A parallel repetition theorem for all entangled games

Henry Yuen*

MIT

Abstract

The behavior of games repeated in parallel, when played with quantumly entangled players, has received much attention in recent years. Quantum analogues of Raz’s classical parallel repetition theorem have been proved for many special classes of games. However, for general entangled games no parallel repetition theorem was known.

We prove that the entangled value of a two-player game G repeated n times in parallel is at most $c_G n^{-1/4} \log n$ for a constant c_G depending on G, provided that the entangled value of G is less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated game must converge to 0 for all games whose entangled value is less than 1. Central to our proof is a combination of both classical and quantum correlated sampling.

1 Introduction

A two-player one-round game G is played between a referee and two isolated players (who we will call Alice and Bob), who communicate only with the referee and not between themselves. The referee first samples a question pair (x, y) from some distribution μ and sends x to Alice and y to Bob. Alice and Bob respond with answers a and b respectively, and they win if $V(x, y, a, b) = 1$ for some predicate V.

The maximum winning probability of Alice and Bob in a game G is a quantity that depends on what resources they are allowed to use. If their answers are a deterministic function of their received question (and perhaps some public random string), then we call their maximum winning probability the classical value of G, denoted by $\text{val}(G)$. However quantum mechanics allows Alice and Bob to share a resource called entanglement, which gives rise to correlations that cannot be reproduced with public randomness only. When Alice and Bob make use of entanglement to play a game G, we call their maximum winning probability the entangled value of G, denoted by $\text{val}^*(G)$. For all games, the classical value is at most the entangled value. Cast in the language of games, the famous Bell’s Theorem states that there exist games G where those values are different: $\text{val}^*(G) > \text{val}(G)$ [Bel64].

The Parallel Repetition Question is the following natural and basic question: given a game G with value less than 1, what is the value of the game G^n, wherein Alice and Bob play n independent instances of G played in parallel? More formally, in the game G^n, the referee samples n independent

*hyuen@mit.edu
question pairs \((x_1, y_1), \ldots, (x_n, y_n)\) from \(\mu\), and sends \((x_1, \ldots, x_n)\) to Alice, and sends \((y_1, \ldots, y_n)\) to Bob. Alice responds with answer tuple \((a_1, \ldots, a_n)\), Bob responds with \((b_1, \ldots, b_n)\), and the players win if for all coordinates \(i \in [n]\), \(V(x_i, y_i, a_i, b_i) = 1\).

The difficulty in relating \(\text{val}(G^n)\) with \(\text{val}(G)\) and \(n\) is that even though each of the \(n\) instances of \(G\) in \(G^n\) are independent, Alice and Bob need not play each instance independently. For example, since Alice receives \((x_1, \ldots, x_n)\) all at once, she can use some question \(x_j\) to answer the \(j\)'th game, and Bob can do something similar. Because of such strategies, for every \(k\) there are games \(G\) such that \(\text{val}(G^k) = \text{val}(G) < 1\). This shows that the naive expectation that \(\text{val}(G^n) = \text{val}(G)^n\) is false.

The naive expectation is not too far from the truth, however: Raz’s Parallel Repetition Theorem [Raz98] states that

\[
\text{val}(G^n) \leq (1 - (1 - \text{val}(G))^3)^{c_G n},
\]

where \(c_G\) is a constant depending on \(G\). In particular, as \(n\) goes to infinity, the classical success probability goes to 0 exponentially fast in \(n\) (provided that \(\text{val}(G) < 1\)). The proof is highly nontrivial, although it has been simplified and improved upon in recent years [Hol09, BG15]. Raz’s Parallel Repetition Theorem has heavily influenced complexity theory, most notably in the areas of hardness of approximation [Hås01] and communication complexity [Jai11, BRWY13].

One open question, which we call the Quantum Parallel Repetition Conjecture, asks whether an analogue of Raz’s Parallel Repetition Theorem holds in the setting of entangled players. The Quantum Parallel Repetition Conjecture has been resolved for many special cases of games, including free games [CS14, JPY14, CWY15], projection games [DSV14], XOR games [CSUU08], unique games [KRT08], anchored games [BVY15], and fortified games [BVY16]. However, the general case has remained elusive. Not only do we not know of a quantum analogue of Raz’s Parallel Repetition Theorem, it hasn’t even been shown that if \(\text{val}^*(G) < 1\), then \(\text{val}^*(G^n)\) goes to 0 as \(n\) goes to infinity! Could quantum entanglement allow players to counteract the value-decreasing effect of parallel repetition?

In this paper we prove that for all nontrivial entangled games \(G\) (i.e. \(\text{val}^*(G) < 1\)), the entangled value of \(G^n\) must converge to 0. This resolves a weaker version of the Quantum Parallel Repetition Conjecture for general games. Quantitatively, our result is the following:

Theorem 1 (Main Theorem). Let \(G\) be a game involving two entangled players with \(\text{val}^*(G) = 1 - \epsilon\). Then for all integer \(n > 0\),

\[
\text{val}^*(G^n) \leq c \cdot \frac{s_G \log n}{\epsilon^{17} n^{1/4}}
\]

where \(c\) is a universal constant and \(s_G\) is the bit-length of the players’ answers in \(G\).

This shows that the entangled value of \(G^n\) must decay at a polynomial rate with \(n\). The full Quantum Parallel Repetition Conjecture states that the rate of decay is in fact exponential, and this remains an important open problem.

1.1 Previous work

There has been extensive work on the parallel repetition of entangled games. As stated earlier, past results have applied to various special classes of games, but there was no result that covered all games.
The results coming closest to the Quantum Parallel Repetition Conjecture are the work of Kempe and Vidick [KV11] and Bavarian, Vidick, and Yuen [BVY15, BVY16]. Rather than proving parallel repetition theorems for general games, these works prove general gap amplification theorems, which are closely related. Instead of showing that for games G where $\val^*(G) < 1$ that $\val^*(G^n)$ goes to 0 with n, the game G is first converted to another game H where analyzing $\val^*(H^n)$ is much more tractable. Gap amplification is a technique used in complexity theory and cryptography to amplify the difference between two cases of a problem (usually called the completeness and soundness cases).

Kempe and Vidick showed that given an arbitrary game G, one can efficiently transform it to another game H with the following properties: if the classical value of G is 1 (meaning that there is a perfect deterministic strategy), then $\val(H^n) = 1$ (and thus $\val^*(H^n) = 1$). If the entangled value of G is less than 1, then the entangled value of H^n decays at a polynomial rate $n^{-\Omega(1)}$. In this transformed game H, in addition to playing the game G, the referee will randomly choose to ask “consistency” questions to check that the players give the same answers on the same questions. Thus [KV11] prove gap amplification for general games – with a caveat. Because of the random consistency checks in the game H, the “quantum completeness” is not preserved: even if $\val^*(G) = 1$, it is not necessarily the case that $\val^*(H^n) = 1$.

More recently, Bavarian, Vidick, and Yuen [BVY15, BVY16] gave better gap amplification results for entangled games. They showed that for general games G, one can apply a simple transformation to obtain another game H with the following properties:

1. If $\val^*(G) = 1$, then $\val^*(H^n) = 1$.
2. If $\val^*(G) < 1$, then $\val^*(H^n) \leq \exp(-\Omega(n))$.

Note that the transformation from G to H preserves quantum completeness, and that when $\val^*(G) < 1$, the entangled value of the repeated game decays exponentially. Like [KV11], the transformations of [BVY15, BVY16] construct H by adding auxiliary questions to the game G. The transformation given in [BVY15] is called anchoring, and the transformation in [BVY16] is called fortification. The latter transformation gives a quantum generalization of the fortification technique of [Mos14] for classical games. The quantitative aspects of repeated anchored games are different from those of fortified games, but both yield general gap amplification theorems for entangled games.

The results of Bavarian, Vidick and Yuen show that, while we do not know if the Quantum Parallel Repetition Conjecture holds for all games G, we do know that it holds for a class of games that effectively captures the general case, in fact with exponential decay similar to Raz’s theorem. Since the main application of parallel repetition in complexity theory and quantum information is gap amplification, the results of [BVY15, BVY16] effectively settle the Quantum Parallel Repetition Conjecture – as far as applications are concerned.

But as a scientific question, the original Quantum Parallel Repetition Conjecture is a fundamental and basic problem about the power of entanglement in games. Prior to this work, one might have wondered whether there exists a game G such that $\val^*(G) < 1$, but there is some constant δ such that for infinitely many n there is a nefarious entangled strategy for G^n with success probability at least δ? Here we prove that this cannot happen.

1This transformation is due to Feige and Kilian [FK00], who proved a similar result for classical games.
2They also obtain general gap amplification results for games with more than two players.
1.2 Proof overview

Theorem 1 is proved via reduction: if val*(G^n) is too large, then from an optimal entangled strategy for G^n we can construct an entangled strategy for the single-shot game G that wins with probability strictly greater than val*(G), which would be a contradiction.

In more detail, suppose that val*(G) = 1 − ε. If the success probability of the players in G^n is dramatically larger than our target bound (which in our case is ∼ n^{-O(1)}), then we can identify a set of coordinates C ⊆ [n] that is not too large, but has the property that for a uniformly random coordinate i ∈ [n] − C,

Pr(Win game i | Win games in C) > 1 − ε/2

(1)

where here the probability is both over the randomness of the questions in G^n, the randomness of the players’ entangled strategy, and the randomly chosen index i. Thus it would be advantageous if Alice and Bob could play the single-shot game G by “embedding” it in a randomly chosen i-th coordinate of G^n, and playing G^n conditioned on the event that the games indexed by C have been won. If they could do this, then by (1), the probability they win the i-th coordinate of G^n, and hence the original game G, is at least 1 − ε/2 > val*(G), which would be a contradiction.

If the players are classical (i.e. use deterministic strategies), this embedding is performed in the following way. Alice and Bob are first given questions (X_i, Y_i) for the i-th game. Based on their received question, Alice and Bob jointly sample a dependency-breaking variable R. The essential features of this dependency-breaking variable are:

1. **Usefulness**^3\[P_{A_i,B_i|R_iX_i,Y_i,W_c} = P_{A_i|R_iX_i,W_c} \cdot P_{B_i|R_iY_i,W_c} \]

2. **Sampleability:** \[P_{R_i|X_i,Y_i,W_c} \approx P_{R_i|X_i,W_c} \approx P_{R_i|Y_i,W_c} \]

where “≈” means closeness in statistical distance. Here, W_c denotes the event that the players win all the games in C. P_{A_i,B_i|R_iX_i,Y_i,W_c} denotes the probability distribution of Alice’s and Bob’s answers in the i-th coordinate when playing G^n, conditioned on the dependency-breaking variable R, their received questions for the i-th game (X_i, Y_i), and the event W_c. The “Usefulness property” states that, the players’ answers in the i-th round are independent of each other, conditioned on R, their own questions, and W_c. Thus, given R distributed according to P_{R|X_i,Y_i,W_c}, Alice can sample A_i on her own, because she possesses R and X_i, and similarly Bob can sample B_i on his own, because he possesses knowledge of R and Y_i. By (1), the probability that V(X_i,Y_i,A_i,B_i) = 1 will be strictly greater than val*(G), wherein we would arrive at a contradiction.

As the name suggests, the “sampleability property” implies that Alice and Bob can (approximately) jointly sample the variable R. Even though the distribution P_{R_i|X_i,Y_i,W_c} may depend on both players’ questions, the sampleability property shows R, up to some error, only depends on X_i or Y_i, but not both. Using the correlated sampling procedure of [Hol09], Alice and Bob can jointly sample R from P_{R_i|X_i,Y_i,W} with high probability.

^3We will let P denote the probability distribution that describes the joint distribution of the random variables relevant in an execution of the strategy for G^n, including the players’ questions X_1, … , X_n, Y_1, … , Y_n, the players’ answers A_1, … , A_n, B_1, … , B_n, and the dependency-breaking variable R.
At a high level, the proof of our quantum parallel repetition theorem is similar. However instead of sampling a dependency-breaking variable R, the players will need to sample a dependency-breaking state. It is an entangled state $|\Psi_{x,y}\rangle$ that depends on both Alice’s and Bob’s questions (x_i, y_i), and satisfies similar Usefulness and Sampleability properties:

1. **Usefulness**: The distribution of measurement outcomes by making local measurements on $|\Psi_X Y\rangle$ is equal to $P_{A_iB_i|X_i Y_iW_C}$.

2. **Sampleability**: There exist states $|\Phi_X\rangle$ and $|\Gamma_Y\rangle$ such that $|\Psi_X Y\rangle \approx |\Phi_X\rangle \approx |\Gamma_Y\rangle$

where “\approx” means closeness in ℓ_2 distance, and the statements hold on average over $X_i Y_i$.

The Usefulness property states that if on input (x_i, y_i), Alice and Bob were to share the entangled state $|\Psi_x y\rangle$, then they could make local measurements to obtain outcomes distributed according to $P_{A_iB_i|X_i Y_iW_C}$, which would mean that their success probability would be $\Pr(Win~i | Win~C)$, which is greater than $val^* (G)$, an impossibility.

The Sampleability property implies that on input (x_i, y_i) Alice and Bob are actually able to approximately prepare the state $|\Psi_{x,y}\rangle$. This is because of the quantum correlated sampling procedure of Dinur, Steurer, and Vidick, who used it to prove a parallel repetition theorem for entangled projection games [DSVI14]. It is entirely analogous to Holenstein’s correlated sampling procedure: Alice has a description of a state $|\Phi_X\rangle$ that’s close to $|\Psi_X Y\rangle$, and Bob has a description of a state $|\Gamma_Y\rangle$ that is also close to $|\Psi_X Y\rangle$. Via local transformations on preshared quantum entanglement, Alice and Bob can generate an approximation of $|\Psi_{x,y}\rangle$. Combined with the Usefulness property, Alice and Bob are then able to win the ith game with too high probability.

It is not difficult to define states that satisfy the Usefulness property. Consider an execution of the entangled strategy for G^n. In the beginning, the players share some entangled state $|\psi\rangle$, and upon obtaining questions (x_1, \ldots , x_n) and (y_1, \ldots , y_n), the players apply local measurements depending on these questions to $|\psi\rangle$ to obtain answer tuples (a_1, \ldots , a_n) and (b_1, \ldots , b_n). One can define an ensemble of states $\{|\Psi_{x,y}\rangle\}$ that are, roughly speaking, derived from the post-measurement state of the players conditioned on the players having won all the games in C (that is, conditioned on the event W_C), and having received a specific question pair (x_i, y_i) in the ith coordinate. Such an ensemble of states would satisfy the Usefulness property.

However, the primary challenge is achieving Sampleability property, that is, to show the states $|\Psi_{x,y}\rangle$ only depend on one player’s question, but not both. One major obstacle to proving the Sampleability property is the following: in the players’ strategy for G^n, Bob (say) may elect to “print” his entire vector of questions (y_1, \ldots , y_n) into the entangled state $|\psi\rangle$. He can do this by applying a local unitary operation controlled on his questions on some ancilla qubits in $|\psi\rangle$. We cannot say he does not do this, because the shared entangled state $|\psi\rangle$ and the players’ measurements are completely arbitrary. But this implies that we cannot hope to prove that the post-measurement state is independent of y_i, conditioned on x_i.

Despite such barriers, we are able to define the $|\Psi_{x,y}\rangle$ in such a way that removes such adversarial dependencies on the players’ questions. Assuming (for contradiction) that the players’ probability of success is at least $n^{-O(1)}$, then we are able to prove that these states satisfy the Sampleability property. We build upon many previous works: we use the information theoretic framework of [CST14] [PY14], carefully combined with the operator analysis techniques from [DSVI14]. The
definition of the dependency-breaking states \(|\Psi_{x,y}\rangle \) includes the classical dependency-breaking variables of [Hol09] used to prove Raz’s parallel repetition theorem. Our final constructed strategy for the single-shot game \(G \) uses both classical and quantum correlated sampling procedures.

2 Preliminaries

2.1 Probability distributions

We largely adopt the notational conventions from [Hol09] for probability distributions. We let capital letters denote random variables and lower case letters denote specific samples. We will use subscripted sets to denote tuples, e.g., \(X_{[n]} = (X_1, \ldots, X_n) \), and if \(C \subseteq [n] \) is some subset then \(X_C \) will denote the sub-tuple of \(X_{[n]} \) indexed by \(C \). We use \(P_X \) to denote the probability distribution of random variable \(X \), and \(P_X(x) \) to denote the probability that \(X = x \) for some value \(x \). For multiple random variables, e.g., \(X, Y, Z, P_{XYZ}(x,y,z) \) denotes their joint distribution with respect to some probability space understood from context.

We use \(P_{Y|X=x}(y) \) to denote the conditional distribution \(P_{YX}(y,x)/P_X(x) \), which is defined when \(P_X(x) > 0 \). When conditioning on many variables, we usually use the shorthand \(P_{X|y,z} \) to denote the distribution \(P_{X|y,z} \). For example, we write \(P_{V|\omega_i, x_i, y_i} \) to denote \(P_{V|\Omega_{i} = \omega_i, X_i = x_i, Y_i = y_i} \). For an event \(W \) we let \(P_{XY|W} \) denote the distribution conditioned on \(W \). We use the notation \(\mathbb{E}_X f(x) \) and \(\mathbb{E}_{P_X} f(x) \) to denote the expectation \(\sum_x P_X(x)f(x) \).

Let \(P_{X_0} \) be a distribution of \(X \), and for every \(x \) in the support of \(P_{X_0} \), let \(P_{Y|X_1=x} \) be a conditional distribution defined over \(Y \). We define the distribution \(P_{X_0}P_{Y|X_1} \) over \(X \times Y \) as

\[
(P_{X_0}P_{Y|X_1})(x,y) := P_{X_0}(x) \cdot P_{Y|X_1=x}(y).
\]

Additionally, we write \(P_{X_0}P_{Y|X_1} \) to denote the distribution \((P_{X_0}P_{Y|X_1})(x,z,y) := P_{X_0}(x,z) \cdot P_{Y|X_1=x}(y) \).

For two random variables \(X_0 \) and \(X_1 \) over the same set \(X \), we use

\[
\|P_{X_0} - P_{X_1}\| := \frac{1}{2} \sum_{x \in X} |P_{X_0}(x) - P_{X_1}(x)|,
\]

to denote the total variation distance between \(P_{X_0} \) and \(P_{X_1} \).

2.2 Quantum information theory

For comprehensive references on quantum information we refer the reader to [NC10, Wil13].

For a vector \(|\psi\rangle \), we use \(||\psi\rangle|| \) to denote its Euclidean length. For a matrix \(A \), we will use \(\|A\|_1 \) to denote its trace norm \(\text{Tr}(\sqrt{AA^\dagger}) \), and \(\|A\|_F \) to denote its Frobenius norm \(\sqrt{\text{Tr}(AA^\dagger)} \). A density matrix is a positive semidefinite matrix with trace 1. The fidelity between two density matrices \(\rho \) and \(\sigma \) is defined as \(F(\rho, \sigma) = \|\sqrt{\rho}\sigma\|_1 \). For Hermitian matrices \(A, B \) we write \(A \preceq B \) to indicate that \(A-B \) is positive semidefinite. We use \(\mathbb{I} \) to denote the identity matrix. A positive operator valued measurement (POVM) with outcome set \(A \) is a set of positive semidefinite matrices \(\{E_a\} \) labeled by \(a \in A \) that sum to the identity.

We will use the convention that, when \(|\psi\rangle \) is a pure state, \(\psi \) refers to the rank-1 density matrix \(|\psi\rangle\langle\psi| \). We use subscripts to denote system labels; so \(\rho_{AB} \) will denote the density matrix on the
systems A and B. A **classical-quantum state** (or simply cq-state) ρ_{XE} is classical on X and quantum on E if it can be written as $\rho_{XE} = \sum_x p(x) |x\rangle\langle x| \otimes \rho_{E|X=x}$ for some probability measure $p(\cdot)$. The state $\rho_{E|X=x}$ is by definition the E part of the state ρ_{XE}, conditioned on the classical register $X = x$. We write $\rho_{XE|X=x}$ to denote the state $|x\rangle\langle x| \otimes \rho_{E|X=x}$. We often write expressions such as $\rho_{E|x}$ as shorthand for $\rho_{E|X=x}$ when it is clear from context which registers are being conditioned on. This will be useful when there are many classical variables to be conditioned on.

The Fuchs-van de Graaf inequalities relate fidelity and trace norm as

$$1 - F(\rho, \sigma) \leq \frac{1}{2} \|\rho - \sigma\|_1 \leq \sqrt{1 - F(\rho, \sigma)^2}. \tag{2}$$

When dealing with pure states, we can tighten the relationship between the trace norm and the Euclidean distance:

Fact 2. For pure states $|v\rangle$ and $|w\rangle$, $\|v\rangle\langle v| - |w\rangle\langle w| \|_1 \leq 2 \|v\rangle - |w\rangle \|_2$.

Ando’s Identity. For any symmetric pure state $|\psi\rangle = \sum_j \sqrt{\lambda_j} |v_j\rangle |v_j\rangle$ for an orthonormal basis $\{|v_j\rangle\}$ and arbitrary linear operators X, Y, we have

$$\langle \psi| X \otimes Y |\psi\rangle = \text{Tr}(X \sqrt{\rho} Y^\top \sqrt{\rho}),$$

where $\rho = \sum \lambda_j |v_j\rangle \langle v_j|$ is the reduced density matrix of $|\psi\rangle$ on either subsystem and the transpose is taken with respect to the basis $\{|v_j\rangle\}$.

Information theoretic quantities. For two positive semidefinite operators ρ, σ, the relative entropy $S(\rho||\sigma)$ is defined to be $\text{Tr}(\rho (\log \rho - \log \sigma))$. The relative min-entropy $S_{\infty}(\rho||\sigma)$ is defined as $\min \{ \lambda : \rho \preceq 2^\lambda \sigma \}$.

Let ρ_{AB} be a bipartite state. The mutual information $I(A : B)_{\rho}$ is defined as $S(\rho_{AB}||\rho_A \otimes \rho_B)$. For a classical-quantum state ρ_{XAB} that is classical on X and quantum on AB, we write $I(A; B|x)_{\rho}$ to indicate $I(A; B|x)_{\rho}$.

Fact 3. For all states ρ_{AB}, σ_A, and τ_B, we have

$$S(\rho_{AB}||\sigma_A \otimes \tau_B) \geq S(\rho_{AB}||\rho_A \otimes \rho_B) = I(A; B)_{\rho}.$$

Fact 4 (Pinsker’s inequality). For all density matrices ρ, σ, $\frac{1}{2} \|\rho - \sigma\|_1^2 \leq S(\rho||\sigma)$.

Lemma 5 ([JPY14], Fact II.8). Let $\rho = \sum_z P_Z(z) |z\rangle \langle z| \otimes \rho_z$, and $\rho' = \sum_z P'_Z(z) |z\rangle \langle z| \otimes \rho'_z$. Then $S(\rho' || \rho) = S(\rho' || P_Z) + \mathbb{E}_{Z'} [S(\rho'_z || \rho_z)]$. In particular, $S(\rho' || \rho) \geq \mathbb{E}_{Z'} [S(\rho'_z || \rho_z)]$.

We will also use the following Lemma from [CXY15][BVY15].

Lemma 6 ([CXY15][BVY15], Quantum Raz’s Lemma). Let ρ and σ be two cq-states with $\rho_{XA} = \rho_{X_1X_2...X_nA}$ and $\sigma = \sigma_{XA} = \sigma_{X_1} \otimes \sigma_{X_2} \otimes \ldots \otimes \sigma_{X_n} \otimes \sigma_A$ with $X = X_1X_2...X_n$ classical in both states. Then

$$\sum_{i=1}^n I(X_i : A)_{\rho} \leq S(\rho_{XA}||\sigma_{XA}). \tag{3}$$
2.3 Classical and quantum correlated sampling

Correlated sampling is a key component of Holenstein’s proof of the classical parallel repetition theorem.

Lemma 7 (Classical correlated sampling [Hol09]). Let P and Q be two probability distributions over a universe \mathcal{U} such that $\|P - Q\|_1 \leq \varepsilon < 1$. Then there exists a zero communication two-player protocol using shared randomness where the first player outputs an element $p \in \mathcal{U}$ distributed according to P, the second player samples an element $q \in \mathcal{U}$ distributed according to Q, and with probability at least $1 - O(\varepsilon)$, the two elements are identical (i.e. $p = q$).

We call the protocol in the Lemma above the classical correlated sampling procedure. The next lemma is the quantum extension of the correlated sampling lemma, proved by [DSV14] in order to obtain a parallel repetition theorem for entangled projection games, a class of two-player games. Their lemma is a robust version of the quantum state embezzlement procedure of [vDH03].

Lemma 8 (Quantum correlated sampling [DSV14]). Let d be an integer and $\alpha > 0$. Then there exists an integer d' depending on d and α, and a collection of unitaries V_ψ, W_θ acting on $\mathbb{C}^{d'd'}$ for every state $|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$, such that the following holds: for any two states $|\phi\rangle$, $|\theta\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$,

$$\|V_\psi \otimes W_\theta |E_{d';d'}\rangle - |\phi\rangle |E_{d';d'}\rangle\| \leq O(\max\{\alpha^{1/12}, \| |\phi\rangle - |\theta\rangle\|^{1/6}\})$$

where $|E_{d'}\rangle \propto \sum_{j=1}^d \frac{1}{\sqrt{j}} |j\rangle |j\rangle$ is the d-dimensional embezzlement state.

We shall call the protocol in the Lemma above the quantum correlated sampling procedure.

3 Proof of the Main Theorem

Let G be a two-player one-round game with question distribution μ and referee predicate $V(x, y, a, b)$. Let A and B denote the alphabets of Alice’s and Bob’s answers, respectively. Let \text{val}^*(G) = 1 - \varepsilon.

Consider an optimal entangled strategy for G^n, which consists of a shared entangled state $|\psi\rangle^{E_A E_B} \in \mathbb{C}^d \otimes \mathbb{C}^d$ and measurement POVMs for Alice and Bob, $\{A_{x[a]}\}$ and $\{B_{y[a]}\}$ respectively. We will assume that $|\psi\rangle$ is symmetric; i.e., $|\psi\rangle = \sum_{i} \sqrt{\lambda_i} |v_i\rangle |v_i\rangle$ for some orthonormal basis $\{|v_i\rangle\}$. This is without loss of generality, as we can always rotate (say) Bob’s basis vectors to match Alice’s basis vectors, and fold the unitary rotation into Bob’s measurements. For $i \in [n]$, let W_i denote the event that the players win coordinate i using this optimal strategy. Let $W = W_1 \land \cdots \land W_n$ denote the event that the players win all coordinates. For a set $C \subseteq [n]$, let $W_C = \land_{i \in C} W_i$.

Proposition 9. Suppose that $\log 1 / \Pr(W) \leq \varepsilon n / 16 - \log 4 / \varepsilon$. Then there exists a set $C \subseteq [n]$ of size at most $t = \frac{\varepsilon}{\delta} (\log 4 / \varepsilon + \log 1 / \Pr(W))$ such that

$$\Pr_{i \in C}(W_i | W_C) \geq 1 - \varepsilon / 2.$$

where i is chosen uniformly from $[n] - C$.

Proof. Let $\delta = \varepsilon / 8$. Let $W_{>1-\delta}$ denote the event that the players won more than $(1 - \delta)n$ rounds. To show existence of such a set C, we will show that $\mathbb{E}_{C} \Pr(\neg W_i | W_C) \leq \varepsilon / 2$, where C is a (multi)set
of t independently chosen indices in $[n]$. This implies that there exists a particular set C such that
\[\Pr(\neg W_i | W_C) \leq \epsilon/2, \]
which concludes the claim.

First we write, for a fixed C,
\[
\Pr(\neg W_i | W_C) = \Pr(\neg W_i | W_C, W_{>1-\delta}) \Pr(W_{>1-\delta} | W_C) + \\
\Pr(\neg W_i | W_C, \neg W_{>1-\delta}) \Pr(\neg W_{>1-\delta} | W_C).
\]

Observe that $\Pr(\neg W_i | W_C \land W_{>1-\delta})$ is the probability that, conditioned on winning all rounds in C, the randomly selected coordinate $i \in [n] - C$ happens to be one of the (at most) δn lost rounds. This is at most $\delta n / (n - t) \leq \epsilon/4$, where we use our assumption on t from the Proposition statement. Now observe that
\[
\mathbb{E}_C \Pr(\neg W_{>1-\delta} | W_C) \leq \mathbb{E}_C \Pr(W_C | \neg W_{>1-\delta}) \Pr(W_C) \\
\leq \frac{1}{\Pr(W)} (1 - \delta)^t \\
\leq \epsilon/4
\]
where in the second line we used the fact that $\Pr(W_C) \geq \Pr(W)$.

For the rest of the proof we will fix a set C given by Proposition 9.

3.1 Dependency-breaking variables

We introduce the random variables that play an important role in the proof of Theorem 1. Let $C \subseteq [n]$ be as given by Proposition 9. We fix $C = \{m + 1, m + 2, \ldots, n\}$, where $m = n - |C|$, as this will easily be seen to hold without loss of generality. Let $(X_{[n]}, Y_{[n]})$ be distributed according to $\mu_{[n]}$ and $(A_{[n]}, B_{[n]})$ be defined from $X_{[n]}$ and $Y_{[n]}$ as follows:
\[
P_{A_{[n]}B_{[n]}X_{[n]}Y_{[n]}}(a_{[n]}, b_{[n]}) = \langle \psi | A_{X_{[n]}y_{[n]}}^a A_{Y_{[n]}x_{[n]}}^b | \psi \rangle.
\]

Let (X_C, Y_C) and $Z = (A_C, B_C)$ be random variables that denote the players’ questions and answers respectively associated with the coordinates indexed by C.

We use the random variables Ω and R that are crucially used in Holenstein’s proof of Raz’s parallel repetition theorem. Let D_1, \ldots, D_m be independent and uniformly distributed in $\{Alice, Bob\}$. Let M_1, \ldots, M_m be independent random variables defined in the following way: for each $i \in [m]$,
\[
M_i = \begin{cases}
X_i & \text{if } D_i = Alice \\
Y_i & \text{if } D_i = Bob
\end{cases}
\]

Now for $i \in [m]$, we define $\Omega_i := (D_i, M_i)$. We say that Ω_i fixes Alice’s input if $D_i = Alice$, and otherwise Ω_i fixes Bob’s input. We write Ω to denote the random variable $(\Omega_1, \ldots, \Omega_m, X_C, Y_C)$, where X_CY_C are Alice and Bob’s questions in the coordinates indexed by C. For $i \in [m]$ we write Ω_{-i} to denote the random variable Ω with Ω_i omitted.

Proposition 10. Conditioned on Ω, $X_{[n]}$ and $Y_{[n]}$ are independent.
Finally, we will define a dependency-breaking variable $R := (\Omega, A_C, B_C)$, where A_C and B_C are the players’ answers in the coordinates indexed by C. For $i \notin C$, we let $R_{-i} := (\Omega_{-i}, A_C, B_C)$. R_i will refer to Ω_i. We will use lowercase letters to denote instantiations of these random variables: e.g., r_{-i}, x_i, and y_i.\[\text{Lemma 12}\]

Throughout our proofs, all expectations are implicitly over the measure defined by P. For example, the expectation $E_{\Omega_i} \xi | x, y$ indicates $\sum_{\omega_{-i}, a_C, b_C} P_{\Omega_{-i}, A_C, B_C | x, y} (\omega_{-i}, a_C, b_C)$. Given an event such as W (winning all the coordinates) or W_C (winning all the coordinates in C), $P(W)$ and $P(W_C)$ will mean the probability of these events with respect to the distribution P.

The following Lemma expresses the idea that, because W_C is an event that occurs with not-too-small probability, conditioning on it cannot skew the distribution of variables corresponding to an average coordinate by too much. This Lemma follows in a straightforward manner from the [Hol09].

Lemma 11. The following statements hold on, average over i chosen uniformly in $[m]$:

1. $E_i \| P_{R_i | x_i, y_i} | W_C - P_{R_i | x_i, y_i} \|_1 \leq O(\sqrt{\delta})$
2. $E_i \| P_{X_i Y_i | R_i, y_i} | W_C - P_{X_i | y_i} \cdot P_{R_i | x_i, W_C} \|_1 \leq O(\sqrt{\delta})$
3. $E_i \| P_{X_i Y_i | R_i, y_i} | W_C - P_{R_i | y_i} \cdot P_{X_i | y_i, W_C} \|_1 \leq O(\sqrt{\delta})$

where $\delta := \frac{1}{m} (\log 1/P(W_C) + |C| \log |A||B|)$.

3.2 Two key Lemmas, and proof of the Main Theorem

For every $i \in [n] - C$, we will construct a collection of bipartite states $\{ |\Psi_{r_{-i}, x_i, y_i} \rangle \} \subseteq \mathbb{C}^d \otimes \mathbb{C}^d$, which we call dependency-breaking states, that are indexed by the dependency-breaking variable r_{-i} defined above, and questions (x_i, y_i). The following lemmas state the important properties of this collection of states:

Lemma 12 (Usefulness Lemma). For all r_{-i}, x_i, y_i, there exist POVMs $\{ \hat{A}_{r_{-i}, x_i}^{a_i} \}$ and $\{ \hat{B}_{r_{-i}, y_i}^{b_i} \}$ acting on \mathbb{C}^d such that

$$P_{A_i B_i | r_{-i}, x_i, y_i} (a_i, b_i) = \text{Tr} \left(\hat{A}_{r_{-i}, x_i}^{a_i} \otimes \hat{B}_{r_{-i}, y_i}^{b_i} |\Psi_{r_{-i}, x_i, y_i} \rangle \langle \Psi_{r_{-i}, x_i, y_i} | \right).$$

Lemma 13 (Sampleability Lemma). There exists an integer $d' \geq d$ such that for every i, r_{-i}, x_i, y_i, there exist local unitaries $U_{r_{-i}, x_i}, V_{r_{-i}, y_i}$ acting on $\mathbb{C}^{d'}$ such that

$$E_{i} \sum_{x_i, y_i, W_C} \| U_{r_{-i}, x_i} \otimes V_{r_{-i}, y_i} | E_{d'} \rangle \langle E_{d'} | \rangle - |\Psi_{r_{-i}, x_i, y_i} \rangle \langle \Psi_{r_{-i}, x_i, y_i} | \rangle \| \| \leq O((\delta^{1/4} / P(W_C))^{1/12})$$

where $| E_{d'} \rangle$ and $| E_{d'} \rangle$ are d' and d'-dimensional embezzlement states, respectively, and δ is defined to be $\frac{1}{m} (\log 1/P(W_C) + |C| \log |A||B|)$.

Lemma 12 shows that the states $|\Psi_{r_{-i}, x_i, y_i} \rangle$ are useful to have; they allow Alice and Bob to produce answers in the i’th coordinate whose statistics are consistent with the dependency-breaking variable r_{-i} and their inputs (x_i, y_i). Lemma 13 shows that these states are locally generatable by Alice and Bob, when given joint access to preshared entanglement, the dependency-breaking variable r_{-i} and their own inputs x_i and y_i, respectively.

Using these two Lemmas we can prove the Main Theorem.
Proof of the Main Theorem. Consider the following strategy for the game \(G \). Alice and Bob share beforehand the embezzlement state \(|E_{dd'}\rangle \) of dimension \(dd' \) given by Lemma \([13]\) and they also have access to shared randomness. Given inputs \((x_i, y_i)\) distributed according to \(P_{X,Y} = \mu \):

1. Alice and Bob jointly sample a uniformly random \(i \in [n] - C \).
2. Alice and Bob jointly, approximately sample \(R_{-i} \) from \(P_{R_{-i}|x_i,y_i,W_C} \) using the classical correlated sampling procedure.
3. Alice applies \(U_{r_{-i}|x_i} \) to her side of \(|E_{dd'}\rangle \)
4. Bob applies \(V_{r_{-i}|y_i} \) to his side of \(|E_{dd'}\rangle \)
5. Alice measures her side of the entanglement using \(\{\tilde{A}^a_i\}_{r_{-i},X_i} \) and outputs the outcome \(a_i \)
6. Bob measures his side of the entanglement using \(\{\tilde{B}^b_i\}_{r_{-i},y_i} \) and outputs the outcome \(b_i \)

We now analyze the success probability of this strategy. We will use \(\tilde{P} \) to denote the distribution of variables in the probability space associated with an execution of this strategy. For example, we will write \(\tilde{P}_{R_{-i}|X_i,Y_i} \) to denote the distribution of \(R_{-i} \) conditioned on \(X_i,Y_i \) that is sampled in Step 1. From Lemma \([11]\) we have that on average over \(i \),

\[
E_i \| P_{X_i,Y_i} \cdot \tilde{P}_{R_{-i}|X_i,Y_i} - P_{X_i,Y_i|R_{-i}|W_C} \|_1 \leq O(\sqrt{\delta}).
\]

After Step 3, Alice and Bob will possess a state \(|\Lambda_{r_{-i},i,y_i}\rangle \) such that

\[
E_i \sum_{X_i,Y_i} \sum_{R_{-i}|x_i,y_i,W_C} \| |\Lambda_{r_{-i},x_i,y_i}\rangle - |\Psi_{r_{-i},x_i,y_i}\rangle \|_1 \leq \eta
\]

where \(\eta = O((\delta^{1/4}/P(w_C))^{1/12}) \). Consider the measurement process in Steps 4 and 5. Let \(\tilde{P}_{A_i,B_i|r_{-i},x_i,y_i} \) denote the distribution of measurement outcomes in this strategy, conditioned on their inputs and a sampled value of \(r_{-i} \). By Lemma \([12]\) and the fact that the trace norm is nonincreasing under quantum operations, we have that

\[
E_i \sum_{X_i,Y_i} \sum_{R_{-i}|x_i,y_i,W_C} \| \tilde{P}_{A_i,B_i|x_i,y_i,r_{-i}} - P_{A_i,B_i|x_i,y_i,r_{-i}} \|_1 \leq \eta
\]

or equivalently

\[
E_i \| P_{X_i,Y_i} \cdot \tilde{P}_{R_{-i}|X_i,Y_i,W_C} - \tilde{P}_{A_i,B_i|X_i,Y_i,r_{-i}} - P_{X_i,Y_i} \cdot P_{R_{-i}|X_i,Y_i,W_C} \cdot P_{A_i,B_i|R_{-i},X_i,Y_i} W_C \|_1 \leq \eta.
\]

By Lemma \([11]\) we have \(E_i \| P_{X_i,Y_i} - P_{X_i,Y_i} \| \leq \sqrt{\delta} \). By triangle inequality and that \(\tilde{P}_{X_i,Y_i} = P_{X_i,Y_i} \), we have

\[
E_i \| \tilde{P}_{X_i,Y_i|A_i,B_i} - P_{X_i,Y_i|A_i,B_i} \|_1 \leq O(\eta).
\]
Note that $\tilde{P}_{X_iY_iR_{i\ldots}A_iB_i}$ represents the probability distribution of all the variables present in the strategy above. Let W_i denote the probability the players win the ith coordinate. Thus we get

$$\mathbb{E}_i |\tilde{P}(W_i) - P(W_i|W_C)| \leq O(\eta). \quad (4)$$

Assume that

$$P(W) \geq \frac{cs \log n}{\epsilon^{17}n^{1/4}}$$

where $c > 0$ is a universal constant, and s is the bit-length of the players’ answers. Since $P(W_C) \geq P(W)$, and using our bound on $|C|$ (from Proposition 9) and our bound on δ (from Lemma 11), this implies that the right hand side of (4) is at most $\epsilon/4$ (for an appropriate choice of c). This implies that

$$\mathbb{E}_i \tilde{P}(W_i) \geq \mathbb{E}_i P(W_i|W_C) - \epsilon/4 \geq 1 - \epsilon/2 - \epsilon/4 > \text{val}^*(G)$$

where in the second line we used the bound from Proposition 9. However, this implies that there exists an i such that $\tilde{P}(W_i) > \text{val}^*(G)$, which is a contradiction. Therefore $P(W) \leq \frac{cs \log n}{\epsilon^{17}n^{1/4}}$.

\[\Box\]

4 Proofs of the two Key Lemmas

Now we turn to proving the two key lemmas above, the Usefulness Lemma and the Sampleability Lemma.

4.1 Quantum states and operators

In this subsection we define the states $|Ψ_{r_{i\ldots}x_iy_i}\rangle$ and measurement operators $\{\hat{A}_{r_{i\ldots}x_i}^a\}$ and $\{\hat{B}_{r_{i\ldots}y_i}^b\}$. Recall that the dependency-breaking variable R consists of the set of fixed questions $Ω = (X_C, Y_C, Ω_1, \ldots, Ω_m)$ and fixed answers $Z = (A_C, B_C)$ for the coordinates in C.

Coarse-grained measurements. We first *coarsen* the measurement POVMs $\{A_{x}^{a[n]}\}$ and $\{B_{y}^{b[n]}\}$ that constitute Alice and Bob’s strategy in G^n to construct a set of *intermediate measurements*, which essentially produce answers for the games in set C, conditioned on a setting of $Ω$.

Fix i, $ω$, $a_ω$, $b_ω$, x_i, y_i. Define

$$A_{ω.,i}^{ac} = \sum_{a_{ω,i}}|a_{ω,i}|A_{x_i}^{a_{ω,i}} \quad \quad \quad B_{ω.,i}^{bc} = \sum_{b_{ω,i}}|b_{ω,i}|B_{y_i}^{b_{ω,i}}$$

where $a_{ω,i}|a_ω$ (resp. $b_{ω,i}|b_ω$) indicates summing over all tuples $a_{ω,i}$ consistent with the suffix $a_ω$ (resp. $b_{ω,i}$ consistent with suffix $b_ω$) and recall that $\mathbb{E}_{X_i}|ω.,i,x_i\rangle$ is shorthand for $\sum_{x_i} P_{X_i}|ω.,i,x_i\rangle$. We also define

$$A_{ω}^{ac} = \mathbb{E}_{X_i}|ω|A_{ω.,i}^{ac} \quad \quad \quad B_{ω}^{bc} = \mathbb{E}_{Y_i}|ω|B_{ω.,i}^{bc}.$$
Let ρ denote the reduced density matrix of $|\psi\rangle$ on Alice’s side. Since we have assumed that $|\psi\rangle$ is symmetric, ρ is also the reduced density matrix on Bob’s side. For all i, ω, x_i, y_i, a_C, b_C, let $U_{\omega x_i a_C}$, $U_{\omega a_C}$, $V_{\omega y_i b_C}$, and $V_{\omega b_C}$ be unitaries such that

$$U_{\omega x_i a_C}(A_{\omega x_i a_C})^{1/2}/\sqrt{\rho}$$
$$U_{\omega a_C}(A_{\omega a_C})^{1/2}/\sqrt{\rho}$$

are positive semidefinite. Such unitaries can be found via singular value decompositions. For notational convenience, let

$$S_{\omega x_i a_C} = U_{\omega x_i a_C}(A_{\omega x_i a_C})^{1/2}$$
$$S_{\omega a_C} = U_{\omega a_C}(A_{\omega a_C})^{1/2}$$
$$T_{\omega y_i b_C} = V_{\omega y_i b_C}(B_{\omega y_i b_C})^{1/2}$$

Fine-grained measurements. Now we can define the fine-grained measurements that Alice and Bob can apply to obtain answers for the i’th game. Define

$$\hat{A}^a_{r,\omega x_i} = S_{\omega x_i a_C}^{-1} A_{\omega x_i a_C} S_{\omega x_i a_C}^{-1}$$
$$\hat{B}^b_{r,\omega y_i} = T_{\omega y_i b_C}^{-1} B_{\omega y_i b_C} T_{\omega y_i b_C}^{-1}$$

where

$$A_{\omega x_i a_C} = \sum_{a[n]|a_C, a_i} \mathbb{E}_X a_{X[n]}$$
$$B_{\omega y_i b_C} = \sum_{b[n]|b_C, b_i} \mathbb{E}_Y b_{y[n]}$$

and $a[n]|a_C, a_i$ (resp. $b[n]|b_C, b_i$) denotes summing over all $a[n]$ consistent with a_C and a_i (resp. all $b[n]$ consistent with b_C and b_i). It is easy to verify that the sets \{ $\hat{A}^a_{r,\omega x_i}$ \}$_{a \in A}$ and \{ $\hat{B}^b_{r,\omega y_i}$ \}$_{b \in B}$ form POVMs. Here, for a square matrix A, A^{-1} denotes its generalized inverse.

States. Now we are ready to define the states. Fix $i, r, y_i = (\omega_{-i}, a_C, b_C)$, and x_i, y_i. Then let

$$|\Psi_{r,\omega x_i y_i}\rangle = \frac{S_{\omega_{-i} a_C x_i} \otimes T_{\omega_{-i} b_C y_i} |\psi\rangle}{\|S_{\omega_{-i} a_C x_i} \otimes T_{\omega_{-i} b_C y_i} |\psi\rangle\|}.$$

Observe that the normalization $\|S_{\omega_{-i} a_C x_i} \otimes T_{\omega_{-i} b_C y_i} |\psi\rangle\|^2$ is equal to $P_{A_C B_C |\omega_{-i} x_i y_i}(a_C, b_C)$.

4.2 Proof of Usefulness Lemma (Lemma 12)

This Lemma follows from a simple calculation: for every $x_i, y_i, a_i, b_i, r, -i$:

$$\text{Tr} \left(\hat{A}^a_{r,\omega x_i} \otimes \hat{B}^b_{r,\omega y_i} |\Psi_{r,\omega x_i y_i}\rangle\langle\Psi_{r,\omega x_i y_i}| \right)$$

$$= \frac{1}{\|S_{\omega_{-i} a_C x_i} \otimes T_{\omega_{-i} b_C y_i} |\psi\rangle\|^2} \text{Tr} \left(A_{\omega x_i a_C} \otimes B_{\omega y_i b_C} |\psi\rangle\langle\psi| \right)$$

$$= \frac{1}{P_{A_C B_C |\omega_{-i} x_i y_i}(a_C, b_C)} \sum_{a[n]|a_C, a_i} \sum_{b[n]|b_C, b_i} \mathbb{E}_X a_{X[n]|\omega_{-i} x_i} \mathbb{E}_Y b_{y[n]|\omega_{-i} y_i} \text{Tr} \left(A_{x[n]} \otimes B_{y[n]} |\psi\rangle\langle\psi| \right)$$

$$= \frac{P_{A_C B_C |\omega_{-i} x_i y_i}(a_i, b_i, a_C, b_C)}{P_{A_C B_C |\omega_{-i} x_i y_i}(a_C, b_C)} = P_{A, B |r, -i, x_i y_i}(a_i, b_i).$$

In the second equality we used that conditioned on Ω, $X[n]$ and $Y[n]$ are independent, so therefore

$$\mathbb{E}_{X[n]|\omega_{-i} x_i} \mathbb{E}_{Y[n]|\omega_{-i} y_i} = \mathbb{E}_{X[n]} \mathbb{E}_{Y[n]|\omega_{-i} x_i y_i}.$$

In the last equality we used that $r_{-i} = (\omega_{-i}, a_C, b_C)$. This concludes the Usefulness Lemma.
4.3 Proof of the Sampleability Lemma (Lemma 13)

Overview. Here we give some intuition. We first analyze an ensemble of states $\{ |\Gamma_{x_i, y_i, a_C} \rangle \}$ (for now we omit mention of the dependency-breaking variable R for simplicity). These are indexed by Alice’s questions in the i’th coordinate, her questions in the C coordinates, as well as her answers in the C coordinates. The state $|\Gamma_{x_i, y_i, a_C} \rangle$ roughly represents the state of the players where only Alice has applied her measurements – Bob hasn’t done anything yet.

Fix a y_i, x_C, a_C. For average x_i, x_i' that are independently sampled from the marginal distribution $P_{X_i | Y_i = y_i}$, we will show that

$$||| \Gamma_{x_i, x_C, a_C} \rangle - | \Gamma_{x_i', x_C, a_C} \rangle || \sim \frac{1}{n}. $$

To handle issues such as Alice “printing” her input onto the state $| \psi \rangle$ (as discussed in the introduction), the definition of $| \Gamma_{x_i, x_C, a_C} \rangle$ requires local unitaries that “undo” such overt actions of Alice and Bob – this is accomplished by the unitaries U and V defined in Section 4.1.

Then, we consider what happens when we apply Bob’s measurement to both states $| \Gamma_{x_i, y_i, a_C} \rangle$ and $| \Gamma_{x_i', y_i, a_C} \rangle$, and condition on obtaining answers b_C for the C coordinates. His measurement will depend on the questions y_i and y_i'. The post-measurement states will be precisely $| \Psi_{x_i, y_i, x_C, y_C, a_C, b_C} \rangle$ and $| \Psi_{x_i', y_i, x_C, y_C, a_C, b_C} \rangle$. The distance between these states will be, roughly speaking, the distance between $| \Gamma_{x_i, x_C, a_C} \rangle$ and $| \Gamma_{x_i', x_C, a_C} \rangle$ divided by the probability of Bob obtaining outcome b_C conditioned on Alice obtaining a_C. If we average this distance over all choices of x_C, y_C, a_C, b_C that imply the event W_C, we get that the average distance between $| \Psi_{x_i, y_i, x_C, y_C, a_C, b_C} \rangle$ and $| \Psi_{x_i', y_i, x_C, y_C, a_C, b_C} \rangle$ is approximately $\frac{1}{P(W_C)}$. If $P(W)$ is much greater than $1/n$, then this distance is small. We then invoke quantum correlated sampling (Lemma 8), and that proves the Sampleability Lemma.

Proof. We introduce the following state:

$$\tilde{\xi}_{\Omega_{x_i}} E_A E_B A_C = \sum_{\omega_i, x_i} P_{\Omega_{x_i}} (\omega, x_i, a_C) |\omega, x_i \rangle \langle \omega, x_i | \otimes \sqrt{A_{x_i,a_C}^c} |\psi\rangle \sqrt{A_{x_i,a_C}^c} \otimes |a_C \rangle \langle a_C |.$$

If we trace out the E_A register, we have that

$$\tilde{\xi}_{\Omega_{x_i}} E_B A_C = \sum_{\omega_i, x_i} P_{\Omega_{x_i}} (\omega, x_i, a_C) |\omega, x_i \rangle \langle \omega, x_i | \otimes \sqrt{A_{x_i,a_C}^c} \rho \sqrt{A_{x_i,a_C}^c} \otimes |a_C \rangle \langle a_C |$$

$$\leq \sum_{\omega_i, x_i} P_{\Omega_{x_i}} (\omega, x_i) |\omega, x_i \rangle \langle \omega, x_i | \otimes \sqrt{A_{x_i,a_C}^c} \rho \otimes \mathbb{I}$$

$$= \sum_{\omega_i, x_i} P_{\Omega_{x_i}} (\omega, x_i) |\omega, x_i \rangle \langle \omega, x_i | \otimes \rho \otimes \mathbb{I},$$

where ρ is the reduced density matrix of $|\psi\rangle = \sum_i \sqrt{A_{x_i}} |v_i\rangle \langle v_i |$ on E_B, $A_{x_i}^c$ denotes the entry-wise complex conjugate of $A_{x_i}^c$, with respect to the basis $\{ |v_i\rangle \}$, and the last equality uses $\sum_{a_C} A_{x_i,a_C}^c = \mathbb{I}$.

From the definition of S_∞ we have

$$|C| \cdot \log |A| \geq S_\infty \left(\tilde{\xi}_{\Omega_{x_i}} E_B A_C \right) ||\tilde{\xi}_{\Omega_{x_i}} \otimes \tilde{\xi}_{E_B} \otimes \frac{\mathbb{I}}{\text{Tr}(\mathbb{I})} \right)$$

$$\geq S \left(\tilde{\xi}_{\Omega_{x_i}} E_B A_C \right) ||\tilde{\xi}_{\Omega_{x_i}} \otimes \tilde{\xi}_{E_B} \otimes \frac{\mathbb{I}}{\text{Tr}(\mathbb{I})} \right) \quad (S(\cdot) \leq S_\infty (\cdot))$$

14
\begin{align*}
 \mathbb{E}_{\Omega_A C} \mathbb{E}_{i} I(X_i; E_B | \omega, a_C) \xi & \leq \frac{|C| \cdot \log |A|}{m} \leq \delta \quad (5)
\end{align*}

where recall that we defined \(\delta = (|C| \log |A| \cdot |B|) / m \). Applying the inequalities of Pinsker and Jensen, we obtain

\begin{align*}
 \mathbb{E}_{\Omega_A C} \mathbb{E}_{X_i | \omega, a_C} \| \xi_{E_B | \omega, x_i, a_C} - \xi_{E_B | \omega, a_C} \|_1 & \leq \sqrt{\delta}. \quad (6)
\end{align*}

These marginal density matrices have a nice description. Fix \(i, \omega, x_i, a_C \). First we note that the state \(\xi_{E_B | \omega, x_i, a_C} \) does not depend on \(\omega_i \), because we are already conditioning on \(x_i \). Thus we can write it as \(\xi_{E_B | \omega_i, x_i, a_C} \). Then

\begin{align*}
 \xi_{E_B | \omega_i, x_i, a_C} & = \frac{1}{P_{A_C | \omega_i, x_i} (a_C)} \sum_{x_i} P_{X_i | \omega_i, x_i} (x_i \mid i) \sqrt{p A_{X_i | i}^C} \sqrt{p} \\
 & = \frac{1}{P_{A_C | \omega_i, x_i} (a_C)} \sqrt{p} \left(\sum_{x_i} P_{X_i | \omega_i, x_i} (x_i \mid i) A_{X_i | i}^{aC} \right) \sqrt{p} \\
 & = \frac{1}{P_{A_C | \omega_i, x_i} (a_C)} \sqrt{p} A_{X_i | i}^{aC} \sqrt{p}.
\end{align*}

Similarly,

\begin{align*}
 \xi_{E_B | \omega, a_C} & = \frac{1}{P_{A_C | \omega} (a_C)} \sqrt{p} A_{wn | i}^{aC} \sqrt{p}.
\end{align*}

For all \(\omega, x_i, a_C \), define the following (unnormalized) states:

\begin{align*}
 |\Gamma_{\omega, x_i, a_C} \rangle = S_{\omega, x_i, a_C} \otimes \mathbb{I} |\psi\rangle \quad |\Gamma_{\omega, a_C} \rangle = S_{\omega, a_C} \otimes \mathbb{I} |\psi\rangle \quad (7)
\end{align*}

where the \(S \) operators were defined in Section 4.1. Let \(\gamma_{\omega, x_i, a_C} = (P_{A_C | \omega, x_i} (a_C))^{1/2} = \| |\Gamma_{\omega, x_i, a_C} \rangle \| \) and \(\gamma_{\omega, a_C} = (P_{A_C | \omega} (a_C))^{1/2} = \| |\Gamma_{\omega, a_C} \rangle \| \) denote their norms. We will write

\begin{align*}
 |\tilde{\Gamma}_{\omega, x_i, a_C} \rangle & = \gamma_{\omega, x_i, a_C}^{-1} |\Gamma_{\omega, x_i, a_C} \rangle \\
 |\tilde{\Gamma}_{\omega, a_C} \rangle & = \gamma_{\omega, a_C}^{-1} |\Gamma_{\omega, a_C} \rangle
\end{align*}

to denote the normalized states.

For notational convenience we will suppress mention of \(\omega_{-i} \) and \(z = (a_C, b_C) \), and implicitly carry them around. Thus, for example, when we write \(|\Gamma_{X_i} \rangle \) and \(|\Gamma_{\omega} \rangle \), we implicitly mean \(|\Gamma_{\omega_{-i}, x_i, a_C} \rangle \) and \(|\Gamma_{\omega, a_C} \rangle \), respectively.

Fix \(x_i \) and consider the following:

\begin{align*}
 \| |\tilde{\Gamma}_{X_i} \rangle - |\tilde{\Gamma}_{\omega} \rangle \|^2 \\
 = \left(|\tilde{\Gamma}_{X_i} \rangle - |\tilde{\Gamma}_{\omega} \rangle \right) \left(|\tilde{\Gamma}_{X_i} \rangle - |\tilde{\Gamma}_{\omega} \rangle \right)^* \\
 = \langle \psi | (\gamma_{X_i}^{-1} S_{X_i} - \gamma_{\omega}^{-1} S_{\omega})^* (\gamma_{X_i}^{-1} S_{X_i} - \gamma_{\omega}^{-1} S_{\omega}) \otimes \mathbb{I} |\psi\rangle
\end{align*}
\[\begin{align*}
\text{We see that (9), averaged over } S_i, \text{ is bounded by}
\leq & \| S_i^\dagger \rho S_i^\dagger - S_i \rho S_i^\dagger \|_1.
\end{align*} \] (8)

Next we use the Powers-Størmer inequality [PSZ0], which states that for positive semidefinite operators \(A, B \), we have \(\| A - B \|_2^2 \leq \| A^2 - B^2 \|_1 \). Since \(S_i, \sqrt{\rho} \) and \(S_i \sqrt{\rho} \) are by construction positive semidefinite, the above is bounded by

\[\| S_i^\dagger \rho S_i^\dagger - S_i \rho S_i^\dagger \|_1. \] (9)

We see that (9), averaged over \(i, \omega, a_C \) and \(x_i \) is exactly the quantity bounded in (8). Applying Jensen’s inequality, we have

\[\begin{align*}
\delta^{1/4} & \geq \mathbb{E}_{i} \mathbb{E}_{\Omega A_C X_i} \| \Gamma_{\omega, x_i, a_C} - \Gamma_{\omega, a_C} \| \\
& \geq \mathbb{E}_{i} \mathbb{E}_{\Omega A_C X_i} \| \Gamma \Gamma_{\omega, x_i, a_C} - \Gamma \Gamma_{\omega, a_C} \|_1
\end{align*} \] (10)

(11)

where in the second line we used Fact 2 and we write \(\Gamma \Gamma_{\omega, x_i, a_C} \) instead of \(\Gamma_{\omega, x_i, a_C} \) to save space.

Define the cq-states

\[\Phi_{\Omega X_i E_A E_B A_C} = \sum_{\omega, a_C, x_i} \mathbb{P}_{\Omega A_C X_i} (\omega, a_C, x_i) | \omega x_i \rangle \langle \omega x_i | \otimes \Gamma \Gamma_{\omega, x_i, a_C} \otimes | a_C \rangle \langle a_C | \]

and

\[\Phi_{\Omega X_i E_A E_B A_C} = \sum_{\omega, a_C, x_i} \mathbb{P}_{\Omega A_C X_i} (\omega, a_C, x_i) | \omega x_i \rangle \langle \omega x_i | \otimes \Gamma \Gamma_{\omega, a_C} \otimes | a_C \rangle \langle a_C | \]

so that the bound in (11) is equivalent to

\[\begin{align*}
\mathbb{E}_{i} \left\| \Phi_{\Omega X_i E_A E_B A_C} - \Phi_{\Omega X_i E_A E_B A_C} \right\|_1 & \leq \delta^{1/4}
\end{align*} \] (12)

We define the quantum operation \(\mathcal{E} \) acting on registers \(\Omega E_B \) as follows: for all \(\omega \) and density matrices \(\tau \),

\[\mathcal{E} : | \omega \rangle \langle \omega | \otimes \tau \mapsto | \omega \rangle \langle \omega | \otimes \sum_{b_C} T_{\omega b_C} \tau T_{\omega b_C}^\dagger \otimes | b_C \rangle \langle b_C |. \]

In other words, the quantum operation \(\mathcal{E} \) will, controlled on \(\Omega \), apply the measurement corresponding to the \(T_{\omega b_C} \) operators (defined in Section 4.1) to the \(E_B \) part of the state, and save the measurement outcomes in an ancilla register.

The operation \(\mathcal{E} \) is an isometry, so we have that

\[\mathbb{E}_{i} \left\| \mathcal{E} \left(\Phi_{\Omega X_i E_A E_B A_C}^i \right) - \mathcal{E} \left(\Phi_{\Omega X_i E_A E_B A_C}^i \right) \right\|_1 \leq \delta^{1/4}. \] (13)
Let us examine what happens when we apply \mathcal{E} to $\Phi^i_{\Omega X_i E_A E_B A_C}$:

$$\mathcal{E} \left(\Phi^i_{\Omega X_i E_A E_B A_C} \right)$$

$$= \mathbb{E}_{\Omega X_i} \langle \omega x_i | \| k \langle \omega x_i | \langle \omega x_i | \bigotimes_{b_c} T_{\omega b_c} | \Gamma_{\omega \omega x_i a_c} | T_{\omega b_c}^\dagger \bigotimes | a_c b_c \rangle \langle a_c b_c |$$

$$= \mathbb{E}_{\Omega X_i} \sum_{a_c, b_c} P_{A_c | \omega x_i} \langle a_c | \langle \omega x_i | \bigotimes_{b_c} T_{\omega b_c} | \Gamma_{\omega \omega x_i a_c} | T_{\omega b_c}^\dagger \bigotimes | a_c b_c \rangle$$

$$= \mathbb{E}_{\Omega X_i} | \omega x_i | \bigotimes_{a_c, b_c} T_{\omega b_c} | \Gamma_{\omega \omega x_i a_c} | T_{\omega b_c}^\dagger \bigotimes | a_c b_c \rangle \langle a_c b_c |$$

where in the second equality we used that the normalization of $| \Gamma \rangle \langle \Gamma |$ is equal to $P_{A_c | \omega x_i}(a_c)$, and that $P_{A_c | \omega x_i}(a_c) = P_{A c | \omega x_i}(a c)$. Similarly, we have that

$$\mathcal{E} \left(\Phi^i_{\Omega X_i E_A E_B A_C} \right) = \mathbb{E}_{\Omega X_i} \langle \omega x_i | \| k \langle \omega x_i | \langle \omega x_i | \bigotimes_{a_c, b_c} T_{\omega b_c} | \Gamma_{\omega \omega x_i a_c} | T_{\omega b_c}^\dagger \bigotimes | a_c b_c \rangle$$

Define $\Lambda^i_{\Omega X_i E_A E_B A_C} = \mathcal{E} \left(\Phi^i_{\Omega X_i E_A E_B A_C} \right)$ and $\tilde{\Lambda}^i_{\Omega X_i E_A E_B A_C} = \mathcal{E} \left(\Phi^i_{\Omega X_i E_A E_B A_C} \right)$. In both these states, the event of W_C is well defined: the registers $X_C Y_C$ (which are part of the dependency-breaking variable Ω) and $A C B_C$ are classical. Furthermore, we claim that the probability of the event W_C in Λ^i and $\tilde{\Lambda}^i$ are equal to the probability of W_C in the actual repeated strategy. Let

$$\Pi = \sum_{x_C y_C a_c b_c; V(x_C y_C a_c b_C) = 1} \langle x_C y_C a_c b_c | x_C y_C a_c b_c \rangle$$

be the projector onto the subspace corresponding to the event W_C. Then for all i

$$\text{Tr} \left(\Pi \Lambda^i \right)$$

$$= \sum_{\omega x_i} P_{\Omega X_i} \langle \omega x_i | \sum_{a_c, b_c; V(x_C y_C a_c b_C) = 1} \langle \Gamma_{\omega \omega x_i a_c} | T_{\omega b_c} | \Gamma_{\omega \omega x_i a_c} | T_{\omega b_c}^\dagger \bigotimes | a_c b_c \rangle \langle a_c b_c |$$

$$= \sum_{\omega x_i} P_{\Omega X_i} \langle \omega x_i | \sum_{a_c, b_c; V(x_C y_C a_c b_C) = 1} \langle \Psi | \langle S_{\omega \omega x_i a_c} \bigotimes T_{\omega b_c} | S_{\omega \omega x_i a_c} \bigotimes T_{\omega b_c} \rangle | \Psi \rangle$$

$$= \sum_{\omega x_i} P_{\Omega X_i} \langle \omega x_i | \sum_{a_c, b_c; V(x_C y_C a_c b_C) = 1} \langle \Psi | \left(\sqrt{A_{\omega \omega x_i a_c}^{ac}} \bigotimes \sqrt{B_{\omega b_c}^{bc}} \right) \bigotimes \left(\sqrt{A_{\omega \omega x_i a_c}^{ac}} \bigotimes \sqrt{B_{\omega b_c}^{bc}} \right) | \Psi \rangle$$

Using the definitions of $A_{\omega \omega x_i a_c}^{ac}$ and $B_{\omega b_c}^{bc}$ we see that this quantity is identical to $P(W_C)$. Similar reasoning shows that $\text{Tr} \left(\Pi \tilde{\Lambda}^i \right) = P(W_C)$.

Let $\Lambda^i_{\Omega X_i E_A E_B A_C | W_C} = (\Pi \Lambda^i \Pi) / P(W_C)$ and $\tilde{\Lambda}^i_{\Omega X_i E_A E_B A_C | W_C} = (\Pi \tilde{\Lambda}^i \Pi) / P(W_C)$ denote Λ^i and $\tilde{\Lambda}^i$ conditioned on the event W_C. So we have

$$\mathbb{E} \left\| \Lambda^i_{\Omega X_i E_A E_B A_C | W_C} - \tilde{\Lambda}^i_{\Omega X_i E_A E_B A_C | W_C} \right\|_1 \leq \frac{\delta^{1/4}}{P(W_C)}$$

(14)
Let us bundle together the Ω and $A_C B_C$ registers into R. For all $r = (\omega, a_C, b_C)$ and x_i, define

$$|\Psi_{r,x_i}\rangle = \frac{S_{\omega,i,x_i} \otimes T_{\omega,b_C}|\Psi\rangle}{\|S_{\omega,i,x_i} \otimes T_{\omega,b_C}|\Psi\rangle\|} \quad \quad |\Psi_r\rangle = \frac{S_{\omega,a_C} \otimes T_{\omega,b_C}|\Psi\rangle}{\|S_{\omega,a_C} \otimes T_{\omega,b_C}|\Psi\rangle\|}$$

Then we see that

$$\Lambda_{RX,E_A E_B|W_C}^i = \mathbb{E}_{RX_i|W_C} |r_{x_i}\rangle\langle r_{x_i}| \otimes |\Psi_{r,x_i}\rangle\langle \Psi_{r,x_i}|$$

and

$$\hat{\Lambda}_{RX,E_A E_B|W_C}^i = \mathbb{E}_{R|W_C} |r\rangle\langle r| \otimes \mathbb{E}_{X_i|\omega} |x_i\rangle\langle x_i| \otimes |\Psi_r\rangle\langle \Psi_r|.$$

We see that $\Lambda_{RX,E_A E_B|W_C}^i$ and $\hat{\Lambda}_{RX,E_A E_B|W_C}^i$ are both cq-states that are classical on RX_i and quantum on $E_A E_B$. The inequality in (14) implies that the trace distance between the classical parts of $\Lambda_{W_C}^i$ and $\hat{\Lambda}_{W_C}^i$ is at most $\delta^{1/4}/\mathcal{P}(W_C)$. Thus we can change the classical part of $\hat{\Lambda}_{W_C}^i$ to match the classical part of $\Lambda_{W_C}^i$ by at most doubling the error:

$$\mathbb{E} \left\| \mathbb{E}_{RX_i|W_C} |r_{x_i}\rangle\langle r_{x_i}| \otimes (|\Psi_{r,x_i}\rangle\langle \Psi_{r,x_i}| - |\Psi_r\rangle\langle \Psi_r|) \right\|_1 \leq 2\delta^{1/4}/\mathcal{P}(W_C).$$

which implies that

$$\mathbb{E}_i \mathbb{E}_{\Omega_i|X_i|W_C} \| |\Psi_{r,x_i}\rangle\langle \Psi_{r,x_i}| - |\Psi_r\rangle\langle \Psi_r| \|_1 \leq 2\delta^{1/4}/\mathcal{P}(W_C).$$

By Lemma 4.1, \(\mathbb{E}_i \| \Omega_i|X_i|W_C - \Omega_iX_i \|_1 \leq \sqrt{\delta}\). Applying that to the above, we get

$$\mathbb{E}_i \mathbb{E}_{\Omega_i|X_i|W_C} \left[\mathbb{E}_{R_{-i}|x_{i_j},y_{i_j},T|W_C} \| |\Psi_{r_{-i},x_{i_j},y_{i_j}}\rangle\langle \Psi_{r_{-i},x_{i_j},y_{i_j}}| - |\Psi_{r_{-i}}\rangle\langle \Psi_{r_{-i}}| \|_1 \right] \leq 2\delta^{1/4}/\mathcal{P}(W_C) + \sqrt{\delta}$$

where the middle expectation over $\Omega_i X_i$ is over the *prior* distribution (i.e. before conditioning on the event W_C). Now observe that in this prior distribution, Ω_i fixes Y_i with probability 1/2, so we in fact get

$$\mathbb{E}_i \mathbb{E}_{\Omega_i|X_i|W_C} \left[\mathbb{E}_{R_{-i}|x_{i_j},y_{i_j},W_C} \| |\Psi_{r_{-i},x_{i_j},y_{i_j}}\rangle\langle \Psi_{r_{-i},x_{i_j},y_{i_j}}| - |\Psi_{r_{-i}}\rangle\langle \Psi_{r_{-i}}| \|_1 \right] \leq 4\delta^{1/4}/\mathcal{P}(W_C) + 2\sqrt{\delta}$$

where the states $|\Psi_{r_{-i},x_{i_j},y_{i_j}}\rangle$ were defined in Section 4.1 and $|\Psi_{r_{-i}}\rangle$ is $|\Psi_r\rangle$ where $r = (r_{-i}, \omega_i)$ and ω_i fixes $Y_i = y_i$. Applying the Fuchs-van der Graaf inequality, we obtain a bound in terms of Euclidean distance:

$$\mathbb{E}_i \mathbb{E}_{\Omega_i|X_i|W_C} \left[\mathbb{E}_{R_{-i}|x_{i_j},y_{i_j},W_C} \| |\Psi_{r_{-i},x_{i_j},y_{i_j}}\rangle - |\Psi_{r_{-i}}\rangle \|_2 \right] \leq O\left(\left(\frac{\delta^{1/4}/\mathcal{P}(W_C)}{1/2}\right)^{1/2}\right)$$ (15)

Similar reasoning implies that

$$\mathbb{E}_i \mathbb{E}_{\Omega_i|X_i|W_C} \left[\mathbb{E}_{R_{-i}|x_{i_j},y_{i_j},W_C} \| |\Psi_{r_{-i},x_{i_j},y_{i_j}}\rangle - |\Psi_{r_{-i}}\rangle \|_2 \right] \leq O\left(\left(\frac{\delta^{1/4}/\mathcal{P}(W_C)}{1/2}\right)^{1/2}\right)$$ (16)
where $|\Psi_{r \rightarrow x_i}\rangle$ is $|\Psi_r\rangle$ where $r = (r_{-i}, \omega_i)$ and ω_i fixes $X_i = x_i$. By triangle inequality, we have

$$
E \mathbb{E}_{i, X_i Y_i} \left[\mathbb{E}_{R \rightarrow i|x_i, y_i, W_C} \| |U_{r \rightarrow i,x_i} \otimes V_{r \rightarrow i,y_i}|E_{dd'}\rangle - |\Psi_{r \rightarrow i,x_i}\rangle \|E_d\rangle \| \right] \leq O(\sqrt{\delta/4/P(W_C)})^{1/2}. \tag{17}
$$

Let $\eta := O(\sqrt{\delta/4/P(W_C)})^{1/2}$. Fix r_{-i}, x_i, y_i. Since r_{-i} is public, Alice knows r_{-i}, x_i, and thus knows a classical description of the state $|\Phi_{r_{-i}, x_i}\rangle$. Similarly, Bob knows a classical description of the state $|\Phi_{r_{-i}, y_i}\rangle$. By the Quantum Correlated Sampling Lemma of [DSV14] with parameter $\alpha = \eta^6$, there exists a dimension d' that depends only on d and α, and unitaries U_{r_{-i}, x_i} and V_{r_{-i}, y_i} such that

$$
\|U_{r_{-i}, x_i} \otimes V_{r_{-i}, y_i}|E_{dd'}\rangle - |\Psi_{r_{-i}, x_i}\rangle \|E_d\rangle \| \leq O(\max\{\alpha^{1/12}, \| |\Psi_{r_{-i}, x_i}\rangle - |\Psi_{r_{-i}, y_i}\rangle \|^{1/6}\}).
$$

We can average this over i, x_i, y_i, and r_{-i} to get that

$$
\mathbb{E} \mathbb{E}_{i, X_i Y_i} \left[\mathbb{E}_{R \rightarrow i|x_i, y_i, W_C} \|U_{r_{-i}, x_i} \otimes V_{r_{-i}, y_i}|E_{dd'}\rangle - |\Psi_{r_{-i}, x_i}\rangle \|E_d\rangle \| \right] \leq \mathbb{E} \mathbb{E}_{i, X_i Y_i} \left[\mathbb{E}_{R \rightarrow i|x_i, y_i, W_C} \mathbb{O}(\max\{\alpha^{1/12}, \| |\Psi_{r_{-i}, x_i}\rangle - |\Psi_{r_{-i}, y_i}\rangle \|^{1/6}\}) \right] \leq \mathbb{O}(\alpha^{1/24}) = \mathbb{O}(\eta^{1/12})
$$

where in the second inequality we used the following fact: for a nonnegative random variable X with mean $\mu = \mathbb{E} X$, we can bound the expectation $\mathbb{E} \max\{\sqrt{\mu}, X\} \leq O(\sqrt{\mu})$. Using the bound [16], we get

$$
\mathbb{E} \mathbb{E}_{i, X_i Y_i} \left[\mathbb{E}_{R \rightarrow i|x_i, y_i, W_C} \|U_{r_{-i}, x_i} \otimes V_{r_{-i}, y_i}|E_{dd'}\rangle - |\Psi_{r_{-i}, x_i, y_i}\rangle \|E_d\rangle \| \right] \leq O(\eta^{1/12})
$$

as desired.

Acknowledgments. This work was supported by Simons Foundation grant 360893 and National Science Foundation Grant 1218547. The author thanks both the Institute of Mathematical Sciences at the National University of Singapore, and the Weizmann Institute of Science for hospitable stays during which this research was conducted. The author also thanks Corinna Li, Mohammad Bavarian, Govind Ramnarayan, and anonymous referees for helpful feedback and discussions.

References

