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Abstract

We exhibit an n-node graph whose independent set polytope requires extended
formulations of size exponential in Ω(n/ log n). Previously, no explicit examples
of n-dimensional 0/1-polytopes were known with extension complexity larger than
exponential in Θ(

√
n). Our construction is inspired by a relatively little-known

connection between extended formulations and (monotone) circuit depth.
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1 Introduction

A polytope P ⊆ Rn with many facets can sometimes admit a concise description as the projection of
a higher dimensional polytope E ⊆ Re with few facets. This phenomenon is studied in the theory of
“extended formulations”. The extension complexity xc(P ) of a polytope P is defined as the minimum
number of facets in any polytope E (called an extended formulation for P ) such that

P = {x ∈ Rn : (x, y) ∈ E for some y}.

Extended formulations are useful for solving combinatorial optimization problems: instead of
optimizing a linear function over P , we can optimize it over E—this may be more efficient since the
runtime of LP solvers often depends on the number of facets.

Fiorini et al. [FMP+15] were the first to show (using methods from communication complex-
ity [KN97, Juk12]) exponential extension complexity lower bounds for many explicit polytopes of
relevance to combinatorial optimization, thereby solving an old challenge set by Yannakakis [Yan91].
For example, their results include a 2Ω(m) lower bound for the

(
m
2

)
-dimensional correlation/cut

polytope. In another breakthrough, Rothvoß [Rot14] proved a much-conjectured 2Ω(m) lower bound
for the

(
m
2

)
-dimensional matching polytope. By now, many accessible introductions to extended

formulations are available; e.g., Roughgarden [Rou15, §5], Kaibel [Kai11], Conforti et al. [CCZ10]
or their textbook [CCZ14, §4.10].

√
n-frontier. Both of the results quoted above—while optimal for their respective polytopes—

seem to get “stuck” at being exponential in the square root of their dimension. (For those graph
problems, the dimension is the number of possible edges, but the lower bound is exponential in
the number of nodes.) In fact, no explicit n-dimensional 0/1-polytope (convex hull of a subset of
{0, 1}n) was known with extension complexity asymptotically larger than 2Θ(

√
n). The problem

of proving higher lower bounds was explicitly posed in, e.g., [Wel16, Problem 7]. In comparison,
Rothvoß [Rot12] showed via a counting argument that almost all n-dimensional 0/1-polytopes have
extension complexity 2Ω(n).

1.1 Our result

Our main result is to construct an explicit 0/1-polytope in Rn of near-maximal extension com-
plexity 2Ω(n/ logn). Moreover, the polytope can be taken to be the independent set polytope PG of
an n-node graph G, i.e., the convex hull of (the indicator vectors of) the independent sets of G.
Previously, a lower bound of 2Ω(

√
n) was known for independent set polytopes [FMP+15].

Theorem 1. There is an (explicit) family of n-node graphs G with xc(PG) ≥ 2Ω(n/ logn).

In fact, our graph family has bounded degree. Hence, using known reductions, we get as a
corollary quantitative improvements—from 2Ω(

√
n) to 2Ω(n/ logn)—for the extension complexity of,

for instance, 3SAT and knapsack polytopes; see [AT14, PV13] for details.
We strongly conjecture that our graph family actually satisfies xc(PG) ≥ 2Ω(n), i.e., that the

log n factor in the exponent is an artifact of our proof technique. We give concrete evidence for this
by proving an optimal bound for a certain query complexity analogue of Theorem 1. In particular,
the conjectured bound xc(PG) ≥ 2Ω(n) would follow from quantitative improvements to the known
communication-to-query simulation theorems ([GLM+16] in particular). Incidentally, this also
answers a question of Lovász, Naor, Newman, and Wigderson [LNNW95]: we obtain a maximal
Ω(n) lower bound on the randomized query complexity of a search problem with constant certificate
complexity.
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1.2 Our approach

Curiously enough, an analogous
√
n-frontier existed in the seemingly unrelated field of monotone

circuits: Raz and Wigderson [RW92] proved an Ω(m) lower bound for the depth of any monotone
circuit computing the matching function on

(
m
2

)
input bits. This remained the largest monotone

depth bound for an explicit function until the recent work of Göös and Pitassi [GP14], who exhibited
an n-bit function with monotone depth Ω(n/ log n). In short, our idea is to prove an extension
complexity analogue of this latter result.

The conceptual inspiration for our construction is a relatively little-known connection between
Karchmer–Wigderson games [KW88] (which characterize circuit depth) and extended formulations.
This “KW/EF connection” (see Section 2 for details) was pointed out by Hrubeš [Hru12] as a
nonnegative analogue of a classic rank-based method of Razborov [Raz90]. In this work, we focus
only on the monotone setting. For any monotone f : {0, 1}n → {0, 1} we can study the convex hull
of its 1-inputs, namely, the polytope

F := conv f−1(1).

The upshot of the KW/EF connection is that extension complexity lower bounds for F follow from
a certain type of strengthening of monotone depth lower bounds for f . For example, using this
connection, it turns out that Rothvoß’s result [Rot14] implies the result of Raz and Wigderson [RW92]
in a simple black-box fashion (Section 2.3).

Our main technical result is to strengthen the existing monotone depth lower bound from [GP14]
into a lower bound for the associated polytope (though we employ substantially different techniques
than were used in that paper). The key communication search problem studied in [GP14] is a
communication version of the well-known Tseitin problem (see Section 3 for definitions), which has
especially deep roots in proof complexity (e.g., [Juk12, §18.7]) and has also been studied in query
complexity [LNNW95]. We use information complexity techniques to prove the required Ω(n/ log n)
communication lower bound for the relevant variant of the Tseitin problem; information theoretic
tools have been used in extension complexity several times [BM13, BP16, BP15]. One relevant work
is Huynh and Nordström [HN12] (predecessor to [GP14]), whose information complexity arguments
we extend in this work.

Instead of using information complexity, an alternative seemingly promising approach would be
to “lift” a strong enough query complexity lower bound for Tseitin into communication complexity.
Unfortunately, this approach runs into problems due to limitations in existing communication-to-
query simulation theorems; we discuss this in Section 7.

Theorem 1 follows by reductions from the result for the Tseitin problem (Section 4). Indeed,
it was known that the Tseitin problem reduces to the monotone KW game associated with an
f : {0, 1}O(n) → {0, 1} that encodes (in a monotone fashion) a certain CSP satisfiability problem.
This gives us an extension complexity lower bound for the (explicit) polytope F := conv f−1(1). As
a final step, we give a reduction from F to an independent set polytope.

1.3 Background

Let M be a nonnegative matrix. The nonnegative rank of M , denoted rk+(M), is the minimum r
such that M can be decomposed as a sum

∑
i∈[r]Ri where each Ri is a rank-1 nonnegative matrix.

Randomized protocols. Faenza et al. [FFGT14] observed that a nonnegative rank decomposition
can be naturally interpreted as a type of randomized protocol that computes the matrix M “in
expectation”. We phrase this connection precisely as follows: log rk+(M) + Θ(1) is the minimum
communication cost of a private-coin protocol Π whose acceptance probability on each input (x, y)
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satisfies P[Π(x, y) accepts] = α · Mx,y where α > 0 is an absolute constant of proportionality
(depending on Π but not on x, y). All communication protocols in this paper are private-coin.

Slack matrices. The extension complexity of a polytope P = {x ∈ Rn : Ax ≥ b} can be
characterized in terms of the nonnegative rank of the slack matrix M = M(P ) associated with P .
(We always assume P has positive dimension.) The entries of M are indexed by (v, i) where
v ∈ P is a vertex of P and i refers to the i-th facet-defining inequality Aix ≥ bi for P . We define
Mv,i := Aiv − bi ≥ 0 as the distance (slack) of the i-th inequality from being tight for vertex v.
Yannakakis [Yan91] showed that xc(P ) = rk+(M(P )).

A convenient fact for proving lower bounds on rk+(M) is that the nonnegative rank is unaffected
by the addition of columns to M that each record the slack between vertices of P and some valid
(but not necessarily facet-defining) inequality for P . For notation, let P ⊆ Q be a polyhedral pair
(P is a polytope; Q is a polytope or unbounded polyhedron). We define M(P ;Q) as the slack
matrix whose rows correspond to vertices of P and columns correspond to the facets of Q (hence
M(P ;P ) = M(P )). We have rk+(M(P )) ≥ rk+(M(P ) ∪M(P ;Q))− 1 ≥ rk+(M(P ;Q))− 1 where
“∪” denotes concatenation of columns.1 We summarize all the above in the following.

Fact 2. For all polyhedral pairs P ⊆ Q, we have xc(P ) = rk+(M(P )) ≥ rk+(M(P ;Q))− 1.

2 KW/EF Connection

We now describe the connection showing that EF lower bounds follow from a certain type of
strengthening of lower bounds for monotone KW games (and similarly, lower bounds for monotone
KW games follow from certain strong enough EF lower bounds). This is not directly used in the
proof of Theorem 1, but it serves as inspiration by suggesting the approach we use in the proof.

2.1 Definitions

Let f : {0, 1}n → {0, 1} be a monotone function. We define KW+(f) as the deterministic communi-
cation complexity of the following monotone KW game associated with f .

KW+-game

Input: Alice gets x ∈ f−1(1), and Bob gets y ∈ f−1(0).
Output: An index i ∈ [n] such that xi = 1 and yi = 0.

We often think of x and y as subsets of [n]. In this language, a feasible solution for the KW+-
game is an i ∈ x ∩ ȳ where ȳ := [n] r y. Given a monotone f , we denote by F := conv f−1(1) the
associated polytope. We can express the fact that any pair (x, y) ∈ f−1(1)× f−1(0) admits at least
one witness i ∈ x ∩ ȳ via the following system of linear inequalities

∀y ∈ f−1(0) :
∑
i : yi=0

xi ≥ 1. (1)

Since (1) is valid for all the vertices x ∈ F , it is valid for the whole polytope F . Define Fkw ⊇ F as
the polyhedron whose facets are determined by the inequalities (1), as indexed by 0-inputs y. The

1Specifically, Farkas’s Lemma implies that the slack of any valid inequality for P can be written as a nonnegative
linear combination of the slacks of the facet-defining inequalities for P , plus a nonnegative constant [Zie95, Proposition
1.9]. Thus if we take M(P ) ∪M(P ;Q) and subtract (possibly different) nonnegative constants from each of the
“new” columns M(P ;Q), we get a matrix each of whose columns is a nonnegative linear combination of the “original”
columns M(P ) and hence has the same nonnegative rank as M(P ). Since we subtracted a nonnegative rank-1 matrix,
we find that rk+(M(P ) ∪M(P ;Q)) ≤ rk+(M(P )) + 1.

3



(x, y)-th entry in the slack matrix M(F ;Fkw) is then
∑

i : yi=0 xi − 1. In words, this quantity counts

the number of witnesses in the KW+-game on input (x, y) minus one.
More generally, let S ⊆ X × Y ×Q be any communication search problem (not necessarily a

KW+-game, even though any S can be reformulated as such [Gál01, Lemma 2.3]). That is, Q is some
set of solutions/witnesses, and on input x ∈ X to Alice and y ∈ Y to Bob, the task is to find a solution
q ∈ S(x, y) := {q ∈ Q : (x, y, q) ∈ S} (we assume S(x, y) 6= ∅ for all (x, y)). We associate with S the
following natural “number of witnesses minus one” communication game.

(#∃−1)-game

Input: Alice gets x ∈ X , and Bob gets y ∈ Y.
Output: Accept with probability proportional to |S(x, y)| − 1.

The communication complexity of this game is simply log rk+(MS)+Θ(1) where MS
x,y := |S(x, y)|−1.

2.2 The connection

What Hrubeš [Hru12, Proposition 4] observed was that an efficient protocol for a search problem S
implies an efficient protocol for the associated (#∃−1)-game. In particular, for KW+-games,

log rk+(M(F ;Fkw)) ≤ O(KW+(f)). (KW/EF)

The private-coin protocol for M(F ;Fkw) computes as follows. On input (x, y) ∈ f−1(1)× f−1(0)
we first run the optimal deterministic protocol for the KW+-game for f to find a particular i ∈ [n]
witnessing xi = 1 and yi = 0. Then, Alice uses her private coins to sample a j ∈ [n] r {i} uniformly
at random, and sends this j to Bob. Finally, the two players check whether xj = 1 and yj = 0
accepting iff this is the case. The acceptance probability of this protocol is proportional to the
number of witnesses minus one, and the protocol has cost KW+(f) + log n+O(1) ≤ O(KW+(f))
(where we assume w.l.o.g. that f depends on all of its input bits so that KW+(f) ≥ log n).

2.3 Example: Matchings

Rothvoß vs. Raz–Wigderson. Consider the monotone function f : {0, 1}(
m
2 ) → {0, 1} that outputs 1

iff the input, interpreted as a graph on m nodes (m even), contains a perfect matching. Then
F := conv f−1(1) is the convex hull of all graphs that contain a perfect matching; in particular,
the perfect matching polytope is a face of F . The inequalities (1) for f happen to include
the so-called “odd set” inequalities, which were exploited by Rothvoß [Rot14] in showing that
log rk+(M(F ;Fkw)) ≥ Ω(m). Applying the (KW/EF) connection to Rothvoß’s lower bound implies
in a black-box fashion that KW+(f) ≥ Ω(m), which is the result of Raz and Wigderson [RW92].

Converse to (KW/EF)? It is interesting to compare the above with the case of bipartite perfect
matchings. Consider a monotone f : {0, 1}m×m → {0, 1} that takes a bipartite graph as input
and outputs 1 iff the graph contains a perfect matching. It is well-known that F := conv f−1(1)
admits a polynomial-size extended formulation [Sch03, Theorem 18.1]. By contrast, the lower bound
KW+(f) ≥ Ω(m) from [RW92] continues to hold even in the bipartite case. This example shows
that the converse inequality to (KW/EF) does not hold in general. Hence, a lower bound for the
(#∃−1)-game can be a strictly stronger result than a similar lower bound for the KW+-game.
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2.4 Minterms and maxterms

A minterm x ∈ f−1(1) is a minimal 1-input in the sense that flipping any 1-entry of x into a 0
will result in a 0-input. Analogously, a maxterm y ∈ f−1(0) is a maximal 0-input. It is a basic
fact that solving the KW+-game for minterms/maxterms is enough to solve the search problem on
any input: Say that Alice’s input x is not a minterm. Then Alice can replace x with any minterm
x′ ⊆ x and run the protocol on x′. A witness i ∈ [n] for (x′, y) works also for (x, y). A similar fact
holds for the (#∃−1)-game: we claim that the nonnegative rank does not change by much when
restricted to minterms/maxterms. Say that Alice’s input x is not a minterm. Then Alice can write
x = x′ ∪ x′′ (disjoint union) where x′ is a minterm. Then |x∩ ȳ| − 1 = (|x′ ∩ ȳ| − 1) + |x′′ ∩ ȳ| where
the first term is the (#∃−1)-game for (x′, y) and the second term has nonnegative rank at most n
(consider the protocol that samples a uniformly random i ∈ [n] and accepts iff i ∈ x′′ ∩ ȳ). A similar
argument works if Bob does not have a maxterm.

3 Tseitin Problem

3.1 Query version

Fix a connected node-labeled graph G = (V,E, `) where the node-labeling ` ∈ ZV2 has odd
weight, i.e.,

∑
v∈V `(v) = 1 where the addition is modulo 2. For any edge-labeling z ∈ ZE2

and a node v ∈ V we write concisely z(v) :=
∑

e3v z(e) for the mod-2 sum of the edge-labels adjacent
to v.

Tseitin problem: TseG

Input: Labeling z ∈ ZE2 of the edges.
Output: A node v ∈ V containing a parity violation z(v) 6= `(v).

As a sanity check, we note that on each input z there must exist at least one node with a parity
violation. This follows from the fact that, since each edge has two endpoints, the sum

∑
v z(v) is

even, whereas we assumed that the sum
∑

v `(v) is odd.

Basic properties. The above argument implies more generally that the set of violations viol(z) :=
{v ∈ V : z(v) 6= `(v)} is always of odd size. Conversely, for any odd-size set S ⊆ V we can design
an input z such that viol(z) = S. To see this, it is useful to understand what happens when we flip
a path in an input z. Formally, suppose p ∈ ZE2 is (an indicator vector of) a path. Define zp as z
with bits on the path p flipped (note that zp = z + p ∈ ZE2 ; however, the notation zp will be more
convenient later). Flipping p has the effect of flipping whether each endpoint of p is a violation.
More precisely, the violated nodes in zp are related to those in z as follows: (i) if both endpoints of
p are violated in z then the flip causes that pair of violations to disappear; (ii) if neither endpoint
of p is violated in z, then the flip introduces a pair of new violations; (iii) if precisely one endpoint
of p was violated in z, then the flip moves a violation from one endpoint of p to the other. By
applying (i)–(iii) repeatedly in a connected graph G, we can design an input z where viol(z) equals
any prescribed odd-size set S.

If z and z′ have the same set of violations, viol(z) = viol(z′), then their difference q := z−z′ ∈ ZE2
satisfies q(v) = 0 for all v ∈ V . That is, q is an eulerian subgraph of G (for us, q need not be
connected). On the other hand, for any eulerian graph q, the inputs z and zq have the same
violations. Consequently, to generate a random input with the same set of violations as some fixed
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z, we need only pick a random eulerian graph q and output zq. (Eulerian graphs form a subspace of
ZE2 , sometimes called the cycle space of G.)

3.2 Communication version

The communication version of the Tseitin problem is obtained by composing (or lifting) TseG
with a constant-size two-party gadget g : X × Y → {0, 1}. In the lifted problem TseG ◦ gn, where
n := |E|, Alice gets x ∈ X n as input, Bob gets y ∈ Yn as input, and their goal is to find a node
v ∈ V that is violated for

z := gn(x, y) = (g(x1, y1), . . . , g(xn, yn)).

We define our gadget precisely in Section 5. For now—in particular, for the reductions presented in
the next section—the only important property of our gadget is that |X |, |Y| ≤ O(1).

3.3 Statement of result

We prove that there is a family of bounded-degree graphs G such that the (#∃−1)-game associated
with TseG ◦ gn requires Ω(n/ log n) bits of communication. We prove our lower bound assuming
only that G = (V,E) is well-connected enough as captured by the following definition (also used
in [GP14]). A graph G is k-routable iff there is a set of 2k + 1 nodes T ⊆ V called terminals such
that for any pairing P := {{si, ti} : i ∈ [κ]} (set of pairwise disjoint pairs) of 2κ terminals (κ ≤ k),
there exist κ edge-disjoint paths (called canonical paths for P) such that the i-th path connects si
to ti. Furthermore, we tacitly equip G with an arbitrary odd-weight node-labeling.

Theorem 3. There is a constant-size g such that for every k-routable graph G with n edges, the
(#∃−1)-game for TseG ◦ gn requires Ω(k) bits of communication.

If we choose G to be a sufficiently strong expander graph, we may take k = Θ(n/ log n) as shown
by Frieze et al. [FZ00, Fri01]. Alternative explicit constructions with k = Θ(n/ log n) exist based on
bounded-degree “butterfly” graphs; see [Nor15, §5] for an exposition.

Corollary 4. There is a constant-size g and an explicit bounded-degree graph G with n edges such
that the (#∃−1)-game for TseG ◦ gn requires Ω(n/ log n) bits of communication.

As a bonus, we also prove that the query complexity of the (#∃−1)-game for TseG is Ω(n) on
any expander G (see Section 7).

4 Reductions

The goal of this section is to show, via reductions, that a lower bound on the (#∃−1)-game for
TseG ◦ gn (where G = (V,E) is of bounded degree and n := |E|) translates directly into a lower
bound on the extension complexity of PK for an O(n)-node bounded-degree graph K.

4.1 Definition: Monotone CSP-SAT

We start by describing a way of representing constraint satisfaction problems (CSP) as a monotone
function; this was introduced in [GP14] and further studied by Oliveira [Oli15, Chapter 3]. The
function is defined relative to some finite alphabet Σ and a fixed constraint topology determined by
a bipartite graph H := (L∪R,E). The left nodes L are thought of as variables (taking values in Σ)
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and the right nodes R correspond to constraints. For a constraint c ∈ R, let var(c) ⊆ L denote the
variables involved in c (i.e., neighbors of c in H). Let d denote the maximum degree of a node in
R. The function Sat = SatΣ,H : {0, 1}m → {0, 1}, where m :=

∑
c∈R |Σvar(c)| ≤ |R| · |Σ|d, is now

defined as follows. An input x ∈ {0, 1}m defines a CSP instance by specifying, for each c ∈ R, a
truth table Σvar(c) → {0, 1} that records which assignments to the variables var(c) satisfy c. In short,
x is simply a concatenation of truth tables. Then Sat(x) := 1 iff there is some global assignment
L→ Σ that satisfies all the constraints as specified by x. This is monotone: if we flip any 0 into a 1
in the truth table of a constraint, we are only making the constraint easier to satisfy.

4.2 From Tseitin to CSP-SAT

For completeness, we present the reduction (due to [GP14, §5.1]) from the search problem TseG ◦ gn
to the KW+-game for Sat = SatX ,H : {0, 1}m → {0, 1}. Here the alphabet is X and the bipartite
graph H is defined on E(G) ∪ V (G) such that there is an edge (e, v) ∈ E(H) iff v ∈ e. Note that
m ≤ O(n) provided that |X | ≤ O(1) and that G is of bounded degree.

On input (x, y) to TseG ◦ gn the two players proceed as follows:

• Alice maps her x ∈ XE(G) into a CSP whose sole satisfying assignment is x. Namely, for
each constraint v ∈ V (G), the truth table X var(v) → {0, 1} is all-0 except for a unique 1 in
position x|var(v) (restriction of x to coordinates in var(v)).

• Bob maps his y ∈ YE(G) into an unsatisfiable CSP. Namely, for each constraint v ∈ V (G), the
truth table tv : X var(v) → {0, 1} is given by tv(x̂) := 1 iff (g(x̂e, ye))e∈var(v) ∈ {0, 1}var(v) is a
partial edge-labeling of G that does not create a parity violation on v.

Let us explain why Bob really produces a 0-input of Sat. Suppose for contradiction that there is
an x̂ ∈ XE(G) that satisfies all of Bob’s constraints: tv(x̂|var(v)) = 1 for all v. By definition, this
means that z := gn(x̂, y) is an input to TseG without any violated nodes—a contradiction.

This reduction is parsimonious: it maps witnesses to witnesses in 1-to-1 fashion (so the number
of Tseitin violations equals the number of bit positions where Alice’s CSP has a 1 and Bob’s CSP
has a 0). Indeed, a node v is violated for TseG ◦ gn if and only if Alice’s truth table for v has its
unique 1 in a coordinate where Bob has a 0. In conclusion, the (#∃−1)-game associated with (the
KW+-game for) Sat is at least as hard as the (#∃−1)-game for TseG ◦ gn.

4.3 From CSP-SAT to independent sets

As a final step, we start with Sat = SatΣ,H : {0, 1}m → {0, 1} and construct an m-node “conflict”
graph K such that a slack matrix of the independent set polytope PK embeds the (#∃−1)-game for
Sat (restricted to minterms). Let H := (L ∪R,E) (as above) and define n := |R| (above we had
n = |L|, but in our case |L| = Θ(|R|) anyway).

The conflict graph K is defined as follows (this is reminiscent of a reduction from [FGL+96]).

• The m nodes of K are in 1-to-1 correspondence with the input bits of Sat. That is, for each
constraint c ∈ R we have |Σvar(c)| many nodes in K labeled with assignments var(c)→ Σ.

• There is an edge between any two nodes whose assignments are inconsistent with one another.
(Here φi : var(ci)→ Σ, i ∈ {1, 2}, are inconsistent iff there is some e ∈ var(c1) ∩ var(c2) such
that φ1(e) 6= φ2(e).) In particular, the truth table of each constraint becomes a clique by
definition.
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(It can be seen that K has bounded degree if H has bounded left- and right-degree, which it does
after our reduction from Tseitin for a bounded-degree G.)

The key property of this construction is the following:

The minterms of Sat are precisely the (indicator vectors of) maximal independent sets of K.

Indeed, the minterms x ∈ Sat−1(1) correspond to CSPs with a unique satisfying assignment
φ : L→ Σ; there is a single 1-entry in each of the n truth tables (so that |x| = n) consistent with φ.
Such an x, interpreted as a subset of nodes, is independent in K as it only contains nodes whose
labels are consistent with φ. Conversely, because every independent set x ⊆ V (K) can only contain
pairwise consistently labeled nodes, x naturally defines a partial assignment L′ → Σ for some L′ ⊆ L.
A maximal independent set x corresponds to picking a node from each of the n constraint cliques
consistent with some total assignment φ : L→ Σ. Hence x is a 1-input to Sat with unique satisfying
assignment φ.

Our goal is now to exhibit a set of valid inequalities for the independent set polytope PK whose
associated slack matrix embeds the (#∃−1)-game for Sat. Let x ⊆ V (K) be an independent set
and y ∈ Sat−1(0). We claim that the following inequalities (indexed by y) are valid:

|x ∩ y| =
∑
i : yi=1

xi ≤ n− 1. (2)

Clearly (2) holds whenever |x| ≤ n− 1. Since it is impossible to have |x| ≥ n+ 1, assume that x is
maximal: |x| = n. As argued above, x is a minterm of Sat. Hence (x, y) is a valid pair of inputs to
the KW+-game, and so they admit a witness: |x ∩ ȳ| ≥ 1. Therefore |x ∩ y| = n− |x ∩ ȳ| ≤ n− 1.
This shows that (2) is valid. The slack matrix associated with inequalities (2) has entries

n− 1− |x ∩ y| = |x ∩ ȳ| − 1,

for any minterm x and any y ∈ Sat−1(0). But this is just the (#∃−1)-game for Sat with Alice’s
input restricted to minterms.

4.4 Proof of Theorem 1

Here we simply string the above reductions together. By Corollary 4 there is a constant-size g and a
bounded-degree G with n edges such that the (#∃−1)-game for TseG ◦ gn requires Ω(n/ log n) bits
of communication. By the reduction of Section 4.2 this implies an Ω(n/ log n) lower bound for the
(#∃−1)-game associated with (the KW+-game for) a monotone function Sat : {0, 1}O(n) → {0, 1}.
As discussed in Section 2.4, the complexity of the (#∃−1)-game for Sat is affected only by
± log n when restricted to minterms. Thus the minterm-restricted (#∃−1)-game for Sat still has
complexity Ω(n/ log n). (Alternatively, one can note that the reduction from Tseitin to CSP-SAT
produced only minterms.) Hence the nonnegative rank of the matrix for that game is 2Ω(n/ logn).
By the reduction of Section 4.3 there is a bounded-degree O(n)-node graph K and a system of
valid inequalities (2) for the independent set polytope PK such that the slack matrix M(PK ;Q),
where Q is the polyhedron with facets determined by (2), embeds the matrix for the minterm-
restricted (#∃−1)-game for Sat. Thus log rk+(M(PK ;Q)) ≥ Ω(n/ log n). By Fact 2 we have
log xc(PK) = log rk+(M(PK)) ≥ log

(
rk+(M(PK ;Q))− 1

)
≥ Ω(n/ log n).

5 Our Gadget

We define our two-party gadget g : {0, 1}3 × {0, 1}3 → {0, 1} as follows; see Figure 1:

g(x, y) := x1 + y1 + x2y2 + x3y3 (mod 2).
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(a) (b) (c)

Figure 1: Three ways to view our gadget g : {0, 1}3 × {0, 1}3 → {0, 1} by permuting rows and
columns. The white and gray cells represent 0- and 1-inputs, respectively. For (a), the rows and
columns are in lexicographic order of x3x2x1 and y3y2y1.

We note that the smaller gadget x1 + y1 + x2y2 (mod 2) was considered in [She11, GP14].

5.1 Flips and windows

The most basic property of g is that it admits Alice/Bob-flips:

(1) Alice-flips: There is a row permutation πA : {0, 1}3 → {0, 1}3 that flips the output of the
gadget: g(πA(x), y) = ¬g(x, y) for all x, y. Namely, Alice just flips the value of x1.

(2) Bob-flips: There is a column permutation πB : {0, 1}3 → {0, 1}3 that flips the output of the
gadget: g(x, πB(y)) = ¬g(x, y) for all x, y. Namely, Bob just flips the value of y1.

A more interesting feature of our gadget (which we prove later, and which x1 + y1 + x2y2 does
not possess) is that g embeds—in an especially uniform manner—certain 2×4 and 4×2 submatrices
which we call “stretched And” and “stretched Nand”. For terminology, we define a z-window where
z ∈ {0, 1} as a z-monochromatic rectangle of size 2 in the domain of g, i.e., an all-z submatrix of
either horizontal shape 1× 2 or vertical shape 2× 1. Here is an illustration of horizontally stretched
And/Nand, which are composed of four horizontally shaped windows (for vertical stretch, the
illustration should be transposed):

And stretched And Nand stretched Nand

1

0

0 1

1

0

0 1

A stretched And/Nand embedding may use any rows and any columns of g, so e.g., the window
corresponding to the stretched (0, 0)-input need not appear “upper left” in the embedding.

The key property is that each z-window w is embedded as the stretched (1, 1)-input to a unique
embedding of stretched And (if z = 1) or Nand (if z = 0) inside g. That is, for each w we can find
the following unique submatrix (illustrated again for horizontal shapes), where we denote by w←,
w →, and w↑ the (1− z)-windows corresponding to the stretched (1, 0)-, (0, 0)-, and (0, 1)-inputs to
the stretched And/Nand.
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if w is a 1-window if w is a 0-window

w →

w←

w↑

w

w →

w←

w↑

w

This defines three maps (“directed flips”) w 7→ w←, w 7→ w →, w 7→ w↑, which turn out to be
shape-maintaining bijections between the set of z-windows and the set of (1 − z)-windows. In
particular, if w is a uniformly random z-window of g, then each of w←, w →, w↑ is a uniformly
random (1− z)-window.

5.2 Checking the existence of flips

The properties of g claimed above can be verified by directly inspecting the gadget (by hand).
Luckily, this task can be eased by exploiting symmetries.

(3) Transitive symmetry : The gadget admits a group of symmetries (permutations of its rows and
columns leaving g invariant) which splits the domain of g into two orbits, g−1(1) and g−1(0).
Specifically, there is a group S ⊆ S8×S8 (here S8 is the symmetric group on 8 elements) such
that when (π1, π2) ∈ S acts on g, the output remains invariant: g(π1(x), π2(y)) = g(x, y) for all
x, y; and moreover, S is transitive in the sense that for any two 1-inputs (x, y), (x′, y′) ∈ g−1(1)
(or 0-inputs) there is a symmetry (π1, π2) ∈ S such that (π1(x), π2(y)) = (x′, y′).

To see that g really does have property (3), we visualize g as constructed from Xor(x1, x2) := x1 +x2

(mod 2) by applying the following “;” transformation twice:

M
M

M

¬M

M

x1 + y1
x1 + y1
+ x2y2

x1 + y1
+ x2y2 + x3y3

; ; ;

It is easy to see that Xor has the properties (1)–(3). We argue that if M is a boolean matrix with
the properties (1)–(3) and M ;M ′, then M ′ has the properties (1)–(3). Suppose the entries of M
are indexed by (x, y); we use (xa, yb) to index the entries of M ′ where a, b ∈ {0, 1} are bits. If πA,
πB are the Alice/Bob-flips for M , then Alice/Bob-flips for M ′ are

xa 7→ πA(x)a,

yb 7→ πB(y)b.

Suppose S is the transitive symmetry group for M . Then the transitive symmetry group for M ′ is
generated by the following symmetries (here π0

A(x) := x and π1
A(x) := πA(x) and similarly for πbB):

∀(π1, π2) ∈ S : (xa, yb) 7→ (π1(x)a, π2(y)b),

(xa, yb) 7→ (πaA(x)a, y(1− b)),
(xa, yb) 7→ (x(1− a), πbB(y)b).

The first family of symmetries makes each quadrant of M ′ transitive, whereas the last two symmetries
map entries between quadrants. In the second-to-last symmetry, Bob swaps the left and right halves
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while Alice applies her flip to the bottom half. In the last symmetry, Alice swaps the top and
bottom halves while Bob applies his flip to the right half. This shows that g satisfies (1)–(3).

Rather than checking that each z-window w appears as the stretched (1, 1)-input to a unique
embedding of stretched And/Nand and that the directed flips are bijections, it is equivalent to
check that for all ` ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} each w appears as the stretched `-input to a unique
embedding of stretched And/Nand in g. Let us check this assuming w is a 0-window of shape 1× 2
(the other possibilities can be checked similarly). By transitive symmetry, we may assume that w is
picked among the four 0’s of the first row of Figure 1(c) (so

(
4
2

)
choices for w). The key observation

is that the four columns corresponding to these 0’s define a submatrix of g (left half of (c)) that
contains each even Hamming weight row once, and that the other four columns (right half of (c))
also contain each even Hamming weight row once. We consider the four cases for `.

` = (0, 0): To see that w is the stretched (0, 0)-input to a unique embedding of stretched And, find
the unique other row that has 0’s in the same columns as w. The other two columns in
the left half of (c) have 0’s in the top row and 1’s in the other row.

` = (0, 1): To see that w is the stretched (0, 1)-input to a unique embedding of stretched And,
find the unique other row that has 1’s in the same columns as w and 0’s in the other
two columns of the left half of (c). These other two columns have 0’s in the top row.

` = (1, 0): To see that w is the stretched (1, 0)-input to a unique embedding of stretched And, find
the unique other row that has 0’s in the same columns as w, then find the unique pair
of columns in the right half of (c) that has 0’s in that other row. This pair of columns
has 1’s in the first row.

` = (1, 1): To see that w is the stretched (1, 1)-input to a unique embedding of stretched Nand,
find the unique other row that has 1’s in the same columns as w and 0’s in the other
two columns of the left half of (c), then find the unique pair of columns in the right half
of (c) that has 1’s in that other row. This pair of columns has 1’s in the first row.

6 Communication Lower Bound

In this section we prove Theorem 3, where g is the gadget from Section 5.

6.1 High-level intuition

The high-level reason for why the (#∃−1)-game for Tseitin (or really for any sufficiently unstructured
search problem) is hard is the same as for the (#∃−1)-game for matching [Rot14]: A correct protocol Π
dare not accept its input before it has found at least two witnesses, lest it risk accepting with
positive probability an input with a unique witness (which would contradict correctness). However,
in an input with i witnesses, there are

(
i
2

)
pairs of witnesses for the protocol to find. Hence one

expects the acceptance probability of Π (that communicates too few bits and never errs when i = 1)
to grow at least quadratically with i rather than linearly as required by the (#∃−1)-game.

Formalizing this quadratic increase in acceptance probability for protocols takes some technical
work given the current tools available in communication complexity. However, the quadratic increase
phenomenon for Tseitin is easier to formalize in the query complexity setting, which we do in
Section 7. The reader may want to have a look at that simpler proof first, even though the query
proof is somewhat incomparable to our approach for protocols (which revolves around k-routability).
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6.2 Preliminaries

Probability and information theory. We use standard notions from information theory:
H(X) is Shannon entropy; H(X |Y ) := Ey∼YH(X |Y = y) is conditional entropy; I(X ;Y ) :=
H(X)−H(X |Y ) = H(Y )−H(Y |X) is mutual information; ∆(X,Y ) := maxE |P[X ∈ E]−P[Y ∈ E]|
is statistical (total variation) distance. We use upper-case letters for random variables and corre-
sponding lower-case letters for particular outcomes. Throughout the whole proof, all random choices
are assumed to be uniform in their respective domains unless otherwise stated.

Inputs and transcripts. Let XY be random inputs to a private-coin protocol Π. We denote by
Π = Π(X,Y ) the transcript of the protocol on input XY , and we let |Π| be the maximum length of
a transcript (i.e., the communication cost of Π). Note that the transcript Π depends on both XY
and the private coins of the players. We let Πacc := (Π |Π accepts) denote the transcript conditioned
on the protocol accepting. For each input z ∈ Zn2 to the query problem TseG we can associate
in a natural way a pair of random inputs XY to the communication problem TseG ◦ gn that are
consistent with z in the sense that gn(X,Y ) = z; namely, we let XY be uniformly distributed on

(gn)−1(z) = g−1(z1)× · · · × g−1(zn).

We write Π|z as a shorthand for Π(X,Y ) where XY are drawn at random from the above set. Note
that if the protocol is correct then conditioning on acceptance does not change the distribution of
such XY , since all inputs consistent with z have the same acceptance probability. Thus Πacc|z can
be equivalently defined by sampling a uniformly random XY from (gn)−1(z) and then sampling a
transcript conditioned on acceptance.

Windows. As is often the case with information complexity arguments, we need to introduce a
conditioning variable W whose purpose is to make X and Y conditionally independent. To this
end, we employ windows (Section 5.1): we call a rectangle w := w1 × · · · × wn ⊆ (gn)−1(z) a
(multi-gadget) window of z iff each wi is a zi-window in g (so wi ⊆ g−1(zi)). Now, to generate XY
as above, we first pick W uniformly at random among all the windows of z, and then, conditioned
on an outcome W = w, we pick XY ∈ w uniformly at random. In conclusion, XY is uniform on
(gn)−1(z) (since each row and column of g is balanced) and X and Y are conditionally independent
given W . We write Π|w := (Π(X,Y ) |W = w) for short.

Alice-flips. Let (x, y) be an input consistent with z := gn(x, y) and let B ⊆ [n] be any subset of
coordinates of z. (B stands for “block” by analogy with the concept of block sensitivity from query
complexity.) We denote by (xB, y) the input obtained from (x, y) by letting Alice flip the outputs
of all gadgets corresponding to coordinates in B, i.e., for every i ∈ B Alice replaces her input xi
with πA(xi) where πA is the row permutation from Section 5.1. Hence (xB, y) is an input consistent
with zB. We can also have Alice flip whole windows: wB := {(xB, y) : (x, y) ∈ w}. We henceforth
refer to such Alice-flips as just “flips”. (We could equally well have Bob be the flipper throughout
the whole proof, but we needed to make an arbitrary choice between the players.)

Smooth protocols. Recall that if z is an input to TseG and B ⊆ E(G) is an eulerian graph,
then z and zB have the same set of violations. Consequently, any protocol Π for the (#∃−1)-game
must accept inputs (x, y) and (xB, y) with the same probability. We note that we may assume
w.l.o.g. that the transcript distribution of Π is not sensitive to flipping eulerian graphs: if w is a
window and B an eulerian graph, then Π|w and Π|wB have the same distribution. Indeed, if Π does
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not satisfy this, then we may replace it by a new “smoothed” protocol Π′ that computes as follows
on input (x, y): Alice uses her private coins to choose a uniformly random eulerian graph B and
then the players run Π on input (xB, y). The fact that we may assume Π is smooth is critically
used later in the proof.

6.3 Proof outline

Recall the setting from Section 3.3: We have a k-routable graph with terminal nodes T . Let us
assume for the sake of contradiction that Π is a private-coin protocol of cost |Π| ≤ o(k) that accepts
each input (x, y) with probability α · (|viol(z)| − 1) where α > 0 is a constant (independent of (x, y))
and z := gn(x, y). We call an input z (and any (x, y) consistent with z) an i-violation input if
|viol(z)| = i and all violations occur at the terminals T . We analyze the behavior of Π on i-violation
inputs with i ∈ {1, 3, 7} and show a contradiction via the following implication:

(∗) If protocol Π accepts all 1-violation (resp. 3-violation) inputs with probability 0 (resp. 2α),
then Π must mess up by accepting some 7-violation input with probability > 6α.

Henceforth, we use o(1) to denote anonymous quantities that tend to 0 as |Π|/k tends to 0.
The implication (∗) can be derived cleanly from two types of limitations of our too-good-to-

be-true Π. The first limitation concerns the situation where we start with a 1-violation input z,
and consider 3-violation inputs zB1 and zB2 that are obtained from z by flipping either a typical
canonical path B1 or another typical canonical path B2 that is edge-disjoint from B1 (the endpoints
of Bi are terminals). The protocol should accept both zB1 and zB2 (more precisely, any (x, y)
consistent with them) with probability 2α, but it better not accept both inputs while generating the
same transcript—otherwise we could exploit the rectangular nature of transcripts and cut-and-paste
the inputs zB1 and zB2 together and fool Π into accepting z, which would contradict correctness.
What we actually get is that the accepting transcripts for zB1 and zB2 should be near-disjoint:

1-vs-3 Lemma. Let z be any 1-violation input and let P be any pairing of the non-violated terminals
with canonical edge-disjoint paths B1, . . . , Bk. Let w be a random window of z, and choose distinct
i, j ∈ [k] at random. Then, with probability ≥ 1− o(1),

∆
(
Πacc|wBi ,Πacc|wBj

)
≥ 1− o(1).

The second limitation concerns the situation where we start with a 3-violation input z and flip a
typical canonical path B to obtain a 5-violation input zB. Consider a typical accepting transcript
τ in Π|z. It is unlikely that the execution τ catches us making the tiny local change z 7→ zB in
the input, and one expects that τ continues to appear in Π|zB with noticeable probability. (This
is the usual corruption property of large rectangles.) Formally, for windows w1 and w2, we set2

piτ := P[Π|wi = τ ] and define

Π|w1 overflows onto Π|w2 iff
∑

τ max(p1
τ − p2

τ , 0) ≤ o(α), (3)

where the sum is over accepting transcripts τ . Intuitively, this means that for a typical accepting
transcript τ , we have p2

τ ≥ (1−o(1)) ·p1
τ . (The definition of overflow makes sense for any distributions

over transcripts; we will also apply it to Π|z.) For technical reasons (which will become apparent
shortly), we shall flip two canonical paths instead of one in order to pass from 3-violation inputs to
7-violation inputs.

2Note that the event in P[Π|wi = τ ] is to be parsed as “a sample from the distribution (Π|wi) yields τ”.
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3-vs-7 Lemma. Let z be any 3-violation input and let P be any pairing of the non-violated terminals
with canonical edge-disjoint paths B1, . . . , Bk−1. Let w be a random window of z, and choose distinct
i, j ∈ [k − 1] at random. Then, with probability ≥ 1− o(1),

Π|w overflows onto Π|wBi∪Bj .

6.4 Deriving the contradiction

We now prove (∗) by applying the 1-vs-3 Lemma and the 3-vs-7 Lemma in a black-box fashion to
find some 7-violation input that Π accepts with too high a probability > 6α.

F = ([7], E)

1 2 3

46

5

7

Define F := ([7], E) as the Fano plane hypergraph on 7 nodes.
See the figure on the right. This hypergraph has 7 hyperedges, each of
which is incident to 3 nodes, and the hyperedges are pairwise uniquely
intersecting. For each hyperedge e ∈ E choose some arbitrary but
fixed pairing Pe of the remaining nodes in [7] r e.

Probability space. Choose the following at random:

1. An injection of [7] into T . Denote the result by v1, . . . , v7 ∈ T .
2. A pairing P of the remaining terminals T r {v1, . . . , v7}.
3. A 7-violation input z7 with viol(z7) = {v1, . . . , v7}.
4. A window w7 of z7.

We do not make a distinction between the nodes of F and their embedding {v1, . . . , v7} in T . In
particular, we think of the hyperedges e ∈ E as triples of terminals, and the Pe as pairings of
terminals. Associated with the pairing Pe ∪ P there is a canonical collection of edge-disjoint paths;
let {Be

1, B
e
2} denote the two paths that connect Pe in this collection.

Based on the above, we define seven 3-violation windows, indexed by e ∈ E:

window we := w
Be

1∪Be
2

7 of ze := z
Be

1∪Be
2

7 (note: viol(ze) = e).

The following claim (proved at the end of this subsection) follows directly from the 1-vs-3 Lemma
and the 3-vs-7 Lemma as soon as we view our probability space from the right perspective.

Claim 5. In the following list of 28 events, each occurs with probability ≥ 1− o(1):

• Overflow for e ∈ E: Π|we overflows onto Π|w7.
• Near-disjointness for {e, e′} ⊆ E: ∆

(
Πacc|we,Πacc|we′

)
≥ 1− o(1).

By a union bound over all the 28 events in the above list, we can fix our random choices 1–4 to
obtain a fixed 7-violation window w7 and fixed 3-violation windows we such that

Overflow: ∀e ∈ E :
∑

τ max(peτ − p7
τ , 0) ≤ o(α), (4)

Near-disjointness: ∀{e, e′} ⊆ E :
∑

τ min(peτ , p
e′
τ ) ≤ o(α). (5)

Here p7
τ := P[Π|w7 = τ ], peτ := P[Π|we = τ ], and the sums are over accepting transcripts; we have

also rephrased the near-disjointness property using the fact that P[Π|we accepts] = 2α.
These two properties state that typical accepting transcripts for Π|we contribute to the acceptance

probability of Π|w7, and these contributions are pairwise near-disjoint. Hence, roughly speaking, one
expects P[Π|w7 accepts] to be at least

∑
e∈E P[Π|we accepts] = 7 · 2α = 14α > 6α. But then some

7-violation input in w7 would be accepted with probability > 6α, which completes the proof of (∗)
(and hence Theorem 3). Indeed, we perform this calculation carefully as follows. We first partition
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the set of accepting transcripts as
⋃
e∈E Se where Se consists of those τ ’s for which peτ = maxe′ p

e′
τ

(breaking ties arbitrarily). Then

P[Π|w7 accepts] =
∑

τ p
7
τ

≥
∑

e∈E, τ∈Se
min(p7

τ , p
e
τ )

=
∑

e∈E, τ∈Se

(
peτ −max(peτ − p7

τ , 0)
)

≥
∑

e∈E, τ∈Se
peτ −

∑
e∈E, τ max(peτ − p7

τ , 0)

≥
∑

e∈E, τ∈Se
peτ − 7 · o(α) (via (4))

=
∑

e∈E, τ p
e
τ −

∑
e∈E, e′∈Er{e}, τ∈Se′

peτ − o(α)

=
∑

e∈E, τ p
e
τ −

∑
e∈E, e′∈Er{e}, τ∈Se′

min(peτ , p
e′
τ )− o(α)

≥
∑

e∈E, τ p
e
τ −

∑
e∈E, e′∈Er{e}, τ min(peτ , p

e′
τ )− o(α)

≥
∑

e∈E, τ p
e
τ − 7 · 6 · o(α)− o(α) (via (5))

=
∑

e∈E P[Π|we accepts]− o(α)

= 7 · 2α− o(α)

= (14− o(1)) · α
> 6α.

Proof of Claim 5. Overflow. For notational convenience, suppose e = {v1, v2, v3} and Pe =
{{v4, v7}, {v5, v6}}. An alternative way to generate a sample from our probability space is (in
steps 1 and 6, we are really picking random injections):

1. Random {v1, v2, v3} ⊆ T .
2. Random 3-violation input ze subject to viol(ze) = {v1, v2, v3}.
3. Random pairing P ′ = {P1, . . . , Pk−1} of T r {v1, v2, v3} with canonical paths B1, . . . , Bk−1.
4. Random window we of ze.
5. Random distinct i, j ∈ [k − 1].
6. Random {v4, v7} = Pi and {v5, v6} = Pj .

7. Deterministically, define z7 := z
Bi∪Bj
e and w7 := w

Bi∪Bj
e and P := P ′ r {Pi, Pj}.

The choices made in steps 1–3 match the data that is quantified universally in the 3-vs-7 Lemma,
whereas steps 4 and 5 make random choices as in the 3-vs-7 Lemma; hence the lemma applies.

Near-disjointness. For notational convenience, suppose e = {v1, v2, v3}, e′ = {v3, v4, v5}, Pe =
{{v4, v7}, {v5, v6}}, and Pe′ = {{v1, v7}, {v2, v6}} (it does not matter for the proof how Pe and Pe′

were chosen). An alternative way to generate a sample from our probability space is (see Figure 2):

1. Random v3 ∈ T .
2. Random 1-violation input z1 subject to viol(z1) = {v3}.
3. Random pairing P ′ = {P ′1, . . . , P ′k} of T r {v3} with canonical paths B′1, . . . , B

′
k.

4. Random window w1 of z1.
5. Random distinct i, j, l ∈ [k].
6. Random {v1, v2} = P ′i and {v4, v5} = P ′j and {v6, v7} = P ′l .

7. Deterministically, define

− ze := z
B′i
1 and we := w

B′i
1 ,

− ẑe′ := z
B′j
1 and ŵe′ := w

B′j
1 ,

− P := P ′ r {Pi, Pj , Pl},
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Figure 2: Illustration for the proof of Claim 5. Left: Paths flipped between terminals. Right:
Relationships between windows.

− {Be
1, B

e
2} according to the canonical paths for Pe ∪ P,

− {Be′
1 , B

e′
2 } according to the canonical paths for Pe′ ∪ P,

− z7 := z
Be

1∪Be
2

e and w7 := w
Be

1∪Be
2

e ,

− ze′ := z
Be′

1 ∪Be′
2

7 and we′ := w
Be′

1 ∪Be′
2

7 .

The choices made in steps 1–3 match the data that is quantified universally in the 1-vs-3 Lemma,
whereas steps 4 and 5 (excluding variable l) make random choices as in the 1-vs-3 Lemma. Hence that
lemma applies and shows that Πacc|we and Πacc|ŵe′ are near-disjoint with high probability. Finally,
we note that ŵe′ and we′ differ by the flipping of an eulerian graph, namely B′j⊕B′i⊕Be

1⊕Be
2⊕Be′

1 ⊕Be′
2

(where ⊕ means symmetric difference), so Π|we′ and Π|ŵe′ have the same distribution assuming
w.l.o.g. that Π is smooth (as discussed in Section 6.2). Thus Πacc|we and Πacc|we′ are also near-
disjoint with high probability.

6.5 Roadmap for the rest of the proof

We prove the 1-vs-3 Lemma in Section 6.6 and the 3-vs-7 Lemma in Section 6.7. Both proofs rely
on another technical lemma, the Homogeneity Lemma (stated below, proved in Section 6.8), which
generalizes a lemma from (the full version of) [HN12, §5]. In fact, we prove the Homogeneity Lemma
for any gadget g that is regular (as defined in Section 6.8), which our gadget is.

Homogeneity Lemma. Fix an arbitrary z ∈ {0, 1}m for some m. Let W be a random window
of z in gm, let XY be a random input in W , and let R be an arbitrary random variable that is
conditionally independent of W given XY . If I(R ;XY |W ) ≤ o(1) then at least a 1− o(1) fraction
of windows w of z are such that ∆(R|w,R|z) ≤ o(1).

In the statement, R|w is shorthand for R|(W = w), and R|z denotes the marginal distribution
of R in the whole probability space, which is over uniformly random XY ∈ (gm)−1(z). Furthermore,
we mention that our proof shows that at least a 1− o(1) fraction of xy ∈ (gm)−1(z) are such that
∆(R|xy,R|z) ≤ o(1), but for the 1-vs-3 Lemma and the 3-vs-7 Lemma we only require the property
for windows.

In Section 5 we defined the directed flips w←, w →, w↑ for a single-gadget window. We now also
define directed flips for multi-gadget windows w: if B is a subset of coordinates then w←B, w →B, w↑B
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are defined by applying the corresponding directed flips to the coordinates in B. Then we have the
following key property of our gadget.

Fact 6. If w is a uniformly random window of z, then each of w←B, w →B, w↑B is marginally a
uniformly random window of zB.

This concept is used in the proofs of the 1-vs-3 Lemma and the 3-vs-7 Lemma. It turns out that
the 3-vs-7 Lemma can be proved (with a small modification to our proof) even for the simpler gadget
that was used in [She11, GP14] (as can the Homogeneity Lemma since that gadget is regular), but
our proof of the 1-vs-3 Lemma crucially uses Fact 6, which does not hold for that simpler gadget.

6.6 Proof of the 1-vs-3 Lemma

Consider a probability space with the following random variables: I ∈ [k], J ∈ [k] r {I}, W is a
random window of zBI , XY is a random input in W , and Πacc is the random transcript of Π on
input XY conditioned on acceptance. For convenience, denote B := B1∪· · ·∪Bk and B−i := BrBi.
We have

I
(
Πacc ; (XY )B−I

∣∣ IW ) ≤ H(Πacc | IW ) ≤ |Π| ≤ o(k)

so by the standard direct sum property [BJKS04],

I
(
Πacc ; (XY )BJ

∣∣ IJW ) = 1
k−1 · Ei∼I

∑
j∈[k]r{i} I

(
Πacc ; (XY )Bj

∣∣W, I = i
)

≤ 1
k−1 · I

(
Πacc ; (XY )B−I

∣∣ IW )
≤ o(1).

Define H := {I, J}, and abbreviate BI ∪ BJ as BH and W[n]r(BI∪BJ ) as W−BH
. By Markov’s

inequality, with probability ≥ 1− o(1) over h ∼ H and w−Bh
∼W−Bh

, we have

I
(
Πacc ; (XY )BJ

∣∣ IJWBh
, H = h,W−Bh

= w−Bh

)
≤ o(1).

Fixing such h and w−Bh
(henceforth), say h = {1, 2}, it suffices to show that with probability

≥ 1− o(1) over a random window wBh
of zBh

, we have ∆
(
Πacc|wB1 ,Πacc|wB2

)
≥ 1− o(1) (where w

is the combination of wBh
and w−Bh

).
We rephrase the situation as follows. Consider a protocol Π∗ that interprets its input as

(xy)Bh
, uses private coins to sample random (xy)−Bh

from w−Bh
, and runs Π on the input xy (the

combination of (xy)Bh
and (xy)−Bh

). Henceforth recycling notation by letting z ∈ {0, 1}|Bh| refer
to zBh

, and letting (I, J) be random in {(1, 2), (2, 1)}, W be a random window of (the new) zBI ,
and XY be a random input to Π∗ in W , the situation is:

Assumption: I
(
Πacc
∗ ; (XY )BJ

∣∣ IJW ) ≤ o(1).
Want to show: For ≥ 1− o(1) fraction of windows w of z, ∆

(
Πacc
∗ |wB1 ,Πacc

∗ |wB2
)
≥ 1− o(1).

The assumption holds (with factor 2 loss in the o(1)) conditioned on either outcome of (I, J);
let us tacitly condition on the outcome (1, 2). Then I

(
Πacc
∗ ; (XY )B2

∣∣W ) ≤ o(1) where W is a
random window of zB1 . By Markov’s inequality, with probability ≥ 1 − o(1) over wB1 ∼ WB1

we have I
(
Πacc
∗ ; (XY )B2

∣∣WB2 ,WB1 = wB1

)
≤ o(1); call such a wB1 good. Hence for a good

wB1 , we can apply the Homogeneity Lemma with m := |B2| and R := Πacc
∗ |(WB1 = wB1) (note

that R|(xy)B2 is the distribution of Πacc
∗ on input (XY )B1(xy)B2 where (XY )B1 is random in

wB1). This tells us that for a good wB1 , with probability ≥ 1 − o(1) over wB2 ∼ WB2 we
have ∆

(
Πacc
∗ |wB1wB2 ,Π

acc
∗ |wB1zB2

)
≤ o(1), where the distribution Πacc

∗ |wB1zB2 is over random
(XY )B1 ∈ wB1 and (XY )B2 ∈ (gm)−1(zB2). We summarize the above with the following claim.
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Claim 7. For ≥ 1− o(1) fraction of windows w of zB1, we have ∆
(
Πacc
∗ |w,Πacc

∗ |wB1zB2

)
≤ o(1).

Conditioning on the other outcome (I, J) = (2, 1) yields the symmetric property.

Claim 8. For ≥ 1− o(1) fraction of windows w of zB2, we have ∆
(
Πacc
∗ |w,Πacc

∗ |zB1wB2

)
≤ o(1).

Now pick a random window w of zBh . Using Fact 6, wB2 and w →B2 are both uniformly random
(albeit correlated) windows of zB1 , and wB1 and w →B1 are both uniformly random (albeit correlated)
windows of zB2 . Hence by Claim 7, Claim 8, and a union bound, with probability ≥ 1− o(1) over
the choice of w, the following four distances are simultaneously ≤ o(1): ∆

(
Πacc
∗ |wB2 ,Πacc

∗ |wB1zB2

)
,

∆
(
Πacc
∗ |w →B2 ,Πacc

∗ |wB1zB2

)
, ∆
(
Πacc
∗ |wB1 ,Πacc

∗ |zB1wB2

)
, ∆
(
Πacc
∗ |w →B1 ,Πacc

∗ |zB1wB2

)
.

We argue shortly that ∆
(
Πacc
∗ |w →B1 ,Πacc

∗ |w →B2
)

= 1 with probability 1; putting everything
together then shows that ∆

(
Πacc
∗ |wB1 ,Πacc

∗ |wB2
)
≥ 1− o(1), as illustrated below. (This is equivalent

to what we want to show, since sampling a window w of zBh and taking wB1 , wB2 is equivalent to
sampling a window w of z and taking wB2 , wB1 .)

Πacc
∗ |wB1 Πacc

∗ |zB1wB2 Πacc
∗ |w →B1

Πacc
∗ |wB2 Πacc

∗ |wB1zB2 Πacc
∗ |w →B2

∆ ≤ o(1) ∆ ≤ o(1)

∆ ≤ o(1) ∆ ≤ o(1)

∆ = 1∆ ≥ 1− o(1)

To finish the proof, suppose for contradiction that some accepting transcript has positive
probability under both Πacc

∗ |xy and Πacc
∗ |x′y′ for some xy ∈ w →B1 and x′y′ ∈ w →B2 . Then Π∗ would

also accept xy′ with positive probability, by the rectangular nature of transcripts. We claim that
g|Bh|(xy′) = z. To see this, consider any coordinate c of z; suppose c ∈ B1 (the case c ∈ B2 is

similar). There is an embedding of stretched And (if zc = 0) or Nand (if zc = 1) such that w
→B1

c

is the image of (0, 0) (hence is zc-monochromatic) and w
→B2

c = wc is the image of (1, 1) (hence is

(1− zc)-monochromatic). Since (xy)c ∈ w
→B1

c and (x′y′)c ∈ wc, it follows that (xy′)c is in the image
of (0, 1), which is zc-monochromatic. So g((xy′)c) = zc and the claim is proved.

Since Π∗ accepts some input in (g|Bh|)−1(z) with positive probability (for the new z), it follows
that Π accepts some input in (gn)−1(z) with positive probability, for the original z, which is a
contradiction since the original z has only one violation.

6.7 Proof of the 3-vs-7 Lemma

Assume for convenience that k− 1 is even. Note that sampling distinct i, j ∈ [k− 1] is equivalent to
sampling a permutation σ of [k − 1] and an h ∈ [k−1

2 ] and setting i = σ(2h− 1), j = σ(2h).
Thus we have a probability space with random variables Σ, H, I, J corresponding to the above,

as well as the following: W is a random window of z, XY is a random input in W , and Πacc is
the random transcript of Π on input XY conditioned on acceptance. For convenience, denote
B := B1 ∪ · · · ∪Bk−1 and Bij := Bi ∪Bj . We have

I
(
Πacc ; (XY )B

∣∣W ) ≤ H(Πacc |W ) ≤ |Π| ≤ o(k)
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so by the standard direct sum property [BJKS04],

I
(
Πacc ; (XY )BIJ

∣∣WIJ
)

= I
(
Πacc ; (XY )BIJ

∣∣WΣH
)

= 2
k−1 ·

∑
h∈[(k−1)/2] I

(
Πacc ; (XY )BIJ

∣∣WΣ, H = h
)

≤ 2
k−1 · I

(
Πacc ; (XY )B

∣∣WΣ
)

= 2
k−1 · I

(
Πacc ; (XY )B

∣∣W )
≤ o(1).

Abbreviate W[n]rBij
as W−Bij . By Markov’s inequality, with probability ≥ 1− o(1) over ij ∼ IJ

and w−Bij ∼ W−Bij , we have I
(
Πacc ; (XY )Bij

∣∣WBij ,W−Bij = w−Bij

)
≤ o(1). Fixing such ij and

w−Bij (henceforth), it suffices to show that with probability ≥ 1 − o(1) over wBij ∼ WBij , Π|w
overflows onto Π|wBij (where w is the combination of wBij and w−Bij ).

We rephrase the situation as follows. Consider a protocol Π∗ that interprets its input as
(xy)Bij , uses private coins to sample random (xy)−Bij from w−Bij , and runs Π on the input xy (the

combination of (xy)Bij and (xy)−Bij ). Henceforth recycling notation by letting z ∈ {0, 1}|Bij | refer
to zBij , letting B refer to Bij , and letting W be a random window of (the new) z and XY be a
random input to Π∗ in W , the situation is:

Assumption: I
(
Πacc
∗ ;XY

∣∣W ) ≤ o(1).
Want to show: For ≥ 1− o(1) fraction of windows w of z, Π∗|w overflows onto Π∗|wB.

Claim 9. For ≥ 1− o(1) fraction of windows w of zB, Π∗|z overflows onto Π∗|w.

We prove Claim 9 shortly, but first we finish the proof of the 3-vs-7 Lemma assuming it. By
the Homogeneity Lemma (with m := |B| and R := Πacc

∗ ), Claim 9, and a union bound, at least a
1− o(1) fraction of windows w of z are such that both ∆

(
Πacc
∗ |w,Πacc

∗ |z
)
≤ o(1) and Π∗|z overflows

onto Π∗|wB (since wB is a uniform window of zB if w is a uniform window of z). We show that

this implies that Π∗|w overflows onto Π∗|wB as follows (letting pzτ , pwτ , pw
B

τ denote the probability
of a transcript τ under the distributions Π∗|z, Π∗|w, Π∗|wB respectively, and summing only over
accepting τ ’s):∑

τ max(pwτ − pw
B

τ , 0) ≤
∑

τ max(pzτ − pw
B

τ , 0) +
∑

τ |pwτ − pzτ | ≤ o(α) + o(α) = o(α).

Proof of Claim 9. By Fact 6, if w is a random window of zB, then w←B, w →B, w↑B are each
marginally uniformly random windows of z. Thus by the Homogeneity Lemma (with m :=
|B| and R := Πacc

∗ ) and a union bound, with probability ≥ 1 − o(1) over the choice of w, the
following three distances are simultaneously ≤ o(1): ∆

(
Πacc
∗ |w←B,Πacc

∗ |z
)
, ∆
(
Πacc
∗ |w →B,Πacc

∗ |z
)
,

∆
(
Πacc
∗ |w↑B,Πacc

∗ |z
)
. Now assuming this good event occurs for some particular w, we just need to

show that Π∗|z overflows onto Π∗|w.
(See Figure 3 for a proof-by-picture.) Let pτ , p

11
τ , p10

τ , p00
τ , p01

τ denote the probabilities of a
transcript τ under Π∗|z, Π∗|w, Π∗|w←B, Π∗|w →B, Π∗|w↑B respectively. Let γ00

τ := |pτ − p00
τ |, and

for ab ∈ {01, 10} let γabτ := |p00
τ − pabτ |. We claim that for all τ , pτ − p11

τ ≤ γ00
τ + γ01

τ + γ10
τ ; this will

finish the proof since then (summing only over accepting τ ’s)∑
τ max(pτ − p11

τ , 0) ≤
∑

τ (γ00
τ + γ01

τ + γ10
τ ) ≤ o(α) + o(α) + o(α) = o(α)

where the second inequality is because
∑

τ γ
00
τ ,
∑

τ γ
01
τ ,
∑

τ γ
10
τ ≤ o(α) follow from (respectively)

∆
(
Πacc
∗ |z,Πacc

∗ |w →B), ∆
(
Πacc
∗ |w →B,Πacc

∗ |w↑B
)
, ∆
(
Πacc
∗ |w →B,Πacc

∗ |w←B
)
≤ o(1).
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w←B

w →B

w

w↑B

3-violation windows 7-violation window

Figure 3: Proof of Claim 9 illustrated. The four windows w, w←B, w →B, w↑B are rectangles
of (x, y)’s. Each (x, y) can be further subdivided according to the private coins (rA, rB) of the players.
The protocol Π∗ partitions the extended input space of (xrA, yrB)’s into transcript rectangles—
above, we have only drawn accepting transcript rectangles (in various colors). For a window w′, the
probability P[Π∗|w′ = τ ] is simply the area (appropriately scaled) of the transcript rectangle of τ
inside w′. In the proof of Claim 9, the relevant case is when all of Πacc

∗ |w←B, Πacc
∗ |w →B, Πacc

∗ |w↑B
have roughly the same distribution, say, D (in fact, D := Πacc

∗ |z). By the rectangular property
of transcripts, this forces Π∗|z to overflow onto Π∗|w. (Note that Πacc

∗ |w may contain additional
transcripts to those in D, since the acceptance probability is higher.)

To verify the subclaim, it suffices to show that

p01
τ · p10

τ ≥ (p00
τ )2 − p00

τ γ
01
τ − p00

τ γ
10
τ (6)

since by the rectangular nature of transcripts, we have p00
τ · p11

τ = p01
τ · p10

τ , and thus if p00
τ > 0 then

p11
τ =

p01
τ · p10

τ

p00
τ

≥ p00
τ − γ01

τ − γ10
τ ≥ pτ − γ00

τ − γ01
τ − γ10

τ

and if p00
τ = 0 then of course p11

τ ≥ p00
τ = pτ − γ00

τ . To see (6), note that for some signs
σ01
τ , σ

10
τ ∈ {1,−1}, the left side of (6) equals

(
p00
τ + σ01

τ γ
01
τ

)
·
(
p00
τ + σ10

τ γ
10
τ

)
, which expands to

(p00
τ )2 + σ01

τ p
00
τ γ

01
τ + σ10

τ p
00
τ γ

10
τ + σ01

τ σ
10
τ γ

01
τ γ

10
τ . (7)

If σ01
τ = σ10

τ then (7) is at least the right side of (6) since the last term of (7) is nonnegative. If
σ01
τ 6= σ10

τ , say σ01
τ = −1 and σ10

τ = 1, then (7) is at least the right side of (6) since the sum of the
last two terms in (7) is p00

τ γ
10
τ − γ01

τ γ
10
τ = p01

τ γ
10
τ ≥ 0.

6.8 Proof of the Homogeneity Lemma

Definition 10. For a gadget g : X × Y → {0, 1} and b ∈ {0, 1}, define the digraph Gb as follows:
the nodes are the b-inputs of g, and there is an edge from xy to x′y′ iff x = x′ or y = y′. (That is,
each node has a self-loop, and all b-inputs in a given row or column have all possible edges between
them.)
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Definition 11. We say a gadget g : X ×Y → {0, 1} is regular iff (i) |X | = |Y| is even, (ii) each row
and each column is balanced (number of 0’s equals number of 1’s), and (iii) G0 and G1 are both
strongly connected.

Our gadget g is indeed regular, but we prove the lemma for any regular constant-size g.
The first part of the proof is inspired by a similar approach that was used in [HN12]. We

augment the probability space with the following random variables: let X ′Y ′ be a random input
in W that is conditionally independent of XY given W (note that in each of the m coordinates
independently, XY and X ′Y ′ are equal with probability 1/2), and let E ∈ ((gm)−1(z))2 be chosen
randomly from {(XY,X ′Y ′), (X ′Y ′, XY )}. We have H(R |E) = H(R |WE) ≤ H(R |W ) since R
is conditionally independent of W given E, and conditioning decreases entropy. We also have
H(R |XY E) = H(R |XY ) = H(R |XYW ) since R is conditionally independent of WE given XY .
Putting these together, we get

I(R ;XY |E) = H(R |E)−H(R |XY E) ≤ H(R |W )−H(R |XYW ) = I(R ;XY |W ) ≤ o(1).

By Markov’s inequality, with probability ≥ 1−o(1) over e ∼ E, we have I(R ;XY |E = e) ≤ o(1), in
which case if e = (x(0)y(0), x(1)y(1)) then by Pinsker’s inequality3, ∆

(
R|x(0)y(0), R|x(1)y(1)

)
≤ o(1);

let us use ε > 0 for the latter o(1) quantity. We describe what the above means in graph theoretic
terms.

Example of G1 for
the regular gadget
x1 + y1 + x2y2

Define the digraph Gz as follows: the nodes are the inputs in
(gm)−1(z), and there is an edge from one input to another iff there
exists a window of z containing both inputs; this includes a self-loop at
each node. Note that Gz is the tensor product Gz1⊗· · ·⊗Gzm , i.e., each
node of Gz corresponds to an m-tuple of nodes from those digraphs, and
each edge of Gz corresponds to an m-tuple of edges. For convenience, we
make the dependence of the random variable E on z explicit using the
notation Ez; thus Ez is distributed over the edges of Gz. By regularity,
for b ∈ {0, 1} the distribution of Eb over the edges of Gb puts half its
mass uniformly over the self-loops, and half its mass uniformly over the
non-self-loops. Note that the distribution of Ez is the product of the
distributions of Ez1 , . . . , Ezm , i.e., Ez can be sampled by taking samples
(x(0,i)y(0,i), x(1,i)y(1,i)) from Ezi (independent over i ∈ [m]) and forming
the edge

(
x(0,1)y(0,1) · · ·x(0,m)y(0,m), x(1,1)y(1,1) · · ·x(1,m)y(1,m)

)
in Gz.

We say an edge (x(0)y(0), x(1)y(1)) of Gz is great iff ∆
(
R|x(0)y(0), R|x(1)y(1)

)
≤ ε. Thus the great

edges have at least 1− o(1) probability mass under Ez.
Let L be the number of non-self-loop edges in Gb (which is the same for b = 0 and b = 1).

Claim 12. There exists a distribution over length-2L walks on Gz such that (i) the first and last
nodes are independent and each marginally uniform, and (ii) each of the 2L edges on the walk is
marginally distributed according to Ez.

Proof. By the product structure of Gz and Ez, it suffices to prove this claim for a bit b instead
of z (as the claim for z follows by sampling m independent such walks on the Gzi ’s and running
them “in parallel”). By regularity, if we ignore the self-loops, there exists an eulerian tour in Gb

3Specifically, if RB are jointly distributed random variables where B ∈ {0, 1} is a uniformly random bit, and Rb

denotes the distribution of R|(B = b), then I(R ;B) = D(R0 ‖R)/2 +D(R1 ‖R)/2 ≥ Ω(∆(R0, R)2/2 + ∆(R1, R)2/2) ≥
Ω((∆(R0, R)/2+∆(R1, R)/2)2) ≥ Ω(∆(R0, R1)2), where D denotes KL-divergence, and the first inequality is Pinsker’s,
the second is by convexity of the square function, and the third is by the triangle inequality.
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that uses all the non-self-loop edges exactly once, and pays an equal number of visits to each node.
Let v0, v1, . . . , vL−1, v0 denote the sequence of nodes visited (with repeats) on a fixed such tour. We
explicitly describe the distribution of walks vi0 , . . . , vi2L on Gb, using mod-L arithmetic:

1. Independently sample i0 and ` uniformly from {0, . . . , L− 1}.
2. For j = 1, . . . , `, execute one of the following with probability 1/2 each:

2a. Use the self-loop then move forward (i.e., i2j−1 = i2j−2 and i2j = i2j−1 + 1).
2b. Move forward then use the self-loop (i.e., i2j−1 = i2j−2 + 1 and i2j = i2j−1).

3. For j = `+ 1, . . . , L, execute one of the following with probability 1/2 each:
3a. Use the self-loop twice (i.e., i2j = i2j−1 = i2j−2).
3b. Move forward then backward (i.e., i2j−1 = i2j−2 + 1 and i2j = i2j−1 − 1).

This procedure has L phases, each taking 2 steps of the walk. Each of the first ` phases has the
effect of moving forward one node on the tour, and each of the last L − ` phases has the effect
of ending up at the same node the phase started at. Thus i2L = i0 + ` and is hence independent
of i0 and uniform over {0, . . . , L − 1} (since ` is independent of i0 and uniform); hence also vi0
and vi2L are independent and uniform (since the tour visits each node equally often) and so (i) is
verified. Property (ii) holds even conditioned on any `, and can be verified by a little case analysis;
e.g., if ` > 1 then the first edge is (vi0 , vi0) with probability 1/2, and is (vi0 , vi0+1) with probability
1/2 (this is a sample from Eb since vi0 is a uniform node and (vi0 , vi0+1) is a uniform non-self-loop
edge).

If we sample a walk x(0)y(0), . . . , x(2L)y(2L) in Gz as in Claim 12, then by property (ii) and a
union bound, with probability ≥ 1− 2L · o(1) = 1− o(1), each of the edges on the walk is great, in
which case by the triangle inequality, ∆

(
R|x(0)y(0), R|x(2L)y(2L)

)
≤ 2Lε. In summary, by property

(i), a 1− o(1) fraction of pairs of inputs in (gm)−1(z) are good in the sense that their conditional
distributions of R are within statistical distance 2Lε = o(1). Thus a 1 − o(1) fraction of inputs
xy ∈ (gm)−1(z) are such that (xy, xy) is good for a 1− o(1) fraction of xy ∈ (gm)−1(z), in which
case (letting xy be random in (gm)−1(z) in the following)

∆(R|xy,R) = ∆
(
R|xy,ExyR|xy

)
≤ Exy ∆

(
R|xy,R|xy

)
≤ Pxy[(xy, xy) is good] · o(1) + Pxy[(xy, xy) is not good] · 1
≤ 1 · o(1) + o(1) · 1
= o(1)

where the second line is a basic general fact about statistical distance. Say xy is typical if
∆(R|xy,R) ≤ o(1) as above. Note that in the original probability space, XY is marginally uniform
over (gm)−1(z) and thus with probability at least 1− o(1) over sampling w ∼W and xy ∼ XY ∈ w,
xy is typical. It follows that for at least 1− o(1) fraction of w, at least 1− o(1) fraction of xy ∈ w
are typical, in which case

∆(R|w,R) = ∆
(
Exy∈wR|xy,R

)
≤ Exy∈w ∆(R|xy,R)

≤ Pxy∈w[xy is typical] · o(1) + Pxy∈w[xy is not typical] · 1
≤ 1 · o(1) + o(1) · 1
= o(1).
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7 Query Lower Bound

An alternative approach for proving a lower bound for the (#∃−1)-game for TseG ◦ gn is:

Step 1 : Prove an appropriate query complexity lower bound for TseG.
Step 2 : Use a communication-to-query simulation theorem like [CLRS16, GLM+16, LRS15].

In this section, we carry out the first step by proving an optimal Ω(n) query complexity lower bound
(in particular, this answers a question from [LNNW95]). The query lower bound is a lot simpler to
prove than our Ω(n/ log n) communication lower bound in Section 6. Unfortunately, as we discuss
in Section 7.3, it is not known how to perform the second step for small-enough gadgets g.

The result of this section can be interpreted as evidence that the right bound in Theorem 1
is 2Ω(n) and the right bound in Corollary 4 is Ω(n), and also as motivation for further work to
improve parameters for simulation theorems.

7.1 Conical juntas

The query complexity analogue of nonnegative rank decompositions (nonnegative combinations
of nonnegative rank-1 matrices) are conical juntas: nonnegative combinations of conjunctions of
literals (input bits or their negations). We write a conical junta as h =

∑
C wCC where wC ≥ 0

and C ranges over all conjunctions C : {0, 1}n → {0, 1}. The degree of h is the maximum number
of literals in a conjunction C with wC > 0. Each conical junta naturally computes a nonnegative
function h : {0, 1}n → R≥0.

A randomized decision tree T of height d (probability distribution over deterministic decision
trees of height d) can be converted into a degree-d conical junta h that on input z ∈ {0, 1}n
outputs the acceptance probability of T on input z; the conversion is the same as for multilinear
polynomials [BdW02, Theorem 15]. Conversely, given a degree-d conical junta h =

∑
C wCC,

consider the randomized height-d decision tree T that on input z ∈ {0, 1}n samples a random
conjunction C with probability proportional to wC and accepts iff C(z) = 1. The resulting
randomized decision tree has acceptance probability proportional to h(z). Hence, for computational
tasks (such as (#∃−1)-games) where we care only about the acceptance probability up to scaling,
randomized decision trees and conical juntas are equivalent.

We will study (#∃−1)-games in query complexity: the query complexity of the (#∃−1)-game
for TseG is the least degree of a conical junta h that on input z outputs h(z) = |viol(z)| − 1.

7.2 A linear lower bound

Theorem 13. There is a family of n-node bounded-degree graphs G such that the (#∃−1)-game
for TseG requires query complexity Ω(n).

Relation to [LNNW95]. An analogue of the (KW/EF) connection holds for query complexity:
if there is a deterministic decision tree of height d that solves the search problem TseG, we can
convert this into a degree-(d+O(1)) conical junta for the associated (#∃−1)-game. Moreover, if we
only have a randomized ε-error decision tree for the search problem, then the connection gives us a
conical junta h that approximately solves the (#∃−1)-game: h(z) ∈ (|viol(z)| − 1) · (1± ε) for all z.

Our proof below is robust enough that the Ω(n) bound holds even for conical juntas that merely
approximately solve the (#∃−1)-game. Hence we get a randomized Ω(n) lower bound for TseG,
which was conjectured by [LNNW95, p. 125]; note however that the earlier work [GP14] already
got a near-optimal Ω(n/ log n) bound. In any case, to our knowledge, this is the first O(1)-vs-Ω(n)
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separation between nondeterministic query complexity (which for TseG equals the maximum degree
of G) and randomized query complexity for search problems.

The proof. Fix an n-node bounded-degree expander G = (V,E). That is, for any subset U ⊆ V of
size |U | ≤ n/2, the number of edges leaving U is Θ(|U |). We tacitly equip G with an arbitrary odd-
weight node-labeling. Assume for the sake of contradiction that there is a conical junta h =

∑
wCC

of degree o(n) for the (#∃−1)-game for TseG. Let C be a conjunction with wC > 0. Denote by
S ⊆ E the set of edges that C reads; hence |S| ≤ o(n). Below, we write GrS for the graph induced
on the edges E r S (deleting nodes that become isolated).

Claim 14. We may assume w.l.o.g. that Gr S is connected.

Proof. If Gr S is not connected, we may replace C with a conjunction (actually, a sum of them)
that reads more input variables; namely, we let C read a larger set of edges S′ ⊇ S including
all edges from connected components of G r S of “small” size ≤ n/2. When adding some small
component K ⊆ E to S′ we note that, because G is expanding, the size of K is big-O of the size of
the edge boundary of K (which is contained in S). On the other hand, every edge in S lies on the
boundary of at most two components. It follows that |S′| = O(|S|), i.e., we increased the degree of
h only by a constant factor. Now in Gr S′ we have only components of size > n/2, but there can
only be one such component.

Claim 15. We may assume w.l.o.g. that C witnesses at least two fixed nodes with a parity violation
(i.e., C reads all the edge labels incident to the two nodes).

Proof. Suppose for contradiction that C witnesses at most one violation. Then we may fool C
into accepting an input (and hence h into outputting a positive value on that input) where the
number of violations is 1, which is a contradiction to the definition of the (#∃−1)-game. Indeed,
let z be some input accepted by C. Then we may modify z freely on the connected graph Gr S
(by Claim 14) without affecting C’s acceptance: we may eliminate pairs of violations from z by
flipping paths (as in Section 3) until only one remains. (This is possible since by definition, all the
non-witnessed violations of z remain in Gr S.)

Let µi (i odd) denote the distribution on inputs that have i violations at a random set of i nodes,
and are otherwise random with this property. We may generate an input from µi as follows:

1. Choose an i-set Ti ⊆ V of nodes at random.
2. Let z ∈ ZE2 be any fixed input with viol(z) = Ti.
3. Let q ∈ ZE2 be a random eulerian graph.
4. Output z + q.

Theorem 13 follows from the following lemma. Here we identify C with the set (subcube) of
inputs it accepts, and define µi(C) := Pz∼µi [C(z) = 1].

Lemma 16. µ5(C) ≥ (10/3− o(1)) · µ3(C).

Indeed, consider the expected output value Ezi∼µi [h(zi)]. This should be 2 for i = 3, and 4
for i = 5, i.e., a factor 2 increase. However, the above lemma implies that the output value gets
multiplied by more than a factor 3, which is the final contradiction.
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Proof of Lemma 16. By Claim 15 let {v1, v2} be a pair of nodes where C witnesses two violations.
For i = 3, 5, let zi ∼ µi and denote by Ti the i-set of its violations. Then

µ3(C) = P[C(z3) = 1]

= P[C(z3) = 1 and T3 ⊇ {v1, v2}]
=
(
n−2

1

)
/
(
n
3

)
· P[C(y3) = 1], (for y3 := (z3 |T3 ⊇ {v1, v2}))

µ5(C) = P[C(z5) = 1]

= P[C(z5) = 1 and T5 ⊇ {v1, v2}]
=
(
n−2

3

)
/
(
n
5

)
· P[C(y5) = 1]. (for y5 := (z5 |T5 ⊇ {v1, v2}))

So their ratio is
µ5(C)

µ3(C)
=

10

3
· P[C(y5) = 1]

P[C(y3) = 1]
.

Hence the following claim concludes the proof of Lemma 16.

Claim 17. P[C(y5) = 1]/P[C(y3) = 1] ≥ 1− o(1).

Proof. We can generate y3 and y5 jointly as follows:

y3: Choose v3 ∈ Vr{v1, v2} uniformly random and let x3 be some input with viol(x3) = {v1, v2, v3}.
Output y3 := x3 + q where q is a random eulerian graph.

y5: Continuing from the above, choose {v4, v5} ⊆ V r {v1, v2, v3} at random. If possible, let p be
a path in Gr S joining {v4, v5} (a “good” event), otherwise let p be any path joining {v4, v5}.
Output y5 := x3 + p+ q.

It suffices to prove the claim conditioned on any particular v3 (and hence also on x3). By Claim 14
we have P[“good” | v3] = P

[
v4, v5 ∈ G r S

∣∣ v3

]
≥ 1 − o(1) since |S| ≤ o(n). If the “good” event

occurs, then C cannot distinguish between y3 = x3 + q and y5 = x3 + p + q so that P[C(y3) =
1 | v3] = P

[
C(y5) = 1

∣∣ “good”, v3

]
. The claim follows as

P[C(y5) = 1 | v3] ≥ P
[
C(y5) = 1 and “good”

∣∣ v3

]
= P

[
C(y5) = 1

∣∣ “good”, v3

]
· P[“good” | v3]

= P[C(y3) = 1 | v3] · P[“good” | v3]

≥ P[C(y3) = 1 | v3] · (1− o(1)).

7.3 Limitations of existing simulation theorems

The main result of [GLM+16] is a simulation of randomized protocols (or nonnegative rank de-
compositions) by conical juntas: a cost-d protocol for a lifted problem F ◦ gn can be simulated by
a degree-O(d) conical junta (approximately) computing F . While F here is arbitrary, the result
unfortunately assumes that g := IPb is a logarithmic-size, b := Θ(log n), inner-product function
IPb : {0, 1}b × {0, 1}b → {0, 1} given by IPb(x, y) := 〈x, y〉 mod 2.

Plugging b-bit gadgets into the reductions of Section 4 would blow up the number of input bits of
CSP-SAT exponentially in b. This is not only an artifact of our particular reduction! Consider more
generally any reduction from a communication search problem S ◦gn to a KW+-game for a monotone
f : {0, 1}m → {0, 1}. Since the KW+-game has nondeterministic communication complexity logm
(number of bits the players must nondeterministically guess to find a witness), the reduction would
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imply c ≤ logm where c is the nondeterministic communication complexity of S ◦ gn. If merely
computing g requires b bits of nondeterministic communication, then clearly c ≥ b so that m ≥ 2b.
For b = Θ(log n), as required by [GLM+16], the number of input bits m becomes polynomially
larger than the bound Ω(n) we proved above, and hence the lower bound is weak as a function of m.

A major open problem is to develop simulation theorems for gadget size b = O(1).

Acknowledgements

Thanks to Denis Pankratov, Toniann Pitassi, and Robert Robere for discussions. We also thank
Samuel Fiorini and Raghu Meka for e-mail correspondence. Finally, many thanks to anonymous
referees (of FOCS’16 and SICOMP) for thoughtful comments. M.G. admits to having a wonderful
time at IBM while learning about extended formulations with T.S. Jayram and Jan Vondrak.

Part of this research was done while M.G. and R.J. were attending the Semidefinite and Matrix
Methods for Optimization and Communication program at the Institute for Mathematical Sciences,
National University of Singapore in 2016. This research was supported in part by NSERC, in part
by NSF grant CCF-1657377, and in part by the Singapore Ministry of Education and the National
Research Foundation, also through the Tier 3 Grant Random numbers from quantum processes
MOE2012-T3-1-009. M.G. was partially supported by the Simons Award for Graduate Students in
TCS.

References

[AT14] David Avis and Hans Raj Tiwary. On the extension complexity of combinatorial poly-
topes. Mathematical Programming, 153(1):95–115, 2014. doi:10.1007/s10107-014-0764-2.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
A survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)

00144-X.

[BJKS04] Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68(4):702–732, 2004. doi:10.1016/j.jcss.2003.11.006.

[BM13] Mark Braverman and Ankur Moitra. An information complexity approach to extended
formulations. In Proceedings of the 45th Symposium on Theory of Computing (STOC),
pages 161–170. ACM, 2013. doi:10.1145/2488608.2488629.

[BP15] Gábor Braun and Sebastian Pokutta. The matching polytope does not admit fully-
polynomial size relaxation schemes. In Proceedings of the 26th Symposium on Discrete
Algorithms (SODA), pages 837–846. ACM–SIAM, 2015. doi:10.1137/1.9781611973730.57.
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