
Constant-Round Interactive Proofs for Delegating Computation∗

Omer Reingold†

Stanford University
Guy N. Rothblum‡

Weizmann Institute
Ron D. Rothblum§

Technion

October 14, 2020

Abstract

The celebrated IP = PSPACE Theorem [LFKN92, Sha92] allows an all-powerful but untrusted
prover to convince a polynomial-time verifier of the validity of extremely complicated statements
(as long as they can be evaluated using polynomial space). The interactive proof system designed
for this purpose requires a polynomial number of communication rounds and an exponential-
time (polynomial-space complete) prover. In this paper, we study the power of more efficient
interactive proof systems.

Our main result is that for every statement that can be evaluated in polynomial time and
bounded-polynomial space there exists an interactive proof that satisfies the following strict
efficiency requirements: (1) the honest prover runs in polynomial time, (2) the verifier is almost
linear time (and under some conditions even sub linear), and (3) the interaction consists of only
a constant number of communication rounds. Prior to this work, very little was known about
the power of efficient, constant-round interactive proofs (rather than arguments). This result
represents significant progress on the round complexity of interactive proofs (even if we ignore
the running time of the honest prover), and on the expressive power of interactive proofs with
polynomial-time honest prover (even if we ignore the round complexity). This result has several
applications, and in particular it can be used for verifiable delegation of computation.

Our construction leverages several new notions of interactive proofs, which may be of in-
dependent interest. One of these notions is that of unambiguous interactive proofs where the
prover has a unique successful strategy. Another notion is that of probabilistically checkable
interactive proofs1 (PCIPs) where the verifier only reads a few bits of the transcript in checking
the proof (this could be viewed as an interactive extension of PCPs).

∗A preliminary version appeared as [RRR16]. This work was done in part while the authors were visiting the
Simons Institute for the Theory of Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant #CNS-1523467.

†Email: omer.reingold@gmail.com. Parts of this work were done while at Samsung Research America.
‡Email: rothblum@alum.mit.edu. Parts of this work were done while at Samsung Research America.
§Email: rothblum@cs.technion.ac.il. This work was done in part while the author was at MIT. Supported by

grants NSF MACS - CNS-1413920, DARPA IBM - W911NF-15-C-0236, and SIMONS Investigator award Agreement
Dated 6-5-12.

1An equivalent notion to PCIPs, called interactive oracle proofs, was recently introduced in an independent work
of Ben-Sasson et al. [BCS16].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 61 (2016)

Contents

1 Introduction 3
1.1 Our Main Result . 3
1.2 Further Applications . 6
1.3 Related Work and Related Models . 8

2 Overview of The Construction 10
2.1 A Primer: Batch Verification of UP Statements . 12
2.2 Batching Unambiguous Interactive Proofs . 18

3 Preliminaries 23
3.1 Multivariate Polynomials and Low Degree Testing 23
3.2 Low Degree Extension . 24
3.3 Uniformity and Constructibility . 29

4 Unambiguous and Probabilistically Checkable Interactive Proofs 30
4.1 Interactive Proofs (IPs) . 30
4.2 Unambiguous IPs . 31
4.3 Probabilistically Checkable Interactive Proofs (PCIPs) 32
4.4 Unambiguous PCIPs w.r.t. Encoded Provers . 34

5 Our Results 38
5.1 Roadmap for the Proof of Theorem 7 . 39

6 Batch Verification of Unambiguous PCIPs 39
6.1 The Deviation Amplification Lemma . 41
6.2 Proof of the Deviation Amplification Lemma (Lemma 6.3) 42
6.3 Proof of the Batch Verification Lemma (Lemma 6.1) 55
6.4 Proofs of Lemma 6.5 and Proposition 6.6 . 60

7 The Query-Reduction Transformation for PCIPs 62
7.1 The Sumcheck Protocol . 64
7.2 Unambiguous PCIP for T -time w.r.t. Encoded Provers 67
7.3 Query Reduction Transformation: Proof of Lemma 7.4 71

8 Interactive Proofs for Bounded-Space Computations 77
8.1 Augmentation Lemma . 79
8.2 An Unambiguous PCIP for Bounded Space Computations 85

9 Batch Verification of Unambiguous Interactive Proofs 90

1 Introduction

The power of efficiently verifiable proof systems is a central question in the study of computation.
In this work, we study the power of Interactive Proof systems [GMR89, BM88]. An Interactive
Proof system is an interactive protocol between a randomized verifier and an untrusted prover.
The prover convinces the verifier of the validity of a computational statement, usually framed as
the membership of an input x in a language L. Soundness is unconditional. Namely, if the input
is not in the language, then no matter what (unbounded and adaptive) strategy a cheating prover
might employ, the verifier should reject with high probability over its own coin tosses. Interactive
proofs have had a dramatic impact on Complexity Theory and Cryptography. The celebrated
IP = PSPACE Theorem [LFKN92, Sha92] showed that interactive proofs are remarkably powerful:
a polynomial-time verifier can use them to verify any statement/language that is computable in
polynomial space. This remarkable characterization opened the door to foundational questions
about the power and the complexity of interactive proofs.

The Complexity of Verifying and Proving. The [LFKN92, Sha92] protocol places a heavy
burden on the honest prover, who needs to perform intractable computations. Indeed, this was
unavoidable as they focused on interactive proofs for statements (in PSPACE) that are themselves
intractable. A study of interactive proofs for tractable statements, where both the honest prover
and the verifier run in polynomial time, was initiated in [GKR08, GKR15]. The verifier should be
super-efficient, e.g. it should run in linear or near-linear time. In particular, verification requires
significantly less resources than it would take to decide the (tractable) language. We refer to
interactive proofs with an efficient (polynomial-time) honest prover, and a super-efficient verifier
as doubly-efficient interactive proof systems. We emphasize that we still require unconditional
soundness against an unbounded cheating prover. The first question that we study in this work is:

Question 1.1. Which languages have doubly-efficient interactive proofs?

The Round Complexity of Interactive Proofs. The [LFKN92, Sha92] protocol can be used
to prove membership in any language L that can be decided in space S = S(n), with communication
complexity that is polynomial in S, and verification time that is roughly linear in n and polynomial
in S. To achieve the small communication and verification time, the prover and the verifier need
to engage in poly(S) rounds of communication. It is natural to ask whether the number of rounds
can be reduced. The second question we study is:

Question 1.2. Which languages have constant-round interactive proofs with small communication
and verification time?

Even for protocols with exponential-time honest provers, this question is not well understood.

1.1 Our Main Result

We make simultaneous progress on both of these foundational questions. Our main result is a
new construction of doubly-efficient and constant-round interactive proofs for languages that are
computable in polynomial time and bounded space.

Theorem 1 (Doubly-Efficient Interactive Proofs for Bounded Space). Let L be a language that can
be decided in time poly(n) and space S = S(n), and let δ ∈ (0, 1) be an arbitrary (fixed) constant.

3

There is a public-coin interactive proof for L with perfect completeness and soundness error 1/2.
The number of rounds is O(1). The communication complexity is (poly(S) · nδ). The (honest)
prover runs in time poly(n), and the verifier runs in time (Õ(n) + poly(S) · nδ).

Furthermore, if the verifier is given query access to a low-degree extension of the input, then its
running time is reduced to O(poly(S) · nδ).

In particular, we obtain an (almost) linear-time verifier and a polynomial-time honest prover
for languages computable in polynomial time and bounded-polynomial space. Here and below, by
bounded-polynomial space we mean space nσ for some sufficiently small universal constant σ > 0.
See Corollary 8 in Section 5 for a more formal and general statement.

In several ways, the result of Theorem 1 seems tight. The dependence on the space S in the
communication or the verification time is tight (up-to polynomial factors), as any language that has
an interactive proof, where the communication and verification time (or rather verification space)
are bounded by B ≥ log n, can be decided in space poly(B) (this can be seen from the game tree
construction of Goldreich and H̊astad [GH98]). Also, under reasonable complexity conjectures, no
constant-round interactive proof for bounded space computations can have sub-polynomial com-
munication complexity, as this would lead to a super-polynomial AM-speedup for that class of
computations (see Remark 5.1 for further details). We also emphasize that the result of Theorem 1
is unconditional, we make no cryptographic assumptions, and the interactive proof is sound even
against unbounded cheating provers.

Applications: Delegation, Succinct Zero-Knowledge, IPPs, and more. Beyond their im-
portance in the theoretical study of computation, interactive proofs are also motivated by real-world
applications, such as delegating computation. Here, a powerful server can run a computation for a
weak client, and provide an interactive proof of the output’s correctness, see [GKR15]. The inter-
active proof should be doubly-efficient, so that generating the proof is tractable for the server, and
verification is super-efficient for the client. Naturally, this scenario focuses on tractable computa-
tions that can actually be performed by the server. The interactive proofs of Theorem 1 can be used
to delegate bounded-space polynomial-time computations (without making computational assump-
tions or using cryptographic machinery). The constant round complexity is an important bonus in
the delegation scenario, where network latency can make communication rounds expensive.

Given the fundamental importance of interactive proofs in cryptography and complexity, it
should come as no surprise that Theorem 1 has implications to a variety of foundational questions. It
implies constant-round succinct zero-knowledge proofs from one-way functions for any NP-language
whose witnesses can be verified in bounded space. It also gives constant-round sublinear-time
Interactive Proofs of Proximity for polynomial-time and bounded-space computations. Finally,
Theorem 1 can be used to extend the class of circuits to which the [GKR15] protocol applies, from
Logspace-uniformity to general bounded-space uniformity. We elaborate on these implications in
Section 1.2.

A Taste of the Techniques. The overall structure of our proof of Theorem 1 is to iteratively
construct a proof system for longer and longer computations. Assume that we already have an
interactive proof for verifying Turing machine computations that run in time T and space S, we
now want to extend the proof system to verifying computations that run in time (k · T) and space
S, for some super-constant integer k. This could easily be reduced to verifying k computations that
run in time T (all the prover needs to do is to send is k − 1 intermediate states of the machine).

4

Two simple but ineffective approaches are to either run k instances of the “base” proof system to
verify the k computations (which is inefficient) or to spot-check a few of the computations (which
drastically increases the success probability of a cheating prover, known as the soundness error).
The main ingredient of our proof is therefore what we call a batch verification theorem for interactive
proofs. Such a theorem allows the verification of k computations in a much more efficient way than
k independent executions (and while maintaining the soundness error).

To obtain the batch verification theorem, we introduce several new notions for interactive proofs
that may be of independent interest. First we suggest a notion where the prover has a unique strat-
egy to convince a verifier (similarly to the unique satisfying assignment of a unique-SAT formula).
The moment the prover deviates from the prescribed strategy it will likely fail in convincing the
verifier even when the statement in question is true. We call this notion an unambiguous interactive
proof. We also introduce a notion that can be thought of as an interactive analogue of PCPs. These
are interactive proof systems where the verifier only reads a few bits of the input and transcript in
checking the proof. We call these proofs probabilistically checkable interactive proofs (PCIPs).2 We
consider various ways to combine these notions into unambiguous PCIPs (which play an important
role in this work).

We are able to provide a batch verification theorem for PCIPs (that are somewhat unambigu-
ous). Coming to apply this theorem repeatedly, we encounter the following problem: the batch
verification degrades the query complexity and verification time by a multiplicative factor of k.
After repeated batching, the query complexity will no longer be sublinear in the transcript length,
which is problematic. To resolve this problem, the iterative construction of our interactive proofs
repeatedly uses the PCIP-batch verification step, followed by a PCIP-“query-reduction” step (which
also reduces the verifier’s runtime). Note that the “query-reduction” does increase the communi-
cation and so this iterative construction constantly balances verifier’s query and runtime against
communication complexity, while gradually obtaining powerful PCIPs (and interactive proofs) for
longer and longer computations. This is similar in spirit to the delicate balancing of parameters in
the iterative constructions of [RVW00, Rei08, Din07] (also see [Gol11]).

Comparison with Prior Work on Interactive Proofs. The results that are perhaps most
directly related to ours are the works of [LFKN92, Sha92, GKR15], which also construct interac-
tive proofs for rich classes of computations. For poly(n)-time space-S languages, the protocol of
[LFKN92, Sha92] has honest prover runtime npoly(S) and poly(S, log n) rounds. The communication
complexity is poly(S, log n) and the verifier runs in time Õ(n) + poly(S, log n). The communication
and verification time are tight (up to polynomial factors, see Remark 5.1). The protocol of [GKR15]
gives an improved interactive proof, where the prover runs in time poly(n) · 2S , but still has round
complexity poly(S, log n) (see [Rot09]).

We compare these results with the statement of Theorem 1. For languages computable in time
poly(n) and space nσ, Theorem 1 improves the prover running time exponentially, from 2O(nσ) to
poly(n). The round complexity is improved from nO(σ) to O(1). Even for smaller space, where past
works achieve tight communication and verification times, Theorem 1 gives the first interactive
proofs with a constant number of rounds (and is tight under reasonable conjectures, see Remark
5.1). For languages that are computable in ω(log(n))-space and polynomial time, Theorem 1 gives
the first interactive proofs with a polynomial-time honest prover.

2A notion which is equivalent to PCIPs, called “Interactive Oracle Proofs”, was introduced in a recent independent
work of Ben-Sasson et al. [BCS16] (see also [BCGV16, BCG+16]). See Section 1.3 for further details on their work.

5

The work of [GKR15] gives doubly-efficient interactive proofs for languages computable by
(Logspace-uniform) polynomial-size circuits of bounded depth D = D(n). The verifier’s work
is quasi-linear in its input length and polynomial in the circuit depth. The communication is
polynomial in the circuit depth. The number of rounds in their protocol is O(D · log n). A
modification to the [GKR15] protocol gives an O(1)-round interactive proof with nδ communication
for languages computable by NC1 circuits satisfying a (very) strong notion of uniformity [KR09].
Theorem 1 can be used to extend the [GKR15] protocol to nσ-space uniform polynomial-size circuit
families of bounded depth. See Section 1.2.

Comparison with Prior Work in Related Models. In Section 1.3 we compare our results
with what is known in models that are closely related to interactive proofs, such as PCPs, com-
putationally sound interactive proofs and interactive proofs of proximity. Regarding PCPs, we
emphasize that they provide a weaker notion of soundness than interactive proofs. Recall that a
PCP is a proof system in which the verifier reads only a few bits from a proof that is fixed a priori.
Soundness means that the verifier rejects alleged proofs for false statements, but the proof has to
be written down ahead of time before the verifier’s queries are specified. In particular, this static
notion of soundness is not directly suitable for delegating computations over a network. For further
details see Section 1.3.

Organization. In Section 1.2 we discuss applications of Theorem 1 to the construction of suc-
cinct zero-knowledge proofs, interactive proofs of proximity, interactive proofs for languages com-
puted by a richer class of uniform bounded-depth circuits and interactive proofs for randomized
computations. We give an overview of our approach, techniques and technical contributions in Sec-
tion 2. Preliminaries and technical definitions are in Section 3. New notions of probabilistically
checkable and unambiguous interactive proof systems play a central role in our construction, and
these are discussed and defined in Section 4. A general and formal statement of our main result is
in Section 5. The subsequent sections contain the technical details of our main construction (see
the roadmap in Section 5.1).

1.2 Further Applications

Succinct Zero-Knowledge Proofs. We use Theorem 1 to construct succinct constant round
zero-knowledge proofs for NP statements from one-way functions. These are zero-knowledge proofs
where the communication is nearly-linear in the length of the statement’s NP witness. Several
works constructed succinct zero-knowledge proofs for various restrictions of NP. The restrictions
are obtained by examining, for an NP language L, the polynomial-time relation R that checks the
validity of witnesses. Succinct zero-knowledge proofs for NP-languages where R is computable by
AC0 circuits were shown by Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS07] and by Kalai and
Raz [KR08]. This was extended in [GKR15] to NP-languages where R is computable by a uniform
bounded-depth circuit (say of small fixed polynomial depth). This improvement was significant, es-
pecially because many statements regarding cryptographic operations cannot be directly computed
or verified in AC0 (e.g. pseudo-random functions). Their zero-knowledge proofs, however, require
a number of rounds that grows with the circuit-depth of R. Theorem 1 directly implies succinct
and constant-round zero-knowledge proofs when R is computable in bounded space.

6

Theorem 2. Assume one-way functions exist, let δ ∈ (0, 1) be a constant, κ = nδ be a crypto-
graphic security parameter. Let L be an NP language, whose relation R can be computed by a
poly(n)-time and O(nδ)-space Turing Machine that operates on inputs of length n and witnesses of
length m = poly(n). The language L has a public-coin zero-knowledge interactive proof with perfect
completeness, constant soundness, and communication m · poly(κ). The (honest) prover, given a
valid witness, runs in time poly(n). The verifier runs in time (m+ n) · poly(κ).

Proof Sketch. The proof uses the standard transformation from public-coin interactive proofs to
zero-knowledge proofs [BGG+88], and follows along the same lines as the succinct zero-knowledge
construction of [GKR15]. The prover commits to the witness w using a statistically binding com-
mitment [Nao91, HILL99], and sends this commitment to the verifier. The prover and verifier then
run the public coin interactive proof of Theorem 1 to verify that R(x,w) = 1, where the verifier
sends its coins in the clear, and the prover sends commitments to its answers. At the end of the
protocol, the prover and verifier use a zero-knowledge proof to prove that the verifier would accept
the values in the commitments. The key point is that this zero knowledge proof is for a “smaller”
statement, because the verifier of Theorem 1 is quite efficient. This last step uses a zero-knowledge
proof with communication that is linear in the size of the verification circuit [CD97, IKOS07]. See
[GKR15] for details.

Interactive Proofs of Proximity. Interactive proofs of proximity [RVW13] are interactive proof
systems in which the verifier runs in sub-linear time. Soundness is relaxed, and only guarantees that
the verifier will reject inputs that are ε-far from the language (in fractional Hamming distance). We
construct constant-round IPPs (with a polynomial-time honest prover) for languages computable in
polynomial-time and bounded-polynomial space. [RVW13] construct IPPs for every language that
can be computed by (uniform) bounded-depth circuits, where the round complexity grows with the
circuit depth. See Section 1.3 for further discussion of related work.

Theorem 3. Fix any sufficiently small constant σ ∈ (0, 1). Let L be a language that is com-
putable in poly(n)-time and O(nσ)-space, Then L has a constant-round ε-IPP for ε = n−1/2 with
perfect completeness and soundness 1/2. The query and communication complexities, as well as
the verifier’s running time, are n1/2+O(σ). The (honest) prover runs in time poly(n).

Proof Sketch. The IPP protocol of [RVW13] for (log-space uniform) bounded-depth circuits pro-
ceeds in two main steps. In the first step, the GKR protocol [GKR15] is run in parallel roughly√
n times to obtain a similar number of claims on the low degree extension of the input. Then, a

special purpose sub-linear time protocol, called the PVAL protocol, is run to verify these claims.
The GKR step in [RVW13] can be replaced with the protocol of Theorem 1. This uses the fact
that, similarly to the GKR protocol, our verifier runs in sub-linear time given access to the input’s
low degree extension. In addition, the PVAL protocol of [RVW13] allows for a tradeoff between the
number of rounds and communication, and in particular can be implemented in a constant number
of rounds (with n

1
2
+ε communication for any constant ε > 0). See [RVW13] for further details.

Delegating Uniform Bounded-Depth Computations. The interactive proof of [GKR15]
applies to Logspace-uniform circuits of bounded depth. Theorem 1 can be used to extend their
results to a richer notion of uniformity, giving interactive proofs for polynomial-time bounded-
polynomial space uniform circuits of bounded depth.

7

Theorem 4. Fix any sufficiently small constant σ ∈ (0, 1). Let L be a language computable by a
poly(n)-time O(nσ)-space uniform ensemble of circuits of depth D = D(n) and size poly(n). There
is a public-coin interactive proof system for L with perfect completeness, constant soundness, and
communication poly(nσ, D). The number of rounds is O(D · log n). The (honest) prover runs in
time poly(n), and the verifier runs in time n · poly(D, log(n)).

Proof Sketch. The GKR protocol utilizes a “bare-bones” protocol for delegating bounded depth
computations, where the verifier is assumed to have access to low-degree functions that specify the
circuit’s structure. This protocol does not assume any uniformity from the circuit. Building on the
bare-bones protocol, they construct interactive proofs for Logspace-uniform circuits by “delegat-
ing” the computation of the functions that specify the circuit to the untrusted prover (this uses a
separate interactive proof for delegating Logspace computations). For a polynomial-time bounded-
polynomial space uniform circuit family, the (low-degree extensions of the) circuit-specifying func-
tions can be computed in (uniform) polynomial time and bounded-polynomial space. Thus, we
can also build on the bare-bones protocol, and use Theorem 1 to delegate the computation of the
circuit-specifying functions to the untrusted prover.

Delegating Randomized Computations. We also obtain doubly-efficient interactive proofs for
bounded-space randomized computations (as opposed to deterministic computations) as a direct
corollary of our main result. This extension is based on Nisan’s [Nis92] pseudorandom generators
(PRG) against bounded-space distinguishers. We note that this is in contrast to prior constructions
of doubly efficient interactive-proofs (in particular [GKR08]), which apply only to deterministic
computations.

Recall that the PRG of [Nis92] (see also [Gol08, Theorem 8.21]) implies that every randomized
Turing machine M running in time T and space S can be simulated by a time O(T) and space
O(S · log(T)) randomized Turing Machine M ′ that uses only O(S · log(T)) random bits (up to
some small constant error). An interactive proof for M ′ can be constructed by having the verifier
first generate a random string r of length O(S · log(T)), and then send r to the prover. The two
parties then run the interactive proof of Theorem 1 for the deterministic computation of M ′ when
its random string is fixed to r.

1.3 Related Work and Related Models

A beautiful line of research, starting with the work of Babai, Fortnow, Lund and Szegedy [BFLS91],
has focused on “PCP-like” proof systems with very efficient verifiers. In this model, the verifier has
query access to a long fixed proof string, and can achieve verification time that is poly-logarithmic
in the length of a general deterministic or non-deterministic computation ([BFLS91] assumes that
the input is in an error-correcting code format, for general inputs verification requires quasi-linear
time for encoding the input). In this work, and in its more efficient descendants [PS94, BGH+06,
DR06, Din07], the PCP proof system’s soundness requires that the proof string be fixed. While
the proof might be wrong, it is static and does not change with the verifier’s queries to it. If one
thinks of delegating computation to an untrusted server over a network, it is not immediately clear
how to leverage these results: the verifier needs to either “possess” the entire PCP proof string,
which is longer than the entire computation (though only a few of its bits are eventually read), or
to somehow have a guarantee that the prover/delegatee cannot adaptively change the PCP proof
string as the verifier queries its bits. In contrast, our work focuses on the interactive proof setting,

8

where a cheating prover can be arbitrarily adaptive in its answers to the verifier’s queries. As a
consequence, our results are more amenable to delegating computation over a network.

A different model of interactive proof systems was studied by [EKR04, RVW13]. They consider
sublinear-time verification with a natural approximate notion of soundness.3 In Theorem 1, the
verifier runs in nearly-linear time (i.e. verification is more expensive), but soundness holds for any
input not in the language. In fact, Theorem 1 can also be used to construct new IPPs for bounded
space computations, and these IPPs have the additional advantage of constant round complexity
(the round complexity in [RVW13] grows with the circuit depth). Prior to our work, constant-
round IPPs were only known for context-free languages, read-once branching programs [GGR15]
and other specific languages [RVW13, GR15], or with only computational soundness (and under
cryptographic assumptions) [KR15]. See Section 1.2 for further details.

Relaxing soundness to hold only against polynomial-time cheating provers, and assuming the
existence of collision-resistant hash functions, Kilian [Kil92] constructed a 4-message argument
system for any language in NP. The communication complexity is only polynomial in the security
parameter (and logarithmic in the computation size). His framework can also be used for any
language in P (regardless of its space complexity), and gives verifier runtime that is linear in the
input length (and polynomial in the security parameter). We emphasize that an argument system
achieves only computational soundness (soundness with respect to a computationally bounded
dishonest prover). Our work focuses on the interactive proof setting, where soundness needs to
hold against any cheating prover, and we make no cryptographic assumptions.

A line of works has attempted to reduce the interaction in argument systems even further.
Micali [Mic94] shows that the interaction can be reduced in the random oracle model. This gives
“non-interactive” proofs for the correctness of general computations (in the random oracle model).
Kalai, Raz and Rothblum [KRR13, KRR14] constructed 2-message arguments for P, assuming
quasi-polynomially hard PIR (or quasi-polynomially hard fully-homomorphic encryption). The
assumption was more recently reduced to standard PIR by Brakerski et al. [BHK17]. The same
work [BHK17] also constructs computationally sound batch verification protocols for NP.

Other works [Gro10, Lip12, BCCT12, DFH12, GLR11, BCCT13, GGPR13, BCI+13] show how
to achieve 2-message arguments for NP under non-falsifiable assumptions (which are, to an extent,
necessary [GW11]) or in the preprocessing model [GGP10, CKV10, AIK10, PRV12]. Other works
obtain 2-message arguments for P assuming indistinguishability obfuscation [KLW15, BGL+15,
CHJV15] or falsifiable assumptions on multi-linear maps [PR17].

Verifiable Delegation of Computation. Many of these works (including ours) are motivated
by the application of delegating computations to an untrusted server in the setting of cloud com-
puting. Indeed, some of these protocols and the ideas that underly them have been used in a
burgeoning literature implementing secure systems for delegating computation. See the survey
by Walfish and Blumberg [WB15] and the references therein for a more complete overview of the
literature on verifiable delegation of computation and these more recent implementations.

Interactive Oracle Proofs. A model called interactive oracle proofs (IOPs), which is equivalent
to our notion of probabilistically checkable interactive proofs (PCIP), was very recently introduced

3[RVW13] define interactive proofs of proximity (IPPs), where soundness is relaxed, and the verifier only needs
to reject inputs that are far from the language. They construct sublinear-time IPPs for every language that can be
computed by (uniform) bounded-depth circuits.

9

in an independent work of Ben Sasson et al. [BCS16] and studied also in [BCGV16] and [BCG+16].
[BCS16] define IOPs and study a compiler from public-coin IOPs to non-interactive proofs in the
random oracle model. [BCGV16] define “duplex PCPs”, which are 2-round IOPs, and construct
duplex PCPs for NP that provide perfect zero-knowledge, with quasilinear-size proof length and
constant query complexity. [BCG+16] continue the study of IOPs, and (among other contribu-
tions) construct linear-size IOPs for circuit-SAT. [BCG+16] also study IOPs of proximity which
are equivalent to our notion of PCIPs of proximity (see Definition 4.9 below). We note that the
“IOP composition” tool in [BCG+16], which is used to reduce the verifier’s query complexity, is
reminiscent of our “query reduction” transformation for PCIPs.

Followup Work. The recent work [RRR18] gives a batch verification protocol for UP that is
more efficient than the one presented here. Specifically, the [RRR18] protocol avoids an additive
Ω(k) factor that appears in our batch verification protocol. We remark however that we do not
know how to use the [RRR18] to construct better interactive proofs for bounded space computations
than the ones constructed here.

Other Related Notions. Batch verification of PCPPs (called simultaneous PCPPs therein) was
used by Meir [Mei16, section 5.1] in his construction of short combinatorial PCPs.

A related problem to that of batch verification of NP statements, due to Harnik and Naor
[HN10] (see also [Dru15] and references therein), is that of AND-instance compression. Here, we are
given k statements and we wish to efficiently compress them so that the compressed string retains
the information of whether all k statements hold. Strong infeasiblity results for AND-instance
compression for NP [Dru15] are known. Our notion of batch verification for NP (or UP statements)
can be thought of as a type of compression for witnesses rather than instances. Furthermore, our
notion of batch verification is different from instance compression in that: (1) we have access to
an (untrusted) prover who can help us compress, and (2) the compression is via an interactive
protocol.

Another related notion is that of Probabilistically Checkable Debate Systems. Probabilistically
Checkable Debate Systems (PCDS), introduced by Condon et al. [CFLS95] and recently studied
by Drucker [Dru11], are protocols between a verifier and two competing provers, where one prover
tries to prove that the input is in the language and other prover tries to prove that it is not. This
is similar to refereed games [FK97], but here an additional catch is that the verifier is required to
only read a few bits from the transcript in order to reach its verdict. PCDSes are loosely related
to our notion of PCIP: in both proof-systems the verifier reads a few bits of the transcript. In
contrast to PCDSes however, in PCIPs there is only one prover.

2 Overview of The Construction

An Iterative Construction. Assume we have a “base” interactive proof for verifying Turing
Machine computations, where the Turing machine computations run in time T and space S. Our
approach is to build on this protocol to construct an “augmented” interactive proof for verifying
“longer” computations that run in time (k · T) and space S, where k is an integer (much) larger
than 1. We use this augmentation step iteratively, starting with trivial interactive proofs for short
computations, and gradually obtaining increasingly powerful interactive proofs for longer and longer
computations.

10

We proceed with a discussion of the augmentation step. We begin with a base protocol, where
prover and verifier agree on a (deterministic) Turing Machine M, an input x ∈ {0, 1}n, and two
configurations u, v ∈ {0, 1}S (a configuration includes the machine’s internal state, the contents
of all memory tapes, and the position of the heads). The prover’s claim is that after running
the machine M on input x, starting at configuration u and proceeding for T steps, the resulting
configuration is v. We denote this claim by:

(M, x) : u
T
// v.

We augment the base protocol, using it to design a new protocol for verifying longer computations
running in time (k · T), i.e. “augmented claims” of the form:

(M, x) : u
(k·T)

// v.

Consider an augmented claim, where u is the initial configuration, and v is the alleged config-
uration after (k · T) steps. The prover’s first message in the augmented protocol is (k − 1) alleged
intermediate configurations

(w̃T , w̃2T , . . . , w̃(k−1)·T),

where w̃t is the alleged configuration of the machine M after t steps (with initial configuration u
and on input x).4 In particular, w̃0 = u and w̃(k·T) = v. The (k − 1) intermediate configurations
sent by the prover specify k “base claims” about T -step computations: For each j ∈ [k], the prover
claims that the machineM, starting from configuration w̃(j−1)·T , and running for T steps, reaches
configuration w̃j·T . That is,

∀j ∈ [k] : (M, x) : w̃(j−1)·T
T
// w̃j·T

The verifier should accept if and only if all k of these base claims are true.
In a naive augmentation, the verifier runs the base protocol k times to verify all k of the base

claims. This increases the communication and verification time by a multiplicative factor of k.
While the resulting augmented protocol can be used to verify computations that are k times longer
then the base protocol, it is also k times more expensive, so we have not made any real progress.

Another naive option is picking just one (or several) of the base claims, and verifying only
them. This is less expensive in communication and verification time, but the soundness error
grows prohibitively. In particular, suppose that the prover is cheating, and the computation path
of length k · T that starts at w̃0 does not end at w̃k·T . The cheating prover can still generate a
sequence (w̃T , w̃2T , . . . , w̃(k−1)·T) where all but one of the base claims are true. For example, the
cheating prover could pick j∗ ∈ [k], set the configurations (w̃T , . . . , w̃(j∗−1)·T) to be the appropriate
configurations on a path of length ((j∗ − 1) · T) that starts at w̃0 (and ends at w̃(j∗−1)·T), and set
the configurations (w̃j∗·T , . . . , w̃(k−1)·T) to be the appropriate configurations on a path of length
((k− j∗) · T) that starts at w̃j∗·T and ends at w̃k·T . Now all of the base claims are true, except for
the j∗th (where there is no path of length T from w̃(j∗−1)·T to w̃j∗·T). Unless the verifier checks all
(or very many) of the base claims, it will fail to detect any cheating.

What we seek is a protocol for verifying the k base claims, but with communication and ver-
ification time that is much smaller than running the base protocol k times, and with soundness

4Here and throughout this work we use tildes to denote potentially-corrupted strings that the verifier receives
from an untrusted prover.

11

error that is not much larger than that of the base protocol. Also, the number of rounds should
not grow too much (so that we can get interactive proofs with a small number of rounds), and
the complexity of the (honest) prover should only grow by a factor of roughly k (so we can get a
doubly-efficient proof system). We refer to this goal as “batch verification of interactive proofs”.
We emphasize that, as described above, it is crucial that if even just one of the claims is false, the
verifier should still reject.

One of our contributions is an efficient Batch Verification Theorem for a certain class of interac-
tive proofs (so-called unambiguous interactive proofs, see below). The Batch Verification Theorem
enables an augmentation step, where the cost of the augmented protocol is only moderately larger
than the cost of the base protocol. Using this augmentation step, we iteratively construct efficient
interactive proofs for long computations, and obtain the result of Theorem 1.

The remainder of this section is devoted to an overview of key ideas underlying the Batch
Verification Theorem for unambiguous interactive proofs. We begin by considering the more modest
goal of batching the verification of UP statements (NP statements that have at most one witness),
which gives a taste of our new ideas and techniques. We then briefly discuss the additional challenges
in batching (unambiguous) interactive proof systems.

2.1 A Primer: Batch Verification of UP Statements

To illustrate some of the ideas behind the batch verification theorem, we consider the simpler
challenge of designing an interactive proof system for batch verification of UP statements. Recall
that the complexity class UP (unambiguous non-deterministic polynomial-time) is the subset of NP
problems where the non-deterministic Turing Machine has at most one accepting path. That is,
for a language L ∈ UP, and an input x ∈ L, there is exactly one witness to x’s membership (and
for x /∈ L there are no witnesses). Batch verification of general NP statements is a fascinating open
question.5

Consider a UP language L, with witnesses of length m = m(|x|). Our goal is to design an
interactive proof (P IP,V IP) where, given k inputs x1, . . . , xk, the verifier accepts only if ∀j ∈ [k], xj ∈
L (otherwise the verifier rejects w.h.p.). We also want the prover strategy to be efficient: the
(honest) prover should run in polynomial time given witnesses to the inputs’ membership in L.
A sound but naive protocol is for the prover P IP to send all k witnesses w1, . . . , wk, and for the
verifier V IP to verify every pair (xj , wj). This protocol is sound (indeed, it is a UP proof system
with soundness error 0), but it is very expensive, requiring communication (k ·m) (and k witness
verifications). Our goal is to batch the verification of these k UP statements via an interactive proof
with communication (and verification time) that is (much) smaller than (k ·m). In what follows
we show an interactive proof with communication (polylog(k, n) · (k + poly(m))).

Theorem 5 (Batch Verification Theorem for UP). Let L be a language in UP with witnesses of
length m = m(n) = poly(n), and let k = k(n) ≥ 1 be an ensemble of integers. There is an
interactive proof that, on input (x1, . . . , xk) ∈ {0, 1}k·n, verifies that ∀j ∈ [k], xj ∈ L, with perfect
completeness and soundness 1/2.

The communication complexity is (polylog(k, n) · (k + poly(m))). The number of rounds is
polylog(k). The running time of the verifier is (polylog(k, n) · ((k · n) + poly(m))). The (honest)

5We note that we do not see a way to deduce a similar theorem for general NP statements by applying the
Valiant-Vazirani randomized reduction from NP to UP [VV86].

12

prover, given witnesses (w1, . . . , wk) ∈ {0, 1}k·m for the inputs’ membership in L, runs in time
poly(k, n).

The remainder of this section is devoted to a proof sketch for Theorem 5. The full proof follows
along similar lines to the batch verification theorem for interactive proofs (see Section 9). Before
proceeding, we make two remarks:

Remark 2.1 (Batch Verification for Different Languages). Theorem 5 holds even w.r.t. k different
langauges L1, . . . ,Lk, all in UP. The interactive proof verifies that ∀j ∈ [k], xj ∈ Lj.

Remark 2.2 (Relationship to low-communication interactive proofs). There are significant bar-
riers to the construction of low-communication interactive proofs for general NP languages, and
these extend to UP. Goldreich and H̊astad [GH98] show that if a language L has an interactive
proof-system, where the total communication is bounded by c bits, then L can be decided in time
that depends only exponentially on c. Goldreich, Vadhan and Wigderson [GVW02] show that if L
has an interactive proof where the prover sends only b bits to the verifier (regardless of the length
of communication from the verifier to the prover), then there is a constant-round interactive proof
for L’s complement, with communication and verification time that depends only exponentially on
b. With these results in mind, consider unique-SAT: the promise problem6 where YES instances
are formulae with a single satisfying assignment, and NO instances have 0 satisfying assignments.
It would be surprising to construct an interactive proof for unique-SAT where the prover-to-verifier
communication is significantly shorter than the witness length (say a small polynomial), as this
would place co-SAT in the sub-exponential analogue of AM (an interactive proof with short total
communication would be even more surprising, placing co-SAT in sub-exponential time and contra-
dicting the exponential-time hypothesis).7 However, this obstacle should not (and does not) deter us
from batching the verification of UP statements. We seek an interactive proof with communication
b for the language:

L⊗k = {(x1, . . . , xk) : ∀j ∈ [k], xi ∈ L}.

This is an UP language, with witnesses of length (k · m) (assuming L has witness length m).
However, whatever the complexity of L, the language L⊗k has additional structure. In particular,
L⊗k and its complement can be decided in time (k · 2m · poly(n)) by doing a brute-force search to
determine whether every one of the k statements has a witness. Thus, the results of [GH98, GVW02]
do not present a barrier to batch verification of L using an interactive proof with communication
b = Ω(log(k) +m+ log(n)).

Remark 2.3. As mentioned above, the recent work of [RRR18] gives an improved batch verification
protocol for UP that avoids the additive k factor in the communication complexity in Theorem 5.

A Tantalizing (but Flawed) Protocol. We begin by considering a (flawed) attempt to use
PCPs to design a sound batch verification protocol. For this, assume that the language L ∈ UP has
a PCP proof system with proofs of length a = a(n) = poly(m), and a verifier VPCP who makes at
most q = q(n) = O(polylog(a(n))) queries. We assume that the PCP verifier is non-adaptive, and
its queries depend only on its random coins (as is the case for standard constructions). As L ∈ UP

6Note that the results of [GVW02] hold also for promise problems (rather than just language membership (see
discussion in [GVW02, Section 2]).

7The [GH98, GVW02] results would imply upper bounds for the complement of unique-SAT. Upper bounds for
co-SAT follow by the Valiant-Vazirani reduction [VV86].

13

we can assume that for each x ∈ L, there is a unique PCP α ∈ {0, 1}a for x’s membership in L
that makes the verifier accepts α (on input x) with probability 1.8 We note that this is the main
reason we need L to be a UP language (rather than any language in NP). Using a PCP with the
above properties, we design an interactive proof (P IP,V IP) for verifying that ∀j ∈ [k], xj ∈ L.

Consider the following tantalizing (but insecure) protocol. The verifier V IP runs VPCP to generate
k sets of PCP queries for verifying each of the k statements. Since we assume that VPCP is non-
adaptive, V IP can use the same random coins for verifying all k statements, and they will issue the
same set S ⊂ [a] of queries. V IP sends the query-set S to the untrusted prover, receives answers
for each of the k PCPs, and accepts if and only if for every j ∈ [k], the answers provided for the
jth PCP make VPCP accept on input xj . This requires only roughly O(k · q) = O(k · polylog(a))
communication, but it does not guarantee any soundness. The problem is that a cheating prover in
the interactive proof setting is completely adaptive, and can tailor its responses to VPCP’s queries
in an arbitrary manner. Even if xj∗ /∈ L, after the cheating interactive-proof prover sees the
queries made by VPCP, it can tailor answers that make VPCP accept. The PCP’s soundness is only
guaranteed if the entire proof string is fixed in advance, before the PCP verifier’s queries are made.

Towards Sound Batch Verification. Building on the “tantalizing protocol” , we now present
our first attempt for a sound batch verification protocol. We assume that the honest prover P IP is
given as input k PCP proofs, where αj ∈ {0, 1}a is a PCP for the jth statement xj . The protocol
proceeds as follows:

1. P IP constructs a k × a matrix A whose rows are the PCP proofs for the k statements:

A =


α1

α2

. . .
αk

 .

P IP computes the parity of A’s columns, and sends these parities to the verifier. We view this
vector of parities (one per column of A) as a “checksum” chksum =

⊕
j∈[k] αj .

2. V IP receives a vector ˜chksum ∈ {0, 1}a. It proceeds to choose a single set of random coins
for the PCP verifier VPCP. These coins specify a set S ⊆ [a] of q queries to the k (alleged)
PCPs, and V IP sends S to P IP. (Recall that we assume that the PCP verifier’s queries are
non-adaptive, and depend only on its random coins).

3. P IP receives the set S of coordinates, and for every j ∈ [k] it sends back the values of the jth

PCP (the jth row), restricted to the q entries in S. We view the answers for the jth row as
an assignment φj : S → {0, 1}.

4. The verifier V IP runs two tests (and accepts only if they both pass):

8In fact, we can allow more than one PCP string that makes the verifier accept with probability 1. All that we
require is that there exist a unique such PCP string α, where given x and a candidate PCP α′ ∈ {0, 1}a, we can
test in polynomial time whether α = α′. This property is satisfied by standard PCP constructions (applied to UP
statements), and it comes for free when there is a single fully-correct α (as above), so long as q is a constant. We
mention that Goldreich and Sudan [GS06, Definition 5.6] studied a stronger notion of PCPs, called strong PCPs, in
which the rejection probability of the PCP verifier needs to be proportional to the distance of the given PCP from
the prescribed PCP.

14

(a) PCP Check. For every j ∈ [k], the prover’s PCP answers {φj(ξ)}ξ∈S make VPCP accept
the input xj (the same random string, chosen above, is used for all k PCP verifications).

(b) Consistency Check. For every query ξ ∈ S, the ξth bit of ˜chksum indeed equals the
parity of the values claimed for the ξth column of A. That is:

∀ξ ∈ S : ˜chksum[ξ] =
⊕
j∈[k]

φj(ξ).

This batch verification protocol is quite efficient: the communication complexity is only (a +
O(k · q)) bits, a considerable savings over the naive sound protocol that required (k · a) bits. The
verifier V IP runs in time O(a+k · |VPCP|), where |VPCP| is the running time of the PCP verifier. The
(honest) prover’s running time (given the k PCPs) is O(k · a), and there are 3 messages exchanged.

Soundness for Single-Deviations. The question, of course, is whether the protocol is sound
(completeness follows by construction). Unfortunately, the protocol is not sound in general.9 How-
ever, it is sound against an interesting class of cheating provers, which we call single-deviation
provers. For this, we focus on proving soundness when there is only a single j∗ ∈ [k] s.t. xj∗ /∈ L.

In Step 3 (answering the PCP queries), we restrict the cheating prover P̃ as follows. For every
j 6= j∗, P̃ knows the unique “correct” PCP αj ∈ {0, 1}a (see above) that makes the verifier VPCP

accept the input xj with probability 1 (note that αj , being the unique correct PCP, is fixed in

advance before the protocol begins). In Step 3 of the protocol, P̃ answers all queries to the jth

PCP (for j 6= j∗) according to αj . We emphasize that P̃ is unrestricted in Step 1; it can send an

arbitrary ˜chksum, and it can send arbitrary and adaptive answers to the j∗th PCP in Step 3 (after
seeing the query set S). In particular, the tantalizing protocol is completely insecure even against
single-deviation cheating provers.

We show that the batch verification protocol described above is sound against single-deviation
cheating provers. Suppose that a cheating single-deviation prover P̃ makes the verifier accept with
probability ε. We use P̃ to construct a fixed proof α̃j∗ that makes the PCP verifier accept the input
xj∗ /∈ L with probability ε, and conclude that the interactive proof protocol is sound. We derive α̃j∗

from the checksum value ˜chksum sent by P̃ in Step 1 (w.l.o.g. the cheating prover is deterministic
and its first message is fixed):

α̃j∗ = ˜chksum⊕

⊕
j 6=j∗

αj


We claim that on input xj∗ the PCP verifier VPCP will accept α̃j∗ with probability ε. To see this,

recall that P̃ answers all queries to rows j 6= j∗ according to αj . Whenever P̃ makes V IP accept, it
must pass the consistency check in Step 4b, and thus it must answer the queries to the j∗th PCP
according to α̃j∗ . Since it also needs to pass the PCP check in Step 4a, we conclude that whenever

P̃ makes V IP accept, it must also be the case that the PCP answers (α̃j∗ |S) make the PCP verifier
VPCP accept on input xj∗ .

9Consider inputs x1, . . . , xk−2 ∈ L and xk−1 = xk = x∗ for some x∗ 6∈ L. Consider a cheating prover that generates
the correct PCPs α1, . . . , αk−2 for x1, . . . , xk−2, and sends ˜chksum =

⊕
j∈[k−2] αj to the verifier (i.e., the checksum

excludes the last two inputs). Once the verifier sends PCP queries S, the prover answers honestly on all but the last
two rows. For the latter two rows, it finds some assignment φ̃ : S → {0, 1} that satisfies the PCP verifier w.r.t input
x∗ and queries S (this is easy to do given S), and sends φ̃ as the answer to the PCP queries for rows k − 1 and k.
The two φ̃’s cancel out and so the consistency check passes and the verifier accepts.

15

Implicit Commitments and Soundness for d Deviations. Reflecting on the soundness of
the above batch verification protocol, observe that ˜chksum implicitly commits a single-deviation
prover to the PCP string α̃j∗ for xj∗ /∈ L. Once the prover is committed, soundness of the protocol

naturally follows from the soundness of the PCP. Of course, ˜chksum is much too short to include
an explicit commitment to the k PCP strings (for the k inputs xj). Thus, we should not expect
soundness against general provers (indeed it is not clear how to leverage the PCP’s soundness against
general adaptive provers). Nevertheless, it is not hard to generalize the above batch verification
protocol to handle d deviations as long as d is not too large.

To extend soundness, in Step 1 of the protocol, we ask the prover to send a “more robust”
O(d · log k)-bit checksum for each column of the matrix A, where this checksum has the property
that for every y ∈ {0, 1}k and z ∈ {0, 1}O(d·log k), there is at most one y′ ∈ {0, 1}k at Hamming
distance d or less from y whose checksum equals z (including y itself). We can construct such a
checksum using standard techniques from the error-correcting code literature (see Proposition 6.6
for details). Putting together these checksums (one per column of A), we get a matrix chksum ∈
{0, 1}O(d·log k)×a, which P IP sends to V IP. The verifier V IP receives a potentially-corrupted checksum
˜chksum ∈ {0, 1}O(d·log k)×a, and in Step 4b, it checks that the PCP answers are consistent with this

“more robust” checksum. The protocol is unchanged otherwise. Note that this increases the
communication to O((d · log k · a) + (k · q)), which remains interesting so long as d� k.

The new checksum matrix chksum is still not long enough to commit an arbitrary prover to
k PCP strings. But intuitively it can implicitly commit a prover as long as it does not deviate
on more than d rows. More formally, for every j 6= j∗,10 the cheating prover P̃ knows the unique
PCP αj . After the verifier specifies the query set S in Step 2, a d-deviation prover P̃ (adaptively)
chooses a set J∗ ⊂ [k] of d of the instances (or rows), and can provide arbitrary answers on queries
to those d PCPs. The only restriction is that for every j /∈ J∗, P̃ answers the queries to the jth

PCP according to the predetermined PCP αj .
Similarly to the argument for single-deviation prover, it can be shown that the possibly corrupt

checksum string ˜chksum ∈ {0, 1}O(d·log k)×a induces an implicit commitment to a PCP string α̃j∗

for xj∗ (the input that is not in L). In fact, it induces commitments to all the k PCP strings. Of

course, this argument only works because we restricted P̃ to d deviations.

Amplifying Deviations and a
√
k Batch Verification. We described a batch verification

protocol that is sound for d deviations. We will now show how to exploit it against a general
cheating prover (even though it is not itself sound for such a prover). The key observation is that
while even the more robust checksum does not directly induce a commitment to the j∗th PCP, it
does tie P̃’s hands in an important way. In answering PCP queries for the inputs {xj}j 6=j∗ that are

in the language, P̃ is faced with two hard choices: It can provide answers that are mostly consistent
with the correct PCPs (on all but d of the rows), but then soundness against d deviations implies
that V IP will reject. Alternatively, if P̃ deviates on d or more rows, then it is sending answers that
are inconsistent with the unique correct PCPs, and this is much easier for the verifier to detect (as
we show next).

To obtain a sound batch verification protocol, we add an additional round of communication,
where V IP picks O(k/d) of the rows at random and asks P̃ to send those rows’ PCPs (in their
entirety). Since P̃ deviated from the unique correct PCPs on at least d rows, it is likely that there

10Recall that we assume that there is exactly one row j∗ s.t. xj∗ /∈ L (this assumption is for simplicity and without
loss of generality, see Remark 2.4 below).

16

is some row j that V IP requested where P̃ has deviated. Either P̃ sends a PCP that is inconsistent
with its past answers, or it is forced to send α̃j that is not the unique correct PCP for xj ∈ L. In
either case, V IP rejects.

The final check adds O((k/d) · a) communication bits (and verification time), and results in a
sound protocol for batch verification of UP statements. Setting d =

√
k, we obtain a protocol with

Õ(
√
k · a+ k · q) communication (compared with (k · a) for the naive protocol).

Here, we use the protocol that is secure against d-deviation provers as a “deviation amplifica-
tion” protocol. We find it noteworthy that this deviation amplification forces P̃ to cheat (and get
caught!) on inputs that are in the language. This is one of the key insights in constructing our
batch verification protocols. Note that here we crucially use the property that for each x ∈ L, there
is a unique correct PCP α, and the verifier can check whether α′ = α in polynomial time. This
is also why our soundness argument applies to UP statement, but does not extend to general NP
statements.

Remark 2.4. [Many inputs not in L] We assumed throughout that there was only a single j∗ ∈ [k]
for which xj∗ /∈ L. More generally, the protocol is sound for any number of inputs that are not in
L. Soundness for the general case is shown via a similar argument: if there are less than d inputs
that are not in the language, then the above argument goes through in a very similar manner. If
there are more than d inputs that are not in the language, then when V IP picks O(k/d) statements
and checks them explicitly, it will likely “catch” an input that is not in L and will reject, since the
cheating prover cannot supply an accepting PCP for a false statement.

Improving the Dependence on k. Finally, we turn our attention to improving the communi-
cation to (polylog(k) · (a+k · q)), as claimed in Theorem 5. We begin with the d-deviation protocol.
Recall that we can use this protocol to amplify deviations, forcing a cheating P̃ to send “incorrect”
PCP values for at least d rows. As above, V IP chooses a random set J1 ⊂ [k] of size O(k/d), and we
know that with good probability over the choice of J1, there is at least one row j ∈ J1 for which
either xj /∈ L, or xj ∈ L, but P̃ sent incorrect PCP values: ∃ξ ∈ S : φj(ξ) 6= αj |ξ (where αj is

the unique correct PCP for xj). Above, V IP detected this by asking P̃ to send the correct PCP for
every j ∈ J1. This guaranteed soundness, but at a cost of (|J1| · a) communication.

Observe, however, that once V IP picks J1, we are in a familiar situation: we have a relatively
large set J1 of statements, and would like to detect whether P̃ is “cheating” on at least one of
these statements, but without explicitly sending all |J1| witnesses. The natural approach is to
recurse: use the deviation amplification protocol to amplify the number of deviations within J1 to
at least d rows, pick a smaller set J2 ⊂ J1 of size O(|J1|/d), and recurse again and again until
we have a set Jfinal of size O(d) and for some j ∈ Jfinal we have xj /∈ L (or the prover deviated
from the prescribed protocol PCP for j). At the “base” of this recursion, the prover can send
explicit witnesses for each j ∈ Jfinal . Each run of the deviation amplification protocol only requires
O(d · log(k) · a + k · q) communication, so by setting d = log k we can get a recursion of depth
O(log k) and a total communication cost of (polylog(k) · (a + k · q)) (with O(log k) rounds). More
generally, we could use different values of d to trade off the number of rounds for communication
(and in particular to obtain constant-round protocols).

There is a subtlety in the argument outlined above. Namely, in the recursion, the UP language
has changed. The statement we want to verify for each row j ∈ J1 is that both: (i) The jth input
is in the language, i.e. xj ∈ L (as before), and (ii) For the set S of PCP queries chosen by the
verifier and each φj sent by the prover, the correct PCP αj for xj satisfies φj(ξ) = αj |ξ, for every

17

ξ ∈ S. These two conditions define a new language L1 over triplets (x, S, φ), and we want to verify
that ∀j ∈ J1, (xj , S, φj) ∈ L1. First, observe that if L ∈ UP then also L1 ∈ UP. Moreover, using
algebraic PCP techniques, we can modify the PCP system for L to get a PCP system for L1 with
only a small loss in the parameters. Using this modified PCP, we can indeed realize the recursion
outlined above, and this yields the batch verification protocol of Theorem 5.

2.2 Batching Unambiguous Interactive Proofs

The iterative interactive proof construction of Theorem 1 is based on an efficient Batch Verification
Theorem for interactive proofs, which builds on the ideas for batch UP verification outlined in
Section 2.1. Towards this goal, we introduce interactive analogues of the building blocks used in
the proof of the UP batch verification theorem. We discuss these new proof system notions, which
may be of independent interest, in Section 2.2.1. In Section 2.2.2 we use them to give an overview
of the batching theorem for interactive proofs, and give further details on the iterative construction
of Theorem 1.

2.2.1 Unambiguous and Probabilistically Checkable Interactive Proofs

In the setting of UP-verification it was important that for inputs in the language we had a single
PCP proof string that convinces the verifier. We introduce here an interactive analogue of these
“unambiguous” proof strings, which we call unambiguous interactive proofs.

Unambiguous Interactive Proofs (UIPs). An unambiguous interactive proof system for a
language L is specified by a deterministic (honest) prover P, which we call the prescribed prover,
and a verifier V (much like a classical interactive proof system). Suppose that a cheating prover P̃
follows the protocol in rounds 1, . . . , i − 1, but “deviates” in round i, sending a message different
from the prescribed message that P would have sent. In an unambiguous interactive proof, we
require that for any round i where P̃ might first deviate, and for any history in rounds 1, . . . , i− 1
(which is determined by V’s coin tosses and by the prescribed prover strategy), if the prescribed
prover would have sent message α(i), but the cheating prover sends a message α̃(i) 6= α(i), then
the verifier will reject with high probability over its coin tosses in subsequent rounds. Note that
this requirement also holds for inputs that are in the language, whereas the classical notion of
an interactive proof does not make any restriction for such inputs. For inputs that are not in
the language, the prescribed prover’s first message is a special symbol that tells V to reject. In
particular, if x /∈ L, but a cheating prover P̃ tries to convince V to accept, then P̃ needs to deviate
from P’s strategy in its first message, and the unambiguity property guarantees that w.h.p. V will
reject. Thus, any unambiguous IP for L also guarantees the classical notion of soundness, and is
also an interactive proof for L. We note that UP proofs correspond to 1-message deterministic
UIPs. See Definition 4.2 for a formal definition.

Remark 2.5. It may be helpful to consider some examples of protocols that are unambiguous.
A prominent example is the classical Sumcheck protocol [LFKN92]. There, in every round i, the
(honest) prover sends the verifier a low-degree polynomial P (i), and the verifier checks the value of
P (i) at a random point β(i) (we gloss over the details of this check). If a cheating prover sends a
low-degree polynomial P̃ (i) 6= P (i), then w.h.p. over the verifier’s choice of β(i) we have P̃ (i)(β(i)) 6=
P (i)(β(i)), and the verifier will end up rejecting. Building on this property of the sumcheck protocol,

18

we note that the GKR interactive proof [GKR15] is also unambiguous. Another well-known example
is the classical interactive proof for Graph Non-Isomorphism [GMW91]. On the other hand, zero-
knowledge proofs are ambiguous by design: The honest prover is randomized, and there are many
messages that it can send that will end up making the verifier accept.

Probabilistically Checkable Interactive Proofs (PCIPs). Analogously to the UP setting,
where batch verification used the power of PCPs, we use a notion of probabilistic checking with
low query complexity, but for interactive proof systems. That is, we use interactive proof systems
where the verifier only reads a few bits of the transcript in checking the proof. We call these
probabilistically checkable interactive proofs (PCIPs).

A PCIP for a language L is an interactive proof system, where the protocol is divided into two
phases. In the communication phase, the prover and verifier interact for ` rounds and generate a
transcript (as in a standard interactive proof). Restricting our attention to public-coin protocols,
all that the verifier does in this phase is send random strings β1, . . . , β` (one in each of the ` rounds).
In the checking phase, the verifier queries q bits of the messages sent by the prover and accepts or
rejects. The verifier’s running time in a PCIP is just the time for the checking phase (generating
queries and deciding whether to accept). Thus, in a PCIP, the query complexity and the verifier’s
runtime can be much smaller than the transcript length. One can think of the prover and verifier as
interactively generating a PCP (comprised of the prover’s messages), which is then checked by the
verifier. Indeed, a one-message PCIP is simply a PCP. For this overview, we assume that the queries
do not depend on the input, only on the random coins chosen by the verifier in the communication
phase. See Definitions 4.5 and 4.7 for formal definitions.

Remark 2.6 (Sublinear PCIPs). Another parameter that one may consider in the definition of
PCIPs is the number of queries that the verifier makes into the input. Indeed, in the formalization
of Definition 4.5 we bound the verifier’s queries to the input, which facilitates more efficient batch
verification of these objects. If the number of queries to the input is bounded, then building proof
systems for general languages requires further relaxations. We can assume that the input is given
in encoded form (as in the holographic proofs of [BFLS91]), or we can relax soundness to testing
proximity to a language (as in PCPPs [BGH+06] and IPPs [RVW13]). In many places in this work
we make the first relaxation and assume an encoded input. However, we find the second notion,
which yields a notion of “PCIPs of proximity”, to also be conceptually compelling and worthy of
further exploration. For simplicity, throughout this overview, unless we explicitly note otherwise,
we do not bound the verifier’s input queries.

Remark 2.7. We compare PCIPs to other notions of interactive and probabilistically checkable
proof systems. Kalai and Raz [KR08] study interactive PCPs (IPCPs), where the prover’s first
message to the verifier is a (long) PCP α, and the prover and verifier then run an interactive
protocol to assist in checking the PCP. Their motivation was constructing succinct proofs for NP
that are easy to verify and succinct zero-knowledge proofs. In an IPCP, the verifier reads only a
few bits of α, but it reads the entire transcript. Indeed, one can think of these as interactive proof
systems for verifying the validity of a PCP. In PCIPs, on the other hand, the verifier issues a
bounded number of queries to the entire transcript.

In an interactive proof of proximity (IPP) [RVW13], the verifier runs in sublinear time, and
can only make a sublinear number of queries to the input. The communication transcript with the
prover is also of sublinear length, but the verifier reads the transcript in its entirety. In PCIPs, on

19

the other hand, we do not restrict the transcript length to be sublinear, but the verifier makes only
a small number of queries into this transcript (and on occasion we also bound the number of input
queries, as in an IPP, see Remark 2.6).

Putting the two notions just discussed together, we define unambiguous PCIPs, which play a
central role in the proof of the batch verification theorem. A subtlety that we mostly ignore in this
overview is that full unambiguity cannot be obtained with small query complexity: If a cheating
prover P̃ changes just one bit of the ith message, and the verifier only makes a small number of
queries to the message, this change will likely go unnoticed, and unambiguity is lost. There are
several ways to reconcile these two notions, and the one most convenient for our purpose is to
restrict the family of cheating provers such that every message sent by the cheating prover (as
well as by the prescribed prover) is a codeword in a high-distance error-correcting code (the low-
degree extension). We refer to this notion as unambiguous PCIP w.r.t. encoded provers. For a more
complete discussion of the notions of interactive proofs we introduce here and their relations, as
well as for their formal definitions, see Section 4.

2.2.2 Batch Verification using Unambiguous PCIPs

We are now ready to describe the batch verification protocol for unambiguous IPs. Given an
unambiguous interactive proof (P,V) for a language L, we obtain an interactive proof for verifying
k instances of L. This result is stated informally in Theorem 6 below.

Theorem 6 (Batch Verification Theorem for Unambiguous IP, Informal). Let (P,V) be an un-
ambiguous interactive proof for language L, with perfect completeness, soundness (or unambiguity)
error ε, ` rounds, communication c, and prover and verifier runtimes Ptime,Vtime. Let 0 < τ � 1
be a constant.

Then, there is an batched unambiguous interactive proof (PBatch,VBatch) that, on input (x1, . . . , xk) ∈
{0, 1}k·n, verifies that ∀j ∈ [k], xj ∈ L, with perfect completeness and soundness (or unambigu-
ity) error O(ε). The batched protocol (PBatch,VBatch) has O(`) rounds, communication complexity
(poly(`,Vtime) · kτ · c), prover runtime (poly(`) · k · Ptime) and verifier runtime (poly(`) · k · Vtime).

We note that an inefficient batch verification theorem for (general) interactive proofs also follows
from the IP = PSPACE theorem. However, that protocol does not preserve the round complexity
or prover-efficiency of the base protocols (and is thus not helpful for constructing interactive proofs
with efficient provers or small round complexity). See Remark 9.2 for further details.

Note that Theorem 6 is derived from a similar statement for unambiguous PCIPs w.r.t. encoded
provers. Indeed, in the iterative construction of Theorem 1, the batch verification we use is applied
to PCIPs. We therefore focus on describing a batch verification procedure for unambiguous PCIPs
w.r.t. encoded provers. That is, given such a PCIP for L, we design an unambiguous PCIP w.r.t.
encoded provers for simultaneously verifying the membership of k inputs (x1, . . . , xk) in L. For
our applications, it is important that the batched protocol is itself an unambiguous PCIP. We can
show that this batch verification for PCIPs implies Theorem 6. See Sections 6 and 9 for formal
statements and proofs.

Remark 2.8 (Controlling the query complexity). In this overview, we focus on the bounding
the communication complexity of the batched PCIP (in particular, the communication will grow
by a multiplicative factor that is only poly-logarithmic in k). We note, however, that batching

20

will degrade the query complexity and verification time by a multiplicative factor of k. In the
iterative construction of Theorem 1, this becomes a problem, because eventually, after repeated
batchings, the query complexity will no longer be sublinear in the transcript length (we need sublinear
query complexity for efficient batching, see below). This can be resolved, however, using a “query
reduction” transformation (see Proposition 4.15 and Lemma 8.2). Thus, the iterative construction
of Theorem 1 repeatedly uses a PCIP-batch verification step, followed by a PCIP-query-reduction
step (which also reduces the verifier’s runtime), gradually obtaining powerful PCIPs (and interactive
proofs) for longer and longer computations.

Soundness for d Deviations. Let (P,V) be an unambiguous PCIP for L. Recall that in the
UP batch verification, we began by constructing a sound batch verification protocol for provers
that only deviate on d of the k inputs. We later use this protocol for “deviation amplification”
(see above). The ideas translate to the UIP setting, where we use (P,V) to construct a deviation
amplification protocol (Pamplify,Vamplify). The high level idea is as follows: The protocol starts with
` rounds that correspond to the ` rounds of the “base” protocol. In each round i, for each j ∈ [k],

let α
(i)
j ∈ {0, 1}a be the message that the (prescribed) “base” prover P would send on input xj

in round i given randomness β(1), . . . , β(i−1) (which Vamplify sent in previous rounds). The prover

Pamplify constructs a k × a matrix A(i), whose rows are the messages (α
(i)
1 , . . . , α

(i)
k), and sends its

checksum chksum(i) ∈ {0, 1}O(d·log k)×a to the verifier. The verifier receives ˜chksum(i), and sends
random coins β(i) as sent by V in the base protocol (the same random coins are used for all k
inputs).

After these ` rounds, Vamplify chooses random coins for V’s query/decision phase, sends the
queries S ⊂ [`] × [a] to Pamplify, and receives answers {φj : S → {0, 1}} to those queries for each
of the k base protocols. Vamplify accepts if and only if: (i) V would accept the answers in all k
protocols, and (ii) the answers are consistent with the checksums sent in rounds 1, . . . , `. Note that
running these checks requires reading the values in {φj} in their entirety ((k · q) queries), and also
making (d · q) queries into the transcript in rounds 1, . . . , ` to verify the checksum.

The proof of soundness against a d-deviation cheating prover is similar to the analogous proof for
the UP batch verification: When a d-deviation prover sends the robust checksum value ˜chksum(i),
it implicitly commits to messages in all k of the protocols. Thus, if P̃ could get Vamplify to accept,
we could derive a cheating prover for the base protocol, breaking its soundness. We note that it
is critically important for this argument that P̃ sends ˜chksum(i) (and commits to the messages in
round i), before it knows the random coins β(i) that will be chosen by the verifier for round i.

Detecting Many Deviations. As in the UP case, we leverage soundness against d deviations
to amplify a cheating prover’s deviations from the prescribed strategy, and obtain a sound batch
verification (without any assumptions on the number of deviations). Here too, a cheating prover P̃
is faced with a choice. It can deviate from the prescribed strategy on d or fewer of the inputs, but
then the verifier will reject w.h.p. (by soundness against d deviations). So P̃ may well choose to
deviate on more than d of the inputs. Suppose this is the case, and there exists a subset J∗ ⊆ [k] of
at least d of the statements, such that for every j ∈ J∗, the query answers in φj are not consistent
with the prescribed strategy. The verifier VBatch would like to detect this.

Recall that in the UP batch verification, this was simple: the verifier could pick a set J1 of
O(k/d) of the statements, and request the “full proof” for the statements in J1. Here, however, it
is not sufficient to ask P̃ to send the entire transcript for those statements. To see this, suppose that

21

for j∗ ∈ (J∗ ∩ J1), the values in φj∗ are not consistent with the prescribed strategy on the chosen
random coins (β(1), . . . , β(`)). Unambiguity of (P,V) does not guarantee that every transcript that
is consistent with φj∗ makes V reject (given the fixed coins (β(1), . . . , β(`))). Indeed, since the coins
are already fixed, there may well be many possible transcripts that make V accept and are consistent
with φj∗ . Thus, if all VBatch did was ask PBatch to send an accepting transcript consistent with φj∗ ,

then P̃ could find such a transcript, and VBatch would not detect that there was a deviation in the
j∗th statement.

To make soundness go through, we design an interactive protocol (P1,V1) for verifying that φj∗

is consistent with the prescribed strategy on input xj∗ and random coins (β(1), . . . , β(`)). We obtain
a sound batch verification by running this protocol for each statement xj∗ with j∗ ∈ J1. Loosely

speaking the protocol goes as follows. First we ask P̃ to send the entire transcript for xj∗ given
coins (beta(1), . . . , β(`)), and let VBatch verify that this transcript is consistent with φj∗ (and makes
V accept). Let (α̃(1), . . . α̃(`)) be the prover messages in this transcript. Now V1 simulates V in `
parallel executions of the original PCIP (P,V). At execution i, the protocol (P,V) is simulated from
round i as a continuation of the ith prefix of the transcript sent by P̃ (namely, assuming that the
first i−1 verifier messages were (β(1), . . . , β(i−1)) and the first i prover messages were (α̃(1), . . . α̃(i))).
It is important that the verifier uses fresh randomness (γ(i), . . . , γ(`)) for the remaining rounds (the
random strings (γ(1), . . . , γ(`)) could be shared among the parallel simulations). Soundness follows,
since if the transcript sent by P̃ first deviates from the prescribed proof at round i∗ then, by the
definition of unambiguity, V is likely to reject in the corresponding simulation of (P,V) (where
i = i∗).

A Sound Batch Verification. Using the consistency-checking protocol (P1,V1), we can obtain
a sound batch verification theorem. In the batch verification protocol (PBatch,VBatch), the prover
and verifier first run the deviation amplification protocol. Then, VBatch picks at random the set J1
of O(k/d) of the instances, and the prover and verifier run the above protocol (P1,V1) explicitly on
each j∗ ∈ J1. Taking the number of rounds ` to be a constant, (P1,V1) is not much more expensive
than (P,V), and this yields a batch verification protocol whose communication only grows by a
factor of roughly

√
k.

To improve the dependence on k, and obtain the result claimed in Theorem 6, we recurse as in
the UP batch verification theorem. PBatch and VBatch use the protocol (P1,V1) as a “base protocol”,
and run the deviation amplification protocol to amplify the number of deviations within J1 to at
least d instances (note that PBatch and VBatch never explicitly run the protocol (P1,V1)). Now VBatch

picks a smaller set J2 ⊂ J1 of size O(|J1|/d), and the prover and verifier recurse again and again
until they obtain a set Jfinal of size O(d) and a protocol (Pfinal ,Vfinal) that will w.h.p. reject at least
one of the instances in Jfinal . At the “base” of this recursion, the prover and verifier explicitly run
the protocol (P,V) on every instance in the set Jfinal .

While the complexity of the “base protocol” grows by a factor of ` in every level of the recursion,
the set of instances under consideration shrinks by a factor of d. Taking d = kτ for a constant
0 < τ � 1, we only have a constant number of levels in the recursion, and the final consistency-
checking protocol (Pfinal ,Vfinal) is only roughly `O(1/τ) times more expensive than the base protocol
(throughout we think of ` as a constant). The resulting batch verification protocol (PBatch,VBatch)
has roughly O(`) rounds, communication complexity (poly(`) · kτ · c), prover runtime (poly(`) · k ·
Ptime) and verifier runtime (poly(`) · k · Vtime). The query complexity is (poly(`) · k · q).

The soundness error grows linearly with the number of levels in the recursion, yielding O(ε)

22

soundness. For simplicity, we assume here that ε is larger than (1/k2τ) so we can take each set Jm
in J1, . . . , Jfinal to be of size O(log(1/ε) · |Jm−1|/d), and still have a constant number of levels in
the recursion. The size bound on Jm guarantees that the probability that any set in the sequence
J1, . . . , Jfinal “misses” the deviating instances is smaller than ε.

Remark 2.9 (Maintaining unambiguity). We note that in the statement of Theorem 6, and to
use the batch verification protocol repeatedly in the iterative construction of Theorem 1, we need to
show that the PCIP (PBatch,VBatch) is itself unambiguous w.r.t. encoded provers (above we sketched
why the protocol is sound). This presents some additional challenges. See the full proof in Section
6 for details.

3 Preliminaries

For a string x ∈ Σn and an index i ∈ [n], we denote by x|i ∈ Σ the ith entry in x. If I ⊆ [n] is
a set then we denote by x|I the sequence of entries in x corresponding to coordinates in I. For a
matrix A ∈ Σn×m and an index i ∈ [m], we denote by A|i ∈ Σm the ith column of A. For I ⊆ [m],
we denote by A|I the restriction of A to the columns in I.

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alphabet Σ. We define the (absolute)

distance of x and y as ∆ (x, y)
def
= |{xi 6= yi : i ∈ [n]}|. If ∆ (x, y) ≤ ε · n, then we say that x is

ε-close to y, and otherwise we say that x is ε-far from y. We define the distance of x from a

(non-empty) set S ⊆ Σn as ∆ (x, S)
def
= miny∈S ∆ (x, y). If ∆ (x, S) ≤ ε · n, then we say that x is

ε-close to S and otherwise we say that x is ε-far from S. We extend these definitions from strings
to functions by identifying a function with its truth table.

3.1 Multivariate Polynomials and Low Degree Testing

In this section we recall some important facts on multivariate polynomials (see [Sud95] for a far
more detailed introduction). A basic fact, captured by the Schwartz-Zippel lemma is that low
degree polynomials cannot have too many roots.

Lemma 3.1 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of total degree
d. Then,

Pr
r∈Fm

[
P (r) = 0

]
≤ d

|F|
.

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct polynomials P,Q :
Fm → F of total degree d may agree on at most a d

|F| -fraction of their domain Fm.
Throughout this work we consider fields in which operations can be implemented efficiently

(i.e., in poly-logarithmic time in the field size). Formally we define such fields as follows.

Definition 3.2. We say that an ensemble of finite fields F = (Fn)n∈N is constructible if elements
in Fn can be represented by O(log(|Fn|)) bits and field operations (i.e., addition, subtraction, mul-
tiplication, inversion and sampling random elements) can all be performed in polylog(|Fn|) time
given this representation.

A well known fact is that for every S = S(n), there exists a constructible field ensemble of size
O(S) and its representation can be found in polylog(S) time (see, e.g., [Gol08, Appendix G.3] for
details).

23

In the following we consider polynomials over a constructible field. In this work we will use the
following well-known local testability and decodability properties of polynomials.

Lemma 3.3 (Self-Correction Procedure (cf. [GS92, Sud95]). Let F be a constructible field ensemble.
Let δ < 1/3, ε ∈ (0, 1], and d,m ≥ 1. There exists an algorithm that, given input x ∈ Fm and
oracle access to an m-variate function P : Fm → F that is δ-close to a polynomial P ′ of total degree
d, runs in time O(d ·m · log(|F|) · log(1/ε)) makes O(d · log(1/ε)) oracle queries and outputs P ′(x)
with probability 1− ε. Furthermore, if P itself has total degree d, then given x ∈ Fm, the algorithm
outputs P (x) with probability 1.

Lemma 3.4 (Low Degree Test ([RS96, Sud95, AS03]) see also [Gol16]). Let F be a constructible
field ensemble. Let δ ∈ (0, 1/2), ε ∈ (0, 1] and d,m ∈ N, such that d ≤ |F|/2. There exists a
randomized algorithm that, given oracle access to an m-variate function P : Fm → F, runs in time
(d ·m · log(|F|) · poly(1/δ) · log(1/ε)), makes (d · poly(1/δ) · log(1/ε)) oracle queries and:

1. Accepts every function that is a polynomial of total degree d with probability 1; and

2. Rejects functions that are δ-far from every polynomial of total degree d with probability at
least 1− ε.

We will also need a variant of the low degree test that tests the individual degree of the poly-
nomial (rather than total degree). Such a test is implicit in [GS06, Section 5.4.2] (see also [GR15,
Theorem A.9]).

Lemma 3.5 (Individual Degree Test). Let F be a constructible field ensemble. Let δ ∈ (0, 1/2), ε ∈
(0, 1] and d,m ∈ N such that d ·m < |F|/10. There exists a randomized algorithm that, given oracle
access to an m-variate polynomial P : Fm → F, runs in time (d ·m · log(|F|) · poly(1/δ) · log(1/ε)),
makes (d ·m · poly(1/δ) · log(1/ε)) oracle queries and:

1. Accepts every function that is a polynomial of individual degree d with probability 1; and

2. Rejects functions that are δ-far from every polynomial of individual degree d with probability
at least 1− ε.

3.2 Low Degree Extension

Let H be a finite field and F ⊇ H be an extension field of H. Fix an integer m ∈ N. A basic fact is
that for every function φ : Hm → F, there exists a unique extension of φ into a function φ̂ : Fm → F
(which agrees with φ on Hm; i.e., φ̂|Hm ≡ φ), such that φ̂ is an m-variate polynomial of individual
degree at most |H| − 1. Moreover, there exists a collection of |H|m functions {τ̂x}x∈Hm such that
each τ̂x : Fm → F is the m-variate polynomial of degree |H| − 1 in each variable defined as:

τ̂x(z)
def
=
∏
i∈[m]

∏
h∈H\{xi}

zi − h
xi − h

.

and for every function φ : Hm → F it holds that

φ̂(z1, . . . , zm) =
∑
x∈Hm

τ̂x(z1, . . . , zm) · φ(x).

24

The function φ̂ is called the low degree extension of φ (with respect to F, H and m).
We also define the individual degree |H| − 1 polynomial τ̂ : Fm × Fm → F as:

τ̂(x, z)
def
=
∏
i∈[m]

∏
h∈H\{0}

zi − xi − h
h

. (1)

Observe that for every x ∈ Hm it holds that τ̂(x, ·) ≡ τ̂x(·).
From Eq. (1) we can immediately deduce the following proposition.

Proposition 3.6 (Cf., e.g., [Rot09, Proposition 3.2.1]). Let H = (Hn)n and F = (Fn)n be con-
structible field ensembles such that F is an extension field of H.

There exists a Turing machine that on input n outputs the polynomial τ̂ : Fm × Fm → F
defined above, represented as an arithmetic circuit over F, in time poly(|H|,m, log |F|) and space
O(log(|F|) + log(m)).

Moreover, the arithmetic circuit τ̂ can be evaluated in time poly(|H|,m, log(|F|)) and space
O(log(|F|) + log(m)). Namely, there exists a Turing machine with the above time and space bounds
that given an input pair (x, z) ∈ Fm × Fm outputs τ̂(x, z).

Proposition 3.7. Let H and F be constructible field ensembles such that F is an extension field of
H.

Let φ : Hm → F and suppose that φ can be evaluated by a Turing Machine in time t and space
s. Then, there exists a Turing machine that, given as an input a point z ∈ Fm, runs in time
|H|m · (poly(|H|,m, log(|F|)) +O(t)) and space O(m · log(|H|) + s+ log(|F|)) and outputs the value
φ̂(z) where φ̂ is the unique low degree extension of φ (with respect to H,F,m).

Proof. The Turing machine computes

φ̂(z) =
∑
x∈Hm

τ̂x(z) · φ(x)

by generating and evaluating τ̂x(z) as in Proposition 3.6.

The Low Degree Extension as an Error Correcting Code. The low degree extension can
be viewed as an error correcting code applied to bit strings. Formally, let F be an extension field
of a base field H. Fix some canonical ordering of the elements in H. For every integer n ∈ N we
identify the set [n] with the set Hlog|H|(n) by taking the representation of i ∈ [n] in base |H|.

Consider the function LDEF,H : {0, 1}n → F|F|m , where m = log|H|(n), that given a string
φ ∈ {0, 1}n, views φ as a function φ : Hm → {0, 1}, by identifying [n] with Hm as above, and
outputs the truth table of the low degree extension φ̂ : Fm → F of φ, represented as an |F|m
dimensional vector. The Schwartz-Zippel Lemma (Lemma 3.1) shows that this code has relative

distance 1− m·(|H|−1)
|F| .

As usual in the context of error correcting codes, we will sometimes use LDEF,H,m to denote

the set of codewords LDEF,H,m
def
=
{
φ̂ s.t. φ : Hm → {0, 1}

}
. That is, LDEF,H,m contains m-variate

polynomials of individual degree (|H| − 1), whose values on the inputs in Hm are all in {0, 1}.

25

A Low-Degree Extension for Multiple Strings. We will also need to extend the LDEF,H
encoding to encode multiple strings (of varying lengths). A natural way of doing so is by simply
concatenating the strings and applying LDEF,H to the concatenated string. However, we take a
slightly different approach, which will be useful both for composing encodings of individual strings
to a single joint encoding, and for decomposing such a joint encoding into individual encodings.
We remark that this approach leverages the fact that the low degree extension is a tensor code
[Wol65].

Given strings x1 ∈ {0, 1}n1 , . . . , xk ∈ {0, 1}nk , we define an encoding LDEF,H(x1, . . . , xk) as
follows. Let mk = log|H|(k), m(i) = log|H|(ni), mmax = maxi∈[k]m

(i) and m = mk + mmax. We
identify [k] with Hmk and identify [max(|xi|)] with Hmmax by viewing the respective integers in
base |H|. Let P : Hm → {0, 1} be a function such that for every z ∈ Hmk , and every (w, y) ∈
Hm(z) ×Hm−mk−m(z)

, it holds that: P (z, w, y) is equal to the wth bit of xz if y = 0m−mk−m
(z)

, and

P (z, w, y) = 0 otherwise (i.e., if y 6= 0m−mk−m
(z)

). We define LDEF,H(x1, . . . , xk) as the low degree
extension of P with respect to F, H and m.

Proposition 3.8. Let H and F be constructible field ensembles such that F is an extension field of
H and |H| ≥ log(|F|). There exist procedures Compose and Decompose as follows:

• Compose: Given oracle access to LDEF,H(x1), . . . , LDEF,H(xk) and a point z ∈ Fm, where m is
as above, the procedure Compose makes a single query to each LDEF,H(xi) (k queries in total),
runs in time k ·poly(|H|,

∑
i log|H|(ni), log(k)) and outputs the zth entry of LDEF,H(x1, . . . , xk).

• Decompose: Given oracle access to LDEF,H(x1, . . . , xk), some i ∈ [k] and a point w ∈ Fm(i)
,

where m(i) is as above, the procedure Decompose makes a single oracle query, runs in time
poly(|H|, log(k),

∑
i log|H|(ni)) and outputs the wth entry of LDEF,H(xi).

Proof. Let x1 ∈ {0, 1}n1 , . . . , xk ∈ {0, 1}nk . Let mk = log|H|(k), m(i) = log|H|(ni) for every i ∈ [k],

mmax = maxim
(i) and m = mk +mmax.

For every z ∈ Hmk , let P̂z : Fm(i) → F be the polynomial LDEF,H(xz), of individual degree (|H|−
1), where we identify Hmk with [k] as above. Let P̂ : Fm → F be the polynomial LDEF,H(x1, . . . , xk),
of individual degree (|H| − 1).

Claim 3.8.1. For every z ∈ Hmk , the polynomials P̂z(·) and P̂ (z, ·, 0m−mk−m(z)
) are identical (over

their domain Fm(z)
).

26

Proof. For every z ∈ Hmk and every w ∈ Fm(z)
it holds that

P̂ (z, w, 0m−mk−m
(z)

) =
∑

(z′,w′,y′)∈Hmk×Hm(z)×Hm−mk−m(z)

τ(z′,w′,y′)(z, w, 0
m−mk−m(z)

) · P̂ (z′, w′, y′)

=
∑

(z′,w′,y′)∈Hmk×Hm(z)×Hm−mk−m(z)

τz′(z) · τw′(w) · τy′(0m−mk−m
(z)

) · P̂ (z′, w′, y′)

=
∑

w′∈Hm(z)

τw′(w) · P̂ (z, w′, 0m−mk−m
(z)

)

=
∑

w′∈Hm(z)

τw′(w) · xz[w′]

=
∑

w′∈Hm(z)

τw′(w) · P̂z(w′)

= P̂z(w),

where xz[w
′] refers to the w′th entry of xz (where we view z as an integer in [k] and w′ as an integer

in [ni]). Hence, P̂ (z, ·, 0m−mk−m(z)
) and P̂z(·), which are individual degree |H| − 1 polynomials,

agree on Hm(z)
and so, by the Schwartz-Zippel Lemma (Lemma 3.1), they must be equal.

Hence, for every i ∈ [k] and w ∈ Fm(i)
, the value P̂i(w) can be retrieved by using a single query

to P̂ and this query can be generated in time poly(|H|, log(k),
∑

i log|H|(ni)).
For the Compose procedure, observe that for every (z, w) ∈ Fmk × Fm−mk it holds that

P̂ (z, w) =
∑

(z′,w′)∈Hmk×Hm−mk

τ(z′,w′)(z, w) · P̂ (z′, w′)

=
∑

z′∈Hmk
τz′(z)

∑
w′∈Hm−mk

τw′(w) · P̂ (z′, w′)

=
∑

z′∈Hmk
τz′(z)

∑
w′∈Hm(z)

τ
(w′,0m−mk−m

(z)
)
(w) · P̂ (z′, w′, 0m−mk−m

(z)
)

=
∑

z′∈Hmk
τz′(z) · τ0m−mk−m(z) (w|[m(z)+1,m−mk]) ·

∑
w′∈Hm(z)

τw′(w|[1,m(z)]) · P̂z′(w
′)

=
∑

z′∈Hmk
τz′(z) · τ0m−mk−m(z) (w|[m(z)+1,m−mk]) · P̂z′(w|[1,m(z)]),

where w|[a,b] denotes the projection of w to the interval [a, b]. Thus, the value P̂ (z, w) can be

retrieved by making a single query to each P̂z′ . The overall time for running this procedure is
k · poly(|H|,

∑
m(i), log(k)).

The following proposition shows an efficient procedure to check that the suffix of a string encoded
under the LDEF,H encoding is all-zeros.

Proposition 3.9. Let H and F be constructible field ensembles such that F is an extension field of
H. There exists a randomized algorithm A that is given oracle access to a string LDEF,H(x), where

27

x ∈ {0, 1}n, and a parameter k ∈ [n], runs in time O(|H| · log|H|(n)) and makes O(|H| · log|H|(n))
queries such that if the k-bit suffix of x is zeros then A accepts and otherwise A rejects with

probability 1− |H|·log|H|(n)|F| .

Proof. Let m = log|H|(n) and let k ∈ [n] be associated with the string (h1, . . . , hm) ∈ Hm where we
identify [n] with Hm as described above. For every h > h1 (here we use the order on elements in
H that was fixed above) the algorithm A checks that the polynomial

(
LDEF,H(x)

)
(h, ·, . . . , ·) is the

all-zeros polynomial by querying it at a random location (in Fm−1) and checking that the result is 0.
The algorithm also recurses on input

(
LDEF,H(x)

)
(h1, ·, . . . , ·) w.r.t the parameter k′ = (h2, . . . , hm).

If x[k, . . . , n] = 0n−k then the algorithm always accepts. Otherwise, ∃i ∈ [k + 1, . . . , n] such
that xi 6= 0. Let (h′1, . . . , h

′
m) ∈ Hm be associated with i. Let j be the minimal index on which

(h1, . . . , hm) differs from (h′1, . . . , h
′
m) (such an index exists since i > k). After j recursive in-

vocations, the algorithm will consider the polynomial
(
LDEF,H(x)

)
(h1, . . . , hj−1, ·, . . . , ·) which is

a non-zero polynomial with individual degree |H| − 1. Hence, by the Schwartz-Zippel Lemma

(Lemma 3.1) it will reject with probability 1− m·(|H|−1)
|F| .

The following proposition allows us to check if an LDE codeword is zero except for a small set
of coordinates.

Proposition 3.10. Let H and F be constructible field ensembles such that F is an extension field
of H, where |H| ≥ log(|F|) and let m = m(n). There exists a randomized algorithm A that is
given as explicit input a set S ⊆ Hm and as implicit input an individual degree |H| − 1 polynomial
P : Fm → F. The algorithm runs in time |S| · poly(|H|,m, log(|F|)) and makes at most |S| + 1

queries. If P |Hm\S ≡ 0, then A accepts and otherwise, with probability 1− |H|·m|F| it rejects.
Furthermore, the queries that A makes depend only on the set S and its random coins.

Proof. Define Q(z)
def
=
∑

s∈S τ̂s(z) ·P (s), where τ̂ is as defined in Section 3.2. The verifier chooses a
random point r ∈ Fm and checks that Q(r) = P (r), where P is the input polynomial and in order
to compute Q the verifier reads P (s) for all s ∈ S. If the check passes then the verifier accepts and
otherwise it rejects.

For completeness, observe that if P |Hm\S ≡ 0 then, using the definition of the low degree
extension,

P (r) =
∑
x∈Hm

τ̂x(r) · P (x) =
∑
s∈S

τ̂s(r) · P (s) = Q(r)

and so the verifier accepts.
For soundness, let x∗ ∈ Hm\S such that P (x∗) 6= 0. Then, since x∗ ∈ Hm, for every s ∈ S it

holds that τ̂s(x
∗) = τs(x

∗) = 0, where the equality to 0 follows from the fact that x∗ 6∈ S. Thus,

Q(x∗) =
∑
s∈S

τ̂s(x
∗) · P (s) = 0

and so P (x∗) 6= Q(x∗). Note that P and Q are different polynomials of total degree (|H| − 1) ·m
and so, by the Schwartz-Zippel Lemma (Lemma 3.1) the verifier rejects with probability at least

1− |H|·m|F| , when checking whether P (r) = Q(r).

As for the complexity of the algorithm, using Proposition 3.6, we can compute Q(r) in time
s ·poly(|H|,m, log(|F|)) and using only s queries to P (where the query P (r) is an additional query).

28

3.3 Uniformity and Constructibility

In this section we specify the notions of uniform circuits and 3CNF formulas, which will be used
in our protocols. We then review a proof that polynomial-time computation can be verified by a
constructible 3CNF ensemble.

Definition 3.11 (T -Uniform arithmetic circuit ensemble). Let C = {Cn}n∈N be an ensemble of
arithmetic circuits over a constructible field ensemble F (see Definition 3.2), where Cn is over n
field elements. We say that {Cn}n∈N is T -uniform for a function T : N→ N, if there exists a Turing
Machine that on input 1n runs in time T (n) and outputs Cn (observe that it also follows that Cn
can be evaluated in time (T · polylog(T))).

The following definitions consider ensembles {φn}n∈N of 3CNF formulas. An ensemble of 3CNFs
is T -uniform if the n-th formula in the ensemble can be generated in time T (n) (i.e. if the ensemble
is T -uniform, as per Definition 3.11). We say that an ensemble of 3CNFs has size s = s(n) if, for
every n ∈ N, it holds that φn is a 3CNF formula with s(n) clauses on n variables. (Note that every
ensemble of 3CNF formulas has size at most O(n3).)

Definition 3.12 (Constructible 3CNF Ensembles). Let {Hn}n∈N be a constructible ensemble of

finite fields. Take m = m(n) = log(n)
log(|H|) (i.e., |Hm| = n). We identify Hm with [n] via a canonical

mapping.
We say that an ensemble of 3CNF formulas ψ = (ψn)n∈N (where ψn : {0, 1}n → {0, 1} is

on n variables) is H-constructible if ψ is polynomial-time uniform, and there exists an ensemble
of arithmetic circuits C = (Cn)n∈N over H, where Cn : H3m+3 → {0, 1}, such that on input
i1, i2, i3 ∈ Hm and b1, b2, b3 ∈ {0, 1} the circuit outputs 1 if and only if the clause:(

xi1 = b1
)
∨
(
xi2 = b2

)
∨
(
xi3 = b3

)
appears in ψn. For inputs outside of H3m × {0, 1}3 the circuit Cn is identically 0.

We say that C specifies the formula ψ. We require that C is poly(|H|,m)-uniform, can be
evaluated in time poly(|H|,m), and has individual degree poly(|H|,m).

We sometimes consider evaluating C over a constructible ensemble of extension fields F = {Fn},
where for every n, Fn is an extension field of Hn of size poly(|H|). When this is the case, we take
Ĉ : F3m+3 → F to be the circuit that simply evaluates C over the extension field F, and we note
that Ĉ also is poly(|H|,m)-uniform, can be evaluated in time poly(|H|,m), and has individual degree
poly(|H|,m). We also refer to Ĉ as specifying the formula ψ.

Proposition 3.13 (From Turing Machines to Constructible 3CNFs). Let H = (Hn)n∈N be a con-
structible ensemble of finite fields and let L be a language computed by a Turing Machine running
in time T (n) and space S(n). Then, there exists a linear-sized H-constructible 3CNF ensemble
ψ = (ψn)n∈M such that:

• For every x ∈ L, there exists a unique witness w ∈ {0, 1}O(T ·S) such that ψ|x|+|w|(x,w) = 1.

• For every x 6∈ L, and for every w ∈ {0, 1}O(T ·S) it holds that ψ|x|+|w|(x,w) = 0.

Given x ∈ L, the witness w can be computed in O(T) time and O(S) space.

The proof of Proposition 3.13 follows from the Cook-Levin Theorem.

29

4 Unambiguous and Probabilistically Checkable Interactive Proofs

An interactive protocol consists of a pair (P,V) of interactive Turing machines that are run on a
common input x, whose length we denote by n = |x|. The first machine, which is deterministic, is
called the prover and is denoted by P, and the second machine, which is probabilistic, is called the
verifier and is denoted by V.

An (`, a, b,Ptime,Vtime,Σ)-interactive protocol, is an interactive protocol in which, for inputs of
length n, the parties interact for ` = `(n) rounds and each message sent from P to V (resp., V to
P) is in Σa (resp., Σb), where Σ = Σ(n) is an alphabet (whose size may depend on n). The verifier
runs in time Vtime and the prover runs in time Ptime. We typically omit Σ from the notation and
refer to (`, a, b,Ptime,Vtime) interactive protocols when Σ is clear from the context.

In an (`, a, b,Ptime,Vtime,Σ)-interactive protocol, in each round i ∈ [`], first P sends a message
α(i) ∈ Σa to V and then V sends a message β(i) ∈ Σb to P. At the end of the interaction
V runs a (deterministic) Turing machine on input

(
x, r,

(
α(1), . . . , α(`)

))
, where r is its random

string and outputs the result. Abusing notation, we denote the result of the computation by
V
(
x, r,

(
α(1), . . . , α(`)

))
. We also denote by P

(
x, i,

(
β(1), . . . , β(i−1)

))
the message sent by P in

round i given input x and receiving the messages β(1), . . . , β(i−1) from V in rounds 1, . . . , i − 1,
respectively. We emphasize that P’s messages depend only on the input x and on the messages
that it received from V in previous rounds.

The communication complexity of an (`, a, b,Ptime,Vtime,Σ)-interactive protocol is the total
number of bits transmitted. Namely, (` · (b+ a) · log2(|Σ|)).

Public-coin Protocols. In this work we focus on public-coin interactive protocols, which are
interactive protocols in which each message β(i) sent from the verifier to the prover is a uniformly
distributed random string in Σb. At the end of the protocol, V decides whether to accept or reject
as a function of x and the messages α(1), β(1), . . . , α(`), β(`).

4.1 Interactive Proofs (IPs)

The classical notion of an interactive proof for a language L is due to Goldwasser, Micali and Rackoff
[GMR89].

Definition 4.1 (ε-sound (`, a, b,Ptime,Vtime)-IP [GMR89]). An (`, a, b,Ptime,Vtime)-interactive
protocol (P,V) (as above) is an ε-sound (`, a, b,Ptime,Vtime)-Interactive Proof (IP) for L if:

• Completeness: For every x ∈ L, if V interacts with P on common input x, then V accepts
with probability 1.11

• ε-Soundness: For every x /∈ L and every (computationally unbounded) cheating prover
strategy P̃, the verifier V accepts when interacting with P̃ with probability less than ε(|x|),
where ε = ε(n) is called the soundness error of the proof-system.

We remark that our definition of interactive proofs emphasizes the parameters of the proof-
system (to a higher degree than is commonly done in the literature). This is mainly because
throughout this work we apply transformations to interactive proofs and we need to carefully keep
track of the effect of these transformations on each one of these parameters.

11One could allow an error also in the completeness condition. For simplicity, and since all our protocols do not
have such an error, we require perfect completeness.

30

4.2 Unambiguous IPs

In this work we introduce a variant of interactive proofs, which we call unambiguous interactive
proofs, in which the honest prover strategy is defined for every x (i.e., also for x /∈ L) and the verifier
is required to reject when interacting with any cheating prover that deviates from the prescribed
honest prover strategy at any point of the interaction.

More formally, if (P,V) is an interactive protocol, and P̃ is some arbitrary (cheating) strategy,
we say that P̃ deviates from the protocol at round i∗ if the message sent by P̃ in round i∗ differs from
the message that P would have sent given the transcript of the protocol thus far. In other words,
if the verifier sent the messages β(1), . . . , β(i−1) in rounds 1, . . . , (i− 1) respectively, we say that P̃
deviates from the protocol at round i∗ if P̃

(
x, i∗,

(
β(1), . . . , β(i−1)

))
6= P (x, i∗, (β1, . . . , βi−1)).

Definition 4.2 (ε-unambiguous (`, a, b,Ptime,Vtime)-IP). An (`, a, b,Ptime,Vtime) interactive pro-
tocol (P,V), in which we call P the prescribed prover, is an ε-unambiguous (`, a, b,Ptime,Vtime)-IP
for L if the following two properties hold:

• Prescribed Completeness: For every x ∈ {0, 1}∗, if V interacts with P on common input
x, then V outputs L(x) with probability 1.

• ε-Unambiguity: For every x ∈ {0, 1}∗, every (computationally unbounded) cheating prover
strategy P̃, every round i∗ ∈ [`], and for every β(1), . . . , β(i

∗−1), if P̃ first deviates from the
protocol in round i∗ (given the messages β(1), . . . , β(i

∗−1) in rounds 1, . . . , (i∗−1) respectively),
then at the end of the protocol V outputs a special reject symbol ⊥ with probability 1− ε(|x|),
where the probability is over V’s coin tosses in rounds i∗, . . . , `.

Note that in the unambiguity condition, the probability that V rejects is only over its random
coin tosses in rounds i∗, . . . , `.

The following proposition shows that unambiguous interactive proofs are in fact interactive
proofs (as in Definition 4.1).

Proposition 4.3. If (P,V) is an ε-unambiguous (`, a,Ptime,Vtime)-IP for L, then (P,V) is also
an ε-sound (`, a,Ptime,Vtime)-IP for L.

Proof. Completeness is trivial. For soundness, note that if x /∈ L, and a cheating prover P̃ does not
deviate from the protocol (P,V), then V outputs L(x) = 0 with probability 1 (by the prescribed
completeness of (P,V)). On the other hand, if P̃ does deviate at any point, then, by the unambiguity
property, V rejects with probability 1− ε.

Remark 4.4 (Reducing the Unambiguity Error). Recall that the soundness error of an interactive
proof can be reduced (at an exponential rate) by repeating the protocol (either sequentially or in
parallel). In contrast, neither sequential nor parallel repetition reduces the unambiguity error of an
unambiguous interactive proof, since the deviating prover may deviate on only one of the copies of
the base protocol.

Although we will not use this fact, we remark that the unambiguity error can be reduced at a
cost that is roughly exponential in the number of rounds.

31

4.3 Probabilistically Checkable Interactive Proofs (PCIPs)

Loosely speaking, Probabilistically Checkable Interactive Proofs12 (PCIPs) are public-coin inter-
active protocols in which the verifier only queries the input and transcript at few locations (see
Section 2.2.1 for further motivation). We view a PCIP as a two-step process: first, an interactive
protocol is executed, where the verifier sends messages (which are merely random strings) to the
prover, and receives in return messages from the prover. In the second step, the verifier queries
just a few points in the transcript and input (without any further interaction with the prover), and
decides whether to accept or reject. When referring to the verifier’s running time we will refer only
to the running time in the second step. In particular, the running time will typically be sub-linear
in the transcript length (which is obviously impossible if we counted also the first step).

Definition 4.5 (ε-sound (qT , qI , `, a, b,Ptime,Vtime)-PCIP). A public-coin (`, a, b,Ptime,Vtime)-
IP is an ε-sound (qI , qT , `, a, b,Ptime,Vtime) Probabilistically Checkable Interactive Proof (PCIP) for
L if the interaction consists of the following three phases:

1. Communication Phase: First, the two parties interact for ` rounds, in which V only sends
random strings (of length b). No further interaction takes place after this phase.

2. Query Phase: V makes adaptive queries to its input and output. The number of queries to
the transcript (resp., input) is at most qT = qT (n) (resp., qI = qI(n)).

3. Decision Phase: Based on the answers to its queries and the random messages that it sent
in the communication phase, V decides whether to accept or reject.

In contrast to interactive protocols and proofs, here Vtime refers to V’s running time only in
the query and decision phases.

Remark 4.6. In Definition 4.5 we bound the verifier’s queries both to the transcript and to the
input. It is natural for the verifier to read its entire input, making a linear number of queries
and achieving qI = n, whereas the number of queries to the transcript is typically sublinear. For
example, this is the case in classical PCP proofs for NP (which can be viewed as single-message
PCIPs).

In Section 4.3.1 we consider the case of sublinear PCIP verifiers (under relaxed notions of
soundness). In this setting, which will be our focus in much of this work, the numbers of queries
to the transcript and input are both sublinear. Often, we do not need to distinguish between the
two bounds. For convenience, we use the notation (q, `, a, b,Ptime,Vtime)-PCIP to refer to a PCIP
where the nubmers of verifier queries to the transcript and to the input are both bounded by q (i.e.,
a (q, q, `, a, b,Ptime,Vtime)-PCIP as per Definition 4.5).

Input-Oblivious PCIPs. The PCIPs that we construct will have a restricted type of query access
to their transcript (and we will leverage this query access in our proof). Intuitively, we would like
the verifier’s queries to the transcript to depend only on its random string (and not on previous
queries to the input and transcript). Unfortunately, not all of our protocols satisfy this requirement
and so we settle for a relaxation that says that this is the case when interacting with the prescribed
prover.

12An equivalent notion to PCIPs, called interactive oracle proofs, was introduced in an independent work of Ben-
Sasson et al. [BCS16].

32

Definition 4.7. We say that a PCIP (P,V) makes input-oblivious queries if for every two inputs
x1, x2 ∈ {0, 1}n and every random string ρ, the queries that the verifier V makes to the transcript
when interacting with the prescribed prover P, on input x1, and x2, both with the random string ρ,
are the same.

4.3.1 Sub-linear Time PCIPs

A natural extension of interactive and probabilistically checkable proofs, which has been studied in
the literature [BFLS91, EKR04, BGH+06, DR06, RVW13], aims at obtaining sub-linear verification
time. Since the verifier does not even have time to read its own input, we cannot hope to achieve
soundness in general. Instead, we consider two relaxations:

Holographic Access to Input. If the input is encoded under an error-correcting code, it is
often possible for the verifier to read only a sub-linear portion of the input. Indeed, it is known
in the PCP literature [BFLS91] that query access to the low degree extension of the input suffices
for sub-linear running time in the PCP setting, and the same is true also for PCIPs. Following
[BFLS91] we refer to this type of access to the input as holographic.

Definition 4.8 (Holographic PCIP). Let H and F be constructible finite ensembles such that F is an
extension field of H. A Holographic ε-sound (qI , qT , `, a, b,Ptime,Vtime) Probabilistically Checkable
Interactive Proof (PCIP) for L with (H,F)-encoded input, is defined similarly to a (qI , qT , `, a, b,Ptime,Vtime)-
PCIP (see Definition 4.5), except that the verifier has oracle access to the low degree extension
LDEF,H(x) of the input x. The parameter qI corresponds to the number of queries made to LDEF,H(x).

Similarly to Remark 4.6, in this work we often do not distinguish between the numbers of queries
to the transcript and to the input, using a single parameter q to bound both quantities.

PCIP of Proximity. Inspired by the property testing [GGR98, EKR04] literature, another setting
in which it is reasonable to consider a sub-linear number of queries to the input, is if we relax
soundness and only require that the verifier reject inputs that are far from the language.

This type of extension has been previously considered in the PCP setting [BGH+06, DR06], the
interactive proof setting [RVW13], and the NP (or rather MA) setting [GR15]. Here we consider
the natural extension of PCIPs in this setting, which we call PCIPs of proximity (PCIPPs).

Definition 4.9 (PCIP of Proximity). An ε-sound (qI , qT , `, a, b,Ptime,Vtime)-Probabilistically Check-
able Proof of Proximity (PCIPP) (P,V) of δ-proximity for a language L, where δ = δ(n) ∈ (0, 1) is
called the proximity parameter and ε = ε(n) ∈ (0, 1) is the soundness error, is defined similarly to a
ε-sound (qI , qT , `, a, b,Ptime,Vtime)-PCIP (see Definition 4.5) except that the soundness is replaced
with the following condition:

• (ε,δ)-Soundness: For every x that is δ-far from L and every cheating prover strategy P̃, the
verifier V accepts when interacting with P̃ with probability less than ε(|x|).

4.3.2 PCIP for Pair Languages.

Following Ben-Sasson et al. [BGH+06] we consider pair languages which are languages whose input
is divided into two parts. We typically think of an input (w, x) to a pair language L as being

33

composed of an explicit input w (to which the verifier has explicit access) and an implicit input x
(to which the verifier only has implicit access). An ε-sound (qI , qT , `, a, b,Ptime,Vtime)-PCIP for a
pair language L is defined similarly to Definition 4.5, except that both the verifier and the prover
have explicit access to the explicit part of the input (and the completeness and soundness condition
are modified to accommodate this). The definitions of Holographic PCIPs and PCIPPs are extended
analogously, where for PCIPPs the (ε, δ)-soundness requirement applies to input pairs (w, x) such
that x is δ-far from the set {x : (x,w) ∈ L}.

We extend the notion of input-oblivious queries (see Definition 4.7) to PCIPs for pair languages
but allow the verifier to use the explicit input to generate its queries. More specifically, a PCIP
for a pair language L makes input-oblivious queries if for every two implicit input x1 and x2 and
explicit input w, for every random string ρ the verifier makes the same queries to the transcript
when interacting with the prescribed prover on input (w, x1) and on input (w, x2).

4.4 Unambiguous PCIPs w.r.t. Encoded Provers

The batch verification theorem that we prove does not hold for every PCIP, but rather for PCIPs
that are, in a specific sense, unambiguous. At first glance, unambiguity might seem to be completely
at odds with small query complexity: If a cheating prover P̃ changes just one bit of the ith message,
and the verifier only makes a small number of queries to the message, this change will likely go
unnoticed, and unambiguity is lost. There are several different paths one could take towards
reconciling these two notions, see Remark 4.10 below. We reconcile unambiguity with small query
complexity by considering unambiguity for a restricted family of cheating provers. We design PCIPs
where each message sent by the prescribed prover is a codeword in a high-distance error-correcting
code (the low-degree extension). We restrict the cheating prover P̃ to only send messages that
are themselves codewords. Thus, if the prover deviates in any round, it is sending an incorrect
codeword, and must be deviating in many of the bits it sent. This can be detected even by making
a small number of queries to that message.

We call a protocol that is unambiguous against this restricted class of cheating provers an
unambiguous PCIP w.r.t. encoded provers. We note that this notion makes sense also in the
PCP setting - a convenient way to describe classical PCPs (e.g., [BFLS91]) is to first construct a
PCP under the relaxed assumption that the PCP must be encoded under the low degree extension
encoding, and later to remove this assumption by using the low degree test and self correction
property of polynomials (see Lemmas 3.3 to 3.5). Similarly, the assumption for PCIPs may be
removed by using these two properties on the messages that the verifier receives.

In addition to the relaxation to so-called “encoded provers”, we also assume that the verifier’s
input is encoded using a low-degree extension. This is similar to the definition of a holographic
PCIP, see Definition 4.8, and to the “holographic proofs” of [BFLS91].

Remark 4.10 (Approximate unambiguity). A different path towards reconciling unambiguity with
small query complexity would be relaxing to approximate unambiguity. In this variant, the cheating
prover may deviate, but only in a δ-fraction of the bits of each message it sends.13 If a cheating
prover sends a message that’s at distance δ or more from the prescribed message, then the verifier

13Another option is to only require the verifier to reject with probability that is proportional to the “amount of
unambiguity” (i.e., the distance of message on which the deviation occurred from the message that the prescribed
prover would have sent). This corresponds to the notion of strong PCPs introduced by Goldreich and Sudan [GS06,
Definition 5.6].

34

will end up rejecting with high probability. We note that unambiguity w.r.t. encoded provers can
be used to derive approximate-unambiguity (using low-degree tests). In its own right, approximate-
unambiguity may be a more natural notion than unambiguity w.r.t. encoded provers (since no
restrictions are placed on a cheating prover). However, we find that the abstraction of unambiguity
w.r.t. encoded provers more easily facilitates our constructions (and lets us avoid some amount
of low-degree testing as we iteratively build our protocol). We do not use (or formally define)
approximate unambiguity in this work.

Unambiguous PCIPs are formalized in Definition 4.12 below. We emphasize that this is a
technical definition, which facilitates several of the transformations that we use in this work. We
note that constructing such proof systems is indeed a relaxed goal: restricting the provers to a
subset of all strategies makes soundness easier to achieve, and assuming that the input is encoded
can (in several settings) dramatically reduce the verifier’s query complexity into its input. Still,
we show that unambiguous PCIPs w.r.t. encoded provers can be transformed into PCIPs and UIPs
with the normal (more robust) notion of soundness and unambiguity. As always, we can do away
with the assumption that the input is encoded by verifying all claims made about the input’s
low-degree extension. This requires adding a linear number of queries (to the input) and quasi-
linear verification time. See Proposition 4.14. In the reverse direction, any unambiguous IP can be
converted into an unambiguous PCIP w.r.t. encoded provers, see Proposition 4.15.

Parameter Setting. In order to formalize the above, we first need to set up the parameters for
the low degree extension encoding. Fix constructible ensembles of finite fields (see Section 3.1) H
and F such that F is an extension field of H. Recall that the low-degree extension code LDEF,H :

{0, 1}n → FFlog|H|(n)
(see Section 3.2) is an error-correcting code with distance

(
1− |H|·log|H|(n)|F|

)
.

Definition 4.11 (Encoded Prover). We say that a prover strategy P is (g,H,F)-encoded if every
message that P sends is composed of a sequence of g = g(n) strings, each of which is an LDEF,H,m
codeword, where m = log|F|(a/g), and a is the length of each prover message.

Definition 4.12 (ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP w.r.t (g,H,F)-encoded provers).
We say that a public-coin (`, a, b,Ptime,Vtime) interactive protocol (P,V) is an ε-unambiguous
(q, `, a, b,Ptime,Vtime)-PCIP for L w.r.t (g,H,F)-encoded provers if, for inputs of size n, the verifier
V queries at most q = q(n) symbols from the transcript and the low degree extension of the main
input, and the following properties hold:

1. P is a (g,H,F)-encoded prover strategy (see Definition 4.11).

2. (P,V) satisfy the prescribed completeness and ε-unambiguity conditions as in Definition 4.2,
except that we only require ε-unambiguity against (g,H,F)-encoded provers (rather than gen-
eral cheating prover strategies).

3. Both for prescribed completeness and for unambiguity, we assume that the input is a codeword
in LDEF,H,minput

, where minput = log|H|(n).

Remark 4.13 (Variable Length unambiguous PCIPs). Definition 4.12 calls for protocols in which
the prover’s messages all have the same lengths. However, it will sometimes be more convenient
for us to construct protocols in which the messages have varying lengths.

35

Nevertheless, such protocols can be transformed into protocols with fixed length messages by
having the prover pad messages to be sent with 0’s before encoding them. Note that to preserve
unambiguity the verifier must check this padding (since otherwise a deviation on the padded part
would not be detected) and this can be done using the procedure in Proposition 3.9 (repeatedly if
necessary). For a given security parameter λ ≥ 1, this increases the unambiguity error of an ε-
unambiguous (q, `, a, b,Ptime,Vtime)-PCIP w.r.t. (g,H,F)-encoded provers to max(ε, 2−λ) and the
number of queries (and verifier runtime) by O(` · g · |H| · log|H|(n) · λ).

Unambiguous PCIPs for Pair Languages. We extend the definition of unambiguous PCIPs
(w.r.t. encoded provers) to pair languages as in Section 4.3. That is, the verifier is given explicit
access to the explicit access of the input and implicit access to the low degree extension of the
implicit input.

The following two propositions (Propositions 4.14 and 4.15) show that we can transform an
unambiguous interactive proof into an unambiguous PCIP and vice versa (the former transformation
is trivial whereas the latter requires some PCP machinery that is developed in Section 7).

Proposition 4.14 (From unambiguous PCIP w.r.t. encoded provers to unambiguous IP). Let H
and F be constructible field ensembles such that F is an extension field of H.

If the language L has an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP w.r.t. (g,H,F)-encoded
provers, then L has an ε-unambiguous (`, a, b,Ptime,Vtime′)-IP, where

Vtime′ = Vtime + n · poly(|H|, log(|F|), log|H|(n)) + ` · a · poly(|F|, log|H|(a/g)).

Proof. Let (P,V) be an an ε-unambiguous (q, `, a, b,Ptime,Vtime) PCIP for L w.r.t. (g,H,F)-
encoded provers. Consider a protocol (P ′,V ′) in which P ′ just emulates P and V ′ first computes
the low degree extension LDEF,H(x) of the main input x and emulates (P,V) w.r.t. that low degree
extension. In addition to V’s checks, the verifier V ′ checks that each message α ∈ Fa that it receives
is composed of g LDEF,H,m codewords.

Prescribed completeness is trivial. For ε-unambiguity, observe that if a cheating prover sends
a string that is not composed of g LDEF,H,m codewords, then V ′ immediately rejects and otherwise
the cheating prover behaves like a g-encoded prover and so V ′ rejects with probability 1− ε.

All the parameters of (P ′,V ′) are the same as in (P,V) except for the verifier’s running time.
The latter increases by an additive factor of n·poly(|H|, log|H|(n))+`·a·poly(|F|,m) due to computing

the low degree extension of the input (see Proposition 3.7) and the additional checks.14

Proposition 4.15 (From unambiguous IP to unambiguous PCIP w.r.t. encoded provers). Suppose
that the language L has an ε-unambiguous (`, a, b,Ptime,Vtime)-IP (P,V) over the alphabet {0, 1}.
We assume that Vtime ≥ ` · (a+ b).

Let H and F be constructible field ensembles such that F is an extension field of H and |F| =
poly(|H|). Let σ = σ(n) ∈ (0, 1) be a parameter. We assume that log(max(n,Ptime,Vtime)) ≤
|H| ≤ poly(n, `, a)σ.

Then, L has an ε′-unambiguous (q′, `′, a′, b′,Ptime′,Vtime′) PCIP (P ′,V ′) over the alphabet F
w.r.t. (1,H,F)-encoded provers and with input-oblivious queries, with the following parameters:

14To check that f ∈ LDEF,H,m it suffices to check that for each one of the m·|F|m−1 axis parallel lines, the restriction
of f to that line is a degree |H| − 1 individual degree polynomial. Thus, membership in the code LDEF,H,m can be
checked in time m · |F|m−1 · poly(|F|,m), see [RS96, Section 3] for details.

36

• q′ =
(
Vtimeσ +O(` · log(|F|)

)
.

• `′ =
(
`+O(1/σ)

)
.

• a′ =
(
poly(a, `, b,Vtime, |H|)

)
.

• b′ = (max (b,O(|H| · log(|F|)))).

• Ptime′ = (Ptime + poly(n, a, `, b,Vtime, |H|)).

• Vtime′ = (Vtimeσ + (poly(`, b, |H|))).

• ε′ =
(
ε+ poly(|H|)

|F|

)
.

Proof. We first trivially transform (P,V) into an ε′′-unambiguous (q′′, `′′, a′′, b′′,Ptime′′,Vtime′′)-
PCIP (P ′′,V ′′) w.r.t. (1, |H|, |F)-encoded provers (with input-oblivious queries), where:

• q′′ = n+ ` · a.

• `′′ = `.

• a′′ = poly(a).

• b′′ = b.

• Ptime′′ = Ptime + ` · poly(a, |H|).

• Vtime′′ = Vtime + ` · poly(a).

• ε′′ = ε.

The latter is obtained by modifying (P,V) into a PCIP (with input-oblivious queries) by having the
prover send its messages encoded under the low degree extension encoding LDEF,H and the verifier
reads the entire input and transcript. Note that the resulting protocol (P ′′,V ′′) has very high query
complexity and verifier running time.

Proposition 4.15 follows by applying the query reduction transformation (Lemma 8.2), which
is shown in Section 7, to (P ′′,V ′′) with respect to ρ = O(1/σ).

Remark 4.16. We note that an ε-unambiguous PCIP w.r.t. (g,H,F)-encoded provers can also be
transformed into a sound PCIP (as in Definition 4.5), with a slight loss in parameters by having the
verifier compute the low degree extension of the main input, run low degree tests (see Lemmas 3.4
and 3.5) on every codeword that it receives and use the code’s self-correction procedure to read from
the codewords sent by the prover (see Lemma 3.3).

For soundness, observe that if a cheating prover for the PCIP sends any message that is far
from an “encoded message” (i.e. a message that consists of g codewords from the LDEF,H code),
then the verifier rejects with high probability when performing the low degree test on that message.
Otherwise (i.e., the messages are close to valid codewords), since the verifier uses the self-correction
procedure, we can essentially treat the messages as being valid encoded messages, which means that
the prover is behaving like an encoded prover. Soundness now follows from the unambiguity of the
underlying unambiguous PCIP w.r.t. encoded provers.

37

5 Our Results

Our main result is an unambiguous interactive proof for languages computable by bounded space
Turing machines. We denote by DTISP(T, S) the class of all languages accepted by a Turing
machine in time T and space S.

Theorem 7 (Unambiguous Interactive Proofs for Bounded Space). Let T = T (n) and S = S(n)
such that n ≤ T ≤ exp(n) and log(T) ≤ S ≤ poly(n).

Let L ∈ DTISP(T, S) and let δ = δ(n) ∈ (0, 1/2) such that poly(1/δ) ≤ log(T). Then, L
has a public-coin unambiguous interactive proof with perfect completeness and unambiguity er-
ror 1

polylog(T) . The number of rounds is (1/δ)O(1/δ). The communication complexity is TO(δ) ·
poly(S). The (prescribed) prover runs in time T 1+O(δ) · poly(S) time, and the verifier runs in time(
n · polylog(T) + TO(δ) · poly(S)

)
.

If the verifier is given query access to a low-degree extension of the input, then its running time
is reduced to TO(δ) · poly(S).

Using Proposition 4.3 we can state this result in terms of standard interactive proofs.15

Corollary 8 (Interactive Proofs for Bounded Space). Let T = T (n) and S = S(n) such that
n ≤ T ≤ exp(n) and log(T) ≤ S ≤ poly(n).

Let L ∈ DTISP(T, S) and let δ = δ(n) ∈ (0, 1/2) such that poly(1/δ) ≤ log(T). Then, L has
a public-coin interactive proof with perfect completeness and soundness error 1

2 . The number of

rounds is (1/δ)O(1/δ). The communication complexity is TO(δ) · poly(S). The (prescribed) prover
runs in time T 1+O(δ) ·poly(S) time, and the verifier runs in time

(
n · polylog(T) + TO(δ) · poly(S)

)
.

If the verifier is given query access to a low-degree extension of the input, then its running time
is reduced to TO(δ) · poly(S).

Lastly, we explicitly state our results for the setting of parameters that is the focus of our
work: constant-round interactive proofs for languages computable in polynomial time and bounded
polynomial space.

Corollary 9 (Constant-Round Interactive Proofs for Polynomial Time and Fixed Polynomial
Space). Let L be a language that can be computed in time poly(n) and space S = S(n). Then,
for every constant δ > 0, the language L has a constant-round public-coin interactive proof with
perfect completeness and soundness error 1

2 . The communication complexity is nδ · poly(S). The

prover runs in time poly(n) and the verifier runs in time Õ(n) + nδ · poly(S).
If the verifier is given query access to a low-degree extension of the input, then its running time

is reduced to poly(S) · nδ.

Remark 5.1 (Tightness of main result). First, we note that any language L that has an interactive
proof with communication S and a verifier-space S, can also be computed in O(S)-space (though
not necessarily in polynomial time). Thus, the communication’s dependence on S seems inherent.

Moreover, under reasonable complexity-theoretic conjectures, the trade-off between the number
of rounds and the communication length is also (to some extent) tight. Suppose that a language
L has an `-round public-coin interactive proof, where the communication is bounded by c, and the

15We state our result for standard interactive proofs with soundness error 1
2

but note that the soundness error can
be reduced at an exponential rate using parallel repetition (in contrast, repetition does not decrease the unambiguity
error, see Remark 4.4).

38

verifier runs in time Õ(n). By collapsing the rounds a la [BM88], we obtain a two-message AM
protocol for L, where the communication and verification time are increased by a multiplicative
factor of c`

′
, where `′ is an exponential function of `. If we could get a constant number of rounds

and c = no(1), we would get a two-message AM protocol for L with no(1) communication and
n1+o(1)-time verification.

Thus, eliminating the tradeoff in Theorem 1 would imply a general (two-message) AM-speedup
theorem for bounded-space computations. Under the (seemingly reasonable) conjecture that no such
general speedup exists, the theorem is tight. We note that there is hope for improvement in the
dependence of the number of rounds on the constant δ.

5.1 Roadmap for the Proof of Theorem 7

The main components in the proof of Theorem 7 are two transformations that we apply to un-
ambiguous PCIPs (w.r.t. encoded provers). In Section 6 we show the first transformation, batch
verification of PCIPs, which takes an unambiguous PCIP for a language L and generates an effi-
cient unambiguous PCIP for checking membership of multiple inputs in L. In Section 7 we show a
complementary transformation that allows us to reduce the number of queries and verifier running
time. In Section 8 we use these two transformation to prove Theorem 7. Lastly, in Section 9 we
show how to batch verify general unambiguous interactive proofs rather than just unambiguous
PCIPs (this last step is not required for the proof of Theorem 7, but we find this batch verification
result to be of independent interest).

6 Batch Verification of Unambiguous PCIPs

In this section we show how to batch verify unambiguous PCIPs (w.r.t. encoded provers), which is
the main component in our interactive-proofs for bounded-space computations. See Section 2 for
an overview of the construction (we assume familiarity with this overview).

For a language L, we denote by L⊗k the language

L⊗k def
=
{

(x1, . . . , xk) : ∀j ∈ [k], xj ∈ L and |x1| = . . . = |xk|
}
.

Our goal is to transform a PCIP for L into an efficient PCIP for L⊗k.
As described in the technical overview, the construction has a recursive structure. To facilitate

the recursion, we prove a more general batch verification lemma for pair languages. Recall that a
pair language L ⊆ {0, 1}∗×{0, 1}∗, consists of pairs of the form (w, x), where view w as an explicit
input and x as an implicit input. We extend the definition of L⊗k to pair languages in the following
(slightly unnatural but technically convenient) way. For a pair language L, we define

L⊗k =
{

(w, (x1, . . . , xk)) : ∀i ∈ [k], (w, xi) ∈ L and |x1| = . . . = |xk|
}
.

That is, the same explicit input is shared for all statements. In fact, it may be useful to think of
the explicit input w as a common reference string shared among the k interactive protocols to be
batched.16

16Actually, in our use of Lemma 6.1 the explicit input w will always be the empty string. However, the recursive
step will generate an explicit input and so we add it here for convenience.

39

Lemma 6.1 (Batch Verification for unambiguous PCIPs w.r.t. encoded provers (Pair Languages),
see also Lemma 8.1). Let H and F be constructible field ensembles such that F is an extension field
of H and |F| ≤ poly(|H|).

Let (P,V) be an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP for the pair language L, with
respect to (g,H,F)-encoded provers and with input-oblivious queries. Let k = k(n) ≥ 1, µ = µ(n) ≥
1 and let λ = λ(n) ≥ 1 be a security parameter, where:

• log(`µ · a) ≤ min
(
|H|, |F|2|H|

)
.

• a ≥ poly(k, q, g) · (poly(λ, |H|, `))µ.

• Ptime ≥ ` · a · polylog(|F|).

Then, there exists an εA-unambiguous (qA, `A, aA, bA,PtimeA,VtimeA)-PCIP for the pair lan-
guage L⊗k w.r.t. (gA,H,F)-encoded provers and with input-oblivious queries, with the following
parameters:

• εA = (µ+ 1) ·
(
ε+ 3 · 2−λ

)
.

• qA = k2 · q · poly(g) ·
(
poly(`, λ, |H|)

)µ+1
.

• `A = ` · (µ+ 1) + 2µ.

• bA = max
(
b, k · poly(|H|, `µ, g, λ)

)
.

• aA = a · 2k1/µ · log(k) · λ · `µ.

• PtimeA = 2k · µ · `µ · Ptime + Vtime · q · k2 · poly(g) ·
(
poly(`, λ, |H|)

)µ+1
.

• VtimeA = Vtime · q · k2 · poly(g) ·
(
poly(`, λ, |H|)

)µ+1
.

• gA = g · 2k1/µ · log(k) · λ · `µ.

Most importantly, note that the length of PBatch’s messages is roughly a · k1/µ, rather than the
trivial a · k (which can be obtained by simply running the k protocols).

Remark 6.2. We remark that, given oracle access to the prover P for the base PCIP for L the

prescribed prover for L⊗k in Lemma 6.1 can be implemented in time PtimeA =
(
O(a · k · `µ · µ ·

polylog(|F|)) +Vtime ·k2 · q ·poly(g) ·
(
poly(λ, |H|, `)

)µ+1
)

. This observation is particularly useful in

a setting in which P is given as input also a witness to the statement xj ∈ L (e.g., when batching
UP statements).

As alluded to above, the proof of Lemma 6.1 is based on a recursive protocol. At each step the
task of batching k base protocols will be reduced, via an interactive protocol, to that of batching
k′ � k (slightly more complicated) protocols. At the very end, when we are left with sufficiently
few protocols, the prover and verifier simply execute these protocols.

We begin with the recursive step: that is, how to (interactively) reduce the batching of k
protocols to the batching of k′ � k protocols. Toward this end, we prove a lemma, which we call
the “Deviation Amplification Lemma” (Lemma 6.3). This lemma shows an interactive protocol

40

that takes as input an explicit input w and k implicit inputs x1, . . . , xk for L, and outputs a related
explicit input w′ and k related implicit inputs x′1, . . . , x

′
k for a slightly more complicated language

L′ such that:

1. If ∀j ∈ [k], (w, xj) ∈ L, then ∀j ∈ [k], (w′, x′j) ∈ L′.

2. If ∃j ∈ [k], (w, xj) 6∈ L, then either the verifier rejects or there exists a set J ⊂ [k] of size
|J | ≥ d such that ∀j ∈ J, (w′, x′j) 6∈ L′ (where 1 � d � k is a parameter that will be set
below).

That is, the Deviation Amplification Lemma allows us to amplify the number of false statements.
Lemma 6.1 follows by first applying the Deviation Amplification Lemma, then randomly sampling
roughly k/d of the new statements and recursing on the sampled statements (the latter step is done
in Section 6.3).

Organization of Section 6. In Section 6.1 we state the Deviation Amplification Lemma (Lemma 6.3).
In Section 6.2 we prove this lemma and in Section 6.3 we use it to prove the batch verification lemma
(Lemma 6.1). Lastly, Section 6.4 contains a couple of less central proofs that were deferred from
Section 6.2.

6.1 The Deviation Amplification Lemma

Before stating the Deviation Amplification Lemma, we briefly go over its (many) parameters: k
is the number of protocols to be batched, d ∈ [k/ log(k)] is a parameter that gives a trade-off
between the amount of communication in the Deviation Amplification Protocol and the number
of false statements that it outputs, and λ is a security parameter (that can be used to decrease
the unambiguity error). Finally, q, `, b, a and g are, respectively, the query complexity, number of
rounds, length of verifier messages, length of prover messages, and number of LDEF,H,m codewords
per prover message, in the base protocol to be batched.

Lemma 6.3 (Deviation Amplification Lemma). Let H and F be constructible field ensembles such
that F is an extension field of H and |F| ≤ poly(|H|).

Suppose that the pair language L has an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP (PL,VL)
w.r.t. (g,H,F)-encoded provers and with input-oblivious queries. Let k = k(n) ≥ 1, d = d(n) ∈
[k/ log(k)] and λ = λ(n) ≥ 1 be parameters and assume that: (1) log(a) ≤ min

(
|H|, |F|2|H|

)
, (2)

a ≥ poly(k, q, `, g, λ, |H|), and (3) Ptime ≥ ` · a · polylog(|F|). Then, there exists a pair language L′
such that:

1. L′ has an ε′-unambiguous (q′, `′, b′, a′,Ptime′,Vtime′)-PCIP (PL′ ,VL′) w.r.t. (g′,H,F)-encoded
provers and with input-oblivious queries, and the following parameters:

• ε′ = ε+ 2−λ.

• q′ =
(
q ·
(
`+ poly(λ, |H|)

)
+ k · poly(`, g, λ, |H|)

)
.

• `′ = `.

• b′ = b.

• a′ = ` · a.

41

• Ptime′ = ` · Ptime.

• Vtime′ =
(
` · Vtime + q · poly(λ, |H|) + k · poly(`, g, λ, |H|)

)
.

• g′ = ` · g.

2. There exists an (` + 1)-round interactive protocol (Pamplify,Vamplify), such that the prover
Pamplify, which is (d · log(k) · g,H,F)-encoded, is given as input a string w ∈ {0, 1}nexplicit

and a sequence (x1, . . . , xk) ∈ ({0, 1}n)k, and the verifier Vamplify is given explicit access to w
and implicit access to (x1, . . . , xk) and makes input-oblivious queries. After the two parties
interact, the verifier Vamplify either rejects or outputs a string w′ and a sequence (x′j)j∈[k] such
that:

• Prescribed Completeness: If Vamplify interacts with Pamplify, and ∀j ∈ [k], (w, xj) ∈
L, then ∀j ∈ [k],

(
(w,w′), (xj , x

′
j)
)
∈ L′. On the other hand, if Vamplify interacts with

Pamplify but ∃j ∈ [k], (w, xj) 6∈ L, then Vamplify rejects with probability 1.

• Unambiguity: For every (d · log(k) · g,H,F)-encoded prover strategy P̃amplify and every

round i∗ ∈ [`+1], if P̃amplify first deviates from the protocol at round i∗, then with probabil-
ity 1−ε−2−λ over the coin tosses of Vamplify in rounds (i∗, . . . , `+ 1), either Vamplify rejects

or there exists a set J ⊂ [k] of size |J | = d/2 such that ∀j ∈ J,
(

(w,w′), (xj , x
′
j)
)
6∈ L′.

The protocol (Pamplify,Vamplify) has the following parameters:

(a) Query complexity:
(
q · k · poly(λ, |H|) + k2 · poly(`, g, λ, |H|)

)
.

(b) Vamplify message length (in field elements) max
(
b, k · poly(|H|, g, `, λ)

)
.

(c) Pamplify message length (in field elements): d · log(k) · a.

(d) Vamplify time:
(
k · Vtime + q · k · poly(λ, |H|) + k2 · poly(`, g, λ, |H|)

)
.

(e) Pamplify time:
(

2k · Ptime + k · Vtime + k · q · poly(λ, |H|) + k2 · poly(`, g, λ, |H|)
)

.

6.2 Proof of the Deviation Amplification Lemma (Lemma 6.3)

We start by defining the language L′. Then, we show that it satisfies the conditions stated in
Lemma 6.3 by first constructing the Deviation Amplification Protocol (Pamplify,Vamplify) (this is the
main step in the proof). The Deviation Amplification Protocol is specified in Section 6.2.1, its
analysis is in Section 6.2.2. We then construct a PCIP protocol (PL′ ,VL′) for L′, see Section 6.2.3.

Fix m
def
= log|F|(a/g). Recall that a (g,H,F)-encoded strategy is a prover strategy in which the

cheating prover is only allowed to send messages that are composed of g LDEF,H,m codewords (note
that the length of such messages over the alphabet F is g·|F|m = a). Also note thatm ≤ log(a) ≤ |H|
(by our assumption that log(a) ≤ |H|).

The Language L′. The pair language L′ is an “augmented” version of L. We view inputs to L′
as being composed of two parts: an explicit input and an implicit input. The explicit input for L′
consists of three parts:

42

1. An explicit input w ∈ {0, 1}nexplicit for L.

2. A sequence of verifier messages β(1), . . . , β(`) ∈ Fb for the protocol (PL,VL).

3. A sequence of indices S ⊆ [` · a] of size |S| = q · poly(λ, |H|) + k · poly(`, g, λ, |H|). We think
of S as specifying coordinates in the prover’s messages in rounds 1, . . . , `, respectively.

The implicit input for L′ consists of two parts:

1. An implicit input x ∈ {0, 1}n for L.

2. A sequence of values φ : S → F. We think of φ as specifying values for the prover’s messages
for the coordinates in S. (φ is represented as a string of length O(|S| · log(|F|)) in the natural
way).

Loosely speaking, the requirement is that (w, x) ∈ L and that the messages sent by the prescribed
prover in the protocol (PL,VL) (on input x with verifier messages

(
β(1), . . . , β(`)

)
) projected to the

set of indices S, are equal to the corresponding values φ.

Definition 6.4 (The Language L′). The pair language L′ consists of all tuples((
w,
(
β(1), . . . , β(`)

)
, S
)
, (x, φ)

)
,

where w ∈ {0, 1}nexplicit, β(1), . . . , β(`) ∈ Fb, S ⊆ [`·a] of size |S| = q ·poly(λ, |H|)+k ·poly(`, g, λ, |H|),
x ∈ {0, 1}n, and φ : S → F such that

1. (w, x) ∈ L; and

2. ∀ξ ∈ S,
(
α(1), . . . , α(`)

) ∣∣
ξ

= φ(ξ),

where ∀i ∈ [`], α(i) def
= PL

(
(x,w), i,

(
β(1), . . . , β(i−1)

))
.

(Recall that x|ξ denotes the ξth entry in x, see Section 3).

In order to present the Deviation Amplification Protocol, we require two additional ingredients:
(1) a robust procedure, which we call the transcript tester, for checking that a given transcript is
close to an accepting transcript for the protocol (PL,VL) and (2) a checksum function ENC, which
is a certain type of error correcting encoding that will be specified next.

Transcript Tester. The verifier in a PCIP w.r.t. encoded prover can be thought of as a sub-
linear time algorithm for checking encoded transcripts. For our construction we will need a robust
version of the verifier that rejects transcripts that are not encoded, as long as they are far from any
encoded transcript. We construct such a procedure, which we call the transcript tester by utilizing
the local testability and decodability of the low degree extension encoding.

Hence, the transcript tester T can be thought of as a property tester [GGR98] for checking
proximity to an accepting transcript for VL (recall that (PL,VL) is the interactive proof for the
language L, which we want to batch). That is, T is given as explicit input the coins of the verifier
VL and as implicit input the prover messages for the protocol (PL,VL). The tester T accepts if
the transcript is composed of codewords that make VL accept and rejects (with high probability) if
the transcript is far from any transcript that would make VL accept. We emphasize that the latter
condition should hold even for transcripts that are not (g,H,F)-encoded.

43

Lemma 6.5 (Transcript Tester). For every proximity parameter δ ∈ (0, 1/3) and soundness pa-
rameter λ ≥ 1, there exists a randomized algorithm T , called the transcript tester, that is given
as explicit input w ∈ {0, 1}nexplicit, β(1), . . . , β(`) ∈ Fb and as implicit input x̂ = LDEF,H(x), where
x ∈ {0, 1}n, and α̃(1), . . . , α̃(`) ∈ Fa. For every x ∈ {0, 1}n, w ∈ {0, 1}nexplicit and β(1), . . . , β(`) ∈ Fb
it holds that:

• Completeness: If α̃(1), . . . , α̃(`) ∈ Fa are each composed of g codewords in LDEF,H,m, then
the tester T

((
w,
(
β(1), . . . , β(`)

))
,
(
x̂,
(
α̃(1), . . . , α̃(`)

)))
accepts if and only if the verifier VL

accepts
((
w,
(
β(1), . . . , β(`)

))
,
(
x,
(
α̃(1), . . . , α̃(`)

)))
.

• Soundness: If
(
α̃(1), . . . , α̃(`)

)
is δ-far from the set{(

ᾱ(1), . . . , ᾱ(`)
)
∈ ((LDEF,H,m)g)` : VL

((
w,
(
β(1), . . . , β(`)

))
,
(
x̂,
(
ᾱ(1), . . . , ᾱ(`)

)))
= 1
}

then, with probability 1− 2−λ, the tester T
((
w,
(
β(1), . . . , β(`)

))
,
(
x,
(
α̃(1), . . . , α̃(`)

)))
rejects.

The algorithm T runs in time Vtime + q · poly(λ, |H|) + 1
δ · poly(`, g, λ, |H|), makes q · poly(λ, |H|) +

1
δ · poly(`, g, λ, |H|) queries to its implicit input, and uses 1

δ · poly(|H|, g, `, λ) random bits.

Furthermore, the queries that T makes to the α(i)’s are input-oblivious: for every two inputs
x1, x2 ∈ {0, 1}n, every w ∈ {0, 1}nexplicit, every β(1), . . . , β(`) ∈ Fb and every random string ρ,

if α
(i)
1

def
= PL

(
(x1, w), i,

(
β(1), . . . , β(`)

))
and α

(i)
2

def
= PL

(
(x2, w), i,

(
β(1), . . . , β(`)

))
are the honestly

generated messages by the prescribed prover, then T makes the same queries to the α(i)’s when given

as input either
((
w,
(
β(1), . . . , β(`)

))
,
(
x1,
(
α
(1)
1 , . . . , α

(`)
1

)))
or
((
w,
(
β(1), . . . , β(`)

))
,
(
x2,
(
α
(1)
2 , . . . , α

(`)
2

)))
.

The (fairly straightforward) proof of Lemma 6.5, which is based on the low degree test (see
Lemmas 3.4 and 3.5) and the self-correction property of polynomials (see Lemma 3.3), is deferred
to Section 6.4.1.

Checksum. Let k ∈ N and d ≤ k
log(k) . The following proposition shows the existence of a

systematic17 linear error-correcting code C : Fk → Fk+d·log(k) with absolute distance d + 1 and
poly(log(|F|), k) time encoding.18 We will use this code as a checksum function.

Proposition 6.6. Let F be a constructible field ensemble (see Definition 3.2) and let k = k(n) ≥ 1
and d = d(n) ≤ k/ log(k). There exists a systematic F-linear error-correcting code C : Fk →
Fk+d·log(k) with absolute distance d+ 1 and k · poly(log(|F|), log(k))-time encoding.

The classical Reed-Solomon code almost satisfies the requirements in Proposition 6.6 (even with
slightly better rate). The problem however, is that it requires the field size to be quite large (i.e.,
|F| � k), which turns out to be problematic. Since the actual construction (which is a variant of
the Reed Solomon code) is not important for the rest of the proof of Lemma 6.3, we defer the proof
of Proposition 6.6 to Section 6.4.2.

Since C is systematic, there exists a function ENC : Fk → Fd such that C(η) ≡ (η,ENC(η)). We
will often refer to chksum = ENC(η) as the checksum of the vector η.

17Recall that an error-correcting code C is systematic if there exists a function ENC such that C(η) ≡ (η,ENC(η)).
18We remark that the Reed-Solomon code over F satisfies the above but requires a field of size |F| ≥ k and so we

use a different construction.

44

We define a function DEC : Fk+d·log(k) → Fk to be the minimum distance decoding function for
C that preserves checksums. That is, on input η ∈ Fk and chksum ∈ Fd log(k), the function DEC
outputs the vector η′ ∈ Fk that is the closest vector to η with ENC(η′) = chksum, where ties are
broken in some consistent canonical way.

We extend ENC and DEC to operate over matrices (rather than just vectors) by operat-
ing column-by-column. That is, ENC : Fk×m → F(d·log(k))×m is defined as ENC(η1, . . . , ηm) ≡(
ENC(η1), . . . ,ENC(ηm)

)
. Similarly, we define DEC : Fk×m × Fd·log(k)×m → Fk×m as

DEC
(

(η1, . . . , ηm),
(
chksum1, . . . , chksumm

))
≡
(

DEC(η1, chksum1), . . . ,DEC(ηm, chksumm)
)
.

6.2.1 The Deviation Amplification Protocol

The Deviation Amplification Protocol (Pamplify,Vamplify) is presented in Fig. 1.

6.2.2 Completeness, Unambiguity and Complexity of the Protocol (Pamplify,Vamplify)

Prescribed Completeness of (Pamplify,Vamplify). Prescribed completeness follows directly from
the prescribed completeness of (PL,VL) and the completeness of T , details follow.

Let x1, . . . , xk ∈ {0, 1}n and w ∈ {0, 1}nexplicit . By the prescribed completeness of (PL,VL), for
every j ∈ [k], it holds that

VL
((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j ,
(
α
(1)
j , . . . , α

(`)
j

)))
= L(xj) (2)

with probability 1 over the choice of β(1), . . . , β(`), where x̂j = LDEF,H(xj) and ∀i ∈ [`], α
(i)
j

def
=

PL
(
xj , i,

(
β(1), . . . , β(i−1)

))
. Since each α

(i)
j is indeed composed of g LDEF,H,m codewords, by Eq. (2)

and the completeness of T ,

T
((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j ,
(
α̃(1), . . . , α̃(`)

)))
= L(xj). (3)

Therefore, since Pamplify’s answers in Phase II (Step 3) are consistent with the α
(i)
j ’s, if ∃j ∈

[k], (w, xj) 6∈ L, then T rejects and so Vamplify rejects.
Assume that ∀j ∈ [k], (w, xj) ∈ L. By construction, ∀ξ ∈ S, φ(ξ) = A|ξ, where A =(

A(1), . . . , A(`)
)
, A(i) ∈ Fk×a is a matrix whose jth row is α

(i)
j and chksum(i) = ENC(A(i)) for every

i ∈ [`].
For every ξ ∈ S it holds that ENC(φ(ξ)) = ENC(A|ξ) = chksum|ξ, where chksum =(

chksum(1), . . . , chksum(`)
)

and chksum(i) = ENC(A(i)) for every i ∈ [`]. Hence, Vamplify’s con-
sistency check passes.

Completeness follows by observing that, by definition of L′, for every j ∈ [k] it holds that((
w,
(
β(1), . . . , β(`)

)
, S
)
, (xj , φj)

)
∈ L′.

We also note that since T makes input-oblivious queries (see Lemma 6.5), the queries that
Vamplify makes when interacting with PL (which are essentially the queries generated by T for all k
inputs) are also input-oblivious.

45

The Deviation Amplification Protocol (Pamplify,Vamplify)

Prover Input: x1, . . . , xk ∈ {0, 1}n and w ∈ {0, 1}nexplicit .
Verifier Input: Explicit access to w and implicit access to LDEF,H(x1, . . . , xk).a

(Phase I)

1. For i = 1, . . . , `:
(at the beginning of round i the prover Pamplify already knows β(1), . . . , β(i−1))

(a) ∀j ∈ [k], Pamplify computes the message α
(i)
j = PL

(
xj , i,

(
β(1), . . . , β(i−1))) ∈ Fa.

(b) Pamplify constructs a matrix A(i) ∈ Fk×a whose jth row is α
(i)
j , for every j ∈ [k].

Pamplify computes and sends chksum(i) = ENC
(
A(i)

)
∈ Fd·log(k)×a to Vamplify,

which receives a matrix ˜chksum(i) ∈ Fd·log(k)×a (which is allegedly equal to chksum(i)).

(c) Vamplify chooses uniformly at random β(i) ∈ Fb and sends β(i) to Pamplify.

(Phase II)

2. Vamplify generates and sends to Pamplify a random string ρ for the transcript tester T (with respect to
proximity parameter 1

2kg` and soundness parameter λ).

3. For every j ∈ [k], the prover Pamplify generates the set of queries Sj that T makes given explicit input(
w,
(
β(1), . . . , β(`)

))
and implicit input

(
xj ,
(
α
(1)
j , . . . , α

(`)
j

))
. Since T makes input-oblivious queries

(see Lemma 6.5), it holds that S1 = · · · = Sk and so we denote S
def
= S1.

For every j ∈ [k], let φj : S → F be defined as φj(ξ)
def
=
(
α
(1)
j , . . . , α

(`)
j

) ∣∣∣
ξ
.

The prover Pamplify sends (S, φ) to Vamplify encoded as an LDEF,H,m codeword by padding the message
with 0’s (by our assumption on the parameters there is sufficient room for φ to be encoded).

4. Vamplify gets (the low degree extensions of) S̃ and φ̃1, . . . , φ̃k : S̃ → F (which are allegedly S and
φ1, . . . , φk), checks the padding (see Remark 4.13) and checks that:

(a) Transcript Test: For every j ∈ [k], the transcript tester T accepts when given as explicit
input

(
w,
(
β(1), . . . , β(`)

))
, the random coins ρ, proximity parameter 1

2kg` , soundness parameter

λ. The input queries that T makes are answered based on LDEF,H(xj) (which can be accessed
using a single query to the main input, see Proposition 3.8) and each transcript query, which
is some ξ ∈ S̃, is answered with φ̃j(ξ) (if T makes a query ξ 6∈ S̃ then Vamplify immediately
rejects).

(b) Consistency Check: For every ξ ∈ S̃, it holds that ˜chksum
∣∣
ξ

= ENC(φ̃(ξ)), where

˜chksum
def
=
(

˜chksum(1), . . . , ˜chksum(`)
)
∈ F(d·log(k))×(`·a) and φ̃(ξ) ∈ Fk such that (φ̃(ξ))j

def
=

φ̃j(ξ).

If any test fails then Vamplify immediately rejects.

5. Vamplify outputs w′ =
((
β(1), . . . , β(`)

)
, S̃
)

and the sequence (x′j)j∈[k], where x′j
def
= φ̃j .

aRecall that the verifier has implicit access to the low degree extension of the main input (see Section 4.4).

Figure 1: The Deviation Amplification Protocol

46

Unambiguity of (Pamplify,Vamplify). Let w ∈ {0, 1}nexplicit , x1, . . . , xk ∈ {0, 1}n, let P̃amplify be a
(g,H,F)-encoded cheating prover strategy, let i∗ ∈ [`+1] and fix verifier messages β(1), . . . , β(i

∗−1) ∈
Fb (corresponding to rounds 1, . . . , i∗ − 1) such that P̃amplify on input (w, (x1, . . . , xk)) and verifier
messages β(1), . . . , β(i

∗−1) first deviates from the protocol at round i∗.
Recall that the matrices A(1), . . . , A(`) ∈ Fk×a, which would have been computed by the pre-

scribed prover Pamplify are defined as the matrices whose jth row is α
(i)
j = PL

(
w, xj ,

(
β(1), . . . , β(i−1)

))
.

A crucial fact that will be used in our analysis is that these matrices are defined for arbitrary inputs
(x1, . . . , xk) (i.e., even for inputs (x1, . . . , xk) for which ∃j ∈ [k] s.t. xj 6∈ L).

The verifier Vamplify’s output at the end of the protocol (in case it does not reject) is w′ =(
(β(1), . . . , β(`)), S̃

)
and the sequence (φ̃j)j∈[k], where S̃ ⊆ [` · a] and φ̃j : S̃ → F. We say that

Vamplify wins if it either rejects or if there exists ξ ∈ S̃ such that ∆
(
φ̃(ξ),A|ξ

)
≥ d/2, where

A =
(
A(1), . . . , A(`)

)
∈ Fk×(`·a) and φ̃(ξ) =

(
φ̃1(ξ), . . . , φ̃k(ξ)

)
.

If Vamplify wins (and it does not reject), then there exists a set J ⊆ [k] of size at least |J | ≥ d/2
such that φ̃(ξ) and A|ξ differ on their jth coordinate, for every j ∈ J . Hence, by definition of L′, for

every j ∈ J it holds that
((
w,
(
β(1), . . . , β(`)

)
, S̃
)
, (xj , φj)

)
6∈ L′. Therefore, to prove Lemma 6.3

it suffices to show that Vamplify wins with probability at least
(
1− ε− 2−λ

)
.

We first consider the case that i∗ ∈ [`] (i.e., P̃amplify first deviates in Phase I) and later consider

the simpler case that i∗ = `+ 1 (i.e., P̃amplify first deviates in Phase II).

Case I: First Deviation in Round i∗ ∈ [`]. For every i ∈ [`], we denote by

chksum(i) = Pamplify

(
w, (x1, . . . , xk) , i,

(
β(1), . . . , β(i−1)

))
∈ F(d·log(k))×a

and
˜chksum(i) = P̃amplify

(
w, (x1, . . . , xk) , i,

(
β(1), . . . , β(i−1)

))
∈ F(d·log(k))×a

the ith message sent by the prescribed and cheating provers Pamplify and P̃amplify at round i, respec-
tively. Note that these messages are fixed since we fixed (β(1), . . . , β(i−1) and the prover is wlog
deterministic. The fact that P̃amplify deviates at round i∗ ∈ [`] means that ˜chksum(i) = chksum(i)

for every i < i∗, but ˜chksum(i∗) 6= chksum(i∗). Note that since P̃amplify is a (g,H,F)-encoded prover

strategy, each of the rows of each of the ˜chksum(i)’s sent by P̃amplify are composed of g vectors in
LDEF,H,m (recall that m = log|H|(a/g)).

Using the matrices A(1), . . . , A(`) (which are the matrices generated by the prescribed prover),
we define corresponding matrices Ã(1), . . . , Ã(`) as follows. For every i ∈ [`], let Ã(i) ∈ Fk×a be
defined as

Ã(i) def
= DEC

(
A(i), ˜chksum(i)

)
.

That is the columns of Ã(i)’s are the closest to those of A(i)’s that match the checksum ˜chksum(i).
Note that for every i < i∗, it holds that Ã(i) = A(i). For every i ∈ [`] and j ∈ [k], we denote the jth

row of Ã(i) by α̃
(i)
j (in analogy to α

(i)
j which is the jth row of A(i)).

Loosely speaking, our analysis will show that once the cheating prover P̃amplify sends ˜chksum(i)

it is “committed” to the corresponding matrix Ã(i), whose rows {α̃(i)
j }j∈[k] form messages for the

ith round of the underlying base protocols for x1, . . . , xk.

47

A difficulty that we encounter here is that the α̃
(i)
j are not necessarily formed of g codewords

of LDEF,H,m. This is problematic, because we want to reduce to the unambiguity against encoded

provers of the base protocol, by using the α̃
(i)
j ’s as our cheating prover’s messages. We will overcome

this difficulty by using the robustness of the transcript tester, see below.
We proceed to define an event E that will be central to our analysis.

Definition 6.7 (The Event E). Let E be the event that there exists j∗ ∈ [k] such that
(
α̃
(1)
j∗ , . . . , α̃

(`)
j∗

)
is 1

2`kg -far from the set:{(
ᾱ(1), . . . , ᾱ(`)

)
∈ ((LDEF,Hm)g)` such that VL

((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j∗ ,

(
ᾱ(1), . . . , ᾱ(`)

)))
= 1
}
,

where the probability is over β(i
∗), . . . , β(`), and x̂j

def
= LDEF,H(xj).

That is, the event E, implies that for some j∗ ∈ [k] it holds that
(
α̃
(1)
j∗ , . . . , α̃

(`)
j∗

)
is far from a

sequence of valid messages (i.e., messages composed of a sequence of g codewords each) that form
an accepting transcript for verifier VL w.r.t. the input xj∗ .

We establish the unambiguity requirement for Case I using Proposition 6.8 and Proposition 6.9
below.

Proposition 6.8. Pr
[
E
]
≥ 1− ε.

Proof. Since chksum(i∗) 6= ˜chksum(i∗), there must exist a row on which they differ. Denote these
rows by τ and τ̃ , respectively. Since these two rows are each composed of g LDEF,H,m codewords

(for τ by construction of Pamplify and for τ̃ by our assumption that P̃amplify is (a, g)-encoded) and

LDEF,H,m has relative distance 1− m(|H|−1)
|F| ≥ 1

2 (by the Schwartz-Zippel Lemma, see Lemma 3.1),

the rows τ and τ ′ must have relative distance at least 1
2g .

Since ENC is a linear function, and chksum(i∗) = ENC(A(i∗)) and ˜chksum(i∗) = ENC(Ã(i∗)), it
holds that τ and τ̃ are linear combinations of the k rows of A(i) and Ã(i), respectively, with respect
to the same coefficients (which are determined by the linear function ENC). Since τ and τ ′ differ
on 1

2g fraction of their coordinates, there must exist a fixed row j∗ ∈ [k] on which A(i∗) and Ã(i∗)

have relative distance at least 1
2kg . In other words, α

(i∗)
j∗ and α̃

(i∗)
j∗ (which are, respectively, the j∗th

rows of A(i∗) and Ã(i∗)) have relative distance at least 1
2kg .

Proposition 6.8 follows from the following claim:

Claim 6.8.1. The probability that
(
α̃
(1)
j∗ , . . . , α̃

(`)
j∗

)
is 1

2`kg close to the set{(
ᾱ(1), . . . , ᾱ(`)

)
∈ ((LDEF,H,m)g)` : VL

((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j∗ ,

(
ᾱ(1), . . . , ᾱ(`)

)))
= 1
}

is less than ε, where the probability is over β(i
∗), . . . , β(`),

Proof. We prove Claim 6.8.1 by a reduction to the unambiguity of (PL,VL).
Recall that β(1), . . . , β(i

∗−1) were already fixed. Let B be the set of all sequences
(
β(i
∗), . . . , β(`)

)
∈

(Fb)`−i∗+1 such that there exists a sequence
(
ᾱ(1), . . . , ᾱ(`)

)
∈ ((LDEF,H,m)g)`, that is 1

2`kg close to(
α̃
(1)
j∗ , . . . , α̃

(`)
j∗

)
and

VL
((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j∗ ,

(
ᾱ(1), . . . , ᾱ(`)

)))
= 1.

48

To prove the claim we need to show that the density of B (within (Fb)`−i∗+1) is less than ε.
Consider the following cheating strategy P̃L for the protocol (PL,VL). For every i ∈ [`], given

as input
(
(w, xj∗), i,

(
β(1), . . . , β(i−1)

))
, the cheating prover P̃L uses P̃amplify to compute α̃

(i)
j∗ (recall

that α̃
(i)
j∗ is the j∗th row of Ã(i)) and finds a string π(i) ∈ Fa such that:

• π(i) is 1
2kg -close to α̃

(i)
j∗ ; and

• π(i) is composed of g LDEF,H,m codewords (as noted above, it is not necessarily the case that

the α̃
(i)
j ’s themselves are composed of g codewords).

(since LDEF,H,m has relative distance
(

1− m(|H|−1)
|F|

)
≥ 1

2 there is at most one such sequence π(i)).

If no such string π(i) exists then P̃L aborts. Otherwise, P̃L’s message at round i is π(i).
We show that if VL (w.r.t. implicit input xj∗) is given the fixed messages19 β(1), . . . , β(i

∗−1) for
rounds 1, . . . , i∗ − 1, respectively, it holds that:

• P̃L first deviates from the protocol (PL,VL) at round i∗.

• VL accepts whenever it samples
(
β(i
∗), . . . , β(`)

)
∈ B.

Hence, by the unambiguity of (PL,VL) we obtain that B has density less than ε.

To see that P̃L does not deviate before round i∗, recall that α̃
(i)
j∗ = α

(i)
j∗ for every i < i∗ (since

P̃amplify first deviates at round i∗). Since α
(i)
j∗ are composed of g LDE codewords, it holds that

π(i) = α
(i)
j∗ and so no deviation occurs at rounds 1, . . . , i∗ − 1.

As for round i∗, we already showed that α
(i∗)
j∗ and α̃

(i∗)
j∗ are 1

2kg -far. Since π(i
∗) and α̃

(i∗)
j∗ are

1
2kg -close, we obtain that π(i

∗) 6= α
(i∗)
j∗ and so P̃L deviates at round i∗.

Lastly, we need to show that VL accepts whenever it samples
(
β(i
∗), . . . , β(`)

)
∈ B, that is,(

β(i
∗), . . . , β(`)

)
such that the α̃

(i)
j ’s are close to valid messages ᾱ

(i)
j ’s (i.e., composed of g codewords

each) that make the verifier accept.

Fix
(
β(i
∗), . . . , β(`)

)
∈ B and let

(
ᾱ(1), . . . , ᾱ(`)

)
∈ ((LDEF,H,m)g)`, that are 1

2`kg -close to
(
α̃
(1)
j∗ , . . . , α̃

(`)
j∗

)
and

VL
((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j∗ ,

(
ᾱ(1), . . . , ᾱ(`)

)))
= 1.

For every i ∈ [`], ᾱ(i) is 1
2kg -close to α̃

(i)
j∗ (or otherwise the overall distance would be greater

than 1
2kg`). Furthermore, ᾱ(i) is composed of g LDE codewords. Hence, ∀i ∈ [`], π(i) = ᾱ(i) and so

VL
((
w,
(
β(1), . . . , β(`)

))
,
(
xj∗ ,

(
π(1), . . . , π(`)

)))
= 1.

and so, by the unambiguity of (PL,VL) we obtain that the density of B is less than ε.

This concludes the proof of Proposition 6.8.

19Recall that values β(1), . . . , β(i∗−1), which are the messages that Vamplify sends before P̃amplify deviates, were already
fixed.

49

Proposition 6.9.
Pr
[
Vamplify wins | E

]
≥ 1− 2−λ

Proof. The fact that E occurs means that there exists some j∗ ∈ [k] such that
(
α̃
(1)
j∗ , . . . , α̃

(`)
j∗

)
is

1
2`kg -far from any

(
ᾱ(1), . . . , ᾱ(`)

)
∈ ((LDEF,H,m)g)` for which

VL
((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j ,
(
ᾱ(1), . . . , ᾱ(`)

)))
= 1.

Hence, by the soundness condition in Lemma 6.5, with probability 1 − 2−λ, over the coins of the
transcript tester T it holds that

T
((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j ,
(
α̃
(1)
j , . . . , α̃

(`)
j

)))
= 0. (4)

Assume that the random string ρ chosen by Vamplify in Step 2 is such that Eq. (4) holds (as
noted above this happens with probability at least 1− 2λ).

We assume that in Step 3, P̃amplify sends a set S̃ and functions φ̃1, . . . , φ̃k : S̃ → F so that all
the queries that T ’s generates in Step 4a are answered (since otherwise Vamplify rejects).

If in Step 3, P̃amplify sends a function φ̃j such that ∀ξ ∈ S̃, φ̃j(ξ) = ãj |ξ, where ãj
def
=(

α̃
(1)
j , . . . , α̃

(`)
j

)
, then by Eq. (4) Vamplify rejects in Step 4a and we are done. Hence, we as-

sume that there exists ξ ∈ S̃ such that ãj|ξ 6= φ̃j(ξ), and in particular Ã|ξ 6= φ̃(ξ), where

φ̃(ξ)
def
=
(
φ̃1(ξ), . . . , φ̃k(ξ)

)
.

If ENC
(
φ̃(ξ)

)
6= ˜chksum|ξ, where ˜chksum =

(
˜chksum(1), . . . , ˜chksum(`)

)
, then Vamplify re-

jects in Step 4b and we are done, and so we assume that ENC
(
φ̃(ξ)

)
= ˜chksum|ξ = ENC

(
Ã|ξ
)

.

Suppose for contradiction that ∆
(
φ̃(ξ),A|ξ

)
≤ d/2. Then,

∆
(
Ã|ξ,A|ξ

)
≤ ∆

(
φ̃(ξ),A|ξ

)
≤ d/2, (5)

where Ã
def
=
(
Ã(1), . . . , Ã(`)

)
and the first inequality follows from the fact that Ã|ξ = DEC

(
A|ξ, ˜chksum|ξ

)
is defined as the vector that is closest to A|ξ with the same checksum value.

Hence, by the triangle inequality,

∆
(
φ̃(ξ), Ã|ξ

)
≤ ∆

(
φ̃(ξ),A|ξ

)
+ ∆

(
A|ξ, Ã|ξ

)
≤ d. (6)

and so φ̃(ξ) and Ã|ξ are distinct vectors with the same checksum value, but ∆
(
φ̃(ξ), Ã|ξ

)
≤ d in

contradiction to the fact that C has distance d+ 1. Hence, ∆
(
φ̃(ξ),A|ξ

)
> d/2 which means that

Vamplify wins.
This completes the proof of Proposition 6.9.

By combining Proposition 6.8 and Proposition 6.9 we obtain that:

Pr
[
Vamplify wins

]
≥ Pr [E] · Pr

[
Vamplify wins | E

]
≥ 1− ε− 2−λ.

This completes the analysis of Case I.

50

Case II: First Deviation in Round i∗ = `+ 1. Since P̃amplify deviates at round `+ 1, either it
deviates on the padding (in which case Vamplify rejects with probability 1− 2−λ, see Remark 4.13)
or there exists j ∈ [k] and ξ ∈ S̃ such that φ̃j(ξ) 6= φj(ξ) and in particular, φ̃(ξ) 6= φ(ξ) = Aξ (a
third option is that S̃ 6= S but ∀j ∈ [k], φ̃j ≡ φj but in this case Vamplify rejects in 4a when T
queries a point not in S̃).

If ENC
(
φ̃(ξ)

)
6= chksum|ξ = ENC (A|ξ), then Vamplify rejects in Step 4b and we are done. Oth-

erwise, ENC
(
φ̃(ξ)

)
= ENC (A|ξ) and since the code C has distance d + 1 (and the two messages

are distinct), it must be the case that ∆
(
φ̃(ξ),A|ξ

)
≥ d + 1 and in particular Vamplify wins. This

completes the analysis of Case II.

This completes the analysis of the unambiguity of (Pamplify,Vamplify).

Complexity Measures of (Pamplify,Vamplify). By construction, in Phase I Vamplify sends messages
of length b and in Phase II (in Step 2) it sends a single message which consists of random coins for
the transcript tester. By Lemma 6.5 the tester uses k · poly(|H|, g, `, λ) random coins and so each
verifier message is of length max

(
b, k · poly(|H|, g, `, λ)

)
.

In Phase I (Step 3) Pamplify sends messages of length d · log(k) · a (these messages are of the
correct format since they are linear combinations of such messages) and in Phase II it sends a
message of length k · |S|. By our assumption poly(k · |S|) ≤ a and so each message sent is of length
at most d · log(k) · a.

In Phase I Vamplify makes no queries (neither to the input nor to the transcript) and no compu-
tation (recall that in the PCIP model receiving messages does not count toward running time). In
Phase II, in Step 4a, Vamplify runs the transcript tester k times, for a total runtime of

k ·
(
Vtime + q · poly(λ, |H|) + k · poly(`, g, λ, |H|)

)
while making k ·

(
q · poly(λ, |H|) + k · poly(`, g, λ, |H|)

)
queries to the transcript and to the implicit

input.
In Step 4b Vamplify reads the set S̃, the entire (truth tables of the) functions φ̃1, . . . , φ̃k and the

relevant columns of ˜chksum. This amounts to O(k) ·
(
q · poly(λ, |H|) + k · poly(`, g, λ, |H|)

)
queries

(and runtime). Furthermore, the verifier computes the corresponding checksum values and this
takes additional time

k·poly(log(|F|), log(k))·
(
q·poly(λ, |H|)+k·poly(`, g, λ, |H|)

)
= k·

(
q·poly(λ, |H|)+k·poly(`, g, λ, |H|)

)
.

Checking the padding adds an additional O(` · g · poly(|H|) · λ) to the runtime and queries. Thus,
overall Vamplify runs in time:

k · Vtime + k · q · poly(λ, |H|) + k2 · poly(`, g, λ, |H|)

and makes at most
k · q · poly(λ, |H|) + k2 · poly(`, g, λ, |H|)

queries to the transcript and implicit input.
As for Pamplify’s runtime, in Phase I it runs PL k times and computes the checksum values

for a total runtime of k · Ptime + ` · a · k · polylog(|F|) ≤ 2k · Ptime (by our assumption that

51

Ptime ≥ ` · a · polylog(|F|)). In Phase II (3), Pamplify needs to generate T ’s queries, and then to
send the values of the original messages α(i))j restricted to the foregoing query coordinates. The
latter can be done in k · (Vtime + q · poly(λ, |H|) + k · poly(`, g, λ, |H|)) time. Thus, overall Pamplify

runs in time
(
2k · Ptime + k · Vtime + k · q · poly(λ, |H|) + k2 · poly(`, g, λ, |H|)

)
.

6.2.3 PCIP for the Language L′

So far we have established Condition 2 in the statement of Lemma 6.3. In order to complete
the proof of Lemma 6.3 we still need to establish Condition 1, that is, to show that L′ has an
unambiguous PCIP w.r.t. encoded provers (with the appropriate parameters).

Recall that our goal is to construct an unambiguous PCIP (PL′ ,VL′) for the language L′. Thus,
we need to be able to check that a given input x belongs to L and that the messages sent by
the prescribed prover PL with respect to a fixed sequence of verifier random coins β(1), . . . , β(`),
projected to a particular set of coordinates S, is equal to a specific set of values (see the definition
of L′ above for details).

A naive (and unsound) approach for such a protocol is to have the prover PL′ send the messages
that PL would have sent in the interaction and to check that these messages (1) make VL accept,
and (2) that their projection to S is equal to the desired values. The problem is that the coins for VL
in this interaction were already fixed (as part of the input to L′. Interactive proofs in general, and
here specifically, do not provide any soundness (much less unambiguity) against cheating provers
who know future coin tosses.

Thus, we seek a way to check that messages sent by the prover above are indeed the messages
that PL would have sent in the interaction. The key observation is that unambiguity gives us a
method to check that a particular message sent by the prover at a particular round is in fact the
prescribed message - just continue the (PL,VL) interaction from that round using fresh random
coins. If the message sent is not the prescribed message then the unambiguity of the base PCIP
guarantees that the verifier will reject.

Thus, for every round i ∈ [`] of the original protocol (PL,VL) we will run a random continuation
of that protocol, where until round i we use the fixed strings from the description of L′ (i.e.,
β(1), . . . , β(i−1)), and from that point we use fresh random strings (i.e., using fresh random coins
γ(i), . . . , γ(`)). We are, essentially, running ` parallel copies of the protocol (PL,VL) using different
random coins for each copy. (Since we do not need these copies to be independent, we allow
ourselves to use the same fresh random coins γ(1), . . . , γ(`) for all of the ` protocols.)

Before presenting the protocol, a few words about the notation that we use. In the protocol,
we denote the prover’s messages by α(i1,i2) for i2 ≤ i1. This notation refers to messages generated
by the prescribed prover PL in round i1 in the protocol (PL,VL), when the messages sent by the
verifier are β(1), . . . , β(i2−1), γ(i2), . . . , γ(i1−1). That is, the first i2 − 1 verifier messages are those
specified as part of the explicit input to L′ and the latter i1 − i2 messages consist of fresh random
coins (which are generated within the protocol for L′). The unambiguous PCIP for L′ is presented
in Fig. 2.

Prescribed Completeness for (PL′ ,VL′). All the tests that VL′ runs in Step 2 of the protocol
correspond to executions of the protocol (PL,VL) with respect to the input (w, x), where, for every
i2 ∈ [`], the i2

th test corresponds to the sequence
(
β(1), . . . , β(i2−1), γ(i2), . . . , γ(`)

)
of messages “sent

by” VL. By the prescribed completeness of (PL,VL) these tests pass if and only if (w, x) ∈ L.

52

Unambiguous Interactive Proof (PL′ ,VL′) for L′

Prover’s Input: x ∈ {0, 1}n, w ∈ {0, 1}nexplicit , β(1), . . . , β(`) ∈ Fb, S ⊆ [` · a] and φ : S → F.
Verifier’s Input: explicit access to

(
w,
(
β(1), . . . , β(`)

)
, S
)

and implicit access to LDEF,H (x, φ).

1. For i1 = 1, . . . , `:
(at the beginning of round i1 the prover PL′ already has γ(1), . . . , γ(i1−1) ∈ Fb)

(a) For i2 = 1, . . . , i1: the prover PL′ computes the message α(i1,i2) =
PL
(
(x,w), i1,

(
β(1), . . . , β(i2−1), γ(i2), . . . , γ(i1−1)

))
∈ Fa.

(b) PL′ sends the message
(
α(i1,1), . . . , α(i1,i1)

)
to VL′ , using suitable padding (see Remark 4.13).

(c) VL′ receives the message
(
α̃(i1,1), . . . , α̃(i1,i1)

)
(which is allegedly equal to

(
α(i1,1), . . . , α(i1,i1)

)
)

and checks the padding (see Remark 4.13)

(d) VL′ chooses uniformly at random a string γ(i1) ∈ Fb and sends γ(i1) to PL′ .

2. For i2 = 1, . . . , `:
VL′ runs VL on explicit input w, using the random strings

(
β(1), . . . , β(i2−1), γ(i2), . . . , γ(`)

)
while

answering VL’s queries to the transcript queries using
(
α̃(1,1), . . . , α̃(i2,i2), α̃(i2+1,i2), . . . , α̃(`,i2)

)
. Input

queries to LDEF,H(x) are answered using the procedure in Proposition 3.8 applied to LDEF,H(x, φ).
If any of the tests fail then VL′ immediately rejects.

3. VL′ checks that for every ξ ∈ S it holds that φ(ξ) =
(
α̃(1,1), . . . , α̃(`,`)

) ∣∣
ξ
. If any of the tests fail then

VL′ rejects, otherwise it accepts (note that VL′ uses |φ| = |S| · log(|F|) queries to read all of φ from
LDEF,H(x, φ)).

Figure 2: Interactive Proof for L′

53

For Step 3, since for every i1 ∈ [`] it holds that α̃(i1,i1) = α(i1,i1) = PL
(
x,
(
β(1), . . . , β(i1−1)

))
,

the tests in Step 3 pass if and only if for every i1 ∈ [`] and ξ ∈ S it holds that
(
α(1), . . . , α(`)

) ∣∣
ξ

=

φ(i1)(ξ), where α(i1) = PL
(
(x,w), i1,

(
β(1), . . . , β(i1−1)

))
.

We conclude that VL′ accepts if and only if x ∈ L and
(
α(1), . . . , α(`)

) ∣∣
ξ

= φ(ξ), for every ξ ∈ S.

That is, VL′ accepts if and only if
((
w,
(
β(1), . . . , β(`)

)
, S
)
, (x, φ)

)
∈ L′.

The queries that VL makes are ` executions of VL and in addition reading the points in S from
the transcript. The latter are input-oblivious since S is part of the explicit input.

Unambiguity for (PL′ ,VL′). Let x ∈ {0, 1}n, w ∈ {0, 1}nexplicit , β(1), . . . , β(`) ∈ Fb, S ⊆ [` ·
a] and φ : S → F. Let P̃L′ be an (` · g,H,F)-encoded cheating prover strategy, i∗1 ∈ [`] be

a round, γ(1), . . . , γ(i
∗
1−1) ∈ Fb be messages for VL′ for rounds 1, . . . , i∗1 − 1 such that P̃L′ first

deviates from (PL,VL) at round i∗1, on input
((
w,
(
β(1), . . . , β(`)

)
, S
)
, (x, φ)

)
and verifier messages

γ(1), . . . , γ(i
∗
1−1). We stress that the messages β(1), . . . , β(`) are fixed messages that are part of the

(explicit) input, the messages γ(1), . . . , γ(i1∗−1) are also fixed messages for VL′ in rounds 1, . . . , i∗−1
and that γ(i

∗
1), . . . , γ(`) are random messages, chosen by VL′ in rounds i∗1, . . . , `.

If P̃L′ deviates on the padding, then by Remark 4.13 VL′ rejects with probability 1− 2−λ. Oth-

erwise, ∃i∗2 ∈ [i∗1] such that α̃(i∗1,i
∗
2) 6= α(i∗1,i

∗
2)

def
= PL

(
(x,w), i∗1,

(
β(1), . . . , β(i

∗
2−1), γi

∗
2 , . . . , γ(i

∗
1−1)

))
.

Suppose toward a contradiction that the probability, over γ(i
∗
1), . . . , γ(`) that VL′ accepts is greater

than ε.
We derive a contradiction by constructing a (g,H,F)-encoded cheating prover strategy P̃L for the

protocol (PL,VL) with respect to input (x,w), round i∗1 and fixed messages β(1), . . . , β(i
∗
2−1), γ(i

∗
2), . . . , γ(i

∗
1−1) ∈

Fb for VL, a contradiction to the unambiguity of (PL,VL).
For every i1 ∈ [`], given as input

(
(x,w), i1,

(
β(1), . . . , β(i

∗
2−1), γ(i

∗
2), . . . , γ(i1−1)

))
, the prover

P̃L runs P̃L′
(
(x,w), i1,

(
γ(1), . . . , γ(i1−1)

))
to obtain the message

(
α̃(i1,1), . . . , α̃(i1,i1)

)
. If i1 < i∗2,

the prover P̃L outputs the message ᾱ(i1) def
= α̃(i1,i1), otherwise (i.e., i1 ∈ [i∗2, `]), it outputs ᾱ(i1) def

=

α̃(i1,i∗2). Note that in both cases, since P̃L′ is (`·g,H,F)-encoded, the message ᾱ(i1) is in (LDEF,H,m)g

and so P̃L is (g,H,F)-encoded.
We show that, with respect to the fixed verifier messages β(1), . . . , β(i

∗
2−1), γ(i

∗
2), . . . , γ(i

∗
1−1) for VL

in rounds 1, . . . , i∗1− 1, it holds that P̃L (first) deviates at round i∗1 but VL accepts with probability
greater than ε, where the probability is over VL’s random coins γ(i

∗
1), . . . , γ(`) for rounds i∗1, . . . , `.

To see that P̃L does not deviate at any round i1 < i∗1, observe that, since P̃L′ does not de-

viate before round i∗1, the message of P̃L at round i1 ∈ [i∗2 − 1] is ᾱ(i1) = α̃(i1,i1) = α(i1,i1) =
PL
(
(x,w), i1,

(
β(1), . . . , β(i1−1)

))
and its message at round i1 ∈ [i∗2, i

∗
1 − 1] is ᾱ(i1) = α̃(i1,i∗2) =

α(i1,i∗2) = PL
(
(x,w), i1,

(
β(1), . . . , β(i

∗
2−1), γ(i

∗
2), . . . , γ(i1−1)

))
.

At round i∗1, the message that PL′ computes is

ᾱ(i∗1) = α̃(i∗1,i
∗
2) 6= α(i∗1,i

∗
2) = PL

(
(x,w), i1,

(
β(1), . . . , β(i

∗
2−1), γ(i

∗
2), . . . , γ(i

∗
1−1)

))
,

which is indeed a deviation from (PL,VL).

54

Observe that,

ε < Pr[VL′ accepts]

≤ Pr
[
VL
((
w
(
β(1), . . . , β(i

∗
2−1), γ(i

∗
2), . . . , γ(`)

))
,
(
x̂,
(
α̃(1,1), . . . , α̃(i∗2,i

∗
2), α̃(i∗2+1,i∗2), . . . , α̃(`,i∗2)

)))
= 1
]

= Pr
[
VL
((
w
(
β(1), . . . , β(i

∗
2−1), γ(i

∗
2), . . . , γ(`)

))
,
(
x̂,
(
ᾱ(1), . . . , ᾱ(`)

)))
= 1
]
.

where x̂ = LDEF,H,m(x), the first inequality is by our assumption on P̃L′ and the second inequality
follows from the fact that VL′ explicitly checks this condition.

Thus, P̃L breaks the unambiguity of (PL,VL) in contradiction to our assumption.

Complexity Measures for L′. By construction the number of rounds is `′ = `, VL′ sends
messages of length b′ = b and PL′ sends messages which are composed of at most ` messages
generated by PL and so each message is of length a′ = ` · a and has g′ = ` · g (using sufficient
padding).

The verifier VL′ runs VL ` times and in addition reads |S| field elements from the transcript
and |S| · log(|F|) bits from the input (using Proposition 3.8) and compares the two. In addition VL′
checks the padding (see Remark 4.13) for an additional ` · g · poly(|H|) · λ queries and runtime.

Thus, VL′ makes a total of

q′ = ` · q +O(|S| · log(|F|)) + ` · g · poly(|H|) · λ = q ·
(
`+ poly(λ, |H|)

)
+ k · poly(`, g, λ, |H|)

queries and runs in time

Vtime′ = `·Vtime+O(|S|·log(|F|))+`·g ·poly(|H|)·λ = `·Vtime+q ·poly(λ, |H|)+k ·poly(`, g, λ, |H|).

Lastly, the prover PL′ just runs PL exactly ` times and so Ptime′ = ` · Ptime.
This concludes the proof of Lemma 6.3.

6.3 Proof of the Batch Verification Lemma (Lemma 6.1)

Using Lemma 6.3 we are now ready to prove Lemma 6.1. Recall that our basic idea for batching
k protocols (with respect to k inputs) is to iteratively apply the deviation amplification lemma.
More precisely, we will maintain a set of “active” inputs and iteratively shrink this set. The
iterative shrinking step is accomplished by applying the deviation amplification protocol to the
set of currently active inputs, and then sub-sampling from this set for the next iteration. Since
the deviation amplification protocol increases the number of “false” inputs, sub-sampling from the
current set of active inputs allows us to still catch at least one “false” input with high probability.
Once the set of active inputs is sufficiently small, we are left with relatively few active inputs, each
of which has an unambiguous PCIPs, and we simply run these PCIPs directly.

The batch verification protocol offers a trade-off between the number of rounds and total com-
munication. This trade-off is governed by a parameter µ, which corresponds to the number of
iterations of the shrinking step above. In each iteration, we shrink the set of active inputs by
(roughly) a k1/µ multiplicative factor. Since we start with k inputs, after µ iterations the set of
active inputs will be sufficiently small to run their PCIPs. The total round complexity of the batch
verification protocol grows proportionally to µ, since each of the (sequential) iterations requires
multiple rounds of interaction.

55

Throughout this subsection, we use the convention that superscripts i ∈ [µ] correspond to the
aforementioned iterations and subscripts j ∈ [k] correspond to the k original inputs x1, . . . , xk.

In order to present the batch verification theorem we first need to specify the µ protocols that
we obtain by invoking Lemma 6.3 µ times. Recall that L is the (pair) language for which we
assumed the existence of an unambiguous PCIP and that our goal is to construct a (non-trivial)
unambiguous PCIP for L⊗k. Let µ ≥ 1 be a parameter (controlling the trade-off between rounds

and communication), let λ be a security parameter and let d
def
= k1/µ · 2λ.

We denote L(0) def
= L and k(0)

def
= k. For every i ∈ [µ], consider the deviation amplification

lemma (Lemma 6.3) with respect to the language L(i−1), number of inputs k(i−1) and parameters

d
def
= k1/µ · 2λ and security parameter λ. Let (L(i−1))′ be the language guaranteed by the deviation

amplification lemma. We denote L(i) = (L(i−1))′ and k(i) = 2k(i−1)

d · λ = k1−(i/µ). The following

lemma shows that each one of the languages L(0), . . . ,L(µ) has an unambiguous PCIP.

Lemma 6.10. For every i ∈ {0, . . . , µ}, the language L(i) (defined above) has an ε(i)-unambiguous
(q(i), `(i), b(i), a(i),Ptime(i),Vtime(i))-PCIP (PL(i) ,VL(i)) w.r.t. (g(i),H,F)-encoded provers and with
input-oblivious queries, and the following parameters:

• ε(i) = ε+ i · 2−λ.

• q(i) ≤
(
poly(`, λ, |H|)

)i+1 ·
(
q + k · poly(g)

)
• `(i) = `.

• b(i) = b.

• a(i) = `i · a.

• Ptime(i) = `i · Ptime.

• Vtime(i) ≤
(
poly(`, λ, |H|)

)i+1 ·
(
Vtime + q + k · poly(g)

)
.

• g(i) = `i · g.

Proof. By induction on i and using Lemma 6.3. Note that to use Lemma 6.3 we have to guarantee
that:

1. log(a(i)) ≤ min
(
|H|, |F|2|H|

)
.

2. a(i) ≥ poly(k(i), q(i), `(i), g(i), λ, |H|).

3. Ptime(i) ≥ `(i) · a(i) · polylog(|F|).

The latter follows from our assumption on the parameters (specifically our assumptions that

(1) log(`µ · a) ≤ min
(
|H|, |F|2|H|

)
, (2) a ≥ poly(k, q, g) · (poly(λ, |H|, `))µ, and (3) Ptime ≥ ` · a ·

polylog(|F|)).

Using the above definitions and Lemma 6.10, the batch verification protocol (PBatch,VBatch) is
described in Fig. 3.

56

Batch Verification Protocol

Round parameter: µ ≥ 0. Security parameter: λ ≥ 1.
Prover’s Input: w ∈ {0, 1}nexplicit and x1, . . . , xk ∈ {0, 1}n.
Verifier’s Input: explicit access to w and implicit access to LDEF,H(x1, . . . , xk).

(The languages L(i) and the corresponding protocols (PL(i) ,VL(i) that appear below are defined in the
beginning of Section 6.3)

1. Set S(0) def
= [k], w(0) def

= w and x
(0)
j

def
= xj , for every j ∈ [k]. Also set d

def
= k1/µ · 2λ.

2. For i = 0, . . . , µ− 1:
(We maintain the invariant that at the end of round i, both parties know S(i+1), an explicit input

w(i+1) and have oracle access to LDE(x
(i+1)
j), for every j ∈ S(i+1))

(a) PBatch and VBatch run the deviation amplification protocol (Pamplify,Vamplify) on input(
w(i), (x

(i)
j)j∈S(i)

)
, with respect to the language L(i), the parameter d and security param-

eter λ.

Input queries to LDEF,H(x
(i)
j) are simulated using the above invariant. The prover’s messages

in the protocol are padded to length a(µ) with codeword multiplicity g(µ) and VBatch checks the
padding using the procedure in Remark 4.13 (w.r.t. security parameter λ).

(b) If Vamplify rejects, then VBatch immediately rejects and halts. Otherwise, the protocol outputs

(w(i))′ and {(x(i+1)
j)′}j∈S(i) . Denote by w(i+1) = (w(i), (w(i))′) and x

(i+1)
j = (x

(i)
j , (x

(i)
j)′), for

every j ∈ S(i).

(c) VBatch selects at random a subset S(i+1) ⊆ S(i), of size |S(i+1)| = 2|S(i)|
d · λ = |S(i)|

k1/µ
, and sends

S(i+1) to PBatch.a

3. PBatch and VBatch run in parallel |S(µ)| copies of the protocol (PL(µ) ,VL(µ)), where the input for

protocol j ∈ S(µ) is (w(µ), x
(µ)
j). (Note that by the loop’s invariant, VBatch has oracle access to

LDE(x
(µ)
j), for every j ∈ S(µ).

The verifier VBatch accepts if VL(µ) accepts in all of these protocols and otherwise it rejects.

aTo see that the loop’s invariant is maintained and in particular that VBatch has oracle access to LDE(x
(i+1)
j), for

every j ∈ S(i+1), observe that each x
(i+1)
j is composed of xj concatenated with additional strings that the verifier

has explicitly generated in previous iterations. Thus, each query to LDEF,H(x
(i+1)
j) can be simulated by a single

oracle query to LDE(xj) which in turn can be simulated by an oracle query to the implicit input LDEF,H(x1, . . . , xk)
(see Proposition 3.8).

Figure 3: Batch Verification Protocol

57

Prescribed Completeness for (PBatch,VBatch). Let x1, . . . , xk ∈ {0, 1}n be implicit inputs and
let w be an explicit input.

Consider first the case that (w, xj) ∈ L for every j ∈ [k] (recall that in this case the verifier needs
to accept). Consider the x(i)’s and w(i)’s generated in the interaction of VBatch with the prescribed
prover PBatch. By induction on i and using the prescribed completeness of (Pamplify,Vamplify) for

every i ∈ {0, . . . , µ) and j ∈ S(i) it holds that (w(i), x
(i)
j) ∈ L(i). In particular (w(µ), x

(µ)
j) ∈ L(µ)

for every j ∈ S(µ). Now, by the prescribed completeness of (PL(µ) ,VL(µ)) (which can by shown by
induction using Lemma 6.3) in Step 3 the verifier VBatch accepts.

On the other hand, if there exists j ∈ [k] such that (w, xj) 6∈ L then, by Lemma 6.3 the verifier
VBatch rejects already in the first iteration (i.e., when i = 0).

The fact that VBatch only makes input-oblivious queries to its transcript follows directly from
the fact that Vamplify makes input-oblivious queries and VL(µ) makes input-oblivious queries (see
Lemma 6.3) as well as the fact the randomly chosen sets S(i) are part of VBatch’s random string.

Unambiguity for (PBatch,VBatch). Let x1, . . . , xk ∈ {0, 1}n and w ∈ {0, 1}nexplicit , let P̃Batch be
a (g(µ),H,F)-encoded cheating prover. There are two cases to consider. Either the prover first
deviates in one of the µ iterations of the deviation amplification protocol (i.e., Step 2 in the
protocol) or its first deviation is in Step 3.

We first observe that in the second case (i.e., the first deviation is in Step 3) by the fact that
(PL(µ) ,VL(µ)) is an unambiguous PCIP (see Lemma 6.10) with unambiguity error ε(µ) = ε+µ · 2−λ,
with all but ε+ µ · 2−λ probability, the verifier VBatch rejects. Hence we can focus on the first case.

Fix i∗ ∈ {0, . . . , µ− 1} and random coins for the for the verifier in the first i∗ − 1 iterations of
Step 2 such that P̃Batch first deviates from the protocol in the i∗th iteration.

Claim 6.10.1. For every i ≥ i∗, with probability 1−i·(ε+2−λ+1), at the end of iteration i either the

verifier VBatch has already rejected or it produces a set S(i+1) and strings w(i+1) and (x
(i+1)
j)j∈S(i+1)

such that there exists j ∈ S(i+1) such that (w(i+1, x
(i+1)
j) 6∈ L(i+1).

Proof. The proof is by induction over the value of i. For the base case (i.e., i = i∗), since P̃Batch

deviates in the (i∗)th iteration, by the unambiguity guarantee of the deviation amplification pro-
tocol, with probability 1 − ε − 2−λ over the coin tosses of Vamplify within the i∗th iteration, either
Vamplify rejects (in which case also VBatch rejects) or there exists a set J ⊂ S(i∗) of size |J | = d/2

such that ∀j ∈ J,
(
w(i∗+1), x

(i∗+1)
j

)
6∈ L(i∗+1).

Hence, in Step 2c, the verifier VBatch selects a subset S(i+1) ⊆ S(i) such that S(i∗+1) ∩ J 6= ∅,
with probability

1−
(

1− |J |
|S(i∗)|

)|S(i∗+1)|
= 1−

(
1− d

2|S(i∗)|

) 2|S(i
∗)|

d
·λ
≥ 1− 2−λ,

and the base case follows.
For i > i∗, by the induction hypothesis, with probability 1− (i−1) · (ε+ 2(−λ+1)) over the coins

of the verifier in the first i − 1 iterations, either VBatch rejects by the end of round i − 1 or there

exists j ∈ S(i) such that (w(i, x
(i)
j) 6∈ L(i). If in iteration i the cheating prover follows the prescribed

strategy then, by the prescribed completeness of (Pamplify,Vamplify) the verifier rejects. Otherwise
(i.e., the cheating prover deviates in the ith iteration), by the unambiguity guarantee of Lemma 6.3,

58

with probability 1 − ε − 2−λ either VBatch rejects or there exists a set J ⊂ S(i) of size |J | = d/2

such that ∀j ∈ J,
(
w(i+1), x

(i+1)
j

)
6∈ L(i+1). Hence, similar to the analysis in the base case, with

probability 1 − 2−λ over the choice of S(i+1) there exists j ∈ S(i+1) such that
(
w(i+1), x

(i+1)
j

)
6∈

L(i+1). Thus, by a union bound, with probability 1−(i−1)·(ε+2−λ+1)−ε−2·2−λ = 1−i·(ε+2−λ+1)

the verifier either rejects or there exists j ∈ S(i+1) such that (w(i+1, x
(i+1)
j) 6∈ L(i+1).

Thus, with probability 1 − µ · (ε + 2−λ+1) either VBatch rejects in the first step (i.e., in one of

the µ iterations) or it produces a set S(µ) and strings w(µ) and (x
(µ)
j)j∈S(µ) such that there exists

some j∗ ∈ S(µ) such that (w(µ, x
(µ)
j∗) 6∈ L(µ). Assume that the latter holds.

In Step 3 we run the protocol (PL(µ) ,VL(µ)) on (w(µ), x
(µ)
j∗). If the prover P̃Batch does not deviate

within that protocol then, by its prescribed completeness, the verifier rejects with probability
1. If the prover does deviate then, by the protocol’s unambiguity, with probability 1 − ε(µ) =
1− ε− µ · 2−λ the verifier rejects. By a union bound, the verifier rejects with probability at least
1− (µ+ 1) · ε− 3µ · 2−λ ≤ 1− (µ+ 1) · (ε+ 3 · 2−λ).

Complexity Measures for (PBatch,VBatch). Each of the µ executions of the deviation ampli-
fication protocol (Pamplify,Vamplify) within (PBatch,VBatch) are protocols with parameters that are
(upper bounded) as follows:

• Query complexity:

qfinal ≤ q(µ) · k(µ) · poly(λ, |H|) + (k(µ))2 · poly(`(µ), g(µ), λ, |H|)
≤ k2 · q · poly(g) ·

(
poly(`, λ, |H|)

)µ
.

• Rounds: `final = `+ 1.

• Verifier Message Length: bfinal ≤ max
(
b, k · poly(|H|, g, `µ, λ)

)
.

• Prover Message Length: afinal ≤ d · log(k) · `µ · a.

• Verifier Time:

Vtimefinal ≤ k(µ) · Vtime(µ) + q(µ) · k(µ) · poly(λ, |H|) + (k(µ))2 · poly(`(µ), g(µ), λ, |H|)
≤ Vtime · q · k2 ·

(
poly(`, λ, |H|)

)µ · poly(g).

• Prover Time:

Ptimefinal = 2k(µ) · Ptime(µ) + k(µ) · Vtime(µ) + q(µ) · k(µ) · poly(λ, |H|) + (k(µ))2 · poly(`(µ), g(µ), λ, |H|)

≤ 2k · `µ · Ptime + Vtime · q · k2 · poly(g)
(
poly(`, λ, |H|)

)µ+1
.

• Codeword Multiplicity: gfinal = d · log(k) · `µ · g.

59

The entire protocol (PBatch,VBatch) consists of µ executions of (Pamplify,Vamplify) with parameters
upper bounded as above, followed by |S(µ)| = O(1) parallel executions of (PL(µ) ,VL(µ)). In between
executions of (Pamplify,Vamplify) the verifier VBatch also specifies the sub-sampled sets to PBatch (each
of size |S(i)| ≤ k) and checks the padding (this requires `final · gfinal · poly(|H|) queries per iteration).

Thus, (PBatch,VBatch) is an εA-unambiguous (qA, `A, bA, aA,PtimeA,VtimeA)-PCIP for L⊗k w.r.t.
(gA,H,F)-encoded provers, where:

• εA = (µ+ 1) · (ε+ 3 · 2−λ) (this was shown in the analysis of the unambiguity above).

• qA ≤ µ ·
(
qfinal + `final · gfinal · poly(|H|, λ)

)
+O(q(µ)) = k2 · q · poly(g) ·

(
poly(`, λ, |H|)

)µ+1
.

• `A = µ · (`final + 1) + `(µ) = ` · (µ+ 1) + 2µ.

• bA = max(bfinal, b
(µ), k) = max

(
b, k · poly(|H|, `µ, g, λ)

)
.

• aA = max(afinal, a
(µ)) = d · log(k) · `µ · a = a · 2k1/µ · log(k) · λ · `µ.

• PtimeA = µ·Ptimefinal+O(Ptime(µ)) ≤ 2k·µ·`µ·Ptime+Vtime·q·k2·poly(g)
(
poly(`, λ, |H|)

)µ+1
.

• VtimeA = µ ·
(
Vtimefinal + `final · gfinal · poly(|H|, λ)

)
+ O(Vtimeµ) = Vtime · q · k2 · poly(g) ·(

poly(`, λ, |H|)
)µ+1

.

• gA = max(gfinal, g
(µ)) = d · log(k) · `µg = g · 2k1/µ · log(k) · λ · `µ.

(where throughout we used the fact that µ ≤ log(a) ≤ |H|).
This completes the proof of Lemma 6.1 (modulo the proofs of Lemma 6.5 and Proposition 6.6

which appear next).

6.4 Proofs of Lemma 6.5 and Proposition 6.6

6.4.1 Proof of Lemma 6.5

Given as explicit input w ∈ {0, 1}nexplicit , β(1), . . . , β(`) ∈ Fb and implicit input x ∈ {0, 1}n and(
α̃(1), . . . , α̃(`)

)
∈ (Fa)`, the transcript tester T works as follows:

1. First T runs an individual degree test (see Lemma 3.5) on every one of the g · ` alleged
codewords in the transcript, w.r.t. individual degree |H| − 1, proximity parameter δ

g·` and
soundness parameter λ. If any of these tests fail then T rejects.

2. T runs the verifier VL with explicit input
(
w,
(
β(1), . . . , β(`)

))
while forwarding input queries

that VL makes x and emulating each transcript query ξ ∈ [` · a] that VL makes by running
the self-correction procedure on the implicit input

(
α̃(1), . . . , α̃(`)

)
at the point ξ, w.r.t. total

degree |H| ·m and soundness parameter (λ+ log(` · a)). The same random bits are used for
all of the self-correction procedures.

60

Prescribed Completeness. Let α̃(1), . . . , α̃(`) ∈ Fa such that each α̃(i) is composed of g LDEF,H,m
codewords. Since each one of the alleged LDEF,H,m codewords is indeed such a codeword, all the
low degree tests pass and all the self-correction procedures simply return the relevant value in α̃(i).
Hence, by construction, T outputs VL

((
w,
(
β(1), . . . , β(`)

))
,
(
x,
(
α̃(1), . . . , α̃(`)

)))
.

Since VL makes input-oblivious queries, for every two inputs x1, x2 ∈ {0, 1}n, every w ∈
{0, 1}nexplicit , every β(1), . . . , β(`) ∈ Fb and every random string, the queries that VL generates w.r.t.
x1 and x2 are the same, when interacting with the prescribed prover.

The queries that the transcript tester are just low degree tests (which are totally independent
of the input and the prover) and the local correction procedure at the foregoing points specified by
VL. Thus, the queries that T makes are input-oblivious.

Soundness. Let x ∈ {0, 1}n, w ∈ {0, 1}nexplicit β(1), . . . , β(`) ∈ Fb and
(
α̃(1), . . . , α̃(`)

)
∈ (Fa)` that

are δ-far from the set{(
ᾱ(1), . . . , ᾱ(`)

)
∈ ((LDEF,H,m)g)` : VL

((
w,
(
β(1), . . . , β(`)

))
,
(
x̂,
(
ᾱ(1), . . . , ᾱ(`)

)))
= 1
}

Suppose first that one of the α̃(i)’s contains a string that is not δ
`·g close to some individual

degree |H| − 1 polynomial. Then, by Lemma 3.5, the low degree test for that string rejects with
probability 1− 2λ, in which case T rejects and we are done.

Hence, we assume that
(
α̃(1), . . . , α̃(`)

)
is δ-close to some

(
ᾱ(1), . . . , ᾱ(`)

)
such that each ᾱ(i) is

composed of g LDEF,H,m codewords. By our assumption on
(
α̃(1), . . . , α̃(`)

)
, it must be the case

that

VL
((
w,
(
β(1), . . . , β(`)

))
,
(
x̂j ,
(
ᾱ(1), . . . , ᾱ(`)

)))
= 0. (7)

When T emulates VL, by the guarantee of the self-correction procedure (see Lemma 3.3),
with probability 1 − 2λ+log(`·a), each individual query that VL makes is answered according to(
ᾱ(1), . . . , ᾱ(`)

)
. Taking a union bound over all the queries, and noting that there are at most ` · a

queries to the transcipt, we have that with probability 1 − 2−λ the tester T emulates VL while
consistently answering according to

(
ᾱ(1), . . . , ᾱ(`)

)
and so, by Eq. (7), T rejects in Step 2.

Complexity Measures. The tester runs ` · g individual degree tests, each w.r.t. individual
degree |H| − 1, proximity parameter δ

g·` and soundness parameter λ. By Lemma 3.5 this can be

done in time ` · g ·O(|H| ·m · g · ` · λ · 1/δ) = 1
δ · poly(`, g, |H|, λ) with similar query and randomness

complexity.
As for the self-correction procedure, it is run on q points, each w.r.t. total degree |H| ·m and

soundness parameter λ+ log(` · a). This takes time q ·O(|H| ·m · (λ+ log(` · a))) = q · poly(|H|, λ)
and a similar number of queries. Since we reuse the random bits for self-correction, the randomness
complexity is poly(|H|, λ).

Lastly, running VL (which is deterministic given β(1), . . . , β(`)) takes time Vtime and requires
an additional q queries to the input x.

Overall we obtain running time Vtime + q · poly(|H|, λ) + 1
δ · poly(`, g, |H|, λ), query complexity

q · poly(|H|, λ) + 1
δ · poly(`, g, |H|, λ) and randomness complexity 1

δ · poly(`, g, |H|, λ).
This completes the proof of Lemma 6.5.

61

6.4.2 Proof of Proposition 6.6

Recall that our goal is to construct an F-linear systematic error-correcting code C : Fk → Fk+d log(k)
with absolute distance Ω(d). While the Reed Solomon code is such a code, it requires that the field
size F be quite large (i.e., |F| > k) which we cannot afford. Instead we turn to a slightly more
elaborate construction, in which we basically employ the Reed Solomon code over an extension field
of F.

We turn to the proof of Proposition 6.6. Let F′ = Flog(k), where we view F′ as an extension field
of F. Let CF′ : (F′)k/ log(k) → (F′)k/ log(k)+d be the Reed-Solomon code over F′. Note that CF′ is a
systematic F′-linear code with distance d+1 and can be computed in time k ·poly(log(|F′|), log(k)) =
k · poly(log(|F|, log(k))) (e.g., using FFT).

For x ∈ Fk, we denote by x̄ ∈ F′k/ log(k) the vector that is obtained by viewing x as an ele-
ment of (F′)k/ log(k) in the natural way. Consider the function CF : Fk → Fk+d log(k) defined as

CF(x)
def
= CF′(x̄). The code CF is systematic, has distance d + 1 and can be computed in time

k · poly(log(|F|), log(k)). It remains to be shown that it is F-linear.
Using the linearity of CF′ , for every x, y ∈ Fk it holds that

CF(x+ y) = CF′
(
x+ y

)
= CF′(x̄+ ȳ) = CF′(x̄) + CF′(ȳ) = CF(x) + CF(y).

To show that multiplication by a scalar preserves linearity, we will use the following claim:

Claim 6.10.2. For every λ ∈ F, there exists λ̄ ∈ F′ such that for every x ∈ Fk it holds that
λ · x = λ̄ · x̄.

Proof. Fix an irreducible polynomial Q over F. We can view elements of F′ = Flog(k) as degree
log(k) − 1 polynomials over F where addition and multiplication of field elements corresponds to
addition and multiplication modulo Q. We denote by λ̄ ∈ F′ the constant (i.e., degree 0) polynomial
which always outputs λ. Indeed, for every x ∈ Fk it holds that λ · x = λ̄ · x̄.

For every λ ∈ F and x ∈ Fk it holds that

CF(λ · x) = CF′(λ̄ · x̄) = λ̄ · CF′(x̄) = λ · CF(x)

where λ̄ is the value defined in Claim 6.10.2.
This completes the proof of Proposition 6.6.

7 The Query-Reduction Transformation for PCIPs

In this section, we show a query-reduction transformation for unambiguous PCIPs w.r.t. encoded
provers. This transformation takes a PCIP (P,V) and produces a new PCIP (PQreduce,VQreduce),
whose query complexity and verifier runtime are significantly smaller. The main cost is an increase
in the communication, which grows (additively) by roughly poly(Vtime). We mention that we use
this transformation in two places: to reduce the amount of queries and verifier running time that
the batch verification lemma (Lemma 8.1) incurs and to transform general unambiguous IPs to
unambiguous PCIPs (see Proposition 4.15). We proceed with an overview of the transformation,
which is inspired by the classical PCP of Babai et al. [BFLS91] (which has poly-logarithmically
many queries).

62

The main idea is to “delegate” V’s verification (queries and computation) to the untrusted
prover PQreduce, and then verifying that this computation was performed correctly. Towards this,
we consider a language LV over tuples (β,Q, φ), where β are V’s random coins in the protocol
(P,V), Q is a set of q queries that V could make (into the transcript and the input), and φ : Q→ F
are the values that V could read in the coordinates specified in Q. An input (β,Q, φ) is in LV if
and only if the set Q is indeed the set of queries that V would make on randomness β, and if V
would accept given the values in φ (and the randomness β). The main fact that we use is that
LV is computable by a Turing Machine running in time Vtime (namely by running the query and
computation steps of the verifier V).

The PCIP (PQreduce,VQreduce) proceeds as follows:

1. (PQreduce,VQreduce) run the original PCIP (P,V) to generate a communication transcript, but
they stop short of making V’s queries (to the transcript and the input) or running V’s verifi-
cation.

In this execution of (P,V), let β be V’s random coins, let Q be the set of queries (to the
input and the transcript) that V makes with randomness β, and let φ : Q → F be the set of
transcript and input values in the coordinates specified by Q.

2. The prescribed prover PQreduce sends to VQreduce a low-degree extension v̂ of v = (β,Q, φ).

3. VQreduce receives an LDE ṽ. Let v′ be the message encoded in ṽ. PQreduce and VQreduce run a
PCIP for verifying that v′ ∈ LV .

For this, we use an unambiguous PCIP (PTtime,VTtime) w.r.t. encoded provers for any language
that is computable by a Turing Machine in time T . This is a high-communication protocol,
with communication complexity poly(T). Its main advantage is that it has a constant number
of rounds ρ, and the query complexity and verification time are only roughly TO(1/ρ), i.e. much
smaller than T .

The PCIP (PTtime,VTtime) is described in Lemma 7.3 of Section 7.2. It uses algebraic tech-
niques from the PCP and interactive-proof literature, most notably the interactive sumcheck
protocol [LFKN92] (in particular, we need a constant-round version of this protocol). We
show that the sumcheck protocol has unambiguous soundness.

4. VQreduce verifies that ṽ sent by PQreduce is consistent with the actual transcript, the randomness
and the input in the execution of (P,V). This is done using another ρ-round interactive
sumcheck protocol, where the verifier’s query complexity and computation are roughly (q ·
T)O(1/ρ).

5. VQreduce accepts if and only if the above two tests are successful.

The remainder of this section is organized as follows. We describe the sumcheck protocol and
prove that it is unambiguous in Section 7.1. In Section 7.2 we present the PCIP (PTtime,VTtime) de-
scribed above. Finally, we construct the transformed PCIP (PQreduce,VQreduce) and prove Lemma 8.2
in Section 7.3.

63

7.1 The Sumcheck Protocol

We use (a slight variant of) the sumcheck protocol of [LFKN92] for verifying the sum of a low-
degree polynomial P over all inputs in Hm. The main new fact that we prove about this canonical
protocol is that it has unambiguous soundness. We provide a generalized presentation that allows
for a trade-off between the number of rounds and the total amount of communication.20

Following [BFLS91], we view the verifier in the sumcheck protocol as not having any access to
the polynomial P . Rather, at the end of the protocol, the verifier outputs a single point r ∈ Fm,
and a corresponding value ν ∈ F. Loosely speaking, the case that the polynomial at the point r
equals to (resp., differs from) ν corresponds to accepting (resp., rejecting).

Lemma 7.1 (The Sumcheck Protocol (cf.,[LFKN92])). Fix a constructible ensemble of fields H =
(Hn)n∈N, a constructible ensemble of extension fields F = (Fn)n∈N (i.e., Fn ⊇ Hn is an extension
field of Hn) such that |H|n ≥ log(|Fn|).

For every m = m(n) ≥ 1 and round parameter ρ = ρ(n) ∈ [m], where ρ divides m, there exists
a (`S = ρ, aS, bS,PtimeS,VtimeS)-interactive protocol (Psumchk,Vsumchk) as follows.

The verifier Vsumchk gets as input n ∈ N. The prover Psumchk gets as input a polynomial P : Fm →
F of individual degree t = t(n) ∈ [|H|, |F|−1]. At the end of the interaction Vsumchk either rejects or
outputs a point r ∈ Fm, which depends only on Vsumchk’s coin tosses, and a value v ∈ F such that:

• Prescribed Completeness: If
∑

z∈Hm P (z) = 0, then (Psumchk(P, n),Vsumchk(n)) outputs
(r, v) such that P (r) = v. Otherwise, (Psumchk(P),Vsumchk(n)) rejects.

• Unambiguity: For every cheating prover P̃sumchk, for every round i∗ ∈ [ρ], and for every
choice of Vsumchk’s coins before round i∗, if P̃sumchk first deviates from (Psumchk,Vsumchk) in
round i∗, then, with probability (1− t·m

|F|), either Vsumchk rejects or P (r) 6= v. The probability

is (only) over Vsumchk’s coin tosses in rounds i∗, . . . , `.

Finally, the protocol has:

• aS =
(
(t+ 1)m/ρ · log |F|

)
• bS = ((m/ρ) · log |F|)

• PtimeS =
(
|H|m · tO(m/ρ) · poly(m, log |F|)

)
• VtimeS =

(
tO(m/ρ) · poly(m, log |F|)

)
Remark 7.2 (Sumcheck as a PCIP). We use the Sumcheck protocol in the context of PCIPs (P,V),
by having the PCIP prover and verifier run (Psumchk,Vsumchk) as a sub-protocol. When this is the
case, we want to bound the verifier V’s query complexity in the sumcheck execution. We do so by
simply having the PCIP verifier explicitly query every bit of the messages sent by Psumchk. This
gives query complexity:

qS = (ρ · (t+ 1)m/ρ · log |F|).
Since the verifier reads every bit of every message, we get that the protocol makes input-oblivious
queries.

We note that the Sumcheck messages might be smaller than the messages sent in the PCIP
(P,V), which can be handled using Remark 4.13.

20One way of viewing this tradeoff is as applying the sumcheck protocol for tensor codes of Meir [Mei13] to a
different bases code (composed of lower dimensional tensors).

64

Proof of Lemma 7.1. Our protocol is a variant of the classical sumcheck protocol, in which the
prover sends multivariate polynomials at each round (rather than univariate as in the classical
case). We use this variant since it allows for flexibility in the number of rounds in the protocol (in
contrast, in the classical protocol, the number of rounds is always equal to the dimension of the
polynomial).

Throughout the proof we will often evaluate a polynomial P : Fm → F on points in (Fm/ρ)ρ, by
viewing such points as elements in Fm in the natural way. The (multi-variate) sumcheck protocol
is described in Fig. 4.

The (multi-variate) Sumcheck Protocol:

Parameters: F (field), m (dimension), t (individual degree), H ⊂ F and ρ ∈ [m].

Prover’s Input: an individual degree t polynomial P : Fm → F, specified by its (t+ 1)m coefficients.

1. Let ν(0)
def
= 0.

2. For i← 1, . . . , ρ:
(at the beginning of round i both Vsumchk and Psumchk know r(1), . . . , r(i−1) and ν(0), . . . , ν(i−1))

(a) Psumchk sends to V the individual degree t polynomial P (i) : Fm/ρ → F on m/ρ variables (by
specifying its (t+ 1)m/ρ coefficients) defined as:

P (i)(z)
def
=

∑
xi+1,...,xρ∈Hm/ρ

P
(
r(1), . . . , r(i−1), z, xi+1, . . . , xρ

)
.

(b) Vsumchk receives an individual degree t polynomial P̃ (i) : Fm/ρ → F (which is allegedly equal to

P (i)). Vsumchk checks that
∑
z∈Hm/ρ P̃i(z) = ν(i−1) and rejects otherwise.

(c) V selects uniformly at random r(i) ∈R Fm/ρ, sets ν(i)
def
= P̃i(r

(i)), and sends r(i) to Psumchk.

3. V outputs the point r = (r(1), . . . , r(ρ)) ∈ (Fm/ρ)ρ (viewed as a point in Fm) and the value ν = ν(ρ).

Figure 4: The Sumcheck Protocol

The running times and communication patterns of Psumchk and Vsumchk can be readily verified.
We proceed to show that completeness and unambiguity hold.

Prescribed Completeness. Let P : Fm → F be an individual degree t polynomial. Suppose
first that

∑
x∈Hm P (x) 6= 0. Then, in the first round Psumchk sends to Vsumchk the polynomial

P̃ (1) = P (1)(z). Hence,∑
z∈Hm/ρ

P̃ (1)(z) =
∑

z∈Hm/ρ
P (1)(z) =

∑
z∈Hm/ρ

∑
x2,...,xρ∈Hm/ρ

P (z, x2, . . . , xρ) =
∑
x∈Hm

P (x) 6= 0 = ν(0)

and so Vsumchk rejects when checking that
∑

z∈Hm/ρ P̃
(1)(z) = ν(0).

Now assume that
∑

x∈Hm P (x) = 0. In this case, at every round i ∈ [ρ], the prover Psumchk

65

sends the polynomial P̃ (i) = P (i). Hence, for every i ∈ [ρ]:∑
z∈Hm/ρ

P̃ (i)(z) =
∑

z∈Hm/ρ
P (i)(z)

=
∑

z∈Hm/ρ

∑
xi+1,...,xρ∈Hm/ρ

P (r(1), . . . , r(i−1), z, xi+1, . . . , xm)

= P (i−1)(r(i−1))

= P̃ (i−1)(r(i−1))

= ν(i−1)

and so all of Vsumchk’s checks pass. At the end of the protocol Vsumchk outputs r = (r(1), . . . , r(ρ))
and ν = ν(ρ) = P (ρ)(r(ρ)) = P

(
r(1), . . . , r(ρ)

)
as required.

Unambiguity. Let P : Fm → F be an individual degree t polynomial. Let P̃sumchk be a cheating
prover. Let i∗ ∈ [ρ] and r(1), . . . , r(i

∗−1) ∈ Fm/ρ such that P̃ first deviates from (Psumchk,Vsumchk) at
round i∗. That is, P̃ (i) ≡ P (i) for every i < i∗, but P̃ (i∗) 6≡ P (i∗), where P (i) = Psumchk

(
P, i,

(
r(1), . . . , r(i−1)

))
and P̃ (i) = P̃sumchk

(
P, i,

(
r(1), . . . , r(i−1)

))
.

Claim 7.2.1. Let i ∈ {i∗, . . . , ρ− 1} and r(i
∗), . . . , r(i−1) ∈ F and suppose that P̃ (i) 6≡ P (i). Then,

with probability at least 1− t·(m/ρ)
|F| over the choice of r(i), either Vsumchk rejects or P̃ (i+1) 6≡ P (i+1).

Proof. Since P(i) and P̃ (i) have total degree at most t · (m/ρ), by the Schwartz-Zippel Lemma

(Lemma 3.1), with probability 1 − t·(m/ρ)
|F| over the choice of r(i) ∈ Fm/ρ it holds that P (i)

(
r(i)
)
6=

P̃ (i)
(
r(i)
)
. Suppose that this is the case and yet P̃ (i+1) ≡ P (i+1). Then,∑

z∈Hm/ρ
P̃ (i+1)(z) =

∑
z∈Hm/ρ

P (i+1)(z) = P (i)
(
r(i)
)
6= P̃ (i)

(
r(i)
)

= ν(i)

and so Vsumchk rejects when checking that
∑

z∈Hm/ρ P̃
(i+1)(z) = ν(i).

By Claim 7.2.1 and taking a union bound over every i ∈ {i∗, . . . , ρ − 1}, with probability at

least 1− (ρ− 1) · t·(m/ρ)|F| , over the choice of ri∗ , . . . , rρ−1 ∈ Fm/ρ, either Vsumchk rejects or P̃ (ρ) 6≡ P ρ.
If P̃ (ρ) 6≡ P ρ, then, by the Schwartz-Zippel Lemma, with probability at least 1 − t·(m/ρ)

|F| over the

choice of r(ρ), it holds that

P̃ (ρ) (rρ) 6= P ρ
(
r(ρ)
)

= P
(
r(1), . . . , r(ρ)

)
.

Hence, by another application of the union bound, with probability at least 1−ρ · t·(m/ρ)|F| = 1− t·m
|F| ,

either Vsumchk rejects or ν = ν(ρ) = P̃ (ρ) (rρ) 6= P
(
r(1), . . . , r(ρ)

)
= P (r).

66

7.2 Unambiguous PCIP for T -time w.r.t. Encoded Provers

Lemma 7.3 (Unambiguous PCIP for Ttime w.r.t. Encoded Provers). Let L be a language com-
putable by a T = T (n)-time Turing Machine. Let ρ = ρ(n) be a round parameter. Take H and F
to be constructible field ensembles where |F| ≤ poly(|H|) and log(max(T, n)) ≤ |H| ≤ T 1/ρ.

There exists a protocol (PLTtime,VLTtime) that is an εT-unambiguous (qT, `T, aT, bT,PtimeT,VtimeT)-
PCIP for the language L w.r.t. (gT,H,F)-encoded provers and with input-oblivious queries. Where:

• qT = poly(T)1/ρ

• `T = (ρ+ 1)

• aT = poly(T)

• bT = O(|H| · log |F|)

• PtimeT = poly(T)

• VtimeT = poly(T)1/ρ

• εT = poly(|H|)
|F|

• gT = 1.

Proof. For ease of notation, denote PTtime = PLTtime and VTtime = VLTtime. LetM be the T -time and
S-space Turing Machine that decides L. In the PCIP (PTtime,VTtime), the prover first sends to the
verifier the low-degree extension ŷ of the tableau y of M ’s computation on input x. This tableau
is unique, and its low-degree extension can be computed in time poly(T). There is a constructible
(or highly uniform) 3CNF ψ over the input x and the tableau y, s.t. ψ can only be satisfied when
x ∈ L (see Definition 3.12 and Proposition 3.13). In the protocol, VTtime gets some (potentially
corrupted) low-degree extension ỹ. The prover and verifier use a Sumcheck protocol to verify that
indeed ỹ satisfies every clause of ψ. Completeness follows by design. Unambiguity follows because:

• There is at most a single unique tableau that satisfies ψ (if x /∈ L then there is no satisfying
tableau). If PTtime sends ỹ 6= ŷ, then the tableau encoded in ỹ does not satisfy ψ, and this
will be detected using the Sumcheck protocol.

• The Sumcheck protocol is itself unambiguous, so if the prover deviates during that protocol
this will lead to rejection w.h.p.

The communication in this protocol is large: ŷ is of size poly(T), but the query complexity
and verification time are small (thanks to the low complexity of the Sumcheck protocol). The full
protocol (PTtime,VTtime) is in Fig. 5. We then prove its (prescribed) completeness, unambiguity,
and the various complexity measure bounds.

Reducing verification of L to a Sumcheck. We want to show soundness against encoded
provers, which are restricted to send low-degree extensions in all of their messages. Once the
prover sends the LDE ỹ, we want to verify that the tableau y′ encoded in ỹ indeed satisfies the
formula ψ. That is, that (x ◦ y′) satisfies every clause in ψ.

67

Interactive Proof (PTtime,VTtime) for L
PTtime has input: x ∈ {0, 1}n, VTtime has query access to x’s LDE x̂ : Fminput → F.

PTtime and VTtime take ψ : {0, 1}n+O(T ·S) → {0, 1} to be the constructible 3CNF that verifies the
T -time computation of L (See Proposition 3.13). Define:

• y ∈ {0, 1}O(T ·S) is the unique witness that satisfies ψ, as per Proposition 3.13. Take mT =
log|H|(|y|), and consider y’s LDE, ŷ : FmT → F. ŷ is computable in time poly(T).

• Take m′ = log|H|(|x| + |y|). The polynomials I : Hm′ → {0, 1}, K : Hm′ → Hmax(minput,mT)

both take as input an index i ∈ [|x| + |y|] into ψ’s input. If i ≤ n (i.e. i is an index into
x), then I outputs 1 and K outputs i. If i > n, i.e. I is an index into the witness, then I
outputs 0 and K outputs (i− n).

We consider I’s and K’s extensions over F: Î : Fm′ → F and K̂ : Fm′ → Fmax(minput,mT).
These extensions also have individual degree poly(|H|,max(minput,mT)) and can be evalu-
ated in time poly(|H|,max(minput,mT)).

• Ĉ : F3m′+3 → F, the circuit that specifies ψ (see Definition 3.12). Ĉ has individual degree
poly(|H|,m′) and can be evaluated in time poly(|H|,m′).

With these definitions in mind, the protocol proceeds as follows:

1. If x /∈ L, PTtime tells VTtime to reject and VTtime rejects immediately.

If x ∈ L, then PTtime sends ŷ to VTtime in its entirety.

2. VTtime receives ỹ (which is allegedly ŷ). This defines a polynomial P̃ : F3m′+3 → F:

P̃ (i1, i2, i3, b1, b2, b3) =
∏

j∈{1,2,3}

(
(Î(ij) · x̂(K̂(ij))) + ((1− Î(ij)) · ỹ(K̂(ij)))− bj

)
. (8)

VTtime chooses at random z∗ ∈ F3m′ and sends z∗ to PTtime.

3. PTtime and VTtime run a ρ-round Sumcheck protocol (Psumchk,Vsumchk) on the polynomial
Q : F3m′+3 → F:

Q(z)
def
= τ(z, z∗) · Ĉ(z) · P̃ (z). (9)

If Vsumchk rejects, then VTtime rejects. Otherwise, Vsumchk outputs z = (i1, i2, i3, b1, b2, b3) ∈
F3mT+3 and ν ∈ F.

4. VTtime accepts if and only if:

ν = τ(z, z∗) · Ĉ(z) ·
∏

j∈{1,2,3}

(
(Î(ij) · x̂(K̂(ij))) + ((1− Î(ij)) · ỹ(K̂(ij)))− bj

)
. (10)

Figure 5: Interactive Proof (PTtime,VTtime) for L

68

Taking Ĉ to be the circuit that specifies ψ (see Definition 3.12), we have that (x, y′) satisfies ψ
if and only if for every i1, i2, i3 ∈ Hm′ and b1, b2, b3 ∈ H:

Ĉ(i1, i2, i3, b1, b2, b3) ·
(
(x ◦ y′)i1 − b1

)
·
(
(x ◦ y′)i2 − b2

)
·
(
(x ◦ y′)i3 − b3

)
= 0.

To extend this condition to the extension field F, we define the “indexing polynomials” I and K
(see Fig. 5). These are used to convert indices into ψ’s input (x ◦ y), into indices into the input x
or the witness y′ (which is helpful because these two strings are encoded separately). For an index
i ∈ Hm′ , the polynomial I(i) tells us whether i is an input variable or a tableau variable. The
polynomial K translates the index i ∈ [|x|+ |y|] to an index in [|x|] into the input x (when I(i) = 1
and i indeed points to an input variable), or to an index in [|y|] into the tableau y (when I(i) = 0
and i indeed points to a witness variable).

Using these indexing polynomials, taking the polynomial P : F3m′+3 → F, as defined in Eq. (8)
of Fig. 5, we get that (x, y′) satisfy ψ if and only if:

∀x ∈ H3m′+3 : Ĉ(z) · P̃ (z) = 0.

Thus, we have reduced checking whether (x, y′) satisfies ψ (i.e. x ∈ L), to checking that a low
degree polynomial

R(z) = Ĉ(z) · P̃ (z)

is identically zero over the subcube H3m′+3 of its domain.
Intuitively, to check this final condition, we consider the (unique) low degree extension R̂ of R

with respect to F, H and (3m′ + 3).21 That is, R̂ is the unique polynomial of individual degree
(|H|−1) that agrees with R on H3m′+3. Observe that by the Schwartz-Zippel Lemma (Lemma 3.1),
if R is identically zero on H3m′+3, then R̂ is identically zero on F3m′+3, whereas if R is not identically
zero on H3m′+3, then R̂ is non-zero on most points in F3m′+3. Thus, to check whether ψ(x,w′) = 1,
the verifier VTtime first selects a random point z∗ ∈ F3m′+3 and sends z∗ to the prover. Then, the
PTtime and VTtime run a sub-protocol to check whether R̂(z∗) = 0. Since R̂ is a linear combination
of R’s evaluations on the subcube H3m′+3, we can check whether R̂(z∗) = 0 using the Sumcheck
protocol.

Prescribed Completeness. If x ∈ L then ψ(x, y) = 1, and so ∀z ∈ H3m′+3, R(z) = 0. Recall
that R̂ : F3m′+3 is the unique polynomial of individual degree |H|−1 that agrees with R on H3m′+3.
Since the all-zeros polynomial is such a polynomial, it must be the case that ∀z∗ ∈ F3m′+3, R̂(z∗) =
0.

Hence, VTtime and PTtime run (Psumchk,Vsumchk) on a polynomial Q : F3m′+3 → F such that∑
z∈H3m′+3

Q(z) =
∑

z∈H3m′+3

τ(z, z∗) · Ĉ(z) · P̃ (z) =
∑

z∈H3m′+3

τ(z, z∗) ·R(z)
def
= R̂(z∗) = 0.

By the completeness of the sumcheck protocol, Vsumchk does not reject, and it outputs a point

21In Section 3.2 we only defined the low degree extension for functions over Hm. We extend this definition to
functions over Fm by restricting the domain to Hm and taking the low degree extension of the restricted function.

69

z = (i1, i2, i3, b1, b2, b3) ∈ F3m′+3 and a value ν ∈ F such that Q(z) = ν. Hence,

ν = Q(z)

= τ(z, z∗) · Ĉ(z) · P̃ (z)

= τ(z, z∗) · Ĉ(z) ·
∏

j∈{1,2,3}

(
(Î(ij) · x̂(K̂(ij))) + ((1− Î(ij)) · ỹ(K̂(ij)))− bj

)
By completeness of the Sumcheck protocol, VTtime’s check in Step 4 will be successful, and it will
accept.

Unambiguity. To prove unambiguity, we consider the possible deviations that a cheating (en-
coded) prover P̃ can make. In the first case, P̃ deviates in Step 1, and sends an encoding ỹ of a
witness y′ where ψ(x, y′) = 0, i.e. (x ◦ y′) do not satisfy some clause z̃ ∈ H3m′+3 of ψ. This could
be the case either because x /∈ L, and so there is no satisfying assignment, or because even though
x ∈ L, P̃ chooses to send ỹ 6= ŷ. We emphasize that we only consider encoded cheating provers, so
it is always the case that ỹ is an LDE. In this case:

∃z̃ ∈ H3m′+3, s.t. R(z̃) = Ĉ(z̃) · P̃ (z̃) 6= 0

Taking R̂ to be the LDE of R, by the Schwartz-Zippel Lemma (Lemma 3.1), with all but poly(|H|,m′)
|F|

probability over the choice of z∗, we have that R̂(z∗) 6= 0. By unambiguity of the Sumcheck protocol

(Lemma 7.1), with all but poly(|H|,m′)
|F| probability over the verifier’s coin tosses in subsequent rounds,

either Vsumchk rejects, or it outputs z ∈ F3m′+3 and ν ∈ F s.t.

ν 6= Q(z)

= τ(z, z∗) · Ĉ(z) · P̃ (z))

= τ(z, z∗) · Ĉ(z) ·
∏

j∈{1,2,3}

(
(Î(ij) · x̂(K̂(ij))) + ((1− Î(ij)) · ỹ(K̂(ij)))− bj

)
,

and VTtime rejects in Step 4.
For proving unambiguity, the second case is when P̃ does not deviate in its first message. That

is, we have that x ∈ L and ỹ = ŷ is the LDE of w s.t. ψ(x,w) = 1. In this case, P̃ deviates within

the sumcheck protocol and, by that protocol’s unambiguity (Lemma 7.1), with all but poly(|H|,m′)
|F|

probability over its coin tosses, either Vsumchk rejects or it outputs z ∈ F3m′+3 and ν ∈ F s.t.
ν 6= Q(z). Similarly to the above, this leads VTtime to reject in Step 4.

We conclude that if P̃ deviates from the prescribed strategy at any point, then VTtime rejects

with all but poly(|H|,m′)
|F| probability over its coin tosses.

Complexity measures. Recall that by the conditions of Lemma 7.3, we have that |F| = poly(|H|)
and that log(max(n, T)) ≤ |H| ≤ T 1/ρ. Thus, we have that ρ ≤ m′ ≤ (6|H|+ 3). By construction,
the number of rounds is `T = (ρ+1). In the first protocol message (Step 1), the prover sends an LDE
ŷ of size poly(|F|)mT = poly(T), which is computable in time poly((T). The verifier simply responds
with z∗ ∈ F3m′+3. After this round, the prover and verifier engage in a Sumcheck protocol for the
polynomial Q. The polynomial Q has degree poly(|H|,m′) = poly(|H|) and can be evaluated in time

70

poly(|H|,m′) = poly(|H|) using 3 queries into w̃ and 3 queries into x̂. See Lemma 7.1 and Remark
7.2 for the complexity measures of the Sumcheck protocol. The Sumcheck verifier Vsumchk outputs
(z, ν), and in its final check (Step 4), VTtime verifies Equation (10), which requires evaluating Q(z)
in poly(|H|) time and 6 queries. In total we have:

• qT = O(1) + qS = (ρ · poly(T)1/ρ · log |F|) = poly(T)1/ρ

• aT = max(poly(T), aS) = poly(T)

• bT = max(((3m′ + 3) · log |F|), bS) = O(|H| · log |F|)

• PtimeT = (poly(T) + PtimeS) = poly(T) · poly(|H|) = poly(T)

• VtimeT = (poly(|H|) + VtimeS) = (poly(T)1/ρ · poly(|H|)) = poly(T)1/ρ

7.3 Query Reduction Transformation: Proof of Lemma 7.4

We now present the query-reduction transformation for PCIPs. We state the lemma, using a
parameter ρ that controls the number of rounds (rather than the parameter σ that controls the
query and verifier’s time in Lemma 8.2 which appears below). The formal statement is below, and
the proof follows.

Lemma 7.4 (See also Lemma 8.2). Take H and F to be constructible field ensembles where |F| ≤
poly(|H|). Let ρ = ρ(n) be a round parameter and g = g(n) ≥ 1 be a parameter.

Let (P,V) be an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP for a language L w.r.t. (g,H,F)-
encoded provers and with input-oblivious queries, where log(max(n, `, a, b,Ptime,Vtime)) ≤ |H| ≤
min(q,Vtime)1/ρ.

Then the protocol (PQreduce,VQreduce) is an εQ-unambiguous (qQ, `Q, cQ,PtimeQ,VtimeQ)-PCIP
for the language L w.r.t. (gQ,H,F)-encoded provers and with input-oblivious queries. Where:

• qQ = poly(Vtime)1/ρ +O(` · g · log |F|).

• `Q = `+ 2ρ+ 1.

• aQ = max (a, poly(`, b,Vtime, |H|)) .

• bQ = max (b,O(|H| · log |F|)) .

• PtimeQ = Ptime + poly(q, `, b,Vtime).

• VtimeQ = poly(Vtime)1/ρ + (poly(`, b, g, |H|)).

• εQ = ε+ poly(|H|)
|F| .

• gQ = g.

Proof. The goal in this transformation is reducing the query complexity and verification time of
(P,V), with only a moderate increase in the other parameters. The main idea is for (PQreduce,VTtime)
to run the communication phase of the PCIP (P,V) (and only the communication phase). This
generates a transcript (α, β) for the protocol (P,V). After this transcript is generated, VQreduce

71

does not explicitly make any of V’s queries, nor does it run its decision phase. Instead, PQreduce

proves to VQreduce that V would have accepted the transcript.
To do so, PQreduce sends low-degree extensions of V’s query addresses (into the input and the

transcript), and answers to those queries (each of these vectors are encoded separately). PQreduce

claims that these are encodings of the correct view v of V in the protocol (P,V). VQreduce receives
some LDEs of a view v′, which may or may not equal the real view in the actual transcript, which
has not yet been queried. PQreduce now proves to VQreduce that:

• The view in v′ is a view that would make V accept in its decision phase (and that the queries
specified are indeed the queries that V would have made). This is done using the PCIP
(PTtime,VTtime) for verifying T -time computations of Lemma 7.3. Once v′ is fixed by the
LDEs sent in in the previous rounds, verifying V’s decision can be done by a Turing Machine
running in time Vtime. Thus, the query complexity and verification time in this execution of
(PTtime,VTtime) will both be low. A slight subtlety is that to run the PCIP (PTtime,VTtime),
the verifier needs access to an LDE of v′ in its entirety. This can be simulated from the
LDEs of the query addresses and values, and an LDE of the random coins β chosen by V (see
Proposition 3.8). The verifier VQreduce can evaluate the LDE β̂ of β in poly(|β|) time.

• It remains to verify that the view v′ is consistent with the the actual input x and transcript
α from the execution of (P,V) (these have not yet been queried!). Towards this, observe that
VQreduce has access to low-degree extensions of x. It has access to the low-degree extension of
α, or rather to low-degree extensions of each message in α, but this can be extended to an
LDE α̂ of α in its entirety (see Proposition 3.8).

Using these low-degree extensions, VQreduce can use Sumcheck protocols (Lemma 7.1) to verify
consistency of v′ with the input and the transcript. Since we already know that the view v′

would make V accept, we conclude that V would have accepted in its interaction with P. To
enable the Sumcheck consistency-test, we use the LDEs of the query and addresses and query
answers, as sent by the PQreduce.

We note that the queries VQreduce makes here are adaptive: e.g., to check consistency with
the transcript, it first examines the LDE of query addresses, reads some values, and then
queries the transcript α itself in an address that depends on the values read. Nonetheless,
when interacting with the prescribed prover, the addresses in the correct LDEs are determined
solely by V’s randomness β (because (P,V) makes input-oblivious queries, see Definition 4.7).
Thus, when interacting with the prescribed prover PQreduce, the addresses of queries made by
the verifier VQreduce are independent of the input, and the protocol (PQreduce,VQreduce) also
makes input-oblivious queries.

The communication in this protocol is large: sending the view v̂ and running the protocol
(PTtime,VTtime) require poly(Vtime) communication. On the other hand, the verifier’s query com-
plexity and computation time are greatly reduced. The full protocol (PQreduce,VQreduce) is in Fig. 6.
After describing the protocol, we prove its (prescribed) completeness, unambiguity, and the various
complexity measure bounds.

Reducing checking ṽ’s consistency to a Sumcheck. (PQreduce,VQreduce) use the Sumcheck
protocol to verify that the view v′ encoded in the message ṽ sent by the untrusted prover is consistent
with the input x, and the message transcript α from Step 1. This is done in Step 4.

72

Query-Reduced PCIP (PQreduce,VQreduce)

PQreduce has input: x ∈ {0, 1}n, VQreduce has query access to x’s LDE x̂ : Fminput → F.

1. PQreduce and VQreduce run the communication phase of the PCIP (P,V).

This gives a transcript α ∈ {0, 1}`·a of messages sent by P, and random coins β ∈ {0, 1}`·b sent by
V. Let Qx ∈ [|x|]qx and Qα ∈ [|α|]qα be V’s queries into the input and transcript.

Take mα,mβ ,mqx ,mqα to be logarithms to the base |H| of |α|, |β|, |qx|, |qa|. Define:

• α̂ : Fmα → F is α’s LDE, which can be evaluated using (g · `) queries to messages α in time
poly(|H|) (recall each message in α is already encoded, see Proposition 3.8).

• β̂ : Fmβ → F is the LDEs of β, which can be evaluated in time poly(|β|).

• Q̂x : Fmqx → Fminput is the LDE of the function that maps an index j ∈ [qx] to the address of
the j-th input-query within the input x

• Q̂α : Fmqα → Fmα is the LDE of the function that maps an index j ∈ [qa] to the address of the
j-th transcript-query within the transcript α.

• Âx : Fmqx → Fminput is the LDE of the function that maps an index j ∈ [qx] to the value read
by the j-th input-query.

• Âα : Fmqα → Fmα is the LDE of the function that maps an index j ∈ [qa] to the value read by
the j-th transcript-query.

2. PQreduce sends v̂ = (Q̂x, Q̂α, Âx, Âα). VQreduce receives some ṽ = (Q̃x, Q̃α, Ãx, Ãα).

3. PQreduce and VQreduce run the protocol (PTtime,VTtime) to verify that V’s decision phase would succeed

on the view v′ specified by (β̂, Q̃x, Q̃α, Ãx, Ãα). If VTtime rejects, then VQreduce rejects immediately.
Note that VQreduce requires access to an LDE of v′ in its entirety, but this can be simulated using the
five LDEs in ṽ (see Proposition 3.8).

4. Verifying that ṽ is consistent with (β, x, α) obtained in Step 1:

(a) VQreduce sends to PQreduce uniformly random j∗x ∈ Fmqx , j∗α ∈ Fmqα .

(b) PQreduce and VQreduce run two instances of the Sumcheck protocol (Psumchk,Vsumchk) in parallel,
on the polynomials:

Px : Fmqx → F, where Px(j) = τ(j, j∗x) ·
(
Ãx(j)− x̂(Q̃x(j))

)
Pα : Fmqα → F, where Pα(jα) = τ(j, j∗α) ·

(
Ãα(j)− α̂(Q̃α(j))

)
(c) If Vsumchk rejects, then VQreduce immediately rejects. Otherwise, Vsumchk outputs (jx, νx), (jα, να).
VQreduce accepts if and only if νx = Px(jx), and να = Pα(jα).

Figure 6: Query Reduction for PCIP (P,V)

73

Take v′ = (Q′x, Qα
′, Ax

′, Aα
′) to be the message encoded in ṽ = (Q̃x, Q̃α, Ãx, Ãα) (recall that

since we only show unambiguity against encoded provers, we can assume that every message
sent, an in particular ṽ, is indeed composed of LDEs). VQreduce wants to verify that v′ = v =
(Qx, Qα, Ax, Aα). The PCIP (PTtime,VTtime

) verifies that Qx, Qα are the correct queries that V would
make using randomness β. It remains to check that the actual answers in Ax

′, Aα
′ are equal the

(corresponding) values in x̂, α̂ at the addresses specified by the queries in Q′x, Qα
′. for x, and

α are consistent with the transcript and input. To perform this consistency check, VQreduce uses
low-degree extensions of α, of β and of the input x. These are computed as follows:

• We already assume that VQreduce has query access to an LDE x̂ of its input.

• The transcript of prover messages α is “almost” an LDE: each of the (` · g) messages in the
transcript is itself an LDE (because we only consider encoded provers). VQreduce can evaluate
any coordinate in the LDE α̂ of the entire transcript (i.e. the LDE obtained by decoding each
plaintext message in α and then re-encoding the entire transcript of plaintext messages) by
making (` · g · log |F|) queries to α and using time poly(|H|, `, g).

• VQreduce computes the LDE β̂ of β “from scratch” in time ((|β|) ·polylog|F|) = (` ·b ·polylog|F|).

These LDEs all have individual degree (|H| − 1).
The consistency check boils down to the following conditions:

• A′x is consistent with x, i.e. for every j ∈ [|qx|], A′x(j) = x(Q′x(j)). Equivalently:

∀j ∈ Hmqx : Rx(j) =
(
Ãx(j)− x̂(Q̃x(j))

)
= 0 (11)

• A′α is consistent with α, i.e. for every j ∈ [|qα|], A′α(j) = α(Q′α(j)). Equivalently:

∀j ∈ Hmqα : Rα(j) =
(
Ãα(j)− α̂(Q̃α(j))

)
= 0 (12)

We want to verify that the polynomials Rx, Rα vanish over their respective H-subcubes. This
happens if and only if their (unique) low-degree extensions R̂x, R̂α are identically 0. By the
Schwartz-Zippel Lemma, we know that if any of these (low-degree) polynomials is non-zero, then
it is non-zero almost everywhere. Thus, VQreduce chooses uniformly random j∗x ∈ Fmqx , j∗α ∈ Fmqα ,
and verifies that R̂x(j∗x) = 0 and that R̂α(j∗α) = 0.

These final zero-tests are performed using the Sumcheck protocol. Recall the definitions of
Px, Pα defined in Step 4b of Figure 6. We have that:

R̂x(j∗x) =
∑

j∈Hmqx
Px(j)

R̂β(j∗α) =
∑

j∈Hmqα
Pα(j)

Thus, VQreduce can use two Sumcheck protocols (run in parallel) to check that the polynomials
R̂x, R̂α vanish on the randomly chosen coordinates j∗x, j

∗
α (respectively). VQreduce accepts if and

only if in all three of these Sumchecks the verifier Vsumchk accepts and outputs a correct claim.

74

Prescribed Completeness. Completeness follows from the above. For x ∈ L, suppose that
PQreduce follows the prescribed strategy P in Step 1, and sends the correct LDEs v̂ in Step 2. Since
PQreduce sent the correct LDE, the verifier V would indeed make the queries specified in v. By
prescribed completeness of (P,V), V would accept given the view v. If P follows the prescribed
strategy in Step 3, then by prescribed completeness of the protocol (PTtime,VTtime), VTtime will
accept. Also, Equations (11), and (12) hold. Thus, it will indeed be the case that R̂x(j∗x) = 0, and
that R̂α(j∗α) = 0. By prescribed completeness of the Sumcheck protocol, the sumcheck verifier will
accept in all three executions, and output correct claims. The check in Step 4c will succeed, and
VQreduce will accept.

We note here again that while the verifier VQreduce makes adaptive queries, if (P,V) makes
input-oblivious queries (see Definition 4.7), then so does (PQreduce,VQreduce)

Unambiguity. We consider the case that x ∈ L (the case that x /∈ L follows similarly). Let P̃
be a deviating prover. Consider the possible deviations:

• Deviating in Step 1. If P̃ deviates in the execution of (P,V), then by unambiguity of that
protocol we know that with all but ε probability over the choice of randomness β for V, the
verifier V would reject given the (correct) view v. Suppose that P̃ sends ṽ = v̂ (where v̂
includes LDEs of the correct view v), or that P̃ sends ṽ encoding a corrupted view v′ where
the query sets Q′x, Q

′
α are not consistent with the choice of randomness β and the answers

A′x, A
′
α (recall that the verifier V may be adaptive in its queries). In either of these cases, by

unambiguity of (PTtime,VTtime) (Lemma 7.3), the verifier VTtime will reject in Step 3 with all
but εT probability.

The remaining case is that P̃ sends ṽ 6= v̂ where ṽ encodes a view v′ containing the correct
query sets Qx, Qα. In this case, we know that v′ is not consistent with either x or α. Thus,
one of the Equations (11) and (12) is not satisfied. By the Schwartz-Zippel Lemma, with all

but poly(|H|,m′)
|F| probability over the choice of j∗x, j

∗
α, it will be the case that either R̂x(j∗x) 6= 0 or

R̂α(j∗α) 6= 0. When this is the case, by unambiguity of the Sumcheck Protocol (Lemma 7.1),

with all but poly(|H|,m′)
|F| over the coins of Vsumchk in the two executions, in at least one of the

executions either Vsumchk rejects, (and VQreduce rejects immediately), or it outputs an incorrect
claim about one of the polynomials Px, Pα, and VQreduce rejects.

We conclude that if P̃ first deviates in Step 1, then VQreduce rejects with all but (ε + εT +
poly(|H|,m′)

|F|) probability over its subsequent coins tosses.

• Deviating in Step 2. If P̃ first deviates in sending ṽ, then we know that it followed the
prescribed strategy P in Step 1. By prescribed completeness of (P,V), we know that V
would accept given the (correct) view v, whose LDEs are v̂. Since P̃ deviates in Step 2,
it sends LDEs ṽ 6= v̂. Let v′ be the view encoded in ṽ. If the query sets Q′x, Q

′
α in v′

are not consistent with the choice of randomness β and the given answers A′x, A
′
α, then by

unambiguity of (PTtime,VTtime) (Lemma 7.3), the verifier VTtime will reject in Step 3 with all
but εT probability.

The remaining case is that P̃ sent ṽ 6= v̂ where ṽ encodes a view v′ containing the correct
query sets Qx, Qα. In this case, we know that v′ is not consistent with either x or α. Following

75

the same analysis as we did for the case of a deviation in Step 1, we conclude that in this

case VQreduce will reject with all but poly(|H|,m′)
|F| probability.

We conclude that if P̃ first deviates in Step 2, then VQreduce rejects with all but (εT+ poly(|H|,m′)
|F|)

probability over its subsequent coins tosses.

• Deviating in Step 3. In this case, P̃ follows the prescribed strategy in executing the protocol
(P,V) and sends LDEs ṽ = v̂ of the correct view v. Thus, in the prescribed execution of the
PCIP (PTtime,VTtime), the verifier VTtime should accept the view v. However, since P̃ deviates
in (PTtime,VTtime), by unambiguity of that protocol (Lemma 7.3), the verifier VTtime will reject
with all but εT probability.

We conclude that if P̃ first deviates in Step 3, then VQreduce will reject with all but εT

probability.

• Deviating in Step 4b. In this case, P̃ follows the prescribed strategy in in executing the
protocol (P,V) , sends LDEs ṽ = v̂ of the correct view v, and follows the prescribed strategy
in executing (PTtime,VTtime) (and so VTtime accepts). However, P̃ deviates in at least one of
the executions of the Sumcheck protocol. By that protocol’s unambiguity (Lemma 7.1, with

all but poly(|H|,m′)
|F| probability over the choice of coins for the executions of Vsumchk, either it

rejects (and VQreduce rejects immediately), or it outputs an incorrect claim about at least one
of the polynomials Px, Pα, and VQreduce rejects.

We conclude that if P̃ first deviates in Step 3, then VQreduce will reject with all but poly(|H|,m′)
|F|

probability.

Unambiguity for the case that x /∈ L follows similarly (it is only easier to argue that VQreduce

rejects, because if P̃ does not deviate in Step 2 then the “real” view v would make V reject). We
conclude that (PQreduce,VQreduce) is an εQ-unambiguous PCIP, where

εQ = (ε+ εT +
poly(|H|,m′)

|F|
) = (ε+

poly(|H|)
|F|

),

where we used the facts that m′ = O(|H|) (see below) and εT = |H|
|F| (Lemma 7.3).

Complexity measures. Recall that by the conditions of Lemma 7.3, we have that |F| = poly(|H|)
and that log(max(n, `, a, b,Ptime,Vtime)) ≤ |H| ≤ (min(q,Vtime))1/ρ. Indeed, w.l.o.g. we will even
assume that |H| ≤ (min(qx, qα,Vtime))1/ρ. Thus, we have that ρ ≤ min(m′,mqx ,mqα) ≤ 8|H|.

By construction, the number of rounds is (` + 2ρ + 1): ` rounds for running (P,V), a single
message from the prover containing ṽ (can be piggy-backed onto the next protocol), (ρ+ 1) rounds
for running (PTtime,VTtime), a single message from the verifier containing j∗x, j

∗
α (can be piggy-backed

onto the previous protocol), and two parallel executions of the Sumcheck protocol, which require
ρ rounds. We note that we could even run Steps 3 and 4b in parallel (and save ρ rounds), but we
run them sequentially for ease of presentation.

We consider the prover and verifier complexity in each of the protocol steps:

• In Step 1, (PQreduce,VQreduce) run (P,V), which is a (q, `, a, b,Ptime,Vtime)-PCIP. They only
generate the transcript, without making any of V’s queries or computation. Thus, the message
length are as in (P,V), as is the prover runtime, but the verifier does not pay any queries or
computation.

76

• In Step 2, PQreduce sends the LDEs of V’s view v. The view v itself is of length O(q ·
max(log n, log(`·a))). The prover PQreduce can compute v and its LDE in time poly(q, `, b,Vtime, |H|),
and the length of the LDE is poly(q, `, |H|).

• In Step 3, (PQreduce and VQreduce) run the (PTtime,VTtime) PCIP on the LDE of the view
v encoded in v̂, and verify the results of V’s Vtime-time computation. By Lemma 7.3,
this requires queries qT = poly(Vtime)1/ρ, prover message length aT = poly(Vtime), veri-
fier message length bT = O(|H| · log |F|), prover time PtimeT = poly(Vtime), and verifier time
VtimeT = poly(Vtime)1/ρ. Each query to the LDE of v (in its entirety) can be simulated by
VQreduce using poly(|H|) queries to v̂, and a query to β̂. The entire LDE β̂ can be computed
in time poly(|β|, |H|) = poly(`, b, |H|).

• In Step 4a, VQreduce sends j∗x, j
∗
α. The message length is ((mqx+mqα)·log |F|) = O(|H|·log |F|).

• In Step 4b PQreduce and VQreduce run two sumcheck protocols for the polynomials Qx, Qα.
These polynomials have individual degree poly(|H|) and input lengths mqx ,mqα ≤ |H|. Recall
that the Lemma statement assumes |H| ≤ min(qx, qα)1/ρ, and so ρ ≤ mqx ,mqα .

By Lemma 7.1 and Remark 7.2, running the sumcheck protocols requires queries qsumchk =
poly(q)1/ρ, prover messages of length aS = poly(q)1/ρ, verifier messages of length bS = (|H| ·
log |F|), Prover time PtimeS = poly(q) and Verifier time VtimeS = poly(q)1/ρ.

• In Step 4c, VQreduce needs to evaluate the polynomials Px, Pα (each at a single coordinate).
These evaluations require O(` · g · log |F|) queries and time poly(`, g, |H|) (see the discussion
above, this requires computing the LDEs α̂,Kx,Kα,KQx ,KQα).

Summing up the costs of all steps above, we get:

• qQ = (qT + 1 + qsumchk +O(` · g · log |F|)) =
(
poly(Vtime, q)1/ρ +O(` · g · log |F|)

)
.

• aQ = max (a, poly(q, `, b, |H|), aT, aS) = max (a, poly(q, `, b, |H|), poly(Vtime)) .

• bQ = max (b, bT, O(|H| · log |F|)) = max (b,O(|H| · log |F|)) .

• PtimeQ = (Ptime + poly(q, `, b,Vtime) + PtimeT + PtimeS) = (Ptime + poly(q, `, b,Vtime)) .

• VtimeQ = (VtimeT + poly(`, b, |H|) + VtimeS + poly(`, g, |H|))
=
(
poly(Vtime)1/ρ + (b · poly(`, b, g, |H|))

)
.

8 Interactive Proofs for Bounded-Space Computations

In this section we construct interactive proofs for bounded-space computations, proving our main
results (see Section 5, in particular Theorem 7 and Corollaries 8 and 9). As described in the
overview (Section 2), the construction is iterative, and uses the two transformations on unambiguous
PCIPs (probabilistically checkable interactive proofs) that were shown in Section 6 and Section 7,
respectively. Before proceeding to the proof, we first restate the batch verification and query
reduction results of Sections 6 and 7.

77

Recall that if L is a language, we defined L⊗k as the language that contains all k-tuples of
elements in L of the same length (see the beginning of Section 6 for the formal definition). The
following lemma (which is essentially a re-statement of Lemma 6.1) shows that suitable PCIPs for
a language L can be batched to produce a non-trivial PCIP for L⊗k.

Lemma 8.1 (Batch Verification for unambiguous PCIPs w.r.t. encoded provers (c.f. Lemma 6.1)).
Let H and F be constructible field ensembles such that F is an extension field of H and |F| ≤
poly(|H|).

Let (P,V) be an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP for the language L, with respect
to (g,H,F)-encoded provers and with input-oblivious queries. Let k = k(n) ≥ 1, σ = σ(n) ∈ (0, 1)
and let λ = λ(n) ≥ 1 be a security parameter, where:

• log(`1/σ · a) ≤ min
(
|H|, |F|2|H|

)
.

• a ≥ poly(k, q, g) · (poly(λ, |H|, `))1/σ.

• Ptime ≥ ` · a · polylog(|F|).

Then, there exists an εA-unambiguous (qA, `A, aA, bA,PtimeA,VtimeA)-PCIP for the language
L⊗k w.r.t. (gA,H,F)-encoded provers and with input-oblivious queries, with the following parame-
ters:

• εA = (1
σ + 1) ·

(
ε+ 3 · 2−λ

)
.

• qA = k2 · q · poly(g) ·
(
poly(`, λ, |H|)

)1/σ
.

• `A = O(`/σ).

• bA = max
(
b, k · poly(|H|, `1/σ, g, λ)

)
.

• aA = a · 2kσ · log(k) · λ · `1/σ.

• PtimeA = 2k · (1/σ) · `1/σ · Ptime + Vtime · q · k2 · poly(g) ·
(
poly(`, λ, |H|)

)1/σ
.

• VtimeA = Vtime · q · k2 · poly(g) ·
(
poly(`, λ, |H|)

)1/σ
.

• gA = g · 2kσ · log(k) · λ · `1/σ.

Our second main ingredient is a “query reduction” transformation for unambiguous PCIPs (w.r.t.
encoded provers) that reduces the verifier’s query complexity and running time. The following is
essentially a restatement of Lemma 7.4.

Lemma 8.2 (Query-reduction for unambiguous PCIPs w.r.t. encoded provers (c.f. Lemma 7.4)).
Take H and F to be constructible field ensembles where |F| = poly(|H|). Let σ = σ(n) ∈ (0, 1) be a
reduction parameter and g = g(n) ≥ 1 a parameter.

Let (P,V) be an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP for a language L w.r.t. (g,H,F)-
encoded provers and with input-oblivious queries, where log(max(n, `, a, b,Ptime,Vtime)) ≤ |H| ≤
min(q,Vtime)σ.

There exists an εQ-unambiguous (qQ, `Q, aQ, bQ,PtimeQ,VtimeQ)-PCIP protocol (PQreduce,VQreduce)
for the language L w.r.t. (gQ,H,F)-encoded provers and with input-oblivious queries. Where:

78

• qQ = poly(Vtime)σ +O(` · g · log |F|).

• `Q = `+O(1/σ).

• aQ = max (a, poly(`, b,Vtime, |H|)).

• bQ = max (b,O(|H| · log |F|)).

• PtimeQ = Ptime + poly(q, `, b,Vtime).

• VtimeQ = poly(Vtime)σ + (poly(b, `, g, |H|)).

• εQ = ε+ poly(|H|)
|F| .

• gQ = g.

Lemmas 8.1 and 8.2 follow immediately from Lemmas 6.1 and 7.4, respectively.

8.1 Augmentation Lemma

As described in the technical overview (Section 2), our construction is based on iterative and in-
terleaved applications of the Batch Verification Lemma (Lemma 8.1) and the Query Reduction
Lemma (Lemma 8.2) above. Using these two lemmas, we show an efficient transformation from
unambiguous PCIPs that verify computations of length t to unambiguous PCIPs that verify com-
putations of length k · t. We call this step the augmentation lemma (since it augments the length
of computations).

Before presenting the lemma, we require the following definition. For a space S = S(n) Turing
machine M and a time bound t = t(n), we define the language LMt as

LMt
def
=

{
(x, u, v) :

On input x ∈ {0, 1}n, M moves from configuration u ∈ {0, 1}O(S)

to configuration v ∈ {0, 1}O(S) in exactly t steps
.

}
If the machine M is clear from the context, then we omit it from the notation. The following
lemma “augments” an unambiguous PCIP for a language Lt to an unambiguous PCIP for Lk·t.

Lemma 8.3 (Augmentation Lemma). Let H and F be constructible field ensembles such that F is
an extension field of H and |F| ≤ poly(|H|).

Let M be a Turing machine that uses space at most S = S(n). Let t = t(n) be a time bound
and suppose that LMt has an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP w.r.t. (g,H,F)-encoded
provers and with input-oblivious queries. Let k = k(n) ≥ 1 and σ = σ(n) ∈ (0, 1) be parameters.
Assume that

1. log(`1/σ · a) ≤ min
(
|H|, |F|2|H|

)
.

2. a ≥ max
(

poly(k, S), poly(k,Vtime, g) · (poly(λ, |H|, `))1/σ
)

.

3. |H| ≥ log
(

poly
(
k, n, S,Ptime,Vtime

)
·
(
poly(λ, |H|, `)

)1/σ)
.

4. Ptime ≥ ` · a · polylog(|F|)

79

5. Vtime ≥ max(q, b · `).

Then, the language LMk·t has an εaug-unambiguous (qaug, `aug, aaug, baug,Ptimeaug,Vtimeaug)-PCIP
w.r.t. (gaug,H,F)-encoded provers and with input-oblivious queries, and the following parameters:

• qaug =
((
Vtime · k · g

)σ · poly(`, λ, |H|) +O(kσ · `O(1/σ) · g · log(k) · λ · poly(|H|))
)

.

• `aug = O(`/σ).

• aaug =
(
2a · kσ · log(k) · λ · `1/σ

)
.

• baug = max
(
b, k · poly(|H|, `1/σ, g, λ)

)
.

• Ptimeaug =
(
k · t+poly(k, S)+O

(
k ·Ptime ·1/σ ·`1/σ

)
+poly(Vtime, k, g,

(
poly(`, λ, |H|)

)1/σ
)
)

.

• Vtimeaug =
(

(Vtime · k · g)σ ·
(
poly(`, λ, |H|)

)
+ poly(k, b, |H|, `1/σ, g, λ)

)
.

• εaug =
(

(1
σ + 1) ·

(
ε+ 3 · 2−λ

)
+ poly(|H|)

|F|

)
.

• gaug =
(
g · 2kσ · log(k) · λ · `1/σ

)
.

Most importantly, observe that the verification time Vtimeaug and prover message length aaug

increase only by roughly a kσ factor (rather than the trivial k factor).

Proof of Lemma 8.3. Let M be a Turing machine that uses space at most S = S(n). For conve-

nience we use the notation Lt
def
= LMt and Lk·t

def
= LMk·t. Assume that Lt has an ε-unambiguous

(q, `, a, b,Ptime,Vtime)-PCIP (Pt,Vt) w.r.t. (g,H,F)-encoded provers and with input-oblivious
queries, where the parameters satisfy the requirements in the lemma statement.

As discussed in the overview, the high-level idea for designing the PCIP (Pt·k,Vt·k) is for Pt·k
to first specify k evenly-spaced intermediate configurations of the Turing machine. Given these
intermediate configurations, Vt·k wants to verify that k statement are in Lt, where the jth statement
refers to a computation of length t between two Turing machine configurations. Since Lt has an
unambiguous PCIP, we can use our batch verification lemma to obtain an efficient PCIP (PB,VB)
for verifying all k statements (the B stands for Batched). The latter PCIP has relatively many
queries, so rather than running it directly, we first apply the query reduction transformation on
it to derive a query-efficient PCIP (PBQ,VBQ) (where BQ stands for Batched and Query Reduced)
and then have the verifier and prover emulate (PBQ,VBQ).

The unambiguous PCIP for Lk·t, denoted by (Pk·t,Vk·t), is presented in Fig. 7.

Prescribed Completeness. Let x ∈ {0, 1}n, u, v ∈ {0, 1}O(S). First, note that since the pre-
scribed prover sends LDE(w̃t, . . . , w̃(k−1)·t) such that w̃j·t = wj·t for every j ∈ [k − 1], where wj·t
denotes the configuration of the Turing machineM after j ·t steps (on input x starting at configura-
tion u). By construction, it holds that ∀j ∈ [k−1], (x, w̃(j−1)·t, w̃j·t) ∈ Lt. We denote u = w0 = w̃0

and v = w̃k·t.
Consider first the case that (x, u, v) ∈ Lk·t (i.e., v = w̃k·t = wk·t). In this case, we have that((
x, w̃(j−1)·t, w̃j·t

)
j∈[k]

)
∈ L⊗kt . Thus, (PBQ,VBQ) are run on a k-tuple that belongs to L⊗kt and so

80

Unambiguous PCIP (Pk·t,Vk·t) for Lk·t
Parameters: σ ∈ (0, 1) and λ ≥ 1.
Prover’s Input: x ∈ {0, 1}n and configurations u, v ∈ {0, 1}O(S).
Verifier Input: implicit access to LDEF,H(x, u, v).

1. The prover Pk·t runs the Turing machineM starting at configuration u for k · t steps. Let wj be the
configuration of M after j steps, for every j ∈ {0, . . . , k · t}.

Pk·t sends LDEF,H(wt, w2t, . . . , w(k−1)·t) to Vk·t (where the message is padded with zeros to the overall
maximum message length in the protocol, see Remark 4.13).

2. The verifier Vk·t receivesa LDEF,H(w̃t, . . . , w̃(k−1)·t) (which is allegedly equal to
LDEF,H(wt, w2t, . . . , w(k−1)·t)) and checks the padding using the procedure in Remark 4.13.

Define w̃0
def
= u and w̃k·T

def
= v and observe that, using the procedure in Proposition 3.8, the verifier

Vk·t has implicit access to LDE(w̃0) and LDE(w̃k·T).

3. Let (PB,VB) be the batched PCIP for the language L⊗kt , obtained by applying Lemma 8.1 to the
language LT (which has the PCIP (Pt,Vt)), w.r.t. parameter σ and security parameter λ.

Let (PBQ,VBQ) be the query reduced PCIP (also for the language L⊗kt), obtained by applying
Lemma 8.2 to the PCIP (PB,VB), w.r.t. parameter σ′ = σ/c, where c ≥ 1 is some sufficiently
large constant.

The prover Pk·t and verifier Vk·t run (PBQ,VBQ) on (implicit) input the k-tuple(
LDEF,H

(
x, w̃(j−1)·t, w̃j·t

))
j∈[k], where Vk·t uses the procedure in Proposition 3.8 to answer

VBQ’s input queries. If VBQ accepts then Vk·t accepts and otherwise it rejects.

aRecall that we restrict our attention to encoded provers and so may assume that the received message is a low
degree extension encoding of some (possibly incorrect) configurations.

Figure 7: Unambiguous PCIP (Pk·t,Vk·t) for Lk·t

81

by the prescribed completeness of (PBQ,VBQ) (which follows from Lemmas 8.1 and 8.2) the verifier
VBQ accepts and so Vk·t also accepts.

In the other case (i.e., (x, u, v) 6∈ Lk·t), it must be that (x, w̃(k−1)·t, v) = (x, w̃(k−1)·T , w̃k·t) 6∈ Lt,
and so

((
x, w̃(j−1)·t, w̃j·t

)
j∈[k]

)
6∈ L⊗k. By the prescribed completeness of (PBQ,VBQ) (which follows

from Lemmas 8.1 and 8.2) the verifier VBQ rejects and so Vk·t also rejects.
As for the queries that Vk·t makes, in Step 2 it merely checks the padding, and so its queries

are input-oblivious. In Step 3, the verifier runs VBQ. By Lemmas 8.1 and 8.2, VBQ only makes
input-oblivious queries.

Unambiguity. Let P̃k·t be a (gaug,H,F)-encoded cheating prover, where the parameter gaug is
specified below (and in the lemma’s statement).

If P̃k·t deviates in the first round (i.e., in Step 1), then either it deviates on the padding
(in which case Vk·t rejects with probability 1 − 2−λ, see Remark 4.13) or it sends a message22

LDEF,H(w̃t, . . . , w̃(k−1)·t) such that there exists j∗ ∈ [k − 1] for which w̃j∗·t 6= wj∗·t. That is, w̃j∗·t
is not the correct configuration of the (deterministic) Turing machine M after j∗ · t steps, and so
(x, w̃(j∗−1)·t, w̃j∗·t) 6∈ Lt. Therefore,

(
LDE

(
x, w̃(j−1)·t, w̃j·t

))
j∈[k] 6∈ L

⊗k
t . In Step 3, if P̃k·t follows

the prescribed protocol (PBQ,VBQ), then, since it is run on a k-tuple that is not in L⊗kt , by the
prescribed completeness of (PBQ,VBQ), the verifier VamoQR rejects and so also Vk·t rejects.

Hence, we may assume that P̃k·t deviates in some round i∗ ∈ {2, . . . , `aug} (in addition to
possibly deviating in the first round). That is, it is deviating within the protocol (PBQ,VBQ) which
is an εBQ-unambiguous PCIP (for a value εBQ that will be specified below). Therefore, VBQ (and
hence also Vk·t) rejects with probability εBQ.

Complexity Measures. Recall that we assumed that:

1. log(`1/σ · a) ≤ min
(
|H|, |F|2|H|

)
.

2. a ≥ max
(

poly(k, S), poly(k,Vtime, g) · (poly(λ, |H|, `))1/σ
)

.

3. Ptime ≥ ` · a · polylog(|F|).

4. Vtime ≥ max(q, b · `).

and so the PCIP (Pt,Vt) satisfies the requirements of Lemma 8.1 and we obtain that the protocol
(PB,VB) is an εB-unambiguous (qB, `B, aB, bB,PtimeB,VtimeB)-PCIP for the language L⊗kT w.r.t.
(gB,H,F)-encoded provers and with input-oblivious queries, and the following parameters:

• εB = (1
σ + 1) ·

(
ε+ 3 · 2−λ

)
.

• qB = k2 · q · poly(g) ·
(
poly(`, λ, |H|)

)1/σ
.

• `B = O(`/σ).

• aB = a · 2kσ · log(k) · λ · `1/σ.

22Here we use the fact that P̃k·t is a (gaug,H,F)-encoded prover and so the message that it sends must be a low
degree extension encoding of some (possibly incorrect) configurations.

82

• bB = max
(
b, k · poly(|H|, `1/σ, g, λ)

)
.

• PtimeB = 2k · 1/σ · `1/σ · Ptime + Vtime · q · k2 · poly(g)
(
poly(`, λ, |H|)

)1/σ
.

• VtimeB = Vtime · q · k2 · poly(g) ·
(
poly(`, λ, |H|)

)1/σ
.

• gB = g · 2kσ · log(k) · λ · `1/σ.

By our assumptions that:

1. |H| ≥ log
(

poly
(
k, n, S,Ptime,Vtime

)
·
(
poly(λ, |H|, `)

)1/σ)
, and

2. Ptime ≥ ` · a · polylog(|F|)

it holds that

log
(

max(nB, `B, aB, bB,PtimeB,VtimeB)
)
≤ |H| (13)

where nB = n + O(k · S) is the relevant input length for the language L⊗kt . Also, qB = k2 · q ·
poly(g) ·

(
poly(`, λ, |H|)

)1/σ ≥ (|H|)σ′ (where σ′ = σ/c is the parameter used for the query reduction

transformation in the protocol, see Step 3 in Fig. 7) and so min(qB,VtimeB)1/σ
′ ≥ q

1/σ′

B ≥ |H|.
Hence, the PCIP (PB,VB) satisfies the requirements of Lemma 8.2. We conclude that (PBQ,VBQ)
is an εBQ-unambiguous (qBQ, `BQ, aBQ, bBQ,PtimeBQ,VtimeBQ)-PCIP for the language L⊗kt w.r.t.
(gBQ,H,F)-encoded provers and with input-oblivious queries, and the following parameters (recall
that σ′ = σ/c for a sufficiently large constant c):

1.

qBQ = poly(VtimeB)σ
′
+O(`B · gB · log |F|)

= (Vtime · k · g)σ · poly(`, λ, |H|) +O(kσ · `O(1/σ) · g · log(k) · λ · log |F| · 1/σ)

2.

`BQ = `B +O(1/σ′) = O(`/σ)

3.

aBQ = max
(
aB, poly(`B, bB,VtimeB, |H|)

)
=
(

2a · kσ · log(k) · λ · `1/σ
)

4.

bBQ = max (bB, O(|H| · log |F|)) = max
(
b, k · poly(|H|, `1/σ, g, λ)

)
5.

PtimeBQ = PtimeB + poly(qB, `B, bB,VtimeB)

= 2k · Ptime · 1/σ · `1/σ + poly(Vtime, k, g,
(
poly(`, λ, |H|)

)1/σ
)

83

6.

VtimeBQ = poly(VtimeB)σ
′
+ (poly(bB, `B, g, |H|))

= (Vtime · k · g)σ ·
(
poly(`, λ, |H|)

)
+ poly(k, b, |H|, `1/σ, g, λ)

7.

εBQ = εB +
poly(|H|)
|F|

=

(
1

σ
+ 1

)
·
(
ε+ 3 · 2−λ

)
+

poly(|H|)
|F|

8.

gBQ = gB = g · 2kσ · log(k) · λ · `1/σ

Note that by Proposition 3.8, for every j ∈ [k], every query to LDE
(
x, w̃(j−1)·T , w̃j·T

)
that the

verifier VBQ makes can be emulated Vk·t by making O(1) queries to the implicit input LDE(x, u, v)
and the message LDE(w̃T , . . . , w̃(k−1)·T) sent by the prover in the first round. This also adds an
overhead of poly(|H|) in verifier computation per query.

Accounting also for the prover Pk·t’s and verifier Vk·t’s complexity in Step 1, overall we obtain
that the protocol (Pk·t,Vk·t) is an εaug-unambiguous (qaug, `aug, aaug, baug,Ptimeaug,Vtimeaug)-PCIP
for the language L⊗kT w.r.t. (gaug,H,F)-encoded provers and with input-oblivious queries, and the
following parameters:

1.

qaug = O(qBQ) + ` · gBQ · poly(|H|)

=
((
Vtime · k · g

)σ · poly(`, λ, |H|) +O(kσ · `O(1/σ) · g · log(k) · λ · poly(|H|))
)

2.

`aug = 1 + `BQ = O(`/σ)

3.

aaug = max
(
poly(k, S), aBQ

)
=
(

2a · kσ · log(k) · λ · `1/σ
)

4.

baug = bBQ = max
(
b, k · poly(|H|, `1/σ, g, λ)

)
5.

Ptimeaug = k · t+ poly(S, k) + PtimeBQ

=
(
k · t+ poly(k, S) +O

(
k · Ptime · 1/σ · `1/σ

)
+ poly(Vtime, k, g,

(
poly(`, λ, |H|)

)1/σ
)
)

84

6.

Vtimeaug = VtimeBQ + qBQ · poly(|H|)

=
(

(Vtime · k · g)σ ·
(
poly(`, λ, |H|)

)
+ poly(k, b, |H|, `1/σ, g, λ)

)
7.

εaug = max
(
εBQ, 2

−λ
)

=
((1

σ
+ 1

)
·
(
ε+ 3 · 2−λ

)
+

poly(|H|)
|F|

)
8.

gaug = gBQ =
(
g · 2kσ · log(k) · λ · `1/σ

)
This completes the proof of Lemma 8.3.

8.2 An Unambiguous PCIP for Bounded Space Computations

In this section we construct an efficient unambiguous PCIPs w.r.t. encoded provers, for bounded
space computation (Theorem 10). Our main results, which are efficient interactive proofs for
bounded space computations (see Section 5) follow from Theorem 10 by using the transformations
between the different variants of interactive proofs that were shown in Section 4.

Theorem 10 (unambiguous PCIP for Bounded Space w.r.t. Encoded Provers). Let T = T (n)
and S = S(n) such that n ≤ T ≤ exp(n) and log(T) ≤ S ≤ poly(n). Let δ = δ(n) ∈ (0, 1/2) be
a parameter such that poly(1/δ) ≤ log(T). Let H = (Hn)n∈N and F = (Fn)n∈N be constructible
ensembles of finite fields such that F is an extension field of H, where |H| = log(T) · (1/δ)O(1/δ) and
|F| = poly(|H|).

Then, for every L ∈ DTISP(T, S) there exists an ε-unambiguous (q, `, a, b,Ptime,Vtime)-PCIP
w.r.t. (g,H,F)-encoded provers (and with input-oblivious queries) with the following parameters:

• ε = 1/polylog(T).

• q = TO(δ2).

• ` = (1/δ)O(1/δ).

• a = TO(δ) · poly(S).

• b = TO(δ).

• Ptime = T 1+O(δ) · poly(S).

• Vtime = TO(δ).

• g = TO(δ2).

85

Proof. Fix T and S as above and letM be a time T and space S Turing machine for L. We assume
thatM is an oblivious Turing machine, while noting that any time-T and space-S Turing machine
can be simulated by a time T ′ = O(T · S) and space S′ = O(S) oblivious23 Turing machine (and
we shall account for this additional overhead at the end of the proof). Recall that a configuration
w ∈ {0, 1}O(S) of a Turing machine includes the contents of all work tapes, the current time step,
the positions of the work and input heads and the current internal state. Let wstart ∈ {0, 1}O(S)

be the machine M’s initial configuration. We assume without loss of generality that M has a
unique accepting configuration wend. Furthermore, we assume without loss of generality that the
configurations wstart and wend are (fixed) strings such that individual points in their respective low
degree extensions LDEF,H(wstart) and LDEF,H(wend) can be evaluated in poly(H) time.24

Fix k
def
= T δ. Recall that for every t ≤ T , the language Lt, defined in Section 8.1, consists of

triplets (x, u, v) ∈ {0, 1}n×{0, 1}O(S)×{0, 1}O(S) such that on input x, the Turing machineMmoves
from configuration u to configuration v in exactly t steps. We will show how to directly construct
an unambiguous PCIP for L1 (i.e., t = 1). Then, using iterative applications of Lemma 8.3 we will
obtain PCIPs for L(ki) for larger and larger values of i ≤ logk(T), until ultimately, when i = logk(T),
we obtain a PCIP for the language LT . An unambiguous PCIP for the language L, as in the
theorem’s statement, follows by running the PCIP for LT on implicit input LDEF,H(x,wstart, wend),
where input queries are emulated using queries to LDEF,H(x), LDEF,H(wstart) and LDEF,H(wend), as
shown in Proposition 3.8.

We first construct a base PCIP for the language L1. This is essentially a PCIP for verifying single
steps of the Turing machine. We remark that no interaction with a prover is necessary for this PCIP
(i.e., the verifier can check membership in L1 by itself), but for technical convenience (specifically,
to facilitate the application of Lemma 8.3) we will introduce some “dummy” interaction.

Proposition 8.4 (PCIP for L1). The language L1 has an ε0-unambiguous (q0, `0, a0, b0,Ptime0,Vtime0)-
PCIP (P,V) w.r.t. (g0,H,F)-encoded provers and with input-oblivious queries, and parameters:

• q0 = poly(|H|).

• `0 = 1.

• a0 = poly (k, S).

• b0 = 0.

• Ptime0 = poly (k, S).

• Vtime0 = poly(|H|).

• ε0 = poly(|H|)
|F| .

23An oblivious Turing machine is a Turing machine whose input and work tape head positions are a fixed function
of the current time step (and in particular do not depend on the input). Furthermore, given a time step t ∈ [T], the
head positions in time t can be computed in polylog(T) time. We remark that more efficient simulation is known
[PF79].

24We can assume without loss of generality that both the initial configuration wstart and (unique) accepting configu-
ration wend are zero on all but O(log(T)) bits (at fixed locations) and the values of the non-zero bits can be computed
by a Turing machine in O(log(T)) time. Each point in their respective low degree extension is therefore a linear
combination (over the field F) of these O(log(T)) bits. The coefficients of this linear combination (and therefore also
its sum) can be computed in time poly(|H|, log|H|(S)) = poly(H), see Section 3.2.

86

• g0 = 1.

Proof. The verifier first reads the time step tu that appears as part of the configuration u. SinceM
is oblivious, given tu we can determine in time polylog(T) a set Ω ⊆ [O(S)], of size |Ω| = O(log(T)),
of coordinates on which u and v may differ (i.e., the time step, the position of the heads, the current
state and the O(1) locations in the work tapes on which the heads are currently positioned). The
verifier queries the coordinates in Ω and checks that they were updated correctly (i.e., in accordance
with the Turing machine’s specification). For all other coordinates we need to check that they are
equal in u and v. Since the low degree extension is a linear code, LDEF,H(u) − LDEF,H(v) =
LDEF,H(u−v) and so we only need to check that LDEF,H(u−v) is zero on all points outside Ω. The
latter can be done by running the procedure in Proposition 3.10, in poly(|H|) time, with an error

probability of at most
O(|H|·log|H|(S))

|F| ≤ poly(|H|)
|F| .

For technical convenience, since we want a PCIP that satisfies the requirements of Lemma 8.3,
we also have the prover send a single “dummy” message of length poly (k, S) (encoded using the low
degree extension encoding). To maintain unambiguity, the verifier just checks that message sent
from the prover is a low degree extension of the all-zeros string. Since we restrict our attention to
encoded provers, it suffices to do so by checking that a random point in the low degree extension
is zero, see Lemma 3.1.

We proceed to prove to the inductive step. Fix a security parameter λ = O(log(|F|)+log(1/δ)) =
O(log(T)).

Proposition 8.5. Let c ≥ 1 be a sufficiently large fixed constant. Then, for every k = k(n) ≥ 1 and
i ∈ {0, . . . , logk(T)}, the language L(ki) has an εi-unambiguous (qi, `i, ai, bi,Ptimei,Vtimei)-PCIP
(P,V) w.r.t. (gi,H,F)-encoded provers and with input-oblivious queries, and parameters:

1. qi =
(

(Vtime0)
δ2i · kO(δ) · 2poly(1/δ) · poly(λ1/δ, |H|)

)
.

2. `i =
(
c/δ2

)i
.

3. ai =
(
a0 ·

(
2kδ

2 · log(k) · λ · (c/δ2)1/δ3
)i)

.

4. bi =
(
k · poly

(
|H|,

(
kδ

2 · λ · (1/δ)1/δ
3
)i))

.

5. Ptimei =
(

(i+ 1) · ki · (1/δ)O(i/δ3) · poly
(
Ptime0, k, S, (Vtime0)

δ2/δ
)
· (λ · |H|)poly(1/δ)

)
.

6. Vtimei =
(

(Vtime0)
δ2i ·

(
poly

(
k, |H|, λ1/δ, (1/δ2)1/δ4

))∑i
j=0 δ

2j)
.

7. εi =
((

1
δ2

+ 1
)i · (ε0 + poly(|H|)

|F|

))
.

8. gi =
(
2kδ

2 · log(k) · λ · (c/δ2)1/δ3
)i

.

87

Proof. The proof is by induction. The base case i = 0 follows directly from Proposition 8.4.
Let i ∈ {1, . . . , logk(T)} and note that i ≤ logk(T) = 1/δ. Assume inductively that L(ki−1)

has an ε(i−1)-unambiguous (q(i−1), `(i−1), a(i−1), b(i−1),Ptime(i−1),Vtime(i−1))-PCIP (P(i−1),V(i−1))
w.r.t. (g(i−1),H,F) and with input-oblivious queries, where the parameters are as in the proposi-
tion’s statement (w.r.t. a sufficiently large fixed constant c).

We next show that the parameters of this PCIP satisfy the requirements of Lemma 8.3 with

parameters k, σ
def
= δ2 and security parameter λ (recall that we set λ = O(log(|F|) + log(1/δ)) =

O(log(T)) above). Indeed it holds that:
(note that here and below we extensively use our assumption that poly(1/δ) ≤ log(T))

log
(
`
1/σ
(i−1) · a(i−1)

)
= log

((
c/δ2

)i/σ · (a0 · (2kδ
2 · log(k) · λ · (c/δ2)1/δ3

)i))
= poly(1/δ) · log(T)

≤ min

(
|H|, |F|

2|H|

)

a(i−1) ≥ a0
= poly (k, S)

≥ max
(

poly(k, S), poly(k,Vtime(i−1), g(i−1)) ·
(
poly(λ, |H|, `(i−1))

)1/σ)
︷ ︸︸ ︷
(follows by the fact that k = T

δ
)

|H| = log(T) · (1/δ)O(1/δ)

≥ log
(

poly
(
k, n, S,Ptime(i−1),Vtime(i−1)

)
·
(
poly(λ, |H|, `(i−1))

)1/σ)
Ptime(i−1) ≥ `(i−1) · a(i−1) · polylog(|F|)

Vtime(i−1) ≥ max
(
q(i−1), b(i−1) · `(i−1)

)
By applying Lemma 8.3 with parameters as above, we conclude that the language L(ki) has an

εi-unambiguous (qi, `i, ai, bi,Ptimei,Vtimei)-PCIP w.r.t. (gi,H,F)-encoded provers and with input-
oblivious queries, and the following parameters:

1.

qi =
((
Vtimei−1 · k · gi−1

)σ · poly(`i−1, λ, |H|) +O(kσ · `O(1/σ)
i−1 · gi−1 · log(k) · λ · poly(|H|))

)
≤ (Vtimei−1)

δ2 · k2δ+2δ2 · (c/δ2)2/δ4 · poly(λ1/δ, |H|)

≤ (Vtime0)
δ2i · kO(δ) · 2poly(1/δ) · poly(λ1/δ, |H|)

2.

`i ≤ c · `i−1/σ = c ·
(
c/δ2

)i−1
/δ2 =

(
c/δ2

)i
88

3.

ai =
(

2ai−1 · kσ · log(k) · λ · `1/σi−1

)
≤ a0 ·

(
2kδ

2 · log(k) · λ · (c/δ2)1/δ3
)i−1

·
(
2kδ

2 · log(k) · λ · (c/δ2)1/δ3
)

= a0 ·
(

2kδ
2 · log(k) · λ · (c/δ2)1/δ3

)i
4.

bi = max
(
bi−1, k · poly(|H|, `1/σi−1, gi−1, λ)

)
= k · poly

(
|H|,

(
kδ

2 · λ · (1/δ)1/δ
3
)i)

5.

Ptimei = ki + poly(k, S) +O
(
k · Ptimei−1 · 1/σ · `1/σi−1

)
+ poly(Vtimei−1, k, gi−1,

(
poly(`i−1, λ, |H|)

)1/σ
)

≤ Ptimei−1 · k · (1/δ)O(1/δ3) + ki + poly
(
k, S, (Vtime0)

δ2/δ
)
· (λ · |H|)poly(1/δ)

≤ i · ki · (1/δ)O(i/δ3) · poly
(
Ptime0, k, S, (Vtime0)

δ2/δ
)
· (λ · |H|)poly(1/δ)

+ ki + poly
(
k, S, (Vtime0)

δ2/δ
)
· (λ · |H|)poly(1/δ)

≤ (i+ 1) · ki · (1/δ)O(i/δ3) · poly
(
Ptime0, k, S, (Vtime0)

δ2/δ
)
· (λ · |H|)poly(1/δ)

6.

Vtimei =
(

(Vtimei−1 · k · gi−1)σ ·
(
poly(`i−1, λ, |H|)

)
+ poly(k, bi−1, |H|, `1/σi−1, gi−1, λ)

)
≤ (Vtimei−1)

δ2 · poly
(
k, |H|, λ1/δ, (1/δ2)1/δ4

)
≤ (Vtime0)

δ2i ·
(

poly
(
k, |H|, λ1/δ, (1/δ2)1/δ4

))∑i
j=0 δ

2j

7.

εi =

(
1

σ
+ 1

)
·
(
εi−1 + 3 · 2−λ

)
+

poly(|H|)
|F|

=

(
1

δ2
+ 1

)
· εi−1 +

poly(|H|)
|F|

≤
(

1

δ2
+ 1

)i
·
(
ε0 +

poly(|H|)
|F|

)
8.

gi =
(
gi−1 · 2kσ · log(k) · λ · (`i−1)1/σ

)
≤
((

2kδ
2 · log(k) · λ · (c/δ2)1/δ3

)i−1 · 2kδ2 · log(k) · λ · (c/δ2)1/δ3
)

=
(
2kδ

2 · log(k) · λ · (c/δ2)1/δ3
)i

89

This completes the proof of Proposition 8.5.

In particular, from Proposition 8.5 we obtain that the language L(k(1/δ)) = LT has an ε(1/δ)-
unambiguous (q(1/δ), `(1/δ), a(1/δ), b(1/δ),Ptime(1/δ),Vtime(1/δ))-PCIP w.r.t. (g(1/δ),H,F)-encoded provers
and with input-oblivious queries, and the following parameters:

1. q(1/δ) = (Vtime0)
δ2/δ · kO(δ) · 2poly(1/δ) · poly(λ1/δ, |H|) = TO(δ2).

2. `(1/δ) =
(
c/δ2

)1/δ
= (1/δ)O(1/δ).

3. a(1/δ) = a0 ·
(

2kδ
2 · log(k) · λ · (c/δ2)1/δ3

)(1/δ)
= TO(δ) · poly(S).

4. b(1/δ) = k · poly

(
|H|,

(
kδ

2 · λ · (1/δ)1/δ
3
)1/δ)

= TO(δ).

5. Ptime(1/δ) = (1/δ) · k1/δ · (1/δ)O(1/δ4) · poly
(
Ptime0, k, S, (Vtime0)

δ2/δ
)
· (λ · |H|)poly(1/δ) =

T 1+O(δ) · poly(S).

6. Vtime(1/δ) = (Vtime0)
δ2/δ ·

(
poly

(
k, |H|, λ1/δ, (1/δ2)1/δ4

))∑(1/δ)
j=0 δ2j

= TO(δ).

7. ε(1/δ) =
(

1
δ2

+ 1
)1/δ · (ε0 + poly(|H|)

|F|

)
≤ 1

polylog(T) .

8. g(1/δ) =
(
2kδ

2 · log(k) · λ · (c/δ2)1/δ3
)1/δ

= TO(δ2).

Theorem 10 follows by transforming the foregoing PCIP for LT into a PCIP for L as explained
above (i.e., by emulating queries to the input LDEF,H(x,wstart, wend using Proposition 3.8).

To complete the proof, recall that we assumed that M is an oblivious Turing machine. In case
it is not, we can trivially make it oblivious while increasing its time complexity to T ′ = O(T · S)
and its space complexity to S′ = O(S) and the theorem follows.

Applying Proposition 4.14 to the PCIP of Theorem 10 we obtain Theorem 7. Corollaries 8 and 9
follow from Theorem 7 as shown in Section 5.

9 Batch Verification of Unambiguous Interactive Proofs

In this section we show a batch verification lemma for unambiguous interactive proofs, based on
the batch verification lemma for unambiguous PCIPs w.r.t. encoded provers (Lemma 8.1). We note
that to prove our main results (i.e., interactive proofs for bounded space computations) we use
Lemma 8.1 directly. We include the following batch verification lemma since we believe it may be
of independent interest.

Theorem 11 (Batch Verification Theorem for Unambiguous IPs). Let k = k(n) ≥ 1 and σ =
σ(n) > 0. Suppose that the language L has an ε-unambiguous (`, a, b,Ptime,Vtime)-IP (P,V) over
the alphabet {0, 1}. We assume that:

1. Ptime ≥ Vtime ≥ max
(
` · (a+ b), n

)
.

90

2. σ = σ(n) > max
(

1
log(Ptime) , ε

)
.

3. a ≥ poly(k,Vtimeσ) ·
(
poly(log(Ptime), `)

)1/σ
.

Then, there exists an εA-unambiguous (`A, aA, bA,PtimeA,VtimeA)-IP for the language L⊗k, with
the following parameters:

• εA = O(ε/σ).

• `A = O(`/σ).

• bA = max
(
b, k · poly(log(Ptime), (`/σ)(1/σ))

)
.

• aA = kσ · poly(a,Vtime) · (`/σ)(1/σ).

• PtimeA = k · Ptime · (`/σ)1/σ + poly
(
k,Vtime, `1/σ, (log(Ptime))1/σ

)
.

• VtimeA =
(
k · n+ Vtimeσ · k2 · poly(b) + kσ · poly(Vtime)

)
·
(
poly(`, log(Ptime))

)1/σ
.

Remark 9.1 (Batch Verification for Different Languages). Theorem 11 holds even w.r.t. k different
languages L1, . . . ,Lk, so long as they all have UIPs with the same parameters. The batched UIP
verifies that ∀j ∈ [k], xj ∈ Lj.

Remark 9.2 (Batch Verification using IP = PSPACE). In retrospect, the fact that we can batch
verify interactive proofs should not come as a surprise. An inefficient batch verification already
follows from the IP = PSPACE Theorem [LFKN92, Sha92], as described next. Suppose that we have
k interactive proofs, each with communication c, that we want to batch verify. Each such protocol
can be emulated by a Turing machine that runs in time 2O(c) and space O(c). Hence, all protocols
together can be emulated by a single Turing machine that runs all of these computations in time
roughly k · 2O(c) and space O(c) + log(k) (see e.g. [GH98]). Applying the IP = PSPACE Theorem
to the latter Turing machine yields a batched interactive proof in which the communication and
verifier running times are poly(c, log(k)).

Note however that this batch verification is very inefficient in its round complexity and the
honest prover’s running time. More specifically, the number of rounds of interaction in this batch
verification protocol is poly(c, log(k)), regardless of the number of rounds in the base protocol, and
the honest prover’s running time is 2poly(c,log k), also regardless of the prover’s efficiency in the base
protocol. In particular, this approach is not conducive towards our goals of obtaining a constant
number of rounds and an efficient prover. The main advantage of Theorem 6 is in obtaining a
batch verification that (roughly) preserves the round-complexity and the prover-efficiency of the
base protocols.

Proof of Theorem 11. Let (P,V) be an unambiguous IP for L as in the theorem’s statement. Let
H and F be constructible field ensembles such that F is an extension field of H, where |H| =
Θ (log(Ptime)/σ) = poly(log(Ptime)) and |F| = poly(|H|).

Observe that by our assumptions and our setting of H, log(max(n,Ptime,Vtime)) ≤ |H| ≤
poly(n, `, a)σ. Hence, by Proposition 4.15, L has an ε′-unambiguous (q′, `′, a′, b′,Ptime′,Vtime′)-
PCIP (P ′,V ′) over the alphabet F w.r.t (1,H,F)-encoded provers and with input-oblivious queries,
with the following parameters:

91

• q′ = Vtimeσ +O(` · log(|F|)).

• `′ = `+O(1/σ).

• a′ =
(
poly(a, `, b,Vtime, |H|)

)
.

• b′ = max (b,O(|H| · log |F|)).

• Ptime′ = Ptime + poly(n, a, `, b,Vtime, |H|).

• Vtime′ = Vtimeσ + (poly(`, b, |H|)).

• ε′ = ε+ poly(|H|)
|F| .

Fix λ = Θ(log(|F|)). Observe that by our setting of parameters it holds that:

• log
(
(`′)1/σ · poly(a′, `′, b′,Vtime′, |H|)

)
≤ min

(
|H|, |F|2|H|

)
.

• a′ ≥ poly(k, q′, g′) · (poly(λ, |H|, `′))1/σ.

• Ptime′ ≥ `′ · a′ · polylog(|F|).

Thus, we can apply Lemma 8.1, with respect to parameters k and σ and security parameter λ
to obtain that L⊗k has an εA-unambiguous (qA, `A, aA, bA,PtimeA,VtimeA)-PCIP w.r.t. (gA,H,F)-
encoded provers and with input-oblivious queries, with the following parameters:

• εA = O(ε/σ).

• qA = k2 · Vtimeσ ·
(
poly(`, log(Ptime))

)1/σ
.

• `A = O(`/σ).

• bA = max
(
b, k · poly(log(Ptime), (`/σ)(1/σ))

)
.

• aA = kσ · poly(a,Vtime) · (`/σ)(1/σ).

• PtimeA = k · Ptime · (`/σ)1/σ + poly
(
k,Vtime, `1/σ, (log(Ptime))1/σ

)
.

• VtimeA = Vtime2σ · k2 · poly(b) ·
(
poly(`, log(Ptime))

)1/σ
.

• gA = kσ · log(k) · (`/σ)O(1/σ) · polylog(log(Ptime)).

Theorem 11 follows by applying Proposition 4.14.

Acknowledgments

We thank Oded Goldreich, Shafi Goldwasser and Yael Kalai for invaluable and insightful conver-
sations and comments. We also thank Avi Wigderson for pointing out the extension to delegating
randomized computations (see Section 1.2).

Lastly, we thank the anonymous SICOMP reviewers for useful comments and suggestions.

92

References

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In ICALP (1), pages 152–163, 2010.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365–426, 2003.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In ITCS, pages 326–349, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120,
2013.

[BCG+16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Short interactive oracle proofs with constant query complexity, via com-
position and sumcheck. Cryptology ePrint Archive, Report 2016/324, 2016. http:

//eprint.iacr.org/.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size
zero knowledge from linear-algebraic pcps. In Theory of Cryptography - 13th Interna-
tional Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II, pages 33–64, 2016.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC, pages 315–
333, 2013.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In Ad-
vances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1988, Proceedings, pages 37–56, 1988.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput.,
36(4):889–974, 2006.

93

http://eprint.iacr.org/
http://eprint.iacr.org/

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Proceedings of the Forty-Seventh An-
nual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 439–448, 2015.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 474–482, 2017.

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[CD97] Ronald Cramer and Ivan Damg̊ard. Linear zero-knowledge - A note on efficient zero-
knowledge proofs and arguments. In STOC, pages 436–445, 1997.

[CFLS95] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. Probabilistically
checkable debate systems and nonapproximability of PSPACE-hard functions. Chicago
J. Theor. Comput. Sci., 1995, 1995.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 429–437, 2015.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation with
low communication. In TCC, pages 54–74, 2012.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.

[Dru11] Andrew Drucker. Efficient probabilistically checkable debates. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques - 14th In-
ternational Workshop, APPROX 2011, and 15th International Workshop, RANDOM
2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings, pages 519–529, 2011.

[Dru15] Andrew Drucker. New limits to classical and quantum instance compression. SIAM J.
Comput., 44(5):1443–1479, 2015.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically
checkable proofs. Inf. Comput., 189(2):135–159, 2004.

[FK97] Uriel Feige and Joe Kilian. Making games short (extended abstract). In Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso,
Texas, USA, May 4-6, 1997, pages 506–516, 1997.

94

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 626–645,
2013.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

[GGR15] Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity for context-
free languages and read-once branching programs - (extended abstract). In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part I, pages 666–677, 2015.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205–214, 1998.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27, 2015.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without
rejection problem from designated verifier cs-proofs. IACR Cryptology ePrint Archive,
2011:456, 2011.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge Uni-
versity Press, 2008.

[Gol11] Oded Goldreich. Bravely, moderately: A common theme in four recent works. In Studies
in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi
Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu
Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, pages 373–389.
2011.

[Gol16] Oded Goldreich. Lecture notes on low degree tests, 2016.

95

[GR15] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015,
Rehovot, Israel, January 11-13, 2015, pages 133–142, 2015.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT, pages 321–340, 2010.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf.
Process. Lett., 43(4):169–174, 1992.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear
length. J. ACM, 53(4):558–655, 2006.

[GVW02] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, pages 99–108, 2011.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[HN10] Danny Harnik and Moni Naor. On the compressibility of NP instances and crypto-
graphic applications. SIAM J. Comput., 39(5):1667–1713, 2010.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 21–30,
2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for Turing machines with unbounded memory. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 419–428, 2015.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In ICALP, pages 536–547, 2008.

[KR09] Yael Kalai and Guy N. Rothblum. Constant-round interactive proofs for NC1. Unpub-
lished observation, 2009.

[KR15] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [extended ab-
stract]. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages
422–442, 2015.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In STOC, pages 565–574, 2013.

96

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In TCC, pages 169–189, 2012.

[Mei13] Or Meir. IP = PSPACE using error-correcting codes. SIAM J. Comput., 42(1):380–403,
2013.

[Mei16] Or Meir. Combinatorial pcps with short proofs. Comput. Complex., 25(1):1–102, 2016.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436–453, 1994.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158,
1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, 1979.

[PR17] Omer Paneth and Guy N. Rothblum. On zero-testable homomorphic encryption and
publicly verifiable non-interactive arguments. In Theory of Cryptography - 15th Inter-
national Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Pro-
ceedings, Part II, pages 283–315, 2017.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify
in public: Verifiable computation from attribute-based encryption. In TCC, pages 422–
439, 2012.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs.
In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
23-25 May 1994, Montréal, Québec, Canada, pages 194–203, 1994.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[Rot09] Guy N. Rothblum. Delegating computation reliably: paradigms and constructions. PhD
thesis, Massachusetts Institute of Technology, 2009.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 49–62, 2016.

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification
for UP. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018,
San Diego, CA, USA, pages 22:1–22:23, 2018.

97

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RVW00] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 3–13, 2000.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In STOC, pages 793–802, 2013.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[Sud95] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Ap-
proximation Problems, volume 1001 of Lecture Notes in Computer Science. Springer,
1995.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them. Commun. ACM, 58(2):74–84, 2015.

[Wol65] Jack K. Wolf. On codes derivable from the tensor product of check matrices. IEEE
Trans. Information Theory, 11(2):281–284, 1965.

98

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

