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Given a concept class C C {0,1}" (a set of binary strings of length n), X C [n] is a teaching set
for a concept ¢ € C (a binary string in C) if X satisfies

clx # d|x, for all other concepts ¢’ € C,

where we use c¢|x to denote the projection of ¢ on X. The teaching dimension of C is the smallest
number ¢ such that every ¢ € C has a teaching set of size no more than ¢ [GK95]. However, teaching
dimension does not always capture the cooperation in teaching and learning, and the notion of re-
cursive teaching dimension has been introduced and studied extensively in the literature [Kuh99,
DSZ10, ZLHZ11, WY12, DFSZ14, SSYZ14, MSWY15]. The recursive teaching dimension of a class
C C€ {0,1}", denoted by RTD(C), is the smallest number ¢ where one can order all the concepts of C
as a sequence ci, ..., ¢|c| such that every concept ¢;, i < IC|, has a teaching set of size no more than
tin {c;,..., ¢y} Hence, RTD(C) measures the worst-case number of labelled examples needed to
learn any target concept in C, if the teacher and the learner agree a priori on a specific order of the
concepts of the class C.

In this note, we study the recursive teaching dimension of concept classes of low VC-dimension.
Recall that the VC-dimension [VCT71] of C C {0,1}", denoted by VCD(C), is the maximum size of a
shattered subset of [n], where Y C [n] is shattered if for every binary string b of length |Y|, there is
a concept ¢ € C such that c|y = b.

Our main result is the following upper bound for RTD(C).

Theorem 1. Let C be a concept class with VCD(C) = d. Then RTD(C) < 2%1(d — 2) 4 d + 4.

This is the first upper bound for RTD(C) that depends only on VCD(C), but not |C|, the size of
the concept class. Previously, Moran et al. [MSWY15] showed an upper bound of O(d2%1loglog|C|)
for RTD(C); our result removes the log log |C| factor, and answers positively an open problem posed
in [MSWY15]. Theorem 1 is also a step towards answering the following question:

Is RTD(C) = O(VCD(C)) ?

posed by Simon and Zilles [SZ15]. Given that the current best lower bound for RTD(C), in terms of
d = VCD(C), is only 3d/2 for d > 2 [DFSZ14], an exponential gap remains. The simplest case that is
still open is when d = 2 ([Kuh99] showed that RTD(C) = 1 when d = 1): [DFSZ14] presented a con-
cept class C (Warmuth’s class) with RTD(C) = 3; Theorem 1 shows that RTD(C) < 6 when d = 2.
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Proof of Theorem 1

Theorem 1 follows directly from the following lemma and the observation that the VC-dimension of
a concept class cannot go up after a concept is removed.

Lemma 2. Let C C {0,1}" be a concept class with VC-dimension d. Then there exists a concept
c € C with a teaching set of size at most 2471 (d — 2) + d + 4.

Proof. We prove by induction on d. Let

d) = TD
f(d) C:Vg}%ng ©),

and our goal is to prove the following upper bound for f(d):
fld) <2 d—2)+d+4 (1)

for all d > 1. The base case of d = 1 follows from [Kuh99].

For the induction step, we show that condition (1) holds for some d > 1, assuming that it holds
for d—1. Take any concept class C C {0,1}" with VCD(C) < d. Let k = 2¢(d—1)+1. If n < k then
we are already done; assume in the rest of the proof that n > k. Any set of k coordinates Y C [n]
partitions C into 2¥ (possibly empty) subsets, denoted by

Cl ={ceC:cly =b}, foreachbec{0,1}F.

We follow the idea of [MSWY15] to choose a set of k coordinates Y* C [n] and a vector b* € {0,1}*
such that C};f is nonempty and has the smallest size among all nonempty Cg/ over all choices of Y
and b. Without loss of generality, we assume below that Y* = [k] and b* is the all-zero vector. Also
for notational convenience, we write Cp to denote Cf~ for b € {0, 1}*.

Notice that if Cp« = Cg/: has VC-dimension at most d — 1, then we have

VCD(C) < k+ f(d—1) <29(d —2) + d + 4,

using the inductive hypothesis. This is because according to the definition of f one of the concepts
¢ € Cp+ has a teaching set T' C [n] \ Y™ of size at most f(d— 1) to distinguish it from other concepts
of Cp=. Thus, [k] UT is a teaching set of ¢ in the original class C, of size at most k + f(d —1).
Finally we prove by contradiction that Cp+ has VC-dimension at most d—1. Assume that Cp+ has
VC-dimension d. Then by definition, there exist a set of d coordinates Z C [n]\ Y™ that is shattered
by Cp+ (i.e., all the 27 possible vectors appear in Cp« on Z). Observe that for each i € Y*, the union
of all Cp with b; = 1 (recall that b* is all-zero) must miss at least one vector on Z, which we denote
by p; (choose one arbitrarily if more than one are missing); otherwise, C has a shattered set of size
d+1,i.e., ZU{i}, contradicting with the assumption that VCD(C) < d. However, given that there
are only 2 possibilities for each p; (and |Y*| = k = 2%(d — 1) + 1), it follows from the pigeonhole
principle that there exists a subset K C Y™ of size d such that p; = p for every ¢ € K, for some
p €{0,1}% Let Y/ = (Y*\ K)UZ be a new set of k coordinates and let b’ = 0;,_gop. Then ), is
indeed a nonempty and proper subset of Cg/:, a contradiction with our choice of Y* and b*. O
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