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Abstract

The recursive teaching dimension (RTD) of a concept class C ⊆ {0, 1}n, introduced by Zilles
et al. [ZLHZ11], is a complexity parameter measured by the worst-case number of labeled ex-
amples needed to learn any target concept of C in the recursive teaching model. In this paper,
we study the quantitative relation between RTD and the well-known learning complexity mea-
sure VC dimension (VCD), and improve the best known upper and (worst-case) lower bounds
on the recursive teaching dimension with respect to the VC dimension.

Given a concept class C ⊆ {0, 1}n with VCD(C) = d, we first show that RTD(C) is at most
d · 2d+1. This is the first upper bound for RTD(C) that depends only on VCD(C), independent
of the size of the concept class |C| and its domain size n. Before our work, the best known upper
bound for RTD(C) is O(d2d log log |C|), obtained by Moran et al. [MSWY15]. We remove the
log log |C| factor.

We also improve the lower bound on the worst-case ratio of RTD(C) to VCD(C). We present
a family of classes {Ck}k≥1 with VCD(Ck) = 3k and RTD(Ck) = 5k, which implies that the ratio
of RTD(C) to VCD(C) in the worst case can be as large as 5/3. Before our work, the largest
ratio known was 3/2 as obtained by Kuhlmann [Kuh99]. Since then, no finite concept class C
has been known to satisfy RTD(C) > (3/2) ·VCD(C).

1 Introduction

In computational learning theory, one of the fundamental challenges is to understand how different
information complexity measures arising from different learning models relate to each other. These
complexity measures determine the worst-case number of labeled examples required to learn any
concept from a given concept class. For example, one of the most notable results along this line
of research is that the sample complexity in PAC-learning is linearly related to the VC dimension
[BEHW89]. Recall that the VC dimension of a concept class C ⊆ {0, 1}n [VC71], denoted by
VCD(C), is the maximum size of a shattered subset of [n] = {1, . . . , n}, where we say Y ⊆ [n] is
shattered if for every binary string b of length |Y |, there is a concept c ∈ C such that c |Y = b.
Here we use c |X to denote the projection of c on X. As the best-studied information complexity
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measure, VC dimension is known to be closely related to many other complexity parameters, and
it serves as a natural parameter to compare against across various models of learning and teaching.

Instead of the PAC-learning model where the algorithm takes random samples, we consider an
interactive learning model where a helpful teacher selects representative examples and present them
to the learner, with the objective of minimizing the number of examples needed. The notion of a
teaching set was introduced in mathematical models for teaching. The teaching set of a concept
c ∈ C is a set of indices (or examples) X ⊆ [n] that uniquely identifies c from C. Formally, given
a concept class C ⊆ {0, 1}n (a set of binary strings of length n), X ⊆ [n] is a teaching set for a
concept c ∈ C (a binary string in C) if X satisfies

c|X 6= c′|X , for all other concepts c′ ∈ C.

The teaching dimension of a concept class C is the smallest number t such that every c ∈ C
has a teaching set of size no more than t [GK95, SM90]. However, teaching dimension does not
always capture the cooperation in teaching and learning (as we will see in Example 2), and a more
optimistic and realistic notion of recursive teaching dimension has been introduced and studied
extensively in the literature [Kuh99, DSZ10, ZLHZ11, WY12, DFSZ14, SSYZ14, MSWY15].

Definition 1. The recursive teaching dimension of a class C ⊆ {0, 1}n, denoted by RTD(C), is the
smallest number t where one can order all the concepts of C as an ordered sequence c1, . . . , c|C| such
that every concept ci, i < |C|, has a teaching set of size no more than t in {ci, . . . , c|C|}.

Hence, RTD(C) measures the worst-case number of labeled examples needed to learn any target
concept in C, if the teacher and the learner are cooperative. We would like to emphasize that an
optimal ordered sequence (as in Definition 1) can be derived by the teacher and learner separately
without any communication: They can put all concepts in C that have the smallest teaching
dimension appear at the beginning of the sequence, then remove these concepts from C and proceeds
recursively. By definition, RTD(C) is always bounded from above by the teaching dimension of C
but can be much smaller than the teaching dimension. We use the following example to illustrate
the difference between the teaching dimension and the recursive teaching dimension.

Example 2. Consider the class C ⊆ {0, 1}n with n + 1 concepts: the empty concept 0 and all the
singletons. For example when n = 3, C = {000, 100, 010, 001}. Each singleton concept has teaching
dimension 1, while the teaching dimension for the empty concept 0 is n, because the teacher has to
reveal all labels to distinguish 0 from the other concepts. However, if the teacher and the learner
are cooperative, every concept can be taught with one label: If the teacher reveals a “0” label, the
learner can safely assume that the target concept must be 0, because otherwise the teacher would
present a “1” label instead for the other concepts. Equivalently, in the setting of Definition 1, the
teacher and the learner can order the concepts so that the singleton concepts appear before the
empty concept 0. Then every concept has a teaching set of size 1 to distinguish it from the later
concepts in the sequence, and thus the recursive teaching dimension of C is 1.

In this paper, we study the quantitative relationship between the recursive teaching dimension
(RTD) and the VC dimension (VCD). A bound on the RTD that depends only on the VCD would
imply a close connection between learning from random samples and teaching (under the recursive
teaching model). The same structural properties that make a concept class easy to learn would
also give a bound on the number of examples needed to teach it. Moreover, the recursive teaching
dimension is known to be closely related to sample compression schemes [LW86, War03, DKSZ16],
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and a better understanding of the relationship between RTD and VCD might help resolve the
long-standing sample compression conjecture [War03], which states that every concept class has a
sample compression scheme of size linear in its VCD.

1.1 Our Results

Our main result (Theorem 3) is an upper bound of d · 2d+1 on RTD(C) when VCD(C) = d. This
is the first upper bound for RTD(C) that depends only on VCD(C), but not on |C|, the size of the
concept class, or n, the domain size. Previously, Moran et al. [MSWY15] showed an upper bound
of O(d2d log log |C|) for RTD(C); our result removes the log log |C| factor, and answers positively an
open problem posed in [MSWY15].

Our proof tries to reveal examples iteratively to minimize the number of the remaining concepts.
Given a concept class C ⊆ {0, 1}n, we pick a set of examples Y ⊆ [n] and their labels b ∈ {0, 1}Y ,
so that the set of remaining concepts (with the projection c |Y = b) is nonempty and has the
smallest size among all choices of Y and b. We then prove by contradiction (with the assumption
of VCD(C) = d) that, if the size of Y is large enough (but still depends on only VCD(C)), the
remaining concepts must have VC dimension at most d − 1. This procedure gives us a recursive
formula, which we solve and obtain the claimed upper bound on RTD of classes of VC dimension d.

We also improve the lower bound on the worst-case factor by which RTD may exceed VCD. We
present a family of classes {Ck}k≥1 (Figure 4) with VCD(Ck) = 3k and RTD(Ck) = 5k, which shows
that the worst-case ratio between RTD(C) and VCD(C) is at least 5/3. Before our work, the largest
known multiplicative gap between RTD(C) and VCD(C) was a ratio of 3/2, given by Kuhlmann
[Kuh99]. (Later Doliwa et al. [DFSZ14] showed the smallest class CW with RTD(CW ) = (3/2) ·
VCD(CW ) (Warmuth’s class)). Since then, no finite concept class C with RTD(C) > (3/2) ·VCD(C)
has been found.

Instead of exhaustively searching through all small concept classes, our improvement on the
lower bound is achieved by formulating the existence of a concept class with the desired RTD,
VCD and domain size, as a boolean satisfiability problem. We then run the state-of-the-art SAT
solvers on these formulae to discover a concept class C0 with VCD(C0) = 3 and RTD(C0) = 5. Based
on the concept class C0, one can produce a family of concept classes {Ck}k≥1 with VCD(Ck) = 3k
and RTD(Ck) = 5k, by taking the Cartesian product of k copies of C0: Ck = C0 × . . .× C0.

2 Upper Bound on the Recursive Teaching Dimension

In this section, we prove the following upper bound on RTD(C) with respect to VCD(C).

Theorem 3. Let C ⊆ {0, 1}n be a class with VCD(C) = d. Then RTD(C) ≤ 2d+1(d− 2) + d + 4.

Given a class C, we use TSmin(C) to denote the smallest integer t such that at least one concept
c ∈ C has a teaching set of size t. Notice that TSmin(C) is different from teaching dimension.
Teaching dimension is defined as the smallest t such that every c ∈ C has a teaching set of size at
most t.) Theorem 3 follows directly from Lemma 4 and the observation that the VC dimension of a
concept class does not increase after a concept is removed. (After removing a concept from C, the
new class C′ still has VCD(C′) ≤ d, and one can apply Lemma 4 again to obtain another concept
that has a teaching set of the desired size in C′ and repeat this process.)

Lemma 4. Let C ⊆ {0, 1}n be a class with VCD(C) = d. Then TSmin(C) ≤ 2d+1(d− 2) + d + 4.
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We start with some intuition by reviewing the proof of Kuhlmann [Kuh99] that every class C
with VCD(C) = 1 must have a concept c ∈ C with a teaching set of size 1. Given an index i ∈ [n]
and a bit b ∈ {0, 1}, we use Cib to denote the set of concepts c ∈ C such that ci = b. The proof
starts by picking an index i and a bit b such that Cib is nonempty and has the smallest size among
all choices of i and b. The proof then proceeds to show that Cib contains a unique concept, which
by the definition of Cib has a teaching set {i} of size 1. To see why Cib must be a singleton set, we
assume for contradiction that it contains more than one concept. Then there exists an index j 6= i
and two concepts c, c′ ∈ Cib such that cj = 0 and c′j = 1. Since C has VCD(C) = 1, {i, j} cannot be
shattered and thus, all the concepts c∗ ∈ C with c∗i = 1− b must share the same c∗j , say c∗j = 0. As
a result, it is easy to verify that Cj1 is a nonempty proper subset of Cib, contradicting the choice of
i and b at the beginning.

Moran et al. [MSWY15] used a similar approach to show that every so-called (3, 6)-class C has
TSmin(C) at most 3. They define a class C ⊆ {0, 1}n to be a (3, 6)-class if for any three indices
i, j, k ∈ [n], the projection of C onto {i, j, k} has at most 6 patterns. (In contrast, VCD(C) = 2
means that the projection of C has at most 7 patterns. So C being a (3, 6)-class is a stronger
condition than VCD(C) = 2.) The proof of [MSWY15] starts by picking two indices i, j ∈ [n]
and two bits b1, b2 ∈ {0, 1} such that Ci,jb1,b2 , i.e., the set of c ∈ C such that ci = b1 and cj = b2,
is nonempty and has the smallest size among all choices of i, j and b1, b2. They then prove by
contradiction that VCD(Ci,jb1,b2) = 1, and combine with [Kuh99] to conclude that TSmin(C) ≤ 3.

Our proof extends this approach further. Given a concept class C ⊆ {0, 1}n with VCD(C) = d,
let k = 2d(d− 1) + 1 and we pick a set Y ∗ ⊂ [n] of k indices and a string b∗ ∈ {0, 1}k such that CY ∗b∗ ,
the set of c ∈ C such that the projection c |Y ∗ = b∗, is nonempty and has the smallest size among all
choices of Y and b. We then prove by contradiction (with the assumption of VCD(C) = d) that CY ∗b∗

must have VC dimension at most d− 1. This gives us a recursive formula that bounds the TSmin

of classes of VC dimension d, which we solve to obtain the upper bound stated in Lemma 4.
We now prove Lemma 4.

Proof of Lemma 4. We prove by induction on d. Let

f(d) = max
C :VCD(C)≤d

TSmin(C).

Our goal is to prove the following upper bound for f(d):

f(d) ≤ 2d+1(d− 2) + d + 4, for all d ≥ 1. (1)

The base case of d = 1 follows directly from [Kuh99].
For the induction step, we show that condition (1) holds for some d > 1, assuming that it holds

for d−1. Take any concept class C ⊆ {0, 1}n with VCD(C) ≤ d. Let k = 2d(d−1)+1. If n ≤ k then
we are already done because

TSmin(C) ≤ n ≤ k = 2d(d− 1) + 1 ≤ 2d+1(d− 2) + d + 4,

where the last inequality holds for all d ≥ 1. Assume in the rest of the proof that n > k. Then any
set of k indices Y ⊂ [n] partitions C into 2k (possibly empty) subsets, denoted by

CYb = {c ∈ C : c |Y = b}, for each b ∈ {0, 1}k.
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We follow the approach of [Kuh99] and [MSWY15] to choose a set of k indices Y ∗ ⊂ [n] as well as
a string b∗ ∈ {0, 1}k such that CY ∗b∗ is nonempty and has the smallest size among all nonempty CYb ,
over all choices of Y and b. Without loss of generality we assume below that Y ∗ = [k] and b∗ = 0
is the all-zero string. For notational convenience, we also write Cb to denote CY ∗b for b ∈ {0, 1}k.

Notice that if Cb∗ = CY ∗b∗ has VC dimension at most d− 1, then we have

TSmin(C) ≤ k + f(d− 1) ≤ 2d+1(d− 2) + d + 4,

using the inductive hypothesis. This is because according to the definition of f , one of the concepts
c ∈ Cb∗ has a teaching set T ⊆ [n]\Y ∗ of size at most f(d−1) to distinguish it from other concepts
of Cb∗ . Thus, [k] ∪ T is a teaching set of c in the original class C, of size at most k + f(d− 1).

0 0 0 0 0

0 0

0 1

1 0

1 1

1 ���XXX0 0

1 ���XXX0 1

1 ���XXX1 0

1 ���XXX1 1

1 ���XXX0 0

Figure 1: An illustration for the proof of Lemma 4, TSmin(C) ≤ 6 when d = 2. We prove by
contradiction that the smallest nonempty set CY ∗b∗ , after fixing five bits, has VCD(CY ∗b∗ ) = 1, where
Y ∗ = {1, 2, 3, 4, 5} and b∗ = 0. In this example, we have Z = {6, 7}, Y ′ = {2, 3, 4, 6, 7} and b′ = 0.
Note that CY ′0 is indeed a nonempty proper subset of CY ∗0 .

Finally, we prove by contradiction that Cb∗ has VC dimension at most d−1. Assume that Cb∗ has
VC dimension d. Then by definition there exists a set Z ⊆ [n] \Y ∗ of d indices that is shattered by
Cb∗ (i.e., all the 2d possible strings appear in Cb∗ on Z). Observe that for each i ∈ Y ∗, the union of
all Cb with bi = 1 (recall that b∗ is the all-zero string) must miss at least one string on Z, which we
denote by pi (choose one arbitrarily if more than one are missing); otherwise, C has a shattered set
of size d + 1, i.e., Z ∪ {i}, contradicting with the assumption that VCD(C) ≤ d. (See Figure 1 for
an example when d = 2 and k = 5.) However, given that there are only 2d possibilities for each pi

(and |Y ∗| = k = 2d(d− 1) + 1), it follows from the pigeonhole principle that there exists a subset
K ⊂ Y ∗ of size d such that pi = p for every i ∈ K, for some p ∈ {0, 1}d. Let Y ′ = (Y ∗ \K)∪Z be
a new set of k indices and let b′ = 0k−d ◦ p. Then CY ′b′ is a nonempty and proper subset of CY ∗b∗ , a
contradiction with our choice of Y ∗ and b∗.

This finishes the induction and the proof of the lemma.
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3 Lower Bound on the Worst-Case Recursive Teaching Dimension

We also improve the lower bound on the worst-case factor by which RTD may exceed VCD. In
this section, we present an improved lower bound on the worst-case factor by which RTD(C) may
exceed VCD(C). Recall the definition of TSmin(C), which denotes the number of examples needed
to teach some concept in c ∈ C. By definition we always have RTD(C) ≥ TSmin(C) for any class C.

Kuhlmann [Kuh99] first found a class C such that RTD(C) = TSmin(C) = 3 and VCD(C) = 2,
with domain size n = 16 and |C| = 24. Since then, no class C with RTD(C) > (3/2) · VCD(C) has
been found. Recently, Doliwa et al. [DFSZ14] gave the smallest such class CW (Warmuth’s class, as
shown in Figure 2), with RTD(CW ) = TSmin(CW ) = 3, VCD(CW ) = 2, n = 5, and |CW | = 10. We
can view CW as taking all five possible rotations of the two concepts (0, 0, 0, 1, 1) and (0, 1, 0, 1, 1).

x1 x2 x3 x4 x5

0 0 0 1 1

0 0 1 1 0

0 1 1 0 0

1 1 0 0 0

1 0 0 0 1

0 1 0 1 1

1 0 1 1 0

0 1 1 0 1

1 1 0 1 0

1 0 1 0 1

(a)

x1 x2 x3 x4 x5

0 0 0 1 1

0 1 0 1 1

(b)

Figure 2: (a) Warmuth’s class CW with RTD(CW ) = 3 and VCD(CW ) = 2; (b) The succinct
representation of CW with one concept selected from each rotation-equivalent set of concepts.
The teaching set of each concept is marked with underline.

Given CW one can obtain a family of classes {Ck}k≥1 by taking the Cartesian product of k
copies:

Ck = CkW = CW × · · · × CW ,

and it follows from the next lemma that RTD(Ck) = TSmin(Ck) = 3k and VCD(Ck) = 2k.

Lemma 5 (Lemma 16 of [DFSZ14]). Given two concept classes C1 and C2.
Let C1 × C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}. Then

TSmin(C1 × C2) = TSmin(C1) + TSmin(C2),
RTD(C1 × C2) ≤ RTD(C1) + RTD(C2), and

VCD(C1 × C2) = VCD(C1) + VCD(C2).

Lemma 5 allows us to focus on finding small concept classes with RTD(C) > (3/2) · VCD(C).
The first attempt to find such classes is to exhaustively search over all possible binary matrices
and then compute and compare their VCD and RTD. But brute-force search quickly becomes
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infeasible as the domain size n gets larger. For example, even the class CW has fifty 0/1 entries.
Instead, we formulate the existence of a class with certain desired RTD, VCD, and domain size, as
a boolean satisfiability problem, and then run state-of-the-art Boolean Satisfiability (SAT) solvers
to see whether the boolean formula is satisfiable or not.

We briefly describe how to construct an equivalent boolean formula in conjunctive normal form
(CNF). For a fixed domain size n, we have 2n basic variables xc, each describing whether a concept
c ∈ {0, 1}n is included in C or not. We need VC dimension to be at most VCD, which is equivalent
to requiring that every set S ⊆ [n] of size |S| = VCD+1 is not shattered by C. So we define auxiliary
variables y(S,b) for each set S of size |S| = VCD+1, and every string b ∈ {0, 1}S , indicating whether
a specific pattern b appears in the projection of C on S or not. These auxiliary variables are decided
by the basic variables, and for every S, at least one of the 2|S| patterns must be missing on S. For
the minimum teaching dimension to be at least RTD, we cannot teach any row with RTD−1 labels.
So for every concept c, and every set of indices T ⊆ [n] of size |T | = RTD− 1, we need at least one
other concept c′ 6= c satisfying c |T = c′ |T so that c′ is there to “confuse” c on T . As an example,
we list one clause of each type, from the SAT instance with n = 5, VCD = 2, and RTD = 3:

x01011 → y({1,2,3},010),
∨
b

¬ y({1,2,3},b), x01011 →
∨

b 6=011

x(01,b).

Note that there are many ways to formulate our problem as a SAT instance. For example,
we could directly use a boolean variable for each entry of the matrix. But in our experiments,
the SAT solvers run faster using the formulation described above. The SAT solvers we use are
Lingeling [Bie15] and Glucose [AS14] (based on MiniSAT [ES03]). We are able to rediscover CW
and rule out the existence of concept classes for small values of (VCD,RTD, n); see Figure 3.

VCD(C) RTD(C) n (domain size) Satisfiable Concept Class

2 3 5 Yes CW (Figure 2)

2 4 7 No

3 5 7 No

3 6 8 No

4 6 7 No

4 7 8 No

3 5 12 Yes Figure 4

Figure 3: The satisfiability of the boolean formulae for small values of VCD(C), RTD(C), and n.

Unfortunately for n > 8, even these SAT solvers are no longer feasible. We use another heuristic
to speed up the SAT solvers when we conjecture the formula to be satisfiable — adding additional
clauses to the SAT formula so that it has fewer solutions (but hopefully still satisfiable), and faster
to solve. More specifically, we bundle all the rotation-equivalent concepts, that is if we include a
concept, we must also include all its rotations. Note that with this restriction, we can reduce the
number of variables by having one for each rotation-equivalent set; we can also reduce the number
of clauses, since if S is not shattered, then we know all rotations of S are also not shattered.

We manage to find a class C0 with RTD(C0) = TSmin(C0) = 5 and VCD(C) = 3, and domain size
n = 12. A succinct representation of C0 is given in Figure 4, where all rotation-equivalent concepts
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(i.e. rows) are omitted. The first 8 rows each represents 12 concepts, and the last row represents
4 concepts (because it is more symmetric), with a total of |C0| = 100 concepts. We also include
a text file with the entire concept class C0 (as a 100 × 12 matrix) in the supplemental material.
Applying Lemma 5, we obtain a family of concept classes {Ck}k≥1, where Ck = C0 × · · · × C0 is the
Cartesian product of k copies of C0, that satisfy RTD(Ck) = 5k and VCD(Ck) = 3k.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 1 1 1 0 1 0 1

0 0 0 0 1 1 0 1 0 1 0 1

0 0 0 1 0 1 1 1 0 1 0 1

0 0 0 1 1 1 0 1 0 1 0 1

0 0 1 1 0 1 0 1 0 1 0 1

0 0 1 1 0 1 1 1 0 1 0 1

0 1 0 1 0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1

Figure 4: The succinct representation of a concept class C0 with RTD(C0) = 5 and VCD(C0) = 3.
The teaching set of each concept is marked with underline.

4 Conclusion and Open Problem

We improve the best known upper and lower bounds for the worst-case recursive teaching dimension
with respect to VC dimension. Given a concept class C with d = VCD(C) we improve the upper
bound RTD(C) = O(d2d log log |C|) of Moran et al. [MSWY15] to 2d+1(d− 2) + d + 4, removing
the log log |C| factor as well as the dependency on |C|. In addition, we improve the lower bound
maxC(RTD(C)/VCD(C)) ≥ 3/2 of Kuhlmann [Kuh99] to maxC(RTD(C)/VCD(C)) ≥ 5/3.

Our results are a step towards answering the following question:

Is RTD(C) = O(VCD(C))?

posed by Simon and Zilles [SZ15].
While Kuhlmann [Kuh99] showed that RTD(C) = 1 when VCD(C) = 1, the simplest case that is

still open is to give a tight bound on RTD(C) when VCD(C) = 2: Doliwa et al. [DFSZ14] presented a
concept class C (Warmuth’s class) with RTD(C) = 3, while our Theorem 3 shows that RTD(C) ≤ 6.
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