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Abstract

We make progress on some questions related to polynomial approximations of AC0. It
is known, by works of Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spiel-
man (Proc. 6th CCC 1991), that any AC0 circuit of size s and depth d has an ε-error proba-
bilistic polynomial over the reals of degree (log(s/ε))O(d). We improve this upper bound to
(log s)O(d) · log(1/ε), which is much better for small values of ε.

We give an application of this result by using it to resolve a question posed by Tal (ECCC
2014): we show that (log s)O(d) · log(1/ε)-wise independence fools AC0, improving on Tal’s
strengthening of Braverman’s theorem (J. ACM 2010) that (log(s/ε))O(d)-wise independence
fools AC0. Up to the constant implicit in the O(d), our result is tight. As far as we know, this is
the first PRG construction for AC0 that achieves optimal dependence on the error ε.

We also prove lower bounds on the best polynomial approximations to AC0. We show
that any polynomial approximating the OR function on n bits to a small constant error must
have degree at least Ω̃(

√
log n). This result improves exponentially on a recent lower bound

demonstrated by Meka, Nguyen, and Vu (arXiv 2015).

1 Motivation and Results

We use AC0(s, d) to denote AC0 circuits of size s and depth d.

Polynomial approximations to AC0. In his breakthrough work on proving lower bounds for the
class AC0[⊕], Razborov [14] studied how well small circuits can be approximated by low-degree
polynomials. We recall (an equivalent version of) his notion of polynomial approximation over
the reals.

An ε-error probabilistic polynomial (over the reals) for a circuit C(x1, . . . , xn) is a random polyno-
mial P(x1, . . . , xn) ∈ R[x1, . . . , xn] such that for any a ∈ {0, 1}n, we have PrP[C(a) 6= P(a)] ≤ ε.
Further, we say that P has degree D and ‖P‖∞ ≤ L if P is supported on polynomials P of degree
at most D and L∞ norm at most L (i.e. polynomials P such that maxa∈{0,1}n |P(a)| ≤ L). If there is
such a P for C, we say that C has ε-error probabilistic degree at most D.

It is well-known [19, 18, 2] that any circuit C ∈ AC0(s, d) has an ε-error probabilistic polyno-
mial P of degree (log(s/ε))O(d) and satisfying ‖P‖∞ < exp((log s/ε)O(d)). This can be used to
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prove, for example [16], (a slightly weaker version of) Håstad’s theorem [4] that says that Parity
does not have subexponential-sized AC0 circuits. It also plays an important role in Braverman’s
theorem [3] that shows that circuits from AC0 can be fooled by polylog-wise independence.

Upper bounds for probabilistic polynomials. We show a general result regarding error reduc-
tion of probabilistic polynomials over the reals.

Theorem 1. Suppose f : {0, 1}n → {0, 1} has a ( 1
2 − δ)-error probabilistic polynomial P of degree D and

L∞ norm at most L ≥ 2. Then, for any ε > 0, f has an ε-error probabilistic polynomial of degree at most
O( D

δ2 log(1/ε)) and L∞ norm at most LO( 1
δ2 log 1

ε ).

Applying the above result to (1/10)-error probabilistic polynomials for AC0 gives us small-
error probabilistic polynomials for AC0 with better parameters.

Theorem 2. Let C be any AC0 circuit of size s and depth d. Let ε > 0 be any parameter. The circuit C has
an ε-error probabilistic polynomial P of degree (log s)O(d) · log(1/ε) such that ‖P‖∞ ≤ exp((log s)O(d) log(1/ε)).

Similar results on probabilistic polynomials were obtained over F2 (for the larger class of
AC0[⊕] circuits) by Kopparty and Srinivasan [7] and extended to all fixed non-zero characteristics
by Oliveira and Santhanam [13]. They have also found applications in the works of Williams [21]
— for the purposes of obtaining better algorithms for satisfiability problems — and Oliveira and
Santhanam [13], for proving lower bounds on compression by bounded-depth circuits. However,
as far as we know, no corresponding results were observed over the reals until now.

The above theorem was motivated by an application to constructing Pseudorandom Genera-
tors (PRGs) for AC0. As mentioned above, it was shown by Braverman [3] that AC0 is fooled by
polylog-wise independence.The proof of Braverman’s theorem proceeds by constructing certain
approximating polynomials from AC0, which in turn depends on two previous polynomial ap-
proximation results for this circuit class. The first of these is the L2-approximation result of Linial,
Mansour and Nisan [8] which is based on the classical Håstad Switching Lemma [4], and the sec-
ond is the above mentioned result of Tarui [18] and Beigel et al. [2]. Using these constructions,
Braverman showed that AC0(s, d) is ε-fooled by (log(s/ε))O(d2)-wise independence.

An example of Mansour appearing in the work of Luby and Veličković [9] demonstrated that
(log s)d−1 log(1/ε)-wise independence is required to ε-fool AC0(s, d). This leads naturally to the
question of showing tight bounds for the amount of independence required to fool AC0(s, d).

Using an improved switching lemma due to Håstad [5] (see also the work of Impagliazzo,
Matthews, and Paturi [6]), Tal [17] gave an improved version of the L2-approximation result of
Linial et al. [8], and used this to improve the parameters of Braverman’s theorem. Specifically, he
showed that (log(s/ε))O(d)-wise independence fools AC0.

Tal asked if the dependence on ε in this result could be made to match the limit given by Man-
sour’s example. Formally, he asked if (log s)O(d) · log(1/ε)-wise independence fools AC0(s, d). In
this work, we are able to answer this question in the affirmative (Corollary 13 below). Up to the
constant implicit in the O(d), our result is optimal for all ε > 0.

Comparison to other PRGs for AC0. Using standard constructions of k-wise independent prob-
ability distributions, the above result gives explicit PRGs with seedlength (log s)O(d) · log(1/ε) for
fooling circuits from AC0(s, d). It is easy to see that this seedlength cannot be improved beyond
Ω(log(1/ε)) and hence that our result is optimal in terms of the error parameter ε.
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It is also instructive to see how well this compares to general (i.e. not based on limited inde-
pendence) PRG constructions for AC0. Using the standard Hardness to Randomness paradigm
of Nisan and Wigderson [11] and the best known average case lower bounds for AC0 [6, 5], it is
easy to obtain PRGs of seedlength (log s)O(d) · (log(1/ε))2 for AC0(s, d). Furthermore, the Nisan-
Wigderson paradigm cannot yield PRGs of seedlength less than (log(1/ε))2 given our current
state of knowledge regarding circuit lower bounds (see Appendix A for details). Another recent
PRG construction for AC0(s, d) due to Trevisan and Xue [20] has seedlength (log(s/ε))d+O(1).

The reader will note that both constructions are suboptimal in terms of the dependence on ε
(though both are better than ours in terms of dependence on s and d). Interestingly, as far as we
know, our construction is the first that achieves an optimal dependence on ε.

Lower bounds for probabilistic polynomials. We can also ask if our result can be strengthened
to yield a seedlength of (log s)d+O(1) · log(1/ε), which would generalize both our current construc-
tion and that of Trevisan and Xue [20], and almost match Mansour’s lower bound as well. Such
a strengthening could conceivably be obtained by improving the polynomial approximation re-
sults for AC0 [18, 2]. Razborov [14] observed that to obtain good approximations for AC0(s, d), it
suffices to approximate the OR function on s bits efficiently. Therefore, we study the probabilistic
degree of the OR function.

Beigel, Reingold and Spielman [2] and Tarui [18] showed that the OR function on n bits can be
ε-approximated by a polynomial of degree O((log n) · log(1/ε)). While it is easy to show that the
dependence on ε in this result is tight (in fact for any field), for a long time, it was not known if any
dependence on n is necessary over the reals1. Recently, Meka, Nguyen and Vu [10] showed that
any constant error probabilistic polynomial for the OR function over the reals must have degree
Ω̃(log log n) and hence the dependence on the parameter n is unavoidable. We further improve
the bound of Meka et al. exponentially to Ω̃(

√
log n), which is only a quadratic factor away from

the upper bound.

2 Improved probabilistic polynomials and PRGs for AC0

2.1 The construction of probabilistic polynomials

Notation. Let P ∈ R[x1, . . . , x`]. Given a set S ⊆ [`] and a partial assignment σ : S → {0, 1}, we
define P|σ to be the polynomial obtained by setting all the bits in S according to σ. In the case that
σ sets all the variables in S to a constant b ∈ {0, 1}, we use P|S 7→b instead of P|σ. For a function
f : {0, 1}` → {0, 1}, we define f |σ and f |S 7→b similarly.

We define the weight of P, denoted w(P), to be the sum of the absolute values of all the coeffi-
cients of P.

Definition 3. Let P ∈ R[x1, . . . , x`] and say r is a parameter from [`]. We say that P is an `-pseudo-
majority if for r being the least integer greater than `/2 and any S ∈ ([`]r ) and b ∈ {0, 1}, the polynomial
P|S 7→b is the constant polynomial b.

We show below that the multilinear polynomial representing the Majority function is an `-
pseudo-majority of weight 2O(`).

1In fact, for finite fields of constant size, Razborov [14] showed that the ε-error probabilistic degree of OR is
O(log(1/ε)), independent of the number of input bits.
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Before we prove that this construction works, we need a few standard facts about polynomials.

Fact 4. Any Boolean function f : {0, 1}` → {0, 1} can be represented uniquely by a multilinear polynomial
P[x1, . . . , x`] in the sense that for all a ∈ {0, 1}n, we have P(a) = f (a). Furthermore, w(P) = 2O(`).

The uniqueness in the fact above yields the following observation.

Lemma 5. Let f : {0, 1}` → {0, 1} and P be the corresponding unique multilinear polynomial guaranteed
by Fact 4. If σ : S→ {0, 1} is a partial assignment such that f |σ is the constant function b ∈ {0, 1}, then
P|σ is formally the constant polynomial b.

Proof. Follows from the fact that P|σ is a multilinear polynomial representing the constant function
b on the variables not in S and the uniqueness part of Fact 4.

Remark 6. Note that the hypothesis of the lemma above is that f |σ(a) = b for all Boolean assign-
ments a to the remaining variables. However, the conclusion yields a stronger conclusion for the
polynomial P: namely, we show that P|σ takes value b on any assignment a ∈ R`−|S| to the re-
maining variables, and not just Boolean assignments. It is this fact that we will use in applications
below.

For ` ∈ N, define the Boolean function M` to be the Majority function: i.e., M`(x) = 1 iff the
Hamming weight of x is strictly greater than `/2. Note that for any S ⊆ {x1, . . . , x`} of size greater
than `/2 and any b ∈ {0, 1}, M`|S 7→b is the constant function b.

Let P` be the multilinear polynomial representing M` guaranteed by Fact 4. Applying Lemma 5
to the pair M` and P`, we obtain the following corollary.

Corollary 7. For any ` ∈N, there exist `-pseudo-majorities of degree ` and weight 2O(`).

We now prove Theorem 1. We will follow the proof of [7, Lemma 10], but some additional
justification will be required since we are working over the reals and not over F2 as in [7].

Proof of Theorem 1. We set ` = A
δ2 log( 1

ε ) for a constant A > 0 to be fixed later. Let P1, . . . , P` be
` mutually independent copies of the probabilistic polynomial P. Let r = b `2c. Fix an `-pseudo-
majority Q as guaranteed by Corollary 7. The final probabilistic polynomial is R = Q(P1, . . . , P`).

The degree of R is at most deg(Q) · deg(P) ≤ O( D
δ2 log( 1

ε )). Moreover, it can be seen that the
‖R‖∞ ≤ w(Q) · Ldeg(Q) ≤ (2L)O(`) ≤ LO(`) since L ≥ 2.

Finally, we see that for any a ∈ {0, 1}n, R(a) = f (a) unless at least for r many i ∈ [`], we have
Pi(a) 6= f (a). By a Chernoff bound, the probability of this is at most ε as long as A is chosen to be
a suitably large constant. Hence, R is indeed an ε-error probabilistic polynomial for f .

Theorem 2 immediately follows from the above and standard probabilistic polynomials for
AC0 from [19, 18, 2]. However, for our applications to PRGs for AC0, we need a slightly stronger
statement, which we prove below.

Definition 8 (Probabilistic polynomial with witness). An ε-error probabilistic polynomial for circuit
C(x1, . . . , xn) with witness (ε-error PPW for short) is a pair (P,E) of random variables such that P is a
randomized polynomial and E is a randomized circuit (both on n Boolean variables) such that for any input
a ∈ {0, 1}n, we have

• PrE [E(a) = 1] ≤ ε,
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• For any fixing (P, E) of (P,E), we have E(a) = 0⇒ P(a) = C(a).

In particular, this implies that P is an ε-error probabilistic polynomial for C.
We say that E belongs to a circuit class C if it is supported on circuits from class C.

The above notion was introduced in Braverman [3] who proved the following lemma, building
on earlier works of [19, 18, 2].

Lemma 9 ([3, Lemma 8, Proposition 9]). Fix parameters s, d ∈N and ε > 0. Any AC0 circuit C of size
s and depth d has an ε-error PPW (P,E) where

• deg(P) ≤ (log(s/ε))O(d) and ‖P‖∞ ≤ exp((log(s/ε))O(d)),

• E ∈ AC0(poly(s log(1/ε)), d + 3).

We show the following variant of the above lemma, which is an improvement in terms of
degree and the L∞ norm of the probabilistic polynomial for small ε.

Lemma 10. Fix parameters s, d ∈ N and ε > 0. Any AC0 circuit C of size s and depth d has an ε-error
PPW (P,E) where

• deg(P) ≤ (log s)O(d) · log(1/ε) and ‖P‖∞ ≤ exp((log s)O(d) log(1/ε)),

• E ∈ AC0(poly(s log(1/ε)), d + O(1)).

Before we begin the proof, we state one more lemma from the literature. Given an integer
parameter ` and real parameters α, β ∈ [0, 1] with α < β, we will call a function f : {0, 1}` → {0, 1}
an (`, α, β)-approximate majority if f (x) = 0 for any input of Hamming weight at most α` and
f (x) = 1 for any input of Hamming weight at least β`. The following is a result of Ajtai and
Ben-Or [1].

Lemma 11 (Ajtai and Ben-Or [1]). Fix any constants α < β. Then, for all ` ∈ N, there is an (`, α, β)-
approximate majority which has an AC0 circuit of size poly(`) and depth 3.

We now prove Lemma 10. The proof is similar to that of Theorem 1 above, but we also need to
obtain a witness circuit for our probabilistic polynomial.

Proof of Lemma 10. Let ` = A log(1/ε) for a large constant A to be chosen later. W.l.o.g. assume
that ` is even. Let r = d`/2e + 1 and let Q(x1, . . . , x`) be the `-pseudo-majority guaranteed by
Corollary 7. Let k = `/4. By Lemma 11, there is an AC0 circuit C1 of size poly(`) and depth 3 that
computes an (`, 1/4, 2/5)-approximate majority.

Let (P1,E1), . . . , (P`,E `) be independent copies of the (1/8)-error PPW guaranteed by Lemma 9.
The final PPW is (P,E) where P = Q(P1, . . . , P`) and E = C1(E1, . . . ,E `). We show that this PPW
has the required properties.

First of all, we know that on any input a to the circuit C and for any i ∈ [`], the probability that
E i(a) = 1 is at most 1/8. Thus, the expected number of E i that output 1 is at most `/8. However,
for E(a) to be 1, at least `/4 many E i(a) should be 1. By a Chernoff bound, the probability of this
event is at most exp(−Ω(`)) < ε for a large enough constant A.

Now, we need to argue that if E(a) = 0, then P(a) = Q(P1(a), . . . , P`(a)) = C(a). Say C(a) =
b ∈ {0, 1}. If E(a) = 0, then we know that the number of E i(a) that are 0 is at least 3`/5; let I
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denote the set of these i. By the definition of PPWs, we know that for each i ∈ I, we have Pi(a) = b
and hence at least 3`/5 > r many inputs of Q are set to b. Since Q is an `-pseudo-majority, we
must have Q(P1(a), . . . , P`(a)) = b. This concludes the proof that (P,E) is indeed an ε-error PPW
for C.

Note that deg(P) ≤ deg(Q) ·maxi deg(Pi) ≤ (log s)O(d) log(1/ε). Also, it can be seen that

‖P‖∞ ≤ w(Q) · (max
i∈[`]
‖Pi‖∞)

deg(Q) ≤ exp((log s)O(d) log(1/ε)).

Thus, P has the required properties. The size and depth properties of E follow trivially from its
definition. This concludes the proof of the lemma.

2.2 Application to PRGs for AC0

The connection between probabilistic polynomials and PRGs for AC0 is encapsulated in the fol-
lowing theorem (which is an easy observation from the works of Braverman and Tal):

Theorem 12 (Braverman [3],Tal [17]). Let s, d ∈ N and ε > 0. Suppose that any AC0 circuit of size s
and depth d has an (ε/2)-error PPW (P,E) such that

• deg(P) = D, ‖P‖∞ ≤ L,

• E ∈ AC0(s1, d1),

Then, AC0 circuits of size s and depth d can be ε-fooled by k(s, d, ε)-wise independence, where

k(s, d, ε) = O(D) + (log s1)
O(d1) · (log(1/ε) + log L)

Note that the theorem above is trivial when log(1/ε) > s since any AC0 circuit of size s is
trivially fooled by an s-wise independent distribution. Hence, the theorem is non-trivial only
when log(1/ε) ≤ s. In this case, using Lemma 10 and the theorem above, we immediately get

Corollary 13. Fix parameters s, d ∈ N and ε > 0. Any circuit C ∈ AC0(s, d) can be ε-fooled by any
distribution that is (log s)O(d) log(1/ε)-wise independent.

Remark 14. A close look at the above proof (including the details of Lemma 9 and Theorem 12)
shows that the amount of independence required to ε-fool AC0(s, d) is (log s)3d+O(1) · log(1/ε).
Avishay Tal (personal communication) showed that the above can be further improved to (log s)2.5d+O(1) ·
log(1/ε)-wise independence. It is open if this can be further strengthened to, say, (log s)d+O(1) ·
log(1/ε) or even (log s)d−1 · log(1/ε), matching the lower bound due to Mansour [9].

3 The probabilistic degree of OR

Notation. For i ≥ 1 and a set of Boolean variables X, let µX
i be the product distribution on {0, 1}X

defined so that for each x ∈ X, the probability that x = 1 is 2−i. We also use UX to denote µX
1 , the

uniform distribution over {0, 1}X. The OR function on the variables in X is denoted ORX.
We want to show:

Theorem 15. Assume |X0| = n. The 1/8-error probabilistic degree of ORX0 is at least
√

log n
(log log n)2 .
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Remark 16. Though the theorem is stated for error 1/8, it is not hard to see that it holds (with
constant factor losses) as long as the error is bounded by 1/2−Ω(1). One way to see this is to
appeal to Theorem 2. Another way is to do a simple error reduction specific to the OR function
which we do in the proof of Theorem 15.

In order to prove Theorem 15, we use an anti-concentration lemma due to Meka, Nguyen
and Vu [10]2 coupled with a random restriction argument inspired by the work of Razborov and
Viola [15].

Lemma 17 (Meka, Nguyen, and Vu [10]). There exists an absolute constant B > 0 so that the following
holds. Let p(x) ∈ R[X] be a degree d multilinear polynomial with at least r disjoint degree d terms. Then
Prx∼UX [p(x) = 0] ≤ Bd4/3r−

1
4d+1

√
log r.

Given a polynomial q ∈ R[X], we denote by ErrX
i (q) the error of polynomial q w.r.t. distribu-

tion µX
i . Formally,

ErrX
i (q) = Pr

x∼µX
i

[q(x) 6= ORX(x)]

For a set of variables X, ` ∈N and δ ∈ R≥0, call a polynomial q ∈ R[X] (X, `, δ)-good if

E
i∈[`]

[ErrX
i (q)] ≤ δ.

A random restriction on the variable set X with ∗-probability p ∈ [0, 1] will be a function
ρ : X → {∗, 0} with each variable set independently to ∗ with probability p and to 0 otherwise.
We use Xρ to denote ρ−1(∗). The restriction of a polynomial q under ρ is denoted q|ρ.

Observation 18. Let q ∈ R[X] and ρ be a random restriction on the variable set X with ∗-
probability p = 1

2b where b ∈N. For any i ≥ 1,

E
ρ
[ErrXρ

i (q|ρ)] = ErrX
i+b(q)

(I.e., setting bits independently to 1 with probability 1
2i+b is the same as first applying a random

restriction with ∗-probability 1
2b and then setting each surviving variable to 1 with probability 1

2i .)

3.1 Proof of Theorem 15

We argue by contradiction. Let P be a 1/8-error probabilistic polynomial for ORX0 of degree
D <

√
log n/(log log n)2. In particular, we have

Pr
P
[P(0, 0, . . . , 0) 6= 0] ≤ 1

8

We discard all such polynomials from the distribution underlying P (e.g. if such a bad poly-
nomial is sampled, then we could just output 0). The resulting probabilistic polynomial P′ is sup-
ported only on polynomials p ∈ R[X0] such that p(0, 0, . . . , 0) = 0 and further, P′ is a (1/4)-error
probabilistic polynomial for ORX0 of degree D.

2The result of Meka et al. is actually stated for polynomials over the Fourier basis of Parity functions (see, e.g., the
book of O’Donnell [12]). However, it is an easy observation that a polynomial of degree d has r disjoint terms of degree
d in the standard monomial basis if and only if it has r disjoint terms of degree d in the Fourier basis. Hence, the result
holds in the standard basis as well.
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Let P′1, . . . , P′s be s = log log n independent instances of P′ and let Q = 1−∏i∈[s](1−P′i). Then,
Q is an error 1

4s =
1

log2 n
probabilistic polynomial for ORn of degree at most sD <

√
log n/ log log n.

In particular, there is a polynomial q0 ∈ R[x1, . . . , xn] of degree d0 <
√

log n/ log log n such that
q0(0, 0, . . . , 0) = 0 and for ε0 = 1

log2 n
we have

E
i∈[(log n)/2]

[ErrX0
i (q0)] ≤ ε0

Define n0 = |X0| = n and `0 = (log n)/2. By the above inequality, the polynomial q0 is (X0, `0, ε0)-
good. Also define parameters r = (d0 · log2 n)10d0 and p = 1

2b where b ∈ N is chosen so that
p ∈ [ 1

2r2 , 1
r2 ]. Note that r = no(1) and hence p = 1

no(1) .
We now define a sequence of polynomials q1, q2, . . . , qt such that:

• Each qi ∈ R[Xi] where Xi ⊆ X0 and has degree di ≥ 0. Also, |Xi| = ni where ni ∈
[pni−1/2, 3pni−1/2]. Further deg(qi) = di < di−1. The polynomial qi = qi−1|ρi for some
restriction ρi : Xi−1 → {∗, 0}.

• Each polynomial qi is (Xi, `i, ε i)-good where `i = `i−1 − b and ε i = ε i−1 · exp( 16b
log n ).

• dt = deg(qt) = 0. That is, qt is a constant polynomial.

Before we describe how to construct this sequence, let us see how it implies the desired con-
tradiction. Note that since di < di−1 for each i ≥ 1, the length t of the sequence is bounded by
d0 <

√
log n/ log log n.

We first make the following simple claim.

Claim 19. For each i ∈ [t], ni ≥
√

n, `i ≥ log n
4 , and ε i <

1
log n .

Proof.
ni ≥ nt ≥ n0 · (p/2)t = n · (d0 log n)−O(d2

0) ≥
√

n.

Also, note that `i = `0 − bi ≥ `0 − bt = (log n)/2−O(d2
0 log log n) ≥ log n

4 and

ε i = ε0 · exp(
16bi
log n

) ≤ ε0 · exp(
16bt
log n

) =
1

log2 n
· exp(

O(d2
0 log log n)
log n

) <
1

log n
.

In particular, since qt is (Xt, `t, εt)-good, we must have

ErrXt
1 (qt) ≤ `t E

i∈[`t]
[ErrXt

i (qt)] < εt`t <
1
2

(1)

using the fact that `t ≤ `0 = (log n)/2 and εt <
1

log n .

Since nt ≥
√

n, the function ORXt(x) evaluates to 1 under the distribution µXt
1 = UXt with

probability 1− o(1). Thus, qt must also evaluate to 1 on some input. However, since qt is a constant
polynomial, this implies that qt = 1. But this implies that qt(0, 0, . . . , 0) = 1 as well, which leads
to a contradiction, since qt is obtained by setting some input bits of q0 to 0 and q0(0, 0, . . . , 0) = 0
by our choice of q0. This completes the proof of the theorem.
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Now we describe how to obtain the sequence q1, . . . , qt. More precisely, we describe how to
obtain qi from qi−1 assuming di−1 ≥ 1. Fix any i ≥ 1 such that di−1 ≥ 1. We assume that the
sequence q1, . . . , qi−1 of polynomials constructed so far satisfy the above properties.

For brevity, let q, X, m, d, `, ε denote qi−1, Xi−1, ni−1, di−1, `i−1, ε i−1 respectively.
We know that q is (X, `, ε)-good. As we did in (1) for qt, we can use this to show that ErrX

1 (q) <
1
2 and since ORX(x) takes the value 1 on an input x ∼ UX with probability 1− o(1), we see that

Pr
x∼UX

[q(x) = 1] ≥ 1
2
− o(1) ≥ 1

3
. (2)

Lemma 17 then implies that there cannot r disjoint monomials of degree d in q. To see this,
assume that there are indeed r many disjoint monomials of degree d in q. Then by Lemma 17, the
probability that q(x)− 1 = 0 for a random x ∼ UX is at most

Bd4/3r−
1

4d+1
√

log r ≤ Bd4/3
0 r−

1
5d0

√
log r

≤ Bd4/3
0 ·

√
10d0 log(d0 log2 n)

d2
0 log4 n

= o(1).

This contradicts (2).
Hence, we know that q cannot be contain more than r many disjoint monomials of degree

d. Let S be any maximal set of disjoint monomials appearing q. Note that by definition, every
monomial of degree d contains at least one variable from S and hence setting all the variables in S
reduces the degree of the polynomial. The number of variables appearing in S is at most d|S| ≤ dr.

We now choose a random restriction ρ with ∗-probability p as defined above and consider the
polynomial q|ρ. Define the following “bad” events:

• E1(ρ) is the event that |Xρ| 6∈ [pm/2, 3pm/2].

• E2(ρ) is the event that some variable in S is not set to 0.

• E3(ρ) is the event that q|ρ is not (Xρ, `′, ε′)-good where `′ = `− b and ε′ = ε · exp( Cb
log n ).

We claim that there is a ρ so that none of the bad events E1(ρ), E2(ρ) or E3(ρ) occur. This will
imply that we can take qi = q|ρ, Xi = Xρ, `i = `′, ε i = ε′ and we will be done. So we only need to
show that Prρ[E1(ρ) ∨ E2(ρ) ∨ E3(ρ)] < 1. This is done as follows.

• Prρ[E1(ρ)]: By Claim 19, we know that m ≥
√

n and hence Eρ[|Xρ|] = pm = m · 1
no(1) ≥

n1/4. Hence, by a Chernoff bound, the probability that |Xρ| 6∈ [pm/2, 3pm/2] is bounded by
exp(−Ω(n1/4)).

• Prρ[E2(ρ)]: By a union bound over S, this probability is bounded by p|S| ≤ rd0/r2 < 1
log n .

• Prρ[E3(ρ)]: By Observation 18, we know that for any i,

E
ρ
[ErrXρ

i (q|ρ)] = ErrX
i+b(q).

9



Hence,

E
ρ
[ E
i∈[`′]

[ErrXρ

i (q|ρ)]] = E
i∈[`′]

[ErrX
i+b(q)] = E

i∈{b+1,...,b+`′}
[ErrX

i (q)] = E
i∈{b+1,...,`}

[ErrX
i (q)]. (3)

We can bound the right hand side of the above equation by

E
i∈{b+1,...,`}

[ErrX
i (q)] ≤

1
(1− b

` )
E

i∈[`]
[ErrX

i (q)] ≤
ε

(1− b
` )

where the final inequality follows from the fact that q is (X, `, ε)-good. Further, by Claim 19,
we know that ` ≥ log n

4 � b, and hence we can bound the above as follows.

E
i∈{b+1,...,`}

[ErrX
i (q)] ≤

ε

(1− b
` )
≤ ε · (1 + 2b

`
) ≤ ε · (1 + 8b

log n
).

Plugging the above bound into (3), we obtain

E
ρ
[ E
i∈[`′]

[ErrXρ

i (q|ρ)]] ≤ ε · (1 + 8b
log n

) ≤ ε · exp(
8b

log n
).

By Markov’s inequality,

Pr
ρ
[ E
i∈[`′]

[ErrXρ

i (q|ρ)] > ε · exp(
16b

log n
)] ≤ exp(− 8b

log n
) = 1−Ω(

b
log n

) ≤ 1− 2
log n

.

Thus, Prρ[E3(ρ)] ≤ 1− 2
log n .

By a union bound, we have

Pr
ρ
[E1(ρ) ∨ E2(ρ) ∨ E3(ρ)] ≤ exp(−Ω(n1/4)) +

1
log n

+ 1− 2
log n

< 1.
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A The limitations of the Nisan Wigderson paradigm

In this section, we show that the general hardness-to-randomness tradeoff of Nisan and Wigder-
son [11] does not yield a PRG with optimal seedlength as a function of ε given our current knowledge
of circuit lower bounds.

We start by describing the meta-result of Nisan and Wigderson [11] that allows us to convert
any sufficiently hard-to-compute function for a class of circuits to a PRG for a slightly weaker
class of circuits. The result is true in greater generality than we describe here but to keep things
concrete, we stick to the setting of AC0(s, d).

We say that a function f : {0, 1}r → {0, 1} is (s, d, ε)-hard if given any circuit C from AC0(s, d)
of size s, we have

Pr
x∈{0,1}r

[C(x) = f (x)] ≤ 1
2
+ ε.

For non-negative integers m, r, `, s, we say that a familyF ⊆ ([m]
r ), we say thatF is an (m, r, `, s)

design if |F | = s and for any distinct S, T ∈ F , we have |S ∩ T| ≤ `.
Nisan and Wigderson [11] show the following.

Theorem 20 ([11]). Let m, r, `, s ∈ N be positive parameters such that m ≥ r ≥ `. Given an explicit
f : {0, 1}r → {0, 1} that is (s · 2`, d + 1, ε/s)-hard and an explicit (m, r, `, s)-design, we can construct an
explicit PRG G : {0, 1}m → {0, 1}s that fools circuits from AC0(s, d) with error at most ε.

To use this theorem, we need a hard function for circuits in AC0. The best such result known
currently is the following due to Impagliazzo, Matthews, and Paturi [6] (see also Håstad [5]).

Theorem 21. Let d ≥ 1 be a constant. The Parity function on r is bits is (s1, d1, δ)-hard if r ≥
A(log s1)

d1−1 · log(1/δ) for some constant A > 0 depending on d.

Thus, if we want to apply Theorem 20 alongside the lower bound given by Theorem 21 to
construct PRGs that ε-fool AC0(s, d), then we need

r ≥ A(log s + `)d · log(s/ε) ≥ A(log s + `)d · log(1/ε) (4)

for some constant A > 0 depending on d.
Further, to construct an (m, r, `, s)-design, we claim that we further need

m ≥ min{r2/2`, s}. (5)
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We justify (5) below, but first we use it to prove that the Nisan-Wigderson paradigm cannot be
used to obtain seedlength optimal in terms of ε for a large range of ε.

We assume that ε ≥ exp(−s1/4) (the same proof works as long as ε ≥ exp(−s
1
2−Ω(1))). In this

setting, we show that m ≥ B(log s)2d−1 · (log(1/ε))2 for some constant B depending on d.
To see this, note that if m ≥ s, then trivially we have (log s)2d−1 · (log 1/ε)2 ≤ s

1
2+o(1) < s ≤ m.

So we assume that m < s.
In this case, (5) tells us that m ≥ r2/2`, which yields

m ≥ r2

2`
≥ A2(log s + `)2d · (log 1/ε)2

2`

≥ A2(log s)2d−1`(log 1/ε)2

2`
= Ω(A2(log s)2d−1 · (log(1/ε))2)

as required.
The inequality (5) is a standard combinatorial fact and can be found in many standard text-

books. For completeness, here is a simple proof using inclusion-exclusion.
Note that if s ≤ r, then we immediately have m ≥ r ≥ s and (5) is proved. So assume that

s > r and in particular given any (m, r, `, s)-design F , we can choose t = r/` sets T1, . . . , Tt from
F . By inclusion-exclusion, we have

m ≥ |
⋃

i∈[t]
Ti| ≥∑

i
|Ti| −∑

i<j
|Ti ∩ Tj|

≥ rt− t2

2
· ` ≥ r2

2`

which concludes the proof of (5).
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