fixed-point
must always exist. Notice that the non-deterministic communication complexity of AFPC in this
regime is only O(log |Gα,n|) = Oα(n) (since Alice and Bob can exchange these many bits to verify
that a given x satisfies ‖x − g ◦ f(x)‖∞ ≤ ε). For ε < 2λ1λ2α, AFPC is a promise problem,
where the players are guaranteed that the ε-fixed point exists. (A protocol can behave arbitrarily
on inputs with no ε-fixed point.)

Our main result states that any two-party deterministic communication protocol solving the
following promise version of AFPC requires exponential communication (in the dimension n).

Theorem 4.1 (Deterministic Communication Lower bound for AFPC). There are universal con-
stants α ∈ (0, 1), λ1, λ2 ≥ 2 such that for every n ≥ 3 and m = Oα(n),

DCC
(
AFPC

α,(n,λ1),(m,λ2),
λ1λ2α

43

)
≥ 2Ωα(n).

The key step in the proof of Theorem 4.1 is showing that the deterministic communication
complexity of AFPC with the above parameters is bounded below by the deterministic query
complexity of AFPn,α,λ,ε, the search problem of finding an ε-approximate fixed point of a λ-
Lipschitz function h : Gα,n 7→ Gα,n (see Section 5.1 for the formal definition). More formally, we
shall prove

Lemma 4.2 (Geometric Simulation Lemma for AFPC). There are universal constants δ ∈ (0, 1),
λ ≥ 2 and D ≥ 244, such that for every n ≥ 3 and m = Oα(n),

DCC
(
AFPCα,(n,2D+1),(m, 21ε

Dα
),ε

)
≥ ·Ω(m) · DQC (AFPn,α,λ,ε) ,

where α = δ/1200, ε = λδ/1200.

Since the query complexity of AFPn,α,λ,ε was previously shown to be 2Ωλ(n) (see Theorem 5.2
below), Lemma 4.2 will directly imply Theorem 4.1, by setting λ1 := 2D+ 1, λ2 := 21ε/(Dα), and
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observing that for this choice of parameters, we have λ1λ2α/43 ≤ ε, so Theorem 4.1 follows.

The main part of the proof of Theorem 4.1 is therefore devoted to the construction and proof
of Lemma 4.2. This is the content of the next section.

5 Proof of Theorem 4.1 and the Geometric Simulation Lemma

In this section we prove Theorem 4.1, most of which is devoted to the proof of our geometric
simulation lemma (Lemma 4.2). We begin by describing the approximate Brouwer fixed-point
problem in the query model (AFP) and some important properties of the lower bound construction
for this problem due to [HPV89]. We then describe the connection between the (“lifted” version
of) the AFP problem and AFPC, via the Raz-McKenzie simulation theorem (Section 5.2), and
finally provide the actual proof of Lemma 4.2 in Section 5.4. Throughout this section, we shall
denote by

N := |Gα,n| = (1/α)n , M := |Gα,m| = (1/α)m

the respective sizes of the functions’ domains.

5.1 Detour: The Query Complexity of Approximate Fixed Points

As discussed in the introduction, a central ingredient of our communication lower bound on AFPC
is the following result of Hirsch et. al [HPV89] (recently strengthened by Babichenko [Bab14]), who
settled the deterministic (resp. randomized) complexity of finding an approximate fixed point in
the weaker query complexity model. In this section we state the results and properties of the
construction of [HPV89] that will be relevant to our communication lower bound. We start by
defining the approximate fixed-point search problem in the query oracle model (denoted AFP) in
Figure 3.

AFPn,α,λ,ε

INPUT: A λ-Lipschitz function h : Gα,n 7→ Gα,n, and a parameter ε > 0.

OUTPUT: x ∈ Gα,n such that ‖h(x)− x‖∞ ≤ ε, i.e., an ε-fixed point of h.

QUERIES: Each query is a point x ∈ Gα,n and the answer is h(x).

Figure 3: The problem of finding an approximate fixed point of a (discrete) Lipschitz function in
the query oracle model.

In [HPV89], the authors constructed a particular family of continuous Lipschitz functions on
the solid cube [0, 1]n with the following important properties:

Definition 5.1 (The Class Hδ,λ,n, [HPV89]). For every δ < 1, λ > 1 satisfying λδ ≤ 1200, and
every n ≥ 2, there is a family of Lipschitz continuous functions Hδ,λ,n ⊆ {h : [0, 1]n 7→ [0, 1]n},
such that every h ∈ Hδ,λ,n has the following properties:
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(1) (Discrete encoding, Lemma 11 in [HPV89]) h is completely determined by its values on the
grid Gδ,n, i.e., by a truth table h : Gδ,n 7→ [0, 1]n.

(2) (Lipschitz continuity, Lemma 9 in [HPV89]) h is λ-Lipschitz.

(3) (Unique fixed point and bounded displacements, Lemma 7 in [HPV89]) Let ε = λδ
1200 . For every

h ∈ Hδ,λ,n, there is a unique cube Chε ⊂ Gδ,n such that for all x /∈ Chε , 2ε < ‖h(x)−x‖∞ ≤ 5ε.

In particular, Chε contains the (unique) exact fixed point of h, and ∀ x ∈ [0, 1]n, ‖h(x)−x‖∞ ≤
5ε. The fact that the maximum “displacement” of h is 5ε will be important for our proof.

An illustration of this construction (adapted from [Bab14]) can be found in Figure 1. Since our
goal is to somehow adapt the construction of [HPV89] to the communication complexity setup, we
shall work, as standard, with a discretized version of the family Hδ,λ,n. To avoid confusion between
the continuous and discrete versions, we will denote by

Hδ,λ,n|α
the “discretized” class of functions Hδ,λ,n where each function h is evaluated on Gα,n and h(x)
is rounded to the nearest point arg minz∈Gα,n ‖z − h(x)‖∞. In other words, every h ∈ Hδ,λ,n|α is
represented by a truth table of size |Gα,n| = (1/α)n. Note that since every h ∈ Hδ,λ,n is λ-Lipschitz
on [0, 1]n, it must have an (exact) Brouwer fixed point. Thus, for any discretization parameter

α ≤ δ

1200
,

a standard rounding argument13 implies that every h must have a λα ≤ δλ
1200 ≤ ε fixed point

x0 ∈ Gα,n. By property (3), x0 ∈ Chε .

[HPV89] proved an exponential lower bound on the number of deterministic queries needed to
solve AFP under the restricted class of input functions Hδ,λ,n|α:

Theorem 5.2 (Deterministic Query Complexity of Approximate Fixed Point, [HPV89] Theorem
2). There are universal constants δ, λ such that for any n ≥ 3 and α ≤ δ/1200,

DQC
(
AFPn,α,λ,δλ/1200

)
≥ (1/δ)Ωλ(n).

Moreover, the lower bound holds under the restricted class of input functions Hδ,λ,n|α.

Remark 5.3. [HPV89] proved Theorem 5.2 in the continuous setting where each function h ∈
Hδ,λ,n maps the solid cube to itself, and each query is a point x ∈ [0, 1]n, while we restrict to discrete
inputs and queries as mentioned above. We note that, once again, for any choice α ≤ δ/1200,
‖h(x) − h′(x)‖∞ ≤ α = δ/1200 � ε, and therefore Property (3) in Definition 5.1 implies that

‖h′(x) − x‖∞ ≥ 1.5ε (say) for any x /∈ Chε . Since the lower bound in [HPV89] applies for any
(deterministic) query algorithm that finds the cube Chε , any solution for the discretized version
(AFP) can be used to determine Chε , and thus the lower bound in the discrete case is implied by
the original lower bound of [HPV89] (Clearly, restricting to discrete queries can only drive up the
query complexity).

We note that recently, Babichenko [Bab14] strengthened the result of [HPV89], showing that the
exponential query bound continues to hold even for randomized query algorithms with exponentially
small success probability.

13In fact, rounding h’s values on Gα,n can increase the Lipschitz constant of h (w.r.t Gα,n) from λ to λ + 1 (this
can be directly proved via the triangle inequality), but since our choice of λ will be arbitrary, we will ignore this
minor point.
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5.2 From AFP to AFPC : Raz-McKenzie Simulation

The following definition will be central to understanding the connection between the AFP search
problem (in the query model) and the AFPC problem (in the communication model):

Definition 5.4 (g-Lift of Search Problems). Let S : ΣN 7→ Σ be a search problem. For a two-party
communication function g : X × Y 7→ Σ, the g-lift of S is the two-party relation

S ◦ gN (x,y) := S ((g(x1, y1), g(x2, y2), . . . , g(xN , yN ))) .

The “inner” two-party function g(x, y) is sometimes called the gadget. Raz and McKenzie
[RM99] showed that, for any “canonical”14 search problem S, if the gadget g is chosen to be the
index function

IND(x, y) := y[x],

then any decision-tree lower bound for S is also a lower bound on the deterministic communication
complexity of S ◦ INDN . In a recent work, Goos, Pitassi and Watson simplified and generalized
their result to any (possibly partial) relation S, proving the following theorem:

Theorem 5.5 (Simulation Theorem, [RM99, GPW15]). Let S : ΣN → Σ be a search problem, and
let x ∈ [k]N , y ∈ (Σk)N where k = N20 and |Σ| ≤ k1/1000 (note that yi[xi] ∈ Σ for all i ∈ [N ]).
Then

DCC
(
S ◦ INDN (x,y)

)
≥ Ω(logN) · DQC (S) .

In other words, Theorem 5.5 states that, when the input to S is “decomposed” via the index
gadget (of large enough dimension k = poly(N)), the most efficient (deterministic) protocol for
solving S ◦ INDN is essentially a simulation of the optimal decision tree for S, in which Alice and
Bob sequentially use log k = O(logN) bits to query the input bits zi = yi[xi] as dictated by the
decision tree for S (Raz and McKenzie called such protocols “sequential protocols”).

In order to describe how Theorem 5.5 is relevant to the setting of Lemma 4.2, it will be useful to
identify both the set of coordinates [N ] and the alphabet Σ in the statement of Theorem 5.5, with
the set Gα,n, and the set of “indices” [k] with the set [M ] = Gα,m (note that we can “artificially”
set k = N1000 instead of k = N20 in Theorem 5.5 so that |Σ| = N ≤ k1/1000, losing only a constant
factor in the lower bound). Hence, in what follows, we interchangeably use the bijections

[Σ]←→ Gα,n ←→ [N ] , [k]←→ Gα,m ←→ [M ], (1)

where we shall set the dimension m ≈ 1000 ·n (to meet the requirement that M ≥ Σ1000 = N1000).
Notice that in this terminology, Alice’s input x ∈ [M ]N can be interpreted as the truth table of a
function f : Gα,n 7→ Gα,m, defined by

xi = f(i) ∈ Gα,m ∀i ∈ Gα,n.

Similarly, Bob’s input y ∈ (ΣM )N encodes the truth table of N functions gi : Gα,m 7→ Gα,n, defined
by

yi[j] = gi(j) ∈ Gα,n ∀ i ∈ [N ], j ∈ Gα,m.
14The proof of [RM99] applies to so called “structured” search problems (canonical search problem associated with

DNF tautologies).
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Suppose, for the sake of argument, that in Theorem 5.5 we had the further assumption that
Bob has the same input y in each of the N coordinates, i.e., that

y1 = y2 = . . . = yN . (2)

(This assumption is almost “for free” since each yi is anM -dimensional vector, andM � N anyway,
so one “might as well” consider, in each coordinate i, the single concatenated array y := y1◦. . .◦yN .
We shall formalize this intuition later.) In this case, Bob’s input y encodes a single function
g(j) := y[j] ∀ j ∈ Gα,m, in which case we observe that

y[xi] = g(f(i)) ∈ Gα,n.

In other words, if we denote

IND
N

(x,y) := (y[x1],y[x2], . . . ,y[xN ]) ,

then IND
N

(x,y) encodes (the truth-table of) the composed function g ◦f , i.e., the index gadget can
be interpreted as the evaluation of the composed function g◦f . Since every function f : Gα,n 7→ Gα,m
is (trivially) (1/α)-Lipschitz on Gα,n (recall that we are measuring the Lipschitz constant in `∞
sense) and the same goes for g : Gα,m 7→ Gα,n, we have the following observation :

Observation 5.6. ∀ α, ε ≤ 1 , AFPCα,(n,1/α),(m,1/α),ε ≡ AFPn,α,1/α2,ε ◦
(
IND

N
(x,y)

)
.

Hence if in Theorem 5.5 we could replace the gadget INDN with IND
N

, applying it with the
search problem S := AFPn,α,λ,ε (and the aforementioned parameters) would have directly implied
a lower bound on the two-party communication problem DCC

(
AFPCα,(n,1/α),(m,1/α),ε

)
.

Of course, the problem with this “black-box” application of Theorem 5.5 is that it does not
guarantee any nontrivial Lipschitz constraints on the input functions f, g to AFPC, which are
intrinsic to the AFPC problem. Indeed, the simulation theorem we shall prove (Lemma 4.2)
requires that the input functions f, g to AFPC satisfy

λ1λ2 ≤
ε

43α
,

while the decomposition produced by Theorem 5.5 of h ∈ S = AFPn,α,λ,ε into f and g (x and y)
may yield arbitrary functions (in which case one can only guarantee that λ1λ2 ≤ 1/α2). Facilitating
this further geometric constraint is the main focus of the rest of this section, in which we show how
one can adapt the simulation theorem above (Theorem 5.5) to our specific geometric setting, while
exploiting the properties of the class of inputs Hδ,λ,n|α. A first important step to facilitate this
approach is to replace the Lipschitz conditions on f and g with stronger “local” conditions that
imply Lipschitzness, yet are more suitable for the proof of Lemma 4.2. This is the content of the
next section.

5.3 Replacing the Lipschitz condition with a local condition

Replacing the Lipschitz condition (on Alice’s function f) with an (appropriately chosen) “local”
condition has two important benefits:

(1) It will ensure that, on one hand, Alice’s set of possible input functions f has a product
structure, i.e., values to different coordinates can be chosen independently of eachother (this
property will be important to maintain the simulation invariant of [GPW15]), while f remains
Lipschitz (λ1 = O(1)). Intuitively, such a property can be achieved by constraining f to map
each x ∈ Gα,n into some large enough “local” neighborhood in Gα,m (as formalized below).
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(2) Our notion of “locality” will actually imply that f is bi-Lipschitz (i.e, both f and f−1 are
Lipschitz). This fact, together with the promise that the composed input function h := g◦f ∈
Hδ,λ,n|α has local displacements15 will imply that g must automatically be “local” as well 16.

We turn to formalize the above intuition. Throughout the rest of the proof we assume without
loss of generality m/n ∈ N. The natural notion of “locality” that implies a bounded Lipschitz
condition, is that of bounded displacements. Indeed, if f : Gα,n 7→ [0, 1]m and m = n, then it
is straightforward to see that the condition ‖f(x) − x‖∞ ≤ r ∀x ∈ Gα,n implies (by the triangle
inequality) that ‖f(y)− f(x)‖ ≤ ((2r/α) + 1)‖x− y‖∞, ∀x, y.

Since m > n in our setup, it is not immediately clear how to define “displacements”, as f(x)−x
is not a well defined quantity. Instead, we will define an equally useful notion of locality, which
requires a certain projection of f(x) to the original n-dimensional space, to be “close” to x (in an
`∞ sense). There are many ways to define such projection; we choose the following natural one.

Definition 5.7 (Block partition τ). Let m ≥ n be two integers such that m/n ∈ N. Let τ : [m] 7→ [n]
denote the map defined by τ(j) = dn·jm e. We say that j ∈ [m] belongs to block Bi if τ(j) = i.

Let D ∈ N be a constant. For every x ∈ Gα,n, we denote by

L′x := {y ∈ Gα,m | ∀ j ∈ [m] |yj − xτ(j)| ≤ Dα} (3)

the D-local neighborhood of x induced by the projection τ . Informally speaking, L′x is the (expo-
nentially large) set of points in Gα,m whose [m] coordinates are (point-wise) Dα-additive approxi-
mations of the coordinates of x (with respect to the standard partition τ). Intuitively, the property
that f(x) ∈ L′x means that f(x) is an (approximate) “duplication” of x, and this will be useful to
ensure that f is Θ(D)-Lipschitz. On the other hand, in order to ensure simultaneously that Bob’s
input function g has a bounded Lipschitz constant , it will be useful that the points in the image
(range) of f will also be sufficiently far apart from each other, ensuring that f is bi-Lipschitz. This
can be easily achieved by selecting an (exponentially large) random subset of points inside L′x, thus
the range of f(x) for each x can be thought of as a “code” embedded in some local geometric region
(See Figure 4 for illustration). The following definition formalizes the above.

Definition 5.8 ((D, d, ρ)-local functions). Let D ≥ d ∈ N, and let ρ < 1. A family F of func-
tions f : Gα,n 7→ Gα,m is said to be (D, d, ρ)-local if there exists a collection of disjoint subsets
{Lx}x∈Gα,n, Lx ⊆ L′x such that, for any f ∈ F , it holds that f(x) ∈ Lx for each x ∈ Gα,n,
|Lx| ≥ 2ρm, and

∀y, y′ ∈
⋃

x∈Gα,n

Lx, ‖y − y′‖∞ ≥ dα.

The following standard probabilistic argument asserts the existence of a good family of local
functions.

Lemma 5.9. For any D ≥ 2 and m ≥ 4 log(1/α) · n, there exists a (D,D/2, 1/4)-local family of
functions f : Gα,n 7→ Gα,m.

Proof. We use a standard probabilistic-method argument to show the existence of the sets Lx. To

this end, for each x ∈ Gα,n, pick t = 2m/2

(1/α)n random points uniformly and independently from L′x
(for simplicity, let us assume the points are drawn with replacement – by the birthday paradox, the

15I.e., ‖h(x)− x‖∞ ≤ 5ε ∀x, see Property (3) in Definition 5.1.
16We remark that the analogous claim is not true for the Lipschitz property: if f is a “contraction” (λf < 1), then

it is easy to construct a λ-Lipschitz g ◦ f where λg is arbitrarily large.
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probability of drawing the same point twice is negligible hence we ignore this minor issue). Note
that for m ≥ 4 log(1/α) · n, t ≥ 2m/4 (say), so |Lx| ≥ 2m/4 for any x ∈ Gα,n as desired.

Fix any two points y, y′ ∈
⋃
x∈Gα,n Lx. We have

Pr
[
‖y − y′‖∞ < Dα/2

]
≤ Pr

y, y′ ∈ Lx for some x

[
‖y − y′‖∞ < Dα/2

]
< 2−m

since in each coordinate j ∈ [m], the probability that |yj−y′j | < Dα/2 is at most 1/2 (since the j’th
coordinate of y, y′ is chosen uniformly and independently from the range xτ(j) ±Dα by definition
of Lx). A union bound over all possible pairs of points in

⋃
x∈Gα,n Lx implies that

Pr

∃y, y′ ∈ ⋃
x∈Gα,n

Lx s.t ‖y − y′‖∞ < Dα/2

 < (∑
x

|Lx|

)2

· 2−m ≤ (t · (1/α)n)2 · 2−m = 1.

Hence we conclude that there exists a collection of subset {Lx}x∈Gα,n with all desired properties.

Figure 4: A schematic illustration of a “local” mapping f : Gα,n 7→ Gα,m. Every function f ∈ F
maps each point x in the domain Gα,n into a point in an exponentially large, disjoint, “local” subset
Lx ⊆ Gα,m. The range of f , L =

⋃
x Lx, forms a “code” in the sense that the (`∞) distance between

any two points in this set is Ω(Dα).

Convention. Once we’ve established the existence of the desired sets {Lx}x∈Gα,n , from now
we will say, by a slight abuse of notation, that a function f : Gα,n 7→ Gα,m is (D,D/2, 1/4)-local
iff f(x) ∈ Lx. We henceforth use the notation

L :=
⋃

x∈Gα,n

Lx (4)

to denote the range of f ∈ F . In the proof of Lemma 4.2, we shall consider the restricted class of
(D,D/2, 1/4)-local functions as Alice’s possible inputs, that is

F := {f : Gα,n 7→ Gα,m | f(x) ∈ Lx}. (5)

We now turn to define Bob’s input set. We shall use a similar (yet simpler) local condition on
the function g, that again will be useful to establish the required Lipschitz condition on g. We start
with the following definition.

Definition 5.10 (Locality of g w.r.t L). We say that a function g : Gα,m 7→ Gα,n is η-local with
respect to L if

y ∈ Lx =⇒ ‖g(y)− x‖∞ ≤ η. (6)
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Recall that in Lemma 4.2, the approximation parameter is chosen to be ε = λα/1200. We will
restrict Bob’s possible inputs functions to the class

G := {g : Gα,m 7→ Gα,n | g is 5ε-local with respect to L}. (7)

The reason this restriction can be done without loss of generality is that, for any function
h ∈ Hδ,λ,n|α, ‖h(x) − x‖∞ ≤ 5ε (Property (3) in Definition 5.1). Thus, if we denote by B5ε(x) :=
{z ∈ Gα,n | ‖z − x‖∞ ≤ 5ε} the `∞-ball of radius 5ε around x, we have h(x) ∈ B5ε(x) for all
x ∈ Gα,n. The following claim asserts that the local properties of the classes F and G imply
respective Lipschitz conditions on these functions.

Claim 5.11 (Locality implies Lipschitzness). If f is (D,D/2, 1/4)-local (i.e., f ∈ F), and g is
5ε-local (i.e., g ∈ G), then

• f is (2D + 1)-Lipschitz on Gα,n.

• g is
(

21ε
Dα

)
-Lipschitz on L =

⋃
x∈Gα,n Lx.

Proof. First proposition: This proposition follows easily from the fact that Lx ⊂ L′x. Indeed, let
x, x′ ∈ Gα,n (x 6= x′). By the triangle inequality and the assumption that f(x) ∈ Lx ⊂ L′x, we have
that for any j ∈ [m],

|f(x)j − f(x′)j | ≤ |f(x)j − xτ(j)|+ |xτ(j) − x′τ(j)|+ |f(x′)j − x′τ(j)|

≤ 2Dα+ |xτ(j) − x′τ(j)| ≤ 2Dα+ ‖x− x′‖∞

≤ 2Dα

α
‖x− x′‖∞ + ‖x− x′‖∞ (since x, x′ ∈ Gα,n)

≤ (2D + 1) · ‖x− x′‖∞.

Second proposition: We need to show that ‖g(y)− g(y′)‖∞ ≤ (21ε/Dα) · ‖y− y′‖∞ for every
y 6= y′ ∈ L. Fix y ∈ Lx, y′ ∈ Lx′ (where possibly x = x′). By the triangle inequality and the
assumption that g is 5ε-local, we have that

‖g(y)− g(y′)‖∞ ≤ ‖g(y)− x‖∞ + ‖g(y′)− x′‖∞ + ‖x− x′‖∞ ≤ 10ε+ ‖x− x′‖∞.

Applying the triangle inequality once again and using the fact that x, y ∈ Lx ⊂ L′x (and similarly
x′, y′ ∈ Lx′ ⊂ L′x′), we have

‖x− x′‖∞ ≤ ‖y − x‖∞ + ‖y′ − x′‖∞ + ‖y − y′‖∞ ≤ 2Dα+ ‖y − y′‖∞.

Combining the last two inequalities gives ‖g(y) − g(y′)‖∞ ≤ 10ε + 2Dα + ‖y − y′‖∞. Finally,
since ‖y − y′‖∞ ≥ Dα/2 for any y 6= y′ ∈ L (by definition of L), we conclude that

‖g(y)− g(y′)‖∞ ≤
2 · 10ε

Dα
· ‖y − y′‖∞ +

2 · 2Dα
Dα

· ‖y − y′‖∞ + ‖y − y′‖∞

≤
(

20ε

Dα
+ 5

)
· ‖y − y′‖∞ ≤

21ε

Dα
· ‖y − y′‖∞

so long as 5 ≤ 21ε/(Dα).
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Remark 5.12. Notice that the class of functions G only specifies values of g : Gα,m 7→ Gα,n on the
subset of points L ( Gα,m. To define g ∈ G on the entire domain Gα,m, we use the MLE-extension
ḡ of g from L to Gα,m (see Lemma 3.3). As discussed in Section 3.1, this extension may produce
real-valued points in [0, 1]m, but rounding these values to the nearest grid-point in Gα,n will incur
at most an additive factor of 1 in the Lipschitz constant of g ∈ G guaranteed by Claim 5.11. Since
ḡ is determined by g, and since f ’s range is contained in L, for the purpose of proving Lemma
4.2, we may continue to use Definition 5.10 (while G is actually the class of all MLE-extensions of
5ε-local functions on L).

5.4 A Streamlined Overview of the Proof of Lemma 4.2

We are now ready to prove Lemma 4.2. Morally speaking, the proof follows by a reduction from
the simulation theorem of [GPW15] (Theorem 5.5 above), setting

• S = AFPn,α,λ,ε, Σ = Gα,n = [N ], X = F , Y = G.

• m = Θ(log(1/α) · n), k = 2m/4 (where k = |Lx|).

Under these definitions, Alice interprets her input (i.e., her set of indices) x = {xi}i∈N ∈ [k]N

as (the truth table of) a mapping f ∈ F , such that f(x) ∈ Lx (note the this is well defined as
F = ×x∈Gα,nLx is a product set and we assume that k = |Lx|). Bob interprets his input y = {yi}Ni=1

as a function g : L 7→ Gα,n ∈ G, i.e., y ∈ ×x∈Gα,n(B5ε(x)Lx) (recall that L :=
⋃
x∈Gα,n Lx). In this

terminology, any protocol for AFPC with the above parameters induces a protocol with the same
communication for AFPn,α,λ,ε ◦ INDN .

However, there are several imprecise details in the above reduction that require some care and
prevent us from applying Theorem 5.5 in a black-box fashion:

(1) Theorem 5.5 requires a “fresh” copy yi in each coordinate, while in AFPC, Bob receives a
single function g (represented by a single truth-table y).

(2) In Theorem 5.5, both the set of Alice’s inputs (indices) and the alphabet Σ are fixed across
all coordinates i ∈ [N ], while in AFPC, each coordinate x ∈ Gα,n has its own distinct set of
indices Lx (i.e., the range of f(x) is different (in fact, disjoint) for for different x’s), and each
x ∈ Gα,n has its own set of “colors”, since we are using the locality property of h ∈ Hδ,λ,n|α,
which implies that h(x) ∈ B5ε(x).

(3) Lemma 4.2 implicitly uses the promise that the input function h ∈ Hδ,λ,n|α (in particular,
this assumption is important to ensure that ∀h∃f ∈ F , g ∈ G s.t h = g ◦ f), so the simulation
theorem only needs to produce a decision tree that solves AFPn,α,λ,ε under the restricted
class of inputs Hδ,λ,n|α. Theorem 5.5 has no such promise.

(4) [GPW15] remarks that Theorem 5.5 applies to arbitrary alphabets Σ, but provides a formal
proof only for the Boolean case Σ = {0, 1}.

While none of the above issues are a major obstacle to the proof, for completeness, we provide
the full streamlined proof of [GPW15], adapted to our specific setting. Below we provide a high-
level description of the proof and modifications, while the formal proof is deferred to Section B of
the Appendix.
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Proof outline. The idea is to use a deterministic communication protocol π for AFPC(f, g) of
communication cost C, operating over the input space F ×G, to produce a (deterministic) decision
tree for solving AFP(h) of cost O(C/ log k), where g ◦ f = h ∈ Hδ,λ,n|α and k := |Lx| is the
size of the “local” neigborhood x is mapped to in Gα,m. The simulating decision tree proceeds
by iterations, where each iteration either “descends” one level in the communication tree of π (by
restricting the set of potential inputs h to a smaller set resulting from communicating a bit of π), or
descends one level in the decision tree (by querying the value of h on a point x ∈ Gα,n). To argue
that the simulation is correct, an invariant is maintained ensuring that any leaf of π reached by the
decision tree has the correct value of AFP(h) (i.e., the leaf corresponds to an approximate fixed
points of h). To ensure the simulation is efficient, a potential argument is used in the analysis,
showing that in each “communication iteration”, the potential function (capturing the “relative
size” of the remaining input sets compared to its original domain) increases by at most O(1), and
in each “query iteration”, the potential decreases by at least Ω(log k), hence the number of query
iterations is at most O(C/ log k) since there are at most C communication iterations.

The kind of iteration that needs to be performed at each step of the simulation is determined by
measuring the predictability of all unqueried values of h so far, from values of the other unqueried
values of h. If no value of h on any unqueried point x ∈ Gα,n is too “predictable”, then we can safely
perform a communication iteration, restricting the set of inputs to the “bigger” side according to the
communicated bit of π. On the other hand, if some value h(x) becomes too predictable, then it is in
danger of becoming a fixed function of the remaining unqueried coordinates (which would violate our
invariant), and therefore we query h(x) while it is still possible to accommodate any potential value
(in B5ε(x)) for it (this is an important place where the properties of the “index gadget” are used
in the proofs of [GPW15, RM99], namely, that this function has large monochromatic rectangles).
One can sense that the geometric Lipschitz constraints on F ,G pose challenges on implementing the
above approach since the Lipschitz condition of the input functions imposes correlations between
neighboring points x ∈ Gα,n. Luckily, F and G were constructed so that any value in some large
enough “local” neighborhood of a point x are indeed possible inputs for the players. Indeed, the
product structure of the input sets F ,G, and the fact that Alice’s set of possible values (“indices”)
f(x) for each x ∈ Gα,n are disjoint by construction (Lx ∩ Lx′ = ∅), enables maintaining the same
invariants required for the [GPW15] proof under a re-encoded alphabet. The formal proof of Lemma
4.2 can be found in Section B of the Appendix.

6 Towards the Communication Complexity of Approximate Nash
Equilibrium

In this Section we prove Theorem 2.2, showing that the two-party communication complexity of
finding a (2λ1λ2α)-approximate fixed point of g ◦ f is a lower bound on both the two-party and
multiparty communication complexity of finding an approximate Nash equilibrium (in distributed
two-player and k-player games, respectively). We begin by defining formally the two-party and
multiparty approximate Nash equilibrium problems, and then provide the proof of Theorem 2.2 in
Section 6.3.

6.1 The two-player setting

A two-player bimatrix game is defined by two payoff matrices A,B ∈ RN×M , such that if the
row player (Alice) and column player (Bob) choose pure strategies i ∈ [N ], j ∈ [M ], respectively,
the player’s payoffs are A(i, j) and B(i, j), respectively. We consider N ×M bimatrix games with
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payoffs in [−1, 1] where N and M are polynomially related (hence we can assume that N = M
without loss of generality by a “padding” argument).

A mixed strategy for a player is a distribution over pure strategies (i.e. rows/columns), and for
brevity we may refer to it simply as a strategy. An ε-approximate Nash equilibrium (or simply,
ε-ANE) is a pair of mixed strategies (x, y) such that

∀i ∈ [N ] , e>i Ay ≤ x>Ay + ε, and ∀j ∈ [M ] , x>Bej ≤ x>By + ε. (8)

That is, the mixed strategy of each player is at most worse by ε than the (pure) best-response
strategy to the opponent’s strategy. An ε-approximate well-supported Nash equilibrium (or simply,
ε-WSNE) is a pair of mixed strategies (x, y) such that

∀i ∈ [N ] ∀ i′ ∈ Supp(x), e>i Ay ≤ e>i′Ay + ε, and (9)

∀j ∈ [M ] ∀ j′ ∈ Supp(y), x>Bej ≤ x>Bej′ + ε, (10)

that is, every action played by each player (with nonzero probability) is an ε-best-response action
to the opponent’s mixed strategy. If ε = 0, the strategy pair (x, y) is called an (exact) Nash
equilibrium (NE), in which case the two definitions above above coincide.

While the notions of ε-ANE and ε-WSNE are morally equivalent in our communication model
(see Lemma 6.6 and Lemma 6.14), the notion of well-supported approximate equilibria will be
more natural to work with when we reduce the approximate fixed point problem (AFPC) to that
of finding an approximate Nash equilibrium, both in the two-party and multiparty communication
settings (Section 6.3).

The two-party problem of finding an approximate Nash equilibrium in a two-player game
(ANEK,ε) is defined in Figure 5.

ANEK,ε

INPUTS : Alice receives an N × M matrix A with entries ∈ [−1, 1] (each encoded using
` = O(log max{N,M}) bits), specifying her payoffs for any pair (i, j) ∈ [N ] × [M ] of pure ac-
tions. Similarly, Bob receives an N×M payoff matrix B. Denote by GK = (A,B) the two-player
game corresponding to the player’s inputs, where K := max{M,N} denotes the size of the game.

OUTPUT: An ε-ANE of GK . (Alternatively, two multi-sets S ⊆ [N ], T ⊆ [M ], such that
(U(S),U(T )) is an ε-ANE of GK .)

Figure 5: The two-party communication problem of finding an ε-approximate Nash equilibrium in
a bimatrix game.

Analogously, denote by AWNEK,ε the two-party communication problem in which Alice and
Bob need to output an ε-well-supported Nash equilibrium (ε-WSNE) of the game GK (our reduction
below will involve this communication problem as an intermediate step).

Requiring the output of the protocol to be of the form (U(S),U(T )) where S, T are multi-sets (of
[N ] and [M ] respectively), is essentially without loss of generality. Indeed, if Alice and Bob agree
on some arbitrary ε-ANE (resp. ε-WSNE) (µ, ν), then the sub-sampling argument of [LMM03]
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(see Lemma 6.2 below) applied to (µ, ν), produces a 2ε-ANE (resp. 2ε-WSNE) of GK . We favor
this output form as: (i) it ensures that the output length of the protocol is short (see Lemma 6.2
below), hence excluding a trivial communication lower bound; (ii) it makes the problem purely
discrete, so we do not have to worry about encoding issues.
We also remind here again, that throughout the paper, we will restrict our attention to games in
which M and N are polynomially related (so in particular, K = poly(N)).

We observe that the non-deterministic communication complexity of finding an ε-ANE in a
bimatrix game is small as long as ε ≥ (1/poly logK):

Proposition 6.1. NDCC
(
ANEK,Ω(1/ log2K))

)
≤ O

(
log6K

)
.

Proof. We use the following well known lemma:

Lemma 6.2 (Existence of Small-Support Approximate Equilibrium, [LMM03]). Every K × K
bimatrix game with payoffs in [−1, 1] has an ε-ANE 17 of the form (U(S),U(T )), where S, T ⊆ [K]

are multi-sets of size O
(

logK
ε2

)
, for every ε > 0.

Applying the lemma for the game GK (setting K := max{N,M} and ε = 1/O(log2K)) implies
that there exist multi-sets S, T of size O(logK/ε2) = O(log5K) such that (U(S),U(T )) forms an
ε-ANE of GK . Merlin can specify these sets using logK bits per element, so the total size of the
advice is O(log6K). Alice and Bob can now privately verify that (U(S),U(T )) is indeed an ε-ANE
(as the verification of condition (9) only depends on Alice’s payoff matrix A, and vice versa for
Bob with condition (10)). Therefore, there is an O(log6K) total communication non-deterministic
protocol for this problem.

6.2 The k-Player Setting

A k-player game G = (u1, u2, . . . , uk) over a fixed action set C is defined by k payoff functions

ui : [C]k → R (represented by a matrix ∈ RCk), specifying the respective utility of each player
i ∈ [k] for each (pure) action profile a := (a1, a2, . . . , ak) ∈ [C]k. For a mixed action profile x (i.e.,
a product distribution over [C]k), let bri(x) := maxai∈[C] ui(ai,x−i) denote the maximum expected

utility player i can obtain against the opponents mixed strategy x−i ∈ [C]k−1, where in this case
ui(x) denotes the expected utility of player i over the joint mixed strategy x.

In analogy with condition (8) in the two-player case, an ε-approximate Nash equilibrium (ε-
ANE) of G is a mixed strategy profile x = (x1, . . . , xk), satisfying

bri(x) ≤ ui(x) + ε ∀ i ∈ [k].

Similarly, an ε-approximate well-supported Nash equilibrium (ε-WSNE) is a mixed strategy profile
satisfying

bri(x) ≤ ui(ai,x−i) + ε ∀ ai ∈ Supp(xi) and ∀ i ∈ [k],

that is, every action played by each player i (with nonzero probability) is an ε-best-response action
to the opponents’ mixed strategy (xı). In this paper we consider k-player games with a constant

17We remark that the sampling argument in [LMM03] actually produces an ε-WSNE (not just an ε-ANE), as
the proof guarantees that if x∗ is the empirical distribution of O(logN/ε2) samples from the strategy profile x
(with replacements), then ‖Ax − Ax∗‖1 ≤ ε, which is all that is needed to guarantee the well-supportedness of the
subsampled strategy profile.
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number of actions C and payoffs in [−1, 1].

In analogy with the two-player setting, let k-ANEC,ε denote the k-party (Number-In-Hand)

communication problem in which each of the k players receives a payoff matrix ui ∈ [−1, 1]C
k

describing her own payoff for each k-tuple of pure actions from a constant action set [C] (so the
input size of each player is |ui| = O(Ck)), and the players need to output an ε-ANE of the k-player
constant-action game Gk := (u1, u2, . . . , uk). Similarly, let k-AWNEC,ε denote the communication
problem of finding an ε-WSNE of Gk.

We assume that players communicate in the “shared blackboard” communication model [KN97],
in which the message of each player is viewable to all k players, though we remark that our
results apply to the “message-passing” model as well (in which players have private pair-wise
communication channels).

It is noteworthy that the non-determinisitc communication complexity of both k-ANEC,ε and
k-AWNEC,ε is only Oε(Ck), since this is the number of bits required to describe any joint mixed
strategy profile of the k players up to precision ε (In fact, this can be improved to Oε(k · logC)
([BBP14])).

6.3 From Approximate Fixed Points to Approximate Nash

In this section we prove Theorem 2.2, which we restate below.

Theorem 6.3 (From Approximate Fixed Points to Approximate Nash). For every m ≥ n ∈ N,
constants α ∈ (0, 1), λ1, λ2 ≥ 2, and error parameter ρ,

• RCC
ρ

(
ANEK,Ω(1/ log2K)

)
≥ RCC

ρ

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
, where K = (1/α)m.

• RCC
ρ

(
k-ANE1/α,3α3/16

)
≥ RCC

ρ

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
, where k = Oα(m logm) .

In particular, Theorem 6.3 implies that a slightly “smoother” version of Theorem 2.1 (in which
the Lipschitz constants of f and g satisfy λ1λ2α ≤ ε instead of λ1λ2α = 86ε), would imply strong
(deterministic) communication lower bounds on finding approximate Nash equilibria in both two-
player and k-player games. This is the content of the following claim.

Proposition 6.4. Suppose there are constants α ∈ (0, 1), λ1, λ2 ≥ 2 such that for any n and
m = O(n),

DCC
(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
≥ 2Ω(n).

Then,

• For large enough K, DCC
(
ANEK,Ω(1/ log2K)

)
≥ KΩα(1).

• For large enough k, DCC
(
k-ANE1/α,3α3/16

)
≥ 2Ωα(k/ log k).

Proof. The first claim follows from the first proposition of Theorem 6.3, observing that whenever
m = O(n), 2Ω(n) = (1/α)Ω(m/ log(1/α)) = KΩα(1), since K = (1/α)m. Similarly, the second claim
follows from the second proposition of Theorem 6.3, observing that whenever m = O(n),

k = Oα(m logm) = Oα(n log n) ⇐⇒ n = Ωα(k/ log k),

and thus 2Ω(n) = 2Ωα(k/ log k).
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In Section 7 we elaborate on the potential modifications required in the proof of our simulation
theorem (Lemma 4.2) that would facilitate the stronger (“smoother”) lower bound as required in
the premise of Proposition 6.4.

We now turn to prove Theorem 6.3. The proof of the first proposition (for the two-player case)
is given in the next section (Section 6.3.1). The proof of the second proposition (for the k-player
case) is given in the following section (Section 6.3.2).

6.3.1 Proof of the reduction for two-player games

We shall prove the following lemma that proves the first proposition of Theorem 6.3.

Lemma 6.5. For any m,n ∈ N and any constant parameters α ∈ (0, 1), λ1, λ2 ≥ 2, it holds that

RCC
ρ

(
ANE(1/α)m,Ω(α4/m2)

)
≥ RCC

ρ

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
.

Indeed, as the size of the game of the ANE instance above is K = (1/α)m and α is assumed to
be a universal constant, we have that m = Ωα(logK), hence Lemma 6.5 asserts a communication
lower bound on finding an Ω(α4/m2) = Ωα(1/ log2K) in a K-action bimatrix game.

Our proof can be viewed as a generalization of a reduction used recently in the simpler query-
complexity model by Babichenko [Bab14], The proof actually reduces AFPC to AWNE, i.e., to
the two-party problem of finding an approximate well-supported equilibrium. This is sufficient due
to the following lemma, which guarantees that in any bimatrix game (with payoffs in [−1, 1]), Alice
and Bob can always construct, with no extra communication, an ε-WSNE from an Ω(ε2)-ANE, so
in particular :

Claim 6.6 (Converting ANE to AWNE, [Bab14] Appendix 6). For any ε ≥ 0,

RCC
ρ

(
ANEK,Ω(ε2)

)
≥ RCC

ρ (AWNEK,ε) .

With Claim 6.6 in hand, Lemma 6.5 would follow from the following lemma:

Lemma 6.7. For any m,n ∈ N and any constant parameters α ∈ (0, 1), λ1, λ2 ≥ 2,

DCC
(
AWNE(1/α)m,3α2/(4m)

)
≥ DCC

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
.

Proof. We show how Alice and Bob can (privately) translate their inputs for the fixed-point problem
(AFPC) to an input for a two-player game (an instance of AWNE) with no extra communication.
Given the two Lipschitz functions f : Gα,n 7→ Gα,m and g : Gα,m 7→ Gα,n, define the following two-
player game. The set of pure actions of Alice is Gα,m, and the set of pure actions of Bob is Gα,n (so
the size of the resulting game is K = max{|Gα,m|, |Gα,n|} = (1/α)m). For any (x, y) ∈ Gα,m×Gα,n,
Alice’s payoff is given by

u1(x, y) = − 1

m
· ‖x− f(y)‖22.

Bob’s payoff is given by

u2(x, y) = − 1

n
· ‖g(x)− y‖22.

In other words, Alice’s goal is to try and match the image of Bob’s action under her input function
f , while Bob should try and match Alice’s action under g. Notice that the above payoffs are in the
range [−1, 0] (as the `22-norm of a vector in [0, 1]k is at most k). Furthermore, Alice and Bob can
unilaterally (privately) define these payoff matrices, as Alice’s payoff function is determined solely
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by f and Bob’s payoff is determined solely by g, hence this step does not require any communication.
Let us denote by Gf,g the resulting two-player game.

Consider a 3α2

4m -WSNE (µ, σ) of Gf,g. Note that Alice’s payoff from any pure action x against
Bob’s (mixed) strategy σ can be written as

u1(x, σ) = − 1

m
· Ey∼σ

[
‖x− f(y)‖22

]
= − 1

m

m∑
i=1

(xi − Ey∼σ[f(y)i])
2 − 1

m

m∑
i=1

V ar[σi]. (11)

Let z = (z1, z2, . . . , zm) ∈ Gα,m be the closest grid point to the point Ey∼σ[f(y)] := E[f(σ)], i.e.,
zi ≤ E[f(σ)i] ≤ zi + α, and without loss of generality assume |E[f(σ)i] − zi| ≤ α/2 for all i ∈ [m]
(that is, E[f(σ)i] is closer to zi than to zi + α). By convexity of the `22 norm, it is clear from
equation (11) that Alice’s best response to σ is z, in which case the condition |E[f(σ)i]− zi| ≤ α/2
ensures that her payoff is at least

u1(z, σ) = − 1

m
· Ey∼σ

[
‖z − f(y)‖22

]
= − 1

m
·
(
m · α

2

4

)
− 1

m

m∑
i=1

V ar[σi] = −α
2

4
− C, (12)

where C := 1
m

∑m
i=1 V ar[σi] is a quantity that does not depend on Alice’s action. On the other

hand, suppose that in µ, with non-zero probability Alice plays a strategy w /∈ C(z), where

C(z) := {x ∈ Gα,m : xi ∈ {zi, zi + α}}

is the set of nearest lattice points of Gα,m to Alice’s best response z. Then there is some i∗ ∈ [M ]
for which |E[f(σ)i∗ ]− wi∗ | ≥ α, thus

u1(z, σ)− u1(w, σ) ≥ − 1

m
·
(
α2

4
− α2

)
=

3α2

4m
, (13)

which contradicts the assumption that (µ, σ) is a 3α2

4m -WSNE. Hence, Alice’s strategy µ must be
entirely supported on C(z). Denoting

w = (w1, w2, . . . , wn) ∈ Gα,n

the closest lattice point to the point Ex∼µ[g(x)] (and assuming once again without loss of generality

|Ex∼µ[g(x)i] − wi| ≤ α/2 for all i ∈ [n]), a symmetric argument asserts that in every 3α2

4m -WSNE,
Bob’s strategy σ is entirely supported on C(w), where C(w) := {y : yi ∈ {wi, wi + α}}. We
therefore have the following.

Corollary 6.8. Let C(z), C(w) be the sub-cubes defined above. In every 3α2

4m -WSNE (µ, σ) of Gf,g,
Alice’s strategy µ is entirely supported on C(z), and Bob’s strategy σ is entirely supported on C(w).

We now argue that the point w (∈ Gα,n) is an approximate fixed point of g ◦ f . To this end,
recall our shorthands

Ey∼σ[f(y)] := E[f(σ)] and Ex∼µ[g(x)] := E[g(µ)].

We first claim that

‖E[g(µ)]− g(z)‖∞ ≤ λ2α and ‖E[f(σ)]− f(w)‖∞ ≤ λ1α. (14)

To see why the first inequality holds, observe that for any x ∈ C(z),

‖g(x)− g(z)‖∞ ≤ λ2‖x− z‖∞ ≤ λ2α
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since g is λ2-Lipschitz, and by definition of C(z). By Corollary 6.8, the same statement holds for
any x in the support of µ, and thus in particular ‖E[g(µ)]−g(z)‖∞ ≤ λ2α. An analogous argument
asserts that ‖E[f(σ)]− f(w)‖∞ ≤ λ1α.

By the triangle inequality and since we assume λ1, λ2 ≥ 2, we can now write

‖w − g(z)‖∞ ≤ ‖w − E[g(µ)]‖∞ + ‖E[g(µ)]− g(z)‖∞ ≤
α

2
+ λ2α ≤

3

2
λ2α, (15)

where the second before last transition follows from (14) and the definition of w. Similarly,

‖z − f(w)‖∞ ≤ ‖z − E[f(σ)]‖∞ + ‖E[f(σ)]− f(w)‖∞ ≤
α

2
+ λ1α, (16)

where the second before last transition follows from (14) and the definition of z.
We conclude that

‖w − g(f(w))‖∞
≤ ‖w − g(z)‖∞ + ‖g(z)− g(f(w)‖∞ (by the triangle inequality)

≤ 3

2
λ2α+ λ2‖z − f(w)‖∞ (by (15) and since g is λ-Lipschitz)

≤ 3

2
λ2α+ λ2 · (λ1α+ α/2) (by (16)).

≤ 2λ2α+ λ2λ1α

≤ 2λ1λ2α,

since we assumed λ1, λ2 ≥ 2. Thus, w is a (2λ1λ2α)-fixed point of g ◦ f , as desired.

Lemma 6.5 now follows directly from Lemma 6.6 (applied with ε := 3α2/4m).

Remark 6.9. The convexity argument below equation (11), namely that expectation is the unique
minimizer of the `22 norm, is crucial to our argument and is the primary reason for switching to the
`2 norm in the payoff definition. It is also the reason we only manage to prove our result for sub
constant values of ε: The normalization of payoffs in Gf,g by a factor of Θ(n) (to ensure payoffs
are ∈ [−1, 1]) rescales the (additive) contribution of each coordinate by ≈ 1/n, consequently forcing
us to consider small deviation equilibria (ε ≈ 1/n ≈ 1/ logK); This argument can be viewed as the
price we pay for the transition from ‖ · ‖2 → ‖ · ‖∞, which seems inevitable in the above reduction.

6.3.2 Proof of the reduction for k-player constant-action games

We shall prove the following lemma that proves the second proposition of Theorem 6.3.

Lemma 6.10 (From Two-Party AFPC to Multiparty ANE). For any m ≥ n ∈ N, any constants
α ∈ (0, 1), λ1, λ2, and any error parameter ρ, it holds that

RCC
ρ

(
Oα(m logm)-ANE1/α,3α3/16

)
≥ RCC

ρ

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
.

The proof has three stages. The first and main stage is reducing the multiparty approximate
well-supported Nash problem (k-AWNE) to a multiparty variant of AFPC, in analogy with the
two-player setting. In the second stage we observe that the multiparty communication complexity
of the latter k-party fixed-point problem (MAFPC) is at least that of the two-party AFPC
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problem. Finally, we use a recent lemma due to Chen et. al [CCT15] that, once again, allows us to
convert (with some small loss in the parameters) any k-player ANE to a somewhat weaker WSNE,
completing the entire reduction.

We turn to implement the above program. To this end, let us define the following multi-
party variant of the approximate fixed point problem, which we henceforth denote by (n,m)-
MAFPCα,λ1,λ2,ε:

(n,m)-MAFPCα,λ1,λ2,ε

INPUTS : Let α ∈ (0, 1), m ≥ n, λ1, λ2 ≥ 0, and ε ≥ 0 be publicly known parameters.
There are k = m+n players who are divided into two groups, A := [n], and B = [m] respectively.

• Each player i ∈ [n] receives a (truth table of a) λ2-Lipschitz scalar function gi : Gα,m 7→
Gα,1 (i.e., a function mapping the m-dimensional α-grid to [0, 1]).

• Each player j ∈ [m] receives a (truth table of a) λ1-Lipschitz function scalar fj : Gα,n 7→
Gα,1 (i.e., a function mapping the n-dimensional α-grid to [0, 1]).

OUTPUT: Let f : Gα,n 7→ Gα,m be defined as f(x) = (f1(x), . . . , fm(x)), and g : Gα,m 7→
Gα,n be defined as g(y) = (g1(y), . . . , gn(y)). The players need to output x ∈ Gα,n such that
‖g(f(x))− x‖∞ ≤ ε, i.e., an ε-fixed point of g ◦ f .

Figure 6: The (n+m)-party communication problem of finding an approximate fixed point of g ◦f .

The following simple simulation argument asserts that the multiparty communication complex-
ity of the approximate fixed-point problem above, is lower bounded by the two party communication
complexity of AFPC:

Proposition 6.11. For any error parameter ρ ≥ 0,

RCC
ρ ((n,m)-MAFPCα,λ1,λ2,ε) ≥ RCC

ρ

(
AFPCα,(n,λ1),(m,λ2),ε

)
Proof. Let τ be a multiparty communication protocol for solving (n,m)-MAFPCα,λ1,λ2,ε (either
in the shared-blackboard model or in the message-passing model). Let f, g be, respectively, the
inputs of Alice and Bob in the two-party communication problem of AFPC. The proof follows
from the standard observation that Alice and Bob can simulate the k-party protocol τ : Given her
input f : Gα,n 7→ Gα,m, Alice can simulate all the players j ∈ [m] in group B, and similarly Bob
can simulate all the players i ∈ [n] in group A (notice that the assumption that f (resp. g) is λ1

(λ2) Lipschitz, implies that each fj : Gα,n 7→ Gα,1 (gi : Gα,m 7→ Gα,1) is λ1 (λ2) Lipschitz, since
distances are measured in the `∞ norm). Let π be the two-party protocol obtained by having Alice
and Bob simulate the protocol τ . By assumption, τ finds an ε-fixed point of g ◦ f (w.p 1 − ρ),
and clearly, the communication going between players in group A and group B is at most the
communication of τ , therefore the communication cost of π is at most that of τ .

In analogy with Lemma 6.7 in the two-party setting, we now argue that the multiparty commu-
nication complexity of finding an ε-WSNE in a constant-action multiplayer game (this time for a
constant value of ε = Ωα(1)) is at least as large as the communication complexity of the multiparty
approximate fixed-point problem:
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Lemma 6.12. RCC
ρ

(
(n+m)-AWNE1/α,3α2/4

)
≥ RCC

ρ ((n,m)-MAFPCα,λ1,λ2,2λ1λ2α) .

Proof. The reduction is similar to that of Theorem 6.7, namely, we show how the k = m + n
parties can (privately) construct, with no extra communication, a k-player game in which every
approximate WSNE induces an ε = (2λ1λ2α)-fixed point of the input function g ◦ f to the k-
party AFPC problem. To this end, the players use their input functions to define (with no extra
communication) the following k-player game:

• The action set of each player is the set of points Gα,1 = [1/α]. Let a = (a1, . . . , an) ∈ Gα,n
denote a joint pure action profile of players in group A = [n], and b = (b1, . . . , bm) ∈ Gα,m
denote a joint pure action profile of players in group B = [m].

• Each player i ∈ [n] in group A has the payoff

ui(a,b) := −|gi(b)− ai|2.

• Each player j ∈ [m] in group B has the payoff

uj(a,b) := −|bj − fj(a)|2.

Denote the resulting game by G. Notice that each player’s payoff in G is in the range [−1, 0] as
desired. The following analysis is very similar to that of theorem 6.7, only this time the arguments
are “per-coordinate”.

Consider any joint (mixed) strategy profile (x,y) := (x1, . . . , xn, y1, . . . , ym) which forms a
(3α2/4)-WSNE of G. Let

z = (z1, z2, . . . , zm) ∈ Gα,m
be the closest grid point to the point Ea∼x[f(a)] := E[f(x)], i.e., zj ≤ E[f(x)j ] ≤ zj + α, and
without loss of generality assume |E[f(x)j ]− zj | ≤ α/2 for all j ∈ [m] (that is, E[f(x)j ] is closer to
zj than to zj + α). Similarly, let let

w = (w1, w2, . . . , wn) ∈ Gα,n

be the closest grid point to the point Eb∼y[g(b)] := E[g(y)], i.e., wi ≤ E[g(y)i] ≤ wi + α, and
without loss of generality assume |E[g(y)i]− wi| ≤ α/2 for all i ∈ [m].

The same argument as in Corollary 6.8 ensures that in every (3α2/4)-WSNE of G, each yj is
entirely supported on {zj , zj + α}, and each xi is entirely supported on {wi, wi + α}. Repeating
the same analysis as in equations (14),(15) and (16) for each individual coordinate i ∈ [n] (j ∈ [m]
respectively), and using the assumption that the fj ’s are λ1-Lipschitz and that the gi’s are λ2-
Lipschitz, we conclude as in Theorem 6.7, that the point w = (w1, w2, . . . , wn) satisfies

‖g(f(w))− w‖∞ ≤ 2λ2α+ λ1λ2α ≤ 2λ1λ2α,

as desired.

To complete the proof of Lemma 6.10, we use a recent result due to Chen et. al [CCT15], which
asserts that, for any constant-action k-player game, an ε-ANE can be converted to an O(ε)-WSNE,
at the expense of a slight blowup in the size of the game (the number of players):
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Claim 6.13 (essentially [CCT15]). For any k ∈ N, C, ε ≥ 0,

RCC
ρ

(
k′-ANEC,ε

)
≥ RCC

ρ (k-AWNEC,4Cε) ,

where k′ = 2C2k ln(k/ε).

Proof. Let Gk denote the k-player game instance of the AWNE problem. The following lemma
asserts that the k players can use their inputs to define a slightly larger game G′k′ , in which every
ε-ANE can be translated with no further communication, to an O(ε)-WSNE of Gk:

Lemma 6.14 (From ANE to AWNE, [CCT15], Section 3). Let Gk = (u1, u2, . . . , uk) be a k-player
game with a constant number of actions C. Then each player i ∈ [k] can use her own input (payoff
function) ui to define additional utility functions (over the same action set [C]) of s = 2C2 ln(k/ε)
additional “dummy” players (ui,j , j ∈ [s]), so that any ε-ANE of the resulting k′-player game
g′k′ (where k′ = ks = 2C2k ln(k/ε)) can be converted, with no extra communication, into a (4Cε)-
WSNE of the original game Gk.

Claim 6.13 now follows by observing that the k players in Gk can simulate any k′-party protocol
τ for finding an ε-ANE in G′k′ , by having each player i ∈ [k] simulate his own group of “dummy”
players.

Proof of Theorem 6.10. Let m ≥ n ∈ N, and let α ∈ (0, 1), λ1, λ2 be absolute constants. Theorem
6.12, Proposition 6.11 and Theorem 6.13 (applied with k = m+ n,C = 1/α, ε = 4α3/16) together
imply that

RCC
ρ

(
Oα(m logm)-ANE1/α,3α3/16

)
≥ RCC

ρ

(
(n+m)-AWNE1/α,3α2/4

)
≥ RCC

ρ ((n,m)-MAFPCα,λ1,λ2,2λ1λ2α) ≥ RCC
ρ

(
AFPCα,(n,λ1),(m,λ2),2λ1λ2α

)
,

where the first transition follows from Theorem 6.13 by observing that for the above choice of
parameters,

k′ = 2C2k ln(k/ε) = 2(1/α)2(n+m) ln
(
(n+m)/(3α2/4)

)
= Oα(m logm)

since m ≥ n by assumption.

7 Discussion and Open Problems

This paper initiates the study of distributed computation of approximate fixed-point problems
(AFPCα,(n,λ1),(m,λ2),ε). We prove that finding an ε = (λ1λ2α/43)-fixed point of a composition of
two Lipschitz functions g ◦ f requires exponential communication in the dimension n, at least for
deterministic protocols. While this is a highly nontrivial approximation parameter, an intriguing
question is whether the same lower bound applies for the slightly looser approximation parameter
ε = 2λ1λ2α, at which the problem becomes a total search problem and reduces to the (two-party
and multiparty) problems of finding approximate Nash equilibria.

One plausible approach for “bridging” this constant gap in Lemma 4.2 is to perform the “lifting”
argument (the decomposition h = g ◦ f) in a slightly “smoother” manner, so that the Lipschitz
constants of f and g satisfy 2λ1λ2α ≤ ε instead of 2λ1λ2α ≈ 43ε, as our current construction
provides. This is essential for the lower bound to go through, since the maximum displacement of
the composed function h = g ◦ f ∈ Hδ,λ,n|α is 5ε, and therefore finding a 43ε-fixed point of g ◦ f is
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trivial (as opposed to finding an ε-fixed point). In fact, our current proof only exploits this property,
i.e., that the “lifted” function h has bounded-displacements, while the geometric construction of
[HPV89] guarantees much more than that, namely, that every h ∈ Hδ,λ,n|α is λ-Lipschitz for (an
absolute constant λ). A natural idea is to redefine the class G in the proof of Lemma 4.2 to be the
class of all O(λ)-Lipschitz functions.

Unfortunately, it is not clear how to exploit this further property in the simulation argument of
of [RM99, GPW15], since the simulation invariants we maintain require the input sets F ,G to be
product sets (i.e., that values to different coordinates f(x), f(x′) can be chosen independently from
some predefined set of values). Indeed, a simple calculation18 shows that the stronger condition
we seek (2λ1λ2α ≤ ε) requires breaking the product structure of F ,G. While we believe this
modification should be possible to implement in our specific settings (again, using the promise that
the function h is guaranteed to be λ-Lipschitz), this seems to require further geometric insights and
a new simulation invariant (ensuring that the “Thickness lemma” and the “Projection lemma” go
through).

Finally, we recall that the query complexity of the approximate fixed-point problem (AFP) was
recently shown to be exponential even in the randomized query model ([Bab14]), so a randomized
analogue of our simulation theorem (Lemma 4.2) would have implied an exponential randomized
communication lower bound for AFPC. While the Raz-McKenzie simulation theorem and our
adapted geometric variant of it (Lemma 4.2) rely on an “adversarial” argument which currently
applies only to the deterministic communication complexity model, a recent line of work has been
focused on randomized simulation theorems ([GP13, GLM+15]). Alas, these theorems require
a lower bound on stronger measures than randomized query complexity. Notwithstanding, we
believe that proving a randomized analogue of the Raz-McKenzie simulation theorem (and hence
of Theorem 2.1) is a natural and fascinating open problem.
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The lemma follows from the following known Lipschitz extension lemma for scalar functions.
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empty set. If f : A 7→ R is λ-Lipschitz on A, then the extended function
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is λ-Lipschitz on Rn. The function f̄ is called the MLE-extension (minimal Lipschitz extension) of
f .

It can directly be verified that f̄ is indeed an extension of f , i.e., f̄ |A ≡ f . To prove Lemma 3.3
for a function f : Rn 7→ Rm, observe that the condition ‖f̄(x) − f̄(y)‖∞ ≤ λ‖x − y‖∞ is satisfied
iff for every coordinate i ∈ n, |f̄i(x) − f̄i(y)| ≤ λ‖x − y‖∞, the statement follows from applying
Lemma A.1 separately to each coordinate of f̄ .

B Proof of Lemma 4.2

In this section we provide the formal proof of Lemma 4.2, following the proof outline of [GPW15].
We begin by setting up some notation and definitions that will facilitate the proof.

B.0.3 Notation and main lemmas

Throughout the proof, we continue to denote [N ] = Gα,n and [M ] = Gα,m, where

m = 4000 log(1/α) · n := cα · n.

Alice’s set of possible input functions (F) is the (restricted) set of all (D,D/2, 1/4)-local functions
whose image is contained in L =

⋃
x∈Gα,n Lx:

F := {f : Gα,n 7→ Gα,m | f(x) ∈ Lx}.

Simply written, F = ×x∈Gα,nLx. Bob’s input set is the set of 5ε-local functions (w.r.t L), that is

G := {g : L 7→ Gα,n | y ∈ Lx =⇒ g(y) ∈ B5ε(x)},

were we recall that B5ε(x) is the `∞-ball of radius 5ε around x (notice that the above definition
is indeed well defined, since for every y ∈ L, there is a unique x s.t y ∈ Lx, by disjointness of
the sets Lx ). Recalling that k := |Lx|, we can simply write G = ×x∈Gα,n(B5ε(x))k. We assume
(w.l.o.g) that for every x ∈ Gα,n, |B5ε(x)| is the same across all x’s, and we henceforth denote
this size by r, so r is the number of “colors” each element in L can obtain. We caution that,
unlike the proofs of [RM99, GPW15], in our setting each coordinate x ∈ Gα,n has its own set of
r possible colors. Note that we trivially have that r ≤ |Gα,n| = N (since B5ε(x) ⊆ Gα,n). In this
terminology, initially |G| =

∏
x∈Gα,n |B5ε(x)|k = rkN . Recall that by definition of locality of F , we

have |F| =
∏
x∈Gα,n |Lx| ≥ 2mN/4, and in particular

k = |Lx| ≥ 2m/4 > N1000 ≥ r1000 (17)

by choice of m and definition of r. For a subset of points I ⊆ Gα,n, denote

LI :=
⋃
x∈I

Lx

the range of all points in I under f .
Let π be a deterministic communication protocol for AFPC. For each node v of the protocol

tree π, let Rv := Fv×Gv denote the rectangle associated with the node v, and let Fv,b ⊆ Fv denote
the set of Alice’s inputs on which the bit b ∈ {0, 1} would be sent if Alice is the speaker at node v,
and similarly let Gv,b ⊆ Gv denote the set of Bob’s inputs on which the bit b ∈ {0, 1} would be sent
if Bob is the speaker at node v.

Let A ⊆ F and B ⊆ G. The following definitions will be central to the proof.
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• Size of sets : For |A|, |B| > 0, let a(A) be such that |A| = 2−a(A) · |F| = 2−a(A) · kN , and
b(B) be such that |B| = b(B) · (rk)N .

• Projections : For a subset of points I ⊆ Gα,n, let

AI := {{f(x)}x∈I | ∃{f(x′)}x′∈Gα,n\I s.t {f(x)}x∈I ∪ {f(x′)}x′∈Gα,n\I ∈ A} ⊆ [M ]|I|

denote the projection of A onto the subset I. Accordingly, let

BLI := {{g(y)}y∈LI : ∃{g(y′)}y′∈L\LI s.t {g(y)}y∈LI ∪ {g(y′)}y′∈L\LI ∈ B} ⊆ [N ]|LI |

denote the projection of B onto the subset of points LI ⊆ [M ] = Gα,m.

• Pruning : Let x ∈ Gα,n. For a subset U ⊆ Lx of possible f -values in the “local neighbor-
hood” of x, define Ax,U := {f ∈ A | f(x) ∈ U}, and for a subset V ⊆ (B5ε(x))k of possible
g-values on the set Lx, define Bx,V := {g ∈ B | g(Lx) ∈ V } (where the shorthand g(Lx) ∈ V
means that there is some v ∈ V such that g(y) = vy for every y ∈ Lx).

• Auxiliary Graph : For every x ∈ Gα,n, let Graphx(A) be the bipartite graph defined as
follows: The set of left nodes is Lx, the set of right nodes is L−x := ×x′ 6=x Lx′ , and each
tuple of values {f(x)}x∈Gα,n ∈ A is viewed as an edge between the left node f(x) and the
right node {f(x′)}x′∈6=x. Note that AGα,n\{x} is the set of all right nodes of Graphx(A) with
non-zero degree.

• Average/Minimum degree : Let AvgDegx(A) := |A|/|AGα,n\{x}| and MinDegx(A) be, re-
spectively, the average and minimum degree of the non-zero degree right nodes of Graphx(A).
Intuitively, these quantities measure how “predictable” the value f(x) is from {f(x′)}x′∈Gα,n\x.

• Thickness : We say that A is thick iff MinDegx(A) ≥ k17/20 for all x ∈ Gα,n.

Remark B.1. All the above definitions apply also to projected subsets A ⊆ FI , B ⊆ GLI for a
subset I ⊆ Gα,n, with the parameter N replaced by |I| and x ∈ Gα,n replaced with x ∈ I. For
example, a(A) is now adjusted so that |A| = 2−a(A) · k|I|, |B| = b(B) · (rk)|I| and Graphx(A) is now
defined for any x ∈ I (instead of for every x ∈ Gα,n). The proof shall make a recursive use of these
extended definitions.

The following lemma will be useful for the case in which we need π to communicate a bit.

Lemma B.2 (Thickness Lemma, [GPW15]). Let I ⊆ Gα,n. If A ⊆ FI is such that AvgDegx(A) ≥ d
for all x ∈ I, then there exists an A′ ⊆ A such that:

• MinDegx(A′) ≥ d
2|I| for all x ∈ I.

• a(A′) ≤ a(A) + 1.

The (short) proof of the Thickness Lemma is precisely the same as that of [GPW15] (see Lemma
6 and the proof in Section 3.5), hence we omit it. The following lemma will be useful for the case
in which we need to have our decision tree query a value h(x) of the input function to AFP.

Lemma B.3 (Projection Lemma, essentially [GPW15]). Let I ⊆ Gα,n, and suppose A ⊆ FI is
thick, and B ⊆ G is such that b(B) ≤ k2/20. Then for any x ∈ I and every z ∈ B5ε(x), there is a
z-monochromatic rectangle19 U × V ⊆ Lx × (B5ε(x))|Lx| such that:

19 That is, ∀(f, g) ∈ U × V , g(f(x)) ≡ z.
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• Ax,UI\{x} is thick,

• a(Ax,UI\{x}) ≤ a(A)− log k + logAvgDegx(A),

• b(Bx,V
LI\{Lx}) ≤ b(B) + 1.

The above lemma is the main technical lemma in the simulation argument of [GPW15]. We
reprove this lemma in our setting in Section B.3.

B.1 The decision tree simulation of π

We now describe the [GPW15] algorithm (adapted to our setting), which shows how to construct
a decision tree T that solves the approximate fixed-point problem AFP on an unknown input
function h = {h(x)}x∈Gα,n ∈ Hδ,λ,n|α. This decision tree is obtained by simulating the execution of
the hypothesized protocol π for AFPC (under the assumption that (f, g) ∈ F × G). The decision
tree T is described in Algorithm 1.

We briefly describe here the intuition behind the algorithm (for a more detailed overview see
Section 3.3 in [GPW15]). On input h = {h(x)}x∈Gα,n ∈ Hδ,λ,n|α, the node v traces a root-to-leaf
path (of length at most C) of π, which is used to determine which values h(x) to query, and when.
We maintain the invariant that every (f, g) ∈ A × B is consistent with the query history so far
(i.e., g(f(x)) = h(x) for every previously queried x). The interesting structure of A × B is what
they look like on the unqueried points x, i.e., on the projected set AI ×BLI : By construction, we
maintain the property that all possible values in (B5ε(x))I are still possible for the unqueried points
x ∈ I (in fact, a stronger property is maintained, namely, that AI is thick, and BLI is “large” as
measured by b(BLI )). The potential function is a(AI), namely, the size of the set of all projections
of elements of A to the unqueried coordinates in I, relative to the original domain F := ×xLx. The
type of iteration is determined by minx∈I AvgDegx(AI), which captures how much the values of h
on the set of unqueried points I are “predictable” from each other in A×B.

In a communication iteration (lines 5 and 11), the current set of inputs is restricted to the
“larger” rectangle obtained by (either Alice or Bob) sending a bit b ∈ {0, 1}. This ensures our
potential does not increase too much (note that larger potential corresponds to a smaller set) if
Alice is the sender, and that BLI stays large enough if Bob is the sender. If Alice is the sender, the
restriction may result in violation of the thickness invariant, in which case we employ the Thickness
Lemma (Lines 7-9).

In a query iteration, we query a value h(x) whenever AvgDegx(AI) drops and becomes too small.
We can then use the Projection Lemma (Lines 17-21) to restrict A×B to an h(x)-monochromatic
sub-rectangle (for any value in B5ε(x), using the thickness invariant). The fact that AvgDegx(AI)
is small ensures at least an Ω(log k) decrease in potential.

B.2 Analysis of the simulation algorithm

The analysis of the simulation tree T is the same as the one in [GPW15] (with the appropriate re-
parametrization of the parameters), hence we omit it and refer the reader to Section 3.4 in [GPW15].
To complete the proof of Lemma 4.2, it therefore remains to prove the Projection Lemma. This is
the content of the next section.

B.3 Proof of the Projection Lemma

In this section we show how to adapt the [GPW15] proof of the Projection Lemma to our setting
of parameters. Essentially all arguments are the same as in the [GPW15] proof, albeit with the
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ALGORITHM 1: The simulating decision-tree T for solving AFP (cf. [GPW15]).

input : A truth table {h(x)}x∈Gα,n of a function h : Gα,n 7→ Gα,n ∈ Hδ,λ,n|α.
output: x ∈ Gα,n such that ‖x− h(x)‖∞ ≤ ε (i.e., a solution to AFPn,α,λ,ε(h)).
1 Initialize v = root of π, I = Gα,n, A = F = ×x∈Gα,nLx, B = G = ×x∈Gα,n(B5ε(x))k.

2 while v is not a leaf of π do
3 if AvgDegx(A) ≥ k19/20 for all x ∈ I then
4 let v0, v1 be the children of v ;
5 if Alice sends a bit at v then
6 let b ∈ {0, 1} be such that a((A ∩ Fv,b)I) ≤ a(AI) + 1 ;

7 let A′ ⊆ (A ∩ Fv,b)I be such that:
8 (1) A′ is thick ;

9 (2) a(A′) ≤ a((A ∩ Fv,b)I) ≤ a(AI) + 1 ;

10 update A =
{
f ∈ A ∩ Fv,b : {f(x)}x∈I ∈ A′} and v = vb (so now AI = A′) ;

11 else
12 (if Bob sends a bit at v) let b ∈ {0, 1} be such that b((B ∩ Gv,b)LI ) ≤ b(BLI ) + 1 ;

13 update B = B ∩ Gv,b and v = vb ;

14 end

15 else
16 if AvgDegx(A) < k19/20 for some x ∈ I, then query h(x) ;

17 let U × V ⊆ Lx × (B5ε(x))k be an (h(x))-monochromatic rectangle such that:

18 (1) Ax,UI\{x} is thick ;

19 (2) a(Ax,UI\{x}) ≤ a(AI)− log k ;

20 (3) a(Bx,VLI\{Lx}) ≤ b(BLI ) + 1 ;

21 update A = Ax,U , B = Bx,V and I = I \ {x} ;

22 end
23 output the same value that v does.

24 end

re-encoding of the parameters, as defined in the reduction at the beginning of Section 5.4. In places
where no modification is required we simply refer to the proofs of [GPW15, RM99] (we remark
that the [GPW15] proof is written (for simplicity) for the binary |Σ| = 2 case while we need the
“multi-color” version (arbitrary alphabets), which is explicitly treated in the proof of [RM99], so
we shall make an occasional reference to the latter proof below).

Proof of Lemma B.3. Fix x ∈ I, and for simplicity of notation let us henceforth denote A−x :=
AI\{x} and similarlyAx,U−x := Ax,UI\{x}. Recall thatAx,U−x is the set of right nodes f−x :=

{
{f(x′)}x′∈I\{x}

}
of Graphx(A) that have a neighbor in U ⊆ Lx. Similarly, let

Bx,V
−x := Bx,V

LI\{Lx} =
{
{g(y)}y∈LI\{Lx} : {g(y)}y∈LI ∈ B for some g(Lx) ∈ V

}
.

We claim that if we take a uniformly random subset U ⊆R Lx of size k7/20 and let V := {g ∈ G :
g(y) ≡ z ∀ y ∈ U}, then:

(1) Ax,U−x = A−x with probability at least 1− 2−k
3/20

;

(2) A−x is thick ;

(3) a(A−x) ≤ a(A) + logAvgDegx(A)− log k ;
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(4) b(Bx,V
−x ) ≤ b(B) + 1 with probability at least 2−k

2/20
.

The Projection Lemma then follows from a union bound.

Property (1). For every non-zero degree right node f−x =
{
{f(x′)}x′∈I\{x}

}
∈ A−x of Graphx(A),

let Ff−x := {f(x) ∈ Lx : f−x ∪ {f(x)} ∈ A} denote the set of all left nodes adjacent to it. Since A

is thick by assumption, we have |Ff−x | ≥ MinDegx(A) ≥ k17/20, and f−x ∈ Ax,U−x iff U intersects

Lf−x . Since |U | = k7/20, the probability that U does not intersect Ff−x is at most

(1− k17/20/|Lx|)k
7/20 ≤ (1− k17/20/k)k

7/20 ≤ e−k4/20 .

Recall that k ≥ N1000. Since the number of elements f−x ∈ A−x is at most
∏
x′∈I\{x} |Lx′ | ≤

k|I|−1 ≤ kN−1 ≤ 2k
1/1000·log k, by a union bound the probability that one of these elements is not in

Ax,U−x is at most 2k
1/1000·log k · e−k4/20 < 2−k

3/20
.

Property (2). The proof of this property is exactly the same as in [GPW15] but we redo it here
in the terminology of AFPC for the sake of completeness. By definition of thickness, it suffices to
show that MinDegx′(A−x) ≥ MinDegx′(A) for all x′ ∈ I \ {x}. Indeed, for every non-zero degree
right node f−{x,x′} :=

{
{f(x′′)}x′′∈I\{x,x′}

}
of Graphx′(A−x), there exists a value f(x′) such that

f−{x,x′} ∪ {f(x′)} ∈ A−x. Thus by the definition of A−x there exists a value f(x) ∈ Lx such
that

(
f−{x,x′} ∪ {f(x′)} ∪ {f(x)}

)
∈ A. Therefore, by the definition of MinDegx′(A) applied to

the set of non-zero degree right nodes f−x′ :=
{
{f(x′′)}x′′∈I\{x′}

}
of Graphx′(A), we have that(

f−x′ ∪ {f̂(x′)}
)
∈ A holds for at least MinDegx′(A) different values f̂(x′). All of these values

satisfy
(
f−{x,x′} ∪ {f̂(x′)}

)
∈ A−x. Hence the degree of the right node f−{x,x′} in Graphx′(A−x) is

at least MinDegx′(A).

Property (3). Observe that |A−x| = |A|/AvgDegx(A). Since A−x ⊆ FI\{x} and a(A) =

log(k|I|/|A|) by definition, we have

a(A−x) = log(k|I|−1/|A−x|) = log(k|I|−1 · AvgDegx(A)/|A|) =

= log(k|I|/|A|) + log(AvgDegx(A)/k) = a(A) + logAvgDegx(A)− log k.

Property (4). Recall that the set V is a random variable of U , so we henceforth write V = VU
to avoid confusion. Recall that Bx,VU

−x is the set of all possible g-values on LI \ {Lx}, for which
there is an extension of g to Lx so that g|LI ∈ B, and g(y) ≡ z for every y ∈ U . We want to show

that |Bx,VU
−x | shrinks by at most a factor of 2 relative to |B|. This is the content of the following

claim from [RM99], which we state without a proof:

Claim B.4 ([RM99], Claim 6.5 in Section 6.4). Suppose that k ≥ r1000. If U ′ ⊆R Lx is a random
subset of size |U ′| = k5/20, then

Pr
U ′

[
|Bx,VU′
−x | ≥ |B|/(2 · rk)

]
≥ 3/4.
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We remark that in [RM99], [r] represents a set of absolute “colors” for all of Bob’s inputs (so
Bob’s input is in (rm)N where the parameter m of [RM99] denotes the length of each “vector”),
while, as noted above, in our setting each x ∈ Gα,n has its own set of allowable colors (|B5ε(x)| = r).
We observe that the proof remains exactly the same if we substitute [m]↔ Lx (i.e., m↔ k), and
observing that the condition |B5ε(x)| = r ≤ k1/1000 still applies, by (17).

Viewing the random set U (of size k7/20) as a collection of k2/20 random independent subsets
U ′i ⊆R Lx each of size k5/20, Claim B.4 applied independently to each U ′i ensures that

Pr
U

[
|Bx,VU
−x | ≥ |B|/(2 · rk)

]
≥
(

Pr
U

[|B
x,VU′1
−x | ≥ |B|/(2 · rk)]

)k2/20
≥ (3/4)k

2/20
.

This completes the proof of the Projection Lemma.
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