# Can PPAD Hardness be Based on Standard Cryptographic Assumptions? 

Alon Rosen* Gil Segev ${ }^{\dagger} \quad$ Ido Shahaf ${ }^{\dagger}$


#### Abstract

We consider the question of whether average-case PPAD hardness can be based on standard cryptographic assumptions, such as the existence of one-way functions or public-key encryption. This question is particularly well-motivated in light of new devastating attacks on obfuscation candidates and their underlying building blocks, which are currently the only known source for average-case PPAD hardness.

Central in the study of obfuscation-based PPAD hardness is the SINK-OF-VERIFIABLE-LINE (SVL) problem, an intermediate step in constructing hard-on-average instances of the PPADcomplete problem SOURCE-OR-SINK. Within the framework of black-box reductions we prove the following results: - Average-case PPAD hardness (and even average-case SVL hardness) does not imply any form of cryptographic hardness (not even one-way functions). - Average-case SVL hardness cannot be based either on standard cryptographic assumptions or on average-case PPAD hardness (and is thus not essential for PPAD hardness). - Any attempt for basing the average-case hardness of sOURCE-OR-SINK on standard cryptographic assumptions must result in instances with a nearly-exponential number of solutions. Taken together, our results imply that while it may still be possible to base average-case PPAD hardness on standard cryptographic assumptions, any black-box attempt must significantly deviate from the obfuscation-based approach: It cannot go through the SVL problem, and it must result in SOURCE-OR-SINK instances with a nearly-exponential number of solutions.


[^0]
## Contents

1 Introduction ..... 1
1.1 Our Contributions ..... 2
1.2 Open Problems ..... 4
1.3 Overview of Our Approach ..... 5
1.4 Paper Organization ..... 7
2 Preliminaries ..... 8
2.1 Complexity Classes and Total Search Problems ..... 8
2.2 One-Way Functions and Injective Trapdoor Functions ..... 9
3 Average-Case SVL Hardness Does Not Imply One-Way Functions ..... 9
3.1 Proof Overview ..... 10
$3.2 \mathcal{O}_{\text {SVL }}$ is a Hard-on-Average SVL Instance ..... 12
3.3 Inverting Oracle-Aided Functions Relative to $\mathcal{O}_{\text {SVL }}$ ..... 14
3.4 Proof of Theorem 3.2 ..... 15
4 Average-Case PPAD Hardness Does Not Imply Unique-TFNP Hardness ..... 16
4.1 Proof Overview ..... 17
4.2 $\mathcal{O}_{\text {PPAD }}$ is a Hard-on-Average Source-or-Sink Instance ..... 19
4.3 Solving Oracle-Aided Unique-TFNP Instances Relative to $\mathcal{O}_{\text {PPAD }}$ ..... 20
4.4 Proof of Theorem 4.2 ..... 22
5 One-Way Functions Do Not Imply Bounded-TFNP Hardness ..... 23
5.1 Proof Overview ..... 25
$5.2 f$ is a One-Way Function ..... 26
5.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to $f$ ..... 27
5.4 Proof of Theorem 5.2 ..... 29
6 Public-Key Cryptography Does Not Imply Bounded-TFNP Hardness ..... 30
6.1 Proof Overview ..... 31
6.2 $\mathcal{O}_{\text {TDF }}$ is a Collection of Injective Trapdoor Functions ..... 33
6.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to $\mathcal{O}_{\text {TDF }}$ ..... 36
6.4 Proofs of Claims 6.8-6.10 ..... 39
References ..... 41

## 1 Introduction

In recent years there has been increased interest in the computational complexity of finding a Nash equilibrium. Towards this end, Papadimitriou defined the complexity class PPAD, which consists of all search problems that are polynomial-time reducible to the SOURCE-OR-SINK problem [Pap94]. ${ }^{1}$ Papadimitriou showed that the problem NASH of finding a Nash equilibrium is reducible to SOURCE-or-SINK, and thus belongs to PPAD. He also conjectured that there exists a reduction in the opposite direction. This was ultimately proved by Daskalakis, Goldberg and Papadimitriou [DGP09] and by Chen, Deng and Teng [CDT09]. To support the belief that NASH may indeed be hard it thus became sufficient to place a conjectured computationally-hard problem within the class PPAD.

Currently, no natural PPAD-complete problem is known to admit a subexponential-time algorithm. At the same time, however, we do not know how to generate instances that defeat known heuristics for these problems (see [HPV89] for explicit worst-case hard instances of computing Brouwer fixed points and [SvS04] for NASH). This leaves us in an intriguing state of affairs, in which we know of no efficient algorithms with provable worst-case guarantees, but we are yet to systematically rule out the possibility that known heuristic algorithms perform well on the average.

A natural approach for arguing hardness on the average would be to reduce from problems that originate from cryptography. Working in the realm of cryptography has at least two advantages. First of all, it enables us to rely on well-studied problems that are widely conjectured to be averagecase hard. Secondly, and no less importantly, cryptography supplies us with frameworks for reasoning about average-case hardness. On the positive direction, such frameworks are highly suited for designing and analyzing reductions between average-case problems. On the negative direction, in some cases it is possible to reason when and why natural reductions will not exist [Rud88, IR89].

Up until recently not much progress has been made in relating between cryptography and PPAD hardness. This has changed as a result of developments in the study of obfuscation $\left[\mathrm{BGI}^{+} 01\right.$, $\left.\mathrm{GGH}^{+} 13\right]$, a strong cryptographic notion with connections to the hardness of sOURCE-OR-SINK. As shown by Bitansky, Paneth and Rosen [BPR15] the task of breaking sub-exponentially secure indistinguishability obfuscation can be reduced to solving source-or-Sink. Beyond giving the first extrinsic evidence of PPAD hardness, the result of Bitansky et al. also provided the first method to sample potentially hard-on-average source-or-Sink instances. Their result was subsequently strengthened by Garg, Pandey and Srinivasan, who based it on indistinguishability obfuscation with polynomial hardness [GPS15].

Generally speaking, indistinguishability obfuscation has revealed to be an exceptionally powerful primitive, with numerous far reaching applications. However, its existence is far from being a wellestablished cryptographic assumption, certainly not nearly as well-established as the existence of one-way functions or public-key encryption. Recently, our confidence in existing indistinguishability obfuscation candidates has somewhat been shaken, following a sequence of devastating attacks on both candidate obfuscators and on their underlying building blocks (see, for example, $\left[\mathrm{BGH}^{+} 15\right.$, $\mathrm{CGH}^{+} 15, \mathrm{CHL}^{+} 15$, CLR15, HJ15, MF15, CFL ${ }^{+} 16$, CJL16, MSZ16]). It thus became natural to ask:

Can average-case PPAD hardness be based on standard cryptographic assumptions?
By standard cryptographic assumptions we are in general referring to "pre-obfuscation" type of primitives, such as the existence of one-way functions or public-key cryptography. As mentioned above, such assumptions are currently by far more well-established than indistinguishability obfuscation, and basing average-case PPAD hardness on them would make a much stronger case.

[^1]For all we know PPAD hardness may be based on the existence of one-way functions. However, if for some reason it turned out that PPAD hardness implies, say, public-key encryption then this would indicate that answering the above question might require developing radically new techniques. This is because we currently do not know how to base public-key encryption on one-way functions, and in fact cannot do so using black-box techniques [IR89]. More generally, the stronger the implication of PPAD hardness is, the more difficult it may be to base PPAD hardness on standard assumptions. This leads us to the following second question:

Does average-case PPAD hardness imply any form of cryptographic hardness?
As discussed above, a negative answer to the above question would actually be an encouraging sign. It means that there may be hope to use standard techniques to base PPAD hardness on standard cryptographic assumptions.

### 1.1 Our Contributions

Motivated by the above questions, we investigate the interplay between average-case PPAD hardness and standard cryptographic assumptions. We consider this interplay from the perspective of blackbox reductions, the fundamental approach for capturing natural relations both among complexity classes (e.g., [BCE ${ }^{+} 95$, CIY97]) and among cryptographic primitives (e.g., [Rud88, IR89, Lub96]).

Average-case PPAD hardness does not imply cryptographic hardness. Our first result shows that average-case PPAD hardness does not imply any form of cryptographic hardness in a black-box manner (not even a one-way function). In fact, we prove the following more general theorem by considering the SINK-OF-VERIFIABLE-LINE (SVL) problem, introduced by Abbot et al. [AKV04] and further studied by Bitansky et al. [BPR15] and Garg et al. [GPS15]:

Theorem 1.1. There is no black-box construction of a one-way function from a hard-on-average distribution of SVL instances.

Abbot et al. [AKV04] and Bitansky et al. [BPR15] showed that any hard-on-average distribution of SVL instances can be used in a black-box manner for constructing a hard-on-average distribution of instances to a PPAD-complete problem (specifically, instances of the SOURCE-OR-SINK problem). Thus, Theorem 1.1 implies, in particular, that there is no black-box construction of a one-way function from a hard-on-average distribution of instances to a PPAD-complete problem.

As discussed in the previous section, the fact that average-case PPAD hardness does not naturally imply any form of cryptographic hardness may be interpreted as an encouraging sign in the pursuit of basing average-case PPAD hardness on standard cryptographic assumptions. For example, if average-case PPAD hardness would have implied program obfuscation, this would have indicated that extremely strong cryptographic assumptions are likely to be essential for average-case PPAD hardness. Similarly, if average-case PPAD hardness would have implied public-key cryptography, this would have indicated that well-structured cryptographic assumptions are essential for averagecase PPAD hardness. The fact that average-case PPAD hardness does not naturally imply any form of cryptographic hardness hints that it may be possible to base average-case PPAD hardness even on the minimal (and unstructured) assumption that one-way functions exist.

Average-case SVL hardness cannot be based on public-key cryptography. The SVL problem played a central role in the recent breakthrough of Bitansky et al. [BPR15] and Garg et al. [GPS15] in constructing a hard-on-average distribution of instances to a PPAD-complete
problem based on indistinguishability obfuscation. Specifically, they constructed a hard-on-average distribution of SVL instances, and this directly implies hard-on-average distribution of SOURCE-ORSINK instances [AKV04, BPR15].

In light of this, perhaps the most natural attempt for basing average-case PPAD hardness on standard cryptographic assumptions is to go through average-case SVL hardness as an intermediate step. Unfortunately, we show that this approach cannot be realized based on one-way functions, and even on injective trapdoor functions, in a black-box manner. Note that, unlike one-way functions, injective trapdoor functions are significantly more structured, leading to a variety of public-key primitives (e.g., public-key encryption). We prove the following theorem which, when combined with Theorem 1.1, shows that average-case SVL hardness is essentially incomparable to the existence of one-way functions and injective trapdoor functions.

Theorem 1.2. There is no black-box construction of hard-on-average distribution of SVL instances from injective trapdoor functions.

More generally, although the above discussion and Theorem 1.2 focus on one-way functions and injective trapdoor functions, our impossibility result in fact holds for a larger class of building blocks. Specifically, it holds for any primitive that exists relative to a random function oracle or relative to a random injective trapdoor function oracle. Thus, Theorem 1.2 holds, for example, also for collision-resistant hash functions (which are not implied by one-way functions or injective trapdoor functions in a black-box manner [Sim98, $\left.\mathrm{HHR}^{+} 15\right]$ ).

On basing average-case PPAD hardness on standard assumptions. The somewhat pessimistic view provided by Theorem 1.2 may hint that not only average-case SVL hardness cannot be based on one-way functions or injective trapdoor functions, but also that average-case PPAD hardness cannot be based on these primitives. We show, however, that this is not necessarily the case by proving that the SVL problem is in fact far from representing the average-case hardness of PPAD. Recall that Abbot et al. [AKV04] and Bitansky et al. [BPR15] showed that the SVL problem can be efficiently reduced to the SOURCE-OR-SINK problem (even in the worst case), and here we show that there is no such reduction in the opposite direction (not even an average-case one). We prove the following theorem:

Theorem 1.3. There is no black-box construction of hard-on-average distribution of SVL instances from a hard-on-average distribution of SOURCE-OR-SINK instances.

Combining Theorems 1.2 and 1.3, we deduce that there may still be hope for basing average-case PPAD hardness even on one-way functions, but any such attempt must aim directly towards a PPADcomplete problem, instead of going through average-case SVL hardness as an intermediate step.

Finally, we show that any attempt for basing average-case PPAD hardness on one-way functions (and even on injective trapdoor functions) must significantly deviate from the structure of the SOURCE-OR-SINK instances that are obtained by the obfuscation-based approach. Specifically, the SOURCE-OR-SINK instances resulting from that approach have exactly one solution ${ }^{2}$, and we show that when relying on injective trapdoor functions in a black-box manner it is essential to have (at least) a sub-exponential number of solutions. We prove the following theorem:

Theorem 1.4. There is no black-box construction of hard-on-average distribution of SOURCE-ORSINK instances over $\{0,1\}^{n}$ with $2^{n^{o(1)}}$ solutions from injective trapdoor functions.

[^2]Similarly to the impossibility result stated in Theorem 1.2 , also the impossibility result stated in Theorem 1.4 holds for any building block that exists relative to a random function oracle or relative to a random injective trapdoor function oracle (e.g., collision-resistant hash functions).

### 1.2 Open Problems

Three natural open problems arise directly from our results.

- The strong structural barrier put forward in Theorem 1.4 stands in stark contrast to the approach of Bitansky et al. [BPR15] and Garg et al. [GPS15]. Thus, an intriguing open problem is either to extend our impossibility result to rule out constructions with any number of solutions, or to circumvent our impossibility result by designing instances with an nearlyexponential number of solutions.
- More generally, the question of circumventing black-box impossibility results by utilizing non-black-box techniques is always fascinating. In our specific context, already the obfuscationbased constructions of Bitansky et al. [BPR15] and Garg et al. [GPS15] involve non-blackbox techniques (e.g., they apply an indistinguishability obfuscator to a circuit that uses a pseudorandom function). ${ }^{3}$ Thus, an exciting open problem is to circumvent our results by utilizing non-black-box techniques while relying on standard cryptographic assumptions.
- Our impossibility results in Theorems 1.2 and 1.4 apply to any building block that exists relative to a random function oracle or relative to a random injective trapdoor function oracle. It is not clear, however, whether similar impossibility results may apply to one-way permutations. Thus, an intriguing open problem is either to extend our impossibility results to rule out constructions based on one-way permutations, or to circumvent our impossibility results by designing hard-on-average instances based on one-way permutations.


Figure 1: An illustration of our results. Dashed arrows correspond to known implications, and solid arrows correspond to our separations.

[^3]
### 1.3 Overview of Our Approach

In this section we provide a high-level overview of the main ideas underlying our results. Each of our results is of the form "the existence of $P$ does not imply the existence of $Q$ in a black-box manner", where each of $P$ and $Q$ is either a cryptographic primitive (e.g., a one-way function) or a hard-on-average search problem (e.g., the source-or-sink problem). Intuitively, such a statement is proved by constructing a distribution over oracles relative to which there exists an implementation of $P$, but any implementation of $Q$ can be "efficiently broken" (our formal proofs properly formalize this intuition).

Average-case SVL hardness does not imply OWFs. Theorem 1.1 is proved by presenting a distribution of oracles relative to which there exists a hard-on-average distribution of SVL instances, but there are no one-way functions. An SVL instance is of the form $\left\{\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ it holds that $\mathrm{S}_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \mathrm{~V}_{n}:\{0,1\}^{n} \times\left[2^{n}\right] \rightarrow\{0,1\}$, and $L(n) \in\left[2^{n}\right]$. Such an instance is valid if for every $n \in \mathbb{N}, x \in\{0,1\}^{n}$, and $i \in\left[2^{n}\right]$, it holds that $\mathrm{V}_{n}(x, i)=1$ if and only if $x=\mathrm{S}_{n}^{i}\left(0^{n}\right)$. Intuitively, the circuit $\mathrm{S}_{n}$ can be viewed as implementing the successor function of a directed graph over $\{0,1\}^{n}$ that consists of a single line starting at $0^{n}$, and the circuit $\mathrm{V}_{n}$ enables to efficiently test whether a given node $x$ is of distance $i$ from $0^{n}$ on the line. The goal is to find the node of distance $L(n)$ from $0^{n}$.

We consider an oracle that is a valid SVL instance $\mathcal{O}_{\text {SVL }}$ corresponding to a graph with a single line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ of length $L(n)=2^{n / 2}$. The line is chosen uniformly among all lines in $\{0,1\}^{n}$ of length $L(n)$ starting at $0^{n}$ (and all nodes outside the line have self loops and are essentially irrelevant). First, we show that the oracle $\mathcal{O}_{\text {SVL }}$ itself is a hard-on-average SVL instance. This is based on the following, rather intuitive, observation: Since the line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ is sparse and uniformly sampled, then any algorithm performing $q=q(n)$ oracle queries should not be able to query $\mathcal{O}_{\text {SVL }}$ with any element on the line beyond the first $q$ elements $0^{n}, x_{1}, \ldots, x_{q-1}$. In particular, for our choice of parameters, any algorithm performing at most, say, $2^{n / 4}$ queries, has only an exponentially-small probability of reaching $x_{L(n)}$ (where the probability is taken over the choice of the oracle $\mathcal{O}_{\mathrm{SVL}}$ ).

Then, we show that any oracle-aided function $F^{\mathcal{O} \operatorname{sVL}}(\cdot)$ can be inverted (with high probability over the choice of the oracle $\mathcal{O}_{\mathrm{SVL}}$ ) by an algorithm whose query complexity is polynomially-related to that of the function $F^{\mathcal{O}_{\mathrm{SVL}}}(\cdot)$. The proof is based on the following approach. Consider a value $y=F^{\mathcal{O}_{\mathrm{SVL}}}(x)$ that we would like to invert. If $F$ performs at most $q=q(n)$ oracle queries, the above-mentioned observation implies that the computation $F^{\mathcal{O}_{\mathrm{SVL}}}(x)$ should not query $\mathcal{O}_{\mathrm{SVL}}$ with any elements on the line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ except for the first $q$ elements $x_{0}, x_{1}, \ldots, x_{q-1}$. This observation gives rise to the following inverter $\mathcal{A}$ : First perform queries to $\mathcal{O}_{\text {SVL }}$ for discovering $x_{1}, \ldots, x_{q}$, and then invert $y=F^{\mathcal{O}_{\mathrm{SVL}}}(x)$ relative to the oracle $\mathcal{\mathcal { O }}_{\mathrm{SVL}}$ defined via the following successor function $\widetilde{\mathrm{S}}$ :

$$
\widetilde{\mathrm{S}}(\alpha)=\left\{\begin{array}{cl}
x_{i+1} & \text { if } \alpha=x_{i} \text { for some } i \in\{0, \ldots, q-1\} \\
\alpha & \text { otherwise }
\end{array} .\right.
$$

The formal proof is in fact more subtle, and requires a significant amount of caution when inverting $y=F^{\mathcal{O}_{\mathrm{SVL}}}(x)$ relative to the oracle $\widetilde{\mathcal{O}_{\mathrm{SVL}}}$. Specifically, the inverter $\mathcal{A}$ should find an input $\widetilde{x}$ such that the computations $F^{\widetilde{\mathcal{O}_{\mathrm{SVL}}}}(\widetilde{x})$ and $F^{\mathcal{O}_{\mathrm{SVL}}}(\widetilde{x})$ do not query the oracles $\widetilde{\mathcal{O}_{\mathrm{SVL}}}$ and $\mathcal{O}_{\mathrm{SVL}}$, respectively, with any of $x_{q}, \ldots, x_{L(n)}$. In this case, we show that indeed $F^{\mathcal{O}_{\mathrm{SVL}}}(\widetilde{x})=y$ and the inverter is successful. We refer the reader to Section 3 for more details and for the formal proof.

Average-case PPAD hardness does not imply unique-TFNP hardness. Theorem 1.3 is proved by presenting a distribution of oracles relative to which there exists a hard-on-average distribution of instances of a PPAD-complete problem (specifically, we consider the source-or-sink problem), but there are no hard TFNP instances having unique solutions.

A TFNP instance with a unique solution, denoted a unique-TFNP instance, is of the form $\left\{C_{n}\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ it holds that $C_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ and there is a unique $x^{*} \in\{0,1\}^{n}$ such that $C(x)=1$. Note that any valid SVL instance yields a TFNP instance that has a unique solution. Therefore, relative to our distribution over oracles any valid SVL instance can be efficiently solved.

A source-or-sink instance is of the form $\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ it holds that $S_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $P_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. Intuitively, the circuits $S_{n}$ and $P_{n}$ can be viewed as implementing the successor and predecessor functions of a directed graph over $\{0,1\}^{n}$, where the in-degree and out-degree of every node is at most one, and the in-degree of $0^{n}$ is 0 (i.e., it is a source). The goal is to find any node, other than $0^{n}$, with either no incoming edge and no outgoing edge.

We consider an oracle that is a source-or-sink instance $\mathcal{O}_{\text {PPAD }}$ which is based on the same sparse structure used to define the oracle $\mathcal{O}_{\text {SVL }}$ : It corresponds to a graph with a single line $0^{n} \rightarrow x_{1} \rightarrow$ $\cdots \rightarrow x_{L(n)}$ of length $L(n)=2^{n / 2}$. The line is chosen uniformly among all lines in $\{0,1\}^{n}$ of length $L(n)$ starting at $0^{n}$ (and all nodes outside the line have self loops). The fact that the oracle $\mathcal{O}_{\text {PPAD }}$ is a hard-on-average source-or-sink instance follows quite easily from the above-mentioned observation on its sparse and uniform structure: Any algorithm performing $q=q(n)$ oracle queries should not be able to query $\mathcal{O}_{\text {PPAD }}$ with any element on the line beyond the first $q$ elements $x_{0}, x_{1}, \ldots, x_{q-1}$. In particular, for our choice of parameters, any such algorithm should have only an exponentially-small probability of reaching $x_{L(n)}$.

Solving any oracle-aided unique-TFNP instance relative to $\mathcal{O}_{\text {PPAD }}$, however, turns out to be a completely different challenge. One might be tempted to follow a same approach based on the oracle's sparse and uniform structure. Specifically, let $C_{n}$ be a unique-TFNP instance, and consider the unique value $x^{*} \in\{0,1\}^{n}$ for which $C_{n}^{\mathcal{O}}{ }^{\operatorname{PPAD}}\left(x^{*}\right)=1$, then if $C_{n}$ issues at most $q=q(n)$ oracle queries, the computation $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(x^{*}\right)$ should essentially not be able to query $\mathcal{O}_{\text {PPAD }}$ with any elements on the line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ except for the first $q$ elements $0^{n}, x_{1}, \ldots, x_{q-1}$. Therefore, one can define a "fake" oracle $\widetilde{\mathcal{O}_{\text {PPAD }}}$ whose successor and predecessor functions agree with $\mathcal{O}_{\text {PPAD }}$ on $0^{n}, x_{1}, \ldots, x_{q}$ (and are defined as the identity functions for all other inputs), and then find the unique $\widetilde{x}$ such that $C_{n}^{\mathcal{O P P A D}^{x}}(\widetilde{x})=1$. This approach, however, completely fails since the solution $x^{*}$ itself may depend on $\mathcal{O}_{\text {PPAD }}$ in an arbitrary manner, providing the computation $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(x^{*}\right)$ with sufficient information for querying $\mathcal{O}_{\text {PPAD }}$ with an input $x_{i}$ that is located further along the line (i.e., $q \leq i \leq L(n)$ ).

Our proof of Claim 4.4 is obtained by building upon Rudich's classic proof for ruling out blackbox constructions of one-way permutations based on one-way functions [Rud88]. In fact, Rudich's proof already generalizes, perhaps somewhat implicitly, from from ruling out constructions of oneway permutations to ruling out constructions of any hard-on-average distribution of unique-TFNP instances. We show, by extending and refining Rudich's proof technique, that his approach provides a rich framework that allows to bound not only the limitations of one-way functions as a building block, but even the limitations of significantly more structured primitives as building blocks. Specifically, our proof extends Rudich's technique for bounding the limitations of hard-on-average source-or-sink instances. We refer the reader to Section 4 for more details and for the formal proof.

Injective trapdoor functions do not imply bounded-TFNP hardness. Theorems 1.2 and 1.4 are proved by presenting a distribution of oracles relative to which there exists a collection of injective trapdoor functions, but there are no hard TFNP instances having a bounded number of solutions (specifically, our result will apply to a sub-exponential number of solutions).

A TFNP instance with bounded number $k(\cdot)$ of solutions, denoted a $k$-bounded TFNP instance, is of the form $\left\{C_{n}\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ it holds that $C:\{0,1\}^{n} \rightarrow\{0,1\}$, and there is at least one and at most $k(n)$ distinct inputs $x \in\{0,1\}^{n}$ such that $C(x)=1$ (any one of these $x$ 's is a solution). In particular, as discussed above, any valid SVL instance yields a 1-bounded TFNP instance (i.e., a unique-TFNP instance), and therefore our result rules out black-box constructions of a hard-on-average distribution of SVL instances from injective trapdoor functions. Similarly, any source-or-sink instance which consists of at most $(k+1) / 2$ disjoint lines yields a $k$-bounded TFNP instance, and therefore our result rules out black-box constructions of a hard-on-average distribution of source-or-sink instances with a bounded number of disjoint lines from a one-way function.

For emphasizing the main ideas underlying our proof, in Section 5 we first prove our result for constructions that are based on one-way functions, and then in Section 6 we generalize the proof to constructions that are based on injective trapdoor functions. Each of these two parts requires introducing new ideas and techniques, and such a level of modularity is useful in pointing them out.

When considering constructions that are based on one-way functions, our proof is obtained via an additional generalization of Rudich's proof technique [Rud88]. As discussed above, Rudich's approach already generalizes, perhaps somewhat implicitly, from ruling out constructions of one-way permutations based on one-way functions to ruling out constructions of any hard-on-average distribution of unique-TFNP instances based on one-way functions. We show, by extending and refining Rudich's proof technique once again, that his approach allows to rule out not only constructions of unique-TFNP instances, but even constructions of bounded-TFNP instances. This require a substantial generalization of Rudich's attacker, and we refer reader to Section 5 for more details and for the formal proof.

Then, when considering constructions that are based on injective trapdoor functions, we show that our proof from Section 5 can be generalized from constructions of bounded-TFNP instances based on one-way functions to constructions of bounded-TFNP instances based on injective trapdoor functions. Following our result from Section 4, this provides additional evidence that Rudich's proof technique yields a rich framework that allows to bound not only the limitations of one-way functions as a building block, but even the limitations of significantly more structured primitives as building blocks. We refer reader to Section 6 for more details and for the formal proof.

### 1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce our notation as well as the search problems and the cryptographic primitives that we consider in this paper. In Section 3 we prove that average-case SVL hardness does not imply one-way functions in a black-box manner. Then, in Section 4 we prove that average-case PPAD hardness does not imply uniqueTFNP hardness in a black-box manner. In Section 5 we prove that one-way functions do not imply bounded-TFNP hardness in a black-box manner. Finally, by generalizing our result from Section 5, in Section 6 prove that even injective trapdoor functions do not imply bounded-TFNP hardness in a black-box manner.

## 2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a distribution $X$ we denote by $x \leftarrow X$ the process of sampling a value $x$ from the distribution $X$. Similarly, for a set $\mathcal{X}$ we denote by $x \leftarrow \mathcal{X}$ the process of sampling a value $x$ from the uniform distribution over $\mathcal{X}$. For an integer $n \in \mathbb{N}$ we denote by $[n]$ the set $\{1, \ldots, n\}$. A $q$-query algorithm is an oracle-aided algorithm $A$ such that for any oracle $\mathcal{O}$ and input $x \in\{0,1\}^{*}$, the computation $A^{\mathcal{O}}(x)$ consists of at most $q(|x|)$ oracle calls to $\mathcal{O}$.

### 2.1 Complexity Classes and Total Search Problems

An efficiently-verifiable search problem is described via a pair $(I, R)$, where $I \subseteq\{0,1\}^{*}$ is an efficiently-recognizable set of instances, and $R$ is an efficiently-computable binary relation. Such a search problem is total if for every instance $z \in I$ there exists a witness $w$ of length polynomial in the length $z$ such that $R(z, w)=1$.

The class TFNP consists of all efficiently-verifiable search problem that are total, and its subclass PPAD consists of all such problems that are polynomial-time reducible the source-or-sink problem [Pap94], defined as follows.

Definition 2.1 (The source-or-sink problem). A source-or-sink instance consists of a pair of circuits S, $\mathrm{P}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that $\mathrm{P}\left(0^{n}\right)=0^{n} \neq \mathrm{S}\left(0^{n}\right)$. The goal is to find an element $w \in\{0,1\}^{n}$ such that $\mathrm{P}(\mathrm{S}(w)) \neq w$ or $\mathrm{S}(\mathrm{P}(w)) \neq w \neq 0^{n}$.

Intuitively, the circuits $S$ and $P$ can be viewed as implementing the successor and predecessor functions of a directed graph over $\{0,1\}^{n}$, where the in-degree and out-degree of every node is at most one, and the in-degree of $0^{n}$ is 0 (i.e., it is a source). ${ }^{4}$ The goal is to find any node, other than $0^{n}$, with either no incoming edge and no outgoing edge. Such a node must always exist by a parity argument.

The sink-of-verifiable-line (SVL) problem is a search problem introduced by Abbot et al. [AKV04] and further studied by Bitansky et al. [BPR15] and Garg et al. [GPS15]. It is defined as follows:

Definition 2.2 (The sink-of-verifiable-line (SVL) problem). An SVL instance consists of a triplet ( $\mathrm{S}, \mathrm{V}, T$ ), where $T \in\left[2^{n}\right]$, and $\mathrm{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $\mathrm{V}:\{0,1\}^{n} \rightarrow\{0,1\}$ are two circuits with the guarantee that for every $x \in\{0,1\}^{n}$ and $i \in\left[2^{n}\right]$ it holds that $\mathrm{V}(x, i)=1$ if and only if $x=\mathrm{S}^{i}\left(0^{n}\right)$. The goal is to find an element $w \in\{0,1\}^{n}$ such that $\mathrm{V}(w, T)=1$.

Intuitively, the circuit $S$ can be viewed as implementing the successor function of a directed graph over $\{0,1\}^{n}$ that consists of a single line starting at $0^{n}$. The circuit V enables to efficiently test whether a given node $x$ is of distance $i$ from $0^{n}$ on the line, and the goal is to find the node of distance $T$ from $0^{n}$.

Oracle-aided instances with private randomness. When considering source-or-sink and SVL instances that are described by oracle-aided circuits, we would like to allow these circuits to share an oracle-dependent state that may be generated via private randomness (e.g., as in [BPR15, GPS15]). For this purpose, we equip the instances with an oracle-aided randomized index-generation algorithm, denoted Gen, that produces a public index $\sigma$ which is then provided to all circuits of the instance (and to any algorithm that attempts to solve the instance).

[^4]Specifically, we consider source-or-sink instances of the form $\left\{\left(\operatorname{Gen}_{n}, \mathrm{~S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ and for every index $\sigma$ produced by Gen ${ }_{n}$ it holds that $\mathrm{S}_{n}(\sigma, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $P_{n}(\sigma, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{n}$.

Similarly, an SVL instance is of the form $\left\{\left(\operatorname{Gen}_{n}, \mathrm{~S}_{n}, \mathrm{~V}_{n}, T(n)\right)\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ and for every index $\sigma$ produced by $\mathrm{Gen}_{n}$ it holds that $\mathrm{S}_{n}(\sigma, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \mathrm{~V}_{n}(\sigma, \cdot, \cdot):\{0,1\}^{n} \times\left[2^{n}\right] \rightarrow$ $\{0,1\}$, and $T(n) \in\left[2^{n}\right]$. We say that an SVL instance is valid if for every $n \in \mathbb{N}, \sigma$ produced by Gen $_{n}, x \in\{0,1\}^{n}$, and $i \in\left[2^{n}\right]$, it holds that $\mathrm{V}_{n}(\sigma, x, i)=1$ if and only if $x=\mathrm{S}_{n}^{i}\left(\sigma, 0^{n}\right)$.

### 2.2 One-Way Functions and Injective Trapdoor Functions

We rely on the standard (parameterized) notions of a one-way function and injective trapdoor functions [Gol01].

Definition 2.3. An efficiently-computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is $(t(\cdot), \epsilon(\cdot))$-one-way if for any probabilistic algorithm $A$ that runs in time $t(n)$ it holds that

$$
\operatorname{Pr}\left[A(f(x)) \in f^{-1}(f(x))\right] \leq \epsilon(n)
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of $x \leftarrow\{0,1\}^{n}$ and over the internal randomness of $A$.

A collection of injective trapdoor functions is a triplet (KG, $F, F^{-1}$ ) of polynomial-time algorithms. The key-generation algorithm KG is a probabilistic algorithm that on input the security parameter $1^{n}$ outputs a pair ( $\mathrm{pk}, \mathrm{td}$ ), where pk is a public key and td is a corresponding trapdoor. For any $n \in \mathbb{N}$ and for any pair ( $\mathrm{pk}, \mathrm{td}$ ) that is produced by $\mathrm{KG}\left(1^{n}\right)$, the evaluation algorithm F computes an injective function $\mathrm{F}(\mathrm{pk}, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$, and the inversion algorithm $F^{-1}(\mathrm{td}, \cdot):\{0,1\}^{\ell(n)} \rightarrow$ $\{0,1\}^{n} \cup\{\perp\}$ computes its inverse whenever an inverse exists (i.e., it outputs $\perp$ on all values $y$ that are not in the image of the function $\mathrm{F}(\mathrm{pk}, \cdot))$. The security requirement of injective trapdoor functions is formalized as follows:

Definition 2.4. A collection of injective trapdoor functions (KG, $\mathrm{F}, \mathrm{F}^{-1}$ ) is $(t(\cdot), \epsilon(\cdot))$-secure if for any probabilistic algorithm $A$ that runs in time $t(n)$ it holds that

$$
\operatorname{Pr}[A(\mathrm{pk}, \mathrm{~F}(\mathrm{pk}, x))=x] \leq \epsilon(n)
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of ( $\mathrm{pk}, \mathrm{td}$ ) $\leftarrow \mathrm{KG}\left(1^{n}\right)$, $x \leftarrow\{0,1\}^{n}$, and over the internal randomness of $A$.

## 3 Average-Case SVL Hardness Does Not Imply One-Way Functions

In this section we prove that there is no fully black-box construction of a one-way function from a hard-on-average distribution of SVL instances ${ }^{5}$. Our result is obtained by presenting a distribution of oracles relative to which the following two properties hold:

1. There exists a hard-on-average distribution of SVL instances.
2. There are no one-way functions.
[^5]Recall that an SVL instance is of the form $\left\{\left(\operatorname{Gen}_{n}, \mathrm{~S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ and for every index $\sigma$ produced by $\mathrm{Gen}_{n}$ it holds that $\mathrm{S}_{n}(\sigma, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{n}, \mathrm{~V}_{n}(\sigma, \cdot, \cdot)$ : $\{0,1\}^{n} \times\left[2^{n}\right] \rightarrow\{0,1\}$, and $L(n) \in\left[2^{n}\right]$. We say that an SVL instance is valid if for every $n \in \mathbb{N}, \sigma$ produced by $\operatorname{Gen}_{n}, x \in\{0,1\}^{n}$, and $i \in\left[2^{n}\right]$, it holds that $\mathrm{V}_{n}(\sigma, x, i)=1$ if and only if $x=\mathrm{S}_{n}^{i}\left(\sigma, 0^{n}\right)$. The following definition tailors the standard notion of a fully black-box construction (based, for example, on [Lub96, Gol00, RTV04]) to the specific primitives under consideration.
Definition 3.1. A fully black-box construction of a one-way function from a hard-on-average distribution of SVL instances consists of an oracle-aided polynomial-time algorithm $F$, an oracle-aided algorithm $M$ that runs in time $T_{M}(\cdot)$, and functions $\epsilon_{M, 1}(\cdot)$ and $\epsilon_{M, 2}(\cdot)$, such that the following conditions hold:

- Correctness: There exists a polynomial $\ell(\cdot)$ such that for any valid SVL instance $\mathcal{O}_{\text {SVL }}$ and for any $x \in\{0,1\}^{*}$ it holds that $F^{\mathcal{O}_{\text {svL }}}(x) \in\{0,1\}^{\ell(|x|)}$.
- Black-box proof of security: For any valid SVL instance $\mathcal{O}_{\mathrm{SVL}}=\left\{\left(\operatorname{Gen}_{n}, \mathrm{~S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$, for any oracle-aided algorithm $\mathcal{A}$ that runs in time $T_{\mathcal{A}}=T_{\mathcal{A}}(n)$, and for any function $\epsilon_{\mathcal{A}}(\cdot)$, if

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathcal{O}_{\mathrm{SVL}}}\left(F^{\mathcal{O}_{\mathrm{SVL}}}(x)\right) \in\left(F^{\mathcal{O}_{\mathrm{SVL}}}\right)^{-1}\left(F^{\mathcal{O}_{\mathrm{SVL}}}(x)\right)\right] \geq \epsilon_{\mathcal{A}}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of $x \leftarrow\{0,1\}^{n}$ and over the internal randomness of $\mathcal{A}$, then

$$
\operatorname{Pr}\left[M^{\mathcal{A}, \mathcal{O}_{\mathrm{sVL}}}\left(1^{n}, \sigma\right) \text { solves }\left(\mathrm{S}_{n}(\sigma, \cdot), \mathrm{V}_{n}(\sigma, \cdot), L(n)\right)\right] \geq \epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}()$ and over the internal randomness of $M$.
We note that, following Asharov and Segev [AS15, AS16], we split the security loss in the above definition to an adversary-dependent security loss and an adversary-independent security loss, as this allows us to capture constructions where one of these losses is super-polynomial whereas the other is polynomial (e.g., [BPR15, BPW16]). Equipped with the above definition we prove the following theorem:
Theorem 3.2. Let $\left(F, M, T_{M}, \epsilon_{M, 1}, \epsilon_{M, 2}\right)$ be a fully black-box construction of a one-way function from a hard-on-average SVL instance. Then, at least one of the following properties holds:

1. $T_{M}(n) \geq 2^{\zeta n}$ for some constant $\zeta>0$ (i.e., the reduction runs in exponential time).
2. $\epsilon_{M, 1}\left(n^{c}\right) \cdot \epsilon_{M, 2}(n) \leq 2^{-n / 10}$ for some constant $c>1$ (i.e., the security loss is exponential).

In particular, Theorem 3.2 rules out standard "polynomial-time polynomial-loss" reductions. More generally, the theorem implies that if the running time $T_{M}(\cdot)$ of the reduction is sub-exponential and the adversary-dependent security loss $\epsilon_{M, 1}(\cdot)$ is polynomial (as expected), then the adversaryindependent security loss $\epsilon_{M, 2}(\cdot)$ must be exponential (thus even ruling out constructions based on SVL instances with sub-exponential average-case hardness).

### 3.1 Proof Overview

In what follows we first describe the oracle, denoted $\mathcal{O}_{\text {SVL }}$, on which we rely for proving Theorem 3.2. Then, we describe the structure of the proof, showing that relative to the oracle $\mathcal{O}_{\text {SVL }}$ there exists a hard-on-average distribution of SVL instances, but there are no one-way functions. For the remainder of this section we remind the reader that a $q$-query algorithm is an oracle-aided algorithm $A$ such that for any oracle $\mathcal{O}$ and input $x \in\{0,1\}^{*}$, the computation $A^{\mathcal{O}}(x)$ consists of at most $q(|x|)$ oracle calls to $\mathcal{O}$.

The oracle $\mathcal{O}_{\text {svL }}$. The oracle $\mathcal{O}_{\text {SVL }}$ is a valid SVL instance $\left\{\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$ that is sampled via the following process for every $n \in \mathbb{N}$ :

- Let $L(n)=2^{n / 2}, x_{0}=0^{n}$, and uniformly sample distinct elements $x_{1}, \ldots, x_{L(n)} \leftarrow\{0,1\}^{n} \backslash$ $\left\{0^{n}\right\}$.
- The successor function $S_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is defined as

$$
\mathrm{S}_{n}(x)=\left\{\begin{array}{cl}
x_{i+1} & \text { if } x=x_{i} \text { for some } i \in\{0, \ldots, L(n)-1\} \\
x & \text { otherwise }
\end{array}\right.
$$

- The verification function $V_{n}:\{0,1\}^{n} \times\left[2^{n}\right] \rightarrow\{0,1\}$ is defined in a manner that is consistent with $\mathrm{S}_{n}$ (i.e., $\mathrm{V}_{n}$ is defined such that the instance is valid).

Part I: $\mathcal{O}_{\text {sVL }}$ is a hard-on-average SVL instance. We show that the oracle $\mathcal{O}_{\text {SVL }}$ itself is a hard-on-average SVL instance, which implies in particular that relative to the oracle $\mathcal{O}_{\text {SVL }}$ there exists a hard-on-average distribution of SVL instances. We prove the following claim stating that, in fact, the oracle $\mathcal{O}_{\mathrm{SVL}}$ is an exponentially hard-on-average SVL instance (even without an indexgeneration algorithm):

Claim 3.3. For every $q(n)$-query algorithm $M$, where $q(n) \leq L(n)-1$, it holds that

$$
\operatorname{Pr}\left[M^{\mathcal{O}_{\mathrm{SVL}}}\left(1^{n}\right) \text { solves }\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right] \leq \frac{(q(n)+1) \cdot L(n)}{2^{n}-q(n)-1}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $\mathcal{O}_{\mathrm{SVL}}=$ $\left\{\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$ as described above.

The proof of the claim, which is provided in Section 3.2, is based on the following, rather intuitive, observation: Since the line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ is sparse and uniformly sampled, then any algorithm performing $q=q(n)$ oracle queries should not be able to query $\mathcal{O}_{\text {SVL }}$ with any element on the line beyond the first $q$ elements $0^{n}, x_{1}, \ldots, x_{q-1}$. In particular, for our choice of parameters, any such algorithm should have only an exponentially-small probability of reaching $x_{L(n)}$.

Part II: Inverting oracle-aided functions relative to $\mathcal{O}_{\text {svL }}$. We show that any oracle-aided function $F^{\mathcal{O}_{\text {sVL }}}(\cdot)$ computable in time $t(n)$ can be inverted with high probability by an inverter that issues roughly $t(n)^{4}$ oracle queries. We prove the following claim:

Claim 3.4. For every deterministic oracle-aided function $F$ that is computable in time $t(n)$ there exists a $q(n)$-query algorithm $\mathcal{A}$, where $q(n)=O\left(t(n)^{4}\right)$, such that

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathcal{O}_{\mathrm{SVL}}}\left(F^{\mathcal{O}_{\mathrm{SVL}}}(x)\right) \in\left(F^{\mathcal{O}_{\mathrm{sVL}}}\right)^{-1}\left(F^{\mathcal{O}_{\mathrm{SVL}}}(x)\right)\right] \geq \frac{1}{2}
$$

for all sufficiently large $n \in \mathbb{N}$ and for every $x \in\{0,1\}^{n}$, where the probability is taken over the choice of the oracle $\mathcal{O}_{\mathrm{SVL}}=\left\{\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$ as described above. Moreover, the algorithm $\mathcal{A}$ can be implemented in time polynomial in $q(n)$ given access to a PSPACE-complete oracle.

The proof of the claim, which is provided in Section 3.3, is based on the following approach. Consider the value $y=F^{\mathcal{O}_{\text {svL }}}(x)$ that is given as input to the inverter $\mathcal{A}$. Since $F$ is computable in time $t=t(n)$, it can issue at most $t$ oracle queries and therefore the observation used for proving Claim 3.3 implies that the computation $F^{\mathcal{O}_{\mathrm{sVL}}}(x)$ should not query $\mathcal{O}_{\mathrm{SVL}}$ with any elements on the line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ except for the first $t$ elements $x_{0}, x_{1}, \ldots, x_{t-1}$. In this case, any $\mathrm{S}_{n}$-query
$\alpha$ in the computation $F^{\mathcal{O}_{\text {svL }}}(x)$ can be answered as follows: If $\alpha=x_{i}$ for some $i \in\{0, \ldots, t-1\}$ then the answer is $x_{i+1}$, and otherwise the answer is $\alpha$. Similarly, any $\mathrm{V}_{n}$-query $(\alpha, j)$ in the computation $F^{\mathcal{O}_{\text {sVL }}}(x)$ can be answered as follows: If $(\alpha, j)=\left(x_{i}, i\right)$ for some $i \in\{0, \ldots, t-1\}$ then the answer is 1 , and otherwise the answer is 0 .

This observation gives rise to the following inverter $\mathcal{A}$ : First perform $t$ queries to $\mathrm{S}_{n}$ for discovering $x_{1}, \ldots, x_{t}$, and then invert $y=F^{\mathcal{O}_{\text {SVL }}}(x)$ relative to the oracle $\widetilde{\mathcal{O}_{\text {SVL }}}$ defined via the following successor function $\widetilde{\mathrm{S}}_{n}$ :

$$
\widetilde{\mathrm{S}}_{n}(\alpha)=\left\{\begin{array}{cl}
x_{i+1} & \text { if } \alpha=x_{i} \text { for some } i \in\{0, \ldots, t-1\} \\
\alpha & \text { otherwise }
\end{array}\right.
$$

The formal proof is in fact more subtle, and requires a significant amount of caution when inverting $y=F^{\mathcal{O}_{\mathrm{SVL}}}(x)$ relative to the oracle $\widetilde{\mathcal{O}_{\mathrm{SVL}}}$. Specifically, the inverter $\mathcal{A}$ should find an input $\widetilde{x}$ such that the computations $F^{\widetilde{\mathcal{O}_{\text {SVL }}}}(\widetilde{x})$ and $F^{\mathcal{O}_{\text {SVL }}}(\widetilde{x})$ do not query the oracles $\widetilde{\mathcal{O}_{\mathrm{SVL}}}$ and $\mathcal{O}_{\text {SVL }}$, respectively, with any of $x_{t}, \ldots, x_{L(n)}$. In this case, we show that indeed $F^{\mathcal{O}_{\text {sVL }}}(\widetilde{x})=y$ and the inverter is successful.

## 3.2 $\mathcal{O}_{\text {svL }}$ is a Hard-on-Average SVL Instance

The proof of Claim 3.3 relies on the fact that the line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ is sparse and uniformly sampled. This intuitively implies that any algorithm performing $q$ oracle queries should not be able to query $\mathcal{O}_{\mathrm{SVL}}$ with any element on the line beyond the first $q$ elements $0^{n}, x_{1}, \ldots, x_{q-1}$, except with an exponentially-small probability.

Given an oracle $\mathcal{O}_{\mathrm{SVL}}=\left\{\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$, sampled as described in Section 3.1, and given a $q$ query algorithm $M$, for every $n \in \mathbb{N}$ and $i \in[q]$ we denote by $\alpha_{i}$ the random variable corresponding to $M$ 's $i$ th oracle query if this is an $S_{n}$-query, and we denote by $\left(\alpha_{i}, k_{i}\right)$ the random variable corresponding to $M$ 's $i$ th oracle query if this is a $\mathrm{V}_{n}$-query. We denote by $\operatorname{HIT}_{M, n}^{\mathcal{O}_{\text {syl }}}$ the event in which there exist indices $j \in[q]$ and $i \in[L(n)]$ for which $\alpha_{j}=x_{i}$ but $x_{i-1} \notin\left\{\alpha_{1}, \ldots, \alpha_{j-1}\right\}$. That is, this is the event in which $M$ queries $\mathcal{O}_{\mathrm{sVL}}$ with one of the $x_{i}$ 's before querying on $x_{i-1}$. In particular, note that if the event $\mathrm{HIT}_{M, n}^{\mathcal{O}_{\text {SVL }}}$ does not occur, then $M$ does not query $\mathcal{O}_{\text {SVL }}$ with $x_{i}$ for $i \in\{q, \ldots, L(n)\}$. The following claim bounds the probability of event $\operatorname{HIT}_{M, n}^{\mathcal{O}_{\text {sLL }}}$.

Claim 3.5. For every $q$-query algorithm $M$ it holds that

$$
\operatorname{Pr}\left[\mathrm{HIT}_{M, n}^{\mathcal{O}_{\mathrm{SVL}}}\right] \leq \frac{q \cdot L(n)}{2^{n}-q}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $\mathcal{O}_{\mathrm{SVL}}=$ $\left\{\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right\}_{n \in \mathbb{N}}$. Moreover, $q$ can be a bound on the number of calls to $\mathrm{S}_{n}$ and $\mathrm{V}_{n}$.

Proof. Let $M$ be a $q$-query algorithm, fix $n \in \mathbb{N}$, and fix $\left(\mathcal{O}_{\mathrm{SVL}}\right)_{-n}=\left\{\left(\mathrm{S}_{i}, \mathrm{~V}_{i}, T_{i}\right)\right\}_{i \in \mathbb{N} \backslash\{n\}}$ (i.e., we fix the entire oracle $\mathcal{O}_{\text {SVL }}$ except for the $n$th SVL instance). For every $i \in[q]$ denote by $M_{i}$ the following $i$-query algorithm: Invoke the computation $M^{\mathcal{O}_{\text {sVL }}}$, and terminate once $i$ oracle queries have been performed. Note that since we do not place any restriction on the running time of $M$ and since the oracle distribution is known, we can assume without loss of generality that $M$ is deterministic. Therefore, for every $i \in[q]$ and every fixing of the oracle $\mathcal{O}_{\mathrm{SVL}}$, the computation $M_{i}^{\mathcal{O}_{\mathrm{sVL}}}$ is the "prefix" of the computation $M^{\mathcal{O}_{\mathrm{SVL}}}$ which contains its first $i$ oracle queries. This implies that

$$
\operatorname{Pr}\left[\mathrm{HIT}_{M, n}^{\mathcal{O}_{\mathrm{SVL}}}\right] \leq \operatorname{Pr}\left[\mathrm{HIT}_{M_{1}, n}^{\mathcal{O}_{\mathrm{SV}}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\mathrm{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\mathrm{SL}}} \mid \overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O}_{\mathrm{SVL}}}}\right],
$$

where the probability is taken over the choice of the $n$th SVL instance ( $\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)$ ) (i.e., over the choice of the elements $x_{1}, \ldots, x_{L(n)}$ that are used for defining the $n$th instance as described in Section 3.1).

For bounding the probability of the event $\mathrm{HIT}_{M_{1}, n}^{\mathcal{O}_{\text {sVL }}}$, note that this event corresponds to the fact that $M$, without any information on $x_{1}, \ldots, x_{L(n)}$ (since no oracle queries have been issued so far), manages to produce an oracle query with $\alpha_{1} \in\left\{x_{1}, \ldots, x_{L(n)}\right\}$. Since the value $\alpha_{1}$ is fixed by the description of $M$, and we are now sampling distinct and uniformly distributed $x_{1}, \ldots, x_{L(n)} \leftarrow$ $\{0,1\}^{n} \backslash\left\{0^{n}\right\}$, we have that

$$
\operatorname{Pr}\left[\operatorname{HIT}_{M_{1}, n}^{\mathcal{O}_{\text {SL }}}\right] \leq \frac{\binom{2^{n}-2}{L(n)-1}}{\binom{2^{n}-1}{L(n)}}=\frac{L(n)}{2^{n}-1} .
$$

For bounding the probability of the event $\mathrm{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\text {SVL }}}$ given that $\overline{\operatorname{HIT}_{M_{i}, n}^{\mathcal{O}_{\text {SV }}}}$ occurred, we fix the queries $\alpha_{1}, \ldots, \alpha_{i}$ with the corresponding $k_{i}$ 's for the $\bigvee_{n}$ queries, we fix their successors $\beta_{1}, \ldots, \beta_{i}$ where $\beta_{j}=\mathrm{S}_{n}\left(\alpha_{j}\right)$, and for each $j \in[i]$ and $k \in[L(n)]$ we fix whether $\alpha_{j}=x_{k}$ or not. This fixes the oracle answers to the above queries, hence fixes $\alpha_{i+1}$ by the assumption that $M$ is deterministic. By the assumption $\overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O}_{\mathrm{SL}}}}$, there is some $0 \leq \ell \leq i$ for which $x_{0}, x_{1}, \ldots, x_{\ell-1} \in\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}$ but $x_{\ell}, \ldots, x_{L(n)} \notin\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}$. Hence $x_{1}, \ldots, x_{\ell} \in\left\{\beta_{1}, \ldots, \beta_{i}\right\}$ but $x_{\ell+1}, \ldots, x_{L(n)} \notin\left\{\beta_{1}, \ldots, \beta_{i}\right\}$. No further information about $x_{\ell+1}, \ldots, x_{L(n)}$ is known, therefore, we are now sampling distinct and uniformly distributed $x_{\ell+1}, \ldots, x_{L(n)} \leftarrow\{0,1\}^{n} \backslash\left\{0^{n}, \beta_{1}, \ldots, \beta_{i}\right\}$, hence

$$
\operatorname{Pr}\left[\operatorname{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\mathrm{SLL}}} \mid \overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O}_{\mathrm{SL}}}}\right] \leq \frac{L(n)}{2^{n}-i-1} .
$$

We conclude that

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{HIT}_{M, n}^{\mathcal{O}_{\mathrm{SVL}}}\right] & \leq \operatorname{Pr}\left[\mathrm{HIT}_{M_{1}, n}^{\mathcal{O}_{\mathrm{SL}}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\mathrm{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\mathrm{SVL}}} \mid \overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O}_{\mathrm{SV}}}}\right] \\
& \leq \sum_{i=0}^{q-1} \frac{L(n)}{2^{n}-i-1} \\
& \leq \frac{q \cdot L(n)}{2^{n}-q} .
\end{aligned}
$$

Equipped with Claim 3.5 we can now easily derive the proof of Claim 3.3.
Proof of Claim 3.3. We modify $M$ such that it queries the oracle $S_{n}$ with its output before it terminates. Now, $M$ is a $(q(n)+1)$-query algorithm, and by the assumption $q(n)+1 \leq L(n)$. If $M\left(1^{n}\right)$ solves $\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)$ then $\mathrm{HIT}_{M\left(1^{n}\right), n}^{\mathcal{O}_{\mathrm{SVL}}}$ occurs, and by Claim 3.5 we deduce

$$
\operatorname{Pr}\left[M^{\mathcal{O}_{\mathrm{SVL}}}\left(1^{n}\right) \text { solves }\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right] \leq \operatorname{Pr}\left[\mathrm{HIT}_{M\left(1^{n}\right), n}^{\mathcal{O}_{\mathrm{SVL}}}\right] \leq \frac{(q(n)+1) \cdot L(n)}{2^{n}-q(n)-1}
$$

### 3.3 Inverting Oracle-Aided Functions Relative to $\mathcal{O}_{\text {sVL }}$

Proof of Claim 3.4. Let $F$ be a deterministic oracle-aided function computable in time $t(n)$, and let $p(n)=1 / 2$ (although the proof goes through for any value of $0<p(n)<1$ ). We describe an oracle-aided algorithm $\mathcal{A}$ that manages to invert $F^{\mathcal{O}_{\text {svL }}}(x)$ for every $x$ with high probability over the choice of the oracle $\mathcal{O}_{\text {SVL }}$. Let $\mathcal{A}$ be the following oracle-aided algorithm that on input $1^{n}$ and $y=F^{\mathcal{O}_{\mathrm{svL}}}(x)$, where $x \in\{0,1\}^{n}$, proceeds as follows:
$\mathcal{A} 1$. Set $a(n)=2 \cdot \log \left(3 t(n)^{2} / p(n)+1\right)$.
$\mathcal{A}$ 2. For every $1 \leq i<a(n)$, the algorithm $\mathcal{A}$ queries $\mathrm{S}_{i}$ on all possible inputs $\alpha \in\{0,1\}^{i}$.
$\mathcal{A} 3$. For every $a(n) \leq i \leq t(n)$, the algorithm $\mathcal{A}$ repeatedly queries $\mathrm{S}_{i}$ for $t(n)$ times starting with the query $0^{i}$ (i.e., $\mathcal{A}$ discovers the line of length $t(n)$ starting from $0^{i}$ ).
$\mathcal{A} 4$. The algorithm $\mathcal{A}$ constructs the "fake" oracle $\widetilde{\mathcal{O}_{\text {SVL }}}$ that is consistent with the "true" oracle $\mathcal{O}_{\text {SVL }}$ on all queries performed in steps $\mathcal{A} 2$ and $\mathcal{A} 3$ above, and is defined as the identity function on all other queries.
A5. The algorithm $\mathcal{A}$ finds and outputs an input $\widetilde{x} \in\{0,1\}^{n}$ such that $\widetilde{F^{\mathcal{O}_{\text {SVL }}}}(\widetilde{x})=y$ and such that
 $a(n) \leq i \leq t(n)$. If no such input $\widetilde{x}$ exists, then the algorithm $\mathcal{A}$ outputs $\perp$.

First, note that steps $\mathcal{A} 4$ and $\mathcal{A} 5$ do not require any queries to the oracle $\mathcal{O}_{\text {SVL }}$. Second, note that the number of oracle queries made by $\mathcal{A}$ in steps $\mathcal{A} 2$ and $\mathcal{A} 3$ is at most $q(n) \leq t(n)^{2}+2 \cdot 2^{a(n)}=$ $O\left(t(n)^{4} / p(n)^{2}\right)$.

We now prove that for any $n \in \mathbb{N}$ and $x \in\{0,1\}^{n}$, the algorithm $\mathcal{A}$ inverts $y=F^{\mathcal{O}_{\text {sVL }}}(x)$ with probability at least $1-p(n)$ over the choice of the oracle $\mathcal{O}_{\text {SVL }}$. Fix $n \in \mathbb{N}$ and $x \in\{0,1\}^{n}$, and consider the oracle-aided algorithm $M_{x}$ defined as follows:

M1. Compute $y=F^{\mathcal{O}_{\text {svL }}}(x)$.
M2. Compute $\widetilde{x}=\mathcal{A}^{\mathcal{O} \text { svL }}\left(1^{n}, y\right)$.
M3. If $\widetilde{x}=\perp$ then output 0 and terminate.
M4. Compute $\widetilde{y}=F^{\mathcal{O}_{\text {svL }}}(\widetilde{x})$.
M5. If $\widetilde{y}=y$ then output 1 , and otherwise output 0 .
The probability over the choice of $\mathcal{O}_{\mathrm{SVL}}$ that $M_{x}$ outputs 1 is exactly the probability that $\mathcal{A}$ manages to invert $y=F^{\mathcal{O}_{\text {sVL }}}(x)$. Now suppose for all $a(n) \leq i \leq t(n)$ the event $\mathrm{HIT}_{M_{x}, i}^{\mathcal{O}_{\text {sVL }}}$ does not occur, we aim to show that in this case $\widetilde{y}=y$. To start with, we claim that in this case the computation of $M_{x}$ until step $M 3$ does not query $\mathcal{O}_{\text {SVL }}$ with an input of the form $\mathrm{S}_{i}^{t(n)}\left(0^{i}\right)$ where $a(n) \leq i \leq t(n)$ :

- $M_{x}$ does not query $S_{i}^{t(n)}\left(0^{i}\right)$ in step $M 1$ because $F^{\mathcal{O}_{\text {sVL }}}(x)$ performs at most $t(n)$ queries, and querying $\mathrm{S}_{i}^{t(n)}\left(0^{i}\right)$ when $\mathrm{HIT}_{M_{x}, i}^{\mathcal{O}_{\mathrm{SL}}}$ does not occur requires at least $t(n)+1$ queries.
- $M_{x}$ does not query $S_{i}^{t(n)}\left(0^{i}\right)$ in step $M 2$ by the definition of the algorithm $\mathcal{A}$, since $\mathcal{A}$ only queries the oracle $S_{i}$ with input of the form $S_{i}^{j}\left(0^{i}\right)$ where $j \in[t(n)-1]$.

Note that since the computation of $M_{x}$ until step $M 3$ does not query $\mathcal{O}_{\text {SVL }}$ with $\mathrm{S}_{i}^{t(n)}\left(0^{i}\right)$, and since the event $\mathrm{HIT}_{M, i}^{\mathcal{O}_{\text {sVL }}}$ does not occur, then the computation of $M_{x}$ until step $M 3$ does not query $\mathcal{O}_{\text {SVL }}$ with any input of the form $S_{i}^{k}\left(0^{i}\right)$ where $k \in\{t(n), \ldots, L(i)\}$. At this point, since $x$ itself satisfies $F^{\widetilde{\mathcal{O}_{\mathrm{SVL}}}}(x)=F^{\mathcal{O}_{\mathrm{SVL}}}(x)=y$, and since the computation of $F^{\widetilde{\mathcal{O}_{\mathrm{SVL}}}}(x)$ does not query $\mathrm{S}_{i}^{t(n)}\left(0^{i}\right)$, we know for sure that the algorithm $\mathcal{A}$ in step $M 2$ will not return $\perp$. It remains to show that any $\widetilde{x}$ that $\mathcal{A}$


Assume by contradiction that $F^{\mathcal{O}_{\text {sVL }}}(\widetilde{x}) \neq F^{\widetilde{\mathcal{O}_{\text {SVL }}}}(\widetilde{x})$, and consider the first oracle query for which the computations of $F^{\mathcal{O}_{\mathrm{SVL}}}(\widetilde{x})$ and $\widetilde{F^{\mathcal{O}_{\mathrm{SVL}}}}(\widetilde{x})$ diverge. By the definition of $\widetilde{\mathcal{O}_{\mathrm{SVL}}}$, it must be a query to $\mathrm{S}_{i}$ or $\mathrm{V}_{i}$ where $a(n) \leq i \leq t(n)$, with input of the form $\mathrm{S}_{i}^{j}\left(0^{i}\right)$ where $j \in\{t(n), \ldots, L(i)-1\}$ (in case of a query to the oracle $\mathrm{V}_{i}, \mathrm{~S}_{i}^{j}\left(0^{i}\right)$ is only the first argument of the input). The case $j=t(n)$
 The case $j>t(n)$ is also impossible since until this point $M_{x}$ did not query $\mathrm{S}_{i}^{t(n)}\left(0^{i}\right)$, and since the event $\operatorname{HIT}_{M, i}^{\mathcal{O}_{\text {sVL }}}$ does not occur.

We conclude that if $y \neq \widetilde{y}$ then $\operatorname{HIT}_{M, i}^{\mathcal{O}_{\text {syL }}}$ occurs for some $a(n) \leq i \leq t(n)$. By the fact that $M_{x}$ issues at most $3 t(n)$ queries to $\mathrm{S}_{i}$ and $\mathrm{V}_{i}$ for every $a(n) \leq i \leq t(n)$, Claim 3.5 implies that

$$
\begin{aligned}
\underset{\mathcal{O}_{\text {SVL }}}{\operatorname{Pr}}\left[\mathcal{A}^{\mathcal{O}_{\text {SVL }}}\left(F^{\mathcal{O}_{\text {SVL }}}(x)\right) \notin\left(F^{\mathcal{O}_{\text {sVL }}}\right)^{-1}\left(F^{\mathcal{O}_{\text {sVL }}}(x)\right)\right] & \leq \sum_{i=\lceil a(n)\rceil}^{t(n)} \underset{\mathcal{O}_{\text {SVL }}}{\operatorname{Pr}}\left[\operatorname{HIT}_{M_{x}, i}^{\mathcal{O}_{\text {sVL }}}\right] \\
& \leq \sum_{i=\lceil a(n)\rceil}^{t(n)} \frac{3 t(n) \cdot L(i)}{2^{i}-3 t(n)} \\
& \leq \sum_{i=\lceil a(n)\rceil}^{t(n)} \frac{3 t(n) \cdot L(i)}{2^{i}-L(i)} \\
& =\sum_{i=\lceil a(n)\rceil}^{t(n)} \frac{3 t(n)}{2^{i / 2}-1} \\
& \leq \frac{3 t(n)^{2}}{2^{a(n) / 2}-1} \\
& \leq p(n) .
\end{aligned}
$$

### 3.4 Proof of Theorem 3.2

Proof of Theorem 3.2. Let ( $F, M, T_{M}, \epsilon_{M, 1}, \epsilon_{M, 2}$ ) be a fully black-box construction of a one-way function from a hard-on-average distribution of SVL instances (recall Definition 3.1). Claim 3.4 guarantees an oracle-aided algorithm $\mathcal{A}$ that runs in polynomial time $T_{\mathcal{A}}(n)$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathrm{PSPACE}, \mathcal{O}_{\mathrm{SVL}}}\left(F^{\mathcal{O}_{\mathrm{SVL}}}(x)\right) \in\left(F^{\mathcal{O}_{\mathrm{SVL}}}\right)^{-1}\left(F^{\mathcal{O}_{\mathrm{SVL}}}(x)\right)\right] \geq \epsilon_{\mathcal{A}}(n)
$$

for all sufficiently large $n \in \mathbb{N}$ and for every $x \in\{0,1\}^{n}$, where $\epsilon_{\mathcal{A}}(n)=1 / 2$, and the probability is taken over the choice of the oracle $\mathcal{O}_{\text {SVL }}$. Definition 3.1 then guarantees that

$$
\operatorname{Pr}\left[M^{\mathcal{A}, \mathrm{PSPACE}, \mathcal{O}_{\mathrm{SVL}}}\left(1^{n}\right) \text { solves }\left(\mathrm{S}_{n}, \mathrm{~V}_{n}, L(n)\right)\right] \geq \epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where $M$ runs in time $T_{M}(n)$, and the probability is again taken over the choice of the oracle $\mathcal{O}_{\mathrm{SVL}}$.

The algorithm $M$ may invoke $\mathcal{A}$ on various security parameters (i.e., in general $M$ is not restricted to invoking $\mathcal{A}$ only on security parameter $n$ ), and we denote by $\ell(n)$ the maximal security parameter on which $M$ invokes $\mathcal{A}$ (when $M$ itself is invoked on security parameter $n$ ). Thus, viewing $M^{\mathcal{A}}$ as a single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle $\mathcal{O}_{\text {SVL }}$,
its running time $T_{M^{\mathcal{A}}}(n)$ satisfies $T_{M^{\mathcal{A}}}(n) \leq T_{M}(n) \cdot T_{\mathcal{A}}(\ell(n)$ ) (this follows since $M$ may invoke $\mathcal{A}$ at most $T_{M}(n)$ times, and the running time of $\mathcal{A}$ on each such invocation is at most $\left.T_{\mathcal{A}}(\ell(n))\right)$. In particular, viewing $M^{\prime} \stackrel{\text { def }}{=} M^{\mathcal{A}^{\text {PSPACE }}}$ as a single oracle-aided algorithm that has oracle access to the oracle $\mathcal{O}_{\text {SVL }}$, implies that $M^{\prime}$ is a $q(n)$-query algorithm where $q(n)=T_{M^{\mathcal{A}}}(n)$. Claim 3.3 and our choice of $L(n)=2^{n / 2}$ then imply that

$$
\epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n) \leq \frac{(q(n)+1) \cdot 2^{n / 2}}{2^{n}-q(n)-1}
$$

There are now two possible cases to consider:
Case 1: $\mathbf{2}^{\boldsymbol{n} / 4} \leq \boldsymbol{q}(\boldsymbol{n})$. In this case, noting that $\ell(n) \leq T_{M}(n)$, we obtain that

$$
2^{n / 4} \leq q(n)=T_{M \mathcal{A}}(n) \leq T_{M}(n) \cdot T_{\mathcal{A}}(\ell(n)) \leq T_{M}(n) \cdot T_{\mathcal{A}}\left(T_{M}(n)\right)
$$

The running time $T_{\mathcal{A}}(n)$ of the adversary $\mathcal{A}$ (when given access to a PSPACE-complete oracle) is some fixed polynomial in $n$, and therefore $T_{M}(n) \geq 2^{\zeta n}$ for some constant $\zeta>0$.
Case 2: $2^{n / 4}>\boldsymbol{q}(n)$. In this case we have that

$$
\epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n) \leq \frac{(q(n)+1) \cdot 2^{n / 2}}{2^{n}-q(n)-1} \leq \frac{1}{2^{n / 10}}
$$

and since $T_{\mathcal{A}}(n)$ is some fixed polynomial in $n$ (and $\epsilon_{\mathcal{A}}(n)$ is a constant) we obtain that $\epsilon_{M, 1}\left(n^{c}\right)$. $\epsilon_{M, 2}(n) \leq 2^{-n / 10}$ for some constant $c>1$.

## 4 Average-Case PPAD Hardness Does Not Imply Unique-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-on-average distribution of TFNP instances having a unique solution from a hard-on-average distribution of instances of a PPAD-complete problem. Our result is obtained by presenting a distribution of oracles relative to which the following two properties hold:

1. There exists a hard-on-average distribution of instances of a PPAD-complete problem (specifically, we consider the source-or-sink problem).
2. There are no hard-on-average distributions over TFNP instances having a unique solution.

A TFNP instance with a unique solution, denoted a unique-TFNP instance, is of the form $\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ and for every index $\sigma$ produced by $\mathrm{Gen}_{n}$ it holds that $C_{n}(\sigma, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}$ and there is a unique $x^{*} \in\{0,1\}^{n}$ such that $C_{n}(\sigma, x)=1$. In particular, for any valid SVL instance (Gen, $\mathrm{S}, \mathrm{V}, T$ ) it holds that ( $\operatorname{Gen}, \mathrm{V}(\cdot, \cdot, T)$ ) is a TFNP instance that has a unique solution since for every $\sigma$ produced by Gen there is exactly one value $x^{*}$ for which $\mathrm{V}\left(\sigma, x^{*}, T\right)=$ 1. Therefore, our result shows, in particular, that there is no fully black-box construction of a hard-on-average distribution of SVL instances from a hard-on-average distribution of instances of a PPAD-complete problem ${ }^{6}$.

Recall that a source-or-sink instance is of the form $\left\{\left(\operatorname{Gen}_{n}, \mathrm{~S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ and for every index $\sigma$ produced by $\mathrm{Gen}_{n}$ it holds that $\mathrm{S}_{n}(\sigma, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $\mathrm{P}_{n}(\sigma, \cdot)$ : $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. The following definition tailors the standard notion of a fully black-box construction to the specific primitives under consideration.

[^6]Definition 4.1. A fully black-box construction of a hard-on-average distribution of unique-TFNP instances from a hard-on-average distribution of source-or-sink instances consists of a sequence of polynomial-size oracle-aided circuits $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$, an oracle-aided algorithm $M$ that runs in time $T_{M}(\cdot)$, and functions $\epsilon_{M, 1}(\cdot)$ and $\epsilon_{M, 2}(\cdot)$, such that the following conditions hold:

- Correctness: For any source-or-sink instance $\mathcal{O}_{\text {PPAD }}$, for any $n \in \mathbb{N}$, and for any index $\sigma$ produced by $\operatorname{Gen}_{n}^{\mathcal{O}_{\text {PPAD }}}$, there exists a unique $x^{*} \in\{0,1\}^{n}$ such that $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)=1$.
- Black-box proof of security: For any source-or-sink instance $\mathcal{O}_{\text {PPAD }}=\left\{\left(\operatorname{Gen}_{n}^{\prime}, \mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$, for any oracle-aided algorithm $\mathcal{A}$ that runs in time $T_{\mathcal{A}}=T_{\mathcal{A}}(n)$, and for any function $\epsilon_{\mathcal{A}}(\cdot)$, if

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathcal{O}_{\mathrm{PPAD}}}\left(1^{n}, \sigma\right)=x^{*} \text { s.t. } C_{n}^{\mathcal{O}_{\mathrm{PPAD}}}\left(\sigma, x^{*}\right)=1\right] \geq \epsilon_{\mathcal{A}}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}()$ and over the internal randomness of $\mathcal{A}$, then

$$
\operatorname{Pr}\left[M^{\mathcal{A}, \mathcal{O}_{\mathrm{PPAD}}}\left(1^{n}, \sigma^{\prime}\right) \text { solves }\left(\mathrm{S}_{n}\left(\sigma^{\prime}, \cdot\right), \mathrm{P}_{n}\left(\sigma^{\prime}, \cdot\right)\right)\right] \geq \epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of $\sigma^{\prime} \leftarrow$ $\operatorname{Gen}_{n}^{\prime}()$ and over the internal randomness of $M$.

We note that, as in Definition 3.1, we split the security loss in the above definition to an adversary-dependent security loss and an adversary-independent security loss, as this allows us to capture constructions where one of these losses is super-polynomial whereas the other is polynomial. Equipped with the above definition we prove the following theorem:

Theorem 4.2. Let $\left(C, M, T_{M}, \epsilon_{M, 1}, \epsilon_{M, 2}\right)$ be a fully black-box construction of a hard-on-average distribution of unique-TFNP instances from a hard-on-average distribution of source-or-sink instances. Then, at least one of the following properties holds:

1. $T_{M}(n) \geq 2^{\zeta n}$ for some constant $\zeta>0$ (i.e., the reduction runs in exponential time).
2. $\epsilon_{M, 1}\left(n^{c}\right) \cdot \epsilon_{M, 2}(n) \leq 2^{-n / 10}$ for some constant $c>1$ (i.e., the security loss is exponential).

In particular, Theorem 4.2 rules out standard "polynomial-time polynomial-loss" reductions. More generally, the theorem implies that if the running time $T_{M}(\cdot)$ of the reduction is sub-exponential and the adversary-dependent security loss $\epsilon_{M, 1}(\cdot)$ is polynomial (as expected), then the adversaryindependent security loss $\epsilon_{M, 2}(\cdot)$ must be exponential (thus even ruling out constructions based on SVL instances with sub-exponential average-case hardness).

### 4.1 Proof Overview

In what follows we first describe the oracle, denoted $\mathcal{O}_{\text {PPAD }}$, on which we rely for proving Theorem 4.2. Then, we describe the structure of the proof, showing that relative to the oracle $\mathcal{O}_{\text {PPAD }}$ there exists a hard-on-average distribution of source-or-sink instances, but there are no hard-on-average unique-TFNP instances. For the remainder of this section we remind the reader that a $q$-query algorithm is an oracle-aided algorithm $A$ such that for any oracle $\mathcal{O}$ and input $x \in\{0,1\}^{*}$, the computation $A^{\mathcal{O}}(x)$ consists of at most $q(|x|)$ oracle calls to $\mathcal{O}$.

The oracle $\mathcal{O}_{\text {PPAD }}$. The oracle $\mathcal{O}_{\text {PPAD }}$ is a source-or-sink instance $\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$ that is based on the same sparse structure used to define the oracle $\mathcal{O}_{\text {SVL }}$ in Section 3. The oracle $\mathcal{O}_{\text {PPAD }}$ is sampled via the following process for every $n \in \mathbb{N}$ :

- Let $L(n)=2^{n / 2}, x_{0}=0^{n}$, and uniformly sample distinct elements $x_{1}, \ldots, x_{L(n)} \leftarrow\{0,1\}^{n} \backslash$ $\left\{0^{n}\right\}$.
- The successor function $S_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is defined as

$$
\mathrm{S}_{n}(x)=\left\{\begin{array}{cl}
x_{i+1} & \text { if } x=x_{i} \text { for some } i \in\{0, \ldots, L(n)-1\} \\
x & \text { otherwise }
\end{array}\right.
$$

- The predecessor function $\mathrm{P}_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is defined in a manner that is consistent with the successor function $S_{n}$ :

$$
\mathrm{P}_{n}(x)=\left\{\begin{array}{cl}
x_{i-1} & \text { if } x=x_{i} \text { for some } i \in\{1, \ldots, L(n)\} \\
x & \text { otherwise }
\end{array} .\right.
$$

Note that the oracle $\mathcal{O}_{\text {PPAD }}$ corresponds to a source-or-sink instance that consists of the single line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$, and therefore the only solution to this instance is the element $x_{L(n)}$.

Part I: $\mathcal{O}_{\text {PPAD }}$ is a hard-on-average source-or-sink instance. We show that the oracle $\mathcal{O}_{\text {PPAD }}$ itself is a hard-on-average source-or-sink instance, which implies in particular that relative to the oracle $\mathcal{O}_{\text {PPAD }}$ there exists a hard-on-average distribution of instances to the source-or-sink problem. We prove the following claim stating that, in fact, the oracle $\mathcal{O}_{\text {PPAD }}$ is an exponentially hard-onaverage source-or-sink instance (even without an index-generation algorithm):
Claim 4.3. For every $q(n)$-query algorithm $M$, where $q(n) \leq L(n)-1$, it holds that

$$
\operatorname{Pr}\left[M^{\mathcal{O}_{\text {PPAD }}}\left(1^{n}\right) \text { solves }\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right] \leq \frac{(q(n)+1) \cdot L(n)}{2^{n}-q(n)-1}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {PPAD }}=$ $\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$ as described above.

The proof of the claim, which is provided in Section 4.2, is based on an observation similar to the one used for proving Claim 3.3: Since the line $0^{n} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{L(n)}$ is sparse and uniformly sampled, then any algorithm performing $q=q(n)$ oracle queries should not be able to query $\mathcal{O}_{\text {PPAD }}$ with any element on the line beyond the first $q$ elements $x_{0}, x_{1}, \ldots, x_{q-1}$. In particular, for our choice of parameters, any such algorithm should have only an exponentially-small probability of reaching $x_{L(n)}$.

Part II: Solving oracle-aided unique-TFNP instances relative to $\mathcal{O}_{\text {PPAD }}$. We show that any oracle-aided unique-TFNP instance $\left\{\mathrm{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$, where $\mathrm{Gen}_{n}$ and $C_{n}$ are circuits that contain at most $q(n)$ oracle gates, can always be solved by an algorithm that issues roughly $q(n)^{2}$ oracle queries. We prove the following claim:
Claim 4.4. Let $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$ be an oracle-aided unique-TFNP instance, where $\operatorname{Gen}_{n}$ and $C_{n}$ are circuits that contain at most $q(n)$ oracle gates each for every $n \in \mathbb{N}$. If $C$ satisfies the correctness requirement stated in Definition 4.1, then there exists an $O\left(q(n)^{2}\right)$-query algorithm $\mathcal{A}$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathcal{O}_{\mathrm{PPAD}}}\left(1^{n}, \sigma\right)=x^{*} \text { s.t. } C_{n}^{\mathcal{O}_{\mathrm{PPAD}}}\left(\sigma, x^{*}\right)=1\right]=1
$$

for every $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {PPAD }}=\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$ as described above and over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}^{\mathcal{O}_{\mathrm{PPAD}}}()$. Moreover, the algorithm $\mathcal{A}$ can be implemented in time $q(n)^{2} \cdot \operatorname{poly}(n)$ given access to a PSPACE-complete oracle.

For proving Claim 4.4, one might be tempted to follow the same approach used for proving Claim 3.4, based on the sparse and uniform structure of the oracle. However, as discussed in Section 1.3, this approach seems to completely fail.

Our proof of Claim 4.4, which is provided in Section 4.3, is obtained by building upon Rudich's classic proof for ruling out black-box constructions of one-way permutations based on one-way functions [Rud88]. In fact, Rudich's proof already generalizes, perhaps somewhat implicitly, from from ruling out constructions of one-way permutations to ruling out constructions of any hard-onaverage distribution of unique-TFNP instances. We show, by extending and refining Rudich's proof technique, that his approach provides a rich framework that allows to bound not only the limitations of one-way functions as a building block, but even the limitations of significantly more structured primitives as building blocks. Specifically, our proof of Claim 4.4 extends Rudich's technique for bounding the limitations of hard-on-average source-or-sink instances.

## 4.2 $\mathcal{O}_{\text {PPAD }}$ is a Hard-on-Average Source-or-Sink Instance

Given an oracle $\mathcal{O}_{\text {PPAD }}=\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$, sampled as described in Section 4.1, and given a $q$-query algorithm $M$, for every $n \in \mathbb{N}$ and $i \in[q]$ we denote by $\alpha_{i} \in\{0,1\}$ the random variable corresponding to $M$ 's $i$ th oracle query to $S_{n}$ or $\mathrm{P}_{n}$ (note that we ignore oracle queries to $\mathrm{S}_{i}$ or $\mathrm{P}_{i}$ where $i \neq n$ ). We denote by $\operatorname{HIT}_{M, n}^{\mathcal{O}_{\text {PPAD }}}$ the event in which there exist indices $j \in[q]$ and $i \in[L(n)]$ for which $\alpha_{j}=x_{i}$ but $x_{i-1} \notin\left\{\alpha_{1}, \ldots, \alpha_{j-1}\right\}$. That is, this is the event in which $M$ queries $\mathcal{O}_{\text {PPAD }}$ with one of the $x_{i}$ 's before querying on $x_{i-1}$. In particular, note that if the event $\operatorname{HIT}_{M, n}^{\mathcal{O}_{\text {PPAD }}}$ does not occur, then $M$ does not query $\mathcal{O}_{\text {PPAD }}$ with $x_{i}$ for $i \in\{q, \ldots, L(n)\}$. The following claim bounds the probability of event $\mathrm{HIT}_{M, n}^{\mathcal{O} \text { Pad }}$ (its proof is essentially identical to that of Claim 3.5).

Claim 4.5. For every $q$-query algorithm $M$ it holds that

$$
\operatorname{Pr}\left[\mathrm{HIT}_{M, n}^{\mathcal{O}_{\mathrm{PPAD}}}\right] \leq \frac{q \cdot L(n)}{2^{n}-q}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {PPAD }}=$ $\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$.

Proof. Let $M$ be a $q$-query algorithm, fix $n \in \mathbb{N}$, and fix $\left(\mathcal{O}_{\text {PPAD }}\right)_{-n}=\left\{\left(\mathrm{S}_{i}, \mathrm{P}_{i}\right)\right\}_{i \in \mathbb{N} \backslash\{n\}}$ (i.e., we fix the entire oracle $\mathcal{O}_{\text {PPAD }}$ except for the $n$th source-or-sink instance). For every $i \in[q]$ denote by $M_{i}$ the following $i$-query algorithm: Invoke the computation $M^{\mathcal{O}_{\text {PPAD }}}$, and terminate once $i$ oracle queries have been performed. Note that since we do not place any restriction on the running time of $M$ and since the oracle distribution is known, we can assume without loss of generality that $M$ is deterministic. Therefore, for every $i \in[q]$ and every fixing of the oracle $\mathcal{O}_{\text {PPAD }}$, the computation $M_{i}^{\mathcal{O}_{\text {PPAD }}}$ is the "prefix" of the computation $M^{\mathcal{O}_{\text {PPAD }}}$ which contains its first $i$ oracle queries. This implies that

$$
\operatorname{Pr}\left[\mathrm{HIT}_{M, n}^{\mathcal{O}_{\text {PPAD }}}\right] \leq \operatorname{Pr}\left[\mathrm{HIT}_{M_{1}, n}^{\mathcal{O}_{\text {PAD }}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\mathrm{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\text {PPAD }}} \mid \overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O}_{\text {PPAD }}}}\right],
$$

where the probability is taken over the choice of the $n$th source-or-sink instance ( $\mathrm{S}_{n}, \mathrm{P}_{n}$ ) (i.e., over the choice of the elements $x_{1}, \ldots, x_{L(n)}$ that are used for defining the $n$th instance as described in Section 4.1).

For bounding the probability of the event $\mathrm{HIT}_{M_{1}, n}^{\mathcal{O}_{\text {PPAD }}}$, note that this event corresponds to the fact that $M$, without any information on $x_{1}, \ldots, x_{L(n)}$ (since no oracle queries have been issued so far), manages to produce an oracle query with $\alpha_{1} \in\left\{x_{1}, \ldots, x_{L(n)}\right\}$. Since the value $\alpha_{1}$ is fixed by
the description of $M$, and we are now sampling distinct and uniformly distributed $x_{1}, \ldots, x_{L(n)} \leftarrow$ $\{0,1\}^{n} \backslash\left\{0^{n}\right\}$, we have that

$$
\operatorname{Pr}\left[\operatorname{HIT}_{M_{1}, n}^{\mathcal{O}_{\text {PPAD }}}\right] \leq \frac{\binom{2^{n}-2}{L(n)-1}}{\binom{2^{n}-1}{L(n)}}=\frac{L(n)}{2^{n}-1} .
$$

For bounding the probability of the event $\mathrm{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\text {PPAD }}}$ given that $\overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O}_{\text {PPAD }}}}$ occurred, we fix the queries $\alpha_{1}, \ldots, \alpha_{i}$, we fix their successors $\beta_{1}, \ldots, \beta_{i}$ where $\beta_{j}=\mathrm{S}_{n}\left(\alpha_{j}\right)$, fix their predecessors $\gamma_{1}, \ldots, \gamma_{i}$ where $\gamma_{j}=\mathrm{P}_{n}\left(\alpha_{j}\right)$, and for each $j \in[i]$ and $k \in[L(n)]$ we fix whether $\alpha_{j}=x_{k}$ or not. This fixes the oracle answers to the above queries, hence fixes $\alpha_{i+1}$ by the assumption that $M$ is deterministic. By the assumption $\overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O P P A D}^{2}}}$, there is some $0 \leq \ell \leq i$ for which $x_{0}, x_{1}, \ldots, x_{\ell-1} \in\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}$ but $x_{\ell}, \ldots, x_{L(n)} \notin\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}$. Hence $x_{1}, \ldots, x_{\ell} \in\left\{\beta_{1}, \ldots, \beta_{i}\right\}$ but $x_{\ell+1}, \ldots, x_{L(n)} \notin\left\{\beta_{1}, \ldots, \beta_{i}\right\}$. No further information about $x_{\ell+1}, \ldots, x_{L(n)}$ is known, therefore, we are now sampling distinct and uniformly distributed $x_{\ell+1}, \ldots, x_{L(n)} \leftarrow\{0,1\}^{n} \backslash\left\{0^{n}, \beta_{1}, \ldots, \beta_{i}\right\}$, hence

$$
\operatorname{Pr}\left[\operatorname{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\text {PPAD }}} \mid \overline{\operatorname{HIT}_{M_{i}, n}^{\mathcal{O}_{\text {PPAD }}}}\right] \leq \frac{L(n)}{2^{n}-i-1} .
$$

We conclude that

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{HIT}_{M, n}^{\mathcal{O}_{\text {PPAD }}}\right] & \leq \operatorname{Pr}\left[\mathrm{HIT}_{M_{1}, n}^{\mathcal{O}_{\text {PPAD }}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\mathrm{HIT}_{M_{i+1}, n}^{\mathcal{O}_{\text {PPAD }}} \mid \overline{\mathrm{HIT}_{M_{i}, n}^{\mathcal{O}_{\text {PPAD }}}}\right] \\
& \leq \sum_{i=0}^{q-1} \frac{L(n)}{2^{n}-i-1} \\
& \leq \frac{q \cdot L(n)}{2^{n}-q} .
\end{aligned}
$$

Equipped with Claim 4.5 we can now easily derive the proof of Claim 4.3.
Proof of Claim 4.3. We modify $M$ such that it queries the oracle $S_{n}$ with its output before it terminates. Now, $M$ is a $(q(n)+1)$-query algorithm, and by the assumption $q(n)+1 \leq L(n)$, if $M\left(1^{n}\right)$ solves $\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)$ then $\mathrm{HIT}_{M\left(1^{n}\right), n}^{\mathcal{O}_{\text {PPAD }}}$ occurs. By Claim 4.5 we deduce

$$
\operatorname{Pr}\left[M^{\mathcal{O}_{\text {PPAD }}}\left(1^{n}\right) \text { solves }\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right] \leq \operatorname{Pr}\left[\operatorname{HIT}_{M\left(1^{n}\right), n}^{\mathcal{O}_{\text {PAD }}}\right] \leq \frac{(q(n)+1) \cdot L(n)}{2^{n}-q(n)-1}
$$

### 4.3 Solving Oracle-Aided Unique-TFNP Instances Relative to $\mathcal{O}_{\text {PPAD }}$

Proof of Claim 4.4. Fix the oracle $\mathcal{O}_{\text {PPAD }}=\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$ and let $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$ be an oracle-aided unique-TFNP instance that satisfies the correctness requirement stated in Definition 4.1, where each of $\mathrm{Gen}_{n}$ and $C_{n}$ contains at most $q(n)$ oracle gates for any $n \in \mathbb{N}$. Consider the following oracle-aided algorithm $\mathcal{A}$ that on input an index $\sigma$ produced by $\operatorname{Gen}_{n}^{\mathcal{O}_{\text {PPAD }}}$ would like to find an input $x \in\{0,1\}^{n}$ such that $C_{n}^{\mathcal{O} P P A D}(\sigma, x)=1$. The algorithm $\mathcal{A}$ initializes two empty sets, $Q_{\mathrm{S}}$ and $Q_{\mathrm{P}}$, which at any point in time will be consistent with the functions $\mathrm{S}=\left\{\mathrm{S}_{n}\right\}_{n \in \mathbb{N}}$ and $\mathrm{P}=\left\{\mathrm{P}_{n}\right\}_{n \in \mathbb{N}}$, respectively. That is, the set $Q_{\mathrm{S}}$ will contain pairs of the form $(\alpha, \beta)$ where $\mathrm{S}_{|\alpha|}(\alpha)=\beta$, and the set $Q_{\mathrm{P}}$ will contain pairs of the form $(\beta, \alpha)$ where $\mathrm{P}_{|\beta|}(\beta)=\alpha$. The algorithm $\mathcal{A}$ performs the following steps for $q(n)+1$ iterations:

Step 1. The algorithm $\mathcal{A}$ finds an oracle $\widetilde{\mathcal{O}_{\text {PPAD }}}=\left\{\left(\widetilde{S}_{n}, \widetilde{\mathrm{P}}_{n}\right)\right\}_{n \in \mathbb{N}}$ and values $\widetilde{r} \in\{0,1\}^{*}$ and $\widetilde{x} \in\{0,1\}^{n}$ subject to the following three requirements:

- $\widetilde{\mathcal{O}_{\text {PPAD }}}$ is consistent with the sets $Q_{\mathrm{S}}$ and $Q_{\mathrm{P}}$. That is, for every $(\alpha, \beta) \in Q_{\mathrm{S}}$ it holds that $\widetilde{\mathrm{S}}_{|\alpha|}(\alpha)=\beta$, and for every $(\beta, \alpha) \in Q_{\mathbf{P}}$ it holds that $\widetilde{\mathrm{P}}_{|\beta|}(\beta)=\alpha$.

- $C_{n}^{\widetilde{\mathcal{O P P A D}}}(\sigma, \widetilde{x})=1$.

Step 2. The algorithm $\mathcal{A}$ computes $\widetilde{y}=C_{n}^{\mathcal{O} \operatorname{PPAD}}(\sigma, \widetilde{x})$, and if $\widetilde{y}=1$ then it outputs $\widetilde{x}$ and terminates.
Step 3. The algorithm $\mathcal{A}$ queries the oracle $\mathcal{O}_{\text {PPAD }}$ with all inputs to $\widetilde{\mathcal{O}_{\text {PPAD }}-\text { gates in the computa- }}$

That is, for every input $\alpha$ to an $\widetilde{\mathrm{S}}$-gate in the computation $\operatorname{Gen}_{n}^{\widehat{\mathcal{O P A D}}}(\widetilde{r})$ or in the computation $C_{n}^{\widetilde{\mathcal{O P P A D}^{P}}}(\sigma, \widetilde{x})$, the algorithm $\mathcal{A}$ computes $\beta=\mathrm{S}_{|\alpha|}(\alpha)$, and adds the pair $(\alpha, \beta)$ to the set $Q_{\mathrm{S}}$.
 $C_{n}^{\widetilde{\mathcal{O P A D}}}(\sigma, \widetilde{x})$, the algorithm $\mathcal{A}$ computes $\alpha=\mathrm{P}_{|\beta|}(\beta)$, and adds the pair $(\beta, \alpha)$ to the set $Q_{\mathrm{P}}$.

If the algorithm $\mathcal{A}$ did not return an output during the above iterations, then it outputs $\perp$. In terms of the number of oracle queries made by $\mathcal{A}$, observe that step 1 does not require any oracle queries, while steps 2 and 3 require at most $3 q(n)$ queries. Therefore, the total number of queries made by $\mathcal{A}$ is $(q(n)+1) \cdot 3 q(n)=O\left(q(n)^{2}\right)$, as required. In the remainder of this proof, we show that $\mathcal{A}$ is always successful in one of its $q(n)+1$ iterations. This follows from the following claim:

Claim 4.6. Let $x^{*} \in\{0,1\}^{n}$ be the unique input such that $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)=1$. Then, in each iteration, at least one of the following events occur:

- In step 2 of the iteration $\mathcal{A}$ outputs $x^{*}$.
- During step 3 of the iteration $\mathcal{A}$ adds to $Q_{\mathrm{S}}$ or $Q_{\mathrm{P}}$ a new $\mathcal{O}_{\mathrm{PPAD}}$-query that is performed in the computation $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)$.

We now show that Claim 4.6 indeed guarantees that $\mathcal{A}$ is always successful when repeating steps $1-3$ above for $q(n)+1$ iterations. Let $x^{*} \in\{0,1\}^{n}$ be the unique input such that $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)=1$, and assume that in the first $q(n)$ iterations $\mathcal{A}$ does not output $x^{*}$ in step 2. Claim 4.6 implies that in each of these $q(n)$ iterations $\mathcal{A}$ adds to $Q_{\mathrm{S}}$ or $Q_{\mathrm{P}}$ a new $\mathcal{O}_{\text {PPAD-query that is performed in the }}$ computation $C_{n}^{\mathcal{O}}{ }^{\text {PPAD }}\left(\sigma, x^{*}\right)$. Since this computation contains at most $q(n)$ oracle queries to $\mathcal{O}_{\text {PPAD }}$, at the end of the first $q(n)$ iterations we are guaranteed that all of these queries are included in the sets $Q_{\mathrm{S}}$ and $Q_{\mathrm{P}}$. Therefore, in the final iteration, for any $\widetilde{\mathcal{O}_{\text {PPAD }}}$ that will be chosen in step 1 it holds that $C_{n}^{\widetilde{\mathcal{O P A D}}}\left(\sigma, x^{*}\right)=1$ since $\widetilde{\mathcal{O}_{\text {PPAD }}}$ is chosen to be consistent with $Q_{\mathrm{S}}$ and $Q_{\mathrm{P}}$. Thus, in step 2 of this iteration $\mathcal{A}$ is guaranteed to output $x^{*}$. We now conclude the proof of Claim 4.4 by proving Claim 4.6.

Proof of Claim 4.6. Let $x^{*} \in\{0,1\}^{n}$ be the unique input such that $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)=1$, and assume towards a contradiction that in some iteration $j \in[q(n)+1]$ the following two events occur:

- In step 2 of the iteration $\mathcal{A}$ does not output $x^{*}$. In particular, this implies that for the input $\widetilde{x}$ that $\mathcal{A}$ finds in this iteration it holds that $\widetilde{x} \neq x^{*}$.
- During step 3 of the iteration $\mathcal{A}$ does not add to $Q_{\mathrm{S}}$ or $Q_{\mathrm{P}}$ a new $\mathcal{O}_{\text {PPAD-query that is performed }}$ in the computation $C_{n}^{\mathcal{O} \text { PPAD }}\left(\sigma, x^{*}\right)$. In particular, all inputs to $\widetilde{\mathrm{S}}$-gates and $\widetilde{\mathrm{P}}$-gates in the
 are either already in the sets $Q_{\mathrm{S}}$ and $Q_{\mathrm{P}}$, respectively, at the beginning of the $j$ th iteration, or are not used as inputs to S -gates or P -gates in the computation $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)$.

We now show that, in fact, there exists an oracle $\mathcal{O}_{\text {PPAD }}^{\prime}$, which is a source-or-sink instance, such that $\sigma$ is a valid output of $\operatorname{Gen}_{n}^{\mathcal{O}_{\text {PPAD }}^{\prime}}$ but $C_{n}^{\mathcal{O}_{\text {PPAD }}^{\prime}}\left(\sigma, x^{*}\right)=C_{n}^{\mathcal{O}_{\text {PPAD }}^{\prime}}(\sigma, \widetilde{x})=1$. This contradicts the correctness requirement stated in Definition 4.1, asking that $C_{n}(\alpha, \cdot)$ has a unique solution for any valid index $\sigma$ and relative to any source-or-sink oracle. The oracle $\mathcal{O}_{\text {PPAD }}^{\prime}=\left\{\left(\mathrm{S}_{n}^{\prime}, \mathrm{P}_{n}^{\prime}\right)\right\}_{n \in \mathbb{N}}$ is defined as follows (according to the following 4 types of possible inputs):

- Type 1 inputs: For every pair $(\alpha, \beta) \in Q_{\mathbf{S}}$ we set $\mathbf{S}_{|\alpha|}^{\prime}(\alpha)=\beta$, and for every pair $(\beta, \alpha) \in Q_{\mathbf{P}}$ we set $\mathrm{P}_{|\beta|}^{\prime}(\beta)=\alpha$.
Note that since $Q_{\mathrm{S}}$ and $Q_{\mathrm{P}}$ are consistent with $\mathcal{O}_{\text {PPAD }}$, and $\widetilde{\mathcal{O}_{\text {PPAD }}}$ is consistent with $Q_{\mathrm{S}}$ and $Q_{\mathrm{P}}$, then for all type 1 inputs $\alpha$ and $\beta$ it holds that $\mathrm{S}^{\prime}(\alpha)=\mathrm{S}(\alpha)=\widetilde{\mathrm{S}}(\alpha)$ and $\mathrm{P}^{\prime}(\beta)=\mathrm{P}(\beta)=\widetilde{\mathrm{P}}(\beta)$.
- Type 2 inputs: For every input $\alpha$ that is used as input to an S -gate in the computation $C_{n}^{\mathcal{O}}{ }^{\operatorname{PPAD}}\left(\sigma, x^{*}\right)$ and $(\alpha, \cdot) \notin Q_{\mathrm{S}}$, we set $\mathrm{S}^{\prime}(\alpha)=\mathrm{S}(\alpha)$. Similarly, for every input $\beta$ that is used as input to a $\mathbf{P}$-gate in the computation $C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)$ and $(\beta, \cdot) \notin Q_{\mathbf{P}}$, we set $\mathbf{P}^{\prime}(\beta)=\mathrm{P}(\beta)$.
- Type 3 inputs: For every input $\alpha$ that is used as input to a $\widetilde{S}$-gate in the computation $\operatorname{Gen}_{n}^{\widetilde{\mathcal{O P A D}^{P}}}(\widetilde{r})$ or in the computation $C_{n}^{\widetilde{\mathcal{O P A D}^{2}}}(\sigma, \widetilde{x})$ and $(\alpha, \cdot) \notin Q_{\mathrm{S}}$, we set $\mathrm{S}^{\prime}(\alpha)=\widetilde{\mathrm{S}}(\alpha)$. Similarly, for every input $\beta$ that is used as input to a $\widetilde{\mathrm{P}}$-gate in the computation $\operatorname{Gen}_{n} \widetilde{\left.\mathcal{O P A D}^{( }\right)}(\widetilde{r})$ or in the

- Type 4 inputs: For any other inputs $\alpha$ and $\beta$ we set $\mathrm{S}^{\prime}(\alpha)$ and $\mathrm{P}^{\prime}(\beta)$ to arbitrary values (e.g., we set them to $0^{|\alpha|}$ and $0^{|\beta|}$, respectively).

First, note that the oracle $\mathcal{O}_{\text {PPAD }}^{\prime}$ is indeed a source-or-sink instance since its successor and predecessor functions are well defined (i.e., the above 4 types of inputs are indeed a partition of the input
 dex relative to $\left.\mathcal{O}_{\text {PPAD }}^{\prime}\right)$, but $C_{n}^{\mathcal{O}_{\text {PPAD }}^{\prime}}\left(\sigma, x^{*}\right)=C_{n}^{\mathcal{O}_{\text {PPAD }}}\left(\sigma, x^{*}\right)=1$ and $C_{n}^{\mathcal{O}_{\text {PPAD }}^{\prime}}(\sigma, \widetilde{x})=C_{n}^{\widehat{\mathcal{O}_{\text {PPAD }}}}(\sigma, \widetilde{x})=1$. Recall that $x^{*} \neq \widetilde{x}$ and this contradicts the fact that $C_{n}^{\mathcal{O}_{\mathrm{PPAD}}^{\prime}}(\sigma, \cdot)$ has a unique solution.

This settles the proof of Claim 4.4.

### 4.4 Proof of Theorem 4.2

Proof of Theorem 4.2. Let ( $C, M, T_{M}, \epsilon_{M, 1}, \epsilon_{M, 2}$ ) be a fully black-box construction of a hard-onaverage distribution of unique-TFNP instances from a hard-on-average distribution of source-or-sink instances (recall Definition 4.1), where $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$. Claim 4.4 guarantees an oracle-aided algorithm $\mathcal{A}$ that runs in polynomial time $T_{\mathcal{A}}(n)$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathcal{O}_{\mathrm{PPAD}}}\left(1^{n}, \sigma\right)=x^{*} \text { s.t. } C_{n}^{\mathcal{O}_{\mathrm{PPAD}}}\left(\sigma, x^{*}\right)=1\right]=\epsilon_{\mathcal{A}}(n)
$$

for all $n \in \mathbb{N}$, where $\epsilon_{\mathcal{A}}(n)=1$, and the probability is taken over the choice of the oracle $\mathcal{O}_{\text {PPAD }}$ and over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}^{\mathcal{O}_{\text {PPAD }}}()$. Definition 4.1 then guarantees that

$$
\operatorname{Pr}\left[M^{\mathcal{A}, \operatorname{PSPACE}, \mathcal{O}_{\mathrm{PPAD}}}\left(1^{n}\right) \text { solves }\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right] \geq \epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where $M$ runs in time $T_{M}(n)$, and the probability is taken over the choice of the oracle $\mathcal{O}_{\text {PPAD }}=\left\{\left(\mathrm{S}_{n}, \mathrm{P}_{n}\right)\right\}_{n \in \mathbb{N}}$.

The algorithm $M$ may invoke $\mathcal{A}$ on various security parameters (i.e., in general $M$ is not restricted to invoking $\mathcal{A}$ only on security parameter $n$ ), and we denote by $\ell(n)$ the maximal security parameter on which $M$ invokes $\mathcal{A}$ (when $M$ itself is invoked on security parameter $n$ ). Thus, viewing $M^{\mathcal{A}}$ as a single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle $\mathcal{O}_{\text {PPAD }}$, its running time $T_{M_{\mathcal{A}}}(n)$ satisfies $T_{M^{\mathcal{A}}}(n) \leq T_{M}(n) \cdot T_{\mathcal{A}}(\ell(n)$ ) (this follows since $M$ may invoke $\mathcal{A}$ at most $T_{M}(n)$ times, and the running time of $\mathcal{A}$ on each such invocation is at most $\left.T_{\mathcal{A}}(\ell(n))\right)$. In particular, viewing $M^{\prime} \stackrel{\text { def }}{=} M^{\mathcal{A}^{\text {PSPACE }}}$ as a single oracle-aided algorithm that has oracle access to the oracle $\mathcal{O}_{\text {PPAD }}$, implies that $M^{\prime}$ is a $q(n)$-query algorithm where $q(n)=T_{M^{\mathcal{A}}}(n)$. Claim 4.3 then implies that

$$
\epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n) \leq \frac{(q(n)+1) \cdot L(n)}{2^{n}-q(n)-1}
$$

There are now two possible cases to consider:
Case 1: $\mathbf{2}^{\boldsymbol{n} / 4} \leq \boldsymbol{q}(\boldsymbol{n})$. In this case, noting that $\ell(n) \leq T_{M}(n)$, we obtain that

$$
2^{n / 4} \leq q(n)=T_{M \mathcal{A}}(n) \leq T_{M}(n) \cdot T_{\mathcal{A}}(\ell(n)) \leq T_{M}(n) \cdot T_{\mathcal{A}}\left(T_{M}(n)\right)
$$

The running time $T_{\mathcal{A}}(n)$ of the adversary $\mathcal{A}$ (when given access to a PSPACE-complete oracle) is some fixed polynomial in $n$, and therefore $T_{M}(n) \geq 2^{\zeta n}$ for some constant $\zeta>0$.
Case 2: $2^{n / 4}>\boldsymbol{q}(n)$. In this case we have that

$$
\epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n) \leq \frac{(q(n)+1) \cdot 2^{n / 2}}{2^{n}-q(n)-1} \leq \frac{1}{2^{n / 10}}
$$

and since $T_{\mathcal{A}}(n)$ is some fixed polynomial in $n$ (and $\epsilon_{\mathcal{A}}(n)$ is a constant) we obtain that $\epsilon_{M, 1}\left(n^{c}\right)$. $\epsilon_{M, 2}(n) \leq 2^{-n / 10}$ for some constant $c>1$.

## 5 One-Way Functions Do Not Imply Bounded-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-on-average distribution of TFNP instances having a bounded number of solutions from a one-way function. Our result is obtained by presenting a distribution of oracles relative to which the following two properties hold:

1. There exists a one-way function.
2. There are no hard-on-average distributions of TFNP instances having a bounded number of solutions. Specifically, our result will apply to any sub-exponential number of solutions.

A TFNP instance with bounded number $k(\cdot)$ of solutions, denoted a $k$-bounded TFNP instance, is of the form $\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ and for every index $\sigma$ produced by $\operatorname{Gen}_{n}$ it holds that $C_{n}(\sigma, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}$, and there is at least one and at most $k(n)$ distinct inputs $x \in\{0,1\}^{n}$ such that $C_{n}(\sigma, x)=1$ (any one of these $x$ 's is a solution). In particular, as discussed in Section 4, any valid SVL instance yields a 1-bounded TFNP instance (i.e., a unique-TFNP instance as defined in Section 4), and therefore our result rules out fully black-box constructions of a hard-on-average distribution of SVL instances from a one-way function. Similarly, any source-or-sink instance which consists of at most $(k+1) / 2$ disjoint lines yields a $k$-bounded TFNP instance, and therefore our result rules out fully black-box constructions of a hard-on-average distribution of source-or-sink instances with a bounded number of disjoint lines from a one-way function.

In this section we model a one-way function as a sequence $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$, where for every $n \in \mathbb{N}$ it holds that $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. The following definition tailors the standard notion of a fully black-box construction to the specific primitives under consideration.

Definition 5.1. A fully black-box construction of a hard-on-average distribution of $k$-bounded TFNP instances from a one-way function consists of a sequence of polynomial-size oracle-aided circuits $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$, an oracle-aided algorithm $M$ that runs in time $T_{M}(\cdot)$, and functions $\epsilon_{M, 1}(\cdot)$ and $\epsilon_{M, 2}(\cdot)$, such that the following conditions hold:

- Correctness: For any function $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$, for any $n \in \mathbb{N}$, and for any index $\sigma$ produced by $\operatorname{Gen}_{n}^{f}$, there exists at least one and at most $k(n)$ distinct inputs $x \in\{0,1\}^{n}$ such that $C_{n}^{f}(\sigma, x)=1$.
- Black-box proof of security: For any function $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$, for any oracle-aided algorithm $\mathcal{A}$ that runs in time $T_{\mathcal{A}}=T_{\mathcal{A}}(n)$, and for any function $\epsilon_{\mathcal{A}}(\cdot)$, if

$$
\operatorname{Pr}\left[\mathcal{A}^{f}\left(1^{n}, \sigma\right)=x \text { s.t. } C_{n}^{f}(\sigma, x)=1\right] \geq \epsilon_{\mathcal{A}}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}^{f}()$ and over the internal randomness of $\mathcal{A}$, then

$$
\operatorname{Pr}\left[M^{\mathcal{A}, f}\left(f_{n}(x)\right) \in f_{n}^{-1}\left(f_{n}(x)\right)\right] \geq \epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of $x \leftarrow\{0,1\}^{n}$ and over the internal randomness of $M$.

We note that, as in Definitions 3.1 and 4.1, we split the security loss in the above definition to an adversary-dependent security loss and an adversary-independent security loss, as this allows us to capture constructions where one of these losses is super-polynomial whereas the other is polynomial. Equipped with the above definition we prove the following theorem:

Theorem 5.2. Let $\left(C, M, T_{M}, \epsilon_{M, 1}, \epsilon_{M, 2}\right)$ be a fully black-box construction of a hard-on-average distribution of $k$-bounded TFNP instances from a one-way function. Then, at least one of the following properties holds:

1. $T_{M}(n) \geq 2^{\zeta n}$ for some constant $\zeta>0$ (i.e., the reduction runs in exponential time).
2. $k\left(T_{M}(n)\right) \geq 2^{n / 8}$ (i.e., the number of solutions, as a function of the reduction's running time, is exponential).
3. $\epsilon_{M, 1}\left(k(n) \cdot n^{c}\right) \cdot \epsilon_{M, 2}(n) \leq 2^{-n / 2}$ for some constant $c>1$ (i.e., the security loss is exponential).

In particular, Theorem 5.2 rules out standard "polynomial-time polynomial-loss" reductions resulting in at most $2^{n^{o(1)}}$ solutions. That is, if $T_{M}(n), \epsilon_{M, 1}(n)$ and $\epsilon_{M, 2}(n)$ are all polynomials in $n$, then the number $k(n)$ of solutions must be at least sub-exponential in $n$ (i.e., $k(n) \geq 2^{n^{\ominus(1)}}$ ). In addition, if the number $k(n)$ of solutions is constant, the running time $T_{M}(\cdot)$ of the reduction is subexponential, and the adversary-dependent security loss $\epsilon_{M, 1}(\cdot)$ is polynomial (all as in [BPR15]), then the adversary-independent security loss $\epsilon_{M, 2}(\cdot)$ must be exponential (thus even ruling out constructions based on one-way functions with sub-exponential hardness).

### 5.1 Proof Overview

In what follows we first describe the oracle, denoted $f$, on which we rely for proving Theorem 5.2. Then, we describe the structure of the proof, showing that relative to the oracle $f$ there exists a one-way function, but there are no hard-on-average bounded-TFNP instances. For the remainder of this section we remind the reader that a $q$-query algorithm is an oracle-aided algorithm $A$ such that for any oracle $\mathcal{O}$ and input $x \in\{0,1\}^{*}$, the computation $A^{\mathcal{O}}(x)$ consists of at most $q(|x|)$ oracle calls to $\mathcal{O}$.

The oracle $f$. The oracle $f$ is a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ where for every $n \in \mathbb{N}$ the function $f_{n}$ : $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is sampled uniformly from the set of all functions mapping $n$-bit inputs to $n$-bit outputs.

Part I: $f$ is a one-way function. We prove the following standard claim stating that the oracle $f$ is an exponentially-hard one-way function.

Claim 5.3. For every $q(n)$-query algorithm $M$ it holds that

$$
\operatorname{Pr}\left[M^{f}\left(f_{n}(x)\right) \in f_{n}^{-1}\left(f_{n}(x)\right)\right] \leq \frac{2(q(n)+1)}{2^{n}-q(n)}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of $x \leftarrow\{0,1\}^{n}$, and over the choice of the oracle $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ as described above.

Part II: Solving oracle-aided bounded-TFNP instances relative to $f$. We show that any oracle-aided $k$-bounded TFNP instance $C=\left\{C_{n}\right\}_{n \in \mathbb{N}}$, where each $C_{n}$ is a circuit that contains at most $q(n)$ oracle gates, can always be solved by an algorithm that issues roughly $k(n) \cdot q(n)^{2}$ oracle queries. We prove the following claim:

Claim 5.4. Let $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$ be an oracle-aided $k(n)$-bounded TFNP instance, where $\operatorname{Gen}_{n}$ and $C_{n}$ are circuits that contain at most $q(n)$ oracle gates each for every $n \in \mathbb{N}$. If $C$ satisfies the correctness requirement stated in Definition 5.1, then there exists an $O\left(k(n) \cdot q(n)^{2}\right)$-query algorithm $\mathcal{A}$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{f}\left(1^{n}, \sigma\right)=x \text { s.t. } C_{n}^{f}(\sigma, x)=1\right]=1
$$

for all $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ as described above and over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}^{f}()$. Moreover, the algorithm $\mathcal{A}$ can be implemented in time $k(n) \cdot q(n)^{2} \cdot \operatorname{poly}(n)$ given access to $a$ PSPACE-complete oracle.

Our proof of Claim 5.4, which is provided in Section 5.3, is obtained by further generalizing our extension of Rudich's classic proof technique [Rud88]. As discussed in Section 4.1, Rudich's approach already generalizes, perhaps somewhat implicitly, from ruling out constructions of oneway permutations to ruling out constructions of any hard-on-average distribution of unique-TFNP instances. We show, by extending and refining Rudich's proof technique once again, that his approach allows to rule out not only constructions of unique-TFNP instances, but even constructions of bounded-TFNP instances.

## $5.2 \quad f$ is a One-Way Function

Proof of Claim 5.3. Let $M$ be a $q(n)$-query algorithm, fix $n \in \mathbb{N}$, and fix $(f)_{-n}=\left\{f_{i}\right\}_{i \in \mathbb{N} \backslash\{n\}}$ (i.e., we fix the entire oracle $f$ except for the $n$th function $f_{n}$ ). Without loss of generality, by viewing $M$ as a $(q(n)+1)$-query algorithm, we may assume that $M$ always queries $f_{n}$ with its output. For any $y \in\{0,1\}^{n}$ and for every $i \in[q(n)+1]$ denote by $\alpha_{i}(y)$ the random variable corresponding to the $i$ th query made by $M$ to $f_{n}$ when $M$ is given $y$ as input (note that since we do not place any restriction on the running time of $M$ we can assume without loss of generality that $M$ is deterministic). Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[M^{f}(y) \in f_{n}^{-1}(y)\right] \leq & \operatorname{Pr}\left[\alpha_{1}(y) \in f_{n}^{-1}(y)\right] \\
& +\sum_{i=1}^{q(n)} \operatorname{Pr}\left[\alpha_{i+1}(y) \in f_{n}^{-1}(y) \mid \alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y)\right]
\end{aligned}
$$

where $y=f_{n}(x)$, and the probability is taken over the choice of the $n$th function $f_{n}:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$ and over the choice of $x \leftarrow\{0,1\}^{n}$.

For bounding the probability of the event $\alpha_{1}(y) \in f_{n}^{-1}(y)$, note that this event corresponds to the fact that $M$, when given input $y=f_{n}(x)$ and without any information on the uniformly chosen $x \in\{0,1\}^{n}$, manages to produce an input $\alpha_{1}(y)$ that $f_{n}$ maps to $y$. If $\alpha_{1}(y)=x$ then clearly $\alpha_{1}(y) \in f_{n}^{-1}(y)$ (but this happen with probability $2^{-n}$ since $x$ is still uniform from $M$ 's point of view), and if $\alpha_{1}(y) \neq x$ then the value $f_{n}\left(\alpha_{1}(y)\right)$ is completely independent of $f_{n}(x)$ and therefore uniformly distributed over $\{0,1\}^{n}$. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[\alpha_{1}(y) \in f_{n}^{-1}(y)\right] & \leq \operatorname{Pr}\left[\alpha_{1}(y)=x\right]+\operatorname{Pr}\left[\alpha_{1}(y) \in f_{n}^{-1}(y) \mid \alpha_{1}(y) \neq x\right] \\
& =\frac{1}{2^{n}}+\frac{1}{2^{n}} \\
& =\frac{2}{2^{n}} .
\end{aligned}
$$

For bounding the probability of the event $\alpha_{i+1}(y) \in f_{n}^{-1}(y)$ conditioned on $\alpha_{1}(y), \ldots, \alpha_{i}(y) \notin$ $f_{n}^{-1}(y)$ we follow a similar argument. Without loss of generality, we assume that $\alpha_{1}(y), \ldots, \alpha_{i+1}(y)$ are all distinct, and then it holds that:

- Given that $\alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y)$ then from $M$ 's point of view the value $x$ is uniformly distributed over the set $\{0,1\}^{n} \backslash\left\{\alpha_{1}(y), \ldots, \alpha_{i}(y)\right\}$. Therefore

$$
\operatorname{Pr}\left[\alpha_{i+1}(y)=x \mid \alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y)\right]=\frac{1}{2^{n}-i} .
$$

- Given that $\alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y)$ and $\alpha_{i+1}(y) \neq x$, we have that $\alpha_{i+1}(y) \notin\left\{x, \alpha_{1}(y), \ldots\right.$, $\left.\alpha_{i}(y)\right\}$ based on our assumption that the queries are all distinct. This implies that the random variable $f_{n}\left(\alpha_{i+1}(y)\right)$ is completely independent of $f_{n}(x), f_{n}\left(\alpha_{1}(y)\right), \ldots, f_{n}\left(\alpha_{i}(y)\right)$ and therefore uniformly distributed over $\{0,1\}^{n}$. That is,

$$
\operatorname{Pr}\left[\alpha_{i+1}(y) \in f_{n}^{-1}(y) \mid \alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y) \wedge \alpha_{i+1}(y) \neq x\right]=\frac{1}{2^{n}}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[\alpha_{i+1}(y) \in\right. & \left.f_{n}^{-1}(y) \mid \alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y)\right] \\
\leq & \operatorname{Pr}\left[\alpha_{i+1}(y)=x \mid \alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y)\right] \\
& +\operatorname{Pr}\left[\alpha_{i+1}(y) \in f_{n}^{-1}(y) \mid \alpha_{1}(y), \ldots, \alpha_{i}(y) \notin f_{n}^{-1}(y) \wedge \alpha_{i+1}(y) \neq x\right] \\
= & \frac{1}{2^{n}-i}+\frac{1}{2^{n}} \\
\leq & \frac{2}{2^{n}-i} .
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
\operatorname{Pr}\left[M^{f}(y) \in f_{n}^{-1}(y)\right] & \leq \sum_{i=0}^{q(n)} \frac{2}{2^{n}-i} \\
& \leq \frac{2(q(n)+1)}{2^{n}-q(n)} .
\end{aligned}
$$

### 5.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to $f$

Proof of Claim 5.4. Fix the oracle $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and let $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$ be an oracle-aided $k$-bounded TFNP instance that satisfies the correctness requirement stated in Definition 5.1, where each of $\mathrm{Gen}_{n}$ and $C_{n}$ contains at most $q(n)$ oracle gates for any $n \in \mathbb{N}$. Consider the following oracle-aided algorithm $\mathcal{A}$ that on input an index $\sigma$ produced by $\operatorname{Gen}_{n}^{f}$ would like to find an input $x \in\{0,1\}^{n}$ such that $C_{n}^{f}(\sigma, x)=1$. The algorithm $\mathcal{A}$ initializes an empty set $Q$, which at any point in time will contain pairs of the form $(\alpha, \beta)$ where $\beta=f(\alpha)$ (i.e., the set $Q$ is always consistent with $f)$. The algorithm $\mathcal{A}$ performs the following steps for $q(n)+1$ iterations:

Step 1. The algorithm $\mathcal{A}$ finds a function $g$ subject to the following three requirements:

- $g$ is consistent with $Q$.
- There exists a value $r \in\{0,1\}^{*}$ such that $\operatorname{Gen}_{n}^{g}(r)=\sigma$.
- Among all functions $g$ that satisfy the first two requirements, choose the one that maximizes the number $k_{g}$ of solutions to the instance $C_{n}^{g}(\sigma, \cdot)$ (i.e., $k_{g}$ is the number of distinct inputs $x \in\{0,1\}^{n}$ such that $\left.C_{n}^{g}(\alpha, x)=1\right)$.

Step 2. The algorithm $\mathcal{A}$ finds a value $r \in\{0,1\}^{*}$ such that $\operatorname{Gen}_{n}^{g}(r)=\sigma$, and finds the distinct inputs $x_{1}, \ldots, x_{k_{g}} \in\{0,1\}^{n}$ for which $C_{n}^{g}\left(\sigma, x_{i}\right)=1$ for every $i \in\left[k_{g}\right]$.

Step 3. For every $i \in\left[k_{g}\right]$, the algorithm $\mathcal{A}$ computes $C_{n}^{f}\left(\sigma, x_{i}\right)$. If there exists an $i \in\left[k_{g}\right]$ for which $C_{n}^{f}\left(\sigma, x_{i}\right)=1$, then $\mathcal{A}$ outputs the first such $x_{i}$ and terminates.

Step 4. The algorithm $\mathcal{A}$ queries $f$ with all inputs to $g$-gates in the computations $\operatorname{Gen}_{n}^{g}(r), C_{n}^{g}\left(\sigma, x_{1}\right)$, $\ldots, C_{n}^{g}\left(\sigma, x_{k_{g}}\right)$, and adds these queries to the set $Q$.

If the algorithm $\mathcal{A}$ did not return an output during the above iterations, then it outputs $\perp$. In terms of the number of oracle queries made by $\mathcal{A}$, observe that steps 1 and 2 do not require any
oracle queries, while each of steps 3 and 4 require at most $q+k \cdot q$ queries ${ }^{7}$. Therefore, the total number of queries made by $\mathcal{A}$ is at most $2(k+1) \cdot q(q+1)=O\left(k \cdot q^{2}\right)$, as required. In the remainder of this proof, we show that $\mathcal{A}$ is always successful in one of its $q+1$ iterations. This follows from the following claim:
Claim 5.5. Fix any $x^{*} \in\{0,1\}^{n}$ such that $C_{n}^{f}\left(\sigma, x^{*}\right)=1$. Then, in each iteration, at least one of the following events occur:

- During step 3 of the iteration $\mathcal{A}$ finds an input $x \in\{0,1\}^{n}$ such that $C_{n}^{f}(\sigma, x)=1$.
- During step 4 of the iteration $\mathcal{A}$ adds to $Q$ a new f-query that is performed in the computation $C_{n}^{f}\left(\sigma, x^{*}\right)$.

We now show that Claim 5.5 indeed guarantees that $\mathcal{A}$ is always successful when repeating steps $1-4$ above for $q+1$ iterations. Fix any $x^{*} \in\{0,1\}^{n}$ such that $C_{n}^{f}\left(\sigma, x^{*}\right)=1$, and assume that in the first $q$ iterations $\mathcal{A}$ does not find a solution in step 3. Claim 5.5 implies that in each of these $q$ iterations $\mathcal{A}$ adds to the set $Q$ a new $f$-query that is performed in the computation $C_{n}^{f}\left(\sigma, x^{*}\right)$. Since this computation contains at most $q$ oracle queries to $f$, at the end of the first $q$ iterations we are guaranteed that all of these queries are included in the set $Q$. Therefore, in the final iteration, for any $g$ that will be chosen in step 1 it holds that $C_{n}^{g}\left(\sigma, x^{*}\right)=1$ since $g$ is chosen to be consistent with $Q$. Thus, in this iteration $x^{*} \in\left\{x_{1}, \ldots, x_{k_{g}}\right\}$, and therefore there exists at least one index $i \in\left[k_{g}\right]$ for which $C_{n}^{f}\left(\sigma, x_{i}\right)=1$, which implies that $\mathcal{A}$ outputs a solution. We now conclude the proof of Claim 5.4 by proving Claim 5.5.

Proof of Claim 5.5. Fix any $x^{*} \in\{0,1\}^{n}$ such that $C_{n}^{f}\left(\sigma, x^{*}\right)=1$, and assume towards a contradiction that in some iteration $j \in[q+1]$ the following two events occur:

- During step 3 of the iteration $\mathcal{A}$ does not find an input $x \in\{0,1\}^{n}$ such that $C_{n}^{f}(\sigma, x)=1$. In particular, this implies that $x^{*} \notin\left\{x_{1}, \ldots, x_{k_{g}}\right\}$.
- During step 4 of the iteration $\mathcal{A}$ does not add to $Q$ a new $f$-query that is performed in the computation $C_{n}^{f}\left(\sigma, x^{*}\right)$. That is, all inputs to $g$-queries in the computations $\operatorname{Gen}_{n}^{g}(r), C_{n}^{g}\left(\sigma, x_{1}\right), \ldots$, $C_{n}^{g}\left(\sigma, x_{k_{g}}\right)$ are either already in the set $Q$ at the beginning of the $j$ th iteration, or are not used as inputs to $f$-queries in the computation $C_{n}^{f}\left(\sigma, x^{*}\right)$.

We now show that, in fact, at the beginning of the $j$ th iteration there was a function $g^{\prime}$ such that: (1) $g^{\prime}$ is consistent with $Q$, (2) $\sigma$ is a valid index produced by $\mathrm{Gen}_{n}^{g^{\prime}}$, and (3) there are at least $k_{g}+1$ inputs $x \in\{0,1\}^{n}$ for which $C_{n}^{g^{\prime}}(\sigma, x)=1$. This contradicts the fact that, in step 1 of the $j$ th iteration, $\mathcal{A}$ chose $g$ that maximizes the number $k_{g}$ of solutions to the instance $C_{n}^{g}(\cdot)$ among all functions that are consistent with $Q$ and for which $\sigma$ is a valid index. The function $g^{\prime}$ is defined as follows (according to the following 4 types of possible inputs):

- Type 1 inputs: For every input $\alpha$ that appears in the set $Q$ we set $g^{\prime}(\alpha)=f(\alpha)$.

Note that since $Q$ is consistent with $f$, and $g$ is consistent with $Q$, then for all type 1 inputs $\alpha$ it holds that $g^{\prime}(\alpha)=f(\alpha)=g(\alpha)$.

- Type 2 inputs: For every input $\alpha$ that is used as input to an $f$-query in the computation $C_{n}^{f}\left(\sigma, x^{*}\right)$ and is not in the set $Q$, we set $g^{\prime}(\alpha)=f(\alpha)$.

[^7]- Type 3 inputs: For every input $\alpha$ that is used as input to a $g$-query in the computations $\operatorname{Gen}_{n}^{g}(r), C_{n}^{g}\left(\sigma, x_{1}\right), \ldots, C_{n}^{g}\left(\sigma, x_{k_{g}}\right)$ and is not in the set $Q$, we set $g^{\prime}(\alpha)=g(\alpha)$.
- Type 4 inputs: For any other input $\alpha$ we set $g^{\prime}(\alpha)$ to an arbitrary value.

For the function $g^{\prime}$ it holds that $\operatorname{Gen}_{n}^{g^{\prime}}(r)=\operatorname{Gen}_{n}^{g}(r)=\sigma, C_{n}^{g^{\prime}}\left(\sigma, x^{*}\right)=C_{n}^{f}\left(\sigma, x^{*}\right)=1$, and $C_{n}^{g^{\prime}}\left(\sigma, x_{i}\right)=C_{n}^{g}\left(\sigma, x_{i}\right)=1$ for every $i \in\left[k_{g}\right]$. Thus, the values $x^{*}, x_{1}, \ldots, x_{k_{g}}$ are $k_{g}+1$ distinct solutions to the instance $C_{n}^{g^{\prime}}(\sigma, \cdot)$.

This settles the proof of Claim 5.4.

### 5.4 Proof of Theorem 5.2

Proof of Theorem 5.2. Let ( $C, M, T_{M}, \epsilon_{M, 1}, \epsilon_{M, 2}$ ) be a fully black-box construction of a hard-onaverage distribution of $k$-bounded TFNP instances from a one-way function (recall Definition 5.1), where $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$. Claim 5.4 guarantees an oracle-aided algorithm $\mathcal{A}$ that runs in time $T_{\mathcal{A}}(n)=k(n) \cdot \operatorname{poly}(n)$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathrm{PSPACE}, f}\left(1^{n}, \sigma\right)=x \text { s.t. } C_{n}^{f}(\sigma, x)=1\right]=\epsilon_{\mathcal{A}}(n)
$$

for all $n \in \mathbb{N}$, where $\epsilon_{\mathcal{A}}(n)=1$, and the probability is taken over the choice of the oracle $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}^{f}()$. Definition 5.1 then guarantees that

$$
\operatorname{Pr}\left[M^{\mathcal{A}, \mathrm{PSPACE}, f}\left(f_{n}(x)\right) \in f_{n}^{-1}\left(f_{n}(x)\right)\right] \geq \epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where $M$ runs in time $T_{M}(n)$, and the probability is taken over the choice of the oracle $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and over the choice of $x \leftarrow\{0,1\}^{n}$.

The algorithm $M$ may invoke $\mathcal{A}$ on various security parameters (i.e., in general $M$ is not restricted to invoking $\mathcal{A}$ only on security parameter $n$ ), and we denote by $\ell(n)$ the maximal security parameter on which $M$ invokes $\mathcal{A}$ (when $M$ itself is invoked on security parameter $n$ ). Thus, viewing $M^{\mathcal{A}}$ as a single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle $f$, its running time $T_{M^{\mathcal{A}}}(n)$ satisfies $T_{M^{\mathcal{A}}}(n) \leq T_{M}(n) \cdot T_{\mathcal{A}}(\ell(n)$ ) (this follows since $M$ may invoke $\mathcal{A}$ at most $T_{M}(n)$ times, and the running time of $\mathcal{A}$ on each such invocation is at most $\left.T_{\mathcal{A}}(\ell(n))\right)$. In particular, viewing $M^{\prime} \stackrel{\text { def }}{=} M^{\mathcal{A}^{\text {PSPACE }}}$ as a single oracle-aided algorithm that has oracle access to the oracle $f$, implies that $M^{\prime}$ is a $q(n)$-query algorithm where $q(n)=T_{M^{\mathcal{A}}}(n)$. Claim 5.3 then implies that

$$
\epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n) \leq \frac{2(q(n)+1)}{2^{n}-q(n)} .
$$

There are now two possible cases to consider:
Case 1: $\mathbf{2}^{\boldsymbol{n} / 4} \leq \boldsymbol{q}(\boldsymbol{n})$. In this case, noting that $\ell(n) \leq T_{M}(n)$, we obtain that

$$
2^{n / 4} \leq q(n)=T_{M \mathcal{A}}(n) \leq T_{M}(n) \cdot T_{\mathcal{A}}(\ell(n)) \leq T_{M}(n) \cdot T_{\mathcal{A}}\left(T_{M}(n)\right) .
$$

Since $T_{\mathcal{A}}(n)=k(n) \cdot \operatorname{poly}(n)$ for some fixed polynomial poly $(n)$, then it holds that

$$
2^{n / 4} \leq k\left(T_{M}(n)\right) \cdot \operatorname{poly}\left(T_{M}(n)\right)
$$

which implies that either $k\left(T_{M}(n)\right) \geq 2^{n / 8}$ or $T_{M}(n) \geq 2^{\zeta n}$ for some constant $\zeta>0$.

Case 2: $2^{n / 4}>\boldsymbol{q}(n)$. In this case we have that

$$
\epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n) \leq \frac{2(q(n)+1)}{2^{n}-q(n)} \leq \frac{1}{2^{n / 2}}
$$

and since $T_{\mathcal{A}}(n)=k(n) \cdot \operatorname{poly}(n)$ for some fixed polynomial poly $(n)$ (and $\left.\epsilon_{\mathcal{A}}(n)=1\right)$ we obtain that $\epsilon_{M, 1}\left(k(n) \cdot n^{c}\right) \cdot \epsilon_{M, 2}(n) \leq 2^{-n / 2}$ for some constant $c>1$.

## 6 Public-Key Cryptography Does Not Imply Bounded-TFNP Hardness

In this section we generalize the result proved in Section 5 from considering a one-way function as the underlying building block to considering a collection of injective trapdoor functions as the underlying building block. Specifically, we prove that there is no fully black-box construction of a hard-on-average distribution of TFNP instances having a bounded number of solutions from a collection of injective trapdoor functions. Our result is obtained by presenting a distribution of oracles relative to which the following two properties hold:

1. There exists a collection of injective trapdoor functions.
2. There are no hard-on-average distributions of TFNP instances having a bounded number of solutions. Specifically, our result will apply to any sub-exponential number of solutions, exactly as in Section 5.

From the technical perspective, instead of considering an oracle $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ where for every $n \in \mathbb{N}$ the function $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is sampled uniformly, we consider a more structured oracle, $\mathcal{O}_{\text {TDF }}$, corresponding to a collection of injective trapdoor functions. Proving that the oracle $\mathcal{O}_{\text {TDF }}$ is indeed hard to invert is quite standard (based, for example, on the approach of Haitner et al. $\left.\left[\mathrm{HHR}^{+} 15\right]\right)$. However, showing that relative to the oracle $\mathcal{O}_{\text {TDF }}$ we can solve bounded-TFNP instances is significantly more challenging than the corresponding proof relative to the oracle $f$.

We say that $\tau=\left\{\left(\mathrm{KG}_{n}, \mathrm{~F}_{n}, \mathrm{~F}_{n}^{-1}\right)\right\}_{n \in \mathbb{N}}$ is a collection of injective trapdoor functions if for every $n \in \mathbb{N}$ and for every pair (td, pk) produced by $\mathrm{KG}_{n}()$, the function $\mathrm{F}_{n}(\mathrm{pk}, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is injective (for some $m \geq n$ ) and the function $\mathrm{F}_{n}^{-1}(\mathrm{td}, \cdot)$ computes it inverse whenever an inverse exists (i.e., it outputs $\perp$ on all values $y$ that are not in the image of the function $\left.F_{n}(\mathrm{pk}, \cdot)\right)$ - see Section 2.2 for more details. The following definition tailors the standard notion of a fully black-box construction to the specific primitives under consideration.

Definition 6.1. A fully black-box construction of a hard-on-average distribution of $k$-bounded TFNP instances from a collection of injective trapdoor functions consists of a sequence of polynomialsize oracle-aided circuits $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$, an oracle-aided algorithm $M$ that runs in time $T_{M}(\cdot)$, and functions $\epsilon_{M, 1}(\cdot)$ and $\epsilon_{M, 2}(\cdot)$, such that the following conditions hold:

- Correctness: For any collection $\tau$ of injective trapdoor functions, for any $n \in \mathbb{N}$, and for any index $\sigma$ produced by $\operatorname{Gen}_{n}^{\tau}$, there exists at least one and at most $k(n)$ distinct inputs $x \in\{0,1\}^{n}$ such that $C_{n}^{\tau}(\sigma, x)=1$.
- Black-box proof of security: For any collection $\tau=\left\{\left(\mathrm{KG}_{n}, \mathrm{~F}_{n}, \mathrm{~F}_{n}^{-1}\right)\right\}_{n \in \mathbb{N}}$ of injective trapdoor functions, for any oracle-aided algorithm $\mathcal{A}$ that runs in time $T_{\mathcal{A}}=T_{\mathcal{A}}(n)$, and for any function $\epsilon_{\mathcal{A}}(\cdot)$, if

$$
\operatorname{Pr}\left[\mathcal{A}^{\tau}\left(1^{n}, \sigma\right)=x \text { s.t. } C_{n}^{\tau}(\sigma, x)=1\right] \geq \epsilon_{\mathcal{A}}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of $\sigma \leftarrow \operatorname{Gen}_{n}^{\tau}()$ and $x \leftarrow\{0,1\}^{n}$, and over the internal randomness of $\mathcal{A}$, then

$$
\operatorname{Pr}\left[M^{\mathcal{A}, \tau}\left(\mathrm{pk}, \mathrm{~F}_{n}(\mathrm{pk}, x)\right)=x\right] \geq \epsilon_{M, 1}\left(T_{\mathcal{A}}(n) / \epsilon_{\mathcal{A}}(n)\right) \cdot \epsilon_{M, 2}(n)
$$

for infinitely many values of $n \in \mathbb{N}$, where the probability is taken over the choice of ( $\mathrm{td}, \mathrm{pk}) \leftarrow$ $\mathrm{KG}_{n}(), x \leftarrow\{0,1\}^{n}$, and over the internal randomness of $M$.

We note that, as in Definitions 3.1, 4.1 and 5.1, we split the security loss in the above definition to an adversary-dependent security loss and an adversary-independent security loss, as this allows us to capture constructions where one of these losses is super-polynomial whereas the other is polynomial. Equipped with the above definition we prove the following theorem (generalizing Theorem 5.2):

Theorem 6.2. Let $\left(C, M, T_{M}, \epsilon_{M, 1}, \epsilon_{M, 2}\right)$ be a fully black-box construction of a hard-on-average distribution of $k$-bounded TFNP instances from a collection of injective trapdoor functions. Then, at least one of the following properties holds:

1. $T_{M}(n) \geq 2^{\zeta n}$ for some constant $\zeta>0$ (i.e., the reduction runs in exponential time).
2. $k\left(T_{M}(n)\right) \geq 2^{n / 8}$ (i.e., the number of solutions, as a function of the reduction's running time, is exponential).
3. $\epsilon_{M, 1}\left(k(n) \cdot n^{c}\right) \cdot \epsilon_{M, 2}(n) \leq 2^{-n / 2}$ for some constant $c>1$ (i.e., the security loss is exponential).

In particular, and similarly to Theorem 5.2, Theorem 6.2 rules out standard "polynomial-time polynomial-loss" reductions resulting in at most $2^{n^{o(1)}}$ solutions. That is, if $T_{M}(n), \epsilon_{M, 1}(n)$ and $\epsilon_{M, 2}(n)$ are all polynomials in $n$, then the number $k(n)$ of solutions must be at least sub-exponential in $n$ (i.e., $k(n) \geq 2^{n^{\Theta(1)}}$ ). In addition, if the number $k(n)$ of solutions is constant, the running time $T_{M}(\cdot)$ of the reduction is sub-exponential, and the adversary-dependent security loss $\epsilon_{M, 1}(\cdot)$ is polynomial (all as in [BPR15]), then the adversary-independent security loss $\epsilon_{M, 2}(\cdot)$ must be exponential (thus even ruling out constructions based on one-way functions with sub-exponential hardness). Given our claims in the remainder of this section, the proof of Theorem 6.2 is derived in a nearly identical to proof of 5.2 , and is therefore omitted.

### 6.1 Proof Overview

In what follows we first describe the oracle, denoted $\mathcal{O}_{\text {TDF }}$, on which we rely for proving Theorem 6.2. Then, we describe the structure of the proof, and explain the main challenges in generalizing our proof from Section 5 .

The oracle $\mathcal{O}_{\text {TDF }}$. The oracle $\mathcal{O}_{\text {TDF }}$ is a sequence of the form $\left\{\left(\mathrm{G}_{n}, \mathrm{~F}_{n}, \mathrm{~F}_{n}^{-1}\right)\right\}_{n \in \mathbb{N}}$ that is sampled via the following process for every $n \in \mathbb{N}$ :

- The function $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ is sampled uniformly from the set of all functions mapping $n$-bit inputs to $n$-bit outputs.
- For every $\mathrm{pk} \in\{0,1\}^{2 n}$ the function $\mathrm{F}_{n}(\mathrm{pk}, \cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ is sampled uniformly from the set of all injective functions mapping $n$-bit inputs to $2 n$-bit outputs.
- For every $\operatorname{td} \in\{0,1\}^{n}$ and $y \in\{0,1\}^{2 n}$ we set

$$
\mathrm{F}_{n}^{-1}(\mathrm{td}, y)=\left\{\begin{array}{ll}
x & \text { if } \mathrm{F}_{n}\left(\mathrm{G}_{n}(\mathrm{td}), x\right)=y \\
\perp & \text { if no such } x \text { exists }
\end{array} .\right.
$$

Part I: $\mathcal{O}_{\text {TDF }}$ is a hard-to-invert collection of injective trapdoor functions. We show that the oracle $\mathcal{O}_{\text {TDF }}$ naturally defines a hard-on-average collection of injective trapdoor functions. Specifically, the key-generation algorithm on input $1^{n}$ samples $\mathrm{td} \leftarrow\{0,1\}^{n}$ uniformly at random, and computes $\mathrm{pk}=\mathrm{G}_{n}(\mathrm{td})$ (where $\mathrm{F}_{n}$ and $\mathrm{F}_{n}^{-1}$ are used as the evaluation and inversion algorithms). We prove the following claim stating that collection of injective trapdoor functions is exponentially secure.

Claim 6.3. For every $q(n)$-query algorithm $M$ it holds that

$$
\operatorname{Pr}\left[M^{\mathcal{O}_{\text {TDF }}}\left(\mathrm{G}_{n}(\mathrm{td}), \mathrm{F}_{n}\left(\mathrm{G}_{n}(\mathrm{td}), x\right)\right)=x\right] \leq \frac{4(q(n)+1)}{2^{n}-q(n)}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of $\mathrm{td} \leftarrow\{0,1\}^{n}$, $x \leftarrow\{0,1\}^{n}$, and the oracle $\mathcal{O}_{\text {TDF }}=\left\{\left(\mathrm{G}_{n}, \mathrm{~F}_{n}, \mathrm{~F}_{n}^{-1}\right)\right\}_{n \in \mathbb{N}}$.

The proof of Claim 6.3, which is provided in Section 6.2, is based on the observation that the inversion oracle $F_{n}^{-1}$ is not quite useful. Specifically, the function $\mathrm{G}_{n}$ itself is uniformly chosen and thus hard to invert, and therefore any algorithm $M$ that is given as input ( $\mathrm{pk}, \mathrm{F}_{n}(\mathrm{pk}, x)$ ) should not be able to find the trapdoor td corresponding to $\mathrm{pk}=\mathrm{G}_{n}(\mathrm{td})$. Combining this with the fact that the function $\mathrm{F}_{n}(\mathrm{pk}, \cdot)$ is uniformly chosen and length doubling, such an algorithm $M$ should not be able to find any $y$ in its image, unless $y$ was obtained as the result of a previous query (and, in this case, its inverse is already known). Therefore, the task of computing $x$ given ( $\mathrm{pk}, \mathrm{F}_{n}(\mathrm{pk}, x)$ ) essentially reduces to that of inverting a uniformly-sampled injective function.

Part II: Solving oracle-aided bounded-TFNP instances relative to $\mathcal{O}_{\text {TDF }}$. We show that any oracle-aided $k$-bounded TFNP instance $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$, where $\operatorname{Gen}_{n}$ and $C_{n}$ contain at most $q(n)$ oracle gates, and the input to each such gate is of length at most $q(n)$ bits, can always be solved with constant probability by an algorithm that issues roughly $k(n)^{3} \cdot q(n)^{9}$ oracle queries. We prove the following claim:

Claim 6.4. Let $C=\left\{\operatorname{Gen}_{n}, C_{n}\right\}_{n \in \mathbb{N}}$ be an oracle-aided $k$-bounded TFNP instance, where for every $n \in \mathbb{N}$ it holds that $\mathrm{Gen}_{n}$ and $C_{n}$ are circuits that contain at most $q(n)$ oracle gates, and the input to each such gate is of length at most $q(n)$ bits. If $C$ satisfies the correctness requirement stated in Definition 6.1, then there exists a $O\left(q(n)^{9} \cdot k(n)^{3}\right)$-query algorithm $\mathcal{A}$ such that

$$
\operatorname{Pr}\left[\mathcal{A}^{\mathcal{O}_{\text {TDF }}}\left(1^{n}, \sigma\right)=x \text { s.t. } C_{n}^{\mathcal{O}_{\mathrm{TDF}}}(\sigma, x)=1\right] \geq \frac{1}{2}
$$

for all $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {TDF }}=\left\{\left(\mathrm{G}_{n}, \mathrm{~F}_{n}, \mathrm{~F}_{n}^{-1}\right)\right\}_{n \in \mathbb{N}}$
 mented in time $q(n)^{9} \cdot k(n)^{3} \cdot \operatorname{poly}(n)$ given access to a PSPACE-complete oracle.

The proof of Claim 6.4, which is provided in Section 6.3, generalizes the proof of Claim 5.4 (which holds relative to the oracle $f$ defined in Section 5). Recall that for the proof of Claim 5.4 we introduced an adversary that runs for $q+1$ iterations, with the goal of discovering a new oracle query from the computation $C_{n}^{f}\left(\sigma, x^{*}\right)$ in each iteration where $x^{*}$ is any fixed solution of the instance $C_{n}^{f}(\sigma, \cdot)$. This approach is based on the observation if no progress is made then there exists an oracle $g^{\prime}$ for which the instance $C_{n}^{g^{\prime}}(\sigma, \cdot)$ has too many solutions. The oracle oracle $g^{\prime}$ can be constructed by "pasting together" partial information on the actual oracle $f$ with full information on an additional oracle $g$ that is partially-consistent with $f$.

When dealing with the oracle $\mathcal{O}_{\text {TDF }}$, which is clearly more structured than just a single random function $f$, this argument becomes much more subtle. One may hope to follow a similar iterationbased approach and argue that if no progress is made then there exists an oracle $\mathcal{O}_{\text {TDF }}^{\prime}$ for which the instance $C_{n}^{\mathcal{O}_{\text {TDF }}^{\prime}}(\sigma, \cdot)$ has too many solutions. However, "pasting together" partial information on the actual oracle $\mathcal{O}_{\text {TDF }}$ with full information on an additional injective trapdoor function oracle that is partially-consistent with $\mathcal{O}_{\text {TDF }}$ may completely fail, as the resulting oracle may not turn out injective at all.

Our main observation is that although pasting together the two oracles may not always work (as in Section 5), it does work with high probability over the choice of the oracle $\mathcal{O}_{\text {TDF }}$. By closely examining the way the two oracles are combined, we show that if the resulting oracle is not a valid collection of injective trapdoor functions, then one of the following "bad" events must have occurred:

- The adversary was able to "guess" an element pk for which there exists td such that $\mathrm{pk}=\mathrm{G}_{n}(\mathrm{td})$ without previously querying $\mathrm{G}_{n}$ with td.
- The adversary was able to "guess" a public key pk and an element $y$ for which there exists an input $x$ such that $y=\mathrm{F}_{n}(\mathrm{pk}, x)$ without previously querying $\mathrm{F}_{n}$ with ( $\mathrm{pk}, x$ ).

We show that the probability of each of these two events is small, as we choose both $\mathrm{G}_{n}$ and all functions $\mathrm{F}_{n}(\mathrm{pk}, \cdot)$ to be length increasing and uniformly distributed.

## 6.2 $\mathcal{O}_{\text {TDF }}$ is a Collection of Injective Trapdoor Functions

The proof of Claim 6.3, as discussed above, is based on the observation that the inversion oracle $F_{n}^{-1}$ is not quite useful. Specifically, we show that with high probability the behavior of $\mathrm{F}_{n}^{-1}$ is predictable, which means that it can be simulated without actually calling the oracle. In more details, for an oracle-aided algorithm $M$ we denote by $\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{T \mathrm{DF}}}$ the event in which the computation $M^{\mathcal{O}_{\text {TDF }}}$ manages to call $\mathrm{F}_{n}^{-1}$ with an input ( $\mathrm{td}, y$ ) which results with $x \neq \perp$ without previously calling $\mathrm{F}_{n}$ with $\left(\mathrm{G}_{n}(\mathrm{td}), x\right)$. We prove the following claim:
Claim 6.5. For every $q$-query algorithm $M$ and for every $n \in \mathbb{N}$ it holds that

$$
\operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] \leq \frac{q}{2^{n}-q},
$$

where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {TDF }}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N}}$ as described above. Moreover, $q$ can be a bound on the number of calls to $\mathrm{F}_{n}$ and $\mathrm{F}_{n}^{-1}$ only.

This intuitively means that the access to the oracle $\mathrm{F}_{n}^{-1}$ does not strengthen the power of $M$ by much, because with high probability it can be simulated by answering $\perp$ for every query to $\mathrm{F}_{n}^{-1}$ that cannot be determined by previous queries to $F_{n}$.

Proof. Let $M$ be a $q$-query algorithm, fix $\left(\mathcal{O}_{\text {TDF }}\right)_{-n}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N} \backslash\{n\}}$ (i.e., we fix the entire oracle $\mathcal{O}_{\text {TDF }}$ except for the $n$th instance), and fix $\mathrm{G}_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$. Thus, we only consider queries to the oracles $\mathrm{F}_{n}$ and $\mathrm{F}_{n}^{-1}$. For every $i \in[q]$ denote by $M_{i}$ the following $i$-query algorithm: Invoke the computation $M^{\mathcal{O}_{\text {TDF }}}$, and terminate once $i$ oracle queries have been performed. Note that since we do not place any restriction on the running time of $M$ and since the oracle distribution is known, we can assume without loss of generality that $M$ is deterministic. Therefore, for every $i \in[q]$ and every fixing of the oracle $\mathcal{O}_{\text {TDF }}$, the computation $M_{i}^{\mathcal{O}_{\text {TDF }}}$ is the "prefix" of the computation $M^{\mathcal{O}_{\text {TDF }}}$ which contains its first $i$ oracle queries. This implies that

$$
\operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] \leq \operatorname{Pr}\left[\operatorname{Hitl}_{\operatorname{Hinv}_{M_{1}, n}}^{\mathcal{O}_{\mathrm{TDF}}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\operatorname{Hitlnv}_{M_{i+1}, n}^{\mathcal{O}_{\mathrm{TDF}}} \mid \overline{\operatorname{Hitlnv}_{M_{i}, n}^{\mathcal{O}_{\mathrm{T} D F}}}\right]
$$

where the probability is taken over the choice of $F_{n}$.
For bounding the probability of the event $\operatorname{Hit}^{\ln } \mathrm{O}_{M_{1}, n}^{\mathcal{O}_{\mathrm{TDF}}}$, note that this event corresponds to the fact that $M$, without any information on $F_{n}:\{0,1\}^{2 n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ (since no oracle queries have been issued so far), manages to produce an oracle query to $F_{n}^{-1}$ of the form $q_{1}=\left(\operatorname{td}_{1}, y_{1}\right)$ where there exists $x$ such that $\mathrm{F}_{n}\left(\mathrm{G}_{n}\left(\mathrm{td}_{1}\right), x\right)=y_{1}$.

Since the value $q_{1}$ is fixed by the description of $M$, and we are now sampling $\mathrm{F}_{n}\left(\mathrm{G}_{n}\left(\mathrm{td}_{1}\right), \cdot\right)$ : $\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ uniformly from the set of all injective functions mapping $n$-bit inputs to $2 n$-bit outputs, we have that

$$
\operatorname{Pr}\left[\operatorname{Hitlnv}_{M_{1}, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] \leq \frac{\binom{4^{n}-1}{2^{n}-1}}{\binom{4^{n}}{2^{n}}}=\frac{2^{n}}{4^{n}}
$$

For bounding the probability of the event $\operatorname{Hit}^{\operatorname{lnv}} \boldsymbol{v}_{M_{i+1}, n}^{\mathcal{O}_{\text {TDF }}}$ given that $\overline{\operatorname{Hitlnv}_{M_{i}, n}^{\mathcal{O}_{\text {TDF }}}}$ occurred, we fix the queries $q_{1}, \ldots, q_{i}$ and their answers. Each query $q_{j}$ is to $\mathrm{F}_{n}$ and of the form ( $\mathrm{pk}, x$ ) or to $\mathrm{F}_{n}^{-1}$ and of the form ( $\mathrm{td}, y$ ). Suppose the query $q_{i+1}$ is to $\mathrm{F}_{n}^{-1}$ and of the form $\left(\operatorname{td}_{i+1}, y_{i+1}\right)$. Let $\mathrm{pk}_{i+1}=\mathrm{G}_{n}\left(\operatorname{td}_{i+1}\right)$, let $x_{1}, \ldots, x_{a}$ be the second arguments of all previous queries to $F_{n}$ of the form $\left(\mathrm{pk}_{i+1}, x\right)$, let $y_{1}, \ldots, y_{a}$ be the answers to those queries, and let $y_{a+1}, \ldots, y_{b}$ be the second arguments of all previous queries to $F_{n}^{-1}$ of the form $\left(\operatorname{td}_{i+1}, y\right)$ such that $\mathrm{F}_{n}^{-1}\left(\operatorname{td}_{i+1}, y_{j}\right)=\perp($ so $b \leq i)$. By the assumption that $\overline{\operatorname{Hitlnv}_{M_{i}, n}^{\mathcal{O}_{\mathrm{TDF}}}}$ we know that for every other query to $F_{n}^{-1}$ of the form $\left(\operatorname{td}_{i+1}, y\right)$ holds $\mathrm{F}_{n}^{-1}\left(\operatorname{td}_{i+1}, y\right) \in\left\{x_{1}, \ldots, x_{a}\right\}$, thus we are now sampling a function $\{0,1\}^{n} \backslash\left\{x_{1}, \ldots, x_{a}\right\} \rightarrow\{0,1\}^{2 n} \backslash\left\{y_{1}, \ldots, y_{b}\right\}$ uniformly from the set of all injective functions on those domain and range. So we have that

$$
\operatorname{Pr}\left[\operatorname{Hitlnv}_{M_{i}, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] \leq \frac{2^{n}-a}{4^{n}-b} \leq \frac{2^{n}}{4^{n}-i}
$$

We conclude that

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{T \mathrm{DF}}}\right] & \leq \operatorname{Pr}\left[\operatorname{Hitlnv}_{M_{1}, n}^{\mathcal{O}_{\mathrm{TDF}}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\operatorname{Hitlnv}_{M_{i+1}, n}^{\mathcal{O}_{\mathrm{TDF}}} \mid \overline{\operatorname{Hitlnv}_{M_{i}, n}^{\mathcal{O}_{\mathrm{TDF}}}}\right] \\
& \leq \sum_{i=0}^{q-1} \frac{2^{n}}{4^{n}-i} \\
& \leq \frac{q \cdot 2^{n}}{4^{n}-q} \\
& \leq \frac{q}{2^{n}-q}
\end{aligned}
$$

Given an oracle $\mathcal{O}_{\text {TDF }}$, sampled as described above, we let $\widehat{\mathcal{O}_{\text {TDF }}^{n}} \boldsymbol{}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N} \backslash\{n\}} \cup$ $\left\{\left(\mathrm{F}_{n}, \mathrm{G}_{n}\right)\right\}$ denote the oracle that is obtained by omitting $\mathrm{F}_{n}^{-1}$. For proving Claim 6.3 we rely on the following two claims, stating that the functions $G_{n}$ and $F_{n}(p k, \cdot)$ are hard to invert relative to $\widehat{\mathcal{O}_{\text {TDF }}^{n}}$.

Claim 6.6. For every $q(n)$-query algorithm $M$ it holds that

$$
\left.\operatorname{Pr}\left[M^{\widehat{\mathcal{O}_{\mathrm{TDF}}^{n}}} \boldsymbol{( G}, \mathrm{G}_{n}(\mathrm{td})\right) \in \mathrm{G}_{n}^{-1}\left(\mathrm{G}_{n}(\mathrm{td})\right)\right] \leq \frac{2(q(n)+1)}{2^{n}-q(n)}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of $\mathrm{td} \leftarrow\{0,1\}^{n}$ and the choice of the oracle ${\widehat{\mathcal{O}} \widehat{\mathrm{TDF}}_{n}}$ as described above. Moreover, $q(n)$ can be a bound on the number of queries to $\mathrm{G}_{n}$ only.

Claim 6.7. For every $q(n)$-query algorithm $M$ and every $\mathrm{pk} \in\{0,1\}^{n}$ it holds that

$$
\operatorname{Pr}\left[M^{\widehat{\mathcal{O}_{\mathrm{TDF}}^{n}}}\left(\mathrm{pk}, \mathrm{~F}_{n}(\mathrm{pk}, x)\right)=x\right] \leq \frac{q(n)+1}{2^{n}-q(n)}
$$

for all sufficiently large $n \in \mathbb{N}$, where the probability is taken over the choice of the oracle $\widehat{\mathcal{O}_{\mathrm{TDF}} \text { a }}$ as described above. Moreover, $q(n)$ can be a bound on the number of queries to $\mathrm{F}_{n}(\mathrm{pk}, \cdot)$ only.

The proofs of Claims 6.6 and 6.7 and are nearly identical to the proof of Claim 5.3, and are therefore omitted. We now deduce the proof of Claim 6.3:

Proof of Claim 6.3. Suppose $M$ is a $q(n)$-query algorithm, and consider the following algorithm $N$ with oracle access to $\widehat{\mathcal{O}_{\mathrm{TDF}}^{n}} \mathrm{a}$ and input $\mathrm{pk}=\mathrm{G}_{n}(\mathrm{td})$ where $\mathrm{td} \leftarrow\{0,1\}^{n}$ :

1. The algorithm $N$ samples $x \leftarrow\{0,1\}^{n}$.
2. The algorithm $N$ obtains $y=\mathrm{F}_{n}(\mathrm{pk}, x)$.
3. The algorithm $N$ runs $\widetilde{x} \leftarrow M^{\mathcal{O}_{\text {TDF }}}(\mathrm{pk}, y)$, where queries are answered according to $\widehat{\mathcal{O}_{\text {TDF }}}$, except for queries to $\mathrm{F}_{n}^{-1}$ of the form $\left(\mathrm{td}^{\prime}, y^{\prime}\right)$ which are answered in the following manner:
(a) If $\mathrm{G}_{n}\left(\mathrm{td}^{\prime}\right)=\mathrm{pk}$ then the algorithm $N$ outputs $\mathrm{td}^{\prime}$ and terminates.
(b) If a previous query to $\mathrm{F}_{n}$ of the form $\left(\mathrm{G}_{n}\left(\mathrm{td}^{\prime}\right), x^{\prime}\right)$ resulted with $y^{\prime}$, then algorithm $N$ answers the query with $x^{\prime}$.
(c) Otherwise, then algorithm $N$ answers the query with answer $\perp$.
4. If $\widetilde{x}=x$ then output 1 , and otherwise output 0 .

If $N$ terminates on step 3.(a) then it manages to invert $\mathrm{G}_{n}$, therefore by Claim 6.6 it holds that

$$
\operatorname{Pr}[N \text { teminates on step } 3 .(\mathrm{a})] \leq \frac{2(q(n)+1)}{2^{n}-q(n)} .
$$

We may see step 3 of the algorithm $N$ as an algorithm by itself with input ( $\mathrm{pk}, F_{n}(\mathrm{pk}, x)$ ), oracle access to $\widehat{\mathcal{O}_{\mathrm{TDF}} n}$ and output $\tilde{x}$, so by Claim 6.7 it holds that

$$
\operatorname{Pr}[N \text { outputs } 1]=\operatorname{Pr}[\operatorname{Step} 3 \text { of } N \text { outputs } x] \leq \frac{q(n)+1}{2^{n}-q(n)} .
$$

Finally, if $N$ gives $M$ a wrong oracle answer for a query to $\mathrm{F}_{n}^{-1}$ (i.e. not consistent with $\left(\mathrm{G}_{n}, \mathrm{~F}_{n}\right)$ ) then $\operatorname{Hitlnv}_{M(\mathrm{pk}, y), n}^{\mathcal{O}_{\mathrm{TDF}}}$ occurs. The computation of $M(\mathrm{pk}, y)$, including the computation of pk and $y$, consists of at most $q(n)+1$ queries to $\mathrm{F}_{n}$ and $\mathrm{F}_{n}^{-1}$, therefore by Claim 6.5 it holds that

$$
\operatorname{Pr}[N \text { gives } M \text { a wrong oracle answer }] \leq \frac{q(n)+1}{2^{n}-q(n)}
$$

Now, if $M^{\mathcal{O}_{\text {TDF }}}\left(\mathrm{pk}, \mathrm{F}_{n}(\mathrm{pk}, x)\right)=x$ then either the algorithm $N$ outputs 1 or the simulation done by $N$ goes wrong (i.e., $N$ terminates or gives a wrong oracle answer to $M$ ). Therefore, it holds that

$$
\begin{aligned}
\operatorname{Pr}[ & M^{\left.\mathcal{O}_{\operatorname{TDF}}\left(\mathrm{G}_{n}(\mathrm{td}), \mathrm{F}_{n}\left(\mathrm{G}_{n}(\mathrm{pk}), x\right)\right)=x\right]} \\
\leq & \operatorname{Pr}[N \text { outputs } 1] \\
& +\operatorname{Pr}[N \text { gives } M \text { a wrong answer }] \\
& +\operatorname{Pr}[N \text { teminates on step } 3 .(\mathrm{a})] \\
\leq & \frac{4(q(n)+1)}{2^{n}-q(n)} .
\end{aligned}
$$

### 6.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to $\mathcal{O}_{\text {TDF }}$

As discussed above, our generalization of the attack presented in Section 5 relies on the fact that it should be infeasible to "guess" elements in the images of the functions $\mathrm{G}_{n}$ and $\mathrm{F}_{n}(\mathrm{pk}, \cdot)$. Let $M$ be an oracle-aided algorithm, and during the runtime of $M$ we allow it to make "guesses" of the form $\mathrm{pk} \in\{0,1\}^{2 i}$ or of the form ( $\mathrm{pk}, y$ ) where $\mathrm{pk} \in\{0,1\}^{2 i}$ and $y \in\{0,1\}^{2 i}$ for some $i$. When counting the number of oracle calls we also include the number of guesses. We denote by HitFRange ${ }_{M, n}^{\mathcal{O}_{\text {TDF }}}$ the event in which $M$ guesses ( $\mathrm{pk}, y$ ) for which there exists $x \in\{0,1\}^{n}$ with $\mathrm{F}_{n}(\mathrm{pk}, x)=y$ without querying $\mathrm{F}_{n}$ with ( $\mathrm{pk}, x$ ) before. Similarly, we denote by HitGRange ${ }_{M, n}^{\mathcal{O}_{\text {TDF }}}$ the event in which $M$ guesses $\mathrm{pk} \in\{0,1\}^{2 n}$ for which there exists $\mathrm{td} \in\{0,1\}^{n}$ with $\mathrm{pk}=\mathrm{G}_{n}(\mathrm{td})$ without querying $\mathrm{G}_{n}$ on td before. In Section 6.4 we prove the following claims:

Claim 6.8. Denote by $\widehat{\mathcal{O}_{\mathrm{TDF}}^{n}} \mathrm{the}$ oracle obtained by omitting $\mathrm{F}_{n}^{-1}$ from the oracle $\mathcal{O}_{\text {TDF }}$. For every $q$-query algorithm $M$ it holds that

$$
\operatorname{Pr}\left[\text { HitFRange }_{M, n}^{\widehat{\mathcal{O}_{\text {TDF }}}}\right] \leq \frac{q}{2^{n}-q}
$$

where the probability is taken over the choice of the oracle $\mathcal{O}_{\mathrm{TDF}}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N}}$ as described above. Moreover, $q$ can be a bound on the number of guesses and calls to $\mathrm{F}_{n}$.

Claim 6.9. For every $q$-query algorithm $M$ it holds that

$$
\operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\text {TDF }}} \vee \operatorname{HitFRange}_{M, n}^{\mathcal{O}_{\text {TDF }}}\right] \leq \frac{2 q}{2^{n}-q}
$$

where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {TDF }}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N}}$ as described above. Moreover, $q$ can be a bound on the number of guesses and calls to $\mathrm{F}_{n}$ and $\mathrm{F}_{n}^{-1}$.

Claim 6.10. For every $q$-query algorithm $M$ it holds that

$$
\operatorname{Pr}\left[\operatorname{HitGRange}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] \leq \frac{q}{2^{n}-q}
$$

where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {TDF }}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N}}$ as described above. Moreover, $q$ can be a bound on the number of guesses and calls to $\mathrm{G}_{n}$.

Equipped with Claims 6.8-6.10 we now prove Claim 6.4.
Proof of Claim 6.4. Let $p(n)=1 / 2$ (although the proof goes through for any value of $p(n)$ ). To simplify the notation, we denote $\mathrm{G}_{n}(\mathrm{td}), \mathrm{F}_{n}(\mathrm{pk}, x)$ and $\mathrm{F}_{n}^{-1}(\mathrm{td}, y)$ by $\mathrm{G}(\mathrm{td}), \mathrm{F}(\mathrm{pk}, x)$ and $\mathrm{F}^{-1}(\mathrm{td}, y)$. There is no ambiguity since $n$ can be determined by the size of the input. Let $C=\left\{\left(\operatorname{Gen}_{n}, C_{n}\right)\right\}_{n \in \mathbb{N}}$ be an oracle-aided $k$-bounded TFNP instance that satisfies the correctness requirement stated in Definition 6.1, where $\operatorname{Gen}_{n}$ and $C_{n}$ contain at most $q(n)$ oracle gates each, and the input to each such gate is of length at most $q(n)$ bits. We modify the circuit such that each query to $\mathrm{F}^{-1}$ with input ( $\mathrm{td}, y$ ) is preceded by a query to G with input td. This may double $q(n)$, but to ease the notation we will assume that $q(n)$ is a bound on the number of gates in the modified circuits. Consider the following oracle-aided algorithm $\mathcal{A}$ that on input $1^{n}$ and $\sigma$ tries to find an input $x \in\{0,1\}^{n}$ such that $C_{n}^{\mathcal{O}}{ }^{\text {TDF }}(\sigma, x)=1$ :

1. The algorithm $\mathcal{A}$ sets $a(n)=\log \left(12(q(n)+1)^{3} \cdot(k(n)+1) / p(n)+4(q(n)+1)^{2} \cdot(k(n)+1)\right)$.
2. The algorithm $\mathcal{A}$ initialize empty lists $Q_{\mathrm{G}}$ and $Q_{\mathrm{F}}$.

The set $Q_{\mathrm{G}}$ will contain pairs of the form ( $\mathrm{td}, \mathrm{pk}$ ) where $\mathrm{G}_{i}(\mathrm{td})=\mathrm{pk}$ and the set $Q_{\mathrm{F}}$ will contain triplets of the form ( $\mathrm{pk}, x, y$ ) where $\mathrm{F}_{i}(\mathrm{pk}, x)=y$ and triplets of the form ( $\mathrm{pk}, \perp, y$ ) where $y \notin \mathrm{~F}_{i}\left(\mathrm{pk},\{0,1\}^{i}\right)$.
3. The algorithm $\mathcal{A}$ initialize an empty list Check.

The list Check will contain inputs $x \in\{0,1\}^{n}$ to the oracle-aided circuit $C_{n}$.
4. For every $1 \leq i<a(n)$, the algorithm $\mathcal{A}$ queries $\mathrm{G}_{i}$ and $\mathrm{F}_{i}$ on all possible inputs, and adds these queries to the sets $Q_{\mathrm{G}}$ and $Q_{\mathrm{F}}$ respectively.
5. The algorithm $\mathcal{A}$ performs the following steps for $q(n)+1$ iterations:
(a) The algorithm $\mathcal{A}$ finds an oracle $\widetilde{\mathcal{O}_{\text {TDF }}}=\left\{\left(\widetilde{\mathrm{G}}_{n}, \widetilde{\mathrm{~F}}_{n}, \widetilde{\mathrm{~F}}_{n}^{-1}\right)\right\}_{n \in \mathbb{N}}$ that is valid, consistent with $Q_{\mathrm{G}}$ and $Q_{\mathrm{F}}$, has $\widetilde{r}$ such that $\sigma=\operatorname{Gen}_{n}^{\mathcal{O}_{\text {TDF }}}(\widetilde{r})$, and maximizes the number of solutions $\widetilde{k}$ to the instance $C_{n}^{\widetilde{\mathcal{O}_{\text {TDF }}}}(\sigma, \cdot)$ under those constraints (i.e., $\widetilde{k}$ is the number of distinct inputs $x \in\{0,1\}^{n}$ such that $\left.C_{n}^{\widetilde{\mathcal{T D F}_{2}}}(\sigma, x)=1\right)$.
 for every $i \in[\widetilde{k}]$, and $\widetilde{r}$ for which $\sigma=\operatorname{Gen}_{n}(\widetilde{r})$.
(c) The algorithm $\mathcal{A}$ adds $x_{1}, \ldots, x_{\tilde{k}}$ to the list Check.
(d) For every query td to a $\widetilde{\mathrm{G}}$-gate in the computations $\widetilde{\operatorname{Gen}_{n} \widetilde{\mathcal{O}_{\text {TDF }}}(\widetilde{r}), ~} \widetilde{C_{n}^{\mathcal{O}_{\text {TDF }}}}\left(\sigma, x_{1}\right), \ldots$, $C_{n}^{\widetilde{\mathcal{O}_{\mathrm{TDF}}}}\left(\sigma, x_{\widetilde{k}}\right)$, the algorithm $\mathcal{A}$ guesses the value $\widetilde{\mathrm{G}}(\mathrm{td})$.
 $C_{n}^{\widetilde{O_{\text {TDF }}}}\left(\sigma, x_{\widetilde{k}}\right)$, the algorithm $\mathcal{A}$ guesses the pair ( $\left.\mathrm{pk}, \widetilde{\mathrm{F}}(\mathrm{pk}, x)\right)$.
 $C_{n}^{\widetilde{\mathcal{O}_{\text {TDF }}}}\left(\sigma, x_{\widetilde{k}}\right)$, the algorithm $\mathcal{A}$ guesses the pair $(\widetilde{\mathrm{G}}(\mathrm{td}), y)$.
(g) The algorithm $\mathcal{A}$ queries $G$ with all inputs to $\widetilde{G}$-gates in the computations $\operatorname{Gen}_{n} \widetilde{\mathcal{O}_{\text {TDF }}}(\widetilde{r})$, $\widetilde{C_{n}^{\mathcal{O T D F}}}\left(\sigma, x_{1}\right), \ldots, C_{n}^{\mathcal{O}_{\text {TDF }}}\left(\sigma, x_{\tilde{k}}\right)$, and adds these queries to the set $Q_{\mathrm{G}}$.
 $C_{n} \widetilde{\mathcal{O}_{\mathrm{TDF}}}\left(\sigma, x_{\tilde{k}}\right)$ resulting with $y=\widetilde{\mathrm{F}}(\mathrm{pk}, x)$ :
i. The algorithm $\mathcal{A}$ queries F with ( $\mathrm{pk}, x$ ) and adds ( $\mathrm{pk}, x, \mathrm{~F}(\mathrm{pk}, x)$ ) to $Q_{\mathrm{F}}$.
ii. If $(\mathrm{td}, \mathrm{pk}) \in Q_{\mathrm{G}}$ for some td then the algorithm $\mathcal{A}$ queries $\mathrm{F}^{-1}$ with ( $\left.\mathrm{td}, y\right)$ and adds (pk, $\left.\mathrm{F}^{-1}(\mathrm{td}, y), y\right)$ to $Q_{\mathrm{F}}$.
(i) For every query $(\mathrm{td}, y)$ to a $\widetilde{\mathrm{F}}^{-1}$-gate in the computations $\operatorname{Gen}_{n}^{\widetilde{\mathcal{O}_{\text {TDF }}}(\widetilde{r})}, \widetilde{C_{n} \overline{\mathcal{O D F}^{\prime}}}\left(\sigma, x_{1}\right), \ldots$, $C_{n}^{\widetilde{\mathcal{O}_{\text {TDF }}}}\left(\sigma, x_{\tilde{k}}\right)$ resulting with $x=\widetilde{\mathrm{F}}^{-1}(\operatorname{td}, y)$ which might be $\perp$ :
i. The algorithm $\mathcal{A}$ queries $\mathrm{F}^{-1}$ with $(\mathrm{td}, y)$ and adds $\left(\mathrm{G}(\mathrm{td}), \mathrm{F}^{-1}(\mathrm{td}, x), y\right)$ to $Q_{\mathrm{F}}$.
ii. If $x \neq \perp$ then the algorithm $\mathcal{A}$ queries F with $(\mathrm{G}(\mathrm{td}), x)$ and adds $(\mathrm{G}(\mathrm{td}), x, \mathrm{~F}(\mathrm{G}(\mathrm{td}), x))$ to $Q_{\mathrm{F}}$.
6. For every $x \in$ Check, the algorithm $\mathcal{A}$ computes $C_{n}^{\mathcal{O}_{\mathrm{TDF}}}(\sigma, x)$, and if $C_{n}^{\mathcal{O}_{\mathrm{TDF}}}(\sigma, x)=1$ then it outputs $x$ and terminates.
7. If no such $x$ was found then the algorithm $\mathcal{A}$ outputs $\perp$.

In terms of the number of oracle queries made by $\mathcal{A}$, observe that in step 4 the algorithm require at most $2 \cdot 2^{a(n)}+3 \cdot 2^{3 a(n)}=O\left(q(n)^{9} \cdot k(n)^{3} / p(n)^{3}\right)$ queries, in each iteration the algorithm $\mathcal{A}$ performs at most $2 \cdot q \cdot(k+1)$ oracle queries, and in step 6 the algorithm performs at most $(q+1) \cdot q \cdot(k+1)$ oracle queries. Therefore the algorithm $\mathcal{A}$ in total performs at most $O\left(q(n)^{9} \cdot k(n)^{3} / p(n)^{3}\right)$ queries. For later
analysis we note that including the oracle queries in the computation $\sigma \leftarrow \operatorname{Gen}_{n}^{\mathcal{O}_{\text {TDF }}}()$, including the guesses of $\mathcal{A}$, and excluding the queries in step 4 which are only to the oracles $\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{1 \leq i<a(n)}$, the algorithm performs at most $4 \cdot(q+1)^{2} \cdot(k+1)$ queries.

Fix $\mathcal{O}_{\text {TDF }}=\left(\mathrm{G}, \mathrm{F}, \mathrm{G}^{-1}\right)$, fix $\sigma \leftarrow \mathrm{Gen}_{n}^{\mathcal{O}_{\text {TDF }}}$ and fix some $x^{*} \in\{0,1\}^{n}$ such that $C_{n}^{\mathcal{O}_{\text {TDF }}}\left(\sigma, x^{*}\right)=1$. Fix an iteration $j \in[q(n)+1]$ of the algorithm $\mathcal{A}$. Let $Q_{\mathrm{F}}$ and $Q_{\mathrm{G}}$ denote these variables in the beginning of that iteration, let $\widetilde{\mathcal{O}_{\text {TDF }}}=\left(\widetilde{G}, \widetilde{F}, \widetilde{F}^{-1}\right)$ be the oracle chosen in that iteration, let $x_{1}, \ldots, x_{\widetilde{k}}$ be
 Let $Q_{\widetilde{\mathrm{G}}}$ be the $\widetilde{\mathrm{G}}$-gate queries done in the computations $\operatorname{Gen}_{n}^{\widetilde{\mathcal{O}_{\mathrm{TDF}}}}(\widetilde{r}), C_{n}^{\widetilde{\mathcal{O}_{\text {TF }}}}\left(\sigma, x_{1}\right), \ldots, C_{n}^{\widetilde{\mathcal{O}_{\text {TDF }}}}\left(\sigma, x_{\widetilde{k}}\right)$, and let $Q_{\widetilde{\mathrm{F}}}$ be the $\widetilde{\mathrm{F}}$-gate and $\widetilde{\mathrm{F}}^{-1}$-gate queries done in these computations, i.e. for each query to $\widetilde{\mathrm{F}}$ of the form ( $\mathrm{pk}, x$ ) we store ( $\mathrm{pk}, x, \widetilde{\mathrm{~F}}(x, \mathrm{pk})$ ) and for each query to $\widetilde{\mathrm{F}}^{-1}$ of the form ( $\mathrm{td}, y$ ) we store $\left(\widetilde{\mathrm{G}}(\mathrm{td}), \widetilde{F}^{-1}(\mathrm{td}, y), y\right)$ (where the middle value might be $\perp$ ). Note that in the case of query to $\widetilde{\mathrm{F}}^{-1}$ it holds that $(\operatorname{td}, \widetilde{\mathrm{G}}(\mathrm{td})) \in Q_{\widetilde{\mathrm{G}}}$ due to our assumption that each query to $\widetilde{\mathrm{F}}^{-1}$ is preceded by a matching query to $\widetilde{\mathrm{G}}$. Let $Q_{\mathrm{F}}^{*}$ and $Q_{\mathrm{G}}^{*}$ be the queries done in the computation $C_{n}^{\mathcal{O}_{\operatorname{TDF}}}\left(\sigma, x^{*}\right)$.

If there exists a valid oracle $\mathcal{O}_{\text {TDF }}^{\prime}$ which is consistent with $Q_{\mathrm{F}}, Q_{\mathrm{G}}, Q_{\widetilde{\mathrm{F}}}, Q_{\widetilde{\mathrm{G}}}, Q_{\mathrm{F}}^{*}$ and $Q_{\mathrm{G}}^{*}$ then we get that $\mathcal{O}_{\text {TDF }}^{\prime}$ has at least $\widetilde{k}+1$ solutions $-x_{1}, \ldots, x_{\widetilde{k}}$ and $x^{*}$. Along with the fact that $\mathcal{O}_{\text {TDF }}^{\prime}$ is consistent with $Q_{\mathrm{F}}$ and $Q_{\mathrm{G}}$ and that $\sigma=\operatorname{Gen}_{n}^{\mathcal{O}_{\mathrm{TDF}}^{\prime}}(\widetilde{r})$, we get a contradiction to the maximality of $\widetilde{\mathcal{O}_{\text {TDF }}}$. Therefore, at least one of the following cases holds:

Case 1 There exists td and $\mathrm{pk} \neq \mathrm{pk}^{\prime}$ for which $(\mathrm{td}, \mathrm{pk}) \in Q_{\widetilde{\mathrm{G}}}$ but $\left(\mathrm{td}, \mathrm{pk}^{\prime}\right) \in Q_{\mathrm{G}}^{*}$. This means that the pair (td, $\mathrm{pk}^{\prime}$ ) is currently not contained in $Q_{\mathrm{G}}$ but the algorithm $\mathcal{A}$ will add it in step 5.(g).

Case 2 There exists $\mathrm{pk}, x \neq \perp$ and $y \neq y^{\prime}$ for which ( $\mathrm{pk}, x, y$ ) $\in Q_{\widetilde{\mathrm{F}}}$ but ( $\left.\mathrm{pk}, x, y^{\prime}\right) \in Q_{\mathrm{F}}^{*}$. This means that the triplet ( $\mathrm{pk}, x, y^{\prime}$ ) is currently not contained in $Q_{\mathrm{F}}$ but the algorithm $\mathcal{A}$ will add it in step 5.(h).i or 5.(i).ii.

Case 3 There exists pk, $x \neq x^{\prime}$ and $y$ for which (pk, $\left.x, y\right) \in Q_{\widetilde{\mathrm{F}}}$ but $\left(\mathrm{pk}, x^{\prime}, y\right) \in Q_{\mathrm{F}}^{*}$. This case splits into two cases:

Case 3.a If $x^{\prime} \neq \perp$ then that means that $\mathcal{A}$ managed to guess ( $\mathrm{pk}, y$ ) in step 5.(e) or 5.(f) without querying F on ( $\mathrm{pk}, x^{\prime}$ ) before.
Case 3.b If $x^{\prime}=\perp$ then $(\mathrm{pk}, \perp, y)$ is in $Q_{\mathrm{F}}^{*}$ due to a query to $\mathrm{F}^{-1}$ of the form ( $\mathrm{td}, y$ ) where $\mathrm{G}(\mathrm{td})=\mathrm{pk}$. If $(\mathrm{td}, \mathrm{pk}) \in Q_{\mathrm{G}}$ then the algorithm $\mathcal{A}$ will add ( $\mathrm{pk}, \perp, y$ ) to $Q_{\mathrm{F}}$ in step 5.(h).ii or 5.(i).i. If (td, pk) $\notin Q_{\mathrm{G}}$ that means that $\mathcal{A}$ managed to guess pk in step 5.(d) without querying G on td before.

Case 4 There exists $\mathrm{pk} \in\{0,1\}^{2 i}$ for which there are more than $2^{2 i}-2^{i}$ pairs of the form ( $\mathrm{pk}, \perp, y$ ) in $Q_{\mathrm{F}} \cup Q_{\tilde{\mathrm{F}}} \cup Q_{\mathrm{F}}^{*}$. Let $Y=\{y \mid \nexists x \mathrm{~F}(\mathrm{pk}, x)=y\}$ and $\widetilde{Y}=\left\{y \mid(\mathrm{pk}, \perp, y) \in Q_{\tilde{F}}\right\}$. Then $|Y \cup \tilde{Y}|>2^{2 i}-2^{i}$ but $|Y|=2^{2 i}-2^{i}$, hence there exists $y \in \widetilde{Y}$ with $y \notin Y$, thus the algorithm $\mathcal{A}$ manages to guess (pk, $y$ ) in step 5.(e) or 5.(f) for which there exists $x$ with $\mathrm{F}(\mathrm{pk}, x)=y$ without querying F on ( $\mathrm{pk}, x$ ) before.

So we get that in every iteration, at least one of the followings happens:

- The algorithm $\mathcal{A}$ finds a solution to $C_{n}^{\mathcal{O}}{ }^{\operatorname{TDF}}(\sigma, \cdot)$ (which will be checked in step 6 ).
- The event HitGRange $\mathcal{A}_{\mathcal{A}\left(1^{n}, \operatorname{Gen}_{n}()\right), i}^{\mathcal{O}_{\text {I }}}$ occurs to some $a(n) \leq i \leq q(n)$.
- The event HitFRange $\mathcal{A}_{\mathcal{A}\left(1^{n}, \operatorname{Gen}_{n}()\right), i}^{\mathcal{T D F}^{2}}$ occurs to some $a(n) \leq i \leq q(n)$.
- The algorithm $\mathcal{A}$ adds a new pair from $Q_{\mathrm{G}}^{*}$ to $Q_{\mathrm{G}}$.
- The algorithm $\mathcal{A}$ adds a new triplet from $Q_{\mathrm{F}}^{*}$ to $Q_{\mathrm{F}}$.

Denoting $\operatorname{HIT}_{n}^{\mathcal{O}_{\text {TDF }}}=\bigvee_{i=\lceil a(n)\rceil}^{q(n)}\left(\operatorname{HitGRange}_{\mathcal{A}\left(1^{n}, \operatorname{Gen}_{n}()\right), i}^{\mathcal{O}_{\text {TDF }}} \vee \operatorname{HitFRange}_{\mathcal{A}\left(1^{n}, \operatorname{Gen}_{n}()\right), i}^{\mathcal{O}_{\text {TDF }}}\right)$, and fixing $\mathcal{O}_{\text {TDF }}$ and randomness for $\mathrm{Gen}_{n}$ for which $\mathrm{HIT}_{n}^{\mathcal{O}_{\text {TDF }}}$ does not occur, we get that after $q(n)$ iteration, if $\mathcal{A}$ did not find a solution to $C_{n}^{\mathcal{O}_{\operatorname{TDF}}}(\sigma, \cdot)$ yet, then $Q_{\mathrm{G}} \supset Q_{\mathrm{G}}^{*}$ and $Q_{\mathrm{F}} \supset Q_{\mathrm{F}}^{*}$. Therefore, in the $q(n)+1$ iteration holds $C_{n}^{\widetilde{\mathcal{O}_{\operatorname{TDF}}}}\left(\sigma, x^{*}\right)=1$ and the algorithm $\mathcal{A}$ finds the solution $x^{*}$ to $C_{n}^{\mathcal{O}_{\operatorname{TDF}}}(\sigma, \cdot)$. Therefore,

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathcal{A}^{\mathcal{O}_{\text {TDF }}}\left(1^{n}, \sigma\right)=x \text { s.t. } C_{n}^{\mathcal{O}_{\mathrm{TDF}}}(\sigma, x)=0\right] } \\
& \leq \sum_{i=\lceil a(n)\rceil}^{q(n)} \operatorname{Pr}\left[\operatorname{HitGRange}_{\mathcal{A}\left(1^{n}, \operatorname{Gen}_{n}()\right), i}^{\mathcal{O}_{\mathrm{TDF}}} \vee \operatorname{HitFRange}_{\mathcal{A}\left(1^{n}, \operatorname{Gen}_{n}()\right), i}^{\mathcal{O}_{\mathrm{TDF}}}\right] \\
& \leq \sum_{i=\lceil a(n)\rceil}^{q(n)} \frac{3 \cdot 4 \cdot(q(n)+1)^{2} \cdot(k(n)+1)}{2^{i}-4 \cdot(q(n)+1)^{2} \cdot(k(n)+1)} \\
& \leq \frac{12(q(n)+1)^{3} \cdot(k(n)+1)}{2^{a(n)}-4 \cdot(q(n)+1)^{2} \cdot(k(n)+1)} \\
& \leq p(n)
\end{aligned}
$$

where the probability is taken over the choice of the oracle $\mathcal{O}_{\text {TDF }}=\left\{\left(\mathrm{G}_{n}, \mathrm{~F}_{n}, \mathrm{~F}_{n}^{-1}\right)\right\}_{n \in \mathbb{N}}$ and over the


### 6.4 Proofs of Claims 6.8-6.10

Proof of Claim 6.8. Let $M$ be a $q$-query algorithm. Fix $n \in \mathbb{N},\left(\mathcal{O}_{\text {TDF }}\right)_{-n}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N} \backslash\{n\}}$ (i.e., we fix the entire oracle $\mathcal{O}_{\text {TDF }}$ except for the $n$th instance), and $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. Thus, we only consider queries to the oracles $\mathrm{F}_{n}$ and guesses. We may assume without loss of generality that if $M$ queried $\mathrm{F}_{n}$ with some ( $\mathrm{pk}, x$ ) and got $y$ as a result, then it will not make the guess ( $\mathrm{pk}, y$ ). For every $i \in[q]$ denote by $M_{i}$ the following $i$-query algorithm: Invoke the computation $M^{\widehat{\mathcal{O}_{\text {TDF } n}} \text {, and }}$ terminate once $i$ oracle queries have been performed. Note that since we do not place any restriction on the running time of $M$ and since the oracle distribution is known, we can assume without loss of generality that $M$ is deterministic. Therefore, for every $i \in[q]$ and every fixing of the oracle $\mathcal{O}_{\text {TDF }}$, the computation $M_{i}^{\widehat{\mathcal{O}_{\text {TDF }}} n}$ is the "prefix" of the computation $M^{\widehat{\mathcal{O}_{\text {TDF }}} n}$ which contains its first $i$ oracle queries. This implies that
where the probability is taken over the choice of $F_{n}$.
For bounding the probability of the event HitFRange $\widehat{M_{1}, n} \widehat{\widehat{\mathcal{O}_{\mathrm{TF}}} n}$, note that this event corresponds to the fact that $M$, without any information on $F_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ (since no oracle queries have been issued so far), manages to guess $\left(\mathrm{pk}_{1}, y_{1}\right)$ for which there exists $x$ such that $\mathrm{F}_{n}\left(\mathrm{pk}_{1}, x\right)=y_{1}$.

Since the guess $\left(\mathrm{pk}_{1}, y_{1}\right)$ is fixed by the description of $M$, and we are now sampling $\mathrm{F}_{n}\left(\mathrm{pk}_{1}, \cdot\right)$ : $\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ uniformly from the set of all injective functions mapping $n$-bit inputs to $2 n$-bit outputs, we have that

$$
\operatorname{Pr}\left[\operatorname{HitFRange} \widehat{M_{1}, n} \widehat{\widehat{\mathcal{O}_{\mathrm{TDF}}^{n}}} \mathrm{t}\right] \leq \frac{\binom{4^{n}-1}{2^{n}-1}}{\binom{4^{n}}{2^{n}}}=\frac{2^{n}}{4^{n}}
$$

For bounding the probability of the event HitFRange $\widehat{\widehat{\mathcal{O}}_{M_{i+1}, n}}$ given that HitFRange $\overline{\mathcal{O}_{M_{i}, n}} \overline{\widehat{H}_{n}}$ occurred, we fix the queries or guesses $q_{1}, \ldots, q_{i}$, and fix the answers to the queries. Each $q_{j}$ is a query to $\mathrm{F}_{n}$ and of the form $(\mathrm{pk}, x)$ or a guess of the form ( $\mathrm{pk}, y$ ). Suppose the query $q_{i+1}$ is a guess of the form $\left(\mathrm{pk}_{i+1}, y_{i+1}\right)$. Let $x_{1}, \ldots, x_{a}$ be the second argument of all previous queries to $F_{n}$ of the form $\left(\mathrm{pk}_{i+1}, x\right)$, let $y_{1}, \ldots, y_{a}$ be the answers to these queries, and let $y_{a+1}, \ldots, y_{a+b}$ be the second argument of all previous guesses of the form $\left(\mathrm{pk}_{i+1}, y\right)$ (so $a+b \leq i$ ). By the assumption that
HitFRange $\underset{M_{i}, n}{\widehat{\mathcal{O}_{\mathrm{TFF}}}}$, we know that $y_{a+1}, \ldots, y_{a+b}$ are not in the image of $\mathrm{F}_{n}\left(\mathrm{pk}_{i+1}, \cdot\right)$, thus we are now sampling a function $\{0,1\}^{n} \backslash\left\{x_{1}, \ldots, x_{a}\right\} \rightarrow\{0,1\}^{2 n} \backslash\left\{y_{1}, \ldots, y_{a+b}\right\}$ uniformly from the set of all injective functions on those domain and range. So we have that

$$
\operatorname{Pr}\left[\operatorname{HitFRange} \underset{M_{i}, n}{\widehat{\mathcal{O}_{\mathrm{TDF}}}} \overline{ }\right] \leq \frac{2^{n}-a}{4^{n}-a-b} \leq \frac{2^{n}}{4^{n}-i}
$$

We conclude that

$$
\begin{aligned}
& \operatorname{Pr}[\operatorname{HitFRange} \\
& \widehat{\mathcal{O}_{\mathrm{TDF}}}, n \\
& \leq \operatorname{Pr}\left[\operatorname{HitFRange} \widehat{\mathcal{O}_{1}, n} \overline{\mathcal{O}_{\mathrm{TD}}},\right. \\
& \leq \sum_{i=1}^{q-1} \frac{2^{n}}{4^{n}-i} \\
& \leq \frac{q \cdot 2^{n}}{4^{n}-q} \\
& \leq \frac{q}{2^{n}-q}
\end{aligned}
$$

Proof of Claim 6.9. Consider the following algorithm $N$ with oracle access to $\widehat{\mathcal{O}_{\text {TDF }}^{n}}$ :

1. The algorithm $N$ runs the algorithm $M$, where oracle queries are answered according to $\widehat{\mathcal{O}_{\text {TDF }}^{n}}$, except for queries to $\mathrm{F}_{n}^{-1}$ of the form $\left(\mathrm{td}^{\prime}, y^{\prime}\right)$ which are answered in the following manner:
(a) If a previous query to $\mathrm{F}_{n}$ of the form $\left(\mathrm{G}_{n}\left(\mathrm{td}^{\prime}\right), x^{\prime}\right)$ resulted with $y^{\prime}$, then algorithm $N$ answers the query with $x^{\prime}$.
(b) Otherwise, then algorithm $N$ answers the query with answer $\perp$.
2. The algorithm $N$ outputs the output of the execution of the algorithm $M$.

If $\operatorname{Hit}^{\operatorname{lnv}}{ }_{M, n}^{\mathcal{O}_{\text {TDF }}}$ does not occur then $N$ answers all the oracle calls correctly, therefore HitFRange ${ }_{M, n}^{\mathcal{O}_{\text {TDF }}}$ occurs if and only if HitFRange $\widehat{N, n} \overline{\mathcal{O}_{\text {TDF }}}$. occurs. Hence by Claim 6.5 and Claim 6.8 it holds that

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}} \vee \operatorname{HitFRange}{ }_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] & =\operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right]+\operatorname{Pr}\left[\overline{\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}} \vee \operatorname{HitFRange}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] \\
& =\operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right]+\operatorname{Pr}\left[\overline{\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}} \vee \operatorname{HitFRange}_{N, n} \widehat{\mathcal{O}_{\mathrm{TDF}}}}\right] \\
& \leq \operatorname{Pr}\left[\operatorname{Hitlnv}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right]+\operatorname{Pr}\left[\operatorname{HitFRange}_{N, n}^{\widehat{\mathcal{O}_{\mathrm{TDF}}}}\right] \\
& \leq \frac{2 q}{2^{n}-q}
\end{aligned}
$$

where the probability is taken over the choice of the oracle $\mathcal{O}_{\mathrm{TDF}}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N}}$.

Proof of Claim 6.10. Let $M$ be a $q$-query algorithm, fix $\left(\mathcal{O}_{\text {TDF }}\right)_{-n}=\left\{\left(\mathrm{G}_{i}, \mathrm{~F}_{i}, \mathrm{~F}_{i}^{-1}\right)\right\}_{i \in \mathbb{N} \backslash\{n\}}$ (i.e., we fix the entire oracle $\mathcal{O}_{\text {TDF }}$ except for the $n$th instance), and fix $\mathrm{F}_{n}:\{0,1\}^{2 n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$. Thus, we only consider queries to the oracle $\mathrm{G}_{n}$. For every $i \in[q]$ denote by $M_{i}$ the following $i$-query algorithm: Invoke the computation $M^{\mathcal{O}_{\text {TDF }}}$, and terminate once $i$ oracle queries have been performed. Note that since we do not place any restriction on the running time of $M$ and since the oracle distribution is known, we can assume without loss of generality that $M$ is deterministic. Therefore, for every $i \in[q]$ and every fixing of the oracle $\mathcal{O}_{\text {TDF }}$, the computation $M_{i}^{\mathcal{O} \text { TDF }}$ is the "prefix" of the computation $M^{\mathcal{O}_{\text {TDF }}}$ which contains its first $i$ oracle queries. This implies that

$$
\operatorname{Pr}\left[\operatorname{HitGRange}_{M, n}^{\mathcal{O}_{\text {TDF }}}\right] \leq \operatorname{Pr}\left[\operatorname{HitGRange}_{M_{1}, n}^{\mathcal{O}_{\text {TDF }}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\operatorname{HitGRange}_{M_{i+1}, n}^{\mathcal{O}_{\text {TDF }}} \mid \overline{\operatorname{HitGRange}_{M_{i}, n}^{\mathcal{O}_{\text {TDF }}}}\right],
$$

where the probability is taken over the choice of $F_{n}$.
For bounding the probability of the event HitGRange $\mathcal{M}_{M_{1}, n}^{\mathcal{O}_{\text {TF }}}$, note that this event corresponds to the fact that $M$, without any information on $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ (since no oracle queries have been issued so far), manages to guess $\mathrm{pk}_{1} \in\{0,1\}^{2 n}$ for which there exists $\mathrm{td} \in\{0,1\}^{n}$ such that $\mathrm{G}_{n}\left(\operatorname{td}_{1}\right)=\mathrm{pk}$. Since the value $\mathrm{pk}_{1}$ is fixed by the description of $M$, and we are now sampling $\mathrm{G}_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ uniformly from the set of all functions mapping $n$-bit inputs to $2 n$-bit outputs, we have that

$$
\operatorname{Pr}\left[\operatorname{HitGRange}_{M_{1}, n}^{\mathcal{O}_{\text {TDF }}}\right] \leq \frac{2^{n}}{4^{n}} .
$$

For bounding the probability of the event HitGRange $\mathcal{M}_{M_{i+1}, n}^{\mathcal{O}_{\text {TDF }}}$ given that HitGRange ${ }_{M_{i}, n}^{\mathcal{O}_{\mathrm{TDF}}}$ occurred, we fix the queries and guesses $q_{1}, \ldots, q_{i}$. Let $\mathrm{td}_{1}, \ldots, \mathrm{td}_{a}$ be the queries to $\mathrm{G}_{n}$ and $\mathrm{pk}_{a+1}, \ldots, \mathrm{pk}_{i}$ be the guesses. We fix the answers $\mathrm{pk}_{1}, \ldots, \mathrm{pk}_{a}$ to the queries. By the assumption that $M$ is deterministic we know that the next query or guess $q_{i+1}$ is fixed. Assume that it is a guess $\mathrm{pk}_{i+1}$. By the assumption that $\overline{\operatorname{HitGRange} \mathrm{O}_{M_{i}, n}^{\mathcal{O}_{\text {T F }}}}$ we know that $\mathrm{pk}_{a+1}, \ldots, \mathrm{pk}_{i}$ are not in the range of G , thus we are sampling a function $\{0,1\}^{n} \backslash\left\{\operatorname{td}_{1}, \ldots \operatorname{td}_{a}\right\} \rightarrow\{0,1\}^{2 n} \backslash\left\{\mathrm{pk}_{a+1}, \ldots, \mathrm{pk}_{i}\right\}$ uniformly from the set of all functions on those domain and range. So we have that

$$
\operatorname{Pr}\left[\operatorname{HitGRange}_{M_{i}, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] \leq \frac{2^{n}-a}{4^{n}-(i-a)} \leq \frac{2^{n}}{4^{n}-i}
$$

We conclude that

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{HitGRange}_{M, n}^{\mathcal{O}_{\mathrm{TDF}}}\right] & \leq \operatorname{Pr}\left[\operatorname{HitGRange}_{M_{1}, n}^{\mathcal{O}_{\mathrm{TDF}}}\right]+\sum_{i=1}^{q-1} \operatorname{Pr}\left[\operatorname{HitGRange}_{M_{i+1}, n}^{\mathcal{O}_{\mathrm{TDF}}} \mid \overline{\operatorname{Hitlnv}_{M_{i}, n}^{\mathcal{O}_{\mathrm{TD}}}}\right] \\
& \leq \sum_{i=0}^{q-1} \frac{2^{n}}{4^{n}-i} \\
& \leq \frac{q \cdot 2^{n}}{4^{n}-q} \\
& \leq \frac{q}{2^{n}-q}
\end{aligned}
$$

Acknowledgments. We thank Nir Bitansky and Tim Roughgarden for their insightful advice.

## References

[AKV04] T. Abbot, D. Kane, and P. Valiant. On algorithms for Nash equilibria. Unpublished manuscript available at http://web.mit.edu/tabbott/Public/final.pdf, 2004.
[AS15] G. Asharov and G. Segev. Limits on the power of indistinguishability obfuscation and functional encryption. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science, pages 191-209, 2015.
[AS16] G. Asharov and G. Segev. On constructing one-way permutations from indistinguishability obfuscation. In Proceedings of the 13th Theory of Cryptography Conference, pages 512-541, 2016.
[ $\left.\mathrm{BCE}^{+} 95\right]$ P. Beame, S. A. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative complexity of NP search problems. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pages 303-314, 1995.
$\left[\mathrm{BGH}^{+} 15\right]$ Z. Brakerski, C. Gentry, S. Halevi, T. Lepoint, A. Sahai, and M. Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845, 2015.
[BGI ${ }^{+}$01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology - CRYPTO '01, pages 1-18, 2001.
[BPR15] N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of finding a Nash equilibrium. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science, pages 1480-1498, 2015.
[BPW16] N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos - trapdoor permutations from indistinguishability obfuscation. In Proceedings of the 13th Theory of Cryptography Conference, pages 474-502, 2016.
[CDT09] X. Chen, X. Deng, and S. Teng. Settling the complexity of computing two-player Nash equilibria. Journal of the ACM, 56(3), 2009.
$\left[\mathrm{CFL}^{+} 16\right]$ J. H. Cheon, P.-A. Fouque, C. Lee, B. Minaud, and H. Ryu. Cryptanalysis of the new CLT multilinear map over the integers. Cryptology ePrint Archive, Report 2016/135, 2016.
$\left[\mathrm{CGH}^{+} 15\right]$ J. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova, A. Sahai, and M. Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and their limitations. In Advances in Cryptology - CRYPTO '15, pages 247-266, 2015.
$\left[\mathrm{CHL}^{+} 15\right]$ J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear map over the integers. In Advances in Cryptology - EUROCRYPT '15, pages 3-12, 2015.
[CIY97] S. A. Cook, R. Impagliazzo, and T. Yamakami. A tight relationship between generic oracles and type-2 complexity theory. Information and Computation, 137(2):159-170, 1997.
[CJL16] J. H. Cheon, J. Jeong, and C. Lee. An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without an encoding of zero. Cryptology ePrint Archive, Report 2016/139, 2016.
[CLR15] J. H. Cheon, C. Lee, and H. Ryu. Cryptanalysis of the new CLT multilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015.
[DGP09] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195-259, 2009.
$\left[\mathrm{GGH}^{+} 13\right]$ S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science, pages 40-49, 2013.
[Gol00] O. Goldreich. On security preserving reductions - revised terminology. Cryptology ePrint Archive, Report 2000/001, 2000.
[Gol01] O. Goldreich. Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, 2001.
[GPS15] S. Garg, O. Pandey, and A. Srinivasan. On the exact cryptographic hardness of finding a Nash equilibrium. Cryptology ePrint Archive, Report 2015/1078, 2015.
$\left[\mathrm{HHR}^{+} 15\right]$ I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive protocols - Tight lower bounds on the round and communication complexities of statistically hiding commitments. SIAM Journal on Computing, 44(1):193-242, 2015.
[HJ15] Y. Hu and H. Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive, Report 2015/301, 2015.
[HPV89] M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. Exponential lower bounds for finding brouwer fix points. Journal of Complexity, 5(4):379-416, 1989.
[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 44-61, 1989.
[Lub96] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press, 1996.
[MF15] B. Minaud and P.-A. Fouque. Cryptanalysis of the new multilinear map over the integers. Cryptology ePrint Archive, Report 2015/941, 2015.
[MSZ16] E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint Archive, Report 2016/147, 2016.
[Pap94] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences, 48(3):498-532, 1994.
[RTV04] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryptographic primitives. In Proceedings of the 1st Theory of Cryptography Conference, pages $1-20,2004$.
[Rud88] S. Rudich. Limits on the Provable Consequences of One-way Functions. PhD thesis, EECS Department, University of California, Berkeley, 1988.
[Sim98] D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be based on general assumptions? In Advances in Cryptology - EUROCRYPT '98, pages 334-345, 1998.
[SvS04] R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium in a bimatrix game. In Proceedings of the 45 th Annual IEEE Symposium on Foundations of Computer Science, pages 258-267, 2004.


[^0]:    *Efi Arazi School of Computer Science, IDC Herzliya, Israel. Email: alon.rosen@idc.ac.il. Supported by ISF grant no. 1255/12, NSF-BSF Cyber Security and Privacy grant no. 2014/632, and by the ERC under the EU's Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement n. 307952.
    ${ }^{\dagger}$ School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email: $\{$ segev,ido_shahaf\}@cs.huji.ac.il. Supported by the European Union's 7th Framework Program (FP7) via a Marie Curie Career Integration Grant and via an ERC Grant (No. 307952), by the Israel Science Foundation (Grant No. 483/13), by the Israeli Centers of Research Excellence (I-CORE) Program (Center No. 4/11), by the US-Israel Binational Science Foundation (Grant No. 2014632), and by a Google Faculty Research Award.

[^1]:    ${ }^{1}$ The name END-OF-LINE is more commonly used in the literature, however SOURCE-OR-SINK is more accurately descriptive $\left[\mathrm{BCE}^{+} 95\right]$.

[^2]:    ${ }^{2}$ Unless, of course, one allows for artificial manipulations of the instances to generate multiple solutions.

[^3]:    ${ }^{3}$ However, as recently shown by Asharov and Segev [AS15, AS16], as long as the indistinguishability obfuscator itself is used in a black-box manner, such techniques can in fact be captured by refining the existing frameworks for black-box separations.

[^4]:    ${ }^{4}$ Specifically, for a pair of nodes $x$ and $y$ there exists an edge from $x$ to $y$ if and only if $\mathrm{S}(x)=y$ and $\mathrm{P}(y)=x$.

[^5]:    ${ }^{5}$ Recall that any hard-on-average distribution of SVL instances can be used in a black-box manner to construct a hard-on-average distribution of instances of a PPAD-complete problem [AKV04, BPR15]. Thus, our result implies (in particular) that average-case PPAD hardness does not imply one-way functions in a black-box manner.

[^6]:    ${ }^{6}$ Recall that constructions in the opposite direction do exist: Any hard-on-average distribution of SVL instances can be used in a black-box manner to construct a hard-on-average distribution of instances of a PPAD-complete problem [AKV04, BPR15].

[^7]:    ${ }^{7}$ Since $Q$ is always consistent with $f$, and since $C$ is a $k$-bounded TFNP instance, then in each iteration it holds that $k_{f} \leq k_{g} \leq k$.

