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Abstract

Monotone span programs are a linear-algebraic model of computation which were introduced
by Karchmer and Wigderson in 1993 [30]. They are known to be equivalent to linear secret sharing
schemes, and have various applications in complexity theory and cryptography. Lower bounds for
monotone span programs have been difficult to obtain because they use non-monotone operations
to compute monotone functions; in fact, the best known lower bounds are quasipolynomial for
a function in (nonmonotone) P [9]. A fundamental open problem is to prove exponential lower
bounds on monotone span program size for any explicit function.

We resolve this open problem by giving exponential lower bounds on monotone span program
size for a function in monotone P. This also implies the first exponential lower bounds for linear se-
cret sharing schemes. Our result is obtained by proving exponential lower bounds using Razborov’s
rank method [42], a measure that is strong enough to prove lower bounds for many monotone mod-
els. The best prior results on the rank measure were quasipolynomial lower bounds for a function
in NP. As corollaries we obtain new proofs of exponential lower bounds for monotone formula
size, monotone switching network size, and the first lower bounds for monotone comparator circuit
size for a function in monotone P. We also obtain new polynomial degree lower bounds for Null-
stellensatz refutations using an interpolation theorem of Pudlak and Sgall [37]. Finally, we obtain
quasipolynomial lower bounds on the rank measure for the st-connectivity function, implying tight
bounds for st-connectivity in all of the computational models mentioned above.

1 Introduction

Razborov [42] introduced a simple matrix-theoretic technique (which we will call the rank method)
to study lower bounds on formula size for boolean functions, and using this method he was able to
give a simple proof that any monotone formula computing a certain monotone function in NP must
have size at least nΩ(logn). While not the strongest lower bound known against monotone formula size
— similar bounds were already known for st-connectivity, and stronger lower bounds are known for
other functions — Razborov’s method is exceptionally elegant, and applies to models of computation
∗Research supported by NSERC.
†Supported by the JST ERATO Kawarabayashi Large Graph Project.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 64 (2016)



that seem to be out of reach of standard techniques. Two examples of such models are monotone span
programs and monotone switching networks [20, 30]: monotone span programs use non-monotone
(algebraic) operations to compute monotone functions, which makes them remarkably powerful and
technically difficult to lower bound [3, 4, 8, 9, 20, 21, 30]; monotone switching networks are a classic
model which resisted strong lower bounds for directed st-connectivity until Potechin [36] gave an
ingenious Fourier-analytic argument.

Despite its elegance and connections with other models, very little is known about Razborov’s rank
method. In fact, Razborov’s original argument is the only known lower bound for the rank measure,
giving a quasipolynomial lower bound for a function in NP. This suggests several natural questions:
First, is it possible to use Razborov’s rank method to give nontrivial lower bounds for a function in
monotone P or even in P? Secondly, can the rank method be used to prove exponential size lower
bounds?

In this paper we resolve both of these problems. First, we prove nΩ(logn) lower bounds for directed
st-connectivity using the rank method. Directed st-connectivity is one of the most basic functions:
it is the canonical NL-complete problem and can be computed by polynomial-size, O(log2 n)-depth
monotone circuits. Thus, our proof gives new (and arguably simpler) proofs of some celebrated results:
it implies both Potechin’s lower bound for monotone switching networks [36], as well as the classic
Karchmer-Wigderson lower bound for monotone formulas [29].

Second, we prove exponential size lower bounds using the rank method against the GEN function,
which is computable in monotone P. As well as being the first exponential lower bounds using the rank
method, this implies both exponential lower bounds on monotone span program size for a function in
monotone P (solving a well-known open problem), as well as the first exponential lower bounds for
linear secret sharing schemes.

In addition, we show how to apply the rank method to monotone comparator circuits, which allows
us to prove the first nontrivial lower bounds for any family of these circuits computing a function in
monotone P. Before this, no size lower bounds were known for monotone comparator circuits except
those implied by the classic lower bounds for computing clique and perfect matching [41].

It is known that the directed connectivity problem is computable by non-monotone span programs
[30, 50], as well as non-monotone comparator circuits [17, 49], and so our argument also gives new
examples of separations between monotone and non-monotone complexity classes.

Finally, using the interpolation argument by Pudlak and Sgall [37], we can apply our monotone
span program lower bound to obtain degree lower bounds for the Nullstellensatz proof system, which
is a natural algebraic proof system based on Hilbert’s Nullstellensatz.

1.1 Monotone Span Programs and Related Models

Let F be any field. A span program is a matrix A over F with rows labelled by input literals. Given an
assignment x to the input literals, the span program accepts x if and only if the all-1 vector is in the
linear span of the rows of the matrix whose labels are satisfied by the input; a span program computes
a boolean function f : {0, 1}n → {0, 1} if it accepts exactly the 1-inputs of the function. The size
of a span program is the number of rows of the matrix, and a span program is monotone if all rows
are labelled with positive literals. Span programs were introduced by Karchmer and Wigderson [30],
where they showed that non-monotone span programs capture logspace counting classes such as ⊕L
and ModpL; monotone span programs are also known to characterize a subclass of secret sharing
schemes known as linear secret sharing schemes [7, 46].

There is a fairly long history of lower bounds for monotone span programs. The first lower bounds
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for monotone span programs, due to Karchmer and Wigderson [30], showed that all threshold functions
over GF(2) require monotone span programs of size Ω(n log n), which was quickly improved by Csir-
maz [18] to an Ω(n2/ log n) lower bound. Beimel et al. [8] gave a lower bound of n5/2, and then Babai
et al. [4] proved the first superpolynomial lower bound on the order of nΩ(logn/ log logn). Each of these
results were obtained by direct combinatorial arguments, which were simplified and improved by Gál
to nΩ(logn) [20]. In the same paper, Gál observed the connection between monotone span programs
and the rank method, and this connection was further investigated by Gál and Pudlák [21]. The super-
polynomial lower bounds cited above only applied to functions computable in NP, so, to improve this
Beimel and Weinreb [9] gave quasipolynomial lower bounds nΩ(

√
logn) for a function in uniform NC2

(therefore for a function in P), proving that monotone span programs can be weaker than polynomial
time.

An interesting feature of monotone span programs is that they are not “really” monotone – mono-
tone span programs use non-monotone operations to compute monotone functions. Largely because of
this, the relationship between monotone span programs and monotone circuits has been unresolved. It
is known that monotone span programs can be much more powerful than monotone circuits: Babai et
al. [4] exhibited a function with linear size monotone span programs that requires superpolynomial-size
monotone circuits and exponential-size monotone formulas. This immediately implies that the size and
depth lower bound methods for monotone circuits cannot be used to prove lower bounds for monotone
span programs.

Due to their strength there are several open problems concerning monotone span programs. First,
it is open to prove exponential lower bounds on monotone span program size for any explicit function.
Second, it is open to show whether there are functions in monotone P that require monotone span
programs of superpolynomial size. Third, it is open to give an example of a function with small (non-
monotone) span programs but requiring large monotone span programs.

Our main result for span programs is the following theorem.

Theorem 1.1. The st-connectivity function requires nΩ(logn) size monotone span programs over R.
The GEN function requires exp(nΩ(1)) size monotone span programs over R.

This resolves all of the open problems mentioned above. First, our lower bound for the GEN
function is the first lower bound on monotone span program size greater than nΩ(logn) for any explicit
function. Since GEN is in monotone P, this implies an exponential separation between monotone P and
monotone span program size, resolving the second open problem mentioned above. Furthermore, our
lower bound for st-connectivity implies a quasipolynomial separation between mNC2 and monotone
span programs, since st-connectivity is well-known to be computable by polynomial-size, O(log2 n)
depth monotone circuits. Finally, Karchmer and Wigderson showed that non-uniform polynomial-size
span programs over GF(2) compute exactly those functions in ⊕L/poly. Wigderson [50] showed that
NL/poly ⊆ ⊕L/poly, and since directed st-connectivity is in NL it follows it is computable by (non-
uniform) polynomial-size span programs. Thus, we exhibit a function with small non-monotone span
programs but requiring large monotone span program size.

Secret Sharing Schemes. A secret sharing scheme is a cryptographic tool where a dealer shares
a secret among a set of participants such that only the “authorized” subsets of participants are able to
reconstruct the secret [46]. The subsets correspond to a monotone boolean function f on n bits, where
n is the number of participants. Monotone span program size measures the amount of information that
has to be given to the participants in so-called linear secret sharing schemes; thus lower bounds on
monotone span program size imply lower bounds on the length of the shares in linear secret sharing
schemes [30]. Our result for GEN gives the first exponential lower bounds on the size of linear secret

3



sharing schemes. For s-t connectivity, our quasipolynomial lower bound is especially striking due to the
known polynomial upper bounds for the access structure corresponding to undirected s-t connectivity.

Nullstellensatz. Nullstellensatz (NS) refutations are a natural algebraic proof system for proving
unsolvability of systems of polynomial equations based on Hilbert’s Nullstellensatz [5]. Given a set of
polynomial equations p1 = 0, . . . , pm = 0, an NS refutation is given by a sequence of polynomials
q1, . . . , qm such that

∑
piqi = 1. The degree of the refutation is d = maxi deg(qipi), and the size is

the total number of monomials in all of the polynomials.
Pudlak and Sgall [37] proved a strong connection between Nullstellsatz refutations and span pro-

grams. In particular, they proved that interpolants for degree-d refutations are exactly characterized
by size nO(d) span programs, and the characterization also holds in the monotone setting. By this
characterization, our lower bounds for monotone span programs imply strong (i.e. polynomial) lower
bounds on the degree of NS refutations. While these are not the first strong lower bounds known for
NS refutations, they are the first strong lower bounds proven via the interpolation method. Previous
lower bounds achieving superlogarithmic degree bypassed the interpolation method, and were obtained
either by studying combinatorial properties of the dual system of equations, or by explicitly construct-
ing a Groebner basis for the original polynomials [11, 15, 43]. Thus the corresponding lower bounds
are “instance-specific”, as the argument depends on the specific combinatorial properties of the initial
system of equations. In contrast, our approach yields a general methodology for proving NS lower
bounds for a broad family of unsolvable equations.

1.2 Monotone Switching Networks

Switching networks are a non-uniform model of computation used to study space complexity. A switch-
ing network is specified by an undirected graph with two special nodes s, t and with an input literal
labelled on each edge. Given an assignment x to the literals, the switching network accepts x if there
is a path from s to t using literals consistent with the input assignment; the network then computes a
boolean function f : {0, 1}n → {0, 1} in the natural way. The size of a switching network is the num-
ber of nodes, and a switching network is monotone if every input literal labelled on an edge is positive.
Polynomial-size, uniform switching networks compute exactly the languages in L [45], and so we use
mL to denote the class of problems computable by polynomial-size, monotone switching networks.

It is well known that switching network size is closely related to circuit depth [10]: specifically,
anything computable by a switching network with size s can be computed by a circuit with depth
O(log2 s). (A stronger converse is not hard to see: any function computable by depth-d circuits can be
computed by a switching network with size O(2d).) This simulation is known to be tight as undirected
st-connectivity is computable by linear-size switching networks, but any polynomial-size monotone
circuit computing undirected st-connectivity requires depth Ω(log2 n) [27].

It is known that if a function can be computed by a switching network of size S, then it can also be
computed by a span program of size S over any field, and the same holds for their monotone versions
(see [30] for a proof). Thus polynomial-size monotone span programs (mSP) are at least as strong as
both polynomial-size monotone formulas (mNC1) and polynomial-size monotone switching networks
(mL).

It was long conjectured that directed st-connectivity required quasi-polynomial size monotone
switching networks, which was resolved in the affirmative by Potechin [36]. Potechin’s argument
is direct, and an impressive — albeit extremely technical — application of Fourier analytic techniques.
Extending Potechin’s techniques, Chan and Potechin [13] recently proved asymptotically tight nΩ(h)

lower bounds for the GEN function on pyramids of height h. (Weaker size lower bounds were previ-
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ously implied by the work of Raz and McKenzie [39].) Thanks to the known simulation of monotone
switching networks by monotone span programs we get alternative proofs of both of these theorems.

Theorem 1.2. The st-connectivity function requires nΩ(logn) size monotone switching networks. The
GEN function requires exp(nΩ(1)) size monotone switching networks.

1.3 Monotone Comparator Circuits

A sorting network is a model of a sorting algorithm which is input-oblivious. The model is quite
simple: the network receives as input n integers on n parallel wires travelling from left to right, with a
sequence of comparator gates connecting pairs of wires that map (x, y) 7→ (min {x, y} ,max {x, y}).
The goal is to sort all n integer inputs using the fewest number of gates (or, alternatively, with the
smallest depth). Shallow sorting networks have many applications in theoretical computer science, and
explicit constructions have been extensively studied in the literature (see [31] for an extensive survey).
The famous AKS construction gives O(log n) depth sorting networks [2]; an alternative construction
was recently given by Goodrich [23].

When the inputs are restricted to be boolean, a sorting network is called a comparator circuit.
Over the boolean domain the comparator gates become joint (∧,∨)-gates, and it is not hard to see
that circuits built of these gates are incapable of copying bits. Because of this, comparator circuits
have been used as a method of studying fanout past NC1 — this line of research was first followed by
Subramanian [49]. The class of problems computable by polynomial-size uniform comparator circuits
is called CC, and the structural complexity of this class was intensively studied by Cook, Filmus and
Le [17]. Despite their inability to copy, polynomial-size comparator circuits are surprisingly powerful:
they can compute everything in NL and appear to be incomparable with NC:

NL ⊆ CC ⊆ P.

There are many interesting complete problems for CC, including: the stable marriage problem [17,
49], predicting internal diffusion-limited aggregation clusters in theoretical physics [34], the telephone
connection problem [38], and, most recently, simulating the “Digi-Comp II”, a wooden mechanical
computer [1]. Since all known algorithms for the stable matching problem (which is complete for CC)
are inherently sequential, Subramanian (and separately, Cook et al) conjectured that CC is not contained
in NC [17, 49]. This conjecture has been supported by oracle separations [17].

Monotone comparator circuits are a natural restriction of comparator circuits where the input bits
are either constants or positive literals; we let mCC denote the class of languages computable by
polynomial-size monotone comparator circuits. This model is perhaps the most natural model for
sorting (the famous AKS sorting network is a monotone comparator circuit [2]). However, when it
comes to computing arbitrary monotone boolean functions essentially nothing is known. It is easy to
see that monotone comparator circuits can simulate monotone formulas, and in turn can be simulated
by (unrestricted) monotone circuits, but this is essentially it:

mNC1 ⊆ mCC ⊆ mP.

In particular, the relationship between mCC and mNC was open. We are able to show that the rank
method applies to monotone comparator circuits, and so our main result for comparator circuits is the
following.

Theorem 1.3. The directed st-connectivity function requires nΩ(logn) size monotone comparator cir-
cuits. The GEN function requires exp(nΩ(1)) size monotone comparator circuits.

5



Since st-connectivity is in mNC2, we establish that mCC is not contained in mNC2, supporting the
conjecture that CC is not contained in NC. Since directed st-connectivity is computable in NL, and
NL ⊆ CC [17, 49], our theorem also shows that non-monotone comparator circuits are more powerful
than monotone comparator circuits even when computing monotone functions. Finally, since GEN is
in mP, we establish an exponential separation between mP and mCC.

1.4 Overview of Proof

We will explain the main ideas in the context of the st-connectivity function, although the argument
easily generalizes to any GEN function. (We will see that the st-connectivity function is a special
instance of the GEN function where the underlying graph G is a path graph.) Let f : {0, 1}n → {0, 1}
be the layered st-connectivity function STCONN = STCONNh,w, for which the input is a list of
edges encoding a subgraph of the layered, directed graph with w layers and h nodes per layer. Let
U ⊆ STCONN−1(1) be a subset of the 1-inputs of STCONN (i.e. subgraphs containing an s-t path),
and let V ⊆ STCONN−1(0) be a subset of the 0-inputs of (i.e. subgraphs with an s-t cut). Let
A be a |U | × |V | matrix over R with rows labelled by u ∈ U and columns labelled by v ∈ V .
For each underlying input variable xe of STCONN, define the subrectangle Re to be the set of pairs
(u, v) ∈ U ×V such that ue = 1 and ve = 0. LetRSTCONN(U, V ) denote the collection of all of these
rectangles.

The rank measure of A is defined to be the ratio of the rank of A and the maximum rank of the
submatrix of A indexed by any of these rectangles

µA(STCONN) =
rankA

max
R∈RSTCONN(U,V )

rankA�R
.

This measure was originally introduced by Razborov [42], and for any A the measure µA(STCONN)
is a lower bound on each of the monotone computation models we have discussed above. Thus, our
overall goal is to find a family of matrices {An} for the STCONN function for which the rank measure
is nΩ(logn).

At a high-level our argument is a reduction from the rank measure to reversible pebbling number.
Essentially, the proof shows that the optimal monotone algorithm for st-connectivity in any compu-
tational model bounded by the rank measure simulates the reversible pebbling game, which is a well
known combinatorial game used for measuring space complexity [13, 16, 36]. Previously, reductions
to pebbling have been used to prove lower bounds on circuit depth [39], and also switching network
size [13, 36]. Both of these arguments use a kind of “lifting” from a simple complexity measure to a
harder complexity measure, and the works by Potechin and Chan/Potechin [13,36] use Fourier analysis
in an intricate way. Our proof generalizes both of these arguments and is arguably simpler.

Our lower bound argument proceeds in two steps. First, we prove a “lifting theorem” connecting
the rank measure to a new algebraic complexity measure on boolean functions that we call the alge-
braic gap complexity, which may be of independent interest. This lifting theorem uses the well-known
Pattern Matrix Method, and is morally similar to the many query-to-communication complexity lifts in
the literature [14, 26, 28, 32, 33, 39, 47, 48]. The second step is to actually prove a lower bound on the
gap complexity.

Step 1: The Pattern Matrix Lift. Sherstov [48] gave a general method to construct a “pattern
matrix”Ap from a boolean function p : {0, 1}m → R such that the analytic properties ofAp are related
to the Fourier analytic properties of the function p. The matrix is constructed as follows: the rows
of Ap are indexed by strings y ∈ {0, 1}n for some n > m, the columns of Ap are indexed by pairs

6



(x,w) where x ∈ [n/m]m is a string of “pointers” to indices in y, w ∈ {0, 1}m, and then for each pair
(y, (x,w)) the value Ap[y, (x,w)] is p(y�x ⊕ w).

The main idea is to use a pattern matrix Ap (for a suitably chosen p) to certify a lower bound on
the rank measure, using a theorem of Sherstov [48] showing that the rank of pattern matrices can be
directly calculated from the Fourier spectrum of the function p used to generate the matrix. With this
in mind, we show that the rows of the pattern matrix Ap can be interpreted as rejecting instances of the
st-connectivity function (specifically a collection of s-t cuts) and the columns of Ap can be interpreted
as accepting instances of the st-connectivity function (specifically a collection of s-t paths with length
m+ 1). Using Sherstov’s rank theorem we then calculate the rank of Ap directly from p, as well as the
rank of each “rectangle submatrix” of Ap from p�e, where p�e is a restriction of the function p obtained
naturally from the edge e underlying the rectangle Re. This implies that the matrix Ap will certify a
large rank measure if the function p exhibits a large algebraic gap, in that the Fourier degree of p is
large, but the Fourier degree of each of the restrictions p�e is small.

Step 2: Exhibiting Large Algebraic Gaps. The second step of our argument is to actually con-
struct a function p exhibiting large algebraic gaps. We first show that for each positive integer m, the
problem of constructing a boolean function p : {0, 1}m → R with large algebraic gap is equivalent
to the satisfiability of an (exponentially large) system of linear equations. To show this system is sat-
isfiable, we introduce a new proof system that can be viewed as a depth-restricted form of resolution.
Our main technical argument is a completeness theorem, showing that this system of linear equations is
satisfiable if the (depth-restricted) proof system cannot refute the unsatisfiable CNF formula associated
with st-connectivity (which happens to be the induction principle). Thus we reduce the problem of
proving a large algebraic gap for st-connectivity to resolution depth of the induction principle. Since
resolution-depth is equivalent to the decision tree-complexity of the corresponding search problem, our
lower bound follows from the known Ω(logm) lower bound on the reversible pebbling number of the
m-node path graph. More generally, we prove that if we start with the a GEN function with minterms
isomorphic to some template graph G, then algebraic gaps for the associated search problem can be
obtained from lower bounds on the reversible pebbling number of G.

1.5 Related Work

There is an extensive literature on lower bounds for the size and depth of monotone computational
models; we have reviewed many of the relevant results above. Here we examine other relevant results.

Razborov [42] introduced the rank measure and proved nΩ(logn) lower bounds for a function in
NP by using the disjointness matrix; in a later work [40] he showed that the rank measure cannot give
superlinear lower bounds in non-monotone models of computation. Razborov’s lower bound on the
rank measure was studied by Gál and Pudlak [21], where it was shown to be related to the method of
avoiding families used in monotone span program lower bounds [4, 20].

Karchmer and Wigderson [30] showed that monotone span program size upper bounds the size of
linear secret sharing schemes; Beimel showed that they give an exact characterization [6]. See the
comprehensive survey of Beimel for more on secret sharing schemes [7]. Span programs have also
been connected to quantum algorithms [44].

The idea of “lifting” lower bounds on a simple complexity measure from weak to strong com-
putation models has appeared in many forms, and has been enormously successful for proving lower
bounds for a variety of models. The basic idea is to start with an “outer” function f for which we have
given a lower bound in a weak model of computation, and “lift” f by composing f with an “inner”
function g to get a new function, f ◦ gn that is provably hard in a stronger model of computation.
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The Pattern Matrix Method is a particular instantiation of this due to Sherstov [48]; the crux of the
method is to leverage the Fourier-analytic properties of the outer function f to prove lower bounds
on linear algebraic properties of the matrix associated with the lifted function f ◦ gn. This method
has led to many lower bounds in communication complexity, in classical, quantum, and number-on-
forehead models [14, 24, 33, 48]. In circuit complexity similar approaches have led to strong lower
bounds on monotone circuit depth [26,39], and similarly for lower bounds in proof complexity [26,28].
Other lifting techniques have given strong lower bounds against extended formulations of linear pro-
grams [25, 32].

2 Definitions

A real-valued boolean function is any function p : {0, 1}n → R. If A is any set and x ∈ An we let xi
denote the ith component of x. If x, y ∈ {0, 1}n we let x⊕ y ∈ {0, 1}n denote the string obtained by
taking the bitwise XOR of x and y.

For any n, the collection of all n-ary real-valued boolean functions {p : {0, 1}n → R} forms a
vector space under pointwise addition and scalar multiplication. For anyC ⊆ [n], the Fourier character
at C is the function χC : {0, 1}n → {−1, 1} defined by

χC(x) = (−1)
∑

i∈C xi .

The collection of characters {χC}C⊆[n] form an orthonormal basis for the vector space of real-valued
boolean functions known as the Fourier basis, where the vector space is equipped with the inner product

〈p, q〉 =
1

2n

∑
x∈{0,1}n

p(x)q(x).

Since this basis is orthonormal, given any function p : {0, 1}n → R, we can represent p in the Fourier
basis as

p(x) =
∑
C⊆[n]

〈p, χC〉χC(x).

This representation is called the Fourier transform of p.
We let p̂(C) = 〈p, χC〉 denote the coefficient of χC of p in the Fourier basis — this is the Fourier

coefficient of p at C. The collection of non-zero Fourier coefficients of p is called the Fourier spectrum
of p. The Fourier degree is the size of the largest non-zero Fourier coefficient of p:

deg p = max
S⊆[m]

{|S| | p̂(S) 6= 0} ,

which, equivalently, is the degree of the unique representation of p as a multilinear polynomial over the
real numbers. See [35] for a comprehensive survey of boolean function analysis.

If x, y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i. A function f : {0, 1}n → {0, 1} is
monotone if f(x) ≤ f(y) whenever x ≤ y. If f is monotone then an input x ∈ {0, 1}n is a maxterm
of f if f(x) = 0 but f(x′) = 1 for any x′ obtained from x by flipping a single bit from 0 to 1; dually,
x is a minterm if f(x) = 1 but f(x′) = 0 for any x′ obtained by flipping a single bit of x from 1 to 0.
More generally, if f(x) = 1 we call x an accepting instance or a yes instance, while if f(x) = 0 then
we call x a rejecting instance or a no instance. If x is any yes instance of f and y is any no instance
of f then there exists an index i ∈ [n] such that xi = 1, yi = 0, as otherwise we would have x ≤ y,
contradicting the fact that f is monotone.
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Suppose that U, V ⊆ {0, 1}n are any sets satisfying f(U) = 1, f(V ) = 0. A set R ⊆ U × V is
called a rectangle if there are sets U0 ⊆ U, V0 ⊆ V such that R = U0 × V0. For each i ∈ [n] let

Xi = {x ∈ {0, 1}n | xi = 1} × {x ∈ {0, 1}n | xi = 0} ,

and let Ri = Xi ∩ (U × V ). Denote byRf (U, V ) the collection of rectangles

Rf (U, V ) = {Ri | i = 1, 2, . . . , n} .

Since f is a monotone function there is an index i such that ui = 1, vi = 0 for all u ∈ U, v ∈ V , and so
every entry of U × V is covered by some rectangle in Rf (U, V ). Let A be any |U | × |V | matrix with
rows labelled by entries of U and columns labelled by entries of V , and if S ⊆ U × V is any subset of
U × V let A�S be the submatrix indexed by S.

Definition 2.1. Let f : {0, 1}n → {0, 1} and let U ⊆ f−1(1), V ⊆ f−1(0). Let A be any |U | × |V |
matrix over R1. The rank measure of f with respect to A is

µA(f) :=
rank(A)

max
R∈Rf (U,V )

rank(A�R)
.

The rank measure was introduced by Razborov [42] to give simple superpolynomial lower bounds
on the size of monotone boolean formulas. He did so by showing that the rank measure lower bounded
monotone formula size, and then constructed a family of monotone functions fn (computable in NP)
and a matrix An such that µAn(fn) ≥ nΩ(logn). In this paper we give a similar result for variants of
the GEN problem.

Definition 2.2. Let n be a positive integer, and let L ⊆ [n]3 be a collection of triples on [n]. For any
subset S ⊆ [n], the set of points generated from S by L is defined recursively as follows: every point
in S is generated from S, and if i, j are generated from S and (i, j, k) ∈ L, then k is also generated
from S. (If L were a collection of pairs instead of a collection of triples, then we could interpret L as
a directed graph, and then the set of points generated from S is simply the set of points reachable from
S.) The GEN problem is as follows: given a collection of triples of vertices L and two distinguished
points s, t ∈ [n], decide if t generated from {s}.

Formally, an instance of GEN is given by two nodes s, t ∈ [n] and n3 boolean values coding the
set L ⊆ [n]3. For definiteness, in the remainder of the paper assume s, t are arbitrary fixed points in
[n], and we let GEN denote the corresponding monotone function.

We can naturally associate GEN instances with some graphs.

Definition 2.3. A DAG G = (V,E) is good if it is connected, has maximum in-degree 2, and has a
unique sink node.

If G is a good DAG then we can form an instance of GEN from G by

1. Adding triples connecting the source point s to the sources of G,

2. Adding a triple connecting the sink node of G to the target t, and
1This definition makes sense with respect to any field, but we will work exclusively in the reals.
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3. For each internal node z, if z has in-degree 2 with distinct in-edges (x, z), (y, z), then add a triple
(x, y, z). Otherwise, if z has in-degree 1 with an in-edge (x, z), then add the triple (x, x, z).

We say input triples obtained in this way are legal. The lower bounds in this paper are proven for
sub-problems of GEN obtained by “lifting” good graphs G.

Definition 2.4. Let G be a good DAG, let t be the sink node of G, and let o be a positive integer. The
o-lifted graph G↑o is obtained by taking the tensor product of G with the complete directed graph on
o vertices, and then adding a “super-source” node s and a “super-target” node t. Explicitly, G↑o is
obtained from G as follows: we replace each node u ∈ G with o copies

{
u(1), u(2), . . . , u(o)

}
. For

each edge (u, v) add o2 edges (u(i), v(j)) for all i, j ∈ [o]. Finally, add a new source node s and a new
target node t and add edges connecting s to the lifted source nodes u(i), as well as edges connecting
the lifted sink nodes t(i) to the target node t.

Given a node u(i) ∈ G↑o let π(u(i)) = u be the underlying node in the graph G. The G↑o-GEN
problem is a subproblem of GEN obtained by restricting the allowed input triples to those triples of
vertices (u, v, w) ∈ G↑o such that (π(u), π(v), π(w)) is a legal triple of the underlying graph G.

The following proposition connects GEN and st-connectivity.

Proposition 2.5. Let m, o be positive integers. Let Pm be the directed path graph with m nodes and
let STCONNo,m be the st-connectivity function on the graph P ↑om . Then STCONNo,m = P ↑om -GEN.
(See Figure 1.)

Proof. As alluded to in Definition 2.2, the legal triples in the path graph Pm are each of the form
(u, u, v) for each pair of nodes (u, v) connected by an edge in Pm. It follows that asking if the node
t can be generated from s is equivalent to asking whether or not there is a path from s to t using the
triples in the input that are set to 1, which is exactly the st-connectivity problem.

Figure 1: A path P4 and the lifted graph P ↑44 (we have added a new source node s and a new target
node t connected to the lifted source and target nodes). The function P ↑44 -GEN is exactly the layered
s-t connectivity problem STCONN4,4.

As usual in monotone circuit complexity, we will be interested in a particular collection of accepting
and rejecting instances of G↑o-GEN. The accepting instances Y will be exactly those sets of triples T
such that the graph underlying T obtained by applying the projection π to each node in T is isomorphic
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toG. (For example, in P ↑44 -GEN depicted in Figure 1, the accepting instances Y are just the s-t paths.)
The rejecting instances N are called cut instances; they are obtained by choosing a subset C vertices
of G↑o that contains s, and then adding all triples except those that “cross the cut”, in the sense that
u, v ∈ C and w 6∈ C. Clearly each cut instance is a rejecting instance of G↑o-GEN.

We also need a variant of the well-known black pebbling game on DAGs [13, 36].

Definition 2.6. Let G = (V,E) be a good DAG with sources R and a unique sink t, and we define the
reversible pebbling game as follows. A pebble configuration is a subset S ⊆ V of “pebbled” vertices.
For every x ∈ V such that the in-neighbours of x are pebbled, a legal pebbling move consists of either
pebbling or unpebbling x, see Figure 2. Since the source nodes s ∈ R do not have any in-neighbours
they can always be pebbled or unpebbled.

u

vu

v

x x

x
Figure 2: Legal pebbling moves involving x; the corresponding pebbling configurations are u and v

The goal of the reversible pebbling game is as follows: starting with the empty configuration,
place a pebble on t using only legal pebbling moves such that the maximum number of pebbles in any
pebbling configuration is minimized. Formally, we want to find a sequence of pebbling configurations
∅ = S0, S1, . . . , Sn such that t ∈ Sn, and for each i ∈ {0, . . . , n − 1}, the configuration Si+1 is
reachable from configuration Si by a legal pebbling move. We call such a sequence a pebbling sequence
for G. The cost of the sequence is maxi |Si|. The reversible pebbling number of a DAG G, denoted
rpeb(G), is the minimum cost of a reversible pebbling sequence for G.

3 Rank Measure Lower Bounds

The main result in this paper is a lower bound on the rank measure of G↑o-GEN in terms of the
reversible pebbling number of the underlying graph G.

Theorem 3.1. Let G be any good DAG with m vertices. There is a real matrix A such that

µA(G↑2m
2
-GEN) ≥ Ω(mrpeb(G)).

This theorem implies a number of lower bounds in monotone complexity theory, both old and new.
In the remainder of this section we use Theorem 3.1 to give proofs of each of these lower bounds. We
begin by introducing the graphs which are used to prove our exponential lower bounds.

Definition 3.2. A pyramid graph with h levels is defined as follows. Introduce h(h − 1)/2 vertices
V , partitioned into h sets V1, V2, . . . , Vh where Vi has i vertices. Order Vi as vi,1, vi,2, . . . , vi,i; then
for each i = 2, 3, . . . , h, if vi,j and vi,j+1 are adjacent vertices in Vi add two edges (vi,j , vi−1,j) and
(vi,j+1, vi−1,j). (See Figure 2 for height-3 pyramid graphs.)
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Theorem 3.3. Let h be a positive integer, let ∆h be the pyramid graph with h levels, and let m =
(
h
2

)
be the number of nodes in ∆h. Let N = O(m7) be the number of input triples to ∆↑2m

2

h -GEN. Let
ε = 1/14. Then there is a real matrix A such that

µA(∆↑2m
2

h -GEN) ≥ 2Ω(Nε logN).

Proof. Cook [16] showed that the black pebbling number of pyramids is h, where the black pebbling
game is the same as the reversible pebbling game except you are always allowed to remove pebbles.
Clearly every reversible pebbling strategy is a black pebbling strategy, thus rpeb(∆h) ≥ h. Since
h = Ω(

√
m) and m = Ω(N1/7), setting ε = 1/14 and applying Theorem 3.1 yields

µA(∆↑2m
2

h -GEN) ≥ mΩ(h) ≥ NΩ(Nε) ≥ 2Ω(Nε logN).

We remark that Gilbert and Tarjan [22] constructed a family of good DAGs with reversible pebbling
number Ω(n/ log n), which is known to be tight due to an upper bound by Dymond and Tompa [19].
One could use these graphs to obtain lower bounds, but essentially this would just improve the value of
ε in the previous theorem from 1/14 to 1/7.

We also use a lower bound by Potechin [36] on the reversible pebbling number of path graphs to
give a lower bound for st-connectivity.

Theorem 3.4. Let m be a positive integer, let Pm be the directed path with m nodes, and consider the
lifted path graph P ↑2m

2

m . Let N = O(m5) be the number of input triples to STCONN2m2,m. Then
there is a real matrix A such that

µA(STCONN2m2,m) ≥ NΩ(logN).

Proof. Proposition 2.5 shows that P ↑2m
2

m -GEN is exactly STCONN2m2,m. Potechin [36] proved that
the reversible pebbling number of the path graph Pm is Ω(logm), so using the fact that m = Ω(N1/5)
and applying Theorem 3.1 implies

µA(STCONN2m2,m) = µA(P ↑2m
2

h -GEN) ≥ mΩ(logm) ≥ NΩ(logN).

3.1 Span Program Lower Bounds and Corollaries

Let F be any field, and let ~1 be the all-1s vector. A monotone span program over F is a matrix M
with its rows labelled by boolean variables x1, . . . , xn. On an input x ∈ {0, 1}n, let Mx denote the
submatrix of M containing all rows labelled with variables set to 1 by x. The program accepts the
input if ~1 lies in the linear span of the rows of Mx. Note that any monotone span program computes
a monotone function since the linear span of a set of vectors is monotone nondecreasing. Let mSPF
denote the set of all monotone functions computable by polynomial-size monotone span programs over
F, and let mSPF(f) denote the size of the smallest monotone span program over F computing f .

It is known that monotone span programs can simulate monotone switching networks and so they
can compute any monotone function [30]. In fact, it has been shown that there is a function computable
by monotone span programs that is not computable by polynomial-size monotone circuits [4]. In this
section, we use Theorems 3.3 and 3.4 to show that monotone span programs and monotone circuits are
incomparable: there exists a function computable by polynomial-size monotone circuits which requires
exponential-size monotone span programs, and there is also a function computable by polynomial-size,
O(log2 n) depth monotone circuits requiring superpolynomial-size monotone span programs.

Gál [20] showed that the rank measure is a lower bound on monotone span program size.
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Theorem 3.5 (Lemma 3.2 and Theorem 3.4 in [20]). Let F be any field, let f be any monotone boolean
function, and let U ⊆ f−1(1) and V ⊆ f−1(0). Then for any |U | × |V | matrix A over F

µA(f) =
rank(A)

max
R∈Rf (U,V )

rank(A�R)
≤ mSPF(f).

Theorem 3.3 therefore gives exponential lower bounds on the size of real monotone span programs
computing ∆↑2m

2

h -GEN, showing mP 6⊆ mSP.

Theorem 3.6. Let h be a positive integer, let m be the number of nodes in the height-h pyramid graph
∆h, and let N be the number of input variables to the function ∆↑2m

2

h -GEN. Let ε = 1/14. Then

mSPR(∆↑2m
2

h -GEN) ≥ 2Ω(Nε logN).

Theorem 3.4 gives (tight) superpolynomial lower bounds the size of monotone span programs com-
puting STCONN2m2,m, showing mNC2 6⊆ mSP.

Theorem 3.7. Let m be a positive integer, and let N be the number of input variables to the function
STCONN2m2,m. Then

mSPR(STCONN2m2,m) ≥ NΩ(logN).

It is known that polynomial-size, non-monotone span programs can compute STCONN if the span
programs are allowed to be non-uniform [50], and so the previous theorem also separates monotone
span programs from non-monotone span programs. Furthermore, since monotone span programs can
simulate monotone switching networks, the above two theorems give alternative proofs of the recent re-
sults by Potechin [36] and Chan-Potechin [13] that STCONN requires superpolynomial-size monotone
switching networks and ∆↑2m

2

h -GEN requires exponential-size monotone switching networks.

Corollary 3.8. Any monotone switching network computing ∆↑2m
2

h -GEN requires 2Ω(Nε logN) states,
where ε = 1/14. Any monotone switching network computing STCONN2m2,m requires NΩ(logN)

states.

Secret Sharing Schemes. A secret sharing scheme is a basic cryptographic tool roughly defined
as follows (we follow the presentation in [7]; we refer the interested reader there for formal definitions
and numerous applications). We have a dealer who has a “secret” (say, an element of some field F), a
collection of n parties, and a collection A ⊆ 2[n] of subsets of the n parties which we call an access
structure. A secret sharing scheme for A is a method of sharing information with the n parties such
that any set of parties inA can reconstruct the dealer’s secret, while any subset of parties not contained
in A cannot reconstruct the dealer’s secret. (As a result of the above definition we assume that A is
upward-closed — if A ∈ A and A ⊆ B then B ∈ A.) In a linear secret sharing scheme the shares
of information given to the parties are vectors in some vector space over F, wherein for each subset of
parties in the access structure A the span of the vectors given contains a certain target vector.

Beimel [6] showed that the size of the smallest monotone span program tightly characterizes the
amount of information required to be shared in linear secret sharing schemes. Before our results, the
best known lower bounds against any linear secret sharing scheme were quasipolynomial.

Corollary 3.9. There is an explicitly defined access structure A∆-GEN such that any linear secret
sharing scheme for A∆-GEN has information ratio 2Ω(Nε logN) for ε = 1/14.
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Nullstellensatz. Recall from the introduction that a Nullstellensatz refutation of a set of polynomial
equations p1 = 0, . . . , pm = 0 is given by a system of polynomials q1, . . . , qm such that

∑
piqi = 1.

The degree of the refutation is d = maxi deg(qipi), and the size is the total number of monomials in
all of the polynomials.

Let P = {p1(~x, ~y) = 0, . . . , pm(~x, ~y) = 0}, Q = {q1(~x, ~z) = 0, . . . , qm(~x, ~z) = 0} be a system
of unsolvable equations in variables ~x, ~y, ~z, where ~y, ~z are disjoint sets of variables. The system (P,Q)
is monotone if all ~x variables occurring in P are negative. An interpolant for (P,Q) is a boolean
function f(~x) with the property that for every assignment ~u to ~x, f(~u) = 0 implies that {p1(~u, ~y) =
0, . . . , pm(~u, ~y) = 0} is unsolvable, and f(~u) = 1 implies that {q1(~u, ~z) = 0, . . . , qm(~u, ~z) = 0} is
unsolvable. If (P,Q) is monotone then an interpolant for (P,Q) is a monotone function [37].

Pudlak and Sgall [37] proved that Nullstellensatz refutations of monotone systems (P,Q) have
interpolants computed by monotone span programs:

Theorem 3.10. Let (P,Q) be a monotone system of unsolvable polynomial equations over a field F,
and suppose that (P,Q) has a degree-d NS refutation. Then there is a size nO(d) monotone span
program computing an interpolant for the system over F.

We apply this theorem, using our monotone span program lower bounds, to obtain lower bounds
on the degree of NS refutations for certain unsatisfiable polynomial systems. Let f be any function
computable by a polynomial-size monotone circuit Cf . We describe a corresponding set of monotone
unsolvable polynomial equations, (Pf (~x, ~y), Qf (~x, ~z)) associated with f . The ~x variables of Pf (~x, ~y)
and Qf (~x, ~z) are inputs to Cf ; the ~y variables of Pf (respectively the ~z variables of Qf ) describe the
values assigned to each of the gates in Cf on input ~x. Roughly speaking, the equations in Pf say that
~x is a 1-input of f , and the equations in Qf say that ~x is a 0-input of f . We do this gate-by-gate: for
each ∧ gate w with input gates u, v, the Pf equation corresponding to w says that if both yu and yv are
1, then yw is 1, and the Qf equation corresponding to w says that if either zu or zv are 0, then zw is 0.
Similarly if w is an ∨ gate with inputs u, v then the Pf equation for w says that if either yu or yv is 0,
then yw is 1, and the Qf equation says that if zu and zv are 0, then zw is 0. For the output gate we add
the equation yout = 1 in Pf and zout = 0 in Qf . Clearly these equations are unsatisfiable, monotone,
and the unique monotone interpolant for (Pf , Qf ) is f . Note that the number of variables in P,Q is
poly(n) where n is the number of variables of f , and the degree of P,Q is at most 3.

Applying Theorem 3.4 and Theorem 3.3 we obtain the following lower bounds on Nullstellensatz.

Theorem 3.11. Every real Nullstellensatz refutation of the system (PSTCONN2m2,2m
, QSTCONN2m2,2m

)

has degree Ω(log n). Every real Nullstellensatz refutation of the system (P
∆↑2m

2-GEN
h

, Q
∆↑2m

2-GEN
h

)

requires Nullstellensatz refutations with degree Ω(N ε) for some ε > 0.

Proof. As we have argued above, STCONN2m2,m is the interpolant for the system

(PSTCONN2m2,2m
, QSTCONN2m2,2m

).

Combining Theorem 3.10 and Theorem 3.4 yields the first part of the theorem. The second part of the
theorem is obtained similarly using Theorem 3.3.

3.2 Comparator Circuit Lower Bounds

We recall the definition of comparator circuits. A comparator gate is the function mapping a pair of
input bits (x, y) 7→ (x ∧ y, x ∨ y); it is natural to think of a comparator gate as “sorting” the input
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(x, y), since the smaller input goes to the first coordinate and the larger input goes to the second.
A comparator circuit consists of m wires and a sequence (i1, j1), (i2, j2), . . . , (is, js) of comparator
gates, each connecting a pair of wires (in this notation, the ∧ output of the comparator gate is attached
to the first wire, and the ∨ output of the comparator gate is attaced to the second wire). Each of the m
wires is labelled with either a constant 0, 1, some input variable x or its negation x.

We will be interested in comparator circuits which compute boolean functions f : {0, 1}n →
{0, 1}, where n is possibly less than the number of wires. To do this we designate one of the wires as
the output wire and allow the labelling of distinct wires with the same input variable. A comparator
circuit C is monotone if no input wire of C is labelled with the negation of an input variable, and it
is clear from the monotonicity of comparator gates that monotone comparator circuits compute only
monotone functions.

Figure 3 shows a simple comparator circuit. In this comparator circuit each gate is drawn as an

Figure 3: A simple comparator circuit

arrow with a circle on one end. The arrow represents the ∨ gate and the circle represents the ∧ gate, so
we think of any 1 in the input to a gate as being “pushed” towards the arrow.

If C is a comparator circuit then the size of C is the number of wires2 in C. Let mCC denote
the class of languages computable by polynomial-size monotone comparator circuits, and if f is a
monotone boolean function let mCC(f) denote the minimum size of any comparator circuit computing
f .

Practically nothing is known about monotone comparator circuits other than trivial simulations. It
is easy to see that monotone comparator circuits can directly simulate monotone formulas, and can in
turn be directly simulated by monotone circuits; it therefore follows from Razborov’s lower bound [41]
against polynomial-size monotone circuits that the k-Clique problem cannot be computed by small
monotone comparator circuits. In this section we use our rank-measure results to lower bound the size
of monotone comparator circuits computing functions in monotone P.

Recall that a monotone complexity measure is any function µmapping monotone boolean functions
to R satisfying the following axioms, for all boolean functions f, g and all coordinate functions xi:

max {µ(f ∧ g), µ(f ∨ g)} ≤ µ(f) + µ(g)

max {µ(xi)} ≤ 1.

If µ satisfies the stronger axiom

µ(f) + µ(g) ≥ µ(f ∧ g) + µ(f ∨ g)

then we say that µ is a submodular complexity measure. Razborov proved that the function µA is a
submodular complexity measure.

2It is not hard to show that the number of wires and the number of gates in any comparator circuit without redundant gates
are separated by at most a quadratic factor.
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Theorem 3.12 (Theorem 1, [40]). For any matrix A the function µA(·) is a submodular complexity
measure.

We obtain our lower bounds by showing that submodular complexity measures lower bound mono-
tone comparator circuit size. This is achieved by first introducing a generalized complexity measure (a
multicomplexity measure) that lower bounds monotone comparator circuit size, and then showing that
submodular complexity measures are multicomplexity measures.

To be more precise, a function ρ is a multicomplexity measure if ρ maps sequences of Boolean
functions to R such that the following inequalities hold (note that all inequalities below are quantified
over all sequences of boolean functions and all t, when necessary):

∀i, j : ρ(f1, f2, . . . , fi, . . . , fj , . . . , ft) ≥ ρ(f1, f2, . . . , fi ∧ fj , . . . , fi ∨ fj , . . . , ft) (1)

ρ(f1, f2, . . . , ft) + ρ(ft+1, . . . , fm) ≥ ρ(f1, f2, . . . , ft, ft+1, . . . , fm) (2)

1 ≥ ρ(xi) (3)

ρ(f1, f2, . . . , ft−1, ft) ≥ ρ(f1, f2, . . . , ft−1) (4)

∀π ∈ Permutation(t), ρ(π(f1, f2, . . . , ft)) = ρ(f1, f2, . . . , ft) (5)

For any sequence of monotone boolean functions f1, f2, . . . , ft let mCC(f1, f2, . . . , ft) denote the
number of wires in the smallest monotone comparator circuit computing f1, f2, . . . , ft among its out-
puts.

Proposition 3.13. Let f1, f2, . . . , ft be any sequence of monotone boolean functions and let ρ be a
multicomplexity measure. Then

ρ(f1, f2, . . . , ft) ≤ mCC(f1, f2, . . . , ft).

Proof. Let t be an arbitrary positive integer, and we prove the proposition by induction on mCC(f1, f2, . . . , ft).
If mCC(f1, . . . , ft) = 1 then t = 1 and f1 is a variable, and so the inequality follows from (3). So,
suppose s = mCC(f1, . . . , ft) > 1 and let C be a comparator circuit witnessing mCC(f1, . . . , ft).
We may assume that C has some nonzero number of comparator gates, for if C has no comparator
gates then each function in {f1, . . . , ft} is a variable and the proposition follows from the inductive
hypothesis and repeated applications of (2) and (3). Let C ′ be the circuit obtained from C by removing
(starting from the output) the minimum number of comparator gates c1, c2, . . . , cs ∈ [s]2 such that C ′

can be partitioned into two disjoint comparator circuits C1, C2 with no comparator gates connecting C1

and C2. Clearly s = |C1|+ |C2|, and let g1, g2, . . . , gi be the functions output by C1 and gi+1, . . . , gs
the functions output by C2. Applying the inductive hypothesis we have

s = |C1|+ |C2| ≥ ρ(g1, g2, . . . , gi) + ρ(gi+1, . . . , gs) ≥ ρ(g1, . . . , gs),

where we have applied (2). Now, apply rule (1) to the pairs of wires dictated by the sequence of
comparator gates cs, cs−1, . . . , c1, obtaining

s ≥ ρ(g′1, g
′
2, . . . , g

′
s),

and note that {f1, . . . , ft} ⊆ {g′1, g′2, . . . , g′s}. Applying (4) finishes the proof.

Now we show that submodular complexity measures lower bound monotone comparator circuit
size.
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Proposition 3.14. Let µ be a non-negative, submodular complexity measure. For any monotone func-
tion f

µ(f) ≤ mCC(f).

Proof. We show that ρ(f1, f2, . . . , ft) =
∑

i µ(fi) is a multicomplexity measure, and the proposition
immediately follows. Observe that equations (4), (5), (6), and (7) easily follow from the definition of ρ
and the non-negativity of µ. To see that (3) holds we apply submodularity:

ρ(f1, f2, . . . , ft) = µ(f1) + · · ·+ µ(fi) + · · ·+ µ(fj) + · · ·+ µ(ft)

≥ µ(f1) + · · ·+ µ(fi ∧ fj) + · · ·+ µ(fi ∨ fj) + · · ·+ µ(ft)

= ρ(f1, f2, . . . , fi ∧ fj , . . . fi ∨ fj , . . . ft).

By combining this proposition with Theorem 3.3 we obtain exponential lower bounds on the size
of monotone comparator circuits computing ∆↑2m

2

h -GEN, separating mCC and mP.

Theorem 3.15. Let h be a positive integer, letm be the number of nodes in the height-h pyramid graph
∆h, and let N be the number of input variables to the function ∆↑2m

2

h -GEN. Let ε = 1/14. Then

mCC(∆↑2m
2

h -GEN) ≥ 2Ω(Nε logN).

Proof. By Theorem 3.12, the rank measure µA(·) is a submodular complexity measure. Combining
Theorem 3.3 with Proposition 3.14 yields the result.

Using Theorem 3.4, we obtain superpolynomial lower bounds on monotone comparator circuits
computing STCONN, separating mCC from mNC2 and also exhibiting a problem computable by
polynomial-size, non-monotone comparator circuits that is not computable by monotone comparator
circuits.

Theorem 3.16. Let m be a positive integer, and let N be the number of input variables to the function
STCONN2m2,m. Then

mCC(STCONN2m2,m) ≥ NΩ(logN).

Proof. Identical to the proof of the previous theorem, using Theorem 3.4 in place of Theorem 3.3.

4 Reducing the Rank Measure to Algebraic Gaps

The rest of the paper is devoted to the proof of Theorem 3.1. In this section we show how to reduce the
problem of constructing a matrix A witnessing Theorem 3.1 to the construction of a boolean function
satisfying certain Fourier-analytic properties. Our reduction is general, and naturally phrased using the
canonical search problem associated with unsatisfiable CNFs.

Definition 4.1. Let k be a positive integer and let C = C1 ∧ C2 ∧ · · · ∧ Cq be an unsatisfiable k-CNF
on variables z1, z2, . . . , zm. Associated with C is the following search problem Search(C): given an
assignment z ∈ {0, 1}m to the variables of C, output a falsified clause Ci.

Each clause C has a unique falsifying assignment, and given a boolean function p : {0, 1}m → R
on the same variables as C we let p�C denote the restriction of the function p by this assignment. For
example, the single falsifying assignment for C = ¬zu ∨¬zv ∨ zw sets zu = 1, zv = 1, zw = 0, so the
corresponding function p�C has the corresponding variables restricted accordingly.
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The reduction roughly proceeds as follows. We start with the search problem Search(C) and intro-
duce a new algebraic complexity measure on such search problems that we call the algebraic gap com-
plexity. We give a generic method to convert the search problem Search(C) into a monotone boolean
function fC by a variant of the construction introduced by Raz and Mckenzie [39]. (In particular, if we
begin with the so-called pebbling contradictions, then the resulting lifted function fC is exactly GEN.)
The main theorem of this section (Theorem 4.7) gives a method to lift lower bounds on the algebraic
gap complexity of Search(C) to lower bounds on the rank measure of the function fC .

We now introduce our new algebraic complexity measure. Recall that deg p is the size of the largest
non-zero Fourier coefficient of p.

Definition 4.2. Let C be an unsatisfiable CNF on m variables. The algebraic gap complexity of
Search(C) is the largest integer k for which there is a boolean function p : {0, 1}m → R such that

deg p = m and deg p�C ≤ m− k

for all clauses C in C.

Next we review pattern matrices, which are used to convert the search problem Search(C) into a
monotone boolean function fC such that algebraic gap lower bounds on Search(C) imply rank-measure
lower bounds for fC . Let o,m be positive integers, let n = om, and let

V (o,m) = [o]m × {0, 1}m .

Given x ∈ [o]m and y ∈ {0, 1}n construct a string y�x as follows: first, partition [n] into m blocks of
size o and write y = (yi,j) for i ∈ [m], j ∈ [o]; then for each i ∈ [m] set the ith value of y�x to yi,xi .

Definition 4.3. Let m, o be positive integers, let n = om, and let p : {0, 1}m → R. The (m, o, p)-
pattern matrix is the real matrix A given by

A = [p(y�x ⊕ w)]y∈{0,1}n,(x,w)∈V (o,m) .

Note that the rows of the (m, o, p)-pattern matrix are indexed by strings y ∈ {0, 1}n, and the columns
are indexed by pairs (x,w) ∈ V (o,m).

Observe that pattern matrices convert real-valued boolean functions p : {0, 1}m → R into matrices.
While they were originally introduced to prove lower bounds on communication complexity [48], here
they will be useful as we can easily calculate their rank from the Fourier spectrum of the underlying
function p.

Lemma 4.4. Let p : {0, 1}m → R be given and let A be the (m, o, p)-pattern matrix. The rank of A is

rankA =
∑

S:p̂(S) 6=0

o|S|.

Proof. Essentially Theorem 4.3 in [48].

The Pattern Matrix Lift. Letm, o be positive integers, let n = om, and consider any unsatisfiable
d-CNF C on m variables z1, z2, . . . , zm. We show how to use a pattern matrix to “lift” the search prob-
lem Search(C) to a monotone boolean function fC such that algebraic gap lower bounds for Search(C)
translate to rank measure lower bounds for fC . Our lifted function is a variant of the transformation
first given by Raz and Mckenzie [39] and then further explored by Göös and Pitassi [26].
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Definition 4.5. Let d,m, o be positive integers and let n = om. Let C be an unsatisfiable d-CNF on m
variables z1, z2, . . . , zm. The (C, o)-lifted function fC is the {0, 1}-valued monotone boolean function
defined as follows. The variables of fC are indexed by pairs (C, (a, b)), where C is a clause in C and

(a, b) ∈ [o]vars(C) × {0, 1}vars(C) .

Given a {0, 1}-assignment to the variables of fC , the function outputs 1 if there is an (x,w) ∈ V (o,m)
such that for each clause C, the variable (C, (xvars(C), wvars(C))) is set to 1. Clearly the function is
monotone, and observe that fC has |C|(2o)d input variables.

Define the following set of accepting and rejecting instances of fC :

Accepting Instances Y . For any (x,w) ∈ V (o,m) let Y (x,w) be the accepting instance obtained by
setting all variables of the form (C, (xvars(C), wvars(C))) to 1 for each clause C in C.

Rejecting Instances N . For any y ∈ {0, 1}n let N(y) be the rejecting instance obtained by setting
the variable (C, (xvars(C), wvars(C))) to 1 iff the clause C is satisfied when evaluated on the string
y�xvars(C)

⊕ wvars(C). Observe that this is a 0-input of fC since the formula C is unsatisfiable.

Let A be the (m, o, p)-pattern matrix for some function p. There is an obvious bijective map
from the rows y ∈ {0, 1}om of A to the rejecting instances N(y) of the (C, o)-lifted function fC , and
similarly from the columns (x,w) ∈ V (o,m) of A and the accepting instances Y (x,w) of fC . We
therefore consider the rank measure µA(fC) of fC with respect to A. Since fC is monotone, for each
accepting instance Y (x,w) and each rejecting instance N(y) there is an input variable (C, (a, b)) of fC
set to 1 in Y (x,w) and set to 0 inN(y). If we consider, for each input variable (C, (a, b)), the rectangle
R ⊆ Y ×N of all inputs“intersecting” in (C, (a, b)) in this sense, then in the rank measure µA(fC) we
must analyze the rank of the submatrices of A corresponding to such inputs. It is therefore important
to understand the structure of A�R for each rectangle R ∈ RfC(Y,N ).

Given how pattern matrices are defined it is reasonable to suspect that the submatrices A�R are
related to restrictions of the underlying function p by the variable (C, (a, b)) corresponding to R. It
turns out that this is true, and in fact the submatrix A�R is (essentially) a pattern matrix generated by
the restricted function p�C . Using this fact we can apply the rank lemma for pattern matrices (Lemma
4.4) to calculate the rank of the submatrix A�R by examining the Fourier spectrum of the restricted
function p�C .

Lemma 4.6. Let o,m be positive integers and let n = om. Let C be an unsatisfiable d-CNF defined
on m variables z1, z2, . . . , zm. Let p : {0, 1}m → R, and let A be the (m, o, p)-pattern matrix.
Let (C, (a, b)) be any input variable of fC , and let R be the rectangle corresponding to (C, (a, b)) in
RfC(Y,N ). Then

rank(A�R) =
∑

S:p̂�C(S)6=0

o|S|.

Note that the above sum is taken over all subsets S of the unrestricted variables of p�C .

Proof. Let d be the arity of the clause C. Let A′ denote the (o,m− d, p�C)-pattern matrix. We claim
that the matrix A�R is row equivalent to the matrix

A′

A′

...
A′
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for some number of copies of A′. To see the claim gives the lemma, observe that that the claim implies
that rankA�R = rankA′. Since A′ is the (o,m− d, p�C)-pattern matrix, Lemma 4.4 implies that

rankA�R = rankA′ =
∑

S:p̂�C(S)6=0

o|S|,

and the lemma follows.
Let us prove the claim. Let (x,w) ∈ V (o,m) and y ∈ {0, 1}n be any pair appearing in the

rectangle R, and note that the corresponding entry of the matrix A�R is p(y�x ⊕ w). By definition of
R, the variable (C, (a, b)) is set to 1 in Y (x,w) and set to 0 in N(y). This means that a = xvars(C) and
b = wvars(C), so write the variable as (C, (xvars(C), wvars(C))) accordingly. By definition of N(y), the
variable (C, (xvars(C), wvars(C))) is set to 0 in N(y) if and only if the clause C is not satisfied by the
assignment

v = y�xvars(C)
⊕ wvars(C).

It follows that (y�x ⊕ w)�vars(C) = v for each pair ((x,w), y) in the rectangle R.
This implies that each entry of A�R does not depend on the values of yi,j for any i indexing a

variable in vars(C) and any j 6= xi. Thus, let us restrict yi,j = 0 for all such yi,j and let A′′ be the
submatrix of A�R obtained by this further restriction on y. We show that A′′ = A′, and the claim
follows from letting the further restricted values yi,j range over {0, 1}.

Since (C, (a, b)) must lie in the accepting instance Y (x,w), it follows that xvars(C) = a and
wvars(C) = b, as stated above, while the rest of x and w can range arbitrarily over V (o,m − d) =

[o]m−d × {0, 1}m−d. Similarly, since (C, (a, b)) is not in the rejecting instance N(y), it follows that
(y�x⊕w)�vars(C) is the unique falsifying assignment to the variables of the clauseC. We have restricted
the values yi,j = 0 for all i indexing variables in vars(C) and all j 6= xi, and the remaining values of
y can range over {0, 1}n−od arbitrarily. Collecting it all together, we can write the entry of A′′ indexed
by ((x,w), y) as

p((y�x ⊕ w)vars(C), (y�x ⊕ w)d+1, . . . , (y�x ⊕ w)m)

= p�C((y�x ⊕ w)d+1, . . . , (y�x ⊕ w)m)

where we have assumed that the first d variables of p are vars(C) without loss of generality. Letting y
range over {0, 1}n−od and (x,w) range over V (o,m − d) shows A′′ = A′, finishing the proof of the
claim and the lemma.

Now we have that the rank of the pattern matrix A is related to the degree of p, while the rank
of the submatrix A�R is related to the degree of p�C , where (C, (a, b)) is the input variable of fC
corresponding to the rectangle R. It follows that to maximize the rank measure we need a function
p which maximizes the difference between these two degrees (thus explaining the definition of the
algebraic gap complexity). This is formalized in the next theorem, which is the main result of this
section.

Theorem 4.7. Let m, d be positive integers and let C be an unsatisfiable d-CNF on m variables. Let
k be the algebraic gap complexity of Search(C), and let fC be the (C,m2)-lifted function. There is a
matrix A such that µA(fC) ≥ cmk for some universal constant c.
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Proof. Let o = m2, let p : {0, 1}m → R be the function witnessing the algebraic gap complexity of
Search(C), and let A be the (m, o, p)-pattern matrix. We lower bound

µA(fC) =
rankA

max
R∈RfC (Y,N )

rankA�R
.

By Lemma 4.4,
rankA =

∑
S:p̂(S)6=0

o|S| ≥ m2m

since p̂([m]) 6= 0 and o = m2. Let R ∈ RfC(Y,N ) be chosen arbitrarily, let (C, (a, b)) be the
input variable of fC corresponding to R. Note that we may assume that p̂(S) = 0 for all S ⊆ [m] with
|S| < m−k w.l.o.g. since this does not affect the algebraic gap exhibited by p. Since deg p�C ≤ m−k,
it follows that all of the non-zero Fourier coefficients p̂�C(S′) are obtained as a linear combination of
non-zero Fourier coefficients of p̂(S) where |S| ≤ |S′|+ d. Applying Lemma 4.6 and using these two
facts, we have

rankA�R =
∑

S:p̂�C(S) 6=0

o|S| ≤
d∑

i=0

(
m

k − i

)
m2(m−k−i)

≤
d∑

i=0

(
em

k − i

)k−i
m2(m−k−i)

≤
d∑

i=0

(
e

k − i

)k−i
m2m−k−i

≤ m2m−k
d∑

i=0

(
e

k − i

)k−i
≤ 6m2m−k,

since e+ (e/2)2 + (e/3)3 + · · · ≤ 6. Putting it all together we get

µA(fC) =
rankA

max
R∈RfC (Y,N )

rankA�R
≥ m2m

6m2m−k ≥ cm
k

where c = 1/6.

5 Reducing Algebraic Gaps to Reversible Pebbling for GEN

Recall that a DAG G is good if it is connected, has maximum in-degree 2, and has a unique sink node
t. In this section we complete the proof of Theorem 3.1 by using pebbling contradictions.

Definition 5.1. Let G = (V,E) be any good DAG with sources R and target t. Let PebG denote the
following unsatisfiable CNF formula. There is one variable zv for each vertex v ∈ V , and we add the
following clauses:

1. The target clause (¬zt).

2. For each source vertex u ∈ R add the source clause (zu).

21



3. For each internal vertex w with in-neighbours W ⊆ V add the edge clause
(
zw ∨

∨
v∈W ¬zv

)
.

By Theorem 4.7 proved at the end of the previous section, proving lower bounds against the al-
gebraic gap complexity of Search(PebG) will imply rank measure lower bounds for fPebG . The main
theorem of this section is that the algebraic gap complexity of Search(PebG) is at least the reversible
pebbling number of G.

Theorem 5.2. For any good DAGG the algebraic gap complexity of Search(PebG) is at least rpeb(G).

We leave the proof of Theorem 5.2 to the next section, and use it to prove Theorem 3.1. First we
prove a lemma showing that fPebG is a restriction of the function G↑2o-GEN.

Lemma 5.3. Let G be a good DAG, let o be a positive integer, and let fPebG be the (PebG, o)-lifted
function. Then fPebG can be obtained from G↑2o-GEN by restricting some input variables to 0.

Proof. Suppose (C, (a, b)) is an input variable of fPebG , where C is a clause of PebG and (a, b) ∈
[o]vars(C) ×{0, 1}vars(C). Consider the following indexing scheme for the nodes of G↑2o: if u is a node
of G then let the lifted nodes of u in G↑2o be represented by

{
u(i,b) | i ∈ [o], b ∈ {0, 1}

}
. Define an

inductive mapping ρ from the variables of fPebG to the variables of G↑2o-GEN as follows, depending
on the type of the clause C.

1. If C is the target clause ¬zt, then (a, b) ∈ [o]× {0, 1}. Set ρ(C, (a, b)) = (t(a,b), t(a,b), t).

2. IfC is a source clause zv for some source ofG, then again (a, b) ∈ [o]×{0, 1}. Set ρ(C, (a, b)) =
(s, s, s(a,b)).

3. If C is an edge clause corresponding to the node w with in-neighbours u, v then write a =
awauav and b = bwbubv. Set ρ(C, (a, b)) = (u(au,bu), v(av ,bv), w(aw,bw)). If w has a single
in-neighbour u, then set ρ(C, (a, b)) = (u(au,bu), u(au,bu), w(aw,bw)).

Set all input variables of G↑2o-GEN not mapped to by ρ to 0. Suppose that z is an assignment to
the variables of fPebG such that fPebG(z) = 1, and we argue that G↑2o-GEN(ρ(z)) = 1. Recall that
fPebG(z) = 1 if and only if there is an (x,w) ∈ V (o,m) such that for each clause C the variable
(C, (xvars(C), wvars(C))) = 1. Given (x,w) ∈ V (o,m), consider the induced subgraph of G↑2o ob-
tained by adding the vertex u(xu,wu) for all nodes u in G. This subgraph is isomorphic to G, and by the
definition of the mapping ρ, all input triples connecting the nodes in this subgraph are set to 1 in the
input ρ(z). Thus G↑2o-GEN(ρ(z)) = 1.

Conversely, suppose that G↑2o-GEN(z) = 1. Then the input z must contain a subgraph of G↑2o

isomorphic to G by the definition of G↑2o-GEN and by the restriction ρ. By inverting the function ρ, a
similar argument as above shows that it is easy to map this subgraph into a pair (x,w) certifying that
fPebG(ρ−1(z)) = 1.

Theorem 3.1. Let G be any good DAG with m vertices. There is a real matrix A such that

µA(G↑2m
2
-GEN) ≥ Ω(mrpeb(G)).

Proof. Let G be any good DAG with m vertices. By Theorem 5.2 we have that the algebraic gap
complexity of Search(PebG) is at least rpeb(G). Let fPebG be the (PebG,m

2)-lifted function. Theorem
4.7 implies that there is a matrix A such that

µA(fPebG) ≥ Ω(mrpeb(G)).

Finally, Lemma 5.3 shows that fPebG is a restriction of G↑2m
2
-GEN, and so

µA(G↑2m
2
-GEN) = µA(fPebG) ≥ Ω(mrpeb(G)).
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5.1 Proving Algebraic Gap Lower Bounds for Search(PebG)

Theorem 5.2 is proved by a series of reductions. First we show that the algebraic gap complexity of
Search(PebG) is at least k if a certain system of linear equations is satisfied. By considering the dual of
this system, we can construct a natural proof system such that depth lower bounds on the proof system
imply that the original system of linear equations is satisfiable (this can be viewed as a completeness
result for the system). Finally, we show how to simulate this proof system by resolution, from which
depth lower bounds are known to follow from reversible pebbling [12].

We begin by constructing the system of equations equivalent to exhibiting algebraic gap complexity.
In this section we will abuse notation when writing Fourier coefficients and often write p̂(S, T, x) to
mean p̂(S ∪ T ∪ {x}).

Lemma 5.4. Let k be a positive integer and let G be any good DAG with sources R and sink t. Let
m = |V |. The search problem PebG has algebraic gap complexity at least k if there is a boolean
function p : {0, 1}V → R such that deg p = m and the following holds: for any clause C of PebG and
for any S ⊆ V such that |S| ≥ m− k + 1 and S does not contain any vertices with variables in C we
have

p̂(S) =


−p̂(S, u) C is a source clause for some u ∈ R,
p̂(S, t) C is the target clause.

−
∑

T⊆W∪{w}

(−1)|T∩W |p̂(S, T ) C is the edge clause zw ∨
∨
v∈W
¬zv for w.

Proof. This is an immediate consequence of Proposition 3.21 in [35], although we sketch a proof for
completeness.

Suppose that p : {0, 1}V → R is a function satisfying the requirements of the lemma, and we show
that the fork game has algebraic gap complexity at least k. Since deg p = m by assumption, we just
need to show that deg p�C ≤ m− k for each clause C.

Assume that C is the source clause for u ∈ S, and the other cases follow symmetrically. Recall
that the restriction corresponding to C sets xu = 0. To show deg p�C ≤ m − k we must show that
p̂�C(S) = 0 for all S ⊆ V \ {u} with |S| > m− k. We claim that

p̂�C(S) = p̂(S) + p̂(S, u).

This is easy to see if we change basis from {0, 1} to {−1, 1} by the mapping x 7→ 1 − 2x. It is well-
known that the Fourier transform of any function q : {−1, 1}m → R is simply the representation of q
as a real multilinear polynomial. So, applying the change of basis and thinking of p : {−1, 1}m → R
as a multilinear polynomial, the terms corresponding to p̂(S) and p̂(S, u) in the Fourier transform of p
are

p̂(S)
∏
v∈S

xv + p̂(S, u)xu
∏
v∈S

xv.

Under the mapping x 7→ 1− 2x, the restriction xu = 0 becomes xu = 1, so the coefficient p̂�C(S) of∏
v∈S xv is p̂(S) + p̂(S, u). By assumption, p̂(S) = −p̂(S, u), and so p̂�C(S) = 0.

For any good DAG G = (V,E) with m vertices, target node t, and any k ≤ m, the previous lemma
gives an algebraic gap complexity lower bound of k + 1 whenever the following system G(G, k) is
satisfiable.
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System of Equations G(G, k).

1. Degree Equation. p̂(V ) = 1.

2. Root Equations. For each S ⊆ V with |S| ≥ m− k and for which the target t 6∈ S we have

p̂(S)− p̂(S, t) = 0.

3. Source Equations. For any source vertex u of G and for each S ⊆ V with |S| ≥ m − k and
u 6∈ S we have

p̂(S) + p̂(S, u) = 0.

4. Edge Equations. For each vertexw ∈ V with in-neighboursW and each S ⊆ V with |S| ≥ m−k
and (W ∪ {w}) ∩ S = ∅ we have∑

T⊆W∪{w}

(−1)|T∩W |p̂(S, T ) = 0.

Corollary 5.5. If G(G, k) has a solution then PebG has algebraic gap complexity k + 1.

We introduce some general notation to represent the equations appearing in G(G, k). For any
A,S, U ⊆ V with |U | ≤ 1 and U ∩ (A ∪ S) = ∅ let E(A,S, U) denote the equation

0 =
∑

T⊆A∪U
(−1)|T∩A|p̂(S, T ).

With this notation the root equations are represented by E({r} , S, ∅), the source equations are repre-
sented by E(∅, S, {u}), and the edge equations are represented by E(W,S, {w}).

We now introduce derivation rules on these equations. First, for any A,S, U ⊆ V with U ∩ (A ∪
S) = ∅ and any y 6∈ U add the “weakening” rule

E(A,S, U) ` E(A,S ∪ {y} , U). (6)

For two equations E(A,S, {x}) and E(B,S, U) where U ∩A = ∅ and x ∈ B we introduce a cut rule

E(A,S, {x}), E(B,S, U) ` E(A ∪B \ {x} , S ∪ {x} , U). (7)

Let G∗(G, k) denote the system of equations obtained by taking the closure of the equations in G(G, k)
under the derivation rules.

The following proposition will be useful later.

Proposition 5.6. For any equation in G∗(G, k) of the form E(A,S, U), if U 6= ∅ then for any a ∈
A, u ∈ U there is a path in G connecting a to u.

Proof. We prove the proposition by structural induction on E-proofs. Each equation E(A,S, U) is
given by a proof from the axioms in G(G, k). For the source axioms E(∅, S, {u}) and the target axiom
E({t} , S, ∅) the proposition holds vacuously. Similarly, for any edge axiom E(W,S,w), each node in
W is connected by an edge to w, and so the proposition also follows.

If the equation E(A,S, U) is obtained by applying the weakening rule (6) to E(A,S \ {y} , U),
then the sets A and U are not changed and so the proposition follows from the inductive hypothesis.
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On the other hand, if we have two equations E(A,S, {x}) and E(B,S, U) with x ∈ B and U disjoint
from A ∪ S, then by applying the cut rule (7) we obtain the equation E(A ∪ (B \ {x}), S ∪ {x} , U).
Every node in B \ {x} has a path to each node in U by the inductive hypothesis. Similarly, each node
a ∈ A has a path to each node u ∈ U by concatenating the path connecting a to x (guaranteed by
E(A,S, {x})) and the path connecting x to u (guaranteed by E(B,S, U) since x ∈ B).

Observe that the equation E(∅, V, ∅) is exactly p̂(V ) = 0, which contradicts the degree equation
p̂(V ) = 1. It follows that if G∗(G, k) contains this equation then the system is unsatisfiable. In the
next lemma we show that this is the only obstruction to the system’s satisfiability: if G∗(G, k) does not
contain E(∅, V, ∅), then it is actually satisfiable. (Observe that this essentially a “completeness” result
for the proof system.)

The proof of the lemma is straightforward, if technical. An obvious method to construct a solution
to the system G∗(G, k) is as follows. Begin by setting p̂(V ) = 1, and then proceed to set the values
p̂(S) for S ( V using the value induced by equations E(A,S, U) appearing in G∗(G, k). To show that
this actually gives a consistent assignment we must show that the value induced on p̂(S) by any pair
of equations E(A,S,X), E(B,S, Y ) is the same. If S = V , then this is true iff E(∅, V, ∅) is not in
G∗(G, k); for smaller sets we prove this directly using downward induction.

The next definition formalizes what we mean for an equation E(A,S, U) to induce a value on p̂(S).

Definition 5.7. For S ⊆ V an S-equation is any equation E in G∗(G, k) of the form E(A,S, U) for
some (possibly empty) A,U , or the equation p̂(V ) = 1 if S = V . For any equation E ∈ G∗(G, k)
define the value induced by E to be

• −
∑
∅6=T⊆A∪U (−1)|A∩T |p̂(S, T ) if E = E(A,S, U) for some A,U .

• 1 if E is the equation p̂(V ) = 1.

Lemma 5.8. If G∗(G, k) does not contain the equation E(∅, V, ∅) then it has a solution.

Proof. Suppose that G∗(G, k) does not contain E(∅, V, ∅), and we construct an explicit solution p̂ for
G∗(G, k). Set p̂(V ) = 1. Then, suppose that for each 1 ≤ t ≤ k we have defined p̂(S) for all
|S| ≥ m− t+ 1, and we show how to define the value of p̂(S) for sets of size |S| = m− t. Let S ⊆ V
be any set with |S| = m−t. If there is no S-equation in G∗(G, k) then set p̂(S) = 0; otherwise, choose
an S-equation E(A,S, U) arbitrarily in G∗(G, k) and set p̂(S) to the value induced by E(A,S, U):

p̂(S) = −
∑

∅6=T⊆A∪U

(−1)|A∩T |p̂(S, T ).

The lemma follows from the next claim.

Claim. Let p̂ be the function constructed above, and let S ⊆ V with m − k ≤ |S| ≤ m be any set
for which there is an S-equation in G∗(G, k). For any two S-equations E1, E2, in G∗(G, k) the value
induced by both equations is the same.

Proof of Claim. We prove the claim by downward induction on |S|. First, suppose that S = V . All V -
equations are of the form p̂(V ) = 1 or E(A, V, U) for some A,U . In fact, we can take U to be ∅, since
for any equation E(A, V, U) we must have ∅ = U ∩ (V ∪A) = U ∩ V . It follows that all V -equations

25



other than p̂(V ) = 1 are of the form E(A, V, ∅) for some A ⊆ V . If A = ∅ then the equation E(∅, V, ∅)
is not in G∗(G, k) by assumption. Otherwise, suppose A 6= ∅. Then the value induced by E(A, V, ∅) is

p̂(V ) = −
∑
∅6=T⊆A

(−1)|T∩A|p̂(V,A) =
∑
∅6=T⊆A

(−1)|T |+1p̂(V ) = p̂(V ),

which is trivially satisfied.
By way of induction, let 1 ≤ t ≤ k, and suppose that the claim is true for all sets S with |S| ≥

m− t+ 1. We prove the claim when |S| = m− t. Observe that the inductive hypothesis implies that
p̂ satisfies all S-equations in G∗(G, k) when |S| ≥ m− t+ 1. Let E(A,S,X) and E(B,S, Y ) be two
distinct S-equations. Then the value induced by E(A,S,X) and E(B,S, Y ) is the same iff∑

∅6=T⊆A∪X

(−1)|A∩T |p̂(S, T ) =
∑

∅6=U⊆B∪Y

(−1)|B∩U |p̂(S,U). (8)

Let L denote the LHS and letR denote the RHS of Equation 8. By Proposition 5.6, since the graphG is
acyclic we cannot have both X ∩B 6= ∅ and Y ∩A 6= ∅. Without loss of generality, assume X = {x}
and Y = {y} (the proof will hold symmetrically if either X or Y is empty). To reduce clutter we write
Ax = A ∪ {x} and By = B ∪ {y}. We have two cases.

Case 1. x 6∈ B and y 6∈ A.
First suppose that x 6= y. Since X ∩B = ∅ and X 6= Y , for every T ⊆ A∪X the system G∗(G, k)

contains the equation E(B,S ∪ T, Y ) by the weakening rule; similarly, since Y ∩ A = ∅, for every
U ⊆ B ∪ Y the system contains the equation E(A,S ∪ U,X). We therefore have

L =
∑

∅6=T⊆Ax

(−1)|T∩A|p̂(S, T ) =
∑

∅6=T⊆Ax

∑
∅6=U⊆By

(−1)|T∩A|+|U∩B|+1p̂(S, T, U)

=
∑

∅6=U⊆By

∑
∅6=T⊆Ax

(−1)|T∩A|+|U∩B|+1p̂(S,U, T )

=
∑

∅6=U⊆By

(−1)|U∩B|p̂(S,U) = R,

where we have expanded each term p̂(S, T ) using the value induced by the equation E(B,S ∪ T, Y ),
and then contracted using the equation E(A,S ∪ U,X).

Now suppose X = Y = {x}. The proof is essentially the same as before, except now we partition
the sum into those terms containing x and those terms which do not. Consider

L = p̂(S, x) +
∑
∅6=T⊆A

(−1)|T∩A|p̂(S, T, x) + (−1)|T∩A|p̂(S, T ).

For each T ⊆ Awe have T∩X = ∅ and so the system G∗(G, k) contains the equation E(B,S∪T, Y ) =
E(B,S ∪ T, {x}). Expanding each term with the value induced by the corresponding equation we get

L = p̂(S, x) +
∑
∅6=T⊆A

(−1)|T∩A|p̂(S, T, x) + (−1)|T∩A|p̂(S, T )

= p̂(S, x) +
∑
∅6=T⊆A

(−1)|T∩A|p̂(S, T, x) +
∑

∅6=U⊆B∪{x}

(−1)|T∩A|+|U∩B|+1p̂(S, T, U)


= p̂(S, x) +

∑
∅6=T⊆A

∑
∅6=U⊆B

∑
W⊆{x}

(−1)|T∩A|+|U∩B|+1p̂(S, T, U,W ),
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where the third equation follows since if U = {x} in the last sum the term

(−1)|T∩A|+|U∩B|+1p̂(S, T, x) = (−1)|T∩A|+1p̂(S, T, x)

cancels with the term (−1)|T∩A|p̂(S, T, x) in the first sum. Arguing analogously for R we get

R = p̂(S, x) +
∑
∅6=U⊆B

(−1)|U∩B|p̂(S,U, x) + (−1)|U∩B|p̂(S,U)

= p̂(S, x) +
∑
∅6=U⊆B

(−1)|U∩B|p̂(S,U, x) +
∑

∅6=T⊆A∪{x}

(−1)|U∩B|+|T∩A|+1p̂(S,U, T )


= p̂(S, x) +

∑
∅6=U⊆B

∑
∅6=T⊆A

∑
W⊆{x}

(−1)|T∩A|+|U∩B|+1p̂(S,U, T,W ),

and thus L = R, as desired.

Case 2. Either x ∈ B or y ∈ A.
By Proposition 5.6 we may assume that it is not the case that both x ∈ A and y ∈ B. So, assume

without loss of generality that x ∈ B and y 6∈ A, and recall that

L =
∑

∅6=T⊆Ax

(−1)|T∩A|p̂(S, T )

R =
∑

∅6=U⊆By

(−1)|U∩B|p̂(S,U).

We show that L = R if E(A ∪ (B \ {x}), S ∪ {x} , y) is satisfied, which is true by the inductive
hypothesis. Overall the proof is similar to the previous case: we break the sums up according to x and
apply weakening. Let us begin by considering L:

L = p̂(S, x) +
∑
∅6=T⊆A

(−1)|T∩A|p̂(S, T, x) + (−1)|T∩A|p̂(S, T ).

As before, if T ⊆ A then T ∩ {y} = ∅ by assumption, and so by the weakening rule the system
G∗(G, k) contains the equation E(B,S ∪ T, {y}). As usual substitute in the value induced by these
equations:

L = p̂(S, x) +
∑
∅6=T⊆A

(−1)|T∩A|p̂(S, T, x) + (−1)|T∩A|p̂(S, T )

= p̂(S, x) +
∑
∅6=T⊆A

(−1)|T∩A|p̂(S, T, x) +
∑

∅6=U⊆By

(−1)|T∩A|+|U∩B|+1p̂(S, T, U)

 .
Partition the last sum into those terms which contain x and those terms which do not:∑
∅6=U⊆By

(−1)|T∩A|+|U∩B|+1p̂(S, T, U) =

(−1)|T∩A|p̂(S, T, x) +
∑

∅6=U⊆By\{x}

(−1)|T∩A|+|U∩B|+1(p̂(S, T, U)− p̂(S, T, U, x)).
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Collecting terms, we get

L = p̂(S, x)+
∑
∅6=T⊆A

2(−1)|T∩A|p̂(S, T, x) +
∑

∅6=U⊆By\{x}

(−1)|T∩A|+|U∩B|+1(p̂(S, T, U)− p̂(S, T, U, x))

 .
(9)

Now we attack R. Again, begin by partitioning the terms of R depending on x

R = −p̂(S, x) +
∑

∅6=U⊆By\{x}

(−1)|U∩B|+1p̂(S,U, x) + (−1)|U∩B|p̂(S,U).

Expanding the terms p̂(S,U) using the value induced by E(A,S ∪ U, {x}) we get

R = −p̂(S, x) +
∑

∅6=U⊆By\{x}

(−1)|U∩B|+1p̂(S,U, x) + (−1)|U∩B|p̂(S,U)

= −p̂(S, x) +
∑

∅6=U⊆By\{x}

(−1)|U∩B|+1p̂(S,U, x) +
∑

∅6=T⊆Ax

(−1)|U∩B|+|T∩A|+1p̂(S,U, T )

 .
Once again partition the last sum with respect to x∑
∅6=T⊆Ax

(−1)|T∩A|+|U∩B|+1p̂(S,U, T ) =

(−1)|U∩B|+1p̂(S,U, x) +
∑
∅6=T⊆A

(−1)|U∩B|+|T∩A|+1(p̂(S, T, U) + p̂(S, T, U, x)).

Collecting terms we get

R = −p̂(S, x)+
∑

∅6=U⊆By\{x}

2(−1)|U∩B|+1p̂(S,U, x) +
∑
∅6=T⊆A

(−1)|T∩A|+|U∩B|+1(p̂(S, T, U) + p̂(S, T, U, x))

 .
(10)

Using Equations 9 and 10 it follows that proving L = R is equivalent to showing

p̂(S, x)+
∑
∅6=T⊆A

2(−1)|T∩A|p̂(S, T, x) +
∑

∅6=U⊆By\{x}

(−1)|T∩A|+|U∩B|+1(p̂(S, T, U)− p̂(S, T, U, x))


= −p̂(S, x)+

∑
∅6=U⊆By\{x}

2(−1)|U∩B|+1p̂(S,U, x) +
∑
∅6=T⊆A

(−1)|T∩A|+|U∩B|+1(p̂(S, T, U) + p̂(S, T, U, x))

 .
We claim that this equation is equivalent to E(A∪B \{x} , S∪{x} , {y}). Rearranging and cancelling
like terms we get

0 = 2p̂(S, x) +
∑
∅6=T⊆A

2(−1)|T∩A|p̂(S, T, x) +
∑

∅6=U⊆By\{x}

2(−1)|U∩B|p̂(S,U, x)

+
∑

∅6=U⊆By\{x}

∑
∅6=T⊆A

2(−1)|T∩A|+|U∩B|+2p̂(S, T, U, x),
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which is the same as
0 = 2

∑
T⊆A∪(By\{x})

(−1)|T∩(A∪B\{x})|p̂(S, T, x).

Dividing by 2 yields E(A ∪B \ {x} , S ∪ {x} , {y}).

Finally, we use Lemma 5.8 to prove Theorem 5.2. The following theorem by Chan [12] about the
depth of resolution refutations of PebG will be helpful.

Theorem 5.9. [Theorem 1 and Theorem 3 in [12]] Any resolution refutation of PebG has height at
least rpeb(G).

Proof of Theorem 5.2. Let k be a positive integer and let G be a good DAG. We show that if G∗(G, k)
contains E(∅, V, ∅), then there is a resolution refutation of PebG with height k. Recall that the formula
PebG has a single variable zv for each vertex v ∈ G. We associate with each equation E(A,S, U) the
clause ∨

u∈U
xu ∨

∨
a∈A
¬xa.

With this identification, the source axioms E(∅, S, {u}) become clauses zu, the target axioms E({t} , S, ∅)
become clauses ¬zt, and the edge axioms E(W,S, {w}) become clauses

∨
u∈W ¬zu ∨ zw. (These are

precisely the clauses appearing in PebG.) The cut rule for E-equations

E(A,S, {x}), E(B,S, U) ` E(A ∪B \ {x} , S ∪ {x} , U)

just becomes the cut rule in resolution(∨
a∈A
¬za ∨ zx

)
,

(∨
b∈B
¬zb ∨

∨
u∈U

zu

)
`

∨
a∈A∪(B\{x})

¬za ∨
∨
u∈U

zu.

(The weakening rule is idempotent — it does not change the corresponding resolution clause). Since
the equation E(∅, V, ∅) maps to the empty clause, it follows that the resulting resolution proof is a
refutation of PebG.

It remains to argue that the refutation has height k. The key observation here is that whenever we
apply the cut rule on two E equations E(A,S, {x}), E(B,S, U) with x ∈ B, the new equation contains
x in its “middle” set. This implies that we can never use this equation on a cut on x again since the
three sets must be mutually disjoint. So, if for every axiom we have |S| ≥ m − k, it follows that the
total number of cuts on any path from each axiom to the root is at most k. Therefore the corresponding
resolution proof has the same height, since the weakening rule in the E-equations does no change
resolution clauses.

By applying Corollary 5.5 we have that if G(G, k) has a solution then Search(PebG) has algebraic
gap complexity at least k + 1. Lemma 5.8 shows that G∗(G, k) ⊇ G(G, k) has a solution unless it
contains the equation E(∅, V, ∅), and finally we have just shown that if G∗(G, k) contains E(∅, V, ∅)
then there is a height k resolution refutation of PebG. Since every resolution refutation of PebG has
height at least rpeb(G) by Theorem 5.9, it follows that G∗(G, rpeb(G) − 1) does not contain the
equation E(∅, V, ∅). Thus G∗(G, rpeb(G) − 1) (and also G(G, rpeb(G) − 1)) has a solution, and so
Search(PebG) has algebraic gap complexity at least rpeb(G).
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