
On the Sensitivity Conjecture

Avishay Tal ∗

April 18, 2016

Abstract

The sensitivity of a Boolean function f : {0, 1}n → {0, 1} is the maximal number of neighbors
a point in the Boolean hypercube has with different f -value. Roughly speaking, the block
sensitivity allows to flip a set of bits (called a block) rather than just one bit, in order to change
the value of f . The sensitivity conjecture, posed by Nisan and Szegedy (CC, 1994), states
that the block sensitivity, bs(f), is at most polynomial in the sensitivity, s(f), for any Boolean
function f . A positive answer to the conjecture will have many consequences, as the block
sensitivity is polynomially related to many other complexity measures such as the certificate
complexity, the decision tree complexity and the degree. The conjecture is far from being
understood, as there is an exponential gap between the known upper and lower bounds relating
bs(f) and s(f).

We continue a line of work started by Kenyon and Kutin (Inf. Comput., 2004), studying
the `-block sensitivity, bs`(f), where ` bounds the size of sensitive blocks. While for bs2(f) the
picture is well understood with almost matching upper and lower bounds, for bs3(f) it is not. We
show that any development in understanding bs3(f) in terms of s(f) will have great implications
on the original question. Namely, we show that either bs(f) is at most sub-exponential in s(f)
(which improves the state of the art upper bounds) or that bs3(f) ≥ s(f)3−ε for some Boolean
functions (which improves the state of the art separations).

We generalize the question of bs(f) versus s(f) to bounded functions f : {0, 1}n → [0, 1]
and show an analog result to that of Kenyon and Kutin: bs`(f) = O(s(f))`. Surprisingly, in
this case, the bounds are close to being tight. In particular, we construct a bounded function
f : {0, 1}n → [0, 1] with bs(f) ≥ n/ log n and s(f) = O(log n), a clear counterexample to the
sensitivity conjecture for bounded functions.

Finally, we give a new super-quadratic separation between sensitivity and decision tree com-
plexity by constructing Boolean functions with DT(f) ≥ s(f)2.115. Prior to this work, only
quadratic separations, DT(f) = s(f)2, were known.

∗Institute for Advanced Study, Princeton, NJ. Email: avishay.tal@gmail.com. Research supported by the Simons
Foundation, and by the National Science Foundation grant No. CCF- 1412958. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the
National Science Foundation.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 62 (2016)

1 Introduction

A long-standing open problem in complexity and combinatorics asks what is the relationship be-
tween two complexity measures of Boolean functions: the sensitivity and block-sensitivity. We first
recall the definition of the two complexity measures.

Definition 1.1. Let f : {0, 1}n → {0, 1} be a Boolean function and x ∈ {0, 1}n be a point. The
sensitivity of f at x is the number of neighbors y of x in the Hamming cube such that f(y) 6= f(x),
i.e., s(f, x) , |{i ∈ [n] : f(x) 6= f(x⊕ ei)}|.1 The (maximal) sensitivity of f is defined as s(f) ,
maxx∈{0,1}n s(f, x).

Definition 1.2. Let f : {0, 1}n → {0, 1} be a Boolean function and x ∈ {0, 1}n be a point. For a
block B ⊆ [n], denote by 1B ∈ {0, 1}n its characteristic vector, i.e., (1B)i = 1 iff i ∈ B. We say
that a block B is sensitive for f on x if f(x) 6= f(x⊕1B). The block-sensitivity of f at x x ∈ {0, 1}n
is the maximal number of disjoint sensitive blocks for f at x, i.e.,

bs(f, x) = max{r : ∃ disjoint B1, B2, . . . , Br ⊆ [n] , f(x) 6= f(x⊕ 1Bi)} .

The (maximal) block-sensitivity of f is defined as bs(f) , maxx∈{0,1}n bs(f, x).

For shorthand, we will denote (x ⊕ ei) and (x ⊕ 1B) by (x + ei) and (x + B) respectively. By
definition, the block-sensitivity is at least the sensitivity by considering only blocks of size 1. The
sensitivity conjecture, posed by Nisan and Szegedy [NS94], asks if a relation in the other direction
holds as well.

Conjecture 1.3 (The Sensitivity Conjecture). ∃d ∀f : bs(f) ≤ s(f)d.

A stronger variant of the conjecture states that d can be taken to be 2. Despite much work on
the problem [Nis89, NS94, Rub95, KK04, Cha11, Vir11, AS11, HKP11, Bop12, ABG+14, AP14,
AV15, APV15, GKS15, Sze15, GNS+16] there is still an exponential gap between the best known
separations and the best known relations connecting the two complexity measures.

Known Separations. An interesting example due to Rubinstein [Rub95] shows a quadratic
separation between the two measures: bs(f) = 1

2 · s(f)2. This example was improved by [Vir11]
and then by [AS11] to bs(f) = 2

3 · s(f)2 · (1− o(1)) which is current state of the art.

Known Relations. Simon [Sim83] proved (implicitly) that bs(f) is at most 4s(f) ·s(f). The upper
bound was improved by Kenyon and Kutin [KK04] who showed that bs(f) ≤ O(es(f) ·

√
s(f)).

Recently, Ambainis et al. [ABG+14] improved this bound to bs(f) ≤ 2s(f)−1 · s(f). Even more
recently, Ambainis et al. [APV15] improved this bound slightly to bs(f) ≤ 2s(f)−1 · (s(f)− 1/3).

To sum up, while the best known upper bound on the block-sensitivity in terms of sensitivity
is exponential, the best known lower bound is quadratic. Indeed, we seem far from understanding
the right relation between the two complexity measures.

1.1 `-block sensitivity

All mentioned examples that exhibit quadratic separations between the sensitivity and block sen-
sitivity ([Rub95, Vir11, AS11]) have the property that the maximal block sensitivity is achieved on
blocks of size at most 2. For this special case, Kenyon and Kutin [KK04] showed that the block
sensitivity is at most 2 · s(f)2. Hence, these examples are essentially tight for this subcase.

1ei is the vector whose i-th entry equals 1 and all other entries equal 0.

1

Kenyon and Kutin introduced the notion of `-block sensitivity (denoted bs`(f)): the maximal
number of disjoint sensitive blocks where each block is of size at most `. Note that without
loss of generality we may consider only sensitive blocks that are minimal with respect to set-
inclusion (since otherwise we could of picked smaller blocks that are still disjoint). A well-known
fact (cf. [BdW02, Lemma 3]) asserts that any minimal sensitive block for f is of size at most s(f),
thus bs(f) = bss(f)(f). Kenyon and Kutin proved the following inequalities relating the `-block
sensitivity of different `-s:

bs`(f) ≤ 4

`
· s(f) · bs`−1(f) (1)

bs`(f) ≤ e

(`− 1)!
· s(f)` (2)

for all 2 ≤ ` ≤ s(f). Plugging ` = s(f) gives the aforementioned bound bs(f) ≤ O(es(f) ·
√
s(f)).

1.2 Our Results

1. In Section 2, we refine the argument of Kenyon and Kutin giving a better upper bound on
the `-block sensitivity in terms of the (`− 1)-block sensitivity. We show that

bs`(f) ≤ e

`
· s(f) · bs`−1(f) (3)

improving the bound in Eq. (1). On the other hand, Kenyon and Kutin gave examples with
bs`(f) ≥ 1

` ·s(f) · bs`−1(f). Hence, Eq. (3) (and in fact, also Eq. (1)) is tight up to a constant.
Interestingly, our analysis uses (a very simple) ordinary differential equation.

2. In Section 3, we put focus on understanding bs3(f) in terms of the sensitivity. We show that
an upper bound of the form bs3(f) ≤ s(f)3−ε for some constant ε implies a sub-exponential

upper bound for the sensitivity conjecture: ∀f : bs(f) ≤ 2s(f)
1−δ

, for δ > 0. On the other
hand, the best known separation (i.e., the aforementioned example by [AS11]) gives examples
with bs3(f) ≥ bs2(f) ≥ Ω(s(f)2). Thus, improving either the upper or lower bound for bs3(f)
in terms of s(f) will imply a breakthrough in our understanding of the sensitivity conjecture.

3. In Section 4, we consider an extension of the sensitivity conjecture to bounded functions
f : {0, 1}n → [0, 1]. We show that while Kenyon and Kutin’s approach works in this model, it
is almost tight, i.e., we give functions for which bs`(f) = Ω((s(f)/`)`). In particular, we give
a function with sensitivity O(log n) and block sensitivity Ω(n/ log n) – a clear counterexample
for the sensitivity conjecture in this model.

4. In Section 5, we find better-than-quadratic separations between the sensitivity and the de-
cision tree complexity. We construct functions based on minterm cyclic functions (as coined
by Chakraborty [Cha11]), that were found using computer search. In particular, we give an
infinite family of functions {fn}n∈I with DT(fn) = n and s(fn) = O(n0.48). In addition, we
give an infinite family of functions {gn}n∈I with s(gn) = O(DT(gn)0.473).

2 Improving The Bound on bs`

In this section, we improve the bound on bs`(f) as a function of bs`−1(f) and s(f). We start by
recalling the analysis of [KK04], and then improve it using new ideas.

2

2.1 Kenyon-Kutin Argument

Let x ∈ {0, 1}n be a point in the Boolean hypercube and B a collection of disjoint minimal blocks
such that f(x) 6= f(x + B) for any B ∈ B. We assign weights w1 ≥ . . . ≥ w` ≥ 1 to sets of size
1, 2, . . . , ` respectively, and we seek to maximize t(x,B) =

∑
B∈B w|B|. Since all weights are at least

1, we have t(x,B) ≥ |B|. Thus, upper bounding the value of t yields an upper bound on the `-block
sensitivity.

We choose w1 = w2 = . . . = w`−1 = w and w` = 1 for some parameter w ≥ 1. Let (x,B) be a
point and a collection of disjoint minimal sensitive blocks maximizing t(·, ·) w.r.t. the parameter
w. Let m1, . . . ,m` be the number of blocks of size 1, . . . , ` respectively in B. We have t(x,B) =
w · (m1 + . . .+m`−1) +m`.

Lemma 2.1. Suppose (x,B) maximize t(·, ·) w.r.t. w ≥ 1 and let m1, . . . ,m` be the number of
blocks of size 1, . . . , ` in B respectively. Then,

m` · (`w − s(f)) ≤ (m1 + . . .+m`−1) · w · s(f) .

Proof. We would derive the above inequality by examining the value of t(·, ·) on neighbors of x,
and using the fact that all of these values are smaller or equal to t(x,B).

Let B ∈ B be a block of size `. By the minimality of the block B, it means that any subset of
B does not flip the value of f on x. Thus, for each i ∈ B, we have f(x + ei) = f(x). In addition,
the block B′ = B \ {i} is a sensitive block (of size `− 1) for x+ ei, but is not a sensitive block for
x. Consider all such ` ·m` neighbors y = x+ ei where i ∈ B,B ∈ B and |B| = `. Denote by Ai the
collection of all blocks B′′ in B such that f(y) = f(y + B′′) (i.e., we are only considering disjoint
blocks that were sensitive on x and minimal). Looking at a specific block B′′ ∈ B, we count for how
many y’s it is not a sensitive block, i.e., f(y) = f(y+B′′). Since f(x) = f(y) and f(x) 6= f(x+B′′)
the block B′′ is not sensitive for y = x + ei if and only if f(x + B′′) 6= f(x + B′′ + ei). In other
words, for B′′ to be non-sensitive on y = x+ ei, i must be a sensitive coordinate of x+B′′. Hence,
each block B′′ ∈ B may appear in at most s(f) of the sets Ai.

By our design for y = x+ei the block B′ = B\{i} and the blocks in B′′ ∈ B\Ai are sensitive. In
order to show that they are disjoint it is enough to show that B ∈ Ai. This is indeed the case since
x+ei+B = x+B′ and by the minimality of B, we have f(x+ei+B) = f(x+B′) = f(x) = f(x+ei),
hence B is not a sensitive block for x+ei. We got that {B′}∪(B\Ai) is a family of disjoint sensitive
blocks for x+ ei.

Using the fact that t(x,B) is maximal, and summing over all neighbors of x considered above,
we get

` ·m` · t(x,B) ≥
∑

i∈B,|B|=`

t (x+ ei, {B \ {i}} ∪ (B \ Ai))

≥
∑

i∈B,|B|=`

w`−1 + t(x,B)−
∑

B′′∈Ai

w|B′′|

 .

Rearranging we get

` ·m` · w`−1 ≤
∑

i∈B,|B|=`

∑
B′′∈Ai

w|B′′| =
∑
B′′

w|B′′| · |{(i, B) : i ∈ B, |B| = `, B′′ ∈ Ai}| ≤
∑
B′′

w|B′′| · s(f) .

Substituting w1, . . . , w`−1 with w and w` with 1 and rearranging gives

m` · (` · w − s(f)) ≤ (m1 + . . .+m`−1) · w · s(f)

which completes the proof.

3

In order to get something meaningful from Lemma 2.1 we need ` · w − s(f) to be greater than
0. Writing w as α · s(f)/`, this means that α > 1. So we can choose any α > 1 and get that the
optimal (m1, . . . ,m`) for that α fulfills the following inequality:

m` ≤ (m1 + . . .+m`−1) ·
α · s2/`
α · s− s

= (m1 + . . .+m`−1) ·
s

`
· α

α− 1
.

Overall we got that the maximal value of t(·, ·) with respect to w = α
` · s(f) is at most the value of

following linear program:

maximize α·s(f)
` · (m1 + . . .+m`−1) +m`

subject to m` ≤ α
α−1 ·

s(f)
` · (m1 + . . .+m`−1)

(m1 + . . .+m`−1) ≤ bs`−1(f)
mi ≥ 0 for i = 1, . . . , `

(4)

Substituting x1 , (m1+. . .+m`−1)/bs`−1 and x2 , m`/(bs`−1·s(f)/`) gives the following equivalent
linear program:

maximize s(f)
` · bs`−1(f) · (α · x1 + x2)

subject to x2 ≤ α
α−1 · x1

x1 ≤ 1
xi ≥ 0 for i = 1, 2

(5)

The value of this linear program is s(f)
` · bs`−1(f) · (α + α

α−1) (achieved at x1 = 1 and x2 = α
α−1).

This value attains its minimum at α = 2, which gives a value of s(f)
` · bs`−1(f) · 4 to the LP.

What does that mean? It means that (m1 + . . . + m`−1) · s(f) · 2/` + m` ≤ s(f)
` · bs`−1 · 4

for any (m1, . . . ,m`) disjoint sensitive blocks of size (1, . . . ,m`) respectively. In particular, since

s(f) ·2/` ≥ 1 (because ` ≤ s(f) WLOG) this inequality bounds bs`(f) from above by s(f)
` · bs`−1 ·4.

2.2 Improved Bounds

Kenyon-Kutin [KK04] stopped at this point, seemingly getting the best bound this analysis could
offer. This is indeed true if we use only one choice of α, however, one can consider using several
different α’s to get a better bound, as we do next.

For starters, we show that using two different weights α1, α2 gives better bounds on bs`(f) in
terms of the bs`−1(f) and s(f). The idea is that the solution for the linear program for a certain
α1 implies a new equation for the feasible region of the linear program for α2.

Recall that choosing α1 = 2 implies that 2 · x1 + x2 ≤ 4. We now rewrite the linear program
for an arbitrary α adding this constraint.

maximize s(f)
` · bs`−1(f) · (α · x1 + x2)

subject to x2 ≤ α
α−1 · x1

2 · x1 + x2 ≤ 4
x1 ≤ 1
xi ≥ 0 for i = 1, 2

(6)

One can check that for α2 = 4
3 the optimal value for the LP is 32

9 ·
s(f)
` · bs`−1(f). One can

now get a new constraint from the linear program for α2 and continue repeating this process by
choosing a sequence of α’s. Instead of defining a sequence of α’s we will use a continuous strategy.

4

Theorem 2.2. ∀f : bs`(f) ≤ e
` · s(f) · bs`−1(f).

Proof. We calculate the optimal value for α given an optimal value for α+ δ, for an infinitely small
δ > 0. Let OPT(α) be the optimal value of t(·, ·) for parameter α, and in order to avoid carrying

the multiplicative factor of bs`−1(f) · s(f)` let F (α) = OPT(α)
bs`−1(f)·s(f)/` . The value of the next linear

program upper bounds F (α):

maximize α · x1 + x2

subject to x2 ≤ α
α−1 · x1

x1 ≤ 1
xi ≥ 0 for i = 1, 2

(7)

By the definition of F (α) as the normalized optimal value of t(·, ·) w.r.t. α we get a new linear
equation α · x1 + x2 ≤ F (α) for all feasible (x1, x2). We wish to invoke the equation given by α+ δ
on the linear program upper-bounding F (α), for an infinitely small δ > 0.

F (α) ≤



maximize α · x1 + x2

subject to x2 ≤ α
α−1 · x1

(α+ δ) · x1 + x2 ≤ F (α+ δ)
x1 ≤ 1
xi ≥ 0 for i = 1, 2

(8)

Let (xOPT
1 , xOPT

2) be the optimal point for the above LP. In the above LP, x2 is upper bounded by
two linear functions on x1:

x2 ≤
α

α− 1
· x1 and x2 ≤ F (α+ δ)− (α+ δ) · x1 .

Since one linear function is increasing and the other is decreasing, the optimal value is achieved
either at the intersection of these two lines or at x1 = 1. The intersection point of the two lines,
denoted by xint1 is given by

xint1 =
F (α+ δ)
α
α−1 + α+ δ

.

xint1 is smaller than 1 for α > 1 since F (α+ δ) ≤ α+δ
(α+δ)−1 + α+ δ and x

x−1 is decreasing for x > 1.
After the intersection, x2 decreases faster than α ·x1 increases, hence the optimal value of the LP is
achieved at the intersection, xOPT

1 = xint1 . The optimal value of x2 is given by xOPT
2 = α

α−1 · x
OPT
1 ,

which yields

F (α) ≤ xOPT
1 · α+ xOPT

2 = xOPT
1 ·

(
α

α− 1
+ α

)
=

F (α+ δ)
α
α−1 + α+ δ

·
(

α

α− 1
+ α

)
= F (α+ δ) ·

(
1− δ

α
α−1 + α+ δ

)
Rearranging the equation gives

F (α+ δ)− F (α)

δ
≤ F (α+ δ)

α
α−1 + α+ δ

,

5

and as δ tends to 0 we get F ′(α) ≤ F (α)
α
α−1

+α = F (α)· α−1
α2 . The solution for this ODE is F (α) ≤ α·e

1
α ·c

for some constant c > 0. Taking an initial condition on α� 1: F (α) ≤ α+ α
α−1 gives

c ≤ F (α)

α · e
1
α

≤
α · (1 + 1

α−1)

α · e
1
α

→
α→∞

1 .

Hence, F (α) ≤ α·e
1
α . When α approaches 1 we get limα→1+ F (α) ≤ e, thus bs`(f) ≤ e

` ·s(f)·bs`−1(f)
completing the proof.

As a special case, Theorem 2.2 implies that bs2(f) ≤ e
2 · s(f)2, which leads us to the following

open problem.

Open Problem 1. What is the smallest constant c > 0 such that bs2(f) ≤ c · s(f)2 for all Boolean
functions?

An example with bs2(f) = 2
3 · s(f)2 · (1− o(1)) is given in [AS11], thus 2

3 ≤ c ≤
e
2 .

3 Understanding bs3(f) is Important

As the upper and lower bounds for bs2(f) are almost matching, it seems that the next challenge is
understanding the asymptotic behavior of bs3(f). A more modest challenge is the following.

Open Problem 2. Improve either the upper or lower bound on bs3(f).

Recall that the upper bound on bs3(f) is O(s(f)3) (see Eq.(2)) and the lower bound is (2/3) ·
s(f)2 ·(1−o(1)). It is somewhat surprising that any slight improvement on either the lower or upper
bound on bs3 would be a significant step forward in our understanding of the general question. The
following claim shows that a slightly better than quadratic gap on a single example implies a better
than quadratic gap on an infinite family of examples.

Claim 3.1. If there exists a function such that bs3(f) > s(f)2 then there exists a family of functions
{fn}n∈N with bs(fn) > s(fn)2+ε for some constant ε > 0 (dependant on f).

This family is simply f1 = f , fn = f ◦ fn−1 where ◦ stands for Boolean function composition
as in [Tal13]. Next, we prove a theorem exhibiting the self-reducibility nature of the problem.

Theorem 3.2. Let k, `, a ∈ N such that ` > k and let T : N→ R be a monotone function.
If ∀f : bs`(f) ≤ T (bsk(f)), then ∀f ′ : bs`a(f ′) ≤ T (bska(f

′)) .

Proof. Assume by contradiction that there exists a function f ′ such that bs`a(f
′) > T (bska(f

′)). We
will show that there exists a function f such that bs`(f) > T (bsk(f)). We shall assume WLOG that
the maximal bs`a of f ′ is achieved on ~0. Let B1, B2, . . . , Bm be a family of disjoint sensitive blocks
for f at ~0, each Bi of size at most `a. Split every block Bi to ` sets Bi,1, . . . , Bi,` of size at most a.
The function f will have a variable xi,j corresponding to every set Bi,j of size at most a. The value
of f(x1,1, . . . , xm,`) is defined to be the value of f ′ where the variable in each Bi,j equal xi,j , and
all other variables equal 0. bs`(f,~0) ≥ bs`a(f

′,~0), since for any sensitive block B1, . . . , Bm for f ′,
there exists a corresponding sensitive block B′1, . . . , B

′
m for f of size `, where B′i = {xi,j : j ∈ [`]}.

On the other hand, any set of disjoint sensitive blocks of size at most k for f corresponds to a
disjoint set of sensitive blocks of size at most ka for f ′. Thus bsk(f) ≤ bska(f ′), giving

T (bsk(f)) ≤ T (bska(f
′)) < bs`a(f

′) ≤ bs`(f) ,

where we used the monotonicity of T in the first inequality.

6

Using Theorem 3.2 we get that any upper bound of the form bs`(f) ≤ s(f)`−ε implies a sub-
exponential upper bound on bs(f) in terms of s(f).

Theorem 3.3. Let k ∈ N, ε > 0 be constants. If for all Boolean functions bsk(f) ≤ s(f)k−ε, then

for the constant γ = log(k−ε)
log(k) < 1 it holds that bs(f) ≤ 2O(s(f)γ ·log s(f)) for all f .

For example, Theorem 3.3 shows that if ∀f : bs3(f) ≤ s(f)2, then ∀f : bs(f) ≤ 2O(s0.631·log(s)).

Proof. Using the hypothesis and Theorem 3.2 one can show by induction on t that

∀f : bskt(f) ≤ s(f)(k−ε)
t
. (9)

The base case t = 1 is simply the hypothesis. We assume the claim is true for 1, . . . , t − 1,
and show the claim is true for t. Using Theorem 3.2 with T (x) = xk−ε and a = kt−1 we get
bskt(f) ≤ T (bskt−1(f)) = (bskt−1(f))k−ε. By induction bskt−1(f) ≤ s(f)(k−ε)

t−1
. Hence, we get

bskt(f) ≤ s(f)(k−ε)
t
, which finishes the induction proof.

Fix f and let s = s(f). Recall that bs(f) = bss(f) since each minimal block that flips the value
of f is of size at most s. Hence,

bs(f) = bss(f) = bskdlogk(s)e(f)

≤ s(k−ε)
dlogk(s)e ≤ s(k−ε)

logk(s)+1
= 2log(s)·s

log(k−ε)/ log(k)·(k−ε) = 2O(sγ ·log(s)) .

4 The Sensitivity Conjecture for Bounded Functions

In this section, we generalize the definitions of sensitivity and block sensitivity to bounded functions
f : {0, 1}n → [0, 1], extending the definitions for Boolean functions. We generalize the result of
Kenyon and Kutin to this setting (after removing some trivial obstucles). Given that, one may
hope that the sensitivity conjecture holds also for bounded functions, i.e., that the block-sensitivity
is at most polynomial in the sensitivity. However, we give a counterexample to this question, by
constructing functions on n variables with sensitivity O(log n) and block sensitivity n/ log(n). In
fact, we show that the result of Kenyon and Kutin is essentially tight by giving examples for which
bs`(f) = n/` and s(f) = O(` · n1/`) for any ` ≤ log n.

We begin by generalizing the definitions of sensitivity and block-sensitivity. For f : {0, 1}n →
[0, 1] and x ∈ {0, 1}n, we denote the sensitivity of f at a point x by

s(f, x) =
n∑
i=1

|f(x)− f(x⊕ ei)|. (10)

Similarly we define the block sensitivity and `-block sensitivity as

bs(f, x) = max

{∑
i

|f(x)− f(x+Bi)| : B1, . . . , Bk ⊆ [n] are disjoint

}
. (11)

and

bs`(f, x) = max

{∑
i

|f(x)− f(x+Bi)| : B1, . . . , Bk ⊆ [n] are disjoint and ∀i.|Bi| ≤ `

}
.

7

Naturally we denote by s(f) = maxx s(f, x), by bs(f) = maxx bs(f, x) and by bs`(f) = maxx bs`(f, x).
It is easy to see that for a Boolean function these definitions match the standard definitions of sen-
sitivity, block sensitivity and `-block sensitivity.

We wish to prove an analog of Kenyon-Kutin result, showing that bs`(f) ≤ c` · s(f)`. However,
stated as is the claim is false for a “silly” reason. Take any Boolean function f with a gap between
the sensitivity and the `-block sensitivity and take g(x) = f(x)/s(f). Then, we get s(g) = 1 and
bs`(g) = bs`(f)/s(f). As there are examples with bs2(f) = n/2 and s(f) =

√
n, we get that

bs2(g) =
√
n/2 while s(g) = 1, where n grows to infinity. This seems to rule out any relation

between the sensitivity and block sensitivity (and even 2-block sensitivity) in the case of bounded
functions. To overcome this triviality, we insist that the block sensitivity is close to n, or alterna-
tively that changing each block dramatically changes the value of the function. Surprisingly, under
this requirement we are able to retrieve known relations between sensitivity and block sensitivity
that were established in the Boolean setting by Kenyon and Kutin [KK04].

Theorem 4.1. Let c > 0 and f : {0, 1}n → [0, 1]. Assume that there exists a point x0 ∈ {0, 1}n
and disjoint blocks B1, . . . , Bk of size at most ` such that |f(x0) − f(x0 + Bi)| ≥ c for all i ∈ k.
Furthermore, assume that 2 ≤ ` ≤ log(k). Then, s(f) ≥ Ω(k1/` · c).

We get the following corollary, whose proof is deferred to Appendix A.

Corollary 4.2. Let f : {0, 1}n → [0, 1] with bs(f) ≥ n/`. Then, s(f) ≥ Ω(n1/2`/`).

Unlike in the Boolean case, we are able to show that Theorem 4.1 is essentially tight! That is,
for any ` and n we have a construction with bs`(f) ≥ n/` and s(f) = O(` · n1/`). In particular,
picking ` = log(n) gives an exponential separation between block sensitivity (which is at least
n/ log n) and sensitivity (which is O(log n)).

Theorem 4.3. Let `, n ∈ N with 2 ≤ ` ≤ n. Then, there exists a function h : {0, 1}n → [0, 1] with
bs`(h) ≥ bn/`c and s(h) ≤ 3 · ` · n1/`.

4.1 Proof of Kenyon-Kutin Result for Bounded Functions

Proof Overview. We start by giving a new proof for Kenyon-Kutin result, based on random
walks on the hypercube. We assume by contradiction that f(x0) = 0 and f(x0 + Bi) = 1 for all
i ∈ [k] and that the sensitivity is o(k1/`). Taking a random walk of length r = n/k1/` starting from
x0 will end up in point y where with high probability f(y) = f(x0). This is true since in each step
with probability at least 1− s(f)/n we are maintaining the value of f , hence by union bound with
probability at least 1 − r · s(f)/n we maintain the value of f in the entire walk. On the contrast,
choosing a random i ∈ [k] and starting a random walk of length r − |Bi| starting from (x0 + Bi)
will lead to a point y′ where with high probability f(y′) = f(x0 +Bi) = 1. However, as we show in
the proof below, the distributions of y and y′ are similar (close in statistical distance). This leads
to a contradiction as f(y) tends to be equal to 0 and f(y′) tends to be equal to 1.

A simple observation, which allows us to generalize the argument above to bounded function,
is that for a given point x ∈ {0, 1}n and a random neighbor in the hypercube, y ∼ x, the expected
value of f(y) is close to f(x). This follows from Eq. (10). Thus, the only difference in the argument
for bounded functions will be that E[f(y)] is close to 0 and E[f(y′)] is close to 1, leading to a
contradiction as well.

Proof of Theorem 4.1. First, we make a few assumptions that are without loss of generality, in
order to make the argument later clearer. We assume x0 = 0n and f(x0) = 0. We assume n = k · `

8

and that the blocks are given by Bi = {(i − 1)` + 1, . . . , i`} for i ∈ [k]. We assume that c = 1,
since for c < 1 one can take f ′(x) = min{f(x)/c, 1}, and note that f ′ is a bounded function with
f ′(x0 +Bi) = 1. Proving the theorem for f ′ gives s(f) ≥ s(f ′) · c ≥ Ω(c · k1/`).

Let r = b n
(2k)1/`

c, by the assumption 2 ≤ ` ≤ log(k) we have
√
n ≤ r ≤ n/2. Assume by

contradiction that s(f) ≤ ε · k1/` for some sufficiently small constant ε > 0 to be determined later.
Consider the following two random processes.

Algorithm 1 Process A

1: X0 ← 0n

2: for t = 1, . . . , r do
3: Select a random i ∈ [n] among the coordinates for which Xt−1 is 0 and let Xt ← Xt−1 + ei.
4: end for

Algorithm 2 Process B

1: Select uniformly i ∈ [k] and let Y0 ← Bi
2: for t = 1, . . . , r − ` do
3: Select a random i ∈ [n] among the coordinates for which Yt−1 is 0 and let Yt ← Yt−1 + ei.
4: end for

For each t ∈ {0, . . . , r − 1}, we claim that

E[f(Xt+1)− f(Xt)] = E

 1

n− t
·
∑

i:(Xt)i=0

f(Xt + ei)− f(Xt)


≤ 1

n− t
·E[s(f(Xt))] ≤

s(f)

n− t
.

By telescoping this implies that

E[f(Xr)] = E[f(X0)] +

r−1∑
t=0

E[f(Xt+1)− f(Xt)] ≤ 0 +
r · s(f)

n− r
≤ O(ε) .

In a symmetric fashion, for each t ∈ {1, . . . , r−`} we have E[f(Yt+1)−f(Yt)] ≥ − s(f)
n−t−` . Again,

telescoping implies that

E[f(Yr−`)] ≥ E[f(Y0)]−
(r − `) · s(f)

n− r
≥ 1− r · s(f)

n− r
≥ 1−O(ε) .

So it seems that the distribution of Xr and Yr−` are very different from one another. However, we
shall show that conditioned on a probable event, Xr and Yr−` are identically distributed. To define
the event, consider the sets

Ui = {1A | A ⊆ [n], |A| = r,Bi ⊆ A,∀j 6= i : Bj * A}

for i ∈ [k] and their union

U =
k⋃
i=1

Ui = {1A | A ⊆ [n], |A| = r, ∃!i ∈ [k] : Bi ⊆ A} .

Let EX be the event that Xr ∈ U , and EY be the event that Yr−` ∈ U . We show that

9

Claim 4.4. The following hold:

1. Xr|EX is identically distributed as Yr−`|EY .

2. Pr[EY] = Ω(1)

3. Pr[EX] = Ω(1)

We defer the proof of Claim 4.4 for later. We derive a contradiction from all of the above by
showing that E[f(Xr)|EX] < E[f(Yr−`)|EY] (this is indeed a contradiction because by the claim
Xr|EX and Yr−`|EY should be identically distributed and hence the expected values of f(·) on each
of them should be the same). To show this, we note that

E[f(Xr)|EX] = E[f(Xr) · 1EX]/Pr[EX]

≤ E[f(Xr)]/Pr[EX] = O(E[f(Xr)]) = O(ε) .

On the other hand

E[f(Yr−`)|EY] = 1−E[1− f(Yr−`)|EY]

≥ 1−E[1− f(Yr−`)]/Pr[EY] = 1−O(E[1− f(Yr−`)]) = 1−O(ε) .

Choosing ε to be a small enough constant implies that E[f(Xr)|EX] < E[f(Yr−`)|EY], which
completes the proof.

Proof of Claim 4.4. We shall use in the proof of Items 2 and 3 the fact that 1/3 ≤ r`k
n`
≤ 1/2 which

follows from the choice of r = b n
(2k)1/`

c (for large enough n and k).

1. First note that Xr is distributed uniformly over the set of vectors in {0, 1}n with hamming
weight r. In particular, conditioning that Xr is in a set U of such vectors, makes it uniform
over U . We are left to show that Yr−`|EY is distributed uniformly over U . Given that
Y0 = Bi, we have that Yr−` is the OR of 1Bi with a random vector of weight r− ` on [n] \Bi.
Conditioned on EY the only way to reach Ui is if Y0 = Bi, hence, by the above, all points
in Ui are attained with the same probability. Using symmetry, all points in U =

⋃
i Ui are

attained with the same probability.

2. Let Bi be the block selected in the first step of Process B. We analyze the probability that
all indices in Bj for some j 6= i are chosen in the r − ` iterations of Process B.

Pr[Bj is selected] =
(# of sequences where Bj is selected)

(# of sequences)

=
(r − `)` · (n− 2`)r−2`

(n− `)r−`
=

(r − `)!(n− 2`)!(n− r)!
(r − 2`)!(n− r)!(n− `)!

=
(r − `)!(n− 2`)!

(r − 2`)!(n− `)!
=

(r − `) · · · (r − 2`+ 1)

(n− `) · · · (n− 2`+ 1)
≤
(r
n

)`
(recall that nk , n!

(n−k)!). Hence, Pr[∃j 6= i : Bj is selected] ≤ k · (r/n)` ≤ 1/2 and we have

Pr[EY] ≥ 1/2.

3. Let π1, . . . , πr ∈ [n] be the sequence of choices made by Process A. For i ∈ [k], let EX,i be
the event that Xr ∈ Ui. By the uniqueness of the block contained in Xr the events EX,i are

disjoint, hence Pr[EX] =
∑k

i=1 Pr[EX,i]. By symmetry, Pr[EX] = k · Pr[EX,1]. The event

10

EX,1 is simply the event that there exists a set S ⊆ [r] of size ` such that {πj}j∈S = B1 and the
sequence {πj : j ∈ [r] \S} is a sequence of choices for which EY holds, when starting Process
B from Y0 = B1. This shows that Pr[EX,1] = Pr[EY |Y0 = B1] · Pr[B1 ⊆ {π1, . . . , πr}]. By
Symmetry, Pr[EY |Y0 = Bi] = Pr[EY] = Ω(1) from the previous item. In addition,

Pr[B1 ⊆ {π1, . . . , πr}] =
r` · (n− `)r−`

nr
=
r!(n− `)!(n− r)!
(r − `)!(n− r)!n!

=
r!(n− `)!
(r − `)!n!

=
r · · · (r − `+ 1)

n · · · (n− `+ 1)
≥
(
r − `
n

)`
=
(r
n

)`
· (1− `/r)` =

(r
n

)`
· (1− o(1))

where (1− `/r)` = 1− o(1) follows from ` ≤ log(k) and r ≥
√
n ≥
√
k. Thus,

Pr[EX] = k ·Pr[EX,1] = k ·Pr[B1 is selected] ·Pr[EY |Y0 = B1]

≥ k ·
(r
n

)`
· (1− o(1)) · 1

2
≥ 1

3
· (1− o(1) · 1

2
= Ω(1) .

4.2 Separating Sensitivity and Block Sensitivity of Bounded Functions

The Lattice Variant of The Sensitivity Conjecture The proof of Theorem 4.3 is more
natural in the lattice-variant of the sensitivity conjecture as suggested by Aaronson (see [Bop12]).
In this variant, instead of talking about functions over {0, 1}n we are considering functions over
{0, 1, . . . , `}k for `, k ∈ N. Given a function g : {0, 1, . . . , `}k → R one can define a Boolean function
f : {0, 1}`·k → R by the following equation:

f(x1,1, . . . , xk,`) = g

(∑̀
i=1

x1,i, . . . ,
∑̀
i=1

xk,i

)
. (12)

For a point y ∈ {0, 1, . . . , `}k and function g : {0, . . . , `}k → R one can define the sensitivity of g at
y as

s(g, y) =
∑
y′∼y
|g(y′)− g(y)|

where y′ ∼ y if y′ ∈ {0, . . . , `}k is a neighbor of y in the grid {0, . . . , `}k, i.e., if y and y′ agree on
all coordinates except for one coordinate, say j ∈ [k], on which |yj − y′j | = 1. The following claim
relates the sensitivity of f to that of g.

Claim 4.5. Let g : {0, . . . , `}k → R and let f be the function defined by Eq. (12). Then s(f) ≤
` · s(g).

Proof. Let x = (x1,1, . . . , xk,`) ∈ {0, 1}kl and and let x′ ∈ {0, 1}kl be a neighbor of x, ob-

tained by flipping the (i, j)-th coordinate. Let y = (
∑`

i=1 x1,i, . . . ,
∑`

i=1 xk,i) and similarly let

y′ = (
∑`

i=1 x
′
1,i, . . . ,

∑`
i=1 x

′
k,i). Then y and y′ differ only on the i-th coordinate, and on this coor-

dinate they differ by a ±1. If y′i = yi + 1, then the number of neighbors x′ ∼ x that are mapped
to y′ by y′ = (

∑
i x
′
1,i, . . . ,

∑
i x
′
k,i) equals the number of zeros in the i-th block of x, i.e., it equals

`− yi. Similarly, in the case y′i = yi − 1 the number of x′ ∼ x that are mapped to y′ equals yi. In
both cases, there are between 1 to ` points x′ ∼ x that are mapped to each neighbor y′ ∼ y. Thus,∑

x′∼x
|f(x′)− f(x)| =

∑
x′∼x
|g(y′)− g(y)| ≤ ` ·

∑
y′∼y
|g(y′)− g(y)| .

11

Construction of a Separation. Let k, ` be integers. We construct f : {0, 1, . . . , `}k → [0, 1] such
that f(0) = 0, f(ei · `) = 1 for all i ∈ [k] and s(f) ≤ O(k1/`).

Define a weight function w : {0, 1, . . . , `} → [0, 1] as follows: w(a) = ka/`/k for a ∈ {1, . . . , `}
and w(0) = 0. Take g : {0, . . . , `}k → R+ to be the function g(x1, . . . , xn) =

∑k
i=1w(xi) and take

f : {0, . . . , `}k → [0, 1] to be f(x) = min{1, g(x)}. Then f(0k) = 0 and f(` · ei) = 1 for all i ∈ [k].

Theorem 4.6. s(f) ≤ 3 · k1/`.

Proof. Let x ∈ {0, 1, . . . , `}k be a point in the lattice. We distinguish between two cases g(x) ≥ 2
and g(x) < 2. In the first case, all neighbors x′ ∼ x have g(x′) ≥ 1 since the sums

∑
iw(xi) and∑

iw(x′i) differ by at most 1. Since both g(x) and g(x′) are at least 1 we get that f(x) = f(x′) = 1
and the sensitivity of f at x is 0.

In the latter case, g(x) < 2, we bound the sensitivity as well. For ease of notation we extend w
to be defined over {−1, . . . , `+ 1} by taking w(`+ 1) = w(`) and w(−1) = w(0). We extend also g
to {−1, 0, . . . , `+ 1} → R+ by taking g(x1, . . . , xn) =

∑
iw(xi). We have

s(f, x) ≤ s(g, x) =

k∑
i=1

|g(x+ ei)− g(x)|+ |g(x)− g(x− ei)|

=
k∑
i=1

|w(xi + 1)− w(xi)|+ |w(xi)− w(xi − 1)|

=
k∑
i=1

w(xi + 1)− w(xi − 1) (w is monotone)

≤
k∑
i=1

w(xi + 1) (w is non-negative)

≤
∑
i:xi=0

w(1) +
∑
i:xi>0

w(xi) · k1/`

≤ k · k
1/`

k
+
∑
i

w(xi) · k1/`

= k1/` + g(x) · k1/` ≤ 3k1/`.

We show that Theorem 4.3 is a corollary of Theorem 4.6.

Proof of Theorem 4.3. Let k = n/`. Let f : {0, 1, . . . , `}k → [0, 1] be the function in Theorem 4.6.

Take h(x1,1, . . . , xk,`) = f
(∑`

i=1 x1,i, . . . ,
∑`

i=1 xn,i

)
. For x = 0n, there are k disjoint blocks

B1, . . . , Bk of size ` each such that h(x + Bi) = 1. Hence, bs`(h) ≥ k = n/`. By Claim 4.5, the
sensitivity of h is at most s(f) · ` ≤ 3 · k1/` · ` ≤ 3 · n1/` · ` which completes the proof.

5 New Separations between Decision Tree Complexity and Sensi-
tivity

We report a new separation between the decision tree complexity and the sensitivity of Boolean
functions. We construct an infinite family of Boolean functions with

DT(fn) ≥ s(fn)1+log14(19) ≥ s(fn)2.115 .

12

Our functions are transitive functions, and are inspired by the work of Chakraborty [Cha11].
Our construction is based on finding a “gadget” Boolean function f , defined over a constant

number of variables, such that s0(f) = 1, s1(f) = k and DT(f) = ` for ` > k (recall that
s0(f) = maxx:f(x)=0 s(f, x) and similarly s1(f) = maxx:f(x)=1 s(f, x)). Given the gadget f , we
construct an infinite family of functions with super-quadratic gap between the sensitivity and
the decision tree complexity using compositions (which is a well-used trick in query complexity
separations, cf. [Tal13]).

Lemma 5.1. Let f : {0, 1}c → {0, 1} such that s0(f) = 1, s1(f) = k and DT(f) = ` > k. Then,
there exists an infinite family of functions {gi}i∈N such that s(gi) = ki and DT(gi) = (k`)i =
s(gi)

1+log(k)/ log(`).

Proof. Take g = ORk◦f . It is easy to verify that s(g) = k, and that DT(g) = DT(ORk)·DT(f) = k`
(for the latter, one can use [Tal13, Lemma 3.1]). For i ∈ N, we take gi = gi. It is well-known (cf.
[Tal13, Lemma 3.1]) that s(gi) ≤ s(g)i and that DT(gi) = DT(g)i, which completes the proof.

5.1 Finding a Good Gadget

The gadget f will be a minterm-cyclic function. Roughly speaking, a function f : {0, 1}n → {0, 1}
is minterm-cyclic if there exists pattern p ∈ {0, 1, ∗}n such that the function f simply checks if x
matches one of the cyclic shifts of p. The formal definition follows

Definition 5.2. A pattern p ∈ {0, 1, ∗}n is a partial assignment to the variables x1, . . . , xn. We
say that a point x ∈ {0, 1}n matches the pattern p, denoted by p ⊆ x, if for all i ∈ [n] such that
pi ∈ {0, 1} we have pi = xi. Given a pattern p, let CS(p) = {p1, . . . , pn} be the set of cyclic shifts
of p, where the i-th cyclic shift of p is given by pi = (pi, pi+1, . . . , pn, p1, . . . , pi−1). For a pattern
p ∈ {0, 1, ∗}n we denote by fp : {0, 1}n → {0, 1} the function defined by

fp(x) = 1 ⇔ ∃pi ∈ CS(p) : pi ⊆ x

and call fp the minterm cyclic function defined by p.

For example, the pattern p = 0011** defines a function fp that checks if there’s a sequence of
two zeros followed by two ones in x, when x is viewed as a cyclic string. We say that two patterns
p, q ∈ {0, 1, ∗}n disagree on a coordinate i if both pi and qi are in {0, 1} and pi 6= qi.

Claim 5.3. Let p ∈ {0, 1, ∗}n be a pattern defining fp : {0, 1}n → {0, 1}. Assume that any two
different cyclic-shifts of p disagree on at least 3 coordinates. Then, s0(fp) = 1.

Proof. Let x ∈ {0, 1}n with fp(x) = 0 and assume by contradiction that s(fp, x) ≥ 2. In such a
case, there are two indices i and j such that fp(x+ ei) = 1 and fp(x+ ej) = 1. Let q and q′ be the
patterns among CS(p) that x+ ei and x+ ej satisfy respectively. If q = q′, then since both x+ ei
and x + ej satisfy q and they differ on coordinates i and j, it must be the case that qi = qj = ∗.
However, this implies that x satisfy q as well, which is a contradiction. If q 6= q′, then we get that
q and q′ may disagree only on coordinates i and j, which is also a contradiction.

The following fact is easy to verify.

Fact 5.4. Let p ∈ {0, 1, ∗}n be a pattern defining fp : {0, 1}n → {0, 1}. Then, s0(fp) ≤ c0(fp) ≤
|{i ∈ [n] : pi ∈ {0, 1}}|.

13

Next, we demonstrate a simple example with better-than-quadratic separation between DT(f)
and s(f). Take the pattern p = ∗001011. Denote by p1, . . . , p7 all the cyclic shifts of p, where in pi

the i-th coordinate equals ∗. It is easy to verify that any pi and pj for i 6= j disagree on at least 3
coordinates. Hence, s0(fp) = 1 and s1(fp) ≤ 6. We wish to show that any decision tree T for fp is
of depth 7. Let xi be the first coordinate read by a decision tree T for fp. Our adversary will answer
0, and will continue to answer as if x matches pi. Assume the decision tree made a decision before
reading the entire input. The decision tree must decide 1 since the adversary answered according
to x which satisfies pi. However, if the decision tree hasn’t read the entire input, there is still an
unread coordinate j, where j 6= i. Let x′ = x+ ej . Then, the decision tree answers 1 on x′ as well.
However x′ does not match pattern pi as (pi)j ∈ {0, 1} and it must be the case that xj = (pi)j 6= x′j .

We also need to rule out that x′ matches some other pattern. Indeed, if x′ matches some other
pattern pk it means that pk and pi disagree only on at most one coordinate, which as discussed
above cannot happen.

Using Lemma 5.1 the function fp can be turned into an infinite family of functions gi with
DT(gi) = (6 · 7)i and s(gi) ≤ 6i. This gives a super-quadratic separation since

DT(gi) ≥ s(gi)1+log(7)/ log(6) ≥ s(gi)2.086 .

In a similar fashion, one can show that for the pattern p = **0*10000*101 after reading any
two input bits from the input there exists a cyclic shift pi of the pattern from which no {0, 1}
coordinate has been read yet. However, to verify that the input x matches pi we must read all
{0, 1} positions in pi, which gives DT(fp) ≥ 9 + 2 where 9 is the number of {0, 1}-s in the pattern
p.

The decision tree complexity analysis for the other patterns written below is more involved.
We computed it using a computer program written to calculate the decision tree complexity in this
special case. In the list below, we report several patterns yielding super-quadaratic separations. For
each pattern p we report its length n, the decision tree complexity of fp, the maximal sensitivity of
fp (which equals the number of {0, 1}-s in p) and the resulting exponent one get by using Lemma 5.1

(i.e., 1 +
logDT(fp)
log s(fp)

).

p = *001011, n = 7, DT = 7, s = 6, exp = 2.086

p = **0*10000*101, n = 13, DT = 11, s = 9, exp = 2.091

p = ******01*1*01100000, n = 19, DT = 14, s = 11, exp = 2.100

p = ******00*0*0010**1*00*011, n = 25, DT = 17, s = 13, exp = 2.104

p = ******1**0**0**1**0**00*0*10*1011, n = 33, DT = 19, s = 14, exp = 2.115

Acknowledgements. I wish to thank my PhD advisor, Ran Raz, for lots of stimulating and
helpful discussions about this problem. I wish to thank Scott Aaronson for his encouragement.

References

[ABG+14] A. Ambainis, M. Bavarian, Y. Gao, J. Mao, X. Sun, and S. Zuo. Tighter relations
between sensitivity and other complexity measures. In ICALP (1), pages 101–113,
2014.

[AP14] A. Ambainis and K. Prusis. A tight lower bound on certificate complexity in terms of
block sensitivity and sensitivity. In MFCS, pages 33–44, 2014.

14

[APV15] A. Ambainis, K. Prusis, and J. Vihrovs. Sensitivity versus certificate complexity of
boolean functions. CoRR, abs/1503.07691, 2015.

[AS11] A. Ambainis and X. Sun. New separation between s(f) and bs(f). Electronic Colloquium
on Computational Complexity (ECCC), 18:116, 2011.

[AV15] A. Ambainis and J. Vihrovs. Size of sets with small sensitivity: A generalization of
simon’s lemma. In Theory and Applications of Models of Computation - 12th Annual
Conference, TAMC 2015, Singapore, May 18-20, 2015, Proceedings, pages 122–133,
2015.

[BdW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[Bop12] M. Boppana. Lattice variant of the sensitivity conjecture. Electronic Colloquium on
Computational Complexity (ECCC), 19:89, 2012.

[Cha11] S. Chakraborty. On the sensitivity of cyclically-invariant boolean functions. Discrete
Mathematics & Theoretical Computer Science, 13(4):51–60, 2011.

[GKS15] J. Gilmer, M. Koucký, and M. E. Saks. A new approach to the sensitivity conjecture.
In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 247–254, 2015.

[GNS+16] P. Gopalan, N. Nisan, R. A. Servedio, K. Talwar, and A. Wigderson. Smooth boolean
functions are easy: Efficient algorithms for low-sensitivity functions. In ITCS, pages
59–70, 2016.

[HKP11] P. Hatami, R. Kulkarni, and D. Pankratov. Variations on the sensitivity conjecture.
Theory of Computing, Graduate Surveys, 2:1–27, 2011.

[KK04] C. Kenyon and S. Kutin. Sensitivity, block sensitivity, and l-block sensitivity of boolean
functions. Inf. Comput., 189(1):43–53, 2004.

[Nis89] N. Nisan. Crew prams and decision trees. In STOC, pages 327–335, 1989.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994.

[Rub95] D. Rubinstein. Sensitivity vs. block sensitivity of boolean functions. Combinatorica,
15(2):297–299, 1995.

[Sim83] H. U. Simon. A tight Ω(log log n)-bound on the time for parallel ram’s to compute
nondegenerated boolean functions. In Foundations of computation theory, pages 439–
444. Springer, 1983.

[Sze15] M. Szegedy. An O(n0.4732) upper bound on the complexity of the GKS communication
game. Electronic Colloquium on Computational Complexity (ECCC), 22:102, 2015.

[Tal13] A. Tal. Properties and applications of boolean function composition. In ITCS, pages
441–454, 2013.

[Vir11] M. Virza. Sensitivity versus block sensitivity of boolean functions. Inf. Process. Lett.,
111(9):433–435, 2011.

15

A Proof of Corollary 4.2

Proof. Let x ∈ {0, 1}n and B1, . . . , Bm be the blocks that achieve bs(f). Assume without loss of
generality that B1, . . . , Bm′ are of size at most 2` and that Bm′+1, . . . , Bm are of size larger than
2`. Then, by the disjointness of Bm′+1, . . . , Bm we have that m−m′ ≤ n

2` . Thus,

bs`(f, x) ≥
m′∑
i=1

|f(x)− f(x+Bi)| =
m∑
i=1

|f(x)− f(x+Bi)| −
m∑

i=m′+1

|f(x)− f(x+Bi)|

≥ bs(f, x)− (m−m′) ≥ bs(f, x)− n

2`
≥ n

2`
.

Assume without loss of generality that B1, . . . , Bm′′ are blocks such that |f(x) − f(x + Bi)| ≥ 1
4`

and that Bm′′+1, . . . , Bm′ are not. Then,
∑m′

i=m′′+1 |f(x)− f(x+Bi)| ≤ m′′−m′
4` ≤ n

4` . This implies

that
∑m′′

i=1 |f(x) − f(x + Bi)| ≥ n
4` , and in particular that m′′ ≥ n

4` . Thus, there are m′′ ≥ n/4`
disjoint blocks of size at most 2` which change the value of f by at least 1

4` . Theorem 4.1 gives

that s(f) ≥ Ω((m′′)1/2`/`) ≥ Ω(n1/2`/`).

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

