
Hardness of Continuous Local Search:

Query Complexity and Cryptographic Lower Bounds

Pavel Hubáček∗ Eylon Yogev∗

Abstract

Local search proved to be an extremely useful tool when facing hard optimization problems
(e.g., via the simplex algorithm, simulated annealing, or genetic algorithms). Although powerful,
it has its limitations: there are functions for which exponentially many queries are needed to
find a local optimum. In many contexts the optimization problem is defined by a continuous
function, which might offer an advantage when performing the local search. This leads us to
study the following natural question: How hard is continuous local search? The computational
complexity of such search problems is captured by the complexity class CLS which is contained
in the intersection of PLS and PPAD, two important subclasses of TFNP (the class of NP
search problems with a guaranteed solution).

In this work, we show the first hardness results for CLS (the smallest non-trivial class
among the currently defined subclasses of TFNP). Our hardness results are in terms of black-
box (where only oracle access to the function is given) and white-box (where the function is
represented succinctly by a circuit). In the black-box case, we show instances for which any
(computationally unbounded) randomized algorithm must perform exponentially many queries
in order to find a local optimum. In the white-box case, we show hardness for computationally
bounded algorithms under cryptographic assumptions.

As our main technical contribution we introduce a new total search problem which we call
End-of-Metered-Line. The special structure of this problem enables us to: (1) show that
End-of-Metered-Line is contained in CLS, and (2) prove hardness for it both in the black-
box and the white-box setting.

∗Weizmann Institute of Science, Israel. Email: {pavel.hubacek,eylon.yogev}@weizmann.ac.il. Supported in
part by a grant from the I-CORE Program of the Planning and Budgeting Committee, the Israel Science Foundation,
BSF and the Israeli Ministry of Science and Technology.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 63 (2016)

Contents

1 Introduction 3
1.1 Our Results . 5

2 Our Techniques 6
2.1 Reducing End-of-Metered-Line to Continuous-Local-Optimum 6
2.2 Query Complexity Lower Bound for End-of-Metered-Line 9
2.3 Cryptographic Hardness for End-of-Metered-Line 9
2.4 Organization of the Paper . 11

3 Total Search Problems 11

4 End-of-Metered-Line 13

5 End-of-Metered-Line is in CLS 14
5.1 Proof of Theorem 5.1 . 19

6 On the Hardness of End-of-Metered-Line 23
6.1 Query Complexity Lower Bound . 23
6.2 Cryptographic Hardness of End-of-Metered-Line 26

A Proofs deferred from Section 5.1 32
A.1 Proof of f and p being Lipschitz . 32
A.2 Analysis of Templates from Lemma 5.2 . 34

B Algorithms’ Pseudocode 41

C Pseudocode for S′ and P′ from [BPR15] 43

D Cryptographic Definitions 46
D.1 One-Way Functions . 46
D.2 Obfuscation . 46

2

1 Introduction

Local search is a widely applicable tool when facing hard optimization problems. In local search
we seek only for a local optimum rather than insisting on a global one. More formally, an instance
of the problem is given by two functions, a neighborhood function that maps each point to a set of
its local neighbors and a valuation function that gives each point a real value. The goal is to find
a point for which none of its neighbors have a (strictly) greater value. Many of the most popular
optimization algorithms apply local search; the simplex algorithm, genetic algorithms, steepest
ascent hill climbing, and simulated annealing, to name a few.

Although powerful, local search has its limitations. It is known that there exist instances for
which finding a local optimum might take exponential time. A natural approach to avoid the
shortcomings of local search is to exploit some additional structure of the optimization problem
at hand. In particular, both the neighborhood function and the valuation function are often con-
tinuous, which might offer advantage when trying to solve such continuous local search problems.
Motivated by these considerations, we ask the following natural question:

How hard is continuous local search?

There are two common types of hardness results: white-box and black-box. In the white-box
setting, the problem at hand is given explicitly and in a succinct manner (e.g., as a polynomially
sized circuit). Then, hardness is shown via a reduction from a different problem for which hardness
is already established (or assumed). In the black-box setting (also known as the query model, or the
decision tree model) the problem is represented via oracle access, and the complexity is measured
by the number of performed oracle queries. In this model, it is often possible to prove unconditional
lower bounds on the number of queries required to find a solution. In this paper, we show hardness
of continuous local search in terms of both white-box and black-box.

Optimization problems amenable to local search, as well as continuous local search, fall into a
vast category of problems for which a solution is guaranteed to exist. Indeed, there is a myriad
of important natural problems with a straightforward proof certifying the existence of a solution.
One simple example is finding a collision in a (compressing) hash function, where a collision is
guaranteed by the pigeonhole principle. Another example is the standard game theoretical notion
of equilibrium due to Nash [Nas50]. The existence of a Nash equilibrium is guaranteed in any
finite strategic game, whereas the problem of finding one is eluding the algorithmic game theory
community with no known general efficient algorithm. Motivated by some of the above observations,
Megiddo and Papadimitriou [MP91] proposed the complexity class TFNP (for Total Function
Nondeterministic Polynomial-time), which is the class of all NP search problems with a guaranteed
solution. Papadimitriou [Pap94] subsequently introduced a taxonomy of the problems inside TFNP
that gathers the problems into classes based on the type of combinatorial argument establishing
their totality.

The problem of finding a local optimum (not necessarily in the continuous setting) defines
its own subclass of TFNP called PLS (for Polynomial Local Search [JPY88]). The canonical
problem for PLS, called Local-Search, is given by a pair of circuits N and V that assign to
any n-bit string x a polynomial sized neighborhood N(x) and a non-negative integer value V(x).
The goal is to find a local optimum, i.e., an x such that V(x) ≥ V(x′) for all x′ ∈ N(x). The
totality of this problem is guaranteed as a consequence of the observation that every finite directed
acyclic graph has a sink. As for hardness, a series of exponential query complexity lower bounds

3

for Local-Search [Ald83, LTT89, Aar06, Zha09] established black-box hardness for PLS for
deterministic, randomized and even quantum algorithms.

What about the problem of finding a local optimum in the continuous setting? Daskalakis and
Papadimitriou [DP11] introduced the class CLS (for Continuous Local Search) to capture the exact
computational complexity of continuous local search. The canonical problem for CLS is called
Continuous-Local-Optimum (CLOpt). Unlike Local-Search, which is a discrete problem
over the Boolean hypercube {0, 1}n, an instance of Continuous-Local-Optimum is given by two
functions f and p over the unit cube [0, 1]3 which are assumed to be λ-Lipschitz continuous.1 The
function f maps the unit cube to itself and the function p assigns to every point of the unit cube a
real value. The goal is to find an ε-approximate local optimum of p with respect to f (i.e., a point x
such that p(f(x))− p(x) ≤ ε) or two points that violate the λ-Lipschitz continuity of either f or p.
We note that there is no known combinatorial complete problem for CLS and finding one remains
an interesting open problem. Nevertheless, Daskalakis and Papadimitriou showed that CLS lies in
the intersection of PLS and another important subclass of TFNP called PPAD.

The class PPAD (for Polynomial Parity Argument on Directed graphs) has received particu-
lar attention in part due to the fact that one of its complete problems is finding Nash equilibra in
strategic games [DGP09, CDT09]. The canonical problem for PPAD, called End-of-Line (EOL),
is given by a successor circuit S and a predecessor circuit P that both map n-bit strings to n-bit
strings, and thus implicitly define a graph with 2n vertices of degree at most two (there is an edge
between u and v iff u = P(v) and v = S(u)). Given a source in this graph, the goal is to find a sink
or an alternative source. The totality of this problem can be established based on the handshak-
ing lemma.2 Similarly to PLS, also for PPAD there are known black-box hardness results, e.g.,
exponential query complexity lower bounds for finding Brouwer fixed points (another important
complete problem for PPAD) [HPV89, Bab14]. Recently, Bitanski, Paneth and Rosen [BPR15]
constructed hard instances of End-of-Line under cryptographic assumptions and showed the first
white-box hardness result for PPAD (the cryptographic assumptions were improved in [GPS15]).
An overview of the above subclasses of TFNP and the known hardness results is depicted in Fig-
ure 1 (see Section 3 for the formal definitions of the various subclasses of TFNP).

Given that there are oracle separations showing that in the relativized setting both PLS is not
reducible to PPAD (cf. [BM04]) and PPAD is not reducible to PLS (cf. [Mor01]), and since CLS
is contained in the intersection of PLS and PPAD, it follows that CLS is a proper subclass of
both PLS and PPAD. This suggests that continuous local search might be an easier problem than
the problems of finding approximate local optima or approximate Brouwer fixed points. Moreover,
unlike in the case of PPAD and PLS, no hardness result is known for CLS; neither in terms
of query complexity (even in the random oracle model), nor under any cryptographic assumption
(including even strong notions of obfuscation used to establish the known white-box hardness results
for PPAD).

In this work we show the first hardness results for CLS. We stress that among the various
subclasses currently defined in TFNP, the smallest non-trivial3 subclass is CLS. Specifically, we
prove an exponential query complexity lower bound, and give hardness from several cryptographic
assumptions used in previous works for showing cryptographic hardness for PPAD.

1A function f is λ-Lipschitz continuous if for any x, x′ it holds that |x− x′| ≤ λ|f(x)− f(x′)|.
2The handshaking lemma states that every finite undirected graph has an even number of vertices with odd degree.
3The notion of being “non-trivial” refers to a class that is not known to be solvable in polynomial-time.

4

1.1 Our Results

In order to study hardness of continuous local search, we introduce a new total search problem we
call End-of-Metered-Line (EOML), which is similar in spirit to the End-of-Line problem. An
instance of End-of-Metered-Line is given by three circuits S,P, and V. The circuits S and P act
exactly like the successor and the predecessor in the End-of-Line problem, i.e., they implicitly
define a graph in which every vertex has degree at most two. The goal also remains the same, i.e.,
given that 0n is a source, we ask to find a sink or a source different from the trivial one at 0n. Since
0n is a source, it follows from the handshaking lemma that there exists a sink with respect to S
and P, and thus End-of-Metered-Line is a total problem.

The additional circuit V is intended to aid in solving this task by providing extra information
about the structure of the implicit graph. Specifically, V acts as an odometer for the line starting
at the initial source 0n, that is, it reveals how many steps of S it takes to reach any vertex x from
0n.4 Recall that the existence of a solution for problems inside TFNP is ensured syntactically and
not by a promise on the instances. In particular, we cannot make any promise on the behavior of V.
Though, we cannot efficiently verify that V indeed answers as expected for every vertex. Therefore,
we enforce that the addition of circuit V aids in finding a solution by letting any vertex attesting
that V deviates from its expected behavior to constitute an additional solution. First, the initial
source 0n must be the only vertex with value 1. Second, any vertex x with a non-zero value i must
be succeeded with a vertex with value i + 1 and preceded with a vertex with value i − 1. Any
vertex violating either of these two conditions is defined to be a solution. The formal definition
(cf. Definition 4.1) together with additional discussion is given in Section 4.

Our first (and the most technical) result shows that the valuation circuit puts End-of-Metered-
Line in a much smaller class than the End-of-Line problem. We show that End-of-Metered-
Line is reducible to Continuous-Local-Optimum (see Definition 3.5), the canonical problem
defining the class CLS.

Theorem 5.1. End-of-Metered-Line is contained in CLS.

Next, we show that continuous local search remains hard by proving hardness for End-of-
Metered-Line. Our hardness results are in terms of both black-box and white-box. In the black-
box case, we show an exponential query complexity lower bound for End-of-Metered-Line.

Theorem 6.1. The randomized query complexity of End-of-Metered-Line is Ω
(
2n/2/

√
n
)
.

By combining Theorem 6.1 with Theorem 5.1, we get as a corollary the black-box hardness of CLS:

Corollary 1.1. In the query model, any randomized algorithm solving the Continuous-Local-
Optimum problem up to n-digits of precision must perform at least 2Ω(n) queries.

In the white-box case, where the functions are given via circuits of polynomial size in n, we use
cryptographic assumptions, specifically, the notion of secure circuit obfuscation. Our results extend
the recent result of Bitanski et al. [BPR15] and Garg et al. [GPS15], who constructed distributions
of hard instances of End-of-Line based on indistinguishability obfuscation. We establish that
similarly to the End-of-Line, under these cryptographic assumptions, there is a distribution of
hard instances for End-of-Metered-Line.

4In other words, the circuit V serves the same purpose as milestones placed along the roads throughout the Roman
Empire; it reassures the traveler that the correct path is being followed and indicates the number of steps taken from
the ultimate origin at the Milliarium Aureum, the golden milestone at the Forum Romanum (in our case at 0n).

5

Theorem 6.4. Assume there exist one-way permutations and indistinguishability obfuscation for
P/Poly. Then the End-of-Metered-Line problem is hard for polynomial-time algorithms.

Since our reduction in Theorem 5.1 is polynomial-time computable, we get the following corollary:

Corollary 1.2. Assume there exist one-way permutations and indistinguishability obfuscation for
P/Poly. Then the CLS class is hard for polynomial-time algorithms.

An overview of our results in the context of TFNP is depicted in Figure 1.

TFNP

PLS PPAD

CLS

Local-Search Nash EOL
Brouwer

ESol

CLOpt

EOML

Cryptographic
Hardness

Query Complexity
Lower Bound

[BPR15, GPS15][HPV89, Bab14]

[Aar06, Zha09]

Theorem 6.1 Theorem 6.4

Theorem 5.1

Figure 1: Depiction of our and previous results in the context of TFNP. Problems known to be
complete for the respective classes are drawn above a dotted line.

2 Our Techniques

In this section we give a high-level description of the main techniques used to establish our results.
Formal definitions and complete proofs are provided in the subsequent sections.

2.1 Reducing End-of-Metered-Line to Continuous-Local-Optimum

The core of our hardness results for continuous local search is a reduction showing that End-
of-Metered-Line is contained in the class CLS. Our reduction takes any instance (S,P,V) of
End-of-Metered-Line over the domain {0, 1}n and builds an instance of Continuous-Local-
Optimum consisting of a function f mapping the unit cube to itself, a function p assigning a real
value to any point in the unit cube and two constants ε, λ > 0, where f and p are λ-Lipschitz, and

6

such that any local optimum (i.e., a point x such that p(f(x))−p(x) ≤ ε) corresponds to a solution
to (S,P,V).

Any instance (S,P,V) implicitly defines a graph over {0, 1}n. The graph is defined similarly to
the graph corresponding to any End-of-Line instance, i.e., there is an edge between u and v iff
u = P(v) and v = S(u), and additionally, we discard all vertices with value 0, and all edges (x,S(x))
such that V(S(x)) − V(x) 6= 1 (i.e., all the edges where V does not increment correctly). Notice
that there are no cycles in this graph since it is impossible to assign incremental values consistently
along a cycle. We show how to embed this discrete graph defined by (S,P,V) into a continuous
function defined over the unit square.5

Embedding a Single Line. For simplicity, we begin by considering the graph to be a single line:
0n → S(0n)→ S2(0n)→ · · · . In [CD09], Chen and Deng showed how to embed any End-of-Line
instance into a continuous function over the unit square, an instance of the Brouwer problem.
That is, they constructed a function f over the unit square such that any (approximate) fixed point
of f corresponds to a solution to the End-of-Line instance. Their reduction works by considering
a discrete grid on the unit square, and showing how to embed the End-of-Line graph as a directed
path onto the lines of this grid. On the grid points, the function f is defined such that it points
towards the direction of the path at the points lying on the path, and such that f points towards
(0, 0) at any point lying off the path. For any intermediate point (off the grid), f is defined by
interpolation of its four neighbors on the grid. The resulting function f creates a flow along the
path towards its end and a flow towards (0, 0) in the remaining area of the unit square.

The main difficulty when extending the above reduction to Continuous-Local-Optimum
(instead of to Brouwer) is to construct the additional continuous valuation function p. Ultimately,
we would want to define p on the grid (and by interpolation off the grid) to match the behavior of
f , and such that any local optimum with respect to f and p corresponds to a solution to the End-
of-Metered-Line instance. Specifically, we need to assign increasing values along the different
flows defined by f in a locally and efficiently computable way. We achieve this as follows. To each
point off the path, we assign a value that corresponds to its distance from the point (0, 0). For
each point lying on the path, we use V to assign a value corresponding to its distance from the
beginning of the path.

The hope is to find appropriate values for p that introduce no local optima except at a fixed
point. However, it turns out that we cannot simply apply this idea on top of the reduction of
[CD09]. In fact, one can show that any set of values for p on the grid will introduce a new local
optimum that does not correspond to a solution for (S,P,V). The problem is that there are points
on the path where f points in the opposite direction than at a nearby point off the path. The
interpolation between such two points then, in the combination with the p values, introduces a
local optimum at points near the path (but possibly far from its end). Actually, this issue would
introduce exponentially many new local optima from which it is not possible to extract a solution.

In order to circumvent introducing these local optima, we modify the above reduction. We
ensure that the change in direction of f is proportional to the change in value of p. This is done
by carefully altering the definition of f to create an additional transition layer between the path

5In order to match the definition of Continuous-Local-Optimum, we should construct functions over the unit
cube and not over the unit square. However, it is easy to extend any Brouwer function f mapping the unit square to
itself to a continuous function over the unit cube by simply copying over the third coordinate (i.e., for all (x, y, z) ∈
[0, 1]3, define f ′(x, y, z) = (f(x, y), z)).

7

and its surrounding area without introducing new local optima. This enables us to define values
for p that do not introduce unnecessary local optima along most parts of the path. In particular, if
the path traverses in only two directions (say up and right), then no unnecessary local optimum is
introduced at all. However, the path in the above reduction of Chen and Deng traverses the unit
square in all four directions.

The Staircase Embedding. The natural step to take, at this point, is to change the reduction
such that the path traverses the unit square only in two directions, resulting in a path that resembles
a “staircase”. Note that, in general, it is not possible to embed an End-of-Line instance in such
a staircase pattern, as it would show that PPAD ⊆ CLS (which is unlikely due to known oracle
separations [BM04, Mor01]). Indeed, our reduction makes extensive use of the valuation circuit V
to create a staircase pattern from the given End-of-Metered-Line graph.

To achieve this, we route the staircase through the unit square so that the coordinates of every
point on the staircase encode a vertex in the EOML graph. In particular, we split the unit square
into square sub-blocks so that we can identify each block along the side of the square with one of
the 2n non-zero values given out by V. Then, we do the same for each sub-block so that we can
identify the small squares along the bottom edge of each sub-block with strings in {0, 1}n. Thus, in
the end we have split the unit square into 24n small squares. Finally, for every vertex x such that
V (x) = i we create a path connecting the point (x, 0) in block (i, i) with the point (S(x), 0) in the
block (i+ 1, i+ 1). The points are connected via three line segments going through (x, x) in block
(i, i) and (S(x), x) in block (i+ 1, i) (see Figure 2a). Note that for each line segment, it is possible
to identify only from the coordinates of a point whether the line passes through it. For example to
test that a point (z1, z2) in block (i, i) lies on the first line segment, we check that V(z1) = i and
that z2 ≤ z1. Testing for the other two line segments is performed similarly.

Now that we have defined the function f so that it results in an embedding of the path as a
staircase in the unit square, we can assign the p values to the grid points. To avoid local optima
except for endpoints of the path, we assign incremental values for all grid points on the path. That
is, for any point on the path, its value is the distance from the beginning of the path. Note that
we need to be able to compute this distance locally (so that it can be efficiently computed by the
valuation circuit V). Here, we exploit again the structure of our staircase embedding: for any point
on the staircase, it holds that the distance from the beginning is exactly its Manhattan distance
from (0, 0) (i.e., the sum of its coordinates).

Given the modified version of f that results in a staircase embedding, and the above definition
of p, it is readily possible to prove that, in the special case where the End-of-Metered-Line
graph is a single line, the only local optimum is exactly at the end of the staircase. Thus, by our
construction of the embedding, the coordinates of the unique local optimum can be used to extract
a solution to the original End-of-Metered-Line instance (S,P,V). We give an example of an
embedding of a single line in Figure 5. Next, we show how to handle general graphs which might
correspond to more than a single line.

Handling General Graphs. Consider the case where the graph is not a single line, but a
collection of lines. The embedding of such a graph will result in a collection of staircases. The
problem is that these staircases might intersect, and any such intersection would introduce a new
local optimum. Since the intersection could lie at an arbitrary point on two staircases, it is in
general not possible to extract from the local optimum a solution to the End-of-Metered-Line

8

instance. Thus, we use an idea from [CD09] and locally alter the flow of the staircases at any
crossing point in a way that eliminates the intersection on one hand and preserves the staircase
structure on the other. For any crossing of a horizontal line segment with a vertical line segment,
we disconnect the lines so that they do not touch and switch their directions so that afterwards the
horizontal line turns up and the vertical line turns right (see Figure 2b). Note that even though
this transformation alters the topological structure of the staircases in a major way, it preserves
the endpoints of the original staircases and does not introduce any new ones.

In the most general case, an arbitrary End-of-Metered-Line graph can contain a collision
of two lines, that is, two lines that at some point merge to one. Notice that this merging point
is a solution for (S,P,V). In terms of our embedding, any such collision will introduce a local
optimum from which we can extract the solution. The full details of the reduction, its proof, and
complete discussion of how to extract solutions from any local optimum are given in Section 5. In
Figure 6, we give an example of an embedding of the lines near a crossover after the modification.
In Figure 7, we give an example of the an embedding of a graph with multiple lines and collisions
into the unit square.

2.2 Query Complexity Lower Bound for End-of-Metered-Line

Our query complexity lower bound builds on the techniques used for proving black-box hardness
of PLS, and in particular, on query complexity lower bounds for the Local-Search problem
over the Boolean hypercube. Our starting point is the tight randomized query complexity lower
bound of Θ(2n/2

√
n) for Local-Search on the Boolean hypercube by Zhang [Zha09]. Specifically,

Zhang [Zha09] showed how to construct a distribution of self-avoiding random paths over the n-
dimensional hypercube, such that any randomized algorithm that finds the endpoint of the path
given only oracle access to the path (i.e., it can learn whether a vertex lies on the path or not) must
query exponentially many vertices of the hypercube. We show how to exploit the specific structure
of Zhang’s construction to build a distribution of End-of-Metered-Line instances that require
exponential query complexity.

In particular, the label of every vertex v ∈ {0, 1}n on the path constructed in [Zha09] can be
parsed as a pair (x, z) ∈ {0, 1}m ×{0, 1}n−m, where the x component is used to perform a random
walk and the z component stores a step-counter for the random walk to avoid intersections of the
path with itself. Our EOML oracle defines a graph corresponding to a single line chosen according
to the above structured random walk, and we use the step-counter to assign incremental values
along the path. The oracle answers for every query hitting the path with the respective predecessor
vertex, successor vertex, and the distance from the origin of the random walk. We show that any
query to the End-of-Metered-Line instance can be implemented by at most n queries to the
path of Zhang. Hence, we get an Ω(2n/2/

√
n) randomized query complexity lower bound for End-

of-Metered-Line. See Section 6.1 for a detailed proof.

2.3 Cryptographic Hardness for End-of-Metered-Line

Our cryptographic hardness result for End-of-Metered-Line builds upon previous works on
cryptographic hardness for PPAD. Bitanski, Paneth and Rosen [BPR15] showed hardness of
End-of-Line under the assumption of existence of injective one-way functions and indistinguisha-
bility obfuscation (both with sub-exponential security).

9

A cryptographic obfuscator is a complier that transforms any given circuit to a “scrambled” one,
which is functionally equivalent on one hand, but hides its implementation details on the other. The
theoretical study of obfuscation was initiated by Barak et al. [BGI+12], which suggested the notion
of virtual black-box obfuscation: anything that can be efficiently computed from the obfuscated
circuit, can be also computed efficiently from black-box access to the circuit (see Definition D.3).
Their main result was that this notion of obfuscation cannot be generally achieved.

As a way to bypass their general impossibility result, they introduced a plausibly weaker notion
of indistinguishability obfuscation. An indistinguishability obfuscator is a compiler that guaran-
tees that if two circuits compute the same function, then their obfuscations are computationally
indistinguishable (see Definition D.2). Furthermore, since the first candidate construction of in-
distinguishability obfuscation [GGH+13] was proposed, many other constructions have followed
suite [PST14, GLSW14, AB15, BVWW16].

Abbot, Kane and Valiant [AKV04] used the power of secure obfuscation to prove a hardness
result for End-of-Line (the canonical complete problem for PPAD) assuming virtual black-box
obfuscation. However, given that virtual black-box obfuscation is not achievable in general, it
remained an obvious important open problem to show hardness for PPAD under weaker cryp-
tographic assumptions. Bitanski et al. [BPR15] were the first to solve this open problem. They
showed that, assuming one-way functions (see Definition D.1) and indistuinguishability obfuscation
(both with subexponential security), there exist hard instance of the End-of-Line problem. Their
proof followed two main steps. First, they defined a problem called Sink-of-Verifiable-Line
(motivated by the work of Abbott, Kane and Valiant [AKV04]), and they showed that Sink-of-
Verifiable-Line is hard under the above cryptographic assumptions. Second, they gave a reduc-
tion from Sink-of-Verifiable-Line to End-of-Line yielding the conclusion that End-of-Line
is hard under the same assumptions.

Subsequently, Garg et al. [GPS15] showed that the cryptographic assumption for the hardness
of Sink-of-Verifiable-Line can be weakened. In particular, they showed hardness of Sink-of-
Verifiable-Line under the assumption of existence of one-way permutations and indistinguisha-
bility obfuscation both with polynomial security, and furthermore they showed an alternative con-
struction of hard instances of Sink-of-Verifiable-Line assuming compact functional encryption
(a special kind of public-key encryption which supports restricted secret keys that enable a key
holder to learn a specific function of the encrypted data, but learn nothing else), which is a plau-
sibly weaker cryptographic primitive than indistinguishability obfuscation. Using the reduction to
End-of-Line of [AKV04, BPR15] their result implies cryptographic hardness for PPAD.

Our white-box hardness result for End-of-Metered-Line is achieved by modifying the reduc-
tion from Sink-of-Verifiable-Line to End-of-Line to get a reduction from Sink-of-Verifiable-
Line to End-of-Metered-Line. This allows us to use any hardness result for Sink-of-Verifiable-
Line (i.e., either [BPR15] or[GPS15]) and get a corresponding hardness for End-of-Metered-
Line.

An instance of the Sink-of-Verifiable-Line problem consists of a successor circuit S, a
target index 1 ≤ T ≤ 2n and a verification circuit V with the promise the V (x, i) = 1 if and
only if Si−1(0n) = x. The goal is to find an x such that V (x, T) = 1. In order to reduce any
Sink-of-Verifiable-Line instance (S,V, T) to an equivalent instance (S′,P′) of End-of-Line,
we need to implement the predecessor circuit. [BPR15] use the approach suggested in [AKV04] to
make the steps of the successor circuit reversible (leveraging the ideas presented in [Ben89]) which
can be performed using the successor circuit S and the verification circuit V given in the Sink-

10

of-Verifiable-Line instance. We show that the resulting instance (S′,P′) does not come at the
expense of the verification circuit V. We extend the reduction of [AKV04, BPR15] with a valuation
circuit V′ that correctly assigns incremental values along the path starting at the initial source,
resulting with a valid instance (S′,P′,V′) of End-of-Metered-Line.

Our work clarifies the implications of the recent hardness results for Sink-of-Verifiable-
Line based on cryptographic notions of software obfuscation. In particular, we show that the
cryptographic hardness for Sink-of-Verifiable-Line of [GPS15] based on indistinguishability
obfuscation and one-way permutations (or compact functional encryption) implies hardness for
problems inside the class CLS, currently one of the lowest known non-trivial classes inside TFNP.
Since End-of-Metered-Line is contained in CLS which lies in the intersection of PLS and
PPAD, we also get a hardness results of PLS for which there were previously no known hardness
results based on cryptographic assumptions. See Section 6.2 for the complete construction and the
proof.

2.4 Organization of the Paper

The rest of the paper is organized as follows. In Section 3 we give the formal definitions and an
overview of related work on complexity of total search problems and their classes. In Section 4
we define the End-of-Metered-Line problem and discuss some of its basic properties. In Sec-
tion 5 we describe our reduction from End-of-Metered-Line to Continuous-Local-Optimum.
In Section 6.1 we show a query complexity lower bound for End-of-Metered-Line. In Section 6.2
we describe a cryptographic hardness result for End-of-Metered-Line.

3 Total Search Problems

Systematic study of total search problems was initiated by Papadimitriou and Megiddo [MP91] who
pointed out that the functional analogue of NP ∩ coNP contains a host of non-trivial problems
for which a solution always exists.

Definition 3.1 (Total search problems). A search problem S is a set of inputs IS ⊆ Σ∗ on some

alphabet Σ such that for each x ∈ IS there is an associated set of solutions Sx ⊆ Σ|x|
k

for some
integer k, such that for each x ∈ IS and y ∈ Σ|x|

k
it is decidable in polynomial time whether y ∈ Sx.

A search problem is total if Sx 6= ∅ for all x ∈ IS . The set of all total search problems is denoted
TFNP.

A polynomial-time reduction from total search problem S to total search problem T is a pair
f, g of polynomial-time computable functions such that, for every input x of S, f(x) is an input of
T , and furthermore for every y ∈ Tf(x), g(y) ∈ Sx.

Since TFNP is a “semantic class”, it is unlikely to contain any natural complete problems.
Papadimitriou [Pap94] defined various “syntactic” subclasses of TFNP with important complete
problems based on combinatorial principles used to show their totality.

The class PPAD (for Polynomial Parity Arguments on Directed graphs) is defined as all the
total search problems reducible to the End-of-Line problem.

Definition 3.2 (End-of-Line). Given two circuits S,P : {0, 1}n → {0, 1}n, such that P(0n) =
0n 6= S(0n), find a string x ∈ {0, 1}n such that P(S(x)) 6= x or S(P(x)) 6= x 6= 0n.

11

The main appeal of the class PPAD is that it has many important complete problems related to
algorithmic game theory, such as finding a Nash equilibrium in bimatrix games [DGP09, CDT09] or
in constant degree graphical games [Rub15]. The black-box hardness of problems related to PPAD
was extensively studied, and we point the interested reader to the works mentioned in Section 1
and the following works [SS06, CD08, FISV09] for additional results.

Johnson, Papadimitriou and Yannakakis [JPY88] defined and studied a subclass of TFNP that
captures the complexity of local search problems. The class PLS (for Polynomial Local Search) is
defined as all the total search problems reducible to the Local-Search problem. In the following
we denote by [n] the set of numbers {1, 2, . . . , n}:

Definition 3.3 (Local-Search). Given two circuits S : {0, 1}n → {0, 1}n and V : {0, 1}n →
[2n] ∪ {0}, find a string x ∈ {0, 1}n such that V(S(x)) ≤ V(x).

Note that the above definition is equivalent to an alternative definition where the problem is
given by circuits N : {0, 1}n → {0, 1}p(n) and V : {0, 1}n → [2n] ∪ {0} such that for each vertex
x ∈ {0, 1}n, the circuit N outputs a polynomial number p(n) of x’s neighbors. First, every instance
(S,V) can be viewed as an instance (N,V) of the second type with a neighborhood function N = S
outputting only singleton neighborhoods. Second, any instance (N,V) can be transformed into
an equivalent “hill-climbing” instance (S,V) by making the circuit S output a neighbor with the
highest value under V.

Additional black-box hardness results for local search can be found in [SS09, SY09]. The relation
between the query complexity of local search and approximate fixed point computation was studied
by Chen and Teng [CT07].

Continuous Local Search. Even though the Local-Search problem and the End-of-Line
problem that define PLS and PPAD respectively are discrete and presented in terms of Boolean
circuits, both classes have equivalent definitions in terms of continuous functions over the unit cube.
The notion of continuity used in this context is the Lipschitz continuity.

Definition 3.4. A function f : Rn → Rm is λ-Lipschitz for some λ > 0 if for all x, x′ ∈ Rn it holds
that |f(x)− f(x′)|∞ ≤ λ · |x− x′|∞, where | · |∞ denotes the maximum norm.

The continuous complete problem for PPAD is finding a Brouwer fixed point. An instance is
given by an ε > 0 and a λ-Lipschitz function f mapping the unit cube to itself. The goal is to find
an ε-approximate fixed point of f , i.e., some x ∈ [0, 1]3 such that |f(x) − x| < ε. The continuous
complete problem for PLS is finding a local optimum in a continuous valuation function. An
instance is given by a function f mapping the unit cube to itself (not necessarily Lipschitz) and a
λ-Lipschitz function p assigning a real value between zero and one to every point of the unit cube.
The goal is to find an ε-approximate local optimum of p under f , i.e., a point x ∈ [0, 1]3 such that
p(f(x))− p(x) < ε.

Daskalakis and Papadimitriou [DP11] suggested to combine the above two definitions in a
synergetic way and defined the class CLS (for Continuous Local Search) to contain all the total
search problems reducible to the following Continuous-Local-Optimum problem, where both
the transition and the valuation functions are λ-Lipshitz.

Definition 3.5 (Continuous-Local-Optimum). Given two arithmetic circuits f : [0, 1]3 → [0, 1]3

and p : [0, 1]3 → [0, 1], and two real constants ε, λ > 0, find either a point x ∈ [0, 1]3 such that
p(f(x)) ≤ p(x) + ε or a pair of points x, x′ ∈ [0, 1]3 certifying that either p or f is not λ-Lipschitz.

12

We already discussed that the class CLS lies in the intersection of PLS and PPAD. Moreover,
as shown in [DP11], it contains many important computational problems related to algorithmic
game theory with no known polynomial time algorithm, such as finding Nash equilibria in conges-
tion games [Ros73], finding Brouwer fixed points of contraction maps [Ban22], or solving simple
stochastic games of Shapley and Condon [Sha53, Con92].

4 End-of-Metered-Line

In this section we define a new total search problem, which we call End-of-Metered-Line, that
will serve as a basis of our hardness results for CLS. Our new problem extends End-of-Line,
given by a successor circuit S and a predecessor circuit P, by including an additional valuation
circuit V. The purpose of the valuation circuit is to act as an odometer for line starting at the
initial source 0n, that is, it reveals how many steps of S it takes to reach any vertex x from 0n. In
particular, we would like to have the promise that V(x) = i if and only if Si−1(0n) = x. Of course,
it is not possible to efficiently verify that indeed V answers as expected for every vertex. Moreover,
TFNP (see Definition 3.1) is a class of problems where a solution must exist, without additional
promises. Thus, we introduce a compromise between certifying correctness and having a promise:
We make no promises on the behavior of V but let any vertex attesting that V deviates from its
expected behavior to be an additional solution. The formal definition is given below.

Definition 4.1 (End-of-Metered-Line). Given circuits S,P : {0, 1}n → {0, 1}n, and V : {0, 1}n →
[2n] ∪ {0} such that P(0n) = 0n 6= S(0n) and V(0n) = 1, find a string x ∈ {0, 1}n satisfying one of
the following:

1. either P(S(x)) 6= x or S(P(x)) 6= x 6= 0n,

2. x 6= 0n and V(x) = 1,

3. either V(x) > 0 and V(S(x))− V(x) 6= 1 or V(x) > 1 and V(x)− V(P(x)) 6= 1.

Given an End-of-Metered-Line instance (S,P,V), we say that a vertex x is a solution of
the first, the second, or the third type if it satisfies the corresponding item in the above definition.
Notice that solutions of the first type are also solutions to the End-of-Line instance (S,P) defined
by the successor and the predecessor circuit of the End-of-Metered-Line instance. The solutions
of the second and the third type correspond to some indication that V is “untruthful”, that is, V
is not answering according to the distance of the vertex from 0n. In particular, solutions of the
second type indicate that V is giving values to a different line other than the one starting from 0n.
Solutions of the third type indicate that V is reporting a “miscount” at some vertex x.

The Intuition Behind our Definition. There are several ways how to define the “expected
behavior” of V, where for each we would obtain a possibly different set of solutions, and thus a
variation of the problem which, in general, is not equivalent to Definition 4.1. In our definition,
we require V to give additional information only for vertices on the line, and thus we allow V to
set the zero value to vertices off the line starting at 0n. That is, a vertex x such that V(x) = 0
and V(S(x)) = 0 is not considered as a solution. In particular, V can set the zero value to all
vertices on any cycle without introducing new solutions. This property is crucial for our hardness
results (cf. Section 6.1 and Section 6.2). In both cases, we show hardness by a reduction from

13

a certain problem to End-of-Metered-Line. To maintain the hardness, it is crucial for the
valuation functions constructed in our reductions that we are able to assign the zero value without
introducing trivial solutions.

Moreover, we do not require V to distinguish whether a vertex lies on the line or not. Consider
two vertices x 6= x′ such that V(x) = V(x′) 6= 0. It is clear that both cannot be at the same distance
from 0n, and thus they are a witness of V deviating from its expected behavior. However, we do
not consider such pairs to be a solution, as there is no way to distinguish which vertex is not on
the line originating at 0n. It is possible to add an additional type of solution corresponding to such
x and x′. We note that all of our results naturally extend to this variant of End-of-Metered-
Line.

Warm-Up: EOML lies in PPAD ∩ PLS. We show that End-of-Metered-Line lies at
the intersection of PLS (see Definition 3.3) and PPAD (see Definition 3.2). As pointed out by
Daskalakis and Papadimitriou [DP11], proving that a problem lies in the intersection of PLS and
PPAD is equivalent to reducing the problem both to a complete problem in PLS and to a complete
problem in PPAD. They showed that Either-Solution, i.e., given an instance of Local-Search
and an instance of End-of-Line to find a solution to either one of them, is a complete problem
for PLS ∩PPAD. We have already shown that End-of-Metered-Line is contained in PPAD
since for any instance (S,P,V) of End-of-Metered-Line, the circuits (S,P) constitute an instance
of End-of-Line. Additionally, End-of-Metered-Line can also be reduced to Local-Search,
which together with the above straightforward reduction to End-of-Line completes the reduction
to Either-Solution. Thus, End-of-Metered-Line is contained in PLS ∩PPAD.

Lemma 4.2. End-of-Metered-Line is reducible to Local-Search.

Proof. Given an End-of-Metered-Line instance (S,P,V) we define a Local-Search instance
(S′,V), where S′(x) outputs 0n if V(x) = 0 and otherwise outputs S(x). Let x be any solution to
(S′,V). Note that V(x) 6= 0, since every vertex x such that V(x) = 0 is under S′ followed by 0n and
it cannot be a local optimum (recall that V(0n) = 1). Moreover, V(x) ≥ V(S′(x)) = V(S(x)) which
implies that V(x) 6= V(S(x))− 1. Hence, x is a solution of the third type to the original End-of-
Metered-Line instance (S,P,V).

5 End-of-Metered-Line is in CLS

In this section we show that End-of-Metered-Line is contained in CLS (see Section 3). In
particular, we give a reduction from any instance (S,P,V) of End-of-Metered-Line (cf. Defini-
tion 4.1) to an equivalent instance (f, p, ε, λ) of Continuous-Local-Optimum (cf. Definition 3.5).
Our reduction takes the discrete graph implicitly defined by any End-of-Metered-Line instance
and embeds it inside the unit square in a continuous manner. In particular, our embedding defines
the function f for the new Continuous-Local-Optimum instance that resembles a staircase (or
a collection of staircases in case the valuation circuit V outputs non-zero values on more than one
line). Additionally, we define a continuous valuation function p for all the points of the unit square
with the property that from any local optimum of p under f it is possible to reconstruct a solution
to the original EOML instance.

Theorem 5.1. End-of-Metered-Line is reducible to Continuous-Local-Optimum.

14

Our reduction takes any instance (S,P,V) of End-of-Metered-Line and produces an instance
of Continuous-Local-Optimum, defined by functions f : [0, 1]3 → [0, 1]3, and p : [0, 1]3 → [0, 1]
and constants ε, λ > 0. We begin by describing the functions f : [0, L]2 → [0, L]2 and p : [0, L]2 →
[0, 4L], where L ∈ N will be defined later. Afterwards, we show how to convert f and p to the
appropriate domains and we define the constants ε and λ.

Consider a tessellation of the domain [0, L]2 with L ·L unit squares. Similarly to some previous
works [HPV89, Rub15], we call the border area of the domain the frame, and the area inside the
frame the picture. We set the frame to be of width 5 unit squares. That is, the picture covers
exactly the area [5, L − 5]2. The picture is comprised of square blocks, where the side of each
block is of length 10 ·2n unit squares. The picture contains 2n such blocks. Thus, we get that
L = 10(22n+1), where 10·22n is the number of squares along the side of the picture and 10 is added
to account for the width of the frame on both sides of the picture.

The coordinates of any point (X,Y) ∈ [5, L− 5]2 within the picture can be parsed as a pair of
triplets: X = (bx, sx, x) and Y = (by, sy, y). First, (bx, by) ∈ [2n] × [2n] are the coordinates of the
square block containing (X,Y). Second, (sx, sy) ∈ [10·2n]× [10·2n] are the coordinates of the unit
square within this block. Third, (x, y) ∈ [0, 1]2 are the coordinates of (X,Y) within this square.
Formally, we have that

X = 5 + (10·2n)(bx − 1) + (sx − 1) + x

and
Y = 5 + (10·2n)(by − 1) + (sy − 1) + y.

We embed the line defined by the End-of-Metered-Line instance into the picture. The line
starts at the bottom left corner of the picture and traverses the borders of the unit squares inside
the picture in a staircase-like pattern. Below we use a mapping from {0, 1}n to the set [10 ·2n],
and for any x = (xn, . . . , x1) ∈ {0, 1}n denote by 〈x〉 = 10

(∑n
i=1 xi2

i−1
)

+ 1 its corresponding
value (however, when clear from the context we simply write x). The line passes through points
((i, 〈xi〉 , 0), (i, 〈0n〉 , 0)) for all (xi, i) ∈ {0, 1}n × [2n] such that V(xi) = i. We connect all pairs of
points ((i, 〈xi〉 , 0), (i, 〈0n〉 , 0)) and ((i+ 1, 〈S(xi)〉 , 0), (i+ 1, 〈0n〉 , 0)) via three line segments:

((i, 〈xi〉 , 0), (i, 〈0n〉 , 0))←→
((i, 〈xi〉 , 0), (i, 〈xi〉 , 0))←→
((i+ 1, 〈S(xi)〉 , 0), (i, 〈xi〉 , 0))←→
((i+ 1, 〈S(xi)〉 , 0), (i+ 1, 〈0n〉 , 0)).

See Figure 2a for an illustration.
Note that in general it could be the case that V(x) = V(x′) = i for some x 6= x′ and there are

crossing line segments inside the blocks (i, i) and (i+ 1, i). To avoid such crossing of lines, we alter
the behavior of the line in the vicinity of a crossing point as illustrated in Figure 2b. In particular,
the neighborhood of any crossing point is changed according to a fixed crossing gadget inspired by
the work of Chen and Deng [CD09]. Even though the lines are altered after applying the crossover
section, the most important property of this transformation is that it neither removes existing ends
of line nor it introduces additional ones.

The function f is defined to create a “flow” along the above staircase. Formally, the function
f is defined by a different displacement at each point. Each unit square inside [0, L]2 is given a
“color” corresponding to the displacement at the center of the square. For any other point z, the
displacement is defined as the Cartesian interpolation of the f -values of the four centers surrounding

15

((i, 〈xi〉 , 0), (i, 〈0n〉 , 0))

((i, 〈xi〉 , 0), (i, 〈xi〉 , 0))

((i+ 1, 〈S(xi)〉 , 0), (i, 〈xi〉 , 0))

((i+ 1, 〈S(xi)〉 , 0), (i+ 1, 〈0n〉 , 0))

(a) A staircase segment connecting points represent-
ing xi and S(xi).

(b) The fixed template for avoiding crossing at a
point that lies on two lines.

Figure 2: Details of our embedding of an End-of-Metered-Line instance into the unit square.

z. That is, f is of the form f(z) = z + δd(z) where δ > 0 is some constant and d(z) ∈ R2 is the
displacement function, which we describe next.

There are five basic displacements (depicted in Figure 3): blue (−1,−1), green (0,−1), purple
(−1, 0), yellow (1, 0), and red (0, 1). By default the color of each square is blue, which corresponds

(a) blue: (−1,−1) (b) green: (0,−1) (c) purple: (−1, 0) (d) yellow: (1, 0) (e) red: (0, 1)

Figure 3: The five basic displacements.

to the displacement (−1,−1) (i.e., pointing down and left). The squares on the frame are colored
according to a fixed assignment of colors. First, the squares in the leftmost column get yellow color
and the squares in the second left column get the green color. Second, the squares in the bottom
row get red color and the square in the row above it get purple color. Then, we color the bottom
left corner of the frame according to Figure 4. Finally, we color the squares inside and below the
picture corresponding to their distance from the line. Any square touching the line from left or
above is colored yellow. Any square touching the line from right or below is colored red. Any
square that is distance one from the line from left or above is colored green. Any square that is
distance one from the line from right or below is colored purple.

The function p : [0, L]2 → [0, 4L] is defined similarly to f . Each square is assigned an integer
value corresponding to the value of p at the middle of the square, and the value of p at any other
point is the Cartesian interpolation of the p-values at the four centers surrounding it. We number

16

2L−122L−112L−102L−9

2L−10

2L+12L2L−1

2L−8

2L−9

2L2L−12L−2

2L−7

2L−8

2L−92L−22L−3

2L−6

2L−7

2L−82L−32L−42L−52L−6

2L−72L−42L−52L−62L−7

2L−82L−72L−62L−72L−8

Figure 4: The f -values and the p-values of the squares close to the origin. The bottom left square
is aligned at the bottom left corner of the frame.

every unit square in the tiling of [0, L]2 by coordinates in [L] × [L], where the bottom left unit
square gets coordinates (1, 1) and the top left unit square gets coordinates (L,L). We assign the
p-values to each square according to its color under f . Every square (i, j) ∈ [L]× [L] that is green,
blue or purple gets value 2L− i− j (that is, the top right square gets value 0 and the bottom left
square gets value 2L − 2). Now we assign the p-values of the yellow and red squares. First, any
square (1, j) in the leftmost column gets value 2L− j − 2. Second, any square (i, 1) in the bottom
row gets value 2L − i − 2. Then, we assign the p-values in the bottom left corner of the frame
according to Figure 4.

To assign the values to the remaining yellow and red squares, we begin by assigning a value
corresponding to each step on the line inside the picture. The start of the line gets value M = 2L+1,
and after performing ` steps of unit length the value is M + `. Note that all the remaining yellow
and red squares are adjacent to the line. If the square is below the line (i.e., it has red color) then
it gets the value of its top left corner. If the square is above the line (i.e., it has yellow color) then
it gets the value of its bottom right corner. For concrete example of a specific embedding with the
corresponding values for f and p see Figure 5.

We note that the evaluation of f and p on any point can be performed locally. In particular,
the values follow a simple fixed pattern on the frame. The values inside the picture are computed
based on the proximity of the staircase that embeds the End-of-Metered-Line instance. Note
that coordinates of any point on the staircase are sufficient to verify that the point indeed lies on
the line. We give the complete description of procedure that decides whether a point lies on the
staircase in Algorithm 4. Given this procedure it is easy to decide whether a square touches the
staircase from above or below. We can simply check whether the square touches the staircase with
its bottom right corner or its top left corner, which splits the squares adjacent to the staircase to
those that lie above and those that lie below (see Algorithm 5). Knowing that a square lies above
or below the line allows us to immediately assign the yellow and red colors. Otherwise, we test the
neighbours of the square for being above or below to assign the green and purple color; in case all
of these tests fail, the square gets the default blue color (see Algorithm 6).

The p-values are easy to compute based on the f -colors. Note that the value of any blue, green,

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25

24

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26

25

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27

26

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28

27

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29

28

6 7 8 9 10
11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29
30

29

7 8 9 10 11 +29 +28 +27 +26
16

17 18 19 20 21 22 23 24 25 26 27 28 29 30
31

30

8 9 10 11 12 +28 +27 +26 +25
17

18 19 20 21 22 23 24 25 26 27 28 29 30 31
32

31

9 10 11 12 13 14 15 +25 +24
18 19 20 21

22 23 24 25 26 27 28 29 30 31 32
33

32

10 11 12 13 14 15 16 +24 +23 +22 +21 +20
22

23 24 25 26 27 28 29 30 31 32 33
34

33

11 12 13 14 15 16 17 +23 +22 +21 +20 +19
23

24 25 26 27 28 29 30 31 32 33 34
35

34

12 13 14 15 16 17 18 19 20 21 +19 +18
24 25 26 27

28 29 30 31 32 33 34 35
36

35

13 14 15 16 17 18 19 20 21 22 +18 +17 +16 +15 +14
28

29 30 31 32 33 34 35 36
37

36

14 15 16 17 18 19 20 21 22 23 +17 +16 +15 +14 +13
29

30 31 32 33 34 35 36 37
38

37

15 16 17 18 19 20 21 22 23 24 25 26 27 +13 +12
30

31 32 33 34 35 36 37 38
39

38

16 17 18 19 20 21 22 23 24 25 26 27 28 +12 +11
31

32 33 34 35 36 37 38 39
40

39

17 18 19 20 21 22 23 24 25 26 27 28 29 +11 +10
32

33 34 35 36 37 38 39 40
41

40

18 19 20 21 22 23 24 25 26 27 28 29 30 +10 +9
33

34 35 36 37 38 39 40 41
42

41

19 20 21 22 23 24 25 26 27 28 29 30 31 +9 +8
34 35 36 37 38 39 40 41 42 43

42

20 21 22 23 24 25 26 27 28 29 30 31 32 +8 +7 +6 +5 +4 +3 +2 +1

53=
M 52 51

44
43

21 22 23 24 25 26 27 28 29 30 31 32 33 +7 +6 +5 +4 +3 +2 +1 M 52 51 50
45

44

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 50 49
46

45

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 49 48 47 46

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 47 46 45

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 45 44

Figure 5: A simplified depiction (omitting the ten unit square buffer inside the blocks) of an
instance of Continuous-Local-Optimum obtained by applying our reduction on an instance of
End-of-Metered-Line. The dashed line is the staircase corresponding to embedding a single
line 00 → 11 → 10 → 01 implicitly defined by the successor circuit S of the End-of-Metered-
Line instance. The arrows indicate the displacement at the center of each square and the numbers
indicate the corresponding p-values (“+j” is a shorthand for “M + j”).

or purple square depends only on its Manhattan distance d from the bottom right corner of the
picture, i.e., the value is 2L− 10− d. Moreover, the value of any yellow or red square depends only
on the number of steps from the base of the staircase up to that square. Hence, it is independent
of the exact shape of the staircase and it can also be expressed in terms of the Manhattan distance
from the bottom left corner of the picture, i.e., the value is M − 1 + d (see Algorithm 7).

Finally, we set the parameter according to the construction. The actual values are determined
by the analysis in the proof. In terms of correctness, we only need to verify that the parameter
can be described in poly(n) bits. Concretely, we set λ = 23n, δ = 1

10λn , and ε = δ
10 (and recall that

L = 10(22n + 1)).

18

8 9 10 11 12 13 14 15 +35 +34

18

19 20 21 22 23 24 25 26 27 26

9 10 11 12 13 14 15 16 +34 +33

19

20 21 22 23 24 25 26 27 28 27

10 11 12 13 14 15 16 17 +33 +32

20

21 22 23 24 25 26 27 28 29 28

11 12 13 14 15 16 17 18 +32 +31

21

22 23 24 25 26 27 28 29 30 29

12 +28 14 15 16 17 18 19 +31 +30

22 23 24 25 26 27

28 29 30 31 30

13 +27 15 16 17 18 19 20 +30 +29 +28 +27 +26 +25 +24

28

29 30 31 32 31

14 15 16 17 18 19 20 21 +29 +28 +27 +26 +25 +24 +23

29

30 31 32 33 32

15 16 17 18 19 20 21 22 23 24 25 26 27 +23 +22

30

31 32 33 34 33

16 17 18 19 20 21 22 23 24 25 26 27 28 +22 +21

31

32 33 34 35 34

17 +23 +22 +21 21 22 23 24 25 26 27

28 29 +21 +20

32 33 34 35 36 35

+33 +32 +31 +30 +29 +28 +27 +26 +25 +24

28

29 30 +20 +19 +18 +17 +16 +15 +14 +13

+32 +31 +30 +29 +28 +27 +26 +25 +24 +23

29

30 31 +19 +18 +17 +16 +15 +14 +13 +12

20 21 22 23 24 25 26 27 +23 +22

30

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 +22 +21

31

32 33 34 35 36 37 38 39 40 41

22 23 24 25 26 27 28 29 +21 +20

32

33 34 35 36 37 38 39 40 41 42

23 24 25 26 27 28 29 30 +20 +19

33

34 35 36 37 38 39 40 41 42 43

24 25 26 27 28 29 30 31 +19 +18

34

35 36 37 38 39 40 41 42 43 42

25 26 27 28 29 30 31 32 +18 +17

35

36 37 38 39 40 41 42 43 42 43

26 27 28 29 30 31 32 33 +17 +16

36

37 38 39 40 41 42 43 42 43 44

Figure 6: The embedding of the line near a crossover.

5.1 Proof of Theorem 5.1

We prove the correctness of the above reduction. First, we show that the result of the reduc-
tion is a valid instance of Continuous-Local-Optimum. That is, we show that f is 4-Lipschitz
and p is 23n-Lipschitz. Second, we show that any local optimum of the resulting instance of
Continuous-Local-Optimum can efficiently be transformed to a solution for the EOML in-
stance.

The proof that f and p are Lipschitz follows from the way they are defined, i.e., by Cartesian
interpolation. The proof is standard and rather technical, and thus we defer it to the appendix
(see Lemma A.1 and Lemma A.2 in Appendix A.1). The core of our proof is to demonstrate that
we did not introduce any local optima far from any end of a line. That is, we show that any unit
square that contains a local optimum can be efficiently transformed into a solution of the EOML
instance.

We consider the picture to be divided into square templates, each of size 1 × 1 such that its
corners are at the middle of the squares in the picture. The different types of templates correspond
to the different colors assigned to the four squares covering the template. Chen and Deng [CD09]
showed that no template composed of only two colors contains a fixed point. We show a stronger
statement: such templates do not contain a local optimum either.

Lemma 5.2. There is no ε-local optimum in any template that contains only two colors.

Proof. For any point z we define ∆ = ∆(z) = p(f(z))−p(z) to be the improvement in p-value after
taking a single step in f originating from z. For each template we prove that for any point z inside

19

this template the improvement is greater than ε, i.e.,

∆(z) = p(f(z))− p(z) > ε.

Given a point in a specific template, we consider its coordinates relative to the template (the x
axis is positioned along the bottom of the square template, so that the origin is at the bottom-left
corner, and the top-right corner of the template has coordinates (1,1)). We prove that ∆(z) > ε
for all z = (x, y) ∈ [0, 1]2. Let a, b, c, d ∈ N be the values of p on the top-left, top-right, bottom-left,
and bottom-right corners respectively. We define p⊥(x) = xd+ (1−x)c, and p>(x) = xb+ (1−x)a.
Then, we can express p in terms of p⊥ and p> as

p(x, y) = yp>(x) + (1− y)p⊥(x)

= (−a+ b+ c− d)xy + (a− c)y + (−c+ d)x+ c

= a′xy + b′y + c′x+ d′,

where a′ = −a + b + c − d, b′ = a − c, c′ = −c + d, and d′ = c. Recall that f(z) = f(x, y) = z +
δd(x, y) = (x+ δdx(x, y), y+ δdy(x, y)), where dx (respectively dy) is the x component (respectively
the y component) of the displacement function d. Thus, we can express ∆(z) as

∆(x, y) = p(f(x, y))− p(x, y)

= p(x+ δdx(z), y + δdy(z))− p(x, y)

= δ(c′dx(z) + b′dy(z) + a′(δdx(z)dy(z) + dy(z)x+ dx(z)y)).

Since f is also defined by Cartesian interpolation, we can plug in the specific values for p and for
f at the four corners of the template to the above expression, and we get an explicit formula for
∆(x, y) in the template.

We begin by considering all the points z ∈ [0, 1]2 such that f(z) ∈ [0, 1]2, i.e., points such that
their image under f lands in the same template. In this case we use the explicit formula for ∆(z)
to directly argue that ∆(z) > ε. In the rest of this part of the proof we go over all the possible
templates that can occur in our reduction. For each template we plug in the corner values of f and
p for the template, derive the explicit formula for ∆(x, y), and prove that it is always larger than
ε′ = 2ε. The complete analysis of all the different templates is given in Appendix A.2.

It remains to show that also the points that are brought by f outside their template do not
constitute local optima. Notice that any such point must be in a distance of at most δ from the
border of the template since f makes steps of length at most δ (in the maximum norm). Recall
that by considering the points that under f stay inside the template, we have already shown that
all the points that lie inside the template at least δ-far from its border are not local optima. We
use this fact together with the following claim to prove that also none of the points δ-close to the
boundary of the template constitute a local optimum.

Claim 5.3. Let f : R3 → R3 and p : R3 → R be λf -Lipschitz and λp-Lipschitz respectively, and let
ε, γ > 0. Let R ⊂ R3 be such that for all z ∈ R it holds that

p(f(z))− p(z) > ε.

Then for all z ∈ Rγ = {x : ∃y ∈ R, |x− y| ≤ γ} it holds that

p(f(z))− p(z) > ε− λpλfγ − λpγ.

20

Proof. Let z ∈ Rγ . By the definition of Rγ , there exists some z′ ∈ R at most γ-far from z, i.e.,
such that |z − z′| ≤ γ. First, we derive the following bound on the difference in the p-values at the
images of z and z′ under f :

|p(f(z))− p(f(z′))| ≤ λp|f(z)− f(z′)| ≤ λpλf |z − z′| ≤ λpλfγ,

where we used the λp-Lipschitz continuity of p, the λf -Lipschitz continuity of f , and the bound on
the distance of z and z′. Since no z′ ∈ R can be an ε-approximate local optimum, we get that

p(f(z)) ≥ p(f(z′))− λpλfγ > p(z′) + ε− λpλfγ. (5.1)

Additionally, from the λp-Lipschitz continuity of p and the bound on distance of z and z′ we get that
|p(z)− p(z′)| ≤ λp|z − z′| ≤ λpγ. Thus, p(z′) ≥ p(z)− λpγ, which we can plug into Equation (5.1)
and we get that

p(f(z)) > p(z′) + ε− λpλfγ ≥ p(z)− λpγ + ε− λpλfγ,

as claimed.

We have proved that any point z within a template that is at least δ-far from the border satisfies
∆(z) > ε′ = 2ε. Thus, we can define R to be all such points that are at least δ-far from the border
of the template, and using Claim 5.3 we get that for all points z in the template it holds that

∆(z) > ε′ − λpλfδ − λpδ ≥ 2ε− 5λpδ ≥ 2ε− 1/n ≥ ε.

Which concludes the proof of Lemma 5.2.

Extracting a Solution. To finish the proof of Theorem 5.1, we show how to translate any
solution to the resulting Continuous-Local-Optimum instance to a solution for original the End-
of-Metered-Line instance. Suppose that we are given an arbitrary local optimum (X,Y) ∈ [0, L]2

inside the picture (there are no local optima in the frame by our construction). We parse the
coordinates of (X,Y) as ((bx, sx, x), (by, sy, y)), where (bx, by) ∈ [2n] × [2n] is the block, (sx, sy) ∈
[10·2n]× [10·2n] is the square inside this block and (x, y) ∈ [0, 1]2 is the relative position of (X,Y)
within this square. We have proved that all templates containing only two colors contain no local
optimum (Lemma 5.2). Thus, any local optimum must be inside a template in the vicinity of the
beginning or the end of some line. Recall that each block contains a number of squares that is a
multiple of 10, and thus let s′x = bsx/10c and s′y = bsy/10c. Our main claim is that if (X,Y) is
a local optimum in the Continuous-Local-Optimum instance then either s′x or s′y is a solution
for the End-of-Metered-Line instance. Since verifying a solution can be done efficiently, given
that the claim is true, extracting a solution is easy. We elaborate more on why the claim is true.

First, consider the simplest case where the implicit graph defined by S and P from the End-of-
Metered-Line instance contains a single line, and some additional cycles. Moreover, V gives the
correct incremental values for vertices on the line, and it assigns the zero value to any other vertex.
Let w be the sink of this line, i.e., the only solution to the End-of-Metered-Line instance. In
this case, the reduction results in an instance with a single continuous line (cf. Figure 5) with
exactly one local optimum that occurs at block (V(w),V(w) + 1) at square (10 · S(w), 10 · w), and
thus the claim follows.

21

Now consider a graph with an additional line (or many additional lines), where V outputs the
values according to the distance of the vertices on the additional line with respect to its actual
source. Then we will have two (or more) staircases traveling through the blocks. Here comes the
importance of the crossover template (cf. Figure 6) that ensures two staircases never cross (which
would create a local optimum at the crossing point). The only local optima are in the vicinity of
the beginning/end of these staircases, and thus we get the sink/source of the corresponding line,
which is a solution to the End-of-Metered-Line instance.

In a more general case, it might be that V gives inconsistent values for vertices on a line. Again,
any deviation from the “correct” value (i.e., the exact distance from the source) will cut the line
embedded at that block. Let w be the last vertex on which V answers consistently. Then, there
will be a local optimum at block (V(w),V(w) + 1) at square (10 · S(w), 10 · w).

In the most general case, we might have collisions in S, collisions in P and have V output
inconsistent values for many vertices. Suppose that S(x) = S(x′) = y and P(y) = S(x). Then, x′

is a solution (a sink), and indeed we will have a local optimum at block (V(x),V(x) + 1) at square
(10 · y, 10 · x′) which can be used to extract x′. Now suppose that P(y) = P(y′) = x and S(x) = y.
Then y′ is a solution (a source), and indeed we will have a local optimum at block (V(y′),V(y′)−1)
at square (10 · y′, 10 · x). Moreover, if V(x) = 1 and x 6= 0n then x is a solution and we will have a
local optimum at block (1, 1) at square (10 ·x, 0). In general, the End-of-Metered-Line instance
might have many different solutions which will yield many different local optima. However, from
coordinates of any such local optimum it is easy to recover the original solution. To illustrate
the result of the embedding we give an example for a specific End-of-Metered-Line instance
in Figure 7.

Normalizing the Domain. Finally, we show how to convert f and p to the appropriate domain
and range. First, we scale the domain of the two functions to be the unit square, and we define
f ′(z) = 1

T · f(Tz) and p′(z) = 1
T · p(Tz) for T = 4L.

Claim 5.4. Let f : Rn → Rm be a λ-Lipschitz function. Then for any T > 0 the function f ′(z) =
1
T · f(Tz) is λ-Lipschitz.

Proof. We get by a simple calculation that

|f ′(z)− f ′(z′)| =
∣∣∣∣ 1

T
· f (Tz)− 1

T
· f
(
Tz′
)∣∣∣∣ =

1

T

∣∣f (Tz)− f
(
Tz′
)∣∣ ≤ 1

T
λ
∣∣Tz − Tz′∣∣ = λ|z − z′|,

as claimed.

Recall that L = 10(22n + 1). Since f is 4-Lipschitz, by Claim 5.4, we get that f ′ is 4-Lipschitz.
Similarly, since p is 23n-Lipschitz we get that p′ is 23n-Lipschitz. Thus, for the final construction
we set λ′ = 23n, δ′ = δ/T and ε′ = ε/T , such that any ε-local optimum with respect to f and p is
an ε′-local optimum with respect to f ′ and p′.

Finally, notice that f ′ and p′ are defined over [0, 1]2 and not over [0, 1]3 as in the definition of
Continuous-Local-Optimum. They can be easily extended to [0, 1]3 by copying over the third
dimension. Namely, define f ′′(x, y, z) = (f ′(x, y), z) and p′′(x, y, z) = p′(x, y). It is easy to see that
this transformation does not change the Lipschitz constants of the functions. This concludes the
proof of Theorem 5.1.

22

(a)

100

011

010 111

001 110

000 101

0

3

2

1

0

2

2

1

(b)

Figure 7: (a) A collection of staircases obtained by our reduction from a specific EOML instance.
Each end point of a staircase is marked by the label of the corresponding vertex that constitutes
a solution in the EOML instance. (b) The EOML instance. A solid (respectively dashed) arrow
from i to j denotes that j is a successor (respectively predecessor) of i. The value next to a vertex
denotes its valuation under V. The vertices with dark background are the solutions obtained via
our reduction: 101 is a solution of the second type (V(101) = 1), 110 and 010 are solutions of the
third type since the value of their successors is not incremented, 111 is a solution of the third type
since the value of its predecessor is not decremented, and additionally also a solution of the first
type because it constitutes a sink in the graph (P(S(111)) = 001 6= 111).

6 On the Hardness of End-of-Metered-Line

6.1 Query Complexity Lower Bound

In this section, we show an exponential query complexity lower bound for End-of-Metered-Line.
This, in turn, shows a query complexity lower bound for CLS. In more general terms, we show
that finding a local optimum even in a continuous domain is exponentially hard.

The Query Model. Let Π(n) be a search problem defined by a function parametrized by n. In
the query model, an algorithm is given oracle access to the function, and we measure the number
of oracle queries performed by the algorithm, whereas its running time may be unbounded. We
denote by QCp(Π(n)) the number of queries required for any randomized algorithms to solve Π(n)
with probability at least p, and we denote QC(Π(n)) = QC2/3(Π(n)).

We consider the End-of-Metered-Line in the query model. Formally, let EOML(n) be
given by an oracle that on query v ∈ {0, 1}n outputs a triple consisting of the predecessor of v, the

23

successor of v, and the value of v. That is, the EOML oracle will answer for any vertex v ∈ {0, 1}n
with the triple (S(v),P(v),V(v)) ∈ {0, 1}n×{0, 1}n×N. The goal is to find a vertex v that satisfies
one of the three conditions for a solution of End-of-Metered-Line (cf. Definition 4.1). We show
that the randomized query complexity of EOML(n) is exponential in n.

Theorem 6.1. QC(EOML(n)) = Ω
(
2n/2/

√
n
)
.

In order to show a lower bound for probabilistic algorithms, by Yao’s minmax principle it
is enough to show that there exists a distribution over instances such that every deterministic
algorithm fails with high probability.

For the problem Local-Search, i.e., finding a (non-continuous) local optimum on the n-
dimensional Boolean hypercube, Zhang [Zha09] gave a tight query complexity lower bound of
Θ(2n/2

√
n). In this section we show how to adapt his techniques to get a matching lower bound

for End-of-Metered-Line. In particular, Zhang [Zha09] defined a query complexity problem
Path, and showed that QC(Path) ≤ 2QC(Local-Search). Finally, to argue the tight query
complexity lower bound for Local-Search, Zhang proved the following lower bound for Path
(matching upper bound for Local-Search was given by Aldous [Ald83]):

Claim 6.2 ([Zha09]). QC(Path) = Ω
(
2n/2 ·

√
n
)
.

The Path Game. We begin by describing the Path problem that asks to find an endpoint on a
random self-avoiding path over the Boolean hypercube. In particular, consider a decomposition of
the Boolean hypercube {0, 1}n as {0, 1}m×{0, 1}n−m, where m = b(n+ log n)/2c. We construct a
self-avoiding path over {0, 1}n that corresponds to following a random walk on the first component
{0, 1}m, while using the second component {0, 1}n−m to keep a step-counter for the random walk
in order to avoid self-loops.

Formally, fix any Hamiltonian path of length 2n−m − 1 = 2T + 1 over {0, 1}n−m. We denote
the vertices on the Hamiltonian path as

(z0,0, z1,0, z1,1, z2,1, z2,2, . . . , zT,T).

Next, we build a random walk over {0, 1}m that starts at an arbitrary vertex x0 (e.g., x0 = 0m),
and proceeds for T steps as follows. For all i ∈ [T], we choose xi ∈ {0, 1}m by flipping a random
coordinate in xi−1. Finally, given the random walk (x0, x1, . . . , xT) and the Hamiltonian path
(z0,0, z1,0, . . . , zT,T), we define a path X over {0, 1}n = {0, 1}m×{0, 1}n−m by making a step in the
random walk and two subsequent steps on the Hamiltonian path, i.e.,

X = ((x0, z0,0), (x1, z0,0), (x1, z1,0), (x1, z1,1), . . . , (xT , zT−1,T−1), (xT , zT,T−1), (xT , zT,T)).

The Path problem is given by an oracle access to the above path X, i.e., the Path oracle answers
1 for any vertex v ∈ {0, 1}n that lies on the path X and 0 for any point that lies off the path X.
The goal is to find the endpoint of the path X, i.e., the vertex v = (xT , zT,T).

We show that any query complexity lower bound for the Path problem implies a query com-
plexity lower bound for End-of-Metered-Line.

Claim 6.3. QC(Path) ≤ nQC(EOML).

Proof. For any Path oracle, we implement an equivalent EOML oracle.

24

EOML-Oracle(v):

1. Query Path(v) to learn whether v lies on the path X.

2. If v lies off the path X, output (v, v, 0).

3. If v = (x, zT,T) then output ((x, zT,T−1), (x, zT,T), 3T + 1).

4. If v = (x, zk,k) for some k ∈ [T] ∪ {0} and Path(x, zk+1,k) = 0 then:

(a) For all x′ that differ from x in a single coordinate, query Path(x′, zk,k) to find (xk+1, zk,k),
the next vertex on the path X.

(b) If k = 0 then output ((x, z0,0), (x1, z0,0), 1).

(c) Otherwise output ((x, zk,k−1), (xk+1, zk,k), 3k + 1).

5. If v = (x, zk,k) for some k ∈ [T] ∪ {0} and Path(x, zk,k−1) = 0 then:

(a) For all x′ that differ from x in a single coordinate, query Path(x′, zk,k) to find (xk−1, zk,k),
the previous vertex on the path X.

(b) Output ((xk−1, zk,k), (x, zk+1,k), 3k − 1).

6. If v = (x, zk,k−1) for some k ∈ [T] then output ((x, zk−1,k−1), (x, zk,k), 3k).

The unique solution to the new EOML instance is the local optimum at the vertex v =
(xT , zT,T), which constitutes also a solution to the original Path problem. Notice that to an-
swer each End-of-Metered-Line query we perform at most m + 2 ≤ n queries to the Path
oracle. Thus, we get that QC(Path) ≤ nQC(EOML), as claimed.

By combining Claim 6.3 with Claim 6.2 we get the following query complexity lower bound for
End-of-Metered-Line:

QC(EOML) ≥ 2n/2/
√
n,

as claimed in Theorem 6.1.

Query Complexity of Continuous-Local-Optimum. To get the exponential query com-
plexity lower bound for Continuous-Local-Optimum, we combine the above lower bound for
End-of-Metered-Line with our reduction from Theorem 5.1. It follows that one must perform
2n/2/

√
n queries to get accuracy ε, where in the reduction we set ε ≈ 2−5n (up to a polynomial

factor). In other words, to solve Continuous-Local-Optimum with n-digits of precious (i.e., up
to accuracy ε = 2−n) one must perform approximately 2n/10 = 2Ω(n) queries.

Alternative Approach Based on Lower Bounds for PPAD. We note that we could have
directly proved exponential query complexity lower bound for CLS by combining our reduc-
tion from End-of-Metered-Line to Continuous-Local-Optimum from Theorem 5.1 with
the previous works on query complexity of computing approximate Brouwer fixed points (e.g.,
[HPV89, LNNW95]). However, our query complexity lower bound for End-of-Metered-Line
presented in Theorem 6.1 is a stronger result, since End-of-Metered-Line is not complete for

25

CLS, and hence we give a lower bound for potentially easier problem than continuous local search.
For completeness, we sketch below the direct approach for showing black-box hardness for CLS.

In the case of Brouwer fixed points for functions over the unit square, Hirsch, Papadimitriou
and Vavasis [HPV89] showed an exponential query complexity lower bound for any deterministic
algorithm treating the function as a black-box. Their work was based on reducing the problem
of finding an end of a staircase traversing square grid with N2 points to finding a fixed point of
a continuous function over the unit square. Specifically, they showed that any query complexity
lower bound for the staircase problem with N2 points implies a matching query complexity lower
bound for finding 1

N -approximate Brouwer fixed points. They showed that the deterministic query
complexity of the staircase problem is Θ(N) (Lovász et al. [LNNW95] showed a randomized query

complexity lower bound of Ω(N
1
3)), which implies an exponential query complexity lower bound

for finding approximate Brouwer fixed points and thus for PPAD.
Similarly to [HPV89], our reduction from End-of-Metered-Line to Continuous-Local-

Optimum also provides an embedding of any staircase into the unit square resulting in a continuous
function f that has a fixed point only at the end of the staircase. The additional property of our
construction is that we are able to define a valuation function p assigning to any point of the unit
square a real value such that any local optimum of p under f is in the vicinity of the fixed point of
f . Moreover, the p-value at any point x is computed based solely on its coordinates and its f -value.
In other words, any oracle call to p does not provide any additional information since it can be
simulated based on oracle calls to f . Any algorithm that can solve our continuous local optimum
instance given oracle access to f and p can solve it only given the oracle access to f . Hence,
our staircase embedding can readily be used in place of the embedding of Hirsch et al. [HPV89] to
obtain a lower bound for CLS from any query complexity lower bound for the above grid problem.

6.2 Cryptographic Hardness of End-of-Metered-Line

In this section, we show that under cryptographic assumptions End-of-Metered-Line (EOML)
is hard. Formally, we prove the following theorem.

Theorem 6.4. Assume there exist one-way permutations and indistinguishability obfuscation for
P/Poly. Then the End-of-Metered-Line problem is hard for polynomial-time algorithms.

Our cryptographic hardness result for End-of-Metered-Line builds upon previous works on
cryptographic hardness for PPAD. Recently, Bitanski et al. [BPR15] were able to show that
assuming one-way functions (see Definition D.1) and indistuinguishability obfuscation (both with
subexponential security) the End-of-Line problem is hard. Their proof followed two main steps.
First, they defined a problem called Sink-of-Verifiable-Line (motivated by the work of Abbott,
Kane and Valiant [AKV04]), and they showed that Sink-of-Verifiable-Line is hard under the
above cryptographic assumptions. Second, they gave a reduction from Sink-of-Verifiable-Line
to End-of-Line yielding the conclusion that End-of-Line is hard under the same assumptions.

We start by giving an overview of the original reduction to End-of-Line and then describe
our modifications. The following formal definition of Sink-of-Verifiable-Line was given in
Bitanski et al. [BPR15].

Definition 6.5 (Sink-of-Verifiable-Line [BPR15]). An instance (S,V, xs, T) consists of a
source xs ∈ {0, 1}n, a target index T ∈ [2n], and a pair of circuits S : {0, 1}n → {0, 1}n, V : {0, 1}n×
[T] → {0, 1}, with the guarantee that, for all (x, i) ∈ {0, 1}n × [T], it holds that V(x, i) = 1 iff
x = xi ··= Si−1(xs), where x1 ··= xs. A string w ∈ {0, 1}n is a valid witness iff V(w, T) = 1.

26

As discussed in the previous works [AKV04, BPR15, GPS15], the above problem is not neces-
sarily total without the promise about the behavior of the verification circuit V. In particular, V
might just for all x ∈ {0, 1}n reject any pair (x, T) and such behavior cannot be efficiently checked.6

Notice that there is no need for an explicit source vertex xs in the above definition. The source can
be without loss of generality labeled 0n, and we use this convention from now on as it is standard
in definitions of other problems inside TFNP (see Section 3).

Warm-up Reduction to End-of-Line. Consider a Sink-of-Verifiable-Line instance de-
noted (S,V, T). In order to reduce it to an End-of-Line instance it is necessary to implement the
predecessor circuit P′. Notice that it is easy to construct the predecessor circuit in an inefficient
way. One can simply modify the labels of the vertices to contain the entire history of the previous
steps on the line. That is, we construct circuits S′ and P′ such that if 0n → x2 → x3 → · · · → xT
is a line according to S then there is a line according to S′ of the form

0n → (0n, x2)→ (0n, x2, x3)→ (0n, x2, x3, x4)→ · · · → (0n, x2, . . . , xT) .

Given these labels, implementing the predecessor is easy: simply remove the last element from
the label. However, the obvious issue of this transformation is that the size of the labels becomes
eventually exponentially large which prevents it from being a polynomial reduction. To reduce
the size of the labels to give an efficient construction of the predecessor circuit, [AKV04, BPR15]
utilized techniques used for implementing reversible computation [Ben89] where only a small number
of states is stored in order to be able to revert previous steps in the computation. The general
approach can be explained via a simple pebbling game that we describe next.

The Pebbling Game. There are n pebbles that can be placed on positions indexed by positive
integers. The rules of the game are as follows: a pebble can be placed in or removed from position
i if and only if either there is a pebble in position i− 1 or i = 1. The goal of the game is to place
a pebble in position 2n − 1.

As shown by Chung, Diaconis and Graham [CDG01], the optimal efficient strategy achieves
the goal of the game in a recursive manner. The main idea is that since the rules for placing and
removing pebbles are symmetric, it is always possible to reverse any sequence of moves. Suppose
then there is a way to get to 2n−1 − 1 using n − 1 pebbles. Then, place a pebble at 2n−1. Next,
free the first n− 1 pebbles by reversing the original sequence of moves performed in the first part.
Finally, perform the same sequence starting from 2n−1. This strategy will end with a pebble at
position 2n − 1.

The predecessor circuit in the reduction from Sink-of-Verifiable-Line to End-of-Line is
implemented by simulating the optimal strategy in the pebbling game. Each vertex has a label
representing the states of the n pebbles. The efficient strategy demonstrates that by storing only n
intermediate states we can implement S′ and P′ that can traverse an exponential number of steps.
The resulting End-of-Line instance (S′,P′) corresponds to a graph with a single line traversing
the sequence of all the configurations visited by the optimal pebbling strategy. In particular,
every vertex corresponding to an intermediate state of the pebbling strategy is followed by the
subsequent state, and the final step of the pebbling strategy is a self-loop under S′. Any state

6In fact, the hardness results of [BPR15, GPS15] strongly exploit this fact. Both works show that under crypto-
graphic assumptions there exist instances of Sink-of-Verifiable-Line that are computationally indistinguishable
from instances that do not obey the promise on behavior of V and have no solutions.

27

describing an illegal configuration of the pebbling game is defined to be a self loop both under S′

and P′. Therefore, the resulting instance has a unique solution, a sink that identifies a solution to
the original Sink-of-Verifiable-Line instance. For completeness, the pseudocode of S′ and P′

are given in Appendix C.

Our Reduction. In order to give a reduction to End-of-Metered-Line, we must provide not
only the predecessor circuit P′ but also the valuation circuit V′ that meters the line starting at
0n. Recall the inefficient construction of the predecessor circuit that uses the labels of the vertices
to store the complete history of line. Given these labels the implementation of V′ is simple: the
distance of a vertex from the start of the line is exactly the number of elements in its label. Our
crucial observation is that even in the efficient reduction based on simulating the pebbling game
the predecessor circuit does not come at the expense of the verification circuit V from the Sink-
of-Verifiable-Line instance.

Since the label of each vertex corresponds to a configuration of the pebbling game, the value we
assign to each vertex is the number of steps performed in the optimal strategy until reaching the
specific configuration corresponding to its label. To construct the valuation circuit V′ we need to
show that, given a configuration, it is possible to efficiently compute where exactly in the pebbling
strategy we are without simulating the entire game. We start by computing the total number of
steps in the efficient pebbling strategy.

Claim 6.6. Let g(n) be the number of steps performed in the pebbling game by the optimal strategy
until a pebble is put in position 2n − 1. Then the following hold:

1. g(n) = 3g(n− 1) + 1,

2. g(n) = 3n−1
2 .

Proof. We begin by proving the first item. By the definition of the pebbling strategy, we first
perform g(n−1) steps to put a pebble at position 2n−1−1. Then we put the nth pebble at position
2n−1. Then, we reverse the initial g(n − 1) moves to free all the first n − 1 pebble. Finally, we
use the same strategy again starting from 2n−1 + 1, and perform another g(n − 1) steps to get to
position 2n − 1. Hence, the total number of steps is 3g(n− 1) + 1.

The second item follows by the recursive definition given in the first item. We have that

g(n) = 3g(n− 1) + 1 = 32g(n− 2) + 3 + 1 = . . . = 3n−1 + 3n−2 . . .+ 3 + 1 =
3n − 1

2
,

as claimed.

The circuit V′ can be built based on the recursive expression for g(n) from Claim 6.6. Note
that g(n) was computed as an addition of three phases: (1) getting to the half, (2) reversing the
first half, and (3) completing the second half. To check if phase 1 has finished, we check if position
2n−1 is occupied. This will indicate that we have already performed at least the initial g(n− 1) + 1
steps. Otherwise, phase 1 has not be finished and we return a recursive call with the first half of
the board. Next, to check if phase 2 (reversing the computation) we check whether all the pebbles
are to the right of position 2n−1. If there is even 1 pebble of the left, then we are still in phase 2.
The number of steps taken in this phase is g(n − 1) minus a recursive call with n − 1 on the first
half of the board. If we are in phase 3 then we have performed 2g(n − 1) + 1 = 3n steps plus the

28

number of steps currently in the phase which is computed by a recursive call to the second half of
the board.

For completeness, any vertex with label describing an illegal configuration of the pebbling game
gets a default value 0. The formal description of this procedure is given in Algorithm 1.

Correctness of our Reduction. The key point of our reduction is that the resulting End-of-
Metered-Line instance (S′,P′,V′) has a single line corresponding to the line of the SVL instance,
and all other nodes are self-loops. This restricts the set of possible solutions of (S′,P′,V′) as follows.
There is a unique solution of the first type corresponding to the sink at the last state of the pebbling
game. There is no solution of the second type, since the only vertex that is assigned value 1 by V′ is
the initial source. The unique solution of the first type is also the unique solution of the third type,
since the only vertex satisfying 0 6= V′(x) 6= V′(S′(x))− 1 is the sink corresponding to the last state
of the pebbling game. Moreover, from the unique solution it is easy to extract a vertex x that is a
solution to the original SVL instance. In particular, one of the pebbles at the final configuration
of the pebbling strategy is exactly in a position corresponding to an x such that V(x, T) = 1.

1: function V′(N = (u1, . . . , un))
2: if all u1, . . . , un are valid states then
3: return 1+V′n(1, 2n − 1, n,N)
4: else
5: return 0
6: end if
7: end function
8:

9: function V′j(start, end, N = (u1, . . . , un))
10: if j = 0 then return 0
11: end if
12: mid← start + 2j−1 − 1
13: if position mid is free then
14: return V′j−1(start,mid− 1, N)
15: else if there is a pebble at position i ∈ [start,mid− 1] then
16: return 3j−1− V′j−1(start,mid− 1, N)

17: else return 3j−1 + V′j−1(mid + 1, end, N)
18: end if
19: end function

Algorithm 1: The algorithm V′.

Acknowledgements

We are grateful to Karthik C. S. for introducing us to the class CLS, and for many helpful dis-
cussions about TFNP in general. We also wish to thank Uriel Feige, Moni Naor, Roei Tell, and
Margarita Vald for their invaluable help and comments.

29

References

[Aar06] Scott Aaronson. Lower bounds for local search by quantum arguments. SIAM J.
Comput., 35(4):804–824, 2006.

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Theory of Cryptography - 12th Theory of Cryptography Confer-
ence, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages
528–556, 2015.

[AKV04] Tim Abbott, Daniel Kane, and Paul Valiant. On algorithms for Nash equilibria.
http://web.mit.edu/tabbott/Public/final.pdf, 2004. unpublished manuscript.

[Ald83] David Aldous. Minimization algorithms and random walk on the d-cube. The Annals
of Probability, 11(2):403–413, 1983.

[Bab14] Yakov Babichenko. Query complexity of approximate Nash equilibria. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 535–544, 2014.

[Ban22] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales. Fund. Math, 3(1):133–181, 1922.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Com-
put., 18(4):766–776, 1989.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
volume 2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the
ACM, 59(2):6, 2012. Preliminary version [BGI+01].

[BM04] Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and
propositional proof systems. In 19th Annual IEEE Conference on Computational Com-
plexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 54–67, 2004.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a Nash equilibrium. In 56th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, October 18-20, 2015, pages 1480–1498,
2015.

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating
conjunctions under entropic ring LWE. In Proceedings of the 2016 ACM Conference
ITCS, Cambridge, MA, USA, January 14-16, 2016, pages 147–156, 2016.

[CD08] Xi Chen and Xiaotie Deng. Matching algorithmic bounds for finding a brouwer fixed
point. J. ACM, 55(3), 2008.

30

http://web.mit.edu/tabbott/Public/final.pdf

[CD09] Xi Chen and Xiaotie Deng. On the complexity of 2D discrete fixed point problem.
Theor. Comput. Sci., 410(44):4448–4456, 2009.

[CDG01] Fan Chung, Persi Diaconis, and Ronald Graham. Combinatorics for the east model.
Advances in Applied Mathematics, 27(1):192–206, 2001.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player Nash equilibria. J. ACM, 56(3), 2009.

[Con92] Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.

[CT07] Xi Chen and Shang-Hua Teng. Paths beyond local search: A tight bound for ran-
domized fixed-point computation. In 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Pro-
ceedings, pages 124–134, 2007.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The
complexity of computing a Nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

[DP11] Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages
790–804, 2011.

[FISV09] Katalin Friedl, Gábor Ivanyos, Miklos Santha, and Yves F. Verhoeven. On the black-
box complexity of Sperner’s lemma. Theory Comput. Syst., 45(3):629–646, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49, 2013.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology
ePrint Archive, 2014:309, 2014.

[GPS15] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. On the exact crypto-
graphic hardness of finding a Nash equilibrium. IACR Cryptology ePrint Archive,
2015:1078, 2015.

[HPV89] Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vavasis. Exponential
lower bounds for finding Brouwer fixed points. J. Complexity, 5(4):379–416, 1989.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is
local search? J. Comput. Syst. Sci., 37(1):79–100, 1988.

[LNNW95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the
decision tree model. SIAM J. Discrete Math., 8(1):119–132, 1995.

[LTT89] Donna Crystal Llewellyn, Craig Tovey, and Michael Trick. Local optimization on
graphs. Discrete Applied Mathematics, 23(2):157–178, 1989.

31

[Mor01] Tsuyoshi Morioka. Classification of search problems and their definability in bounded
arithmetic. Electronic Colloquium on Computational Complexity (ECCC), (082), 2001.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theo-
rems and computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

[Nas50] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36:48–49, 1950.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In CRYPTO (1), volume 8616 of Lecture
Notes in Computer Science, pages 500–517. Springer, 2014.

[Ros73] Robert W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.
International Journal of Game Theory, 2(1):65–67, 1973.

[Rub15] Aviad Rubinstein. Inapproximability of Nash equilibrium. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 409–418, 2015.

[Sha53] Lloyd S Shapley. Stochastic games. Proceedings of the National Academy of Sciences,
39(10):1095–1100, 1953.

[SS06] Rahul Savani and Bernhard Stengel. Hard-to-solve bimatrix games. Econometrica,
74(2):397–429, 2006.

[SS09] Miklos Santha and Mario Szegedy. Quantum and classical query complexities of local
search are polynomially related. Algorithmica, 55(3):557–575, 2009.

[SY09] Xiaoming Sun and Andrew Chi-Chih Yao. On the quantum query complexity of local
search in two and three dimensions. Algorithmica, 55(3):576–600, 2009.

[Zha09] Shengyu Zhang. Tight bounds for randomized and quantum local search. SIAM J.
Comput., 39(3):948–977, 2009.

A Proofs deferred from Section 5.1

A.1 Proof of f and p being Lipschitz

Lemma A.1. The function f described in the reduction in Section 5 is λf -Lipschitz, for λf = 4.

Proof. By the definition of f we have that f(z) = z+δd(z), where d(z) is the displacement function
defined by interpolation of the different displacements at the centers of squares surrounding z. First,
we show that d(z) is λd-Lipschitz for λd = 4. Consider d(z) on a single dimension, that is, fix one of
the coordinates to any constant. Suppose that x ∈ [a, b] where a, b are two adjacent center points

32

with displacement values da, db. Then the function da,b(x) = (x− a)db + (b− x)da is the function
d(z) on this region over one dimension. Suppose that x, x′ ∈ [a, b]. Then we get that

|da,b(x)− da,b(x′)| = |(x− a)db + (b− x)da − (x′ − a)db − (b− x′)da|
= |(x− x′)db + (x′ − x)da|
≤ |db − da| · |x− x′|
≤ 2|x− x′|,

where we used that the maximum norm of both displacement values da and db is one. Thus, da,b(x)
is λd-Lipschitz on [a, b] for λd = 2. Now suppose that x ∈ [b, c] and x′ ∈ [a, b]. Then we get that:

|db,c(x)− da,b(x′)| ≤ |db,c(x)− db,c(b)|+ |da,b(b)− da,b(x′)|
≤ 2δ|x− b|+ 2|b− x′|
= 2|x− x′|.

Now suppose that x ∈ [a, b] and x′ ∈ [c, d] where b < c. Then we get that

|da,b(x)− dc,d(x′)| ≤ 2 ≤ 2|x− x′|.

Altogether, we got that for any a, b it holds that da,b is 2-Lipschitz. Going back to two dimensions
we get that for the four center points a, b, c, d representing the top-left, top-right, bottom-left, and
bottom-right corners of a template respectively we have

d(x, y) = da,b,c,d(x, y) = (y − cy)dc,d(x) + (ay − y)da,b(x).

Thus, we get that

|d(x, y)− d(x′, y′)| ≤ |d(x, y)− d(x, y′)|+ |d(x, y′)− d(x′, y′)|
≤ 2|y − y′|+ 2δ|x− x′|
≤ 4 max

{
|x− x′|, |y − y′|

}
≤ 4|(x, y)− (x′, y′)|.

We can now compute the Lipschitz constant of f :

|f(z)− f(z′)| = |z + δd(z)− z′ − δd(z′)|
≤ |z − z′|+ δ|d(z)− d(z′)|
≤ |z − z′|+ 4δ|z − z′|
≤ 4|z − z′|,

which concludes the proof.

We now establish the Lipschitz continuity of p.

Lemma A.2. The function p described in the reduction in Section 5 is λp-Lipschitz, for λp = 23n.

Proof. The analysis of p is simpler. The square with the highest value is at the end of the line, and
its value is at most 4L. The square with the smallest value is 0. The distance between 2 square is
1, and between the square we p is defined by linear interpolation. Therefore, is suffices to bound
|p⊥(x)− p⊥(x′)| for x, x′ ∈ [0, 1] such that p⊥(0) = 0 and p⊥(1) = 4L. For these values we get that

|p⊥(x)− p⊥(x′)| ≤ |x · 4L− x′ · 4L| = 4L|x− x′| ≤ 23n|x− x′|,

where we use the fact that L = 10(22n + 1).

33

A.2 Analysis of Templates from Lemma 5.2

Case 1. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we get that

∆ = (1 + 3x(1− y))δ ≥ δ > ε′.

Case 2. The template is of the form:

TT-1

T+1T

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ > ε′.

Case 3. The template is of the form:

TT+1

M+k
+1

M+k

for some T, k ∈ N such that M + k > T + 1. It suffice to prove for the case where M + k = T + 2.
For these values we get that

∆ = δ
(
1 + 2y2(1− δ) + 2y(−1 + x+ δ)

)
= δ(1 + 2y(y(1− δ) + (−1 + x+ δ)))

≥ δ(1 + 2y((1− δ) + (−1 + x+ δ)))

= δ + 2xyδ ≥ δ > ε′.

Case 4. The template is of the form:

T+3T

T+2T+1

for some T ∈ N. Plugging these values for the formula for ∆ we that

∆ = δ
(
1 + 2y

(
1 + x2 + x(−1 + δ)− δ

)
+ 2(−1 + x)y2(1 + (−1 + x)δ)

)
= δ

(
1 + 2y

(
1 + x2 + x(−1 + δ)− δ + (−1 + x)y(1 + (−1 + x)δ)

))
≥ δ

(
1− 2xyδ + 2x2y(1 + δ)

)
≥ δ (1− 2δ)) ≥ δ/2 > ε′.

34

Case 5. The template is of the form:

M+k
+1

T

M+kT+1

for some T, k ∈ N such that M + k > T + 1. It suffice to prove for the case where M + k = T + 2.
For these values we get that

∆ = δ
(
1 + 2x(−1 + y − δ) + 2x2(1 + δ)

)
= δ(1 + 2x(−1 + x+ y − δ + xδ))

≥ δ(1 + 2x(−1 + x− δ))
≥ δ(3/4− 2x+ 2x2)

≥ δ(3/4− 1/2) = δ/4 > ε′.

Case 6. The template is of the form:

TT+1

M+kT+2

for some T, k ∈ N such that M + k > T + 2. It suffice to prove for the case where M + k = T + 3.
For these values we get that

∆ = δ
(
1 + 2x2(1− y)(−1 + (−1 + y)δ) + 2x

(
1 + y2 + δ − y(1 + δ)

))
≥ δ

(
1 + 2x

(
(1− y)(−1 + (−1 + y)δ) +

(
1 + y2 + δ − y(1 + δ)

)))
= δ(1 + 2xy(y + δ − yδ))
≥ δ > ε′.

Case 7. The template is of the form:

2L-62L-7

2L-52L-6

Such a template can be at exactly one position (in the bottom left position of the frame). For these
values we directly get that ∆ = δ > ε′.

Case 8. The template is of the form:

2L-52L-6

2L-62L-7

Such a template can be at exactly one position (in the bottom left position of the frame). For these
values we get directly that ∆ = δ > ε′.

35

Case 9. The template is of the form:

T+2T+1

T+1T

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ > ε′.

Case 10. The template is of the form:

T+2T+1

T+1T

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ > ε′.

Case 11. The template is of the form:

TM
+k+1

T+1

M+k

for some T, k ∈ N such that M + k > T + 2. It suffice to prove for the case where M + k = T + 3.
For these values we get that

∆ = δ
(
1− 2x2(−1 + δ) + 2x(−1 + y + δ)

)
≥ δ(1 + 2x(−1 + x+ y + δ − xδ))
≥ δ(1 + 2x(−1 + x))

= δ(1− 2x+ 2x2) ≥ δ/2 > ε′.

Case 12. The template is of the form:

TM+k

T+1T+2

for some T, k ∈ N such that M + k > T + 2. It suffice to prove for the case where M + k = T + 3.
For these values we get that

∆ = δ
(
1− 2(−1 + x)y2(−1 + (−1 + x)δ) + 2y

(
1 + x2 + δ − x(1 + δ)

))
= δ

(
1 + 2y

(
1 + x2 + δ − x(1 + δ) + (1− x)y(−1 + (−1 + x)δ)

))
≥ δ

(
1 + 2y

(
1 + x2 + δ − x(1 + δ) + (1− x)(−1 + (−1 + x)δ)

))
= δ

(
1 + 2x2y(1− δ) + 2xyδ

)
≥ δ > ε′.

36

Case 13. The template is of the form:

M
+k+1M+k

TT+1

for some T, k ∈ N such that M + k > T + 1. It suffice to prove for the case where M + k = T + 2.
For these values we get that

∆ = δ
(
1 + 2y(−1 + x− δ) + 2y2(1 + δ)

)
= δ(1 + 2y((−1 + x− δ) + y(1 + δ)))

≥ δ(1 + 2y((−1 + x− δ) + (1 + δ)))

= δ + 2xyδ ≥ δ > ε′.

Case 14. The template is of the form:

M
+k+2

M
+k+1

TM+k

for some T, k ∈ N such that M + k > T . It suffice to prove for the case where M + k = T + 1. For
these values we get that

∆ = δ
(
1 + 2x

(
1 + y2 + y(−1 + δ)− δ

)
+ 2x2(−1 + y)(1 + (−1 + y)δ)

)
= δ

(
1 + 2x

((
1 + y2 + y(−1 + δ)− δ

)
+ x(−1 + y)(1 + (−1 + y)δ)

))
≥ δ

(
1 + 2x

((
1 + y2 + y(−1 + δ)− δ

)
+ (−1 + y)(1 + (−1 + y)δ)

))
= δ(1 + 2xy(y − δ + yδ)) ≥ δ > ε′.

Case 15. The template is of the form:

T+1T+2

TT+1

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ > ε′.

Case 16. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = (1 + y)δ ≥
δ > ε′.

37

Case 17. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = (1+y−xy)δ ≥
δ > ε′.

Case 18. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ(1 + xy) ≥
δ > ε′.

Case 19. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = (1 + x)δ ≥
δ > ε′.

Case 20. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = (1 + x)δ ≥
δ > ε′.

Case 21. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ(1 + xy) ≥
δ > ε′.

38

Case 22. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = (1+x−xy)δ ≥
δ > ε′.

Case 23. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = (1 + y)δ ≥
δ > ε′.

Case 24. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that

∆ = (2 + (−1 + x)y)δ ≥ δ > ε′.

Case 25. The template is of the form:

T+2T+1

T+1T

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ > ε′.

Case 26. The template is of the form:

T+2T+1

T+1T

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that ∆ = δ > ε′.

39

Case 27. The template is of the form:

2L-72L-4

2L-82L-7

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that

∆ = δ
(
3 + 2x

(
−1 + y2 + y(−1 + δ)

)
− 2x2y(−1 + yδ)

)
≥ δ

(
3 + 2x

(
−1 + y2 − y

))
≥ δ (3− 2.5x)

≥ δ/2 > ε′.

Case 28. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that

∆ = (2− y)δ ≥ δ > ε′.

Case 29. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that

∆ = (2− x)δ ≥ δ > ε′.

Case 30. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that

∆ = (2 + x(−1 + y))δ ≥ δ > ε′.

Case 31. The template is of the form:

TT+1

T+1T+2

for some T ∈ N. Plugging these values for the formula for ∆ we directly get that

∆ = (1 + x+ y − xy)δ ≥ δ > ε′.

40

B Algorithms’ Pseudocode

1: function IsPoint(bx, by, cx, cy, qx, qy)
2: if qx > 1 and qy > 1 then return No
3: if bx = by then
4: if V(cx) = bx then
5: if 10cy + qy ≤ 10cx + 1 and qx = 1 return Yes
6: else if V(cy) = bx then
7: if 10cx + qx > 10cy + 1 and qy = 1 then return Yes
8: end if
9: else if bx − 1 = by then

10: if V(cy) = by then
11: if 10cx + qx ≤ 10S(cy) + 1 and qy = 1 then return Yes
12: else if V(cx) = bx then
13: if 10cy + qy > 10P(cx) + 1 and qx = 1 then return Yes
14: end if
15: else return No
16: end if
17: end function

Algorithm 2: Identifies whether the bottom left corner point of square (10(cx−1)+qx, 10(cy−1)+qy)
in block (bx, by) lies on the line.

1: function IsCross(bx, by, cx, cy, qx, qy)
2: if IsPoint(bx, by, cx, cy, qx, qy) then
3: if IsPoint(bx, by, cx, cy, qx − 1, qy) and IsPoint(bx, by, cx, cy, qx, qy + 1) then
4: if IsPoint(bx, by, cx, cy, qx + 1, qy) then return Yes
5: if IsPoint(bx, by, cx, cy, qx, qy − 1) then return Yes
6: end if
7: else return No
8: end if
9: end function

Algorithm 3: Identifies whether the bottom left corner point of square (10(cx−1)+qx, 10(cy−1)+qy)
in block (bx, by) lies on a crossing of two lines.

41

1: function OnTheLine(bx, by, sx, sy)
2: cx ← 1 + (sx div 10)
3: cy ← 1 + (sy div 10)
4: qx ← 1 + (sx mod 10)
5: qy ← 1 + (sy mod 10)
6: if qx = qy = 1 then
7: return IsPoint(bx, by, cx, cy, qx, qy)
8: else if IsCross(bx, by, cx + 1, cy, 1, 1) then
9: if qy = 1 and qx ≤ 6 then return Yes

10: if qx = 6 and qy ≤ 6 then return Yes
11: if qy = 6 and qx ≥ 6 then return Yes
12: if qx = 1 and qy ≥ 6 and IsCross(bx, by, cx, cy, 1, 1) then return Yes
13: else return No
14: else if IsCross(bx, by, cx, cy, 1, 1) then
15: if qx = 1 and qy ≥ 6 then return Yes
16: if qx = 1 and qy ≤ 5 then return No
17: if qy = 1 then return IsPoint(bx, by, cx, cy, qx, qy)
18: else return IsPoint(bx, by, cx, cy, qx, qy)
19: end if
20: end function

Algorithm 4: Identifies whether the bottom left corner point of square (sx, sy) in block (bx, by), lies
on the line.

1: function AboveOrBelow(bx, by, sx, sy)
2: if OnTheLine(bx, by, sx + 1, sy) then return Above
3: else if OnTheLine(bx, by, sx, sy + 1) then return Below
4: else return ⊥
5: end if
6: end function

Algorithm 5: Identifies whether a square (sx, sy) in block (bx, by) touches the line from above or
below.

42

1: function Color(bx, by, sx, sy)
2: if AboveOrBelow(bx, by, sx, sy) 6= ⊥ then
3: if AboveOrBelow(bx, by, sx, sy) = Above then return Yellow
4: else if AboveOrBelow(bx, by, sx, sy) = Below then return Red
5: end if
6: else if AboveOrBelow(bx, by, sx, sy − 1)= Above then return Green
7: else if AboveOrBelow(bx, by, sx + 1, sy − 1)= Above then return Green
8: else if AboveOrBelow(bx, by, sx, sy + 1)= Below then return Purple
9: else if AboveOrBelow(bx, by, sx − 1, sy + 1)= Below then return Purple

10: else return Blue
11: end if
12: end function

Algorithm 6: Assigns the f -color to any square (sx, sy) in block (bx, by).

1: function Value(bx, by, sx, sy)
2: d← 2n(bx − 1 + by − 1) + sx + sy.
3: if Color(bx, by, sx, sy) ∈ {Yellow,Red} then return M − 1 + d
4: else return 2L− 10− d.
5: end if
6: end function

Algorithm 7: Assigns the p-value to any square (sx, sy) in block (bx, by).

C Pseudocode for S′ and P′ from [BPR15]

For completeness, we provide the pseudocode of S′ and P′ as given by [BPR15]. Let (S,V, T) be
an SVL instance and let t = dlog(T + 1)e. We construct an instance (S′,P′) for the EOL problem
where m = t · (n + t). We interpret every node in {0, 1}m as a sequence (u1, . . . , ut) of t states
where, for every j ∈ [t], the state uj is of the form (x, i) ∈ {0, 1}n × [T]. We say that a state (x, i)
is valid if V(x, i) = 1 and denote the i-th valid state (Si−1(0n), i) by v(i). Given u = (x, i), we
abuse notation (overloading the function S) and denote S(u) := (S(x), i+ 1). Given u = (x, i) and
u′ = (x′, i′), we say that u < u′ if i < i′.

The functions S′ and P′ are defined below.

43

1: function S′(N = (u1, . . . , ut))
2: return St((0

n, 1), N)
3: end function
4:

5: function S1(ub = (x, i), N = (u1, . . . , ut))
6: if N contains an invalid state then
7: return N unchanged
8: end if
9: if uj is free then

10: Set u1 ← S(ub)
11: return (u1, . . . , ut)
12: else
13: return N unchanged
14: end if
15: end function
16:

17: function Sj(ub = (x, i), N = (u1, . . . , ut))
18: if N contains an invalid state then
19: return N unchanged
20: end if
21: if uj is free then
22: N ′ ← Sj−1(ub, N)
23: if N ′ 6= N then
24: return N ′

25: else if for all k ∈ [j − 1], uk = v(i+ 2j−1 − 2k−1) then
26: Set uj ← S(u1)
27: return (u1, . . . , ut)
28: end if
29: return N unchanged
30: else if uj = v(i+ 2j−1) then
31: if for every k ∈ [j − 1], uk is either free or uk < uj then
32: N ′ ← Pj−1(ub, N)
33: if N ′ 6= N then
34: return N ′

35: else if for all k ∈ [j − 1], uk is free then
36: return Sj−1(uj , N)
37: end if
38: return N unchanged
39: else if for every k ∈ [j − 1], uk is either free or uk > uj then
40: return Sj−1(uj , N)
41: end if
42: end if
43: return N unchanged
44: end function

Algorithm 8: The function S′.

44

1: function P′(N = (u1, . . . , ut))
2: return Pt((0

n, 1), N)
3: end function
4:

5: function P1(ub = (x, i), N = (u1, . . . , ut))
6: if N contains an invalid state then
7: return N unchanged
8: end if
9: if uj = v(i+ 1) then

10: Set u1 ← v(1)
11: return (u1, . . . , ut)
12: else
13: return N unchanged
14: end if
15: end function
16:

17: function Pj(ub = (x, i), N = (u1, . . . , ut))
18: if N contains an invalid state then
19: return N unchanged
20: end if
21: if uj is free then
22: return Pj−1(ub, N)
23: else if uj = v(i+ 2j−1) then
24: if for every k ∈ [j − 1], uk is either free or uk < uj then
25: N ′ ← Sj−1(ub, N)
26: if N ′ 6= N then
27: return N ′

28: else if for all k ∈ [j − 1], uk = v(i+ 2j−1 − 2k−1) then
29: Set uj ← v(1)
30: return (u1, . . . , ut)
31: end if
32: return N unchanged
33: else if for every k ∈ [j − 1], uk is either free or uk > uj then
34: N ′ ← Pj−1(uj , N)
35: if N ′ 6= N then
36: return N ′

37: else if for all k ∈ [j − 1], uk is free then
38: return Sj−1(ub, N)
39: end if
40: end if
41: end if
42: return N unchanged
43: end function

Algorithm 9: The pseudocode for circuit P′.

45

D Cryptographic Definitions

D.1 One-Way Functions

Definition D.1 (One-Way Functions). A function f is said to be one-way if the following two
conditions hold:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every x ∈ {0, 1}∗.

2. For every probabilistic polynomial-time algorithm A and all sufficiently large n,

Pr[A′(1n, f(x)) ∈ f−1(f(x))] < neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the internal random-
ness of A′.

A one-way function f is said to be a one-way permutation if it is also a permutation.

D.2 Obfuscation

We say that two circuits C and C ′ are equivalent and denote it by C ≡ C ′ if they compute the
same function (i.e., ∀x : C(x) = C ′(x)).

Indistinguishability Obfuscation

Definition D.2 (Perfect/Imperfect Indistinguishability Obfuscator). Let C = {Cn}n∈N be a class
of polynomial-size circuits, where Cn is a set of circuits operating on inputs of length n. A uniform
algorithm iO is called an (imperfect) indistinguishability obfuscator for the class C if it takes as
input a security parameter and a circuit in C and outputs a new circuit so that following properties
are satisfied:

1. (Perfect/Imperfect) Preserving Functionality:

There exists a negligible function α such that for any input length n ∈ N, any λ and any
C ∈ Cn it holds that

Pr
iO

[
C ≡ iO(1λ, C)

]
≥ 1− α(λ),

where the probability is over the internal randomness of iO. If α(·) = 0, then we say that iO
is perfect.

2. Polynomial Slowdown:

There exists a polynomial p(·) such that: For any input length n ∈ N, any λ and any circuit
C ∈ Cn it holds that

∣∣iO(1λ, C)
∣∣ ≤ p(|C|).

3. Indistinguishable Obfuscation:

For any probabilistic polynomial-time algorithm D, any n ∈ N, any two equivalent circuits
C1, C2 ∈ Cn of the same size and large enough λ, it holds that∣∣∣∣ Pr

iO,D

[
D
(
iO
(

1λ, C1

))
= 1
]
− Pr
iO,D

[
D
(
iO
(

1λ, C2

))
= 1
]∣∣∣∣ ≤ neg(λ).

We say that iO is efficient if it runs in polynomial-time.

46

Virtual Black-Box Obfuscation

Definition D.3 (Perfect/Imperfect VBB Obfuscator). Let C = {Cn}n∈N be a class of polynomial-
size circuits, where Cn is a set of circuits operating on inputs of length n. A uniform algorithm O
is called an (imperfect) VBB obfuscator for the class C if it takes as input a security parameter and
a circuit in C and outputs a new circuit so that following properties are satisfied:

1. (Perfect/Imperfect) Preserving Functionality:

There exists a negligible function α such that for any input length n ∈ N, any λ and any
C ∈ Cn it holds that

Pr
O

[
C ≡ O(1λ, C)

]
≥ 1− α(λ),

where the probability is over the internal randomness of O. If α(·) = 0, then we say that O
is perfect.

2. Polynomial Slowdown:

There exists a polynomial p(·) such that: For any input length n ∈ N, any λ and any circuit
C ∈ Cn it holds that

∣∣O(1λ, C)
∣∣ ≤ p(|C|).

3. Virtual Black-Box:

For any probabilistic polynomial-time algorithm D, any predicate π : Cn → {0, 1}, any n ∈ N
and any circuit C ∈ Cn, there is a polynomial-size simulator S such that for large enough λ
it holds that∣∣∣∣ Pr

O,D

[
D
(
O
(

1λ, C
))

= π(C)
]
− Pr

S

[
D
(
SC
(

1λ
))

= π(C)
]∣∣∣∣ ≤ neg(λ).

We say that O is efficient if it runs in polynomial-time.

47

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

