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Abstract

The known emulation of interactive proof systems by public-coins interactive proof systems
proceeds by selecting, at each round, a message such that each message is selected with probabil-
ity that is at most polynomially larger than its probability in the original protocol. Specifically,
the possible messages are essentially clustered according to the probability that they are selected
in the original protocol, and the emulation selects a message at random among those that belong
to the heaviest cluster.

We consider the natural alternative in which, at each round, if the parties play honestly,
then each message is selected with probability that approximately equals the probability that
it is selected in the original protocol. This is done by selecting a cluster with probability that
is proportional to its weight, and picking a message at random in this cluster. The crux of
this paper is showing that, essentially, no matter how the prover behaves, it cannot increase
the probability that a message is selected by more than a constant factor (as compared to the
original protocol). We also show that such a constant loss is inevitable.
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1 Introduction

The notion of interactive proof systems was introduced by Goldwasser, Micali, and Rackoff [GMR85]
in order to capture the most general way in which one party can efficiently verify claims made by
another, more powerful party. Interactive proofs generalize and contain as a special case the tradi-
tional NP-proof systems. However, we gain a lot from this generalization: the IP Characterization
Theorem of Lund, Fortnow, Karloff, Nisan and Shamir [LFKN92, Sha92] states that every language
in PSPACE has an interactive proof system.

An interactive proof system is a two-player protocol between a computationally bounded verifier,
and a computationally unbounded prover whose goal is to convince the verifier of the validity of
some claim. The verifier employs a probabilistic polynomial time strategy and sends the prover
messages, to which the prover responds in order to convince the verifier. It is required that if
the claim is true then there exists a prover strategy that causes the verifier to accept with high
probability, whereas if the claim is false then the verifier rejects with high probability (no matter
what strategy the prover employs). A formal definition of an interactive proof system is provided
in Section 2. The class of sets having an interactive proof system is denoted by IP.

Public coins versus private coins. An important aspect of interactive proofs is the verifier’s
randomness. Whereas we can assume, without loss of generality, that the prover is deterministic,
the verifier must be randomized to benefit from the power of interactive proofs. Specifically, without
randomness on the verifier’s side, interactive proof systems exist only for sets in NP. The verifier’s
messages in a general interactive proof system are determined based on the input, the interaction
preformed so far, and the its internal coin tosses (i.e., the verifier’s coin tosses). In that case,
we may assume, without loss of generality, that the verifier tosses all coins at the very beginning
of the interaction, and it is crucial that (with the exception for the last message) the verifier’s
messages only reveal partial information about its coins (and keep the rest secret). In contrast, in
public-coin proof systems, introduced by Babai [Bab85] as Arthur-Merlin games, the message sent
by the verifier in each round contains (or totally reveals) the outcome of all coin it has tossed at the
current round. Thus, these messages reveal the randomness used toward generating them; that is,
this randomness becomes public. The class of sets having an interactive public coin proof system
is denoted AM.

The relative power of public coin interactive proofs as compared to general interactive proofs
was first studied by Goldwasser and Sipser [GS86], who showed that every interactive proof can
be emulated using only public coins; hence, IP = AM. Intuitively, this means that, in order to
test the prover, the verifier does not need to ask clever questions, which hide some secrets, but it
rather suffices to ask random questions (which hide nothing). The fact that IP = AM also follows
from the IP characterization theorem of [LFKN92, Sha92], since the proof actually establishes
PSPACE ⊆ AM, whereas IP ⊆ PSPACE .

A finer notion of interactive proofs refers to the number of prover–verifier communication rounds.
For an integer function r, the complexity class IP (r) consists of sets having an interactive proof
system in which, on common input x, at most r (|x|) rounds of communication take place. The
original proof of Goldwasser and Sipser that IP = AM actually provides a round efficient emula-
tion of IP by AM. Specifically, they show that, for any polynomially bounded function r : N → N,
it holds that IP (r) ⊆ AM (r + 2).

In addition to being of intrinstic interest, the emulation of general interactive proofs by public-
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coin interactive coins is instrumental for several fundamental results regarding general interactive
proof systems, which are established by reducing them to the analogous results regarding public
coin interactive coin systems. Examples include the round-reduction (a.k.a. speed-up) theorem of
Babai and Moran asserting that IP (2r) ⊆ IP (r), the zero-knowledge emulation asserting that
IP = ZK (provided that one-way functions exist), and the equivalence between one-sided and two-
sided error versions of interactive proof systems. In all three cases, the result is easier to establish
for public coin interactive proof systems (see [BM88], [BGGHKMR], and [FGMSZ], respectively);
actually, no “direct proof” that works with arbitrary interactive proof systems is known (and it
is even hard to imagine one). We stress that the use of a round-efficient emulation (of general
interactive proofs by public coin ones) means that taking this (“via AM”) route incurs no cost in
terms of the round complexity of the resulting proof systems.

1.1 The known emulation of IP by AM

The basic idea used in emulating a general interactive proof by a public coin one is changing the
assertion, from proving that one (random) interaction using a specific sequence of private coins
leads the verifier to accept, to proving that most of the sequences of coin tosses lead the verifier to
accept. Calling such coin sequences good, the claim that there are many good coin sequences for a
potential r-round interaction reduces to showing that the product of the number of verifier-messages
(for the first round) times the number of good coin sequences that are consistent with each of these
messages (and some prover response to it) is large. Hence, lower-bounding the number of good
sequences for the r-round interaction is reduced to lower-bounding the number of good sequences
for the remaining r − 1 rounds.

The foregoing description makes sense when the next verifier message is uniformly distributed
in some set, denoted S. In this case, the claim that there are M good coin sequences for the r-round
interaction reduces to asserting that there are |S| verifier messages such that each of them yields
a (r − 1)-round interaction with M/|S| good coin sequences. The problem is that the foregoing
uniformity condition may not hold in general.

Goldwasser and Sipser, who suggested this emulation strategy, resolved the foregoing problem
by picking a set of messages that have roughly the same number of good coin sequences. Specifically,
they clustered the potential messages that the original verifier could have sent on the next round
into clusters according to the (approximate) number of good coin sequences that support each
message. A constant-round, public-coin sampling protocol is utilized in order to sample from the
cluster of messages that have the largest number of good coin sequences. Hence, the chosen
cluster is determined as the “heaviest” one. (We go over the original emulation in more detail
in Section 2.) The emulation succeeds assuming an initial gap between the number of good coin
sequences for yes-instances and for no-instances. We provide a somewhat unorthodox phrasing of
the IP = AM theorem in terms of the initial gap; that is, the ratio between the completeness
and soundness bounds (i.e., the ratio between the lower bound on the acceptance probabuility of
yes-instances and the upper bound on the acceptance probabuility of no-instances).

Theorem 1 (Original emulation of IP by AM [GS86]) Suppose that L has a r = r (|x|)
round interactive proof system that utilizes n = n (|x|) random coins for an instance x, and a
gap of Ω (n)r between the number of accepting coins of yes-instances and no-instances. Then, the
foregoing emulation yields a public-coin interactive system proof for L.
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1.2 Our contribution

We propose an alternative method for preforming a public-coin emulation of IP. Our method is
similar to the original method of [GS86], but differs in the way the chosen cluster of messages
(from which the sampling is preformed) is determined. Whereas in the original emulation the
chosen cluster is determined as the one with the largest number of coins, in our emulation the
chosen cluster is selected probabilistically according to its weight (i.e., the number of good coins
in the cluster). Therefore, this method gets closer to sampling from the real distribution of prover-
verifier transcripts (see farther discussion in Section 1.3). Furthermore, as explained in Section 2,
while the original method looses a factor of Θ(n) (in the said gap) in each round, the new method
only looses a constant factor. Consequently, this method requires a smaller initial gap between the
number of accepting coins of yes-instances and no-instances (in order to emulate interactive proofs
using public coins).

Theorem 2 (New emulation of IP by AM) Suppose that L has a r = r (|x|) round interactive
proof system for an instance x, and a gap of Br, for some universal constant B > 1, between the
number of accepting coins of yes-instances and no-instances. Then, the new emulation yields a
public coin interactive proof system for L.

We present the emulation and the proof of Theorem 2 in Section 3.
We further show that, for the new emulation, the gap that we use is asymptotically tight.

Namely, when the initial gap is O(Cr) for some constant C > 1, we provide an interactive proof
and a prover strategy that fails the new emulation.

Theorem 3 (Tightness of Theorem 2) For some universal constant C > 1, there exists an
interactive proof system for a set L that proceeds in r = r (|x|) rounds and has a gap of Ω(Cr)
between the number of accepting coins of yes-instances and no-instances such that emulating this
proof system (as described above) fails to yield an interactive proof system for L.

We provide the proof of Theorem 3 in Section 3.3.

1.3 An alternative perspective

As stated in Section 1.2, the new emulation can be viewed as an attempt to tightly emulate the
original prover-verifier interaction. When choosing a cluster according to its weight, and sampling
a message uniformly from this cluster, we are actually selecting a verifier-message with distribution
that is quite close to the original, where the deviation is due to approximation that underlies the
definition of a cluster (i.e., each cluster contains messages that have approximately, but not nec-
essarily exactly, the same number of coins suppoprting them). Furthermore, essentially, malicious
behavior of the prover can increase the probability that a specific message is chosen in a specific
round by at most a constant factor as compared to the original interaction.

In contrast, the previous emulation strategy (of Goldwasser and Sipser [GS86]) selects messages
with a distribution that is very far from the original interaction, even in the case that both parties
are honest. Recall that this emulation always selects messages from the heaviest cluster, and so it
may increase the probability that such a message is chosen in a certain round by a factor of Θ(n).
Hence, our contribution is in showing that the new emulation strategy works too, and in fact that
it works better. In particular, while the analysis of Goldwasser and Sipser [GS86] shows that their
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emulation strategy loses a factor of O(n) in each round, we show that the new emulation strategy
loses a constant factor in each round (and that such a factor must be lost).

We comment that choosing clusters according to their weight was also employed by Goldreich,
Vadhan, and Wigderson [GVW02], but in their work several such clusters are selected at each
round, which makes the analysis of the protocol easier. We cannot afford doing so.

2 Preliminaries

Let us start by providing a formal definition of an interactive proof system, where the completeness
and soundness bounds are parameters.

Definition 4 (Interactive Proof Systems) Let c, s : N → [0, 1]. An interactive proof system
for a set S is a two party game, between a verifier executing a probabilistic polynomial time verifier
strategy, denoted V , and a prover executing a (computationally unbounded) strategy satisfying the
following two conditions:

• Completeness with bound c: For every x ∈ S, the verifier V accepts after interacting with the
prover P on common input x with probability at least c(|x|).

• Soundness with bound s: For every x /∈ S and every prover strategy P ∗, the verifier V accepts
after interacting with P ∗ on common input x with probability at most s(|x|).

When c and s are not specified, we mean c ≡ 2/3 and s ≡ 1/3. We denote by IP the class of sets
having interactive proof systems.

A finer definition of interactive proofs refers to the number of prover-verifier communication rounds
(i.e., number of pairs of verifier-message followed by a prover-message). For an integer function r,
the complexity class IP (r) consists of sets having an interactive proof system in which on common
input x, at most r (|x|) rounds of communication are executed between the parties.

2.1 Accepting coins

In order to provide a precise description of the original and new emulations, we formally define
the set of accepting coins for input x and partial transcript γ. The following definition refers to
any fixed pair of deterministic strategies, (P, V ), where V is provided with an auxiliary input ρ
(which represents the outcomes of coin tosses). When using the following definition in the rest of
this paper, we shall always fix V to be the verifier strategy given to us (where the verifier’s internal
copin tosses are viewed as input to V ) and let P be a fixed optimal strategy that maximizes the
acceptance probability of V .

Definition 5 (Accepting coins) Let us denote by 〈P, V (ρ)〉(x) the full transcript of the interac-
tion of P and V on input x, when V uses coins ρ; that is,

〈P, V (ρ)〉(x) = (α1, β1, . . . , αr, βr, (σ, ρ)) (1)

where σ = V (x, r, β1, . . . , βr) ∈ {0, 1} is V ’s final verdict and for every i = 1, . . . , r it holds that
αi = V (x, ρ, β1, . . . , βi−1) and βi = P (x, α1, . . . , αi). For any partial transcript ending with a
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P -message, γ = (α1, β1, . . . , αi−1, βi−1), we denote by ACCx (γ) the set of coin sequences that are
consistent with the partial transcript γ and lead V to accept x when interacting with P . Formally

ACCx(γ) =
{

ρ ∈ {0, 1}n : ∃γ′ ∈ {0, 1}poly(|x|) s.t 〈P, V (ρ)〉(x) =
(

γ, γ′, (1, ρ)
)

}

(2)

When x and γ are clear from the context we refer to ACCx(γ) as the set of accepting coins.

Note that we assume, without loss of generality, that the verifier reveals its private coins ρ on the
last round, which also includes its output (or verdict) bit. (In Eq. (2), we mandated an accepting
verdict.)

2.2 The original emulation

In the original proof of IP = AM, the public coin emulation was preformed by clustering the
possible messages the verifier can send on each round into n clusters according to the approximate
number of accepting coins they have, that is, according to |ACCx (γ)|. In [GS86], the ith cluster
contained messages with approximately 2i accepting coins, but (mainly for clarity) we prefer to use
a generic (constant) basis b > 1 (while noting that a choice of b = 2 is quite good). Thus, we shall

use n′ def
= n/ log2 b = Θ(n) clusters (rather than n clusters). Thus, for the emulation of round r′

with partial transcript γ we denote these clusters by C0, . . . , Cn′ , where Ci is defined as

Ci =
{

α : bi ≤ |ACCx (γα)| < bi+1
}

(3)

Namely, Ci is the set of messages α that the verifier can send (on round r′) that have approximately
bi coins that are consistent with the transcript γα, and lead the verifier to accept.

The original emulation proceeds as follows. Denote by c the completeness parameter of the
interactive proof system. The prover’s initial claim is that there are at least c · 2n accepting coins
for x i.e, that |ACCx (∅)| ≥ c · 2n. The prover supplies the verifier with the sizes of the clusters
|C0| , . . . , |Cn′ |. The verifier checks that the number of accepting coins approximately sums up to

the claim (namely, that
∑n′

i=0 |Ci| ·b
i+1 > c ·2n), and chooses the cluster Ci with the largest number

of accepting coins; that is, i is chosen so as to maximize bi · |Ci|. In order to validate that the
claim is true, and to sample a message α from Ci, the prover and the verifier run a (constant-
round) sampling protocol which utilizes only public coins. Next, the prover supplies its answer β
to the sampled message α and the parties proceed to the next round, where the prover claims that
there are at least 2i accepting coins that are consistent with the interaction αβ preformed so far.
After the last round the complete prover-verifier transcript is determined, which also contains the
verifier’s internal coins tosses. The verifier then checks that the entire transcript is consistent and
accepting.

We note that throughout the emulation the verifier does not “challenge” the prover on the
number of accepting coins in the clusters other than the selected cluster Ci and the prover can use
this to employ a strategy for fooling the verifier. For example, even if all of the accepting coins
lie in cluster Ci, the prover can claim that there are |Ci| − 1 coins in each other cluster, and get
away with this lie. In this way the gap between the number of accepting coins consistent with
the interaction and the prover’s claim regarding this number is cut by a factor of Θ (n) in each
round. For this reason, the emulation requires an initial gap of Θ (n)r between yes-instances and
no-instances, where r is the number of rounds of the original interactive proof.
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3 The new emulation

As mentioned in Section 2.2, an essential cause for the large initial gap required in the AM
emulation of [GS86] is the deterministic way in which a cluster of messages is chosen by the verifier.
Therefore, a promising approach is to have the verifier choose a cluster with probability proportional
to the number of accepting coins the prover claims are in that cluster. This follows the intuition that
we would like to challenge the prover by choosing “heavy” clusters, which contain many accepting
coins, with higher probability than “lighter” clusters. The same intuition also underlies [GS86],
but we apply it in a more smooth fashion.

We note that the prover still has a potential of fooling the verifier by supplying a message that
does not belong to Ci but rather to some other cluster, when Ci is chosen. Nevertheless, we show
that even an untrusted prover will not be able to fool the verifier too much.

3.1 The actual protocols

The original r-round interaction (P, V ) is “emulated” in r iterations (each consisting of a constant
number of message exchanges). The ith iteration starts with a partial prover-verifier interaction
γi−1 = (α1β1 . . . αi−1βi−1) and a claimed bound Mi−1 regarding the size of ACCx (γi−1). In the
first iteration γ0 is the empty sequence and M0 = c · 2n, where c > 0 is the completeness parameter
of the interactive proof system. The ith iteration proceeds as follows.

Construction 6 (The ith iteration) On input γi−1 and Mi−1.

1. The prover computes the number of messages in each cluster, and sends the sizes of the
clusters N0, . . . , Nn′ to the verifier, where Nj is the number of messages in cluster Cj defined
as in Eq. (3).

Recall that each message in cluster Cj has between bj and bj+1 consistent and accepting coins.

2. Verifier’s initial checks: If
∑n′

j=0 Nj · b
j+1 < Mi−1, then the verifier aborts and rejects.

3. Verifier’s selection of clusters: The verifier samples a cluster j according to the probability
distribution J that assigns j ∈ [n] probability proportional to bj · Nj. That is,

Pr [J = j] =
Nj · b

j

∑n′

ℓ=0 Nℓ · bℓ
(4)

4. Sampling the selected cluster: The verifier and the prover run a sampling protocol (as defined
below) to obtain a message αi which the prover claims is in cluster Cj. The protocol is invokes
with completeness parameter ǫ = 1

3r and soundness parameter δ = b.

(If not output is provided by the sampling protocol, then the verifier rejects.)

5. Completing the current iteration: Next, the prover determines βi such that ACCx (γi−1, αi, βi) =
ACCx (γi−1, αi) ; that is, the prover selects a message that maximized the number of accepting
coins, and sends it to the verifier.
Toward the next iteration, the parties set Mi = 2j and γi = γi−1αiβi.
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By our conventions, the last message the verifier sends contains the outcomes ρ ∈ {0, 1}n of the n
coins tossed. Thus, ρ can be easily extracted from γr = (α1, β1, . . . , αr, βr, (1, ρ)). After the last
iteration the verifier performs final checks and accepts if all of them hold:

i) Checking that ρ is accepting for γr: V (x, ρ, α1, . . . , αr) = 1, and for every i = 1, . . . , r it
holds that αi = V (x, ρ, β1, . . . , βi−1). Note that the verifier needs ρ in order to verify these
conditions, so it can only be done after the last iteration. Also note that if these checks pass
then |ACCx (γr)| = 1.

ii) Checking that Mr = 1; namely, checking that the prover’s last claim was that there is a single
sequence of coin tosses that is consistent with the complete interaction γr.

The sampling protocol used. Our protocol utilizes a constant-round, public-coin sampling
protocol for sampling in arbitrary sets. The verifier is assisted by a computationally unbounded
prover that the verifier does not trust. The prover provides the verifier with an integer N , which
is supposed to be a lower bound on the size of the set (in our case the set of messages) denoted
S ⊆ {0, 1}ℓ. (We assume for simplicity that the length of the verifier’s messages is exactly ℓ =
poly (|x|) (which can be justified by padding the messages to be of size ℓ).) The sampling protocol
with parameters ǫ > 0 and δ > 1, satisfies the following two properties:

Completeness (w.r.t ǫ): If the lower bound on |S| is valid (i.e. |S| ≥ N), and the prover is honest,
then with probability 1 − ǫ, the verifier will output an element of S.

Soundness (w.r.t δ): For every T such that |T | < N , no matter how the prover plays, the proba-

bility that verifier will output an element of T is at most δ · |T |
N .

For the implementation we use families of pairwise independent hash functions
{

Ht
ℓ

}

ℓ>t
. The

sampling protocol proceeds as follows.

Construction 7 (The sampling protocol) Using parameters ǫ > 0 and δ > 1, on input ℓ and
N , the parties proceed as follows.

i) The verifier selects and sends the prover a random hash function h : {0, 1}ℓ → {0, 1}t, where
t = ⌊log2(ǫN⌋ − ⌈2 log2(δ/(1 − δ))⌉, and a random element from the image y ∈ {0, 1}t.

ii) The prover is supposed to answer with K
def
= ⌊2−tN/δ⌋ elements of S that are preimages of y

under h; that is, with x1, ..., xK ∈ S such that h (xi) = y for every i.

iii) The verifier checks that the K elements are indeed preimages of y under h. Next, the verifier
selects i uniformly in [K] and outputs xi; that is, it outputs one of these K elements selected
uniformly using public randomness.

(If less than K elements are provided, or some of the elements are not preimages, then the
verifier has no output).

The computational complexity of the protocol for the verifier is polynomial in ℓ/ǫ, since K =
2−tN/δ = Oδ(1/ǫ), and the verifier’s actions can be implemented in poly(ℓ) · K-time.
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Lemma 8 (analysis of the sampling protocol) For any constant δ > 1 and all sufficiently
small ǫ > 0, the protocol of Construction 7 satisfies the foregoing completeness and soundness
conditions.

Proof: We start with the completeness condition. The family of pairwise independent hash
functions satisfies an “almost uniform cover” condition (cf. [Gol08, Lem. D.4]); that is, for every
S ⊆ {0, 1}ℓ and every y ∈ {0, 1}t, for all but at most a 2t

(1−(1/δ))2 ·|S|
fraction of h ∈ Ht

ℓ it holds that

|{x ∈ S : h(x) = y}| >
|S|

δ · 2t

(since the expected size of the set is |S|/2t and δ > 1). On the other hand, using |S| ≥ N , we have
K = ⌊2−tN/δ⌋ ≤ 2−t|S|/δ. Hence the prover will fail in supplying K preimages with probability
of at most

2t

(1 − (1/δ))2 · |S|
≤

δ2 · 2t

(δ − 1)2N

≤ ǫ

since t ≤ log2(ǫN) − 2 log2(δ/(δ − 1)).
Turning to the soundness condition, we consider an arbitrary set T ⊆ {0, 1}ℓ. Let Y be a

random variable denoting the “cell” the verifier chooses (i.e., the set h−1(y)). For every y ∈ {0, 1}t,

denote by Ty the set of preimages of y under h that are in T ; that is, Ty
def
= {α ∈ T : h (α) = y}.

Then, it holds that
∑

y∈{0,1}t |Ty| = |T |. In Step (ii), the prover provides K preimages (of y under

h), some of them may be in T , and the verifier selects one of them, which we denote by z. Hence,
for y with |Ty| preimages in T , the probability that the sampled element resides in T is at most
|Ty|
K (it may be less if the the prover does not provide all the elements in Ty, for example when
|Ty| > K, or if the prover just acts “foolishly”). Hence the probability that the output z is in T is
at most

Pr [z ∈ T ] =
∑

y∈{0,1}t

Pr[Y = y ∧ z ∈ Ty]

=
∑

y∈{0,1}t

Pr[Y = y] ·Pr[z ∈ Ty]

≤
∑

y∈{0,1}t

1

2t
·
|Ty|

K

=
|T |

K · 2t

≤
|T |

((2−t · N/δ) − 1) · 2t

= δ ·
|T |

N − δ · 2t

which is approximately δ ·|T |/N . Actually, since N > 2t/ǫ, we get δ · |T |
N−δ·2t = δ

1−δǫ ·
|T |
N , which means

that the claim holds for soundness parameter δ
1−δǫ . (The original claim follows by substituting δ

for (1 − 2ǫ) · min(δ, 2).)
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The round complexity of the emulation. In the Construction 6, the prover sends messages in
Steps (1), (4) and (5), while the verifier sends messages in Steps (3) and (4), where Step (4) invokes
the three-message protocol of Construction 7 (in which the verifier sends messages in Steps (i)
and (iii), and the prover sends a message in Step (ii)). Denoting these messages by the sender’s
initial and the step number, we get the sequence P1, V3, V4i, P4ii, V4iii, P5, which means
that we have two and a half rounds. It is possible to avoid this blowup in the number of rounds
by combining the message sent by the prover in Step (ii) of the sampling protocol with its Step (5)
message and the Step (1) message of the next iteration in one message. This is possible since the
prover can provide the messages that it would have sent for each of the K possible messages of the
verifier in Step (iii) of the sampling protocol. Details follow.

Recall that in Step (ii) of the sampling protocol the prover sends K messages allegedly belonging
to Cj, and the verifier selects and sends one of these messages, denoted αi, in Step (iii). The idea is
to have the prover then provide its response βi, to each of these possible αi as well as and the sizes
of the clusters for the next round. All these messages are sent in one new message that the prover
sends in a Step (ii) of the modified protocol. So the sequence of messages has the form V3+V4i,

P4ii, V4iii, where the possible P5-messages of the current iteration as well as the possible P1-
messages of the next iteration are included in the P4ii-message. Lastly, the V4iii-message of
the i-th iteration is combined with the V3+V4i-message of the i + 1st iteration. Hence an r-round
interactive proof system is emulated by an (r + 1)-rounds public-coin interactive proof system.

3.2 Analysis of the emulation

We introduce some notation and terminology that will be useful for the analysis of the proposed
emulation. Fixing a generic input x and letting n = n(|x|), we consider an interactive proof system
with completeness and soundness parameters c = c(|x|) and s = s(|x|), respectively. Hence if x is
yes-instance (resp., a no-intance), then it has at least c · 2n accepting coins (resp., at most s · 2n

accepting coins). Put differently, there is a gap of g0
def
= c

s between the number of accepting coins of
yes-instances and no-instances. In the each iteration the prover’s goal is to lower the gap regarding
the number of accepting coins. We refer to the following definition.

Definition 9 (Gaps) The gap on the ith iteration, denoted gi, is the ratio between the claimed
bound regarding to the number of accepting coins on the ith round, i.e. Mi, and the number of
accepting coins consistent with the partial transcript γi, i.e., |ACCx (γi)|. In case |ACCx (γi)| = 0
we set gi = ∞. That is,

gi =

{

Mi

|ACCx(γi)|
if |ACCx (γi)| > 0

∞ otherwise
(5)

Indeed, if the prover claims that some no-instance is a yes-instance, then at the beginning of the
emulation M0 ≥ c · 2n and |ACCx (γ0)| ≤ s · 2n, thus g0 ≥ c

s . If the verifier accepts the complete
emulation, then (in particular) the final checks pass and Mr = |ACCx (γr)| = 1, thus gr = 1.

3.2.1 The effect of a single iteration

Recall that we have fixed an arbitrary interactive proof system (P, V ), and an input x to it. We
consider the public coin emulation of (P, V ) defined in Section 3.1, and fix an interaction index
i ∈ [r] as well as the transcript of the first i−1 iterations. Hence, the values γi−1, gi−1 and Mi−1 are
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fixed. Denote by Gi the random variable that represents gi at the end of the ith iteration, which is
a function of the public randomness of the emulation protocol (of Construction 6 and the sampling
protocol of Construction 7). Towards proving Theorem 2, we analyze the change in the gap on the
ith iteration, and show that for every t ∈ N the gap Gi is reduced by a factor of b−t with probability
at most O(b−t). It is convenient to prove this claim by letting j ∈ N be such that gi−1 ∈ (bj−1, bj].
Hence if Gi ∈ (bj−t−1, bj−t], this implies that the gap changed by a factor of approximately b−t.
The following lemma shows the probability that the gap changed by some factor F can be bounded
in a way that is independent of the previous gap, and depends only on the factor F .

Lemma 10 (Main lemma) Suppose that gi−1 ∈ (bj−1, bj ] and j > t. Then,

Pr
[

Gi ∈ (bj−t−1, bj−t]
]

≤ b−t+3.

Proof: Recall that Gi is defined as the random variable representing the gap gi, which is the
ratio between the number of accepting coins that are consistent with the emulation according to
the prover, and the actual number of accepting coins. The gap Gi is determined by the cluster
the verifier chooses in Step (3), and by the cluster that the message sampled in Step (4) of the
emulation resides in. We are interested in calculating the probability that Gi ∈ (2j−t−1, 2j−t] for
j > t. We can write this event as the union of disjoint events regarding to the cluster Ck that the
verifier chooses in Step (3) of the emulation.

Pr
[

Gi ∈ (bj−t−1, bj−t]
]

=
n′

∑

k=0

Pr
[

Ck is chosen ∧ Gi ∈ (bj−t−1, bj−t]
]

(6)

Assume that cluster Ck is chosen by the verifier, which implies that Mi = bk. Recalling that
Gi = Mi

|ACCx(γi−1αi)|
, it holds that if Gi ∈ (bj−t−1, bj−t], then

bj−t−1 <
bk

|ACCx(γi−1αi)|
≤ bj−t

or equivalently

bk−(j−t) ≤ |ACCx(γi−1αi)| < bk−(j−t)+1

In other words, Gi ∈ (bj−t−1, bj−t] if and only if the sampled message αi resides in Ck−(j−t) and
k ≥ j − t. For each k ∈ {0, . . . , n}, we introduce the following Boolean indicator variables:

Yk: The event that cluster Ck is chosen by the verifier in Step (3).

Zk: The event that the sampled message in Step (4) resides in cluster Ck

Using the aforementioned observation and the new notations introduced, we can write Eq. (6) as

Pr[Gi ∈ (bj−t−1, bj−t]] =

n′

∑

k=j−t

Pr[Yk ∧ Zk−(j−t)] (7)

Next, we calculate the probabilities that the events in Eq. (7) occur. We first note that the verifier
chooses a cluster according to the distribution in Eq. (4), hence

10



Pr [Yk] =
Nk · bk

∑n′

ℓ=0 Nℓ · 2ℓ
(8)

Assume that cluster Ck was chosen by the verifier, which the prover claims is of size Nk. We
can use the soundness property of the sampling protocol (with T = Cℓ and N = Nk) to upper
bound the probability that the sampled message resides in Cℓ.

Pr[Zℓ |Yk] ≤
b · |Cℓ|

Nk
(9)

(since the soundness parameter δ was set to b). Combining Equations (8) and (9), we get

Pr[Yk ∧ Zk−(j−t)] = Pr[Yk] · Pr[Zk−(j−t) |Yk]

≤
Nk · bk

∑n′

ℓ=0 Nℓ · 2ℓ
·
b · |Ck−(j−t)|

Nk

=
bk+1 · |Ck−(j−t)|

∑n′

ℓ=0 Nℓ · 2ℓ

=
bj−t+1 · bk−(j−t) · |Ck−(j−t)|

∑n′

ℓ=0 Nℓ · 2ℓ
(10)

Note that this quantity does not depend on Nk, which is the purported size of the cluster Ck as
claimed by the prover. Moreover, Eq. (10) is proportional to the number of coins in the cluster
Ck−(j−t), which is approximately bk−(j−t) ·

∣

∣Ck−(j−t)

∣

∣. Hence, plugging in the quantity from Eq. (10)
in Eq. (7), we get

Pr[Gi ∈ (bj−t−1, bj−t]] ≤
n′

∑

k=j−t

bj−t+1 · bk−(j−t) · |Ck−(j−t)|
∑n′

ℓ=0 Nℓ · 2ℓ

=
bj−t+1

∑n′

ℓ=0 Nℓ · 2ℓ
·

n′

∑

k=j−t

|Ck−(j−t)| · b
k−(j−t)

=
bj−t+1

∑n′

ℓ=0 Nℓ · 2ℓ
·

n−(j−t)
∑

ℓ=0

|Cℓ| · b
ℓ

Thus,

Pr[Gi ∈ (bj−t−1, bj−t]] ≤
bj−t+1

∑n′

ℓ=0 Nℓ · 2ℓ
·

n′

∑

ℓ=0

|Cℓ| · b
ℓ (11)

The accepting coins, ACCx (γi−1), are partitioned between the clusters C0, . . . , Cn′ . Moreover, the
number of accepting coins in cluster Cℓ is at least bℓ · |Cℓ|. Thus,

n′

∑

ℓ=0

|Cℓ| · b
ℓ ≤ |ACCx(γi−1)| (12)
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Passing Step (2) of the emulation protocol mandates that
∑n′

ℓ=0 Nℓ · b
ℓ+1 ≥ Mi. Hence

n′

∑

ℓ=0

Nℓ · b
ℓ =

1

b
·

n′

∑

ℓ=0

Nℓ · b
ℓ+1 ≥

1

b
· Mi (13)

Using Eq. (12) and (13) and recalling that Mi−1

ACCx(γi−1) = gi−1 > bj−1, we can upper bound Eq. (11)
and get

Pr[Gi ∈ (bj−t−1, bj−t]] ≤
bj−t+1 · |ACCx(γi−1)|

1
b · Mi

=
bj−t+2 · |ACCx(γi−1)|

Mi

=
bj−t+2

gi−1

≤
bj−t+2

bj−1

= b−t+3

which completes the proof.

3.2.2 Proof of Theorem 2

We shall show that the emulation protocol of Construction 6 (combined with the sampling protocol
of Construction 7) yields a public-coin interactive proof system for any set having r rounds and a
gap of at least Br. Recall that when these two constructions are combined as detailed at the end
of Section 3.1, the resulting public-coin protocol has r + 1 rounds. The completeness feature of
this protocol is quite straightforward (but will be spelled out next). The soundness feature will be
proven later, while relying on the main lemma.

Completeness. We claim that if x is a yes-instance, and the prover is honest, then the verifier
accepts with probability greater than 2

3 . We first show that if the sampling goes well, namely the
message sampled reside in the chosen cluster in all of the iterations, then the verifier accepts. We
then show that the sampling goes well with probability greater than 2

3 .
We prove that if the sampling goes well then on every iteration i the verifier does not abort and

|ACCx (γi)| ≥ Mi. We prove this by induction on the iteration index. By the induction hypotheses,
we assume that the verifier does not abort up to iteration i of the emulation. For iteration i + 1,
when the prover sets Nℓ = |Cℓ| as directed by the emulation protocol, the verifier doesn’t abort in
the Step (2) since the prover is honest and

n′

∑

ℓ=0

Nℓ · b
ℓ+1 =

n′

∑

ℓ=0

|Cℓ| · b
ℓ+1 > |ACCx(γi)| ≥ Mi

Now, assume the verifier chooses cluster Ck. When a message αi+1 from the chosen cluster Ck is
sampled, the prover supplies its response βi+1 to the message αi+1 so that |ACCx(γi, αi+1, βi+1)| ≥
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bk = Mi+1. In particular, after the last iteration, γr consists of a full transcript that is consistent
with verifier’s coins ρ and |ACCx(γr)| = Mr = 1, so the verifier accepts.

It is left to show that, with probability greater than 2
3 , the sampled messages reside in the

chosen cluster in all of the iterations. Recall that we run the sampling protocol with completeness
parameter 1

3r . Since the prover and the verifier follow the sampling protocol, by the properties of
the sampling protocol, on each iteration the sampled message resides in the chosen cluster with
probability at least 1 − 1

3r . Therefore, with probability greater than 2
3 , elements from the chosen

clusters are sampled in all the iterations.

Soundness. We show that if x is a no-instance, then for any prover strategy the verifier accepts
with probability at most 1

3 . If the verifier accepts after a complete transcript γr is sampled, then
Mr = |ACCx (γr)| = 1 must hold; namely, there is one sequence of coin tosses consist with the
interaction, and this is what the prover claims on the last round. In this case, the “gap” after the
last round is 1 (i.e. gr = 1). Therefore, in order to upper bound the probability the verifier accepts,
it suffices to upper bound the probability that the gap after the last round, gr, is smaller than or
equal to 1. As before, we denote by Gi for i ∈ {0, . . . , r} the random variable that represent the

gap after the ith iteration. We set G0
def
= g0, where g0 is the initial gap between the number of

accepting coins for yes-instances and no-instances. Hence, it is enough to show that if g0 = Br,
then Pr [Gr ≤ 1] < 1

3 , where B is a constant that will be determined later.
We define random variables D1, . . . ,Dr representing the decrease in the gap between two con-

secutive rounds

Di =

{

Gi−1

Gi
if Gi < ∞

0 otherwise

Conditioning on Gi−1 ∈ (bj−1, bj ], we know that if Di ∈ (bt−1, bt] then

bj−1

bt
< Gi =

Gi−1

Di
≤

bj

bt−1

or equivalently Gi ∈ (bj−t−1, bj−t+1]. Hence, the main lemma asserts that for i ∈ {1, . . . , r} and
t < j, we have

Pr[Di ∈ (bt−1, bt] |Gi−1 ∈ (bj−1, bj ]] ≤ Pr[Gi ∈ (bj−t−1, bj−t+1] |Gi−1 ∈ (bj−1, bj ]]

= Pr[Gi ∈ (bj−t−1, bj−t] |Gi−1 ∈ (bj−1, bj ]]

+Pr[Gi ∈ (bj−(t−1)−1, bj−(t−1)] |Gi−1 ∈ (bj−1, bj]]

≤ b−t+3 + b−(t−1)+3

= (1 + b)b−t+3

By the definition of Di if Gi = ∞ then Di = 0, and in particular Di < bt−1 . Thus

Pr[Di ∈ (bt−1, bt] |Gi = ∞] = 0

Hence, we can omit the conditioning on Gi−1, since we bounded the probability conditioning on
every value of Gi−1 by a term which is independent of the condition. We get

Pr
[

Di ∈ (bt−1, bt]
]

≤ (1 + b) · b−t+3
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or equivalently

Pr [logb(Di) ∈ (t − 1, t]] ≤ (1 + b) · b−t+3 (14)

If for every iteration i ∈ {1, . . . , r} it holds that Gi < ∞, then by the definition of Di we have

Gr =
Gr−1

Dr
= . . . =

G0

D1 · . . . · Dr

Otherwise, there exists an iteration i for which Gi = ∞. In such a case, by the definition of gi it
follows that |ACCx (γi)| = 0 and hence the number of accepting coins for every transcript that γi

is a prefix of is also zero. In particular |ACCx (γr)| = 0 and hence then Gr = ∞. On the other
hand when Gi = ∞ we have Di = 0. Hence if we interpret 1

0 as ∞ we have that

Gr =
G0

D1 · . . . · Dr
= ∞

Hence,

Pr[Gr ≤ 1] = Pr

[

G0

D1 · . . . · Dr
≤ 1

]

= Pr[D1 · . . . · Dr ≥ Br]

= Pr[logb[D1 · . . . · Dr] ≥ r · logb B]

and

Pr[Gr ≤ 1] = Pr

[

r
∑

i=1

logb(Di) ≥ r logb B

]

(15)

We define random variables Li for i ∈ {1, . . . , r}

Li =

{

⌈logb(Di)⌉ if logb(Di) ≥ 0
0 if logb(Di) < 0

where logb 0 is interpreted as −∞. We can upper bound the expectation of Li using Eq. (14)

E[Li] =

n′

∑

t=1

Pr[⌈logb(Di)⌉ = t] · t

=

n′

∑

t=1

Pr[logb(Di) ∈ (t − 1, t]] · t

≤
n′

∑

t=1

(1 + b) · b−t+3 · t

< (1 + b) ·
b4

(b − 1)2

Setting B such that logb B = 3(1 + b) · b4

(b−1)2
,

r
∑

i=1

E[Li] <
r · logb B

3
(16)
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and using Markov inequality we get

Pr

[

r
∑

i=1

Li ≥ r logb B

]

≤
E [

∑r
i=1 Li]

r logb B

≤
1

3

Lastly, recall that the variable Li upper bounds logb(Di), thus we can upper bound the value of
Eq. (15) by using the Li’s

Pr [Gr ≤ 1] ≤ Pr

[

r
∑

i=1

logb (Di) ≥ r logb B

]

≤ Pr

[

r
∑

i=1

Li ≥ r logb B

]

≤
1

3
(17)

which completes the proof of the theorem.

On the choice of the base parameter b. Recall that B = b3·(1+b)b4/(b−1)2 , where Br is the

initial gap required by our emulation. Wishing to minimize B calls for minimizing f(b) = (1+b)b4 ln b
(b−1)2 ,

and one can readily verify that the optimum value is in the interval [1.01, 10], since f(2) < 48
whereas f(b) > 100 for both b ∈ (1, 1.01] and b > 10. The optimun value is b ≈ 1.32821, yet
f(2) < 2 · f(1.32821).

3.3 Lower bounds

We first observe that for any base parameter b > 1, the gap may be reduced by a factor of b in each
iteration (of the emulation protocol) due to the here fact that each element in each Cj is counted as
if it has a weight of bj+1 whereas its actual weight may be merely bj. Thus, if b is a constant, then
Theorem 3 follows (with C = b). So we should deal with the case of b = 1 + o(1), or, equivalently,
establish a bound that is independent of b. Hence, we may assume that b ∈ (1, 2].

The key observation is that the prover can easily reduce the gap when neighboring clusters have
similar weight. That is, suppose that |Cj | · b

j = |Cj+1| · b
j+1 (and that all messages in Ck have

weight exactly bk). Further suppose that the prover claims that Nj+t = |Cj | and Nj+t+1 = |Cj+1|,
which supports a gap of bt. Now, the verifier will select the index j + t with probability half, but
the prover can try to let it sample from a set that contains as many elements of Cj+1 as possible
(and use elements of Cj only to fill-up the rest). Indeed, the prover should provided Nt+j = |Cj |
elements, whereas |Cj+1| = |Cj |/b. Still, when the prover does so, the verifier selects an element
of |Cj+1| with probability (approximately) 1/b, and when this happens the parties continue to the

next iteration with a gap of bt+j

bj+1 = bt−1 rather than bt. These considerations establish the fact that
with probability at least 1/2b, the prover can decrease the gap by a factor of b. In light of the first
paragraph, this seems quite useless, but the point is that the argument can be extended to clusters
that are a distance k apart. Specifically:

Claim 11 (unavoidable gap decrease) For any k ≥ 1, with probability 1/2bk, the prover can
decrease the gap by a factor of bk.

Proof: We iterate the foregoing argument, but use |Cj | · bj = |Cj+k| · bj+k. Suppose that the
prover claims that Nj+t = |Cj | and Nj+t+k = |Cj+k|, which supports a gap of bt. Now, the verifier
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will select the index j + t with probability half, and the prover can try to let it sample from a set
that contains as many elements of Cj+k as possible. When the prover does so, the verifier selects
an element of |Cj+k| with probability (approximately) 1/bk, and when this happens the parties

continue to the next iteration with a gap of bt+j

bj+k = bt−k.

Recalling that b ∈ (1, 2], we just choose k such that bk ∈ [2, 4], and apply Claim 11. It follows
that, in each iteration, with probability 1/8, the prover can decrease the gap by a factor of 2.
Theorem 3 follows with C = 21/9, since (for sufficiently large r) with high probability the prover
will be successful in at least r/9 of the iterations.
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