
Can PPAD Hardness be Based on

Standard Cryptographic Assumptions?

Alon Rosen* Gil Segev� Ido Shahaf��

Abstract

We consider the question of whether PPAD hardness can be based on standard cryptographic
assumptions, such as the existence of one-way functions or public-key encryption. This question
is particularly well-motivated in light of new devastating attacks on obfuscation candidates and
their underlying building blocks, which are currently the only known source for PPAD hardness.

Central in the study of obfuscation-based PPAD hardness is the sink-of-verifiable-line

(SVL) problem, an intermediate step in constructing instances of the PPAD-complete problem
source-or-sink. Within the framework of black-box reductions we prove the following results:

� Average-case PPAD hardness (and even SVL hardness) does not imply any form of cryp-
tographic hardness (not even one-way functions). Moreover, even when assuming the exis-
tence of one-way functions, average-case PPAD hardness (and, again, even SVL hardness)
does not imply any public-key primitive. Thus, strong cryptographic assumptions (such as
obfuscation-related ones) are not essential for average-case PPAD hardness.

� Average-case SVL hardness cannot be based either on standard cryptographic assumptions
or on average-case PPAD hardness. In particular, average-case SVL hardness is not essential
for average-case PPAD hardness.

� Any attempt for basing the average-case hardness of the PPAD-complete problem source-

or-sink on standard cryptographic assumptions must result in instances with a nearly-
exponential number of solutions. This stands in striking contrast to the obfuscation-based
approach, which results in instances having a unique solution.

Taken together, our results imply that it may still be possible to base PPAD hardness on
standard cryptographic assumptions, but any such black-box attempt must signi�cantly deviate
from the obfuscation-based approach: It cannot go through the SVL problem, and it must result
in source-or-sink instances with a nearly-exponential number of solutions.

*E� Arazi School of Computer Science, IDC Herzliya, Israel. Email: alon.rosen@idc.ac.il. Supported by ISF
grant No. 1399/17 and via Project PROMETHEUS (Grant No. 780701).

�School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:
{segev,ido.shahaf}@cs.huji.ac.il. Supported by the European Union's 7th Framework Program (FP7) via a Marie
Curie Career Integration Grant (Grant No. 618094), by the European Union's Horizon 2020 Framework Program
(H2020) via an ERC Grant (Grant No. 714253), by the Israel Science Foundation (Grant No. 483/13), by the Israeli
Centers of Research Excellence (I-CORE) Program (Center No. 4/11), by the US-Israel Binational Science Foundation
(Grant No. 2014632), and by a Google Faculty Research Award.

�Supported by the Clore Israel Foundation via the Clore Scholars Programme.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 59 (2016)



Contents

1 Introduction 1

1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Paper Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 9

2.1 Complexity Classes and Total Search Problems . . . . . . . . . . . . . . . . . . . . . 9
2.2 One-Way Functions and Injective Trapdoor Functions . . . . . . . . . . . . . . . . . 11
2.3 Key-Agreement Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Average-Case SVL Hardness Does Not Imply One-Way Functions 12

3.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 OSVL is a Hard-on-Average SVL Instance . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Inverting Oracle-Aided Functions Relative to OSVL . . . . . . . . . . . . . . . . . . . 16
3.4 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Average-Case PPAD Hardness Does Not Imply Unique-TFNP Hardness 19

4.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 OPPAD is a Hard-on-Average Source-or-Sink Instance . . . . . . . . . . . . . . . . . . 22
4.3 Solving Oracle-Aided Unique-TFNP Instances Relative to OPPAD . . . . . . . . . . . 23
4.4 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 One-Way Functions Do Not Imply Bounded-TFNP Hardness 27

5.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 f is a One-Way Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to f . . . . . . . . . . . . . 30
5.4 Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Public-Key Cryptography Does Not Imply Bounded-TFNP Hardness 33

6.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 OTDF is a Collection of Injective Trapdoor Functions . . . . . . . . . . . . . . . . . . 36
6.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to OTDF . . . . . . . . . . . 39
6.4 Proofs of Claims 6.8�6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 45

A Average-Case SVL Hardness and OWFs Do Not Imply Key Agreement 48

A.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Attacking Key-Agreement Protocols Relative to f and OSVL . . . . . . . . . . . . . . 51



1 Introduction

In recent years there has been increased interest in the computational complexity of �nding a Nash
equilibrium. Towards this end, Papadimitriou de�ned the complexity class PPAD, which consists of
all TFNP problems that are polynomial-time reducible to the source-or-sink problem [Pap94].1

Papadimitriou showed that the problem of �nding a Nash equilibrium is reducible to source-or-

sink, and thus belongs to PPAD. He also conjectured that there exists a reduction in the opposite
direction, and this was proved by Daskalakis, Goldberg and Papadimitriou [DGP09], and by Chen,
Deng and Teng [CDT09]. Thus, to support the belief that �nding a Nash equilibrium may indeed
be computationally hard, it became su�cient to place a conjectured computationally-hard problem
within the class PPAD.

Currently, no PPAD-complete problem is known to admit a sub-exponential-time algorithm. At
the same time, however, we do not know how to generate instances that defeat known heuristics for
these problems (see [HPV89] for oracle-based worst-case hard instances of computing Brouwer �xed
points and [SvS04] for �nding a Nash equilibrium). This leaves us in an intriguing state of a�airs,
in which we know of no e�cient algorithms with provable worst-case guarantees, but we are yet to
systematically rule out the possibility that known heuristic algorithms perform well on the average.

�Post-obfuscation� PPAD hardness. A natural approach for arguing hardness on the average
would be to reduce from problems that originate from cryptography. Working in the realm of cryp-
tography has at least two advantages. First of all, it enables us to rely on well-studied problems that
are widely conjectured to be average-case hard. Secondly, and no less importantly, cryptography
supplies us with frameworks for reasoning about average-case hardness. On the positive direction,
such frameworks are highly suited for designing and analyzing reductions between average-case prob-
lems. On the negative direction, in some cases it is possible to argue that such �natural� reductions
do not exist [Rud88, IR89].

Up until recently not much progress has been made in relating between cryptography and PPAD
hardness. This has changed as a result of developments in the study of obfuscation [BGI+01,
GGH+13], a strong cryptographic notion with connections to the hardness of source-or-sink.
As shown by Bitansky, Paneth and Rosen [BPR15] the task of breaking sub-exponentially secure
indistinguishability obfuscation can be reduced to solving source-or-sink. Beyond giving the �rst
extrinsic evidence of PPAD hardness, the result of Bitansky et al. also provided the �rst method
to sample potentially hard-on-average source-or-sink instances. Their result was subsequently
strengthened by Garg, Pandey and Srinivasan, who based it on indistinguishability obfuscation with
standard (i.e., polynomial) hardness [GPS16].

�Pre-obfuscation� PPAD hardness? Indistinguishability obfuscation has revealed to be an ex-
ceptionally powerful primitive, with numerous far reaching applications. However, its existence is
far from being a well-established cryptographic assumption, certainly not nearly as well-established
as the existence of one-way functions or public-key encryption. Recently, our con�dence in exist-
ing indistinguishability obfuscation candidates has somewhat been shaken, following a sequence of
devastating attacks on both candidate obfuscators and on their underlying building blocks (see, for
example, [BGH+15, CGH+15, CHL+15, CLR15, HJ15, MF15, CFL+16, CJL16, MSZ16]). It thus
became natural to ask:

Can average-case PPAD hardness be based on standard cryptographic assumptions?

1The name end-of-line is more commonly used in the literature, however source-or-sink is more accurately
descriptive [BCE+95].

1



By standard cryptographic assumptions we are in general referring to �pre-obfuscation� type of prim-
itives, such as the existence of one-way functions or public-key cryptography. As mentioned above,
such assumptions are currently by far more well-established than indistinguishability obfuscation,
and basing average-case PPAD hardness on them would make a much stronger case.

For all we know PPAD hardness may be based on the existence of one-way functions. However,
if it turned out that average-case PPAD hardness implies public-key encryption, then this would
indicate that basing average-case PPAD hardness on one-way functions may be extremely challenging
since we currently do not know how to base public-key encryption on one-way functions (and in
fact cannot do so using black-box techniques [IR89]). Similarly, if it turned out that average-case
PPAD hardness implies indistinguishability obfuscation, this would indicate that basing average-case
PPAD hardness on any standard cryptographic assumption would require developing radically new
techniques. More generally, the stronger the implication of PPAD hardness is, the more di�cult it
may be to base PPAD hardness on standard assumptions. This leads us to the following second
question:

Does average-case PPAD hardness imply any form of cryptographic hardness?

As discussed above, a negative answer to the above question would actually be an encouraging
sign. It would suggest, in particular, that program obfuscation is not essential for PPAD hardness,
and that there may be hope to base PPAD hardness on standard cryptographic assumptions.

1.1 Our Contributions

Motivated by the above questions, we investigate the interplay between average-case PPAD hardness
and standard cryptographic assumptions. We consider this interplay from the perspective of black-
box reductions, the fundamental approach for capturing natural relations both among cryptographic
primitives (e.g., [Rud88, IR89, Lub96]) and among complexity classes (e.g., [BCE+95, CIY97]).

Average-case PPAD hardness does not imply cryptographic hardness. Our �rst result
shows that average-case PPAD hardness does not imply any form of cryptographic hardness in a
black-box manner (not even a one-way function). In addition, our second result shows that, even
when assuming the existence of one-way functions, average-case PPAD hardness does not imply
any public-key primitive (not even key agreement).2 In fact, we prove the following more general
theorems by considering the sink-of-verifiable-line (SVL) problem, introduced by Abbot et al.
[AKV04] and further studied by Bitansky et al. [BPR15] and Garg et al. [GPS16]:

Theorem 1.1. There is no black-box construction of a one-way function from a hard-on-average

distribution of SVL instances.

Theorem 1.2. There is no black-box construction of a key-agreement protocol from a one-way func-

tion and a hard-on-average distribution of SVL instances.

Abbot et al. [AKV04] and Bitansky et al. [BPR15] showed that any hard-on-average distribution
of SVL instances can be used in a black-box manner for constructing a hard-on-average distribution
of instances to a PPAD-complete problem (speci�cally, instances of the source-or-sink problem).
Thus, Theorem 1.1 implies, in particular, that there is no black-box construction of a one-way
function from a hard-on-average distribution of instances to a PPAD-complete problem. Similarly,

2Recall that although indistinguishability obfuscation does not unconditionally imply the existence of one-way
functions [BGI+12], it does imply public-key cryptography when assuming the existence of one-way functions [SW14].

2



Theorem 1.2 implies, in particular, that there is no black-box construction of a key-agreement pro-
tocol from a one-way function and a hard-on-average distribution of instances to a PPAD-complete
problem.

As discussed in the previous section, the fact that average-case PPAD hardness does not naturally
imply any form of cryptographic hardness is an encouraging sign in the pursuit of basing average-
case PPAD hardness on standard cryptographic assumptions. For example, if average-case PPAD
hardness would have implied program obfuscation, this would have indicated that extremely strong
cryptographic assumptions are likely to be essential for average-case PPAD hardness. Similarly, if
average-case PPAD hardness would have implied public-key cryptography, this would have indicated
that well-structured cryptographic assumptions are essential for average-case PPAD hardness. The
fact that average-case PPAD hardness does not naturally imply any form of cryptographic hard-
ness hints that it may be possible to base average-case PPAD hardness even on the minimal (and
unstructured) assumption that one-way functions exist.

Note that even if Theorems 1.1 and 1.2 do not hold when considering non-black-box reductions,
this still does not rule out the possibility of basing average-case PPAD hardness on one-way functions
in a black-box manner � given that the known barriers for constructions based on one-way functions
are limited to black-box techniques (e.g., [IR89, Sim98]).

PPAD hardness vs. SVL hardness. The SVL problem played a central role in the recent
breakthrough of Bitansky et al. [BPR15] and Garg et al. [GPS16] in constructing a hard-on-average
distribution of instances to a PPAD-complete problem based on indistinguishability obfuscation.
Speci�cally, they constructed a hard-on-average distribution of SVL instances, and then reduced it
to a hard-on-average distribution of source-or-sink instances [AKV04, BPR15].

We show, however, that the SVL problem is in fact far from representing PPAD hardness:
Whereas Abbot et al. [AKV04] and Bitansky et al. [BPR15] showed that the SVL problem can
be e�ciently reduced to the source-or-sink problem (even in the worst case), we show that there
is no such reduction in the opposite direction (not even an average-case one). We prove the following
theorem:

Theorem 1.3. There is no black-box construction of a hard-on-average distribution of SVL instances

from a hard-on-average distribution of source-or-sink instances. Moreover, this holds even if the

underlying source-or-sink instances always have a unique solution.

On basing average-case PPAD hardness on standard assumptions. Theorem 1.1 encour-
agingly shows that it may still be possible to base average-case PPAD hardness on standard cryp-
tographic assumptions, but Theorem 1.3 shows that the obfuscation-based approach (which goes
through the SVL problem) may not be the most e�ective one. Now, we show that in fact any attempt
for basing average-case PPAD hardness on standard cryptographic assumptions (e.g., on one-way
functions, public-key encryption, and even on injective trapdoor functions) in a black-box manner
must signi�cantly deviate from the obfuscation-based approach. Speci�cally, the source-or-sink
instances resulting from that approach have exactly one solution3, and we show that when relying
on injective trapdoor functions in a black-box manner it is essential to have a nearly-exponential
number of solutions. We prove the following theorem:

Theorem 1.4. There is no black-box construction of a hard-on-average distribution of source-or-

sink instances over {0, 1}n with 2n
o(1)

solutions from injective trapdoor functions.

3Unless, of course, one allows for arti�cial manipulations of the instances to generate multiple (strongly related)
solutions.

3



In particular, since Abbot et al. [AKV04] and Bitansky et al. [BPR15] showed that hard-on-
average SVL instances lead to hard-on-average source-or-sink instances having a unique solution,
Theorem 1.4 implies the following corollary which, when combined with Theorem 1.1, shows that
average-case SVL hardness is essentially incomparable to standard cryptographic assumptions.

Corollary 1.5. There is no black-box construction of hard-on-average distribution of SVL instances

from injective trapdoor functions.

More generally, although Theorem 1.4 and Corollary 1.5 focus on injective trapdoor functions,
our impossibility result holds for a richer and larger class of building blocks. Speci�cally, it holds for
any primitive that exists relative to a random injective trapdoor function oracle. Thus, Theorem 1.4
and Corollary 1.5 hold, for example, also for collision-resistant hash functions (which are not implied
by one-way functions or injective trapdoor functions in a black-box manner [Sim98, HHR+15]).

Taken together, our results imply that it may be possible to base average-case PPAD hardness on
standard cryptographic assumptions, but any black-box attempt must signi�cantly deviate from the
obfuscation-based approach: It cannot go through the SVL problem, and it must result in source-

or-sink instances with a nearly-exponential number of solutions. See Figure 1 for an illustration of
our results.

A wider perspective: From Rudich's impossibility to structured building blocks and

bounded-TFNP hardness. Our results apply to a wide class of search problems, and not only to
the speci�c source-or-sink and SVL problems. We consider the notion of TFNP instances with
a guaranteed (non-trivial) upper bound on their number of existing solutions, to which we refer as
bounded-TFNP instances. This captures, in particular, source-or-sink instances and (valid) SVL
instances, and provides a more general and useful perspective for studying cryptographic limitations
in constructing hard instances of search problems.

Equipped with such a wide perspective, our approach and proof techniques build upon, and signif-
icantly extend, Rudich's classic proof for ruling out black-box constructions of one-way permutations
based on one-way functions [Rud88]. We extend Rudich's approach from its somewhat restricted
context of one-way functions (as building blocks) and one-way permutations (as target objects) to
provide a richer framework that considers: (1) signi�cantly more structured building blocks, and (2)
signi�cantly less restricted target objects. Speci�cally, we bound the limitations of hard-on-average
source-or-sink and SVL instances as building blocks (instead of one-way functions), and we rule
out bounded-TFNP instances as target objects (instead of one-way permutations).

1.2 Open Problems

Several interesting open problems arise directly from our results, and here we point out some of
them.

� The strong structural barrier put forward in Theorem 1.4 stands in stark contrast to the
approach of Bitansky et al. [BPR15] and Garg et al. [GPS16]. Thus, an intriguing open
problem is either to extend our impossibility result to rule out constructions with any number
of solutions, or to circumvent our impossibility result by designing instances with an nearly-
exponential number of solutions based on standard cryptographic assumptions.

� More generally, the question of circumventing black-box impossibility results by utilizing non-
black-box techniques is always fascinating. In our speci�c context, already the obfuscation-
based constructions of Bitansky et al. [BPR15] and Garg et al. [GPS16] involve non-black-box
techniques (e.g., they apply an indistinguishability obfuscator to a circuit that uses a pseudo-
random function). However, as recently shown by Asharov and Segev [AS15, AS16], as long

4



One-Way 

Functions

Injective Trapdoor 

Functions

Hard-on-Average

Sink-of-Verifiable-Line

Instances

Hard-on-Average 

Source-or-Sink 

Instances

Hard-on-Average 

Source-or-Sink 

Instances with 

2𝑛
𝑜(1)

Solutions 

Thm. 1.1

Thm. 1.3

[AKV04,BPR15]

Key 

Agreement

Thm. 1.2

Figure 1: An illustration of our results. Dashed arrows correspond to known implications, and solid arrows
correspond to our separations.

as the indistinguishability obfuscator itself is used in a black-box manner, such techniques can
in fact be captured by re�ning the existing frameworks for black-box separations (speci�cally,
the framework of Asharov and Segev captures the obfuscation-based constructions of Bitansky
et al. [BPR15] and Garg et al. [GPS16]). Thus, an exciting open problem is to circumvent our
results by utilizing non-black-box techniques while relying on standard cryptographic assump-
tions.

� Our impossibility results in Theorem 1.4 and Corollary 1.5 apply to any building block that
exists relative to a random injective trapdoor function oracle (e.g., a collision-resistent hash
function). It is not clear, however, whether similar impossibility results may apply to one-way
permutations. Thus, an intriguing open problem is either to extend our impossibility results
to rule out constructions based on one-way permutations, or to circumvent our impossibility
results by designing hard-on-average instances based on one-way permutations. We note that
by relying on one-way permutations it is rather trivial to construct some arbitrary hard-on-
average TFNP distribution (even one with unique solutions), but it is not known how to
construct less arbitrary forms of hardness, such as average-case PPAD or SVL hardness.

� The recent work of Hubácek, Naor, and Yogev [HNY17] proposes two elegant approaches for
constructing hard-on-average TFNP instances. Their �rst approach is based on any hard-on-
average NP relation (the existence of which is implied, for example, by any one-way function)
in a black-box manner, and results in TFNP instances with a possibly exponential number
of solutions. Their second approach is based on any injective one-way function and a non-
interactive witness-indistinguishable proof system for NP (which can be constructed based on
trapdoor permutations), and results in TFNP instances having at most two solutions. An
interesting question is whether their approaches imply not only average-case TFNP hardness
for the particular problems de�ned by their underlying one-way function and proof system,
but also more speci�c forms of TFNP hardness, such as average-case PPAD or SVL hardness.

5



1.3 Overview of Our Approach

In this section we provide a high-level overview of the main ideas underlying our results. Each of our
results is of the form �the existence of P does not imply the existence of Q in a black-box manner�,
where each of P and Q is either a cryptographic primitive (e.g., a one-way function) or a hard-on-
average search problem (e.g., the source-or-sink problem). Intuitively, such a statement is proved by
constructing a distribution over oracles relative to which there exists an implementation of P , but any
implementation of Q can be �e�ciently broken�. Our formal proofs properly formalize this intuition
via the standard framework of fully black-box reductions (e.g., [IR89, Lub96, Gol00, RTV04]), where
for our purposes it su�ces to measure the e�ciency of an attacker via its number of queries to the
relevant oracles. Moreover, we show that when our attackers are given access to an oracle that decides
any PSPACE language, then we can also bound the amount of internal computation performed by
our attackers, thus strengthening our result to rule out construction that require polynomial time
e�ciency.

Average-case SVL hardness does not imply OWFs. Theorem 1.1 is proved by presenting a
distribution of oracles relative to which there exists a hard-on-average distribution of SVL instances,
but there are no one-way functions. An SVL instance is of the form {(Sn,Vn, L(n))}n∈N, where for
every n ∈ N it holds that Sn : {0, 1}n → {0, 1}n, Vn : {0, 1}n × [2n]→ {0, 1}, and L(n) ∈ [2n]. Such
an instance is valid if for every n ∈ N, x ∈ {0, 1}n, and i ∈ [2n], it holds that Vn(x, i) = 1 if and only
if x = Sin(0n). Intuitively, the circuit Sn can be viewed as implementing the successor function of a
directed graph over {0, 1}n that consists of a single line starting at 0n, and the circuit Vn enables to
e�ciently test whether a given node x is of distance i from 0n on the line. The goal is to �nd the
node of distance L(n) from 0n (see Section 2.1 for the formal de�nition of the SVL problem).

We consider an oracle that is a valid SVL instance OSVL corresponding to a graph with a single
line 0n → x1 → · · · → xL(n) of length L(n) = 2n/2. The line is chosen uniformly among all lines in
{0, 1}n of length L(n) starting at 0n (and all nodes outside the line have self loops and are essentially
irrelevant). First, we show that the oracle OSVL is indeed a hard-on-average SVL instance. This
is based on the following, rather intuitive, observation: Since the line 0n → x1 → · · · → xL(n) is
sparse and uniformly sampled, then any algorithm performing q = q(n) oracle queries should not
be able to query OSVL with any element on the line beyond the �rst q elements 0n, x1, . . . , xq−1. In
particular, for our choice of parameters, any algorithm performing at most, say, 2n/4 queries, has
only an exponentially-small probability of reaching xL(n) (where the probability is taken over the
choice of the oracle OSVL).

Then, we show that any oracle-aided function FOSVL(·) can be inverted (with high probability
over the choice of the oracle OSVL) by an algorithm whose query complexity is polynomially-related
to that of the function FOSVL(·). The proof is based on the following approach. Consider a value
y = FOSVL(x) that we would like to invert. If F performs at most q = q(n) oracle queries, the
above-mentioned observation implies that the computation FOSVL(x) should not query OSVL with
any elements on the line 0n → x1 → · · · → xL(n) except for the �rst q elements x0, x1, . . . , xq−1. This
observation gives rise to the following inverter A: First perform q queries to OSVL for discovering
x1, . . . , xq, and then invert y = FOSVL(x) relative to the oracle ÕSVL de�ned via the following successor

function S̃:

S̃(α) =

{
xi+1 if α = xi for some i ∈ {0, . . . , q − 1}
α otherwise

.

The formal proof is in fact more subtle, and requires a signi�cant amount of caution when inverting
y = FOSVL(x) relative to the oracle ÕSVL. Speci�cally, the inverter A should �nd an input x̃ such that

the computations F ÕSVL(x̃) and FOSVL(x̃) do not query the oracles ÕSVL and OSVL, respectively, with

6



any of xq, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter is successful.
We refer the reader to Section 3 for more details and for the formal proof.

Average-case SVL hardness and OWFs do not imply key agreement. Theorem 1.2 is
proved by showing that in any black-box construction of a key-agreement protocol based on a one-
way function and a hard-on-average distribution of SVL instances, we can eliminate the protocol's
need for using the SVL instances. This leads to a black-box construction of key-agreement protocol
based on a one-way function, which we can then rule out by invoking the classic result of Impagliazzo
and Rudich [IR89] and its re�nement by Barak and Mahmoody-Ghidary [BM09].

Speci�cally, consider a key-agreement protocol (Af,OSVL ,Bf,OSVL) in which the parties have oracle
access to a random function f and to the oracle OSVL used for proving Theorem 1.1. Then, if A
and B perform at most q = q(n) oracle queries, the observation underlying the proof of Theorem 1.1
implies that, during an execution (Af,OSVL ,Bf,OSVL) of the protocol, the parties should not query OSVL

with any elements on the line 0n → x1 → · · · → xL(n) except for the �rst q elements x0, x1, . . . , xq−1.

This observation gives rise to a key-agreement protocol (Ãf , B̃f ) that does not require access to the
oracle OSVL: First, Ã samples a sequence x1, . . . , xq of q values, and sends these values to B̃. Then,

Ã and B̃ run the protocol (Af,OSVL ,Bf,OSVL) by using the values x1, . . . , xq instead of accessing OSVL.

That is, Ã and B̃ run the underlying protocol relative to the given oracle f and to the oracle ÕSVL

de�ned via the following successor function S̃ (which each party can compute on its own):

S̃(α) =

{
xi+1 if α = xi for some i ∈ {0, . . . , q − 1}
α otherwise

.

The formal proof is again rather subtle, and we refer the reader to Appendix A for more details and
for the formal proof.

Average-case PPAD hardness does not imply unique-TFNP hardness. Theorem 1.3 is
proved by presenting a distribution of oracles relative to which there exists a hard-on-average distri-
bution of instances of a PPAD-complete problem (speci�cally, we consider the source-or-sink prob-
lem), but there are no hard TFNP instances having unique solutions.

A TFNP instance with a unique solution, denoted a unique-TFNP instance, is of the form
{Cn}n∈N, where for every n ∈ N it holds that Cn : {0, 1}n → {0, 1} and there is a unique x∗ ∈ {0, 1}n
such that C(x∗) = 1. Note that any valid SVL instance yields a TFNP instance that has a unique
solution. Therefore, relative to our distribution over oracles any valid SVL instance can be e�ciently
solved.

A source-or-sink instance is of the form {(Sn,Pn)}n∈N, where for every n ∈ N it holds that
Sn : {0, 1}n → {0, 1}n and Pn : {0, 1}n → {0, 1}n. Intuitively, the circuits Sn and Pn can be viewed
as implementing the successor and predecessor functions of a directed graph over {0, 1}n, where the
in-degree and out-degree of every node is at most one, and the in-degree of 0n is 0 (i.e., it is a source).
The goal is to �nd any node, other than 0n, with either no incoming edge and no outgoing edge. We
again refer the reader to Section 2.1 for the formal de�nitions.

We consider an oracle that is a source-or-sink instance OPPAD which is based on the same sparse
structure used to de�ne the oracle OSVL. It corresponds to a graph with a single line 0n → x1 →
· · · → xL(n) of length L(n) = 2n/2. The line is chosen uniformly among all lines in {0, 1}n of length
L(n) starting at 0n (and all nodes outside the line have self loops). The fact that the oracle OPPAD is
a hard-on-average source-or-sink instance follows quite easily from the above-mentioned observation
on its sparse and uniform structure: Any algorithm performing q = q(n) oracle queries should not
be able to query OPPAD with any element on the line beyond the �rst q elements x0, x1, . . . , xq−1. In
particular, for our choice of parameters, any such algorithm should have only an exponentially-small
probability of reaching xL(n).

7



Solving any oracle-aided unique-TFNP instance relative to OPPAD, however, turns out to be
a completely di�erent challenge. One might be tempted to follow a same approach based on the
oracle's sparse and uniform structure. Speci�cally, let Cn be a unique-TFNP instance, and consider
the unique value x∗ ∈ {0, 1}n for which COPPAD

n (x∗) = 1. Then, if Cn issues at most q = q(n) oracle
queries, the computation COPPAD

n (x∗) should essentially not be able to query OPPAD with any elements
on the line 0n → x1 → · · · → xL(n) except for the �rst q elements 0n, x1, . . . , xq−1. Therefore, one

can de�ne a �fake� oracle ÕPPAD whose successor and predecessor functions agree with OPPAD on
0n, x1, . . . , xq (and are de�ned as the identity functions for all other inputs), and then �nd the

unique x̃ such that CÕPPAD
n (x̃) = 1. This approach, however, completely fails since the solution x∗

itself may depend on OPPAD in an arbitrary manner, providing the computation COPPAD
n (x∗) with

su�cient information for querying OPPAD with an input xi that is located further along the line (i.e.,
q ≤ i ≤ L(n)).

As discussed in Section 1.1, our proof is obtained by signi�cantly extending Rudich's classic
proof for ruling out black-box constructions of one-way permutations based on one-way functions
[Rud88]. Here, we show that his approach provides a rich framework that allows to bound not only
the limitations of one-way functions as a building block, but even the limitations of signi�cantly more

structured primitives as building blocks. Speci�cally, our proof of Theorem 1.3 generalizes Rudich's
technique for bounding the limitations of hard-on-average source-or-sink instances. We refer the
reader to Section 4 for more details and for the formal proof.

Injective trapdoor functions do not imply bounded-TFNP hardness. Theorem 1.4 and
Corollary 1.5 are proved by presenting a distribution of oracles relative to which there exists a
collection of injective trapdoor functions, but there are no hard TFNP instances having a bounded
number of solutions (speci�cally, our result will apply to a sub-exponential number of solutions).

A TFNP instance with bounded number k(·) of solutions, denoted a k-bounded TFNP instance,
is of the form {Cn}n∈N, where for every n ∈ N it holds that C : {0, 1}n → {0, 1}, and there is at
least one and at most k(n) distinct inputs x ∈ {0, 1}n such that C(x) = 1 (any one of these x's
is a solution). In particular, as discussed above, any valid SVL instance yields a 1-bounded TFNP
instance (i.e., a unique-TFNP instance), and therefore our result rules out black-box constructions
of a hard-on-average distribution of SVL instances from injective trapdoor functions. Similarly, any
source-or-sink instance which consists of at most (k + 1)/2 disjoint lines yields a k-bounded TFNP
instance, and therefore our result rules out black-box constructions of a hard-on-average distribution
of source-or-sink instances with a bounded number of disjoint lines from injective trapdoor functions.

For emphasizing the main ideas underlying our proof, in Section 5 we �rst prove our result for
constructions that are based on one-way functions, and then in Section 6 we generalize the proof
to constructions that are based on injective trapdoor functions. Each of these two parts requires
introducing new ideas and techniques, and such a level of modularity is useful in pointing them out.

When considering constructions that are based on one-way functions, our proof is obtained via
an additional generalization of Rudich's proof technique [Rud88]. As discussed above, we �rst ob-
serve that Rudich's approach can be generalized from ruling out constructions of one-way permu-
tations based on one-way functions to ruling out constructions of any hard-on-average distribution
of unique-TFNP instances based on one-way functions. Then, by extending and re�ning Rudich's
proof technique once again, we show that we can rule out not only constructions of unique-TFNP
instances, but even constructions of bounded-TFNP instances. This require a substantial general-
ization of Rudich's attacker, and we refer reader to Section 5 for more details and for the formal
proof.

Then, when considering constructions that are based on injective trapdoor functions, we show
that our proof from Section 5 can be generalized from constructions of bounded-TFNP instances

8



based on one-way functions to constructions of bounded-TFNP instances based on injective trapdoor
functions. Combined with our the proof of Theorem 1.3, this extends Rudich's approach from its
somewhat restricted context of one-way functions (as building blocks) and one-way permutations
(as target objects) to provide a richer framework that considers: (1) signi�cantly more structured

building blocks, and (2) signi�cantly less restricted target objects. We refer reader to Section 6 for
more details and for the formal proof.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce our notation as well
as the search problems and the cryptographic primitives that we consider in this paper. In Section
3 we show that average-case SVL hardness does not imply one-way functions in a black-box manner
(proving Theorem 1.1). In Section 4 we show that average-case PPAD hardness does not imply
unique-TFNP hardness in a black-box manner (proving Theorem 1.3). In Section 5 we show that
one-way functions do not imply bounded-TFNP hardness in a black-box manner, and in Section 6 we
generalize this result, showing that even injective trapdoor functions do not imply bounded-TFNP
hardness in a black-box manner (proving Theorem 1.4 and Corollary 1.5). Finally, in Appendix A
we extend our approach from Section 3 and show that average-case SVL hardness does not imply
key agreement even when assuming the existence of one-way functions.

2 Preliminaries

In this section we present the notation and basic de�nitions that are used in this work. For a
distribution X (e.g., the output distribution of a randomized algorithm when given a certain input)
we denote by x ← X the process of sampling a value x from the distribution X. Similarly, for a
set X we denote by x ← X the process of sampling a value x from the uniform distribution over
X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A q-query algorithm is an oracle-aided
algorithm A such that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists of at
most q(|x|) oracle calls to O. An oracle-aided circuit C is a circuit equipped with additional oracle
gates, where the input to an oracle gate is a query and the output is the answer of the oracle for that
query. We denote by CO(x) the result of computing the oracle-aided circuit C on input x ∈ {0, 1}∗
with respect to the oracle O.

2.1 Complexity Classes and Total Search Problems

An e�ciently-veri�able search problem is described via a pair (I,R), where I ⊆ {0, 1}∗ is an
e�ciently-recognizable set of instances, and R is an e�ciently-computable binary relation. Such
a search problem is total if for every instance z ∈ I there exists a witness w of length polynomial in
the length z such that R(z, w) = 1.

The class TFNP consists of all e�ciently-veri�able search problem that are total, and its sub-
class PPAD consists of all such problems that are polynomial-time reducible to the source-or-sink
problem [Pap94], de�ned as follows.

De�nition 2.1 (The source-or-sink problem). A source-or-sink instance consists of a pair of circuits
S,P : {0, 1}n → {0, 1}n such that P(0n) = 0n 6= S(0n). The goal is to �nd an element w ∈ {0, 1}n
such that P(S(w)) 6= w or S(P(w)) 6= w 6= 0n.

Intuitively, the circuits S and P can be viewed as implementing the successor and predecessor
functions of a directed graph over {0, 1}n, where for each pair of nodes x and y there exists an edge

9



from x to y if and only if S(x) = y and P(y) = x (note that the in-degree and out-degree of every
node in this graph is at most one, and the in-degree of 0n is 0). The goal is to �nd any node, other
than 0n, with either no incoming edge or no outgoing edge. Such a node must always exist by a
parity argument.

The sink-of-veri�able-line (SVL) problem is a search problem introduced by Abbot et al. [AKV04]
and further studied by Bitansky et al. [BPR15] and Garg et al. [GPS16]. It is de�ned as follows:

De�nition 2.2 (The sink-of-veri�able-line (SVL) problem). An SVL instance consists of a triplet
(S,V, T ), where T ∈ [2n], and S : {0, 1}n → {0, 1}n and V : {0, 1}n × [2n] → {0, 1} are two circuits
with the guarantee that for every x ∈ {0, 1}n and i ∈ [2n] it holds that V(x, i) = 1 if and only if
x = Si(0n). The goal is to �nd an element w ∈ {0, 1}n such that V(w, T ) = 1.

Intuitively, the circuit S can be viewed as implementing the successor function of a directed
graph over {0, 1}n that consists of a single line starting at 0n. The circuit V enables to e�ciently
test whether a given node x is of distance i from 0n on the line, and the goal is to �nd the node of
distance T from 0n. Note that not any triplet (S,V, T ) is a valid SVL instance (moreover, there may
not be an e�cient algorithm for verifying whether a triplet (S,V, T ) is a valid instance).

Oracle-aided instances with private randomness. We consider source-or-sink and SVL in-
stances that are described by oracle-aided circuits, and we would like to allow these circuits to share
an oracle-dependent state that may be generated via private randomness (this clearly strengthens the
class of problems that we consider, and in particular, capture those constructed by [BPR15, GPS16]
using indistinguishability obfuscation). For this purpose, we equip the instances with an oracle-aided
randomized index-generation algorithm, denoted Gen, that produces a public index σ which is then
provided to all circuits of the instance (and to any algorithm that attempts to solve the instance).

Speci�cally, we consider source-or-sink instances of the form {(Genn, Sn,Pn)}n∈N, where for every
n ∈ N and for every index σ produced by Genn it holds that Sn(σ, ·) : {0, 1}n → {0, 1}n and Pn(σ, ·) :
{0, 1}n → {0, 1}n. Similarly, we consider SVL instances of the form {(Genn,Sn,Vn, T (n))}n∈N, where
for every n ∈ N and for every index σ produced by Genn it holds that Sn(σ, ·) : {0, 1}n → {0, 1}n,
Vn(σ, ·, ·) : {0, 1}n× [2n]→ {0, 1}, and T (n) ∈ [2n]. We say that an SVL instance is valid if for every
n ∈ N, σ produced by Genn, x ∈ {0, 1}n, and i ∈ [2n], it holds that Vn(σ, x, i) = 1 if and only if
x = Sin(σ, 0n).

Bounded TFNP instances. As discussed in Section 1.1, we prove our results using the notion of
bounded-TFNP instances, naturally generalizing source-or-sink instances (and valid SVL instances)
by considering TFNP instances with a guaranteed upper bound on the number of solutions.

De�nition 2.3. A k-bounded TFNP instance is of the form {Genn, Cn}n∈N, where for every n ∈ N
and for every index σ produced by Genn it holds that Cn(σ, ·) : {0, 1}n → {0, 1}, and there is at
least one and at most k(n) distinct inputs x ∈ {0, 1}n such that Cn(σ, x) = 1 (any one of these x's
is a solution).

Note that any valid SVL instance yields a 1-bounded TFNP instance (to which we refer as a
unique-TFNP instance), and any source-or-sink instance which consists of at most (k+ 1)/2 disjoint
lines yields a k-bounded TFNP instance.

Average-case PPAD hardness and bounded-TFNP hardness. The following two de�nitions
formalize the standard notion of average-case hardness in the speci�c context of source-or-sink in-
stances and k-bounded TFNP instances. These notions then serve as the basis of our de�nitions of
black-box constructions.

10



De�nition 2.4. Let t = t(n) and ε = ε(n) be functions of the security parameter n ∈ N. A source-
or-sink instance {(Genn,Sn,Pn)}n∈N is (t, ε)-hard if for any algorithm A that runs in time t(n) it
holds that

Pr [A (1n, σ) = w s.t. Pn(σ, Sn(σ,w)) 6= w or Sn(σ,Pn(σ,w)) 6= w 6= 0n] ≤ ε(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of σ ← Genn() and over
the internal randomness of A.

De�nition 2.5. Let k = k(n), t = t(n) and ε = ε(n) be functions of the security parameter n ∈ N.
A k-bounded TFNP instance {Genn, Cn}n∈N is (t, ε)-hard if for any algorithm A that runs in time
t(n) it holds that

Pr [A (1n, σ) = x s.t. Cn(σ, x) = 1] ≤ ε(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of σ ← Genn() and over
the internal randomness of A.

2.2 One-Way Functions and Injective Trapdoor Functions

We rely on the standard (parameterized) notions of a one-way function and injective trapdoor func-
tions [Gol01].

De�nition 2.6. An e�ciently-computable function f : {0, 1}∗ → {0, 1}∗ is (t(·), ε(·))-one-way if for
any probabilistic algorithm A that runs in time t(n) it holds that

Pr
[
A (f(x)) ∈ f−1 (f(x))

]
≤ ε(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of x← {0, 1}n and over
the internal randomness of A.

A collection of injective trapdoor functions is a triplet (KG,F,F−1) of polynomial-time algorithms.
The key-generation algorithm KG is a probabilistic algorithm that on input the security parameter
1n outputs a pair (pk, td), where pk is a public key and td is a corresponding trapdoor. For any
n ∈ N and for any pair (pk, td) that is produced by KG(1n), the evaluation algorithm F computes an
injective function F(pk, ·) : {0, 1}n → {0, 1}υ(n), and the inversion algorithm F−1(td, ·) : {0, 1}υ(n) →
{0, 1}n ∪ {⊥} computes its inverse whenever an inverse exists (i.e., it outputs ⊥ on all values y
that are not in the image of the function F(pk, ·)). The security requirement of injective trapdoor
functions is formalized as follows:

De�nition 2.7. A collection of injective trapdoor functions (KG,F,F−1) is (t(·), ε(·))-secure if for
any probabilistic algorithm A that runs in time t(n) it holds that

Pr [A (pk,F(pk, x)) = x] ≤ ε(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of (pk, td) ← KG(1n),
x← {0, 1}n, and over the internal randomness of A.

2.3 Key-Agreement Protocols

We rely on the standard (parameterized) notion of a key-agreement protocol. For our purposes in
this paper it su�ces to consider key-agreement protocols in which the parties agree on a single bit,
and we refer to such protocols as bit-agreement protocols.

11



A bit-agreement protocol consists of a pair (A,B) of probabilistic polynomial-time algorithms.
We denote by (kA, kB,Trans)← 〈A(1n; rA),B(1n; rB)〉 the random process of executing the protocol,
where rA and rB are the random tapes of A and B, respectively, kA and kB are the output bits of A
and B, respectively, and Trans is the transcript of the protocol (i.e., the messages exchanged by the
parties).

De�nition 2.8. A pair Π = (A,B) of probabilistic polynomial-time algorithms is a (t(·), ε(·))-secure
bit-agreement protocol with correctness ρ(·) if the following two conditions hold:

� Correctness. For any n ∈ N it holds that

Pr
rA,rB

[kA = kB |(kA, kB,Trans)← 〈A(1n; rA),B(1n; rB)〉 ] ≥ 1

2
+ ρ(n).

� Security. For any probabilistic algorithm E that runs in time t(n) it holds that

AdvKAΠ,E(n)
def
=

∣∣∣∣Pr
[
ExpKAΠ,E(n) = 1

]
− 1

2

∣∣∣∣ ≤ ε(n)

for all su�ciently large n ∈ N, where the random variable ExpKAΠ,E(n) is de�ned via the following
experiment:

1. (kA, kB,Trans)← 〈A(1n),B(1n)〉.
2. k′ ← E(1n,Trans).

3. If k′ = kA then output 1, and otherwise output 0.

3 Average-Case SVL Hardness Does Not Imply One-Way Functions

In this section we prove that there is no fully black-box construction of a one-way function from a
hard-on-average distribution of SVL instances4 (proving Theorem 1.1). Our result is obtained by
presenting a distribution of oracles relative to which the following two properties hold:

1. There exists a hard-on-average distribution of SVL instances.

2. There are no one-way functions.

Recall that an SVL instance is of the form {(Genn,Sn,Vn, L(n))}n∈N, where for every n ∈ N
and for every index σ produced by Genn it holds that Sn(σ, ·) : {0, 1}n → {0, 1}n, Vn(σ, ·, ·) :
{0, 1}n × [2n]→ {0, 1}, and L(n) ∈ [2n]. We say that an SVL instance is valid if for every n ∈ N, σ
produced by Genn, x ∈ {0, 1}n, and i ∈ [2n], it holds that Vn(σ, x, i) = 1 if and only if x = Sin(σ, 0n).
The following de�nition tailors the standard notion of a fully black-box construction (based, for
example, on [Lub96, Gol00, RTV04]) to the speci�c primitives under consideration.

De�nition 3.1. A fully black-box construction of a one-way function from a hard-on-average dis-
tribution of SVL instances consists of an oracle-aided polynomial-time algorithm F , an oracle-aided
algorithm M that runs in time TM (·), and functions εM,1(·) and εM,2(·), such that the following
conditions hold:

� Correctness: There exists a polynomial `(·) such that for any valid SVL instance OSVL and
for any x ∈ {0, 1}∗ it holds that FOSVL(x) ∈ {0, 1}`(|x|).

4Recall that any hard-on-average distribution of SVL instances can be used in a black-box manner to construct a
hard-on-average distribution of instances of a PPAD-complete problem [AKV04, BPR15]. Thus, our result implies (in
particular) that average-case PPAD hardness does not imply one-way functions in a black-box manner.

12



� Black-box proof of security: For any valid SVL instance OSVL = {(Genn,Sn,Vn, L(n))}n∈N,
for any oracle-aided algorithm A that runs in time TA = TA(n), and for any function εA(·), if

Pr
[
AOSVL

(
FOSVL(x)

)
∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≥ εA(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of A, then

Pr
[
MA,OSVL (1n, σ) solves (Sn(σ, ·),Vn(σ, ·), L(n))

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of σ ← Genn()
and over the internal randomness of M .

Following Asharov and Segev [AS15, AS16], we split the security loss in the above de�nition to
an adversary-dependent security loss and an adversary-independent security loss, as this allows us to
capture constructions where one of these losses is super-polynomial whereas the other is polynomial
(e.g., [BPR15, BPW16]). In addition, we note that the correctness requirement in the above de�nition
may seem somewhat trivial since the fact that the output length of FOSVL(·) is polynomial follows
directly from the requirement that F runs in polynomial time. However, for avoiding rather trivial
technical complications in the proofs of this section, for simplicity (and without loss of generality)
we nevertheless ask explicitly that the output length is some �xed polynomial `(n) for any input
length n (clearly, `(n) may depend on the running time of F , and shorter outputs can always be
padded). Equipped with the above de�nition we prove the following theorem:

Theorem 3.2. Let (F,M, TM , εM,1, εM,2) be a fully black-box construction of a one-way function

from a hard-on-average SVL instance. Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is exponential).

In particular, Theorem 3.2 rules out standard �polynomial-time polynomial-loss� reductions.
More generally, the theorem implies that if the running time TM (·) of the reduction is sub-exponential
and the adversary-dependent security loss εM,1(·) is polynomial (as expected), then the adversary-
independent security loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

3.1 Proof Overview

In what follows we �rst describe the oracle, denoted OSVL, on which we rely for proving Theorem
3.2. Then, we describe the structure of the proof, showing that relative to the oracle OSVL there
exists a hard-on-average distribution of SVL instances, but there are no one-way functions. For the
remainder of this section we remind the reader that a q-query algorithm is an oracle-aided algorithm
A such that for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists of at most
q(|x|) oracle calls to O.

The oracle OSVL. The oracle OSVL is a valid SVL instance {(Sn,Vn, L(n))}n∈N that is sampled via
the following process for every n ∈ N:

� Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . , xL(n) ← {0, 1}n \
{0n}.

13



� The successor function Sn : {0, 1}n → {0, 1}n is de�ned as

Sn(x) =

{
xi+1 if x = xi for some i ∈ {0, . . . , L(n)− 1}
x otherwise

.

� The veri�cation function Vn : {0, 1}n × [2n]→ {0, 1} is de�ned in a manner that is consistent
with Sn (i.e., Vn is de�ned such that the instance is valid).

Part I: OSVL is a hard-on-average SVL instance. We show that the oracle OSVL itself is a hard-
on-average SVL instance5, which implies in particular that relative to the oracle OSVL there exists
a hard-on-average distribution of SVL instances. We prove the following claim stating that, in fact,
the oracle OSVL is an exponentially hard-on-average SVL instance (even without an index-generation
algorithm):

Claim 3.3. For every q(n)-query algorithm M , where q(n) ≤ L(n)− 1, it holds that

Pr
[
MOSVL (1n) solves (Sn,Vn, L(n))

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1

for all su�ciently large n ∈ N, where the probability is taken over the choice of the oracle OSVL =
{(Sn,Vn, L(n))}n∈N as described above.

The proof of the claim, which is provided in Section 3.2, is based on the following, rather intuitive,
observation: Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly sampled, then any
algorithm performing q = q(n) oracle queries should not be able to query OSVL with any element on
the line beyond the �rst q elements 0n, x1, . . . , xq−1. In particular, for our choice of parameters, any
such algorithm should have only an exponentially-small probability of reaching xL(n).

Part II: Inverting oracle-aided functions relative to OSVL. We show that any oracle-aided
function FOSVL(·) computable in time t(n) can be inverted with high probability by an inverter that
issues roughly t(n)4 oracle queries. We prove the following claim:

Claim 3.4. For every deterministic oracle-aided function F that is computable in time t(n) there

exists a q(n)-query algorithm A, where q(n) = O(t(n)4), such that

Pr
[
AOSVL

(
FOSVL(x)

)
∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≥ 1

2

for all su�ciently large n ∈ N and for every x ∈ {0, 1}n, where the probability is taken over the

choice of the oracle OSVL = {(Sn,Vn, L(n))}n∈N as described above. Moreover, the algorithm A can

be implemented in time polynomial in q(n) given access to a PSPACE-complete oracle.

The proof of the claim, which is provided in Section 3.3, is based on the following approach.
Consider the value y = FOSVL(x) that is given as input to the inverter A. Since F is computable in
time t = t(n), it can issue at most t oracle queries and therefore the observation used for proving
Claim 3.3 implies that the computation FOSVL(x) should not query OSVL with any elements on the
line 0n → x1 → · · · → xL(n) except for the �rst t elements x0, x1, . . . , xt−1. In this case, any Sn-query

α in the computation FOSVL(x) can be answered as follows: If α = xi for some i ∈ {0, . . . , t−1} then
the answer is xi+1, and otherwise the answer is α. Similarly, any Vn-query (α, j) in the computation

5Formally speaking, as the SVL instance we consider oracle-aided circuits that simply call OSVL on their input and
output the result.

14



FOSVL(x) can be answered as follows: If (α, j) = (xi, i) for some i ∈ {0, . . . , t− 1} then the answer is
1, and otherwise the answer is 0.

This observation gives rise to the following inverterA: First perform t queries to Sn for discovering
x1, . . . , xt, and then invert y = FOSVL(x) relative to the oracle ÕSVL de�ned via the following successor
function S̃n:

S̃n(α) =

{
xi+1 if α = xi for some i ∈ {0, . . . , t− 1}
α otherwise

.

The formal proof is in fact more subtle, and requires a signi�cant amount of caution when inverting
y = FOSVL(x) relative to the oracle ÕSVL. Speci�cally, the inverter A should �nd an input x̃ such that

the computations F ÕSVL(x̃) and FOSVL(x̃) do not query the oracles ÕSVL and OSVL, respectively, with
any of xt, . . . , xL(n). In this case, we show that indeed FOSVL(x̃) = y and the inverter is successful.

3.2 OSVL is a Hard-on-Average SVL Instance

The proof of Claim 3.3 relies on the fact that the line 0n → x1 → · · · → xL(n) is sparse and uniformly

sampled. This intuitively implies that any algorithm performing q oracle queries should not be able
to query OSVL with any element on the line beyond the �rst q elements 0n, x1, . . . , xq−1, except with
an exponentially-small probability.

Given an oracle OSVL = {(Sn,Vn, L(n))}n∈N, sampled as described in Section 3.1, and given a
q-query algorithmM , for every n ∈ N and i ∈ [q] we denote by αi the random variable corresponding
to M 's ith oracle query if this is an Sn-query, and we denote by (αi, ki) the random variable cor-
responding to M 's ith oracle query if this is a Vn-query. We denote by HITOSVL

M,n the event in which
there exist indices j ∈ [q] and i ∈ [L(n)] for which αj = xi but xi−1 /∈ {α1, . . . , αj−1}. That is, this is
the event in which M queries OSVL with one of the xi's before querying on xi−1. In particular, note
that if the event HITOSVL

M,n does not occur, then M does not query OSVL with xi for i ∈ {q, . . . , L(n)}.
The following claim bounds the probability of event HITOSVL

M,n .

Claim 3.5. For every q-query algorithm M and for every n ∈ N it holds that

Pr
[
HITOSVL

M,n

]
≤ q · L(n)

2n − q
,

where the probability is taken over the choice of the oracle OSVL = {(Sn,Vn, L(n))}n∈N. Moreover, q
can be a bound on the number of calls to Sn and Vn.

Proof. LetM be a q-query algorithm, �x n ∈ N, and �x (OSVL)−n = {(Si,Vi, Ti)}i∈N\{n} (i.e., we �x
the entire oracle OSVL except for the nth SVL instance). For every i ∈ [q] denote byMi the following
i-query algorithm: Invoke the computation MOSVL , and terminate once i oracle queries have been
performed. Note that since we do not place any restriction on the running time of M and since
the oracle distribution is known, we can assume without loss of generality that M is deterministic.
Therefore, for every i ∈ [q] and every �xing of the oracle OSVL, the computationMOSVL

i is the �pre�x�
of the computation MOSVL which contains its �rst i oracle queries. This implies that

Pr
[
HITOSVL

M,n

]
≤ Pr

[
HITOSVL

M1,n

]
+

q−1∑
i=1

Pr
[
HITOSVL

Mi+1,n

∣∣∣HITOSVL
Mi,n

]
,

where the probability is taken over the choice of the nth SVL instance (Sn,Vn, L(n)) (i.e., over the
choice of the elements x1, . . . , xL(n) that are used for de�ning the nth instance as described in Section
3.1).

15



For bounding the probability of the event HITOSVL
M1,n

, note that this event corresponds to the fact
that M , without any information on x1, . . . , xL(n) (since no oracle queries have been issued so far),
manages to produce an oracle query with α1 ∈ {x1, . . . , xL(n)}. Since the value α1 is �xed by
the description of M , and we are now sampling distinct and uniformly distributed x1, . . . , xL(n) ←
{0, 1}n \ {0n}, we have that

Pr
[
HITOSVL

M1,n

]
≤

(
2n−2
L(n)−1

)(
2n−1
L(n)

) =
L(n)

2n − 1
.

For bounding the probability of the event HITOSVL
Mi+1,n

given that HITOSVL
Mi,n

occurred, we �x the
queries α1, . . . , αi with the corresponding ki's for the Vn queries, we �x their successors β1, . . . , βi
where βj = Sn(αj), and for each j ∈ [i] and k ∈ [L(n)] we �x whether αj = xk or not. This �xes
the oracle answers to the above queries, hence �xes αi+1 by the assumption that M is deterministic.

By the assumption HITOSVL
Mi,n

, there is some 0 ≤ ` ≤ i for which x0, x1, . . . , x`−1 ∈ {α1, . . . , αi} but
x`, . . . , xL(n) /∈ {α1, . . . , αi}. Hence x1, . . . , x` ∈ {β1, . . . , βi} but x`+1, . . . , xL(n) /∈ {β1, . . . , βi}. No
further information about x`+1, . . . , xL(n) is known, therefore, we are now sampling distinct and
uniformly distributed x`+1, . . . , xL(n) ← {0, 1}n \ {0n, β1, . . . , βi}, hence

Pr
[
HITOSVL

Mi+1,n

∣∣∣HITOSVL
Mi,n

]
≤ L(n)

2n − i− 1
.

We conclude that

Pr
[
HITOSVL

M,n

]
≤ Pr

[
HITOSVL

M1,n

]
+

q−1∑
i=1

Pr
[
HITOSVL

Mi+1,n

∣∣∣HITOSVL
Mi,n

]
≤

q−1∑
i=0

L(n)

2n − i− 1

≤ q · L(n)

2n − q
.

Equipped with Claim 3.5 we can now easily derive the proof of Claim 3.3.

Proof of Claim 3.3. We modify M such that it queries the oracle Sn with its output before it
terminates. Now, M is a (q(n) + 1)-query algorithm, and by the assumption q(n) + 1 ≤ L(n). If
M(1n) solves (Sn,Vn, L(n)) then HITOSVL

M(1n),n occurs, and by Claim 3.5 we deduce

Pr
[
MOSVL (1n) solves (Sn,Vn, L(n))

]
≤ Pr

[
HITOSVL

M(1n),n

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1
.

3.3 Inverting Oracle-Aided Functions Relative to OSVL

Proof of Claim 3.4. Let F be a deterministic oracle-aided function computable in time t(n), and
let p(n) = 1/2 (although the proof goes through for any value of 0 < p(n) < 1). We describe an
oracle-aided algorithm A that manages to invert FOSVL(x) for every x with high probability over
the choice of the oracle OSVL. Let A be the following oracle-aided algorithm that on input 1n and
y = FOSVL(x), where x ∈ {0, 1}n, proceeds as follows:

16



A1. Set a(n) = 2 · log(3t(n)2/p(n) + 1).

A2. For every 1 ≤ i < a(n), the algorithm A queries Si on all possible inputs α ∈ {0, 1}i.
A3. For every a(n) ≤ i ≤ t(n), the algorithm A repeatedly queries Si for t(n) times starting with

the query 0i (i.e., A discovers the line of length t(n) starting from 0i).

A4. The algorithm A constructs the �fake� oracle ÕSVL that is consistent with the �true� oracle OSVL

on all queries performed in steps A2 and A3 above, and is de�ned as the identity function on
all other queries.

A5. The algorithm A �nds and outputs an input x̃ ∈ {0, 1}n such that F ÕSVL(x̃) = y and such that

the computation of F ÕSVL(x̃) does not query ÕSVL with any input of the form S
t(n)
i (0i) where

a(n) ≤ i ≤ t(n). If no such input x̃ exists, then the algorithm A outputs ⊥.

First, note that steps A4 and A5 do not require any queries to the oracle OSVL. Second, note that
the number of oracle queries made by A in steps A2 and A3 is at most q(n) ≤ t(n)2 + 2 · 2a(n) =
O(t(n)4/p(n)2).

Moreover, given oracle access to a PSPACE-complete oracle, the algorithm A can be implemented
to run in time polynomial in q(n). To see this, we observe that the only non-trivial step is A5. The

�fake� oracle ÕSVL can be described in space polynomial in q(n) (because it is the identity function
on all but at most q(n) queries), and then step A5 can be e�ciently computed using an oracle that
decides the following PSPACE language:

(ÕSVL, i, b)

∣∣∣∣∣∣∣
x̃i = b for the lexicographically �rst x̃ such that F ÕSVL(x̃) = y and

such that the computation of F ÕSVL(x̃) does not query ÕSVL

with any input of the form S
t(n)
i (0i) where a(n) ≤ i ≤ t(n)

 .

We now prove that for any n ∈ N and x ∈ {0, 1}n, the algorithm A inverts y = FOSVL(x) with
probability at least 1 − p(n) over the choice of the oracle OSVL. Fix n ∈ N and x ∈ {0, 1}n, and
consider the oracle-aided algorithm Mx de�ned as follows:

M1. Compute y = FOSVL(x).

M2. Compute x̃ = AOSVL(1n, y).

M3. If x̃ = ⊥ then output 0 and terminate.

M4. Compute ỹ = FOSVL(x̃).

M5. If ỹ = y then output 1, and otherwise output 0.

The probability over the choice of OSVL thatMx outputs 1 is exactly the probability that A manages
to invert y = FOSVL(x). Now suppose for all a(n) ≤ i ≤ t(n) the event HITOSVL

Mx,i
does not occur. We

aim to show that in this case ỹ = y. To start with, we claim that in this case the computation of

Mx until step M3 does not query OSVL with an input of the form S
t(n)
i (0i) where a(n) ≤ i ≤ t(n):

� Mx does not query S
t(n)
i (0i) in step M1 because FOSVL(x) performs at most t(n) queries, and

querying S
t(n)
i (0i) when HITOSVL

Mx,i
does not occur requires at least t(n) + 1 queries.

� Mx does not query S
t(n)
i (0i) in step M2 by the de�nition of the algorithm A, since A only

queries the oracle Si with input of the form Sji (0
i) where j ∈ [t(n)− 1].

Note that since the computation of Mx until step M3 does not query OSVL with S
t(n)
i (0i), and since

the event HITOSVL
M,i does not occur, then the computation of Mx until step M3 does not query OSVL

17



with any input of the form Ski (0
i) where k ∈ {t(n), . . . , L(i)}. At this point, since x itself satis�es

F ÕSVL(x) = FOSVL(x) = y , and since the computation of F ÕSVL(x) does not query S
t(n)
i (0i), we know

for sure that the algorithm A in step M2 will not return ⊥. It remains to show that any x̃ that A
might return will satisfy FOSVL(x̃) = F ÕSVL(x̃), hence ỹ = y as claimed.

Assume by contradiction that FOSVL(x̃) 6= F ÕSVL(x̃), and consider the �rst oracle query for which

the computations of FOSVL(x̃) and F ÕSVL(x̃) diverge. By the de�nition of ÕSVL, it must be a query
to Si or Vi where a(n) ≤ i ≤ t(n), with input of the form Sji (0

i) where j ∈ {t(n), . . . , L(i) − 1} (in
case of a query to the oracle Vi, S

j
i (0

i) is only the �rst argument of the input). The case j = t(n)

is impossible because A chooses x̃ for which the computation of F ÕSVL(x̃) does not query S
t(n)
i (0i).

The case j > t(n) is also impossible since until this point Mx did not query S
t(n)
i (0i), and since the

event HITOSVL
M,i does not occur.

We conclude that if y 6= ỹ then HITOSVL
M,i occurs for some a(n) ≤ i ≤ t(n). By the fact that Mx

issues at most 3t(n) queries to Si and Vi for every a(n) ≤ i ≤ t(n), Claim 3.5 implies that

Pr
OSVL

[
AOSVL

(
FOSVL(x)

)
/∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≤

t(n)∑
i=da(n)e

Pr
OSVL

[
HITOSVL

Mx,i

]

≤
t(n)∑

i=da(n)e

3t(n) · L(i)

2i − 3t(n)

≤
t(n)∑

i=da(n)e

3t(n) · L(i)

2i − L(i)

=

t(n)∑
i=da(n)e

3t(n)

2i/2 − 1

≤ 3t(n)2

2a(n)/2 − 1
≤ p(n).

3.4 Proof of Theorem 3.2

Proof of Theorem 3.2. Let (F,M, TM , εM,1, εM,2) be a fully black-box construction of a one-way
function from a hard-on-average distribution of SVL instances (recall De�nition 3.1). Claim 3.4
guarantees an oracle-aided algorithm A that runs in polynomial time TA(n) such that

Pr
[
APSPACE,OSVL

(
FOSVL(x)

)
∈
(
FOSVL

)−1 (
FOSVL(x)

)]
≥ εA(n)

for all su�ciently large n ∈ N and for every x ∈ {0, 1}n, where εA(n) = 1/2, and the probability is
taken over the choice of the oracle OSVL. De�nition 3.1 then guarantees that

Pr
[
MA,PSPACE,OSVL (1n) solves (Sn,Vn, L(n))

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where M runs in time TM (n), and the probability is again taken
over the choice of the oracle OSVL.

18



The algorithmM may invoke A on various security parameters (i.e., in generalM is not restricted
to invoking A only on security parameter n), and we denote by `(n) the maximal security parameter
on which M invokes A (when M itself is invoked on security parameter n). Thus, viewing MA as a
single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle OSVL,
its running time TMA(n) satis�es TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke A
at most TM (n) times, and the running time of A on each such invocation is at most TA(`(n))). In

particular, viewing M ′
def
= MA

PSPACE
as a single oracle-aided algorithm that has oracle access to the

oracle OSVL, implies that M ′ is a q(n)-query algorithm where q(n) = TMA(n). Claim 3.3 and our
choice of L(n) = 2n/2 then imply that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · 2n/2

2n − q(n)− 1
.

There are now two possible cases to consider:

Case 1: 2n/4 ≤ q(n). In this case, noting that `(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A (when given access to a PSPACE-complete oracle) is
some �xed polynomial in n, and therefore TM (n) ≥ 2ζn for some constant ζ > 0.

Case 2: 2n/4 > q(n). In this case we have that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · 2n/2

2n − q(n)− 1
≤ 1

2n/10
,

and since TA(n) is some �xed polynomial in n (and εA(n) is a constant) we obtain that εM,1(nc) ·
εM,2(n) ≤ 2−n/10 for some constant c > 1.

4 Average-Case PPAD Hardness Does Not Imply Unique-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-on-average distribution
of TFNP instances having a unique solution from a hard-on-average distribution of instances of a
PPAD-complete problem (proving, in particular, Theorem 1.3). Our result is obtained by presenting
a distribution of oracles relative to which the following two properties hold:

1. There exists a hard-on-average distribution of instances of a PPAD-complete problem (specif-
ically, we consider the source-or-sink problem).

2. There are no hard-on-average distributions over TFNP instances having a unique solution.

Recall that a TFNP instance with a unique solution, denoted a unique-TFNP instance (see
De�nitions 2.3 and 2.5), is of the form {Genn, Cn}n∈N, where for every n ∈ N and for every index σ
produced by Genn it holds that Cn(σ, ·) : {0, 1}n → {0, 1} and there is a unique x∗ ∈ {0, 1}n such that
Cn(σ, x) = 1. In particular, for any valid SVL instance (Gen, S,V, T ) it holds that (Gen,V(·, ·, T )) is
a TFNP instance that has a unique solution since for every σ produced by Gen there is exactly one
value x∗ for which V(σ, x∗, T ) = 1. Therefore, our result shows, in particular, that there is no fully
black-box construction of a hard-on-average distribution of SVL instances from a hard-on-average
distribution of instances of a PPAD-complete problem6.

6Recall that constructions in the opposite direction do exist: Any hard-on-average distribution of SVL instances can
be used in a black-box manner to construct a hard-on-average distribution of instances of a PPAD-complete problem
[AKV04, BPR15].

19



Recall that a source-or-sink instance is of the form {(Genn,Sn,Pn)}n∈N, where for every n ∈ N and
for every index σ produced by Genn it holds that Sn(σ, ·) : {0, 1}n → {0, 1}n and Pn(σ, ·) : {0, 1}n →
{0, 1}n. The following de�nition tailors the standard notion of a fully black-box construction to the
speci�c primitives under consideration.

De�nition 4.1. A fully black-box construction of a hard-on-average distribution of unique-TFNP
instances from a hard-on-average distribution of source-or-sink instances consists of a sequence of
polynomial-size oracle-aided circuits C = {Genn, Cn}n∈N, an oracle-aided algorithm M that runs in
time TM (·), and functions εM,1(·) and εM,2(·), such that the following conditions hold:

� Correctness: For any source-or-sink instance OPPAD, for any n ∈ N, and for any index σ
produced by GenOPPAD

n , there exists a unique x∗ ∈ {0, 1}n such that COPPAD
n (σ, x∗) = 1.

� Black-box proof of security: For any source-or-sink instance OPPAD = {(Gen′n, Sn,Pn)}n∈N,
for any oracle-aided algorithm A that runs in time TA = TA(n), and for any function εA(·), if

Pr
[
AOPPAD (1n, σ) = x∗ s.t. COPPAD

n (σ, x∗) = 1
]
≥ εA(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of σ ← Genn()
and over the internal randomness of A, then

Pr
[
MA,OPPAD

(
1n, σ′

)
solves

(
Sn(σ′, ·),Pn(σ′, ·)

)]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of σ′ ← Gen′n()
and over the internal randomness of M .

We note that, as in De�nition 3.1, we split the security loss in the above de�nition to an adversary-
dependent security loss and an adversary-independent security loss, as this allows us to capture con-
structions where one of these losses is super-polynomial whereas the other is polynomial. Equipped
with the above de�nition we prove the following theorem:

Theorem 4.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-average dis-

tribution of unique-TFNP instances from a hard-on-average distribution of source-or-sink instances.

Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is exponential).

In particular, Theorem 4.2 rules out standard �polynomial-time polynomial-loss� reductions.
More generally, the theorem implies that if the running time TM (·) of the reduction is sub-exponential
and the adversary-dependent security loss εM,1(·) is polynomial (as expected), then the adversary-
independent security loss εM,2(·) must be exponential (thus even ruling out constructions based on
SVL instances with sub-exponential average-case hardness).

4.1 Proof Overview

In what follows we �rst describe the oracle, denoted OPPAD, on which we rely for proving Theorem
4.2. Then, we describe the structure of the proof, showing that relative to the oracle OPPAD there
exists a hard-on-average distribution of source-or-sink instances, but there are no hard-on-average
unique-TFNP instances. For the remainder of this section we remind the reader that a q-query

20



algorithm is an oracle-aided algorithm A such that for any oracle O and input x ∈ {0, 1}∗, the
computation AO(x) consists of at most q(|x|) oracle calls to O.

The oracle OPPAD. The oracle OPPAD is a source-or-sink instance {(Sn,Pn)}n∈N that is based on
the same sparse structure used to de�ne the oracle OSVL in Section 3. The oracle OPPAD is sampled
via the following process for every n ∈ N:

� Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . , xL(n) ← {0, 1}n \
{0n}.

� The successor function Sn : {0, 1}n → {0, 1}n is de�ned as

Sn(x) =

{
xi+1 if x = xi for some i ∈ {0, . . . , L(n)− 1}
x otherwise

.

� The predecessor function Pn : {0, 1}n → {0, 1}n is de�ned in a manner that is consistent with
the successor function Sn:

Pn(x) =

{
xi−1 if x = xi for some i ∈ {1, . . . , L(n)}
x otherwise

.

Note that the oracle OPPAD corresponds to a source-or-sink instance that consists of the single line
0n → x1 → · · · → xL(n), and therefore the only solution to this instance is the element xL(n).

Part I: OPPAD is a hard-on-average source-or-sink instance. We show that the oracle OPPAD

itself is a hard-on-average source-or-sink instance, which implies in particular that relative to the
oracle OPPAD there exists a hard-on-average distribution of instances to the source-or-sink problem.
We prove the following claim stating that, in fact, the oracle OPPAD is an exponentially hard-on-
average source-or-sink instance (even without an index-generation algorithm):

Claim 4.3. For every q(n)-query algorithm M , where q(n) ≤ L(n)− 1, it holds that

Pr
[
MOPPAD (1n) solves (Sn,Pn)

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1

for all su�ciently large n ∈ N, where the probability is taken over the choice of the oracle OPPAD =
{(Sn,Pn)}n∈N as described above.

The proof of the claim, which is provided in Section 4.2, is based on an observation similar to
the one used for proving Claim 3.3: Since the line 0n → x1 → · · · → xL(n) is sparse and uniformly

sampled, then any algorithm performing q = q(n) oracle queries should not be able to query OPPAD

with any element on the line beyond the �rst q elements x0, x1, . . . , xq−1. In particular, for our choice
of parameters, any such algorithm should have only an exponentially-small probability of reaching
xL(n).

Part II: Solving oracle-aided unique-TFNP instances relative to OPPAD. We show that any
oracle-aided unique-TFNP instance {Genn, Cn}n∈N, where Genn and Cn are circuits that contain at
most q(n) oracle gates, can always be solved by an algorithm that issues roughly q(n)2 oracle queries.
We prove the following claim:

Claim 4.4. Let C = {Genn, Cn}n∈N be an oracle-aided unique-TFNP instance, where Genn and Cn
are circuits that contain at most q(n) oracle gates each for every n ∈ N. If C satis�es the correctness

requirement stated in De�nition 4.1, then there exists an O(q(n)2)-query algorithm A such that

Pr
[
AOPPAD (1n, σ) = x∗ s.t. COPPAD

n (σ, x∗) = 1
]

= 1

21



for every n ∈ N, where the probability is taken over the choice of the oracle OPPAD = {(Sn,Pn)}n∈N
as described above and over the choice of σ ← GenOPPAD

n (). Moreover, the algorithm A can be

implemented in time q(n)2 · poly(n) given access to a PSPACE-complete oracle.

For proving Claim 4.4, one might be tempted to follow the same approach used for proving Claim
3.4, based on the sparse and uniform structure of the oracle. However, as discussed in Section 1.3,
this approach seems to completely fail.

Our proof of Claim 4.4, which is provided in Section 4.3, is obtained by building upon Rudich's
classic proof for ruling out black-box constructions of one-way permutations based on one-way func-
tions [Rud88]. We show, by extending and re�ning Rudich's proof technique, that his approach
provides a rich framework that allows to bound not only the limitations of one-way functions as
a building block, but even the limitations of signi�cantly more structured primitives as building
blocks. Speci�cally, our proof of Claim 4.4 extends Rudich's technique for bounding the limitations
of hard-on-average source-or-sink instances.

4.2 OPPAD is a Hard-on-Average Source-or-Sink Instance

Given an oracle OPPAD = {(Sn,Pn)}n∈N, sampled as described in Section 4.1, and given a q-query
algorithmM , for every n ∈ N and i ∈ [q] we denote by αi ∈ {0, 1} the random variable corresponding
to M 's ith oracle query to Sn or Pn (note that we ignore oracle queries to Si or Pi where i 6= n). We
denote by HITOPPAD

M,n the event in which there exist indices j ∈ [q] and i ∈ [L(n)] for which αj = xi
but xi−1 /∈ {α1, . . . , αj−1}. That is, this is the event in which M queries OPPAD with one of the xi's

before querying on xi−1. In particular, note that if the event HITOPPAD
M,n does not occur, then M does

not query OPPAD with xi for i ∈ {q, . . . , L(n)}. The following claim bounds the probability of event
HITOPPAD

M,n (its proof is essentially identical to that of Claim 3.5).

Claim 4.5. For every q-query algorithm M it holds that

Pr
[
HITOPPAD

M,n

]
≤ q · L(n)

2n − q

for all su�ciently large n ∈ N, where the probability is taken over the choice of the oracle OPPAD =
{(Sn,Pn)}n∈N.

Proof. Let M be a q-query algorithm, �x n ∈ N, and �x (OPPAD)−n = {(Si,Pi)}i∈N\{n} (i.e., we
�x the entire oracle OPPAD except for the nth source-or-sink instance). For every i ∈ [q] denote by
Mi the following i-query algorithm: Invoke the computation MOPPAD , and terminate once i oracle
queries have been performed. Note that since we do not place any restriction on the running time
of M and since the oracle distribution is known, we can assume without loss of generality that M
is deterministic. Therefore, for every i ∈ [q] and every �xing of the oracle OPPAD, the computation
MOPPAD
i is the �pre�x� of the computation MOPPAD which contains its �rst i oracle queries. This

implies that

Pr
[
HITOPPAD

M,n

]
≤ Pr

[
HITOPPAD

M1,n

]
+

q−1∑
i=1

Pr
[
HITOPPAD

Mi+1,n

∣∣∣HITOPPAD
Mi,n

]
,

where the probability is taken over the choice of the nth source-or-sink instance (Sn,Pn) (i.e., over
the choice of the elements x1, . . . , xL(n) that are used for de�ning the nth instance as described in
Section 4.1).

For bounding the probability of the event HITOPPAD
M1,n

, note that this event corresponds to the
fact that M , without any information on x1, . . . , xL(n) (since no oracle queries have been issued so

22



far), manages to produce an oracle query with α1 ∈ {x1, . . . , xL(n)}. Since the value α1 is �xed by
the description of M , and we are now sampling distinct and uniformly distributed x1, . . . , xL(n) ←
{0, 1}n \ {0n}, we have that

Pr
[
HITOPPAD

M1,n

]
≤

(
2n−2
L(n)−1

)(
2n−1
L(n)

) =
L(n)

2n − 1
.

For bounding the probability of the event HITOPPAD
Mi+1,n

given that HITOPPAD
Mi,n

occurred, we �x the

queries α1, . . . , αi, we �x their successors β1, . . . , βi where βj = Sn(αj), �x their predecessors
γ1, . . . , γi where γj = Pn(αj), and for each j ∈ [i] and k ∈ [L(n)] we �x whether αj = xk or not. This
�xes the oracle answers to the above queries, hence �xes αi+1 by the assumption thatM is determin-

istic. By the assumption HITOPPAD
Mi,n

, there is some 0 ≤ ` ≤ i for which x0, x1, . . . , x`−1 ∈ {α1, . . . , αi}
but x`, . . . , xL(n) /∈ {α1, . . . , αi}. Hence x1, . . . , x` ∈ {β1, . . . , βi} but x`+1, . . . , xL(n) /∈ {β1, . . . , βi}.
No further information about x`+1, . . . , xL(n) is known, therefore, we are now sampling distinct and
uniformly distributed x`+1, . . . , xL(n) ← {0, 1}n \ {0n, β1, . . . , βi}, hence

Pr
[
HITOPPAD

Mi+1,n

∣∣∣HITOPPAD
Mi,n

]
≤ L(n)

2n − i− 1
.

We conclude that

Pr
[
HITOPPAD

M,n

]
≤ Pr

[
HITOPPAD

M1,n

]
+

q−1∑
i=1

Pr
[
HITOPPAD

Mi+1,n

∣∣∣HITOPPAD
Mi,n

]
≤

q−1∑
i=0

L(n)

2n − i− 1

≤ q · L(n)

2n − q
.

Equipped with Claim 4.5 we can now easily derive the proof of Claim 4.3.

Proof of Claim 4.3. We modify M such that it queries the oracle Sn with its output before it
terminates. Now, M is a (q(n) + 1)-query algorithm, and by the assumption q(n) + 1 ≤ L(n), if
M(1n) solves (Sn,Pn) then HITOPPAD

M(1n),n occurs. By Claim 4.5 we deduce

Pr
[
MOPPAD (1n) solves (Sn,Pn)

]
≤ Pr

[
HITOPPAD

M(1n),n

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1
.

4.3 Solving Oracle-Aided Unique-TFNP Instances Relative to OPPAD

Proof of Claim 4.4. Fix the oracle OPPAD = {(Sn,Pn)}n∈N and let C = {Genn, Cn}n∈N be an
oracle-aided unique-TFNP instance that satis�es the correctness requirement stated in De�nition
4.1, where each of Genn and Cn contains at most q(n) oracle gates for any n ∈ N. Consider the
following oracle-aided algorithm A that on input an index σ produced by GenOPPAD

n would like to �nd
an input x ∈ {0, 1}n such that COPPAD

n (σ, x) = 1. The algorithm A initializes two empty sets, QS and

23



QP, which at any point in time will be consistent with the functions S = {Sn}n∈N and P = {Pn}n∈N,
respectively. That is, the set QS will contain pairs of the form (α, β) where S|α|(α) = β, and the set
QP will contain pairs of the form (β, α) where P|β|(β) = α. The algorithm A performs the following
steps for q(n) + 1 iterations:

Step 1. The algorithm A �nds an oracle ÕPPAD =
{(

S̃n, P̃n
)}

n∈N
and values r̃ ∈ {0, 1}∗ and

x̃ ∈ {0, 1}n subject to the following three requirements:

� ÕPPAD is consistent with the sets QS and QP. That is, for every (α, β) ∈ QS it holds that
S̃|α|(α) = β, and for every (β, α) ∈ QP it holds that P̃|β|(β) = α.

� GenÕPPAD
n (r̃) = σ.

� CÕPPAD
n (σ, x̃) = 1.

Step 2. The algorithm A computes ỹ = COPPAD
n (σ, x̃), and if ỹ = 1 then it outputs x̃ and terminates.

Step 3. The algorithm A queries the oracle OPPAD with all inputs to ÕPPAD-gates in the computa-

tions GenÕPPAD
n (r̃) and CÕPPAD

n (σ, x̃), and adds these queries to the sets QS and QP.

That is, for every input α to an S̃-gate in the computation GenÕPPAD
n (r̃) or in the computation

CÕPPAD
n (σ, x̃), the algorithm A computes β = S|α|(α), and adds the pair (α, β) to the set QS.

Similarly, for every input β to a P̃-gate in the computation GenÕPPAD
n (r̃) or in the computation

CÕPPAD
n (σ, x̃), the algorithm A computes α = P|β|(β), and adds the pair (β, α) to the set QP.

If the algorithm A did not return an output during the above iterations, then it outputs ⊥. In terms
of the number of oracle queries made by A, observe that step 1 does not require any oracle queries,
while steps 2 and 3 require at most 3q(n) queries. Therefore, the total number of queries made by
A is (q(n) + 1) · 3q(n) = O(q(n)2), as required.

Moreover, given oracle access a PSPACE-complete oracle, the algorithm A can be implemented

to run in time q(n)2 ·poly(n). To see this, we observe that there exists an oracle ÕPPAD that satis�es
the requirements in step 1 and can be described in space polynomial in q(n). This is because the

only queries of ÕPPAD that matter are those in the sets QS and QP, and the queries performed in the

computations GenÕPPAD
n (r̃) and CÕPPAD

n (σ, x̃). Therefore, the algorithm can be e�ciently computed
using an oracle that decides the following PSPACE language:(σ,QS, QP, i, b)

∣∣∣∣∣∣
The ith bit of (x̃, Q′) is b, where (ÕPPAD, r̃, x̃) is lexicographically �rst
tuple satisfying the requirements in step 1 with respect to (σ,QS, QP),

and Q′ is the set of queries described in step 3

 ,

which allows discovering the input x̃ required in step 2, as well as the queries required in step 3.
In the remainder of this proof, we show that A is always successful in one of its q(n)+1 iterations.

This follows from the following claim:

Claim 4.6. Let x∗ ∈ {0, 1}n be the unique input such that COPPAD
n (σ, x∗) = 1. Then, in each iteration,

at least one of the following events occur:

� In step 2 of the iteration A outputs x∗.

� During step 3 of the iteration A adds to QS or QP a new OPPAD-query that is performed in the

computation COPPAD
n (σ, x∗).

24



We now show that Claim 4.6 indeed guarantees that A is always successful when repeating steps
1�3 above for q(n) + 1 iterations. Let x∗ ∈ {0, 1}n be the unique input such that COPPAD

n (σ, x∗) = 1,
and assume that in the �rst q(n) iterations A does not output x∗ in step 2. Claim 4.6 implies that
in each of these q(n) iterations A adds to QS or QP a new OPPAD-query that is performed in the
computation COPPAD

n (σ, x∗). Since this computation contains at most q(n) oracle queries to OPPAD,
at the end of the �rst q(n) iterations we are guaranteed that all of these queries are included in the

sets QS and QP. Therefore, in the �nal iteration, for any ÕPPAD that will be chosen in step 1 it holds

that CÕPPAD
n (σ, x∗) = 1 since ÕPPAD is chosen to be consistent with QS and QP, and by uniqueness

this is the only solution to CÕPPAD
n (σ, ·) = 1. Thus, in step 2 of this iteration A is guaranteed to

output x∗. We now conclude the proof of Claim 4.4 by proving Claim 4.6.

Proof of Claim 4.6. Let x∗ ∈ {0, 1}n be the unique input such that COPPAD
n (σ, x∗) = 1, and assume

towards a contradiction that in some iteration j ∈ [q(n) + 1] the following two events occur:

� In step 2 of the iteration A does not output x∗. In particular, this implies that for the input
x̃ that A �nds in this iteration it holds that x̃ 6= x∗.

� During step 3 of the iteration A does not add to QS or QP a new OPPAD-query that is performed
in the computation COPPAD

n (σ, x∗). In particular, all inputs to S̃-gates and P̃-gates in the

computation GenÕPPAD
n (r̃) and all inputs to S̃-gates and P̃-gates in the computation CÕPPAD

n (σ, x̃)
are either already in the sets QS and QP, respectively, at the beginning of the jth iteration, or
are not used as inputs to S-gates or P-gates in the computation COPPAD

n (σ, x∗).

We now show that, in fact, there exists an oracle O′PPAD, which is a source-or-sink instance, such

that σ is a valid output of Gen
O′

PPAD
n but C

O′
PPAD

n (σ, x∗) = C
O′

PPAD
n (σ, x̃) = 1. This contradicts the

correctness requirement stated in De�nition 4.1, asking that Cn(α, ·) has a unique solution for any
valid index σ and relative to any source-or-sink oracle. The oracle O′PPAD = {(S′n,P′n)}n∈N is de�ned
as follows (according to the following 4 types of possible inputs):

� Type 1 inputs: For every pair (α, β) ∈ QS we set S′|α|(α) = β, and for every pair (β, α) ∈ QP

we set P′|β|(β) = α.

Note that since QS and QP are consistent withOPPAD, and ÕPPAD is consistent with QS and QP,
then for all type 1 inputs α and β it holds that S′(α) = S(α) = S̃(α) and P′(β) = P(β) = P̃(β).

� Type 2 inputs: For every input α that is used as input to an S-gate in the computation
COPPAD
n (σ, x∗) and (α, ·) /∈ QS, we set S

′(α) = S(α). Similarly, for every input β that is used as
input to a P-gate in the computation COPPAD

n (σ, x∗) and (β, ·) /∈ QP, we set P
′(β) = P(β).

� Type 3 inputs: For every input α that is used as input to a S̃-gate in the computation

GenÕPPAD
n (r̃) or in the computation CÕPPAD

n (σ, x̃) and (α, ·) /∈ QS, we set S
′(α) = S̃(α). Similarly,

for every input β that is used as input to a P̃-gate in the computation GenÕPPAD
n (r̃) or in the

computation CÕPPAD
n (σ, x̃) and (β, ·) /∈ QP, we set P

′(β) = P̃(β).

� Type 4 inputs: For any other inputs α and β we set S′(α) and P′(β) to arbitrary values (e.g.,
we set them to 0|α| and 0|β|, respectively).

First, note that the oracle O′PPAD is indeed a source-or-sink instance since its successor and prede-
cessor functions are well de�ned (i.e., the above 4 types of inputs are indeed a partition of the input

25



space). Relative to O′PPAD, however, it holds that Gen
O′

PPAD(r̃) = GenÕPPAD
n (r̃) = σ (i.e., σ is a valid in-

dex relative to O′PPAD), but C
O′

PPAD
n (σ, x∗) = COPPAD

n (σ, x∗) = 1 and C
O′

PPAD
n (σ, x̃) = CÕPPAD

n (σ, x̃) = 1.

Recall that x∗ 6= x̃ and this contradicts the fact that C
O′

PPAD
n (σ, ·) has a unique solution.

This settles the proof of Claim 4.4.

4.4 Proof of Theorem 4.2

Proof of Theorem 4.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-
average distribution of unique-TFNP instances from a hard-on-average distribution of source-or-sink
instances (recall De�nition 4.1), where C = {Genn, Cn}n∈N. Claim 4.4 guarantees an oracle-aided
algorithm A that runs in polynomial time TA(n) such that

Pr
[
AOPPAD (1n, σ) = x∗ s.t. COPPAD

n (σ, x∗) = 1
]

= εA(n)

for all n ∈ N, where εA(n) = 1, and the probability is taken over the choice of the oracle OPPAD and
over the choice of σ ← GenOPPAD

n (). De�nition 4.1 then guarantees that

Pr
[
MA,PSPACE,OPPAD (1n) solves (Sn,Pn)

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where M runs in time TM (n), and the probability is taken over
the choice of the oracle OPPAD = {(Sn,Pn)}n∈N.

The algorithmM may invoke A on various security parameters (i.e., in generalM is not restricted
to invoking A only on security parameter n), and we denote by `(n) the maximal security parameter
on which M invokes A (when M itself is invoked on security parameter n). Thus, viewing MA as a
single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle OPPAD,
its running time TMA(n) satis�es TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke A
at most TM (n) times, and the running time of A on each such invocation is at most TA(`(n))). In

particular, viewing M ′
def
= MA

PSPACE
as a single oracle-aided algorithm that has oracle access to the

oracle OPPAD, implies that M ′ is a q(n)-query algorithm where q(n) = TMA(n). Claim 4.3 then
implies that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · L(n)

2n − q(n)− 1
.

There are now two possible cases to consider:

Case 1: 2n/4 ≤ q(n). In this case, noting that `(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

The running time TA(n) of the adversary A (when given access to a PSPACE-complete oracle) is
some �xed polynomial in n, and therefore TM (n) ≥ 2ζn for some constant ζ > 0.

Case 2: 2n/4 > q(n). In this case we have that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ (q(n) + 1) · 2n/2

2n − q(n)− 1
≤ 1

2n/10
,

and since TA(n) is some �xed polynomial in n (and εA(n) is a constant) we obtain that εM,1(nc) ·
εM,2(n) ≤ 2−n/10 for some constant c > 1.

26



5 One-Way Functions Do Not Imply Bounded-TFNP Hardness

In this section we prove that there is no fully black-box construction of a hard-on-average distribution
of TFNP instances having a bounded number of solutions from a one-way function. Our result is
obtained by presenting a distribution of oracles relative to which the following two properties hold:

1. There exists a one-way function.

2. There are no hard-on-average distributions of TFNP instances having a bounded number of
solutions. Speci�cally, our result will apply to any sub-exponential number of solutions.

Recall that a TFNP instance with bounded number k(·) of solutions, denoted a k-bounded TFNP
instance (see De�nitions 2.3 and 2.5), is of the form {Genn, Cn}n∈N, where for every n ∈ N and for
every index σ produced by Genn it holds that Cn(σ, ·) : {0, 1}n → {0, 1}, and there is at least one
and at most k(n) distinct inputs x ∈ {0, 1}n such that Cn(σ, x) = 1 (any one of these x's is a
solution). In particular, as discussed in Section 4, any valid SVL instance yields a 1-bounded TFNP
instance (i.e., a unique-TFNP instance as de�ned in Section 4), and therefore our result rules out
fully black-box constructions of a hard-on-average distribution of SVL instances from a one-way
function. Similarly, any source-or-sink instance which consists of at most (k + 1)/2 disjoint lines
yields a k-bounded TFNP instance, and therefore our result rules out fully black-box constructions
of a hard-on-average distribution of source-or-sink instances with a bounded number of disjoint lines
from a one-way function.

In this section we model a one-way function as a sequence f = {fn}n∈N, where for every n ∈ N
it holds that fn : {0, 1}n → {0, 1}n. The following de�nition tailors the standard notion of a fully
black-box construction to the speci�c primitives under consideration.

De�nition 5.1. A fully black-box construction of a hard-on-average distribution of k-bounded
TFNP instances from a one-way function consists of a sequence of polynomial-size oracle-aided
circuits C = {Genn, Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·), and functions
εM,1(·) and εM,2(·), such that the following conditions hold:

� Correctness: For any function f = {fn}n∈N, for any n ∈ N, and for any index σ produced
by Genfn, there exists at least one and at most k(n) distinct inputs x ∈ {0, 1}n such that

Cfn(σ, x) = 1.

� Black-box proof of security: For any function f = {fn}n∈N, for any oracle-aided algorithm
A that runs in time TA = TA(n), and for any function εA(·), if

Pr
[
Af (1n, σ) = x s.t. Cfn(σ, x) = 1

]
≥ εA(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of σ ← Genfn()
and over the internal randomness of A, then

Pr
[
MA,f (fn(x)) ∈ f−1

n (fn(x))
]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of M .

We note that, as in De�nitions 3.1 and 4.1, we split the security loss in the above de�nition to an
adversary-dependent security loss and an adversary-independent security loss, as this allows us to
capture constructions where one of these losses is super-polynomial whereas the other is polynomial.
Equipped with the above de�nition we prove the following theorem:

27



Theorem 5.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-average dis-

tribution of k-bounded TFNP instances from a one-way function. Then, at least one of the following

properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduction's running time,

is exponential).

3. εM,1(k(n) ·nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security loss is exponential).

In particular, Theorem 5.2 rules out standard �polynomial-time polynomial-loss� reductions re-
sulting in at most 2n

o(1)
solutions. That is, if TM (n), εM,1(n) and εM,2(n) are all polynomials in

n, then the number k(n) of solutions must be at least sub-exponential in n (i.e., k(n) ≥ 2n
Θ(1)

).
In addition, if the number k(n) of solutions is constant, the running time TM (·) of the reduction is
sub-exponential, and the adversary-dependent security loss εM,1(·) is polynomial (all as in [BPR15]),
then the adversary-independent security loss εM,2(·) must be exponential (thus even ruling out con-
structions based on one-way functions with sub-exponential hardness).

5.1 Proof Overview

In what follows we �rst describe the oracle, denoted f , on which we rely for proving Theorem 5.2.
Then, we describe the structure of the proof, showing that relative to the oracle f there exists a
one-way function, but there are no hard-on-average bounded-TFNP instances. For the remainder of
this section we remind the reader that a q-query algorithm is an oracle-aided algorithm A such that
for any oracle O and input x ∈ {0, 1}∗, the computation AO(x) consists of at most q(|x|) oracle calls
to O.

The oracle f . The oracle f is a sequence {fn}n∈N where for every n ∈ N the function fn : {0, 1}n →
{0, 1}n is sampled uniformly from the set of all functions mapping n-bit inputs to n-bit outputs.

Part I: f is a one-way function. We prove the following standard claim stating that the oracle
f is an exponentially-hard one-way function.

Claim 5.3. For every q(n)-query algorithm M it holds that

Pr
[
Mf (fn(x)) ∈ f−1

n (fn(x))
]
≤ 2(q(n) + 1)

2n − q(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of x ← {0, 1}n, and
over the choice of the oracle f = {fn}n∈N as described above.

Part II: Solving oracle-aided bounded-TFNP instances relative to f . We show that any
oracle-aided k-bounded TFNP instance C = {Cn}n∈N, where each Cn is a circuit that contains at
most q(n) oracle gates, can always be solved by an algorithm that issues roughly k(n) · q(n)2 oracle
queries. We prove the following claim:

Claim 5.4. Let C = {Genn, Cn}n∈N be an oracle-aided k(n)-bounded TFNP instance, where Genn
and Cn are circuits that contain at most q(n) oracle gates each for every n ∈ N. If C satis�es the

correctness requirement stated in De�nition 5.1, then there exists an O(k(n) · q(n)2)-query algorithm

A such that

Pr
[
Af (1n, σ) = x s.t. Cfn(σ, x) = 1

]
= 1

28



for all n ∈ N, where the probability is taken over the choice of the oracle f = {fn}n∈N as described

above and over the choice of σ ← Genfn(). Moreover, the algorithm A can be implemented in time

k(n) · q(n)2 · poly(n) given access to a PSPACE-complete oracle.

Our proof of Claim 5.4, which is provided in Section 5.3, is obtained by further generalizing our
extension of Rudich's classic proof technique [Rud88]. As discussed in Section 4.1, by extending
and re�ning Rudich's proof technique once again, we show that his approach allows to rule out even
constructions of bounded-TFNP instances.

5.2 f is a One-Way Function

Proof of Claim 5.3. LetM be a q(n)-query algorithm, �x n ∈ N, and �x (f)−n = {fi}i∈N\{n} (i.e.,
we �x the entire oracle f except for the nth function fn). Without loss of generality, by viewing M
as a (q(n) + 1)-query algorithm, we may assume that M always queries fn with its output. For any
y ∈ {0, 1}n and for every i ∈ [q(n) + 1] denote by αi(y) the random variable corresponding to the ith
query made byM to fn whenM is given y as input (note that since we do not place any restriction on
the running time ofM we can assume without loss of generality thatM is deterministic). Therefore,

Pr
[
Mf (y) ∈ f−1

n (y)
]
≤ Pr

[
α1(y) ∈ f−1

n (y)
]

+

q(n)∑
i=1

Pr
[
αi+1(y) ∈ f−1

n (y)
∣∣α1(y), . . . , αi(y) /∈ f−1

n (y)
]
,

where y = fn(x), and the probability is taken over the choice of the nth function fn : {0, 1}n →
{0, 1}n and over the choice of x← {0, 1}n.

For bounding the probability of the event α1(y) ∈ f−1
n (y), note that this event corresponds to

the fact that M , when given input y = fn(x) and without any information on the uniformly chosen
x ∈ {0, 1}n, manages to produce an input α1(y) that fn maps to y. If α1(y) = x then clearly
α1(y) ∈ f−1

n (y) (but this happen with probability 2−n since x is still uniform from M 's point of
view), and if α1(y) 6= x then the value fn(α1(y)) is completely independent of fn(x) and therefore
uniformly distributed over {0, 1}n. Therefore,

Pr
[
α1(y) ∈ f−1

n (y)
]
≤ Pr [α1(y) = x] + Pr

[
α1(y) ∈ f−1

n (y) |α1(y) 6= x
]

=
1

2n
+

1

2n

=
2

2n
.

For bounding the probability of the event αi+1(y) ∈ f−1
n (y) conditioned on α1(y), . . . , αi(y) /∈

f−1
n (y) we follow a similar argument. Without loss of generality, we assume that α1(y), . . . , αi+1(y)
are all distinct, and then it holds that:

� Given that α1(y), . . . , αi(y) /∈ f−1
n (y) then from M 's point of view the value x is uniformly

distributed over the set {0, 1}n \ {α1(y), . . . , αi(y)}. Therefore

Pr
[
αi+1(y) = x

∣∣α1(y), . . . , αi(y) /∈ f−1
n (y)

]
=

1

2n − i
.

� Given that α1(y), . . . , αi(y) /∈ f−1
n (y) and αi+1(y) 6= x, we have that αi+1(y) /∈ {x, α1(y), . . . ,

αi(y)} based on our assumption that the queries are all distinct. This implies that the random

29



variable fn(αi+1(y)) is completely independent of fn(x), fn(α1(y)), . . . , fn(αi(y)) and therefore
uniformly distributed over {0, 1}n. That is,

Pr
[
αi+1(y) ∈ f−1

n (y)
∣∣α1(y), . . . , αi(y) /∈ f−1

n (y) ∧ αi+1(y) 6= x
]

=
1

2n
.

Therefore,

Pr
[
αi+1(y) ∈ f−1

n (y)
∣∣α1(y), . . . , αi(y) /∈ f−1

n (y)
]

≤ Pr
[
αi+1(y) = x

∣∣α1(y), . . . , αi(y) /∈ f−1
n (y)

]
+ Pr

[
αi+1(y) ∈ f−1

n (y)
∣∣α1(y), . . . , αi(y) /∈ f−1

n (y) ∧ αi+1(y) 6= x
]

=
1

2n − i
+

1

2n

≤ 2

2n − i
.

We conclude that

Pr
[
Mf (y) ∈ f−1

n (y)
]
≤

q(n)∑
i=0

2

2n − i

≤ 2(q(n) + 1)

2n − q(n)
.

5.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to f

Proof of Claim 5.4. Fix the oracle f = {fn}n∈N and let C = {Genn, Cn}n∈N be an oracle-aided
k-bounded TFNP instance that satis�es the correctness requirement stated in De�nition 5.1, where
each of Genn and Cn contains at most q(n) oracle gates for any n ∈ N. Consider the following
oracle-aided algorithm A that on input an index σ produced by Genfn would like to �nd an input
x ∈ {0, 1}n such that Cfn(σ, x) = 1. The algorithm A initializes an empty set Q, which at any point
in time will contain pairs of the form (α, β) where β = f(α) (i.e., the set Q is always consistent with
f). The algorithm A performs the following steps for q(n) + 1 iterations:

Step 1. The algorithm A �nds a function g subject to the following three requirements:

� g is consistent with Q.

� There exists a value r ∈ {0, 1}∗ such that Gengn(r) = σ.

� Among all functions g that satisfy the �rst two requirements, choose the one that maxi-
mizes the number kg of solutions to the instance C

g
n(σ, ·) (i.e., kg is the number of distinct

inputs x ∈ {0, 1}n such that Cgn(α, x) = 1).

Step 2. The algorithm A �nds a value r ∈ {0, 1}∗ such that Gengn(r) = σ, and �nds the distinct
inputs x1, . . . , xkg ∈ {0, 1}n for which Cgn(σ, xi) = 1 for every i ∈ [kg].

Step 3. For every i ∈ [kg], the algorithm A computes Cfn(σ, xi). If there exists an i ∈ [kg] for which

Cfn(σ, xi) = 1, then A outputs the �rst such xi and terminates.

Step 4. The algorithmA queries f with all inputs to g-gates in the computations Gengn(r), Cgn(σ, x1),
. . . , Cgn(σ, xkg), and adds these queries to the set Q.

30



If the algorithm A did not return an output during the above iterations, then it outputs ⊥. In
terms of the number of oracle queries made by A, observe that steps 1 and 2 do not require any
oracle queries, while each of steps 3 and 4 require at most q + k · q queries7. Therefore, the total
number of queries made by A is at most 2(k + 1) · q(q + 1) = O(k · q2), as required.

Moreover, given oracle access a PSPACE-complete oracle, the algorithm A can be implemented to
run in time k(n) ·q(n)2 ·poly(n). To see this, we observe that there exists an oracle g that satis�es the
requirements in step 1 and can be described in space polynomial in q(n) and k(n). This is because the
only queries of g that matter are those in the set Q and the queries performed in the computations
Gengn(r), Cgn(σ, x1), . . . , Cgn(σ, xkg). Therefore, the algorithm can be e�ciently computed using an
oracle that decides the following PSPACE language:(σ,Q, i, b)

∣∣∣∣∣∣∣∣
The ith bit of (x1, . . . , xkg , Q

′) is b, where (g, r) is the lexicographically �rst
tuple satisfying the requirements in step 1 with respect to (σ,Q),

x1, . . . , xkg are the inputs decribed in step 2,
and Q′ is the set of queries described in step 4

 ,

which allows discovering the inputs x1, . . . , xkg required in step 3, as well as the queries required in
step 4.

In the remainder of this proof, we show that A is always successful in one of its q + 1 iterations.
This follows from the following claim:

Claim 5.5. Fix any x∗ ∈ {0, 1}n such that Cfn(σ, x∗) = 1. Then, in each iteration, at least one of

the following events occur:

� During step 3 of the iteration A �nds an input x ∈ {0, 1}n such that Cfn(σ, x) = 1.

� During step 4 of the iteration A adds to Q a new f -query that is performed in the computation

Cfn(σ, x∗).

We now show that Claim 5.5 indeed guarantees that A is always successful when repeating steps
1�4 above for q + 1 iterations. Fix any x∗ ∈ {0, 1}n such that Cfn(σ, x∗) = 1, and assume that in
the �rst q iterations A does not �nd a solution in step 3. Claim 5.5 implies that in each of these q
iterations A adds to the set Q a new f -query that is performed in the computation Cfn(σ, x∗). Since
this computation contains at most q oracle queries to f , at the end of the �rst q iterations we are
guaranteed that all of these queries are included in the set Q. Therefore, in the �nal iteration, for
any g that will be chosen in step 1 it holds that Cgn(σ, x∗) = 1 since g is chosen to be consistent with
Q. Thus, in this iteration x∗ ∈ {x1, . . . , xkg}, and therefore there exists at least one index i ∈ [kg]

for which Cfn(σ, xi) = 1, which implies that A outputs a solution. We now conclude the proof of
Claim 5.4 by proving Claim 5.5.

Proof of Claim 5.5. Fix any x∗ ∈ {0, 1}n such that Cfn(σ, x∗) = 1, and assume towards a contra-
diction that in some iteration j ∈ [q + 1] the following two events occur:

� During step 3 of the iteration A does not �nd an input x ∈ {0, 1}n such that Cfn(σ, x) = 1. In
particular, this implies that x∗ /∈ {x1, . . . , xkg}.

� During step 4 of the iteration A does not add to Q a new f -query that is performed in the com-
putation Cfn(σ, x∗). That is, all inputs to g-queries in the computations Gengn(r), Cgn(σ, x1), . . . ,
Cgn(σ, xkg) are either already in the set Q at the beginning of the jth iteration, or are not used

as inputs to f -queries in the computation Cfn(σ, x∗).

7Since Q is always consistent with f , and since C is a k-bounded TFNP instance, then in each iteration it holds
that kf ≤ kg ≤ k.

31



We now show that, in fact, at the beginning of the jth iteration there was a function g′ such that:
(1) g′ is consistent with Q, (2) σ is a valid index produced by Geng

′
n , and (3) there are at least

kg + 1 inputs x ∈ {0, 1}n for which Cg
′
n (σ, x) = 1. This contradicts the fact that, in step 1 of the

jth iteration, A chose g that maximizes the number kg of solutions to the instance Cgn(·) among all
functions that are consistent with Q and for which σ is a valid index. The function g′ is de�ned as
follows (according to the following 4 types of possible inputs):

� Type 1 inputs: For every input α that appears in the set Q we set g′(α) = f(α).

Note that since Q is consistent with f , and g is consistent with Q, then for all type 1 inputs
α it holds that g′(α) = f(α) = g(α).

� Type 2 inputs: For every input α that is used as input to an f -query in the computation
Cfn(σ, x∗) and is not in the set Q, we set g′(α) = f(α).

� Type 3 inputs: For every input α that is used as input to a g-query in the computations
Gengn(r), Cgn(σ, x1), . . . , Cgn(σ, xkg) and is not in the set Q, we set g′(α) = g(α).

� Type 4 inputs: For any other input α we set g′(α) to an arbitrary value.

For the function g′ it holds that Geng
′
n (r) = Gengn(r) = σ, Cg

′
n (σ, x∗) = Cfn(σ, x∗) = 1, and Cg

′
n (σ, xi) =

Cgn(σ, xi) = 1 for every i ∈ [kg]. Thus, the values x
∗, x1, . . . , xkg are kg + 1 distinct solutions to the

instance Cg
′
n (σ, ·).

This settles the proof of Claim 5.4.

5.4 Proof of Theorem 5.2

Proof of Theorem 5.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-
average distribution of k-bounded TFNP instances from a one-way function (recall De�nition 5.1),
where C = {Genn, Cn}n∈N. Claim 5.4 guarantees an oracle-aided algorithm A that runs in time
TA(n) = k(n) · poly(n) such that

Pr
[
APSPACE,f (1n, σ) = x s.t. Cfn(σ, x) = 1

]
= εA(n)

for all n ∈ N, where εA(n) = 1, and the probability is taken over the choice of the oracle f = {fn}n∈N
and over the choice of σ ← Genfn(). De�nition 5.1 then guarantees that

Pr
[
MA,PSPACE,f (fn(x)) ∈ f−1

n (fn(x))
]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where M runs in time TM (n), and the probability is taken over
the choice of the oracle f = {fn}n∈N and over the choice of x← {0, 1}n.

The algorithmM may invoke A on various security parameters (i.e., in generalM is not restricted
to invoking A only on security parameter n), and we denote by `(n) the maximal security parameter
on which M invokes A (when M itself is invoked on security parameter n). Thus, viewing MA as
a single oracle-aided algorithm that has access to a PSPACE-complete oracle and to the oracle f ,
its running time TMA(n) satis�es TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke A
at most TM (n) times, and the running time of A on each such invocation is at most TA(`(n))). In

particular, viewing M ′
def
= MA

PSPACE
as a single oracle-aided algorithm that has oracle access to the

32



oracle f , implies that M ′ is a q(n)-query algorithm where q(n) = TMA(n). Claim 5.3 then implies
that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ 2(q(n) + 1)

2n − q(n)
.

There are now two possible cases to consider:

Case 1: 2n/4 ≤ q(n). In this case, noting that `(n) ≤ TM (n), we obtain that

2n/4 ≤ q(n) = TMA(n) ≤ TM (n) · TA(`(n)) ≤ TM (n) · TA(TM (n)).

Since TA(n) = k(n) · poly(n) for some �xed polynomial poly(n), then it holds that

2n/4 ≤ k (TM (n)) · poly(TM (n))

which implies that either k(TM (n)) ≥ 2n/8 or TM (n) ≥ 2ζn for some constant ζ > 0.

Case 2: 2n/4 > q(n). In this case we have that

εM,1 (TA(n)/εA(n)) · εM,2(n) ≤ 2(q(n) + 1)

2n − q(n)
≤ 1

2n/2
,

and since TA(n) = k(n) · poly(n) for some �xed polynomial poly(n) (and εA(n) = 1) we obtain that
εM,1(k(n) · nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1.

6 Public-Key Cryptography Does Not Imply Bounded-TFNP Hardness

In this section we generalize the result proved in Section 5 from considering a one-way function to
considering a collection of injective trapdoor functions as the underlying building block. This proves,
in particular, Theorem 1.4 and Corollary 1.5. Speci�cally, we prove that there is no fully black-box
construction of a hard-on-average distribution of TFNP instances having a bounded number of
solutions from a collection of injective trapdoor functions. Our result is obtained by presenting a
distribution of oracles relative to which the following two properties hold:

1. There exists a collection of injective trapdoor functions.

2. There are no hard-on-average distributions of TFNP instances having a bounded number of
solutions. Speci�cally, our result will apply to any sub-exponential number of solutions, exactly
as in Section 5.

From the technical perspective, instead of considering an oracle f = {fn}n∈N where for every
n ∈ N the function fn : {0, 1}n → {0, 1}n is sampled uniformly, we consider a more structured
oracle, OTDF, corresponding to a collection of injective trapdoor functions. Proving that the oracle
OTDF is indeed hard to invert is quite standard (based, for example, on the approach of Haitner
et al. [HHR+15]). However, showing that relative to the oracle OTDF we can solve bounded-TFNP
instances is signi�cantly more challenging than the corresponding proof relative to the oracle f .

We say that τ =
{(

KGn,Fn,F
−1
n

)}
n∈N is a collection of injective trapdoor functions if for every

n ∈ N and for every pair (td, pk) produced by KGn(), the function Fn(pk, ·) : {0, 1}n → {0, 1}m
is injective (for some m ≥ n) and the function F−1

n (td, ·) computes it inverse whenever an inverse
exists (i.e., it outputs ⊥ on all values y that are not in the image of the function Fn(pk, ·)) � see
Section 2.2 for more details. The following de�nition tailors the standard notion of a fully black-box
construction to the speci�c primitives under consideration.

33



De�nition 6.1. A fully black-box construction of a hard-on-average distribution of k-bounded
TFNP instances from a collection of injective trapdoor functions consists of a sequence of polynomial-
size oracle-aided circuits C = {Genn, Cn}n∈N, an oracle-aided algorithm M that runs in time TM (·),
and functions εM,1(·) and εM,2(·), such that the following conditions hold:

� Correctness: For any collection τ of injective trapdoor functions, for any n ∈ N, and for any
index σ produced by Genτn, there exists at least one and at most k(n) distinct inputs x ∈ {0, 1}n
such that Cτn(σ, x) = 1.

� Black-box proof of security: For any collection τ =
{(

KGn,Fn,F
−1
n

)}
n∈N of injective trap-

door functions, for any oracle-aided algorithm A that runs in time TA = TA(n), and for any
function εA(·), if

Pr [Aτ (1n, σ) = x s.t. Cτn(σ, x) = 1] ≥ εA(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of σ ← Genτn()
and x← {0, 1}n, and over the internal randomness of A, then

Pr
[
MA,τ (pk,Fn(pk, x)) = x

]
≥ εM,1 (TA(n)/εA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of (td, pk)←
KGn(), x← {0, 1}n, and over the internal randomness of M .

We note that, as in De�nitions 3.1, 4.1 and 5.1, we split the security loss in the above de�nition to
an adversary-dependent security loss and an adversary-independent security loss, as this allows us to
capture constructions where one of these losses is super-polynomial whereas the other is polynomial.
Equipped with the above de�nition we prove the following theorem (generalizing Theorem 5.2):

Theorem 6.2. Let (C,M, TM , εM,1, εM,2) be a fully black-box construction of a hard-on-average

distribution of k-bounded TFNP instances from a collection of injective trapdoor functions. Then, at

least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. k(TM (n)) ≥ 2n/8 (i.e., the number of solutions, as a function of the reduction's running time,

is exponential).

3. εM,1(k(n) ·nc) · εM,2(n) ≤ 2−n/2 for some constant c > 1 (i.e., the security loss is exponential).

In particular, and similarly to Theorem 5.2, Theorem 6.2 rules out standard �polynomial-time
polynomial-loss� reductions resulting in at most 2n

o(1)
solutions. That is, if TM (n), εM,1(n) and

εM,2(n) are all polynomials in n, then the number k(n) of solutions must be at least sub-exponential

in n (i.e., k(n) ≥ 2n
Θ(1)

). In addition, if the number k(n) of solutions is constant, the running
time TM (·) of the reduction is sub-exponential, and the adversary-dependent security loss εM,1(·)
is polynomial (all as in [BPR15]), then the adversary-independent security loss εM,2(·) must be
exponential (thus even ruling out constructions based on one-way functions with sub-exponential

hardness). Given our claims in the remainder of this section, the proof of Theorem 6.2 is derived in
a nearly identical to proof of 5.2, and is therefore omitted.

34



6.1 Proof Overview

In what follows we �rst describe the oracle, denoted OTDF, on which we rely for proving Theorem
6.2. Then, we describe the structure of the proof, and explain the main challenges in generalizing
our proof from Section 5.

The oracle OTDF. The oracle OTDF is a sequence of the form
{(

Gn,Fn,F
−1
n

)}
n∈N that is sampled

via the following process for every n ∈ N:

� The function Gn : {0, 1}n → {0, 1}2n is sampled uniformly from the set of all functions mapping
n-bit inputs to n-bit outputs.

� For every pk ∈ {0, 1}n the function Fn(pk, ·) : {0, 1}n → {0, 1}2n is sampled uniformly from
the set of all injective functions mapping n-bit inputs to 2n-bit outputs.

� For every td ∈ {0, 1}n and y ∈ {0, 1}2n we set

F−1
n (td, y) =

{
x if Fn(Gn(td), x) = y
⊥ if no such x exists

.

Part I: OTDF is a hard-to-invert collection of injective trapdoor functions. We show
that the oracle OTDF naturally de�nes a hard-on-average collection of injective trapdoor functions.
Speci�cally, the key-generation algorithm on input 1n samples td ← {0, 1}n uniformly at random,
and computes pk = Gn(td) (where Fn and F−1

n are used as the evaluation and inversion algorithms).
We prove the following claim stating that collection of injective trapdoor functions is exponentially
secure.

Claim 6.3. For every q(n)-query algorithm M it holds that

Pr
[
MOTDF (Gn(td),Fn(Gn(td), x)) = x

]
≤ 4(q(n) + 1)

2n − q(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of td ← {0, 1}n,
x← {0, 1}n, and the oracle OTDF = {(Gn,Fn,F−1

n )}n∈N.

The proof of Claim 6.3, which is provided in Section 6.2, is based on the observation that the
inversion oracle F−1

n is not very useful. Speci�cally, the function Gn itself is uniformly chosen and
thus hard to invert, and therefore any algorithm M that is given as input (pk,Fn(pk, x)) should not
be able to �nd the trapdoor td corresponding to pk = Gn(td). Combining this with the fact that the
function Fn(pk, ·) is uniformly chosen and length doubling, such an algorithm M should not be able
to �nd any y in its image, unless y was obtained as the result of a previous query (and, in this case,
its inverse is already known). Therefore, the task of computing x given (pk,Fn(pk, x)) essentially
reduces to that of inverting a uniformly-sampled injective function.

Part II: Solving oracle-aided bounded-TFNP instances relative to OTDF. We show that
any oracle-aided k-bounded TFNP instance C = {Genn, Cn}n∈N, where Genn and Cn contain at
most q(n) oracle gates, and the input to each such gate is of length at most q(n) bits, can always
be solved with constant probability by an algorithm that issues roughly k(n)3 · q(n)9 oracle queries.
We prove the following claim:

Claim 6.4. Let C = {Genn, Cn}n∈N be an oracle-aided k-bounded TFNP instance, where for every

n ∈ N it holds that Genn and Cn are circuits that contain at most q(n) oracle gates, and the input

35



to each such gate is of length at most q(n) bits. If C satis�es the correctness requirement stated in

De�nition 6.1, then there exists a O(q(n)9 · k(n)3)-query algorithm A such that

Pr
[
AOTDF (1n, σ) = x s.t. COTDF

n (σ, x) = 1
]
≥ 1

2

for all n ∈ N, where the probability is taken over the choice of the oracle OTDF = {(Gn,Fn,F−1
n )}n∈N

as described above and over the choice of σ ← GenOTDF
n (). Moreover, the algorithm A can be imple-

mented in time q(n)9 · k(n)3 · poly(n) given access to a PSPACE-complete oracle.

The proof of Claim 6.4, which is provided in Section 6.3, generalizes the proof of Claim 5.4
(which holds relative to the oracle f de�ned in Section 5). Recall that for the proof of Claim 5.4
we introduced an adversary that runs for q + 1 iterations, with the goal of discovering a new oracle
query from the computation Cfn(σ, x∗) in each iteration where x∗ is any �xed solution of the instance

Cfn(σ, ·). This approach is based on the observation if no progress is made then there exists an oracle

g′ for which the instance Cg
′
n (σ, ·) has too many solutions. The oracle oracle g′ can be constructed by

�pasting together� partial information on the actual oracle f with full information on an additional
oracle g that is partially-consistent with f .

When dealing with the oracle OTDF, which is clearly more structured than just a single random
function f , this argument becomes much more subtle. One may hope to follow a similar iteration-
based approach and argue that if no progress is made then there exists an oracle O′TDF for which

the instance C
O′

TDF
n (σ, ·) has too many solutions. However, �pasting together� partial information

on the actual oracle OTDF with full information on an additional injective trapdoor function oracle
that is partially-consistent with OTDF may completely fail, as the resulting oracle may not turn out
injective at all.

Our main observation is that although pasting together the two oracles may not always work
(as in Section 5), it does work with high probability over the choice of the oracle OTDF. By closely
examining the way the two oracles are combined, we show that if the resulting oracle is not a valid
collection of injective trapdoor functions, then one of the following �bad� events must have occurred:

� The adversary was able to �guess� an element pk for which there exists td such that pk = Gn(td)
without previously querying Gn with td.

� The adversary was able to �guess� a public key pk and an element y for which there exists an
input x such that y = Fn(pk, x) without previously querying Fn with (pk, x).

We show that the probability of each of these two events is small, as we choose both Gn and all
functions Fn(pk, ·) to be length increasing and uniformly distributed.

6.2 OTDF is a Collection of Injective Trapdoor Functions

The proof of Claim 6.3, as discussed above, is based on the observation that the inversion oracle F−1
n is

not very useful. Speci�cally, we show that with high probability the behavior of F−1
n is predictable,

which means that it can be simulated without actually calling the oracle. In more details, for
an oracle-aided algorithm M we denote by HitInvOTDF

M,n the event in which the computation MOTDF

manages to call F−1
n with an input (td, y) which results with x 6= ⊥ without previously calling Fn

with (Gn(td), x). We prove the following claim:

Claim 6.5. For every q-query algorithm M and for every n ∈ N it holds that

Pr
[
HitInvOTDF

M,n

]
≤ q

2n − q
,

36



where the probability is taken over the choice of the oracle OTDF =
{(

Gi,Fi,F
−1
i

)}
i∈N as described

above. Moreover, q can be a bound on the number of calls to Fn and F−1
n only.

This intuitively means that the access to the oracle F−1
n does not strengthen the power of M by

much, because with high probability it can be simulated by answering ⊥ for every query to F−1
n that

cannot be determined by previous queries to Fn.

Proof. Let M be a q-query algorithm, �x (OTDF)−n = {(Gi,Fi,F−1
i )}i∈N\{n} (i.e., we �x the entire

oracle OTDF except for the nth instance), and �x Gn : {0, 1}n → {0, 1}2n. Thus, we only consider
queries to the oracles Fn and F−1

n . For every i ∈ [q] denote by Mi the following i-query algorithm:
Invoke the computationMOTDF , and terminate once i oracle queries have been performed. Note that
since we do not place any restriction on the running time of M and since the oracle distribution
is known, we can assume without loss of generality that M is deterministic. Therefore, for every
i ∈ [q] and every �xing of the oracle OTDF, the computationMOTDF

i is the �pre�x� of the computation
MOTDF which contains its �rst i oracle queries. This implies that

Pr
[
HitInvOTDF

M,n

]
≤ Pr

[
HitInvOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitInvOTDF

Mi+1,n

∣∣∣HitInvOTDF
Mi,n

]
,

where the probability is taken over the choice of Fn.
For bounding the probability of the event HitInvOTDF

M1,n
, note that this event corresponds to the fact

that M , without any information on Fn : {0, 1}2n × {0, 1}n → {0, 1}2n (since no oracle queries have
been issued so far), manages to produce an oracle query to F−1

n of the form q1 = (td1, y1) where
there exists x such that Fn(Gn(td1), x) = y1.

Since the value q1 is �xed by the description of M , and we are now sampling Fn(Gn(td1), ·) :
{0, 1}n → {0, 1}2n uniformly from the set of all injective functions mapping n-bit inputs to 2n-bit
outputs, we have that

Pr
[
HitInvOTDF

M1,n

]
≤
(

4n−1
2n−1

)(
4n

2n

) =
2n

4n
.

For bounding the probability of the event HitInvOTDF
Mi+1,n

given that HitInvOTDF
Mi,n

occurred, we �x the

queries q1, . . . , qi and their answers. Each query qj is to Fn and of the form (pk, x) or to F−1
n and of the

form (td, y). Suppose the query qi+1 is to F
−1
n and of the form (tdi+1, yi+1). Let pki+1 = Gn(tdi+1), let

x1, . . . , xa be the second arguments of all previous queries to Fn of the form (pki+1, x), let y1, . . . , ya
be the answers to those queries, and let ya+1, . . . , yb be the second arguments of all previous queries to

F−1
n of the form (tdi+1, y) such that F−1

n (tdi+1, yj) = ⊥ (so b ≤ i). By the assumption that HitInvOTDF
Mi,n

we know that for every other query to F−1
n of the form (tdi+1, y) holds F−1

n (tdi+1, y) ∈ {x1, . . . , xa},
thus we are now sampling a function {0, 1}n \ {x1, . . . , xa} → {0, 1}2n \ {y1, . . . , yb} uniformly from
the set of all injective functions on those domain and range. So we have that

Pr
[
HitInvOTDF

Mi,n

]
≤ 2n − a

4n − b
≤ 2n

4n − i
.

37



We conclude that

Pr
[
HitInvOTDF

M,n

]
≤ Pr

[
HitInvOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitInvOTDF

Mi+1,n

∣∣∣HitInvOTDF
Mi,n

]
≤

q−1∑
i=0

2n

4n − i

≤ q · 2n

4n − q
≤ q

2n − q
.

Given an oracle OTDF, sampled as described above, we let ÔTDFn = {(Gi,Fi,F−1
i )}i∈N\{n} ∪

{(Fn,Gn)} denote the oracle that is obtained by omitting F−1
n . For proving Claim 6.3 we rely on

the following two claims, stating that the functions Gn and Fn(pk, ·) are hard to invert relative to

ÔTDFn.

Claim 6.6. For every q(n)-query algorithm M it holds that

Pr
[
M ÔTDFn(Gn(td)) ∈ G−1

n (Gn(td))
]
≤ 2(q(n) + 1)

2n − q(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of td ← {0, 1}n and

the choice of the oracle ÔTDFn as described above. Moreover, q(n) can be a bound on the number of

queries to Gn only.

Claim 6.7. For every q(n)-query algorithm M and every pk ∈ {0, 1}2n it holds that

Pr
[
M ÔTDFn(pk,Fn(pk, x)) = x

]
≤ q(n) + 1

2n − q(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of the oracle ÔTDFn as

described above. Moreover, q(n) can be a bound on the number of queries to Fn(pk, ·) only.

The proofs of Claims 6.6 and 6.7 and are nearly identical to the proof of Claim 5.3 (where the
factor 2 is not present in the bound of Claim 6.7 because x is the only preimage of Fn(pk, ·)), and
are therefore omitted. We now deduce the proof of Claim 6.3:

Proof of Claim 6.3. Suppose M is a q(n)-query algorithm, and consider the following algorithm

N with oracle access to ÔTDFn and input pk = Gn(td) where td← {0, 1}n:

1. The algorithm N samples x← {0, 1}n.
2. The algorithm N obtains y = Fn(pk, x).

3. The algorithm N runs x̃ ← MOTDF(pk, y), where queries are answered according to ÔTDFn,
except for queries to F−1

n of the form (td′, y′) which are answered in the following manner:

(a) If Gn(td′) = pk then the algorithm N outputs td′ and terminates.

(b) If a previous query to Fn of the form (Gn(td′), x′) resulted with y′, then algorithm N
answers the query with x′.

38



(c) Otherwise, then algorithm N answers the query with answer ⊥.
4. If x̃ = x then output 1, and otherwise output 0.

If N terminates on step 3.(a) then it manages to invert Gn, therefore by Claim 6.6 it holds that

Pr [N teminates on step 3.(a)] ≤ 2(q(n) + 1)

2n − q(n)
.

We may see step 3 of the algorithm N as an algorithm by itself with input (pk, Fn(pk, x)), oracle

access to ÔTDFn and output x̃, so by Claim 6.7 it holds that

Pr [N outputs 1] = Pr [Step 3 of N outputs x] ≤ q(n) + 1

2n − q(n)
.

Finally, if N gives M a wrong oracle answer for a query to F−1
n (i.e. not consistent with (Gn,Fn))

then HitInvOTDF

M(pk,y),n occurs. The computation of M(pk, y), including the computation of pk and y,

consists of at most q(n) + 1 queries to Fn and F−1
n , therefore by Claim 6.5 it holds that

Pr[N gives M a wrong oracle answer] ≤ q(n) + 1

2n − q(n)
.

Now, if MOTDF(pk,Fn(pk, x)) = x then either the algorithm N outputs 1 or the simulation done by
N goes wrong (i.e., N terminates or gives a wrong oracle answer to M). Therefore, it holds that

Pr
[
MOTDF (Gn(td),Fn(Gn(pk), x)) = x

]
≤ Pr[N outputs 1]

+ Pr[N gives M a wrong answer]

+ Pr[N teminates on step 3.(a)]

≤ 4(q(n) + 1)

2n − q(n)
.

6.3 Solving Oracle-Aided Bounded-TFNP Instances Relative to OTDF

As discussed above, our generalization of the attack presented in Section 5 relies on the fact that it
should be infeasible to �guess� elements in the images of the functions Gn and Fn(pk, ·). Let M be
an oracle-aided algorithm, and during the runtime of M we allow it to make �guesses� of the form
pk ∈ {0, 1}2i or of the form (pk, y) where pk ∈ {0, 1}2i and y ∈ {0, 1}2i for some i. When counting
the number of oracle calls we also include the number of guesses. We denote by HitFRangeOTDF

M,n

the event in which M guesses (pk, y) for which there exists x ∈ {0, 1}n with Fn(pk, x) = y without
querying Fn with (pk, x) before. Similarly, we denote by HitGRangeOTDF

M,n the event in whichM guesses

pk ∈ {0, 1}2n for which there exists td ∈ {0, 1}n with pk = Gn(td) without querying Gn on td before.
In Section 6.4 we prove the following claims:

Claim 6.8. Denote by ÔTDFn the oracle obtained by omitting F−1
n from the oracle OTDF. For every

q-query algorithm M it holds that

Pr

[
HitFRange

ÔTDFn
M,n

]
≤ q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1
i )}i∈N as described

above. Moreover, q can be a bound on the number of guesses and calls to Fn.

39



Claim 6.9. For every q-query algorithm M it holds that

Pr
[
HitInvOTDF

M,n ∨ HitFRangeOTDF
M,n

]
≤ 2q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1
i )}i∈N as described

above. Moreover, q can be a bound on the number of guesses and calls to Fn and F−1
n .

Claim 6.10. For every q-query algorithm M it holds that

Pr
[
HitGRangeOTDF

M,n

]
≤ q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1
i )}i∈N as described

above. Moreover, q can be a bound on the number of guesses and calls to Gn.

Equipped with Claims 6.8�6.10 we now prove Claim 6.4.

Proof of Claim 6.4. Let p(n) = 1/2 (although the proof goes through for any value of p(n)). To
simplify the notation, we denote Gn(td), Fn(pk, x) and F−1

n (td, y) by G(td), F(pk, x) and F−1(td, y).
There is no ambiguity since n can be determined by the size of the input. Let C = {(Genn, Cn)}n∈N
be an oracle-aided k-bounded TFNP instance that satis�es the correctness requirement stated in
De�nition 6.1, where Genn and Cn contain at most q(n) oracle gates each, and the input to each
such gate is of length at most q(n) bits. We modify the circuit such that each query to F−1 with input
(td, y) is preceded by a query to G with input td. This may double q(n), but to ease the notation
we will assume that q(n) is a bound on the number of gates in the modi�ed circuits. Consider the
following oracle-aided algorithm A that on input 1n and σ tries to �nd an input x ∈ {0, 1}n such
that COTDF

n (σ, x) = 1:

1. The algorithmA sets a(n) = log
(

12 (q(n) + 1)3 · (k(n) + 1) /p(n) + 4 (q(n) + 1)2 · (k(n) + 1)
)
.

2. The algorithm A initialize empty lists QG and QF.
The set QG will contain pairs of the form (td, pk) where Gi(td) = pk and the set QF will
contain triplets of the form (pk, x, y) where Fi(pk, x) = y and triplets of the form (pk,⊥, y)
where y /∈ Fi(pk, {0, 1}i).

3. The algorithm A initialize an empty list Check.
The list Check will contain inputs x ∈ {0, 1}n to the oracle-aided circuit Cn.

4. For every 1 ≤ i < a(n), the algorithm A queries Gi and Fi on all possible inputs, and adds
these queries to the sets QG and QF respectively.

5. The algorithm A performs the following steps for q(n) + 1 iterations:

(a) The algorithm A �nds an oracle ÕTDF = {(G̃n, F̃n, F̃−1
n )}n∈N that is valid, consistent with

QG and QF, has r̃ such that σ = GenÕTDF
n (r̃), and maximizes the number of solutions k̃ to

the instance CÕTDF
n (σ, ·) under those constraints (i.e., k̃ is the number of distinct inputs

x ∈ {0, 1}n such that CÕTDF
n (σ, x) = 1).

(b) The algorithm A �nds the distinct inputs x1, . . . , xk̃ ∈ {0, 1}
n for which CÕTDF

n (σ, xi) = 1

for every i ∈ [k̃], and r̃ for which σ = Genn(r̃).

(c) The algorithm A adds x1, . . . , xk̃ to the list Check.

(d) For every query td to a G̃-gate in the computations GenÕTDF
n (r̃), CÕTDF

n (σ, x1), . . . ,

CÕTDF
n (σ, x

k̃
), the algorithm A guesses the value G̃(td).8

8For an explanation regarding the guessing mechanism we refer the reader to the beginning of this section.

40



(e) For every query (pk, x) to a F̃-gate in the computations GenÕTDF
n (r̃), CÕTDF

n (σ, x1), . . . ,

CÕTDF
n (σ, x

k̃
), the algorithm A guesses the pair (pk, F̃(pk, x)).

(f) For every query (td, y) to a F̃−1-gate in the computations GenÕTDF
n (r̃), CÕTDF

n (σ, x1), . . . ,

CÕTDF
n (σ, x

k̃
), the algorithm A guesses the pair (G̃(td), y).

(g) The algorithm A queries G with all inputs to G̃-gates in the computations GenÕTDF
n (r̃),

CÕTDF
n (σ, x1), . . . , CÕTDF

n (σ, x
k̃
), and adds these queries to the set QG.

(h) For every query (pk, x) to a F̃-gate in the computations GenÕTDF
n (r̃), CÕTDF

n (σ, x1), . . . ,

CÕTDF
n (σ, x

k̃
) resulting with y = F̃(pk, x):

i. The algorithm A queries F with (pk, x) and adds (pk, x,F(pk, x)) to QF.

ii. If (td, pk) ∈ QG for some td then the algorithm A queries F−1 with (td, y) and adds
(pk,F−1(td, y), y) to QF.

(i) For every query (td, y) to a F̃−1-gate in the computations GenÕTDF
n (r̃), CÕTDF

n (σ, x1), . . . ,

CÕTDF
n (σ, x

k̃
) resulting with x = F̃−1(td, y) which might be ⊥:

i. The algorithm A queries F−1 with (td, y) and adds (G(td),F−1(td, x), y) to QF.

ii. If x 6= ⊥ then the algorithmA queries F with (G(td), x) and adds (G(td), x,F(G(td), x))
to QF.

6. For every x ∈ Check, the algorithm A computes COTDF
n (σ, x), and if COTDF

n (σ, x) = 1 then it
outputs x and terminates.

7. If no such x was found then the algorithm A outputs ⊥.

In terms of the number of oracle queries made by A, observe that in step 4 the algorithm require at
most 2 ·2a(n) + 3 ·23a(n) = O(q(n)9 ·k(n)3/p(n)3) queries, in each iteration the algorithm A performs
at most 2·q ·(k+1) oracle queries, and in step 6 the algorithm performs at most (q+1)·q ·(k+1) oracle
queries. Therefore the algorithm A in total performs at most O(q(n)9 ·k(n)3/p(n)3) queries. For later
analysis we note that including the oracle queries in the computation σ ← GenOTDF

n (), including the
guesses of A, and excluding the queries in step 4 which are only to the oracles {(Gi,Fi,F−1

i )}1≤i<a(n),
the algorithm performs at most 4 · (q+ 1)2 · (k+ 1) queries. Moreover, given oracle access a PSPACE-
complete oracle, the algorithm A can be implemented to run in time q(n)9 · k(n)3 · poly(n) (in a
manner that is similar to that described in the proof of Claim 5.4).

Fix OTDF = (G,F,G−1), �x σ ← GenOTDF
n and �x some x∗ ∈ {0, 1}n such that COTDF

n (σ, x∗) = 1.
Fix an iteration j ∈ [q(n) + 1] of the algorithm A. Let QF and QG denote these variables in the

beginning of that iteration, let ÕTDF = (G̃, F̃, F̃−1) be the oracle chosen in that iteration, let x1, . . . , xk̃

be the solutions to CÕTDF
n (σ, ·) and assume that none of them is x∗, and let r̃ such that σ = GenÕTDF

n (r̃).

Let Q
G̃
be the G̃-gate queries done in the computations GenÕTDF

n (r̃), CÕTDF
n (σ, x1), . . . , CÕTDF

n (σ, x
k̃
),

and let Q
F̃
be the F̃-gate and F̃−1-gate queries done in these computations, i.e. for each query to F̃

of the form (pk, x) we store (pk, x, F̃(x, pk)) and for each query to F̃−1 of the form (td, y) we store
(G̃(td), F̃−1(td, y), y) (where the middle value might be ⊥). Note that in the case of query to F̃−1 it
holds that (td, G̃(td)) ∈ Q

G̃
due to our assumption that each query to F̃−1 is preceded by a matching

query to G̃. Let Q∗F and Q∗G be the queries done in the computation COTDF
n (σ, x∗).

If there exists a valid oracle O′TDF which is consistent with QF, QG, QF̃
, Q

G̃
, Q∗F and Q∗G then

we get that O′TDF has at least k̃ + 1 solutions - x1, . . . , xk̃ and x
∗. Along with the fact that O′TDF is

consistent with QF and QG and that σ = Gen
O′

TDF
n (r̃), we get a contradiction to the maximality of

ÕTDF. Therefore, at least one of the following cases holds:

41



Case 1 There exists td and pk 6= pk′ for which (td, pk) ∈ Q
G̃
but (td, pk′) ∈ Q∗G. This means that

the pair (td, pk′) is currently not contained in QG but the algorithm A will add it in step 5.(g).

Case 2 There exists pk, x 6= ⊥ and y 6= y′ for which (pk, x, y) ∈ Q
F̃
but (pk, x, y′) ∈ Q∗F. This

means that the triplet (pk, x, y′) is currently not contained in QF but the algorithm A will add
it in step 5.(h).i or 5.(i).ii.

Case 3 There exists pk, x 6= x′ and y for which (pk, x, y) ∈ Q
F̃
but (pk, x′, y) ∈ Q∗F. This case splits

into two cases:

Case 3.a If x′ 6= ⊥ then that means that A managed to guess (pk, y) in step 5.(e) or 5.(f)
without querying F on (pk, x′) before.

Case 3.b If x′ = ⊥ then (pk,⊥, y) is in Q∗F due to a query to F−1 of the form (td, y) where
G(td) = pk. If (td, pk) ∈ QG then the algorithm A will add (pk,⊥, y) to QF in step 5.(h).ii
or 5.(i).i. If (td, pk) /∈ QG that means that A managed to guess pk in step 5.(d) without
querying G on td before.

Case 4 There exists pk ∈ {0, 1}2i for which there are more than 22i−2i pairs of the form (pk,⊥, y) in
QF∪QF̃

∪Q∗F. Let Y = {y|@xF(pk, x) = y} and Ỹ = {y|(pk,⊥, y) ∈ Q
F̃
}. Then |Y ∪Ỹ | > 22i−2i

but |Y | = 22i − 2i, hence there exists y ∈ Ỹ with y /∈ Y , thus the algorithm A manages to
guess (pk, y) in step 5.(e) or 5.(f) for which there exists x with F(pk, x) = y without querying
F on (pk, x) before.

So we get that in every iteration, at least one of the followings happens:

� The algorithm A �nds a solution to COTDF
n (σ, ·) (which will be checked in step 6).

� The event HitGRangeOTDF

A(1n,Genn()),i occurs to some a(n) ≤ i ≤ q(n).

� The event HitFRangeOTDF

A(1n,Genn()),i occurs to some a(n) ≤ i ≤ q(n).

� The algorithm A adds a new pair from Q∗G to QG.

� The algorithm A adds a new triplet from Q∗F to QF.

Denoting HITOTDF
n =

∨q(n)
i=da(n)e(HitGRange

OTDF

A(1n,Genn()),i ∨HitFRange
OTDF

A(1n,Genn()),i), and �xing OTDF

and randomness for Genn for which HITOTDF
n does not occur, we get that after q(n) iteration, if A

did not �nd a solution to COTDF
n (σ, ·) yet, then QG ⊃ Q∗G and QF ⊃ Q∗F. Therefore, in the q(n) + 1

iteration holds CÕTDF
n (σ, x∗) = 1 and the algorithm A �nds the solution x∗ to COTDF

n (σ, ·). Therefore,

Pr
[
AOTDF (1n, σ) = x s.t. COTDF

n (σ, x) = 0
]

≤
q(n)∑

i=da(n)e

Pr
[
HitGRangeOTDF

A(1n,Genn()),i ∨ HitFRangeOTDF

A(1n,Genn()),i

]

≤
q(n)∑

i=da(n)e

3 · 4 · (q(n) + 1)2 · (k(n) + 1)

2i − 4 · (q(n) + 1)2 · (k(n) + 1)

≤ 12(q(n) + 1)3 · (k(n) + 1)

2a(n) − 4 · (q(n) + 1)2 · (k(n) + 1)

≤ p(n).

where the probability is taken over the choice of the oracle OTDF = {(Gn,Fn,F−1
n )}n∈N and over the

choice of σ ← GenOTDF
n (). This settles the proof of Claim 6.4.

42



6.4 Proofs of Claims 6.8�6.10

Proof of Claim 6.8. LetM be a q-query algorithm. Fix n ∈ N, (OTDF)−n = {(Gi,Fi,F−1
i )}i∈N\{n}

(i.e., we �x the entire oracle OTDF except for the nth instance), and Gn : {0, 1}n → {0, 1}n. Thus, we
only consider queries to the oracles Fn and guesses. We may assume without loss of generality that
if M queried Fn with some (pk, x) and got y as a result, then it will not make the guess (pk, y). For

every i ∈ [q] denote by Mi the following i-query algorithm: Invoke the computation M ÔTDFn , and
terminate once i oracle queries have been performed. Note that since we do not place any restriction
on the running time of M and since the oracle distribution is known, we can assume without loss of
generality that M is deterministic. Therefore, for every i ∈ [q] and every �xing of the oracle OTDF,

the computation M
ÔTDFn
i is the �pre�x� of the computation M ÔTDFn which contains its �rst i oracle

queries. This implies that

Pr

[
HitFRange

ÔTDFn
M,n

]
≤ Pr

[
HitFRange

ÔTDFn
M1,n

]
+

q−1∑
i=1

Pr

[
HitFRange

ÔTDFn
Mi+1,n

∣∣∣∣HitFRangeÔTDFn
Mi,n

]
,

where the probability is taken over the choice of Fn.

For bounding the probability of the event HitFRange
ÔTDFn
M1,n

, note that this event corresponds to

the fact thatM , without any information on Fn : {0, 1}n×{0, 1}n → {0, 1}2n (since no oracle queries
have been issued so far), manages to guess (pk1, y1) for which there exists x such that Fn(pk1, x) = y1.

Since the guess (pk1, y1) is �xed by the description of M , and we are now sampling Fn(pk1, ·) :
{0, 1}n → {0, 1}2n uniformly from the set of all injective functions mapping n-bit inputs to 2n-bit
outputs, we have that

Pr

[
HitFRange

ÔTDFn
M1,n

]
≤
(

4n−1
2n−1

)(
4n

2n

) =
2n

4n
.

For bounding the probability of the event HitFRange
ÔTDFn
Mi+1,n

given that HitFRange
ÔTDFn
Mi,n

occurred,
we �x the queries or guesses q1, . . . , qi, and �x the answers to the queries. Each qj is a query to
Fn and of the form (pk, x) or a guess of the form (pk, y). Suppose the query qi+1 is a guess of
the form (pki+1, yi+1). Let x1, . . . , xa be the second argument of all previous queries to Fn of the
form (pki+1, x), let y1, . . . , ya be the answers to these queries, and let ya+1, . . . , ya+b be the second
argument of all previous guesses of the form (pki+1, y) (so a + b ≤ i). By the assumption that

HitFRange
ÔTDFn
Mi,n

we know that ya+1, . . . , ya+b are not in the image of Fn(pki+1, ·), thus we are now

sampling a function {0, 1}n \ {x1, . . . , xa} → {0, 1}2n \ {y1, . . . , ya+b} uniformly from the set of all
injective functions on those domain and range. So we have that

Pr

[
HitFRange

ÔTDFn
Mi,n

]
≤ 2n − a

4n − a− b
≤ 2n

4n − i
.

43



We conclude that

Pr

[
HitFRange

ÔTDFn
M,n

]
≤ Pr

[
HitFRange

ÔTDFn
M1,n

]
+

q−1∑
i=1

Pr

[
HitFRange

ÔTDFn
Mi+1,n

∣∣∣∣HitFRangeÔTDFn
Mi,n

]

≤
q−1∑
i=0

2n

4n − i

≤ q · 2n

4n − q
≤ q

2n − q
.

Proof of Claim 6.9. Consider the following algorithm N with oracle access to ÔTDFn:

1. The algorithm N runs the algorithmM , where oracle queries are answered according to ÔTDFn,
except for queries to F−1

n of the form (td′, y′) which are answered in the following manner:

(a) If a previous query to Fn of the form (Gn(td′), x′) resulted with y′, then algorithm N
answers the query with x′.

(b) Otherwise, then algorithm N answers the query with answer ⊥.
2. The algorithm N outputs the output of the execution of the algorithm M .

If HitInvOTDF
M,n does not occur then N answers all the oracle calls correctly, therefore HitFRangeOTDF

M,n

occurs if and only if HitFRange
ÔTDFn
N,n occurs. Hence by Claim 6.5 and Claim 6.8 it holds that

Pr
[
HitInvOTDF

M,n ∨ HitFRangeOTDF
M,n

]
= Pr

[
HitInvOTDF

M,n

]
+ Pr

[
HitInvOTDF

M,n ∨ HitFRangeOTDF
M,n

]
= Pr

[
HitInvOTDF

M,n

]
+ Pr

[
HitInvOTDF

M,n ∨ HitFRange
ÔTDFn
N,n

]
≤ Pr

[
HitInvOTDF

M,n

]
+ Pr

[
HitFRange

ÔTDFn
N,n

]
≤ 2q

2n − q

where the probability is taken over the choice of the oracle OTDF = {(Gi,Fi,F−1
i )}i∈N.

Proof of Claim 6.10. Let M be a q-query algorithm, �x (OTDF)−n = {(Gi,Fi,F−1
i )}i∈N\{n} (i.e.,

we �x the entire oracle OTDF except for the nth instance), and �x Fn : {0, 1}2n×{0, 1}n → {0, 1}2n.
Thus, we only consider queries to the oracle Gn. For every i ∈ [q] denote by Mi the following
i-query algorithm: Invoke the computation MOTDF , and terminate once i oracle queries have been
performed. Note that since we do not place any restriction on the running time of M and since
the oracle distribution is known, we can assume without loss of generality that M is deterministic.
Therefore, for every i ∈ [q] and every �xing of the oracle OTDF, the computation MOTDF

i is the
�pre�x� of the computation MOTDF which contains its �rst i oracle queries. This implies that

Pr
[
HitGRangeOTDF

M,n

]
≤ Pr

[
HitGRangeOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitGRangeOTDF

Mi+1,n

∣∣∣HitGRangeOTDF
Mi,n

]
,

44



where the probability is taken over the choice of Fn.
For bounding the probability of the event HitGRangeOTDF

M1,n
, note that this event corresponds to

the fact that M , without any information on Gn : {0, 1}n → {0, 1}2n (since no oracle queries have
been issued so far), manages to guess pk1 ∈ {0, 1}2n for which there exists td ∈ {0, 1}n such that
Gn(td1) = pk. Since the value pk1 is �xed by the description of M , and we are now sampling
Gn : {0, 1}n → {0, 1}2n uniformly from the set of all functions mapping n-bit inputs to 2n-bit
outputs, we have that

Pr
[
HitGRangeOTDF

M1,n

]
≤ 2n

4n
.

For bounding the probability of the event HitGRangeOTDF
Mi+1,n

given that HitGRangeOTDF
Mi,n

occurred,
we �x the queries and guesses q1, . . . , qi. Let td1, . . . , tda be the queries to Gn and pka+1, . . . , pki
be the guesses. We �x the answers pk1, . . . , pka to the queries. By the assumption that M is
deterministic we know that the next query or guess qi+1 is �xed. Assume that it is a guess pki+1.

By the assumption that HitGRangeOTDF
Mi,n

we know that pka+1, . . . , pki are not in the range of G, thus

we are sampling a function {0, 1}n \ {td1, . . . tda} → {0, 1}2n \ {pka+1, . . . , pki} uniformly from the
set of all functions on those domain and range. So we have that

Pr
[
HitGRangeOTDF

Mi,n

]
≤ 2n − a

4n − (i− a)
≤ 2n

4n − i
.

We conclude that

Pr
[
HitGRangeOTDF

M,n

]
≤ Pr

[
HitGRangeOTDF

M1,n

]
+

q−1∑
i=1

Pr
[
HitGRangeOTDF

Mi+1,n

∣∣∣HitInvOTDF
Mi,n

]
≤

q−1∑
i=0

2n

4n − i

≤ q · 2n

4n − q
≤ q

2n − q
.

Acknowledgments. We thank Nir Bitansky, Tim Roughgarden, Omer Paneth, and the anonymous
reviewers for their insightful comments and suggestions.

References

[AKV04] T. Abbot, D. Kane, and P. Valiant. On algorithms for Nash equilibria. Unpublished
manuscript available at http://web.mit.edu/tabbott/Public/final.pdf, 2004.

[AS15] G. Asharov and G. Segev. Limits on the power of indistinguishability obfuscation and
functional encryption. In Proceedings of the 56th Annual IEEE Symposium on Founda-

tions of Computer Science, pages 191�209, 2015.

[AS16] G. Asharov and G. Segev. On constructing one-way permutations from indistinguisha-
bility obfuscation. In Proceedings of the 13th Theory of Cryptography Conference, pages
512�541, 2016.

45

http://web.mit.edu/tabbott/Public/final.pdf


[BCE+95] P. Beame, S. A. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative com-
plexity of NP search problems. In Proceedings of the 27th Annual ACM Symposium on

Theory of Computing, pages 303�314, 1995.

[BGH+15] Z. Brakerski, C. Gentry, S. Halevi, T. Lepoint, A. Sahai, and M. Tibouchi. Cryptanalysis
of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845, 2015.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In Advances in Cryptology � CRYPTO

'01, pages 1�18, 2001.

[BGI+12] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. Journal of the ACM, 59(2):6, 2012.

[BM09] B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal - An O(n2)-query
attack on any key exchange from a random oracle. In Advances in Cryptology � CRYPTO

'09, pages 374�390, 2009.

[BPR15] N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of �nding a
Nash equilibrium. In Proceedings of the 56th Annual IEEE Symposium on Foundations

of Computer Science, pages 1480�1498, 2015.

[BPW16] N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos � trapdoor
permutations from indistinguishability obfuscation. In Proceedings of the 13th Theory of

Cryptography Conference, pages 474�502, 2016.

[CDT09] X. Chen, X. Deng, and S. Teng. Settling the complexity of computing two-player Nash
equilibria. Journal of the ACM, 56(3), 2009.

[CFL+16] J. H. Cheon, P.-A. Fouque, C. Lee, B. Minaud, and H. Ryu. Cryptanalysis of the new
CLT multilinear map over the integers. Cryptology ePrint Archive, Report 2016/135,
2016.

[CGH+15] J. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova, A. Sahai,
and M. Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In Advances in Cryptology � CRYPTO '15, pages 247�266, 2015.

[CHL+15] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In Advances in Cryptology � EUROCRYPT '15, pages 3�12, 2015.

[CIY97] S. A. Cook, R. Impagliazzo, and T. Yamakami. A tight relationship between generic
oracles and type-2 complexity theory. Information and Computation, 137(2):159�170,
1997.

[CJL16] J. H. Cheon, J. Jeong, and C. Lee. An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without an encoding of zero. Cryptology ePrint Archive,
Report 2016/139, 2016.

[CLR15] J. H. Cheon, C. Lee, and H. Ryu. Cryptanalysis of the new CLT multilinear maps.
Cryptology ePrint Archive, Report 2015/934, 2015.

[DGP09] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing
a Nash equilibrium. SIAM Journal on Computing, 39(1):195�259, 2009.

46



[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In Proceedings of the

54th Annual IEEE Symposium on Foundations of Computer Science, pages 40�49, 2013.

[Gol00] O. Goldreich. On security preserving reductions � revised terminology. Cryptology ePrint
Archive, Report 2000/001, 2000.

[Gol01] O. Goldreich. Foundations of Cryptography � Volume 1: Basic Techniques. Cambridge
University Press, 2001.

[GPS16] S. Garg, O. Pandey, and A. Srinivasan. Revisiting the cryptographic hardness of �nding
a Nash equilibrium. In Advances in Cryptology � CRYPTO '16, pages 579�604, 2016.

[HHR+15] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive proto-
cols � Tight lower bounds on the round and communication complexities of statistically
hiding commitments. SIAM Journal on Computing, 44(1):193�242, 2015.

[HJ15] Y. Hu and H. Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive, Report
2015/301, 2015.

[HNY17] P. Hubácek, M. Naor, and E. Yogev. The journey from NP to TFNP hardness. In
Proceedings of the 8th Innovations in Theoretical Computer Science Conference, 2017.

[HPV89] M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. Exponential lower bounds for
�nding brouwer �x points. Journal of Complexity, 5(4):379�416, 1989.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 44�61, 1989.

[Lub96] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, 1996.

[MF15] B. Minaud and P.-A. Fouque. Cryptanalysis of the new multilinear map over the integers.
Cryptology ePrint Archive, Report 2015/941, 2015.

[MSZ16] E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. Cryptology ePrint Archive,
Report 2016/147, 2016.

[Pap94] C. H. Papadimitriou. On the complexity of the parity argument and other ine�cient
proofs of existence. Journal of Computer and System Sciences, 48(3):498�532, 1994.

[RTV04] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryptographic
primitives. In Proceedings of the 1st Theory of Cryptography Conference, pages 1�20,
2004.

[Rud88] S. Rudich. Limits on the Provable Consequences of One-way Functions. PhD thesis,
EECS Department, University of California, Berkeley, 1988.

[Sim98] D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be based
on general assumptions? In Advances in Cryptology � EUROCRYPT '98, pages 334�345,
1998.

47



[SvS04] R. Savani and B. von Stengel. Exponentially many steps for �nding a Nash equilibrium
in a bimatrix game. In Proceedings of the 45th Annual IEEE Symposium on Foundations

of Computer Science, pages 258�267, 2004.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: Deniable en-
cryption, and more. In Proceedings of the 46th Annual ACM Symposium on Theory of

Computing, pages 475�484, 2014.

A Average-Case SVL Hardness and OWFs Do Not Imply Key Agreement

Based on the techniques developed in Section 3, we show that average-case SVL hardness is useless
for constructing a key-agreement protocol in a black-box manner, even when assuming the existence
of one-way functions. Speci�cally, we show that in any black-box construction of a key-agreement
protocol based on a one-way function and a hard-on-average distribution of SVL instances, we can
eliminate the protocol's need for using the SVL instances. This leads to a black-box construction of
key-agreement protocol based on a one-way function, which we can then rule out by invoking the
classic result of Impagliazzo and Rudich [IR89] and its re�nement by Barak and Mahmoody-Ghidary
[BM09].

In this section we model a one-way function as a sequence f = {fn}n∈N, where for every n ∈ N
it holds that fn : {0, 1}n → {0, 1}n. The following de�nition tailors the standard notion of a fully
black-box construction to the speci�c primitives under consideration.

De�nition A.1. A fully black-box construction of a bit-agreement protocol with correctness ρ =
ρ(n) from a one-way function and a hard-on-average distribution of SVL instances consists of a pair
of oracle-aided polynomial-time algorithm (A,B), an oracle-aided algorithm M that runs in time
TM (·), and functions εM,1(·) and εM,2(·), such that the following conditions hold:

� Correctness: For any function f = {fn}n∈N, for any valid SVL instance OSVL, and for any
n ∈ N it holds that

Pr
rA,rB

[
kA = kB

∣∣∣(kA, kB,Trans)← 〈Af,OSVL(1n; rA),Bf,OSVL(1n; rB)〉
]
≥ 1

2
+ ρ(n).

� Black-box proof of security: For any function f = {fn}n∈N, for any valid SVL instance
OSVL = {(Genn, Sn,Vn, L(n))}n∈N, for any oracle-aided algorithm E that runs in time TE(·),
and for any function εE(·), if∣∣∣∣Pr

[
ExpKA(Af,OSVL ,Bf,OSVL),Ef,OSVL

(n) = 1
]
− 1

2

∣∣∣∣ ≥ εE(n)

for in�nitely many values of n ∈ N (recall De�nition 2.8 for the description of the experiment
ExpKA

(Af,OSVL ,Bf,OSVL),Ef,OSVL
), then either

Pr
[
ME,f,OSVL (fn(x)) ∈ f−1

n (fn(x))
]
≥ εM,1 (TE(n)/εE(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of M , or

Pr
[
ME,f,OSVL (1n, σ) solves (Sn(σ, ·),Vn(σ, ·), L(n))

]
≥ εM,1 (TE(n)/εE(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of σ ← Genn()
and over the internal randomness of M .

48



As in De�nition 3.1, we split the security loss in the above de�nition to an adversary-dependent
security loss and an adversary-independent security loss, as this allows us to capture constructions
where one of these losses is super-polynomial whereas the other is polynomial. Equipped with the
above de�nition we prove the following theorem:

Theorem A.2. Let (A,B,M, TM , εM,1, εM,2) be a fully black-box construction of a bit-agreement

protocol with correctness ρ(n) = 1/poly(n), for some (arbitrary) polynomial poly(n), from a one-way

function and a hard-on-average SVL instance. Then, at least one of the following properties holds:

1. TM (n) ≥ 2ζn for some constant ζ > 0 (i.e., the reduction runs in exponential time).

2. εM,1(nc) · εM,2(n) ≤ 2−n/10 for some constant c > 1 (i.e., the security loss is exponential).

As with Theorem 3.2, also here Theorem A.2 rules out (in particular) standard �polynomial-time
polynomial-loss� reductions. More generally, the theorem implies that if the running time TM (·) of
the reduction is sub-exponential and the adversary-dependent security loss εM,1(·) is polynomial (as
expected), then the adversary-independent security loss εM,2(·) must be exponential (thus even ruling
out constructions based on one-way function and SVL instances with sub-exponential hardness).

A.1 Proof Overview

In what follows we �rst describe the oracles, denoted f and OSVL, on which we rely for proving
Theorem A.2, and show that they indeed implement a one-way function and a hard-on-average
distribution of SVL instances, respectively. Then, we show that any bit-agreement protocol that
uses the oracles f and OSVL can be attacked. For the remainder of this section we remind the
reader that a q-query algorithm is an oracle-aided algorithm A such that for any oracle O and input
x ∈ {0, 1}∗, the computation AO(x) consists of at most q(|x|) oracle calls to O.

The oracles f and OSVL. The oracle f is a sequence {fn}n∈N where for every n ∈ N the function
fn : {0, 1}n → {0, 1}n is sampled uniformly from the set of all functions mapping n-bit inputs to
n-bit outputs. The oracle OSVL, sampled independently of f , is as de�ned in Section 3.1. That is,
it is a valid SVL instance {(Sn,Vn, L(n))}n∈N that is sampled via the following process for every
n ∈ N:

� Let L(n) = 2n/2, x0 = 0n, and uniformly sample distinct elements x1, . . . , xL(n) ← {0, 1}n \
{0n}.

� The successor function Sn : {0, 1}n → {0, 1}n is de�ned as

Sn(x) =

{
xi+1 if x = xi for some i ∈ {0, . . . , L(n)− 1}
x otherwise

.

� The veri�cation function Vn : {0, 1}n × [2n]→ {0, 1} is de�ned in a manner that is consistent
with Sn (i.e., Vn is de�ned such that the instance is valid).

The oracles f and OSVL are sampled independently, and therefore we immediately obtain the
following two corollaries from Claims 3.3 and 5.3 (the �rst corollary states that f is indeed hard to
invert relative to f and OSVL, and the second corollary A.4 states that OSVL is indeed a hard-on-
average SVL instance relative to f and OSVL):

Corollary A.3. For any �xing of the oracle OSVL, and for any q(n)-query algorithm M , it holds

that

Pr
[
Mf,OSVL (fn(x)) ∈ f−1

n (fn(x))
]
≤ 2(q(n) + 1)

2n − q(n)

49



for all su�ciently large n ∈ N, where the probability is taken over the choice of x ← {0, 1}n, and
over the choice of the oracle f = {fn}n∈N as described above.

Corollary A.4. For any �xing of the oracle f , and for any q(n)-query algorithm M , where q(n) ≤
L(n)− 1, it holds that

Pr
[
Mf,OSVL (1n) solves (Sn,Vn, L(n))

]
≤ (q(n) + 1) · L(n)

2n − q(n)− 1

for all su�ciently large n ∈ N, where the probability is taken over the choice of the oracle OSVL =
{(Sn,Vn, L(n))}n∈N as described above.

Attacking bit-agreement protocols relative to f and OSVL. We show that for any oracle-aided
bit-agreement protocol (A,B) with correctness ρ(n) = 1/poly(n), in which the parties issue at most
q(n) oracle queries, and for any δ = δ(n) > 0, there exists an attacker that issues roughly q2/δ2

oracle queries, whose output agrees with Alice's output with probability 1/2+ρ(n)−δ(n). We prove
the following claim:

Claim A.5. Let (A,B) be an oracle-aided bit-agreement protocol, in which the parties issue at most

q = q(n) oracle queries, where the input for each query is of length at most q(n) bits, and assume

that

Pr
f,OSVL
rA,rB

[
kA = kB

∣∣∣(kA, kB,Trans)← 〈Af,OSVL(1n; rA),Bf,OSVL(1n; rB)〉
]
≥ 1

2
+ ρ(n)

for all su�ciently large n ∈ N and for some function ρ(n) > 0. Then, for any δ = δ(n) > 0, there
exists an Õ(q2/δ2)-query algorithm E, such that∣∣∣∣Pr

[
ExpKA(Af,OSVL ,Bf,OSVL),Ef,OSVL

(n) = 1
]
− 1

2

∣∣∣∣ ≥ ρ(n)− δ(n)

for all su�ciently large n ∈ N, where the probability is taken over the choice of the oracles f and

OSVL, and over the internal randomness of A and B. Moreover, the algorithm E can be implemented

in time polynomial in n, q(n) and 1/δ(n) given access to a PSPACE-complete oracle.

The proof of the claim, which is provided below, is based on adapting the approach underlying our
proof of Claim 3.4 to the setting of key-agreement protocols, and then invoking the classic result of
Impagliazzo and Rudich [IR89] and its re�nement by Barak and Mahmoody-Ghidary [BM09]. Specif-
ically, as discussed in Section 1.3, during an execution (Af,OSVL ,Bf,OSVL) of a given bit-agreement
protocol, with an overwhelming probability over the choice of the oracle OSVL, the parties A and B
should not query OSVL with any elements on the line 0n → x1 → · · · → xL(n) except for the �rst q

elements x0, x1, . . . , xq−1. This gives rise to a bit-agreement protocol (Ãf , B̃f ) that does not require

access to the oracle OSVL: First, Ã samples a sequence x1, . . . , xq of q values, and sends these values

to B̃. Then, Ã and B̃ run the protocol (Af,OSVL ,Bf,OSVL) by using the values x1, . . . , xq instead of
accessing OSVL. At this point, we have a bit-agreement protocol where the parties have access only
to a random function f , and thus we can apply the attacks of Impagliazzo and Rudich [IR89] and
Barak and Mahmoody-Ghidary [BM09], which we can translate back to attacks on the underlying
protocol. The proof of Theorem A.2 then follows from Corollaries A.3 and A.4 and Claim A.5 in a
manner identical to the proof of Theorem 3.2 (see Section 3.4).

50



A.2 Attacking Key-Agreement Protocols Relative to f and OSVL

In this section we prove Claim A.5. We start by de�ning an event capturing the above intuition of
�hitting� elements on the line sampled for OSVL, similarly to event de�ned in Section 3.

The event HITf,OSVL
M,n . Let the oracles f and OSVL = {(Sn,Vn, L(n))}n∈N be distributed as described

in Section A.1. Let M be a q-query algorithm. We �x some n ∈ N, and consider only the queries
made to Sn and Vn. We denote by αi the random variable corresponding to M 's ith oracle query
if this is an Sn-query, and denote by (αi, ki) the random variable corresponding to M 's ith oracle
query if this is a Vn-query. Let x0, . . . , xL(n) be the line sampled for (Sn,Vn, L(n)). As in Section 3,

we denote by HITf,OSVL
M,n the event in which there exist indices j and i ∈ [L(n)] for which αj = xi but

xi−1 /∈ {α1, . . . , αj−1}. That is, this is the event in which M queries (OSVL)n with some xi before

querying it on xi−1. In particular, note that if the event HITf,OSVL
M,n does not occur, then M does not

query (OSVL)n with xi for i ∈ {q, . . . , L(n)}. Since the oracle OSVL is sampled independently of the
oracle f , we deduce the following corollary from Claim 3.5:

Corollary A.6. For any �xing of the oracle f , for any q-query algorithm M , and for any n ∈ N, it
holds that

Pr
[
HITf,OSVL

M,n

]
≤ q · L(n)

2n − q
where the probability is taken over the choice of the oracle OSVL = {(Sn,Vn, L(n))}n∈N. Moreover, q
can be a bound on the number of calls to Sn and Vn.

Removing the oracle OSVL. Let (A,B) be an oracle-aided bit-agreement protocol as in Claim
A.5. For a loss parameter ε = ε(n) > 0, we de�ne an oracle-aided bit-agreement protocol (Ã, B̃) that
on input security parameter 1n, and with oracle access to f only, works as follows. First, Ã performs
the following initialization routine:

1. Set a(n) = 2 log(q(n)2/ε(n) + 1).

2. For 1 ≤ i ≤ a(n):

(a) Set xi0 = 0i.

(b) Uniformly sample distinct elements xi1, . . . , x
i
L(i) ← {0, 1}

i \ {0i}.

(c) Send the elements xi1, . . . , x
i
L(i) to B̃.

(d) De�ne the successor function S̃i : {0, 1}i → {0, 1}i as

S̃i(x) =

{
xij+1 if x = xij for some j ∈ {0, . . . , L(i)− 1}
x otherwise

,

and de�ne the veri�cation function Ṽi : {0, 1}i×[2i]→ {0, 1} in a manner that is consistent
with S̃i.

3. For a(n) < i ≤ q(n):

(a) Set xi0 = 0i.

(b) Uniformly sample distinct elements xi1, . . . , x
i
q(n) ← {0, 1}

i \ {0i}.

(c) Send the elements xi1, . . . , x
i
q(n) to B̃.

(d) De�ne the successor function S̃i : {0, 1}i → {0, 1}i as

S̃i(x) =

{
xij+1 if x = xij for some j ∈ {0, . . . , q(n)− 1}
x otherwise

,

51



and de�ne the veri�cation function Ṽi : {0, 1}i×[2i]→ {0, 1} in a manner that is consistent
with S̃i.

Next, Ã and B̃ emulate the protocol 〈A(1n),B(1n)〉 with respect to the oracle f and the �fake� oracle

ÕSVL = {(S̃i, Ṽi, L(i))}q(n)
i=1 , and output the outputs of A and B, respectively. We name this phase

the emulation phase. Note that by our assumption, A and B do not query (ÕSVL)i for i > q(n), so
it is okay to leave it unde�ned. After emulating the protocol, Ã and B̃ output what A and B output
respectively. Note that in the protocol (Ã, B̃), the parties issue at most q(n) queries. Also, note that

in the initialization phase, Ã draws
∑ba(n)c

i=1 L(i) + q(n) · (q(n)− ba(n)c) samples, and it holds that

ba(n)c∑
i=1

L(i) + q(n) · (q(n)− ba(n)c) ≤ a(n) · 2a(n)/2 + q(n)2 = Õ(q(n)2/ε(n))

Coupling the protocols. Consider the executions (kA, kB,Trans)← 〈Af,OSVL(1n; rA),Bf,OSVL(1n; rB)〉
and (kÃ, kB̃, T̃rans) ← 〈Ã

f (1n; rÃ), B̃f (1n; rB̃)〉, where f and OSVL are sampled as described above.
We couple these executions in the following way:9

� We sample and use the same oracle f for both executions.

� The randomness of Ã can be split into two part rÃ = (rÃ,1, rÃ,2), where rÃ,1 is the randomness
used in the initialization phase, and rÃ,2 is the randomness used in the emulation phase.

� We couple the randomness of the emulation phase with the randomness of the actual execution
of (A,B) by rÃ,2 = rA and rB̃ = rB.

� We couple the oracle OSVL with rÃ,1 (hence with ÕSVL) as follows:

� For 1 ≤ i ≤ a(n), we remind that Ã uniformly samples distinct elements xi1, . . . , x
i
L(i) ←

{0, 1}i \ {0i}, and that xi0 = 0i. So we set

Si(x) =

{
xij+1 if x = xij for some j ∈ {0, . . . , L(i)− 1}
x otherwise

,

and set Vi in a manner consistent with Si. As a result (OSVL)i = (ÕSVL)i.

� For a(n) < i ≤ q(n), we remind that Ã uniformly samples distinct elements xi1, . . . , x
i
q(n) ←

{0, 1}i\{0i}, and that xi0 = 0i. So we uniformly sample distinct elements xiq(n)+1, . . . , x
i
L(i)

← {0, 1}i \ {0i, xi1, . . . , xiq(n)}, set

Si(x) =

{
xij+1 if x = xij for some j ∈ {0, . . . , L(i)− 1}
x otherwise

,

and set Vi in a manner consistent with Si. As a result, the line of (ÕSVL)i is a pre�x of
the line of (OSVL)i.

� For i > q(n), (OSVL)i is sampled without any coupling.

We split the transcript of the execution of (Ã, B̃) into two parts T̃rans = (T̃rans1, T̃rans2) where

T̃rans1 is the transcript of the initialization phase, and T̃rans2 is the transcript of the emulation

phase. Denote by Same = Same(A,B),n the event in which (kA, kB,Trans) = (k
Ã
, k
B̃
, T̃rans2) holds.

9To couple two probability distributions means to de�ne a joint distribution whose marginals are exactly those two
distributions.

52



We now estimate Pr[Same]. If for every a(n) ≤ i ≤ q(n), HITf,OSVL

〈A(1n),B(1n)〉,i does no occur, then the

emulation phase and the actual execution of (A,B) behave the same, so Same occurs. Hence,

Pr [¬Same] ≤
q(n)∑
i=a(n)

Pr
A,B,f,OSVL

[
HITf,OSVL

〈A(1n),B(1n)〉,i

]

≤
q(n)∑
i=a(n)

q(n) · L(i)

2i − q(n)

≤
q(n)∑
i=a(n)

q(n)

2i/2 − 1

≤ q(n)2

2a(n)/2 − 1
= ε(n).

In particular, it holds that

Pr[kÃ = kB̃] ≥ Pr[kA = kB]− Pr[¬Same] ≥ 1

2
+ ρ(n)− ε(n)

The adversary E. For de�ning the adversary E for attacking the protocol (A,B), we make use of

the aforementioned result of Barak and Mahmoody-Ghidary.

Theorem A.7 ([IR89],[BM09]). Let (Ã, B̃) be an oracle-aided bit-agreement protocol, in which the

parties issue at most q = q(n) oracle queries10. Suppose that

Pr
f,Ã,B̃

[kÃ = kB̃] ≥ 1

2
+ ρ(n)

where the oracle f is sampled as above, and (kÃ, kB̃, T̃rans) ← 〈Ã
f (1n), B̃f (1n)〉. Let 0 < δ(n) <

1
2 + ρ(n). Then, there exists a (16q/δ)2-query adversary Ẽ such that

Pr
f,Ã,B̃

[kÃ = Ẽf (T̃rans)] ≥ 1

2
+ ρ− δ

Moreover, the algorithm Ẽ can be implemented in time polynomial in n, q and 1/δ given access to a

PSPACE-complete oracle.

Now, let Ẽ be the adversary from Theorem A.7 applied to our constructed protocol (Ã, B̃), with
loss of δ(n) = ε(n). We de�ne an adversary E to the protocol (A,B), that on input Trans, and with
oracle access to f and OSVL = {(Sn,Vn, L(n))}n∈N, works as follows:

1. Set a(n) = 2 log(q(n)2/ε(n) + 1).

2. Initialize an empty transcript T̂rans.

3. For 1 ≤ i ≤ a(n):

(a) Set xi0 = 0i.

(b) For j = 1, . . . , L(i): Set xij = Si(x
i
j−1).

10In fact, it is enough to require that each party issues at most q queries.

53



(c) Append xi1, . . . , x
i
L(i) to the transcript T̂rans as they were send from Alice to Bob.

(d) De�ne the successor function Ŝi : {0, 1}i → {0, 1}i as

Ŝi(x) =

{
xij+1 if x = xij for some j ∈ {0, . . . , L(i)− 1}
x otherwise

.

(e) De�ne the veri�cation function V̂i : {0, 1}i × [2i]→ {0, 1} in a manner that is consistent
with Ŝi.

4. For a(n) < i ≤ q(n):

(a) Set xi0 = 0i.

(b) For j = 1, . . . , q(n): Set xij = Si(x
i
j−1).

(c) Append xi1, . . . , x
i
q(n) to the transcript T̂rans as they were send from Alice to Bob.

(d) De�ne the successor function Ŝi : {0, 1}i → {0, 1}i as

Ŝi(x) =

{
xij+1 if x = xij for some j ∈ {0, . . . , q(n)− 1}
x otherwise

.

(e) De�ne the veri�cation function V̂i : {0, 1}i × [2i]→ {0, 1} in a manner that is consistent
with Ŝi.

5. Run kE ← Ẽf ((T̂rans,Trans)) and output kE .

Note that due to our coupling, the de�nition of xij in the algorithm is consistent with the above

de�nition of xij as elements that Ã samples. Also, by our coupling of OSVL and r
Ã,1

, it holds that

T̃rans1 = T̂rans. Furthermore, if the event Same occurs then it holds that T̃rans2 = Trans. Therefore,

in that case the execution of kE ← Ẽf ((T̂rans,Trans)) is the same as k
Ẽ
← Ẽf ((T̃rans1, T̃rans2)), and

we have

Pr[kE 6= kA] ≤ Pr[k
Ẽ
6= kÃ] + Pr[¬Same] ≤

(
1

2
− ρ(n) + ε(n)

)
+ ε(n),

So it holds that Pr[kE = kA] ≥ 1
2 + ρ(n) − 2 · ε(n), and we choose ε(n) = δ(n)/2 where δ(n) is the

desired loss from Claim A.5. The number of oracle queries that E performs is at most

Õ(q(n)2/δ(n)) + (32q(n)/δ(n))2 ≤ Õ(q(n)2/δ(n)2).

Moreover, given oracle access a PSPACE-complete oracle, the algorithm E can be implemented to
run in time polynomial in n, q and 1/δ. This easily follows from Theorem A.7 and settles the proof
of Claim A.5.

54
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


