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Abstract

A Probabilistically Checkable Proof of Proximity (PCPP) for a linear code C, enables to determine very efficiently
if a long input x, given as an oracle, belongs to C or is far from C.

PCPPs are often a central component of constructions of Probabilistically Checkable Proofs (PCP)s [Babai et al.
FOCS 90; Arora et al. JACM 98]; which in turn can be used to construct asymptotically efficient cryptographic zero
knowledge arguments of membership in any language L ∈ NEXP, with minimal communication complexity and
computational effort on behalf of both prover and verifier [Babai et al. STOC 91; Kilian STOC ‘92; Micali SICOMP
‘00]. Though PCP constructions are asymptotically efficient, it is still far from clear how well they will perform in
practice on concrete input sizes. This issue motivated the work of [Ben-Sasson et. al. STOC ’13]. As in [BCGT13],
to explore this question, we continue to investigate how well the PCPP for Reed-Solomon (RS) codes of [BS08] - the
“heavy” component in the PCP construction of [BS08] - behaves for concrete input lengths. The crucial parameter to
understand is the soundness of the PCPP, which is the probability an x far from C gets rejected. The paper contains
three contributions:

1. Improved soundness analysis of a new variant of the Reed-Solomon (RS) PCP of Proximity (PCPP) verifier
of [BS08]. This verifier and its analysis reduce the concrete efficiency threshold of RS PCPPs, as defined by
[BCGT13], from its previous state of the art (243) there to 223 here. Informally, the concrete efficiency threshold
is a measure that abstracts the “smallest input length for which the PCPP is useful”; thus, reducing it will hope-
fully push PCP constructions a bit closer to practice. Additional improvements are reported for input lengths in
the range 223—235 that we view as interesting in practice.

2. We initiate the study of the security of PCPP systems, in which soundness is measured only with respect to a set
of known efficient (polynomial-time) “pseudo-provers”, or “attacks”, attempting to prove “x ∈ C” when x is far
from C. As a first step in this direction we introduce a pair of natural attacks on the PCPP system of [BS08];
and show that for most inputs that are not codewords the soundness (i.e., rejection probability) of both attacks is
significantly higher (better) than the new unconditional worst-case bounds reported above. We conjecture that the
same should be true for any x far from the code, and pose this as an interesting open problem, with significance to
the “real-word practicality” of PCPs.
In particular, for attaining the same rejection probability against these attacks on most inputs x, the PCPP verifier
need only read approximately a 2−8-fraction of the amount of field elements he needs to read according to the
result of item 1, while maintaining the same proof length. Consequently, the concrete efficiency threshold, when
defined analogously in this setting, decreases from 223 to 217.

3. To further reduce the concrete efficiency threshold we consider the Interactive Oracle Proofs of Proximity (IOPP)
model [BSCS16, RRR16, BCG+16], in which [BCG+16] show proof length can be significantly reduced with no
loss in soundness, at the price of increased interaction. We show that the IOPP model gives significant improve-
ments for practical ranges of parameters. In particular, applying the security analysis above to this new interactive
model, the resulting proof length is cut by a factor of approximately 8× while verifier query complexity is cut
down by a factor of approximately 210× in comparison to item 1.

We hope this work will bring PCPs closer to practice and popularize the quest for better concrete PCP soundness
within the theoretical computer science research community.
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1 Introduction
The study of the soundness of PCP systems — the minimal probability of rejecting a pseudo-proof of false statements
— is a cornerstone of modern computational complexity. Motivated by applications to the theory of inapproximability,
as initiated by [FGL+96], many of these results attempt to minimize the query complexity of the proof while maxi-
mizing soundness (cf. [Hås01, Din07, MR08] for notable examples). Motivated by the cryptographic applications of
PCPs to sublinear time verification [BFL90, BFLS91] and to the construction of succinct Computationally Sound (CS)
proofs [Kil92, Mic00], a different approach suggested to minimize a joint function of query complexity and proof-
blowup [PS94, HS00, GS06, BSVW03, BGH+06, BS08, Mie08] and furthermore consider such an optimization for
“concrete” and non-asymptotic input lengths [BCGT13]. The rationale here is that the “concrete efficiency threshold”
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of PCP systems could help drive and focus research towards a better understanding of PCP soundness for small input
lengths, ones that arise in practical computations.

Indeed, over the past few years there has been considerable work on implementations of succinct verification of
correct program execution. Roughly speaking, this is the task of a prover P running a program T on input x for t
steps to obtain output T (x) = z; and then convincing a verifier V that indeed T (x) = z in time s � t. Babai et.
al [BFL90, BFLS91] showed, using PCP constructions with efficient verifiers, that this can always be done in time
s = polylog(t). In terms of published works on implementation, there are two main routes we are aware of:

1. Implementations using “linear PCPs” 1 [IKO07, BCI+13, Gro09, GS09, GOS06, Gro10, Lip12, GGPR13]; exam-
ples of implementations include Setty et al. [SMBW12, SVP+12, SBW11], Vu et al. [VSBW13], Parno et. al
[PGHR13] and Ben-Sasson et. al [BCG+13].

2. Implementations using sum-check protocols [KR08, GKR15]; an implementation is reported, for example, in Cor-
mode et. al [CMT12].

Naturally, these implementations have used ideas arising in PCP constructions. However, so far they have avoided
using the “heavy PCP machinery”, e.g., probabilistically checkable proofs of proximity (PCPPs) (see Definition 1.1)
and proof composition, perhaps because it is not sufficiently clear whether these tools are efficient enough in practice.
This avoidance comes at a cost: Implementations of the first type require a trusted setup phase that involves a cryp-
tographic trapdoor that can be recovered by the party (or parties) setting up the system; this trapdoor allows one to
efficiently forge pseudo-proofs of false statements that will nevertheless be accepted by V . The second approach is
currently only efficient when the computation can be modeled as a poly-log depth circuit; thus, it is useful only for
succinct verification of parallelizable programs. It is therefore of significance to understand how well asymptotically
efficient PCP constructions perform when they are “scaled down” to input lengths arising in practice. As a special
case, it is important to understand how well PCPPs for Reed-Solomon codes (denoted RS-PCPPs henceforth) behave
on practical input lengths, because (i) RS-PCPPs are precisely the (only) heavy component in the PCP construction of
[BS08] and (ii) the [BS08] construction seems to be amenable to efficient implementation in practice.2

1.1 PCPPs and their concrete efficiency
Before defining probabilistically checkable proofs of proximity (PCPPs), we give some intuition as to why they arise
in PCP constructions, specifically that of [BS08]. Suppose we wish to construct a proof that convinces a verifier V
that some string w ∈ Fk is a satisfying assignment to a constraint satisfaction problem, while querying only a few
locations of the proof. Methods involving arithmetization, starting from Lund et. al [LFKN92] and Babai et. al
[BFL90] (cf. [AS98, ALM+98, PS94]) showed this is possible if V is given access to a low degree extension of w; or
more generally, to an encoding of w by some error correcting code C. This leads to proof systems in which V is given
oracle access to a long word x, that is supposed to be a codeword of C. Under the assumption that indeed x ∈ C, the
proof system can be shown to work well; and the “heavy” work left for V is to verify that indeed x ∈ C, or at least that
x is close to a codeword of C. If V was given access only to x, this would be possible with few queries only if C was
a locally testable code (LTC). This comes at a price because known constructions of “PCP-friendly” LTCs are more
complex and have lower rate than a code like Reed-Solomon (RS), and some of the more efficient LTCs (in terms of
rate), like [KRS15, KMRS15] are not known to “PCP-friendly”, i.e., it is not clear how to build PCPs in a black-box
manner using these codes. In particular, if we want to use a code that corresponds to an actual low degree extension,
as is necessary in some constructions, we need to use a multivariate Reed-Muller code, which has poor rate compared
to RS. This low rate would translate into a longer proof. To enable using a simple code of high rate like RS in a PCP,
the prover will add an auxiliary proof y that x ∈ C. Miraculously, even if C has no local structure, V can verify that
x is at least close to C by querying a few locations in both x and y. This auxiliary proof is what is commonly called a
PCPP3 for the code C [BGH+06, DR04].

1The connection between linear PCPs and efficient proofs was clarified and formalized by Bitansky et. al [BCI+13], and is implicit in some of
the mentioned works.

2In fact, such an implementation will soon be published by the Succinct Computational Integrity and Privacy Research (SCIPR) lab (scipr-
lab.org).

3However, it is technically convenient for us to define the PCPP as a mapping that outputs both x and y.
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Below we use the standard notation that an [n, k, d]F-code C is a k-dimensional subspace of Fn in which no two
distinct members have hamming distance smaller than d.

Definition 1.1 (PCPP for a code C). Fix integers A,Q ∈ N. Let C be an [n = n(C), k = k(C), d = d(C)]F-code.
An (A,Q)-PCPP system S for C is a pair S = (P, V ), where

• P is a systematic mapping P : C → FA.

That is, for any x ∈ C, P (x) = (x, y) for some y ∈ FA−n.

• V is a Q-local randomized mapping V : FA → {accept, reject}. That is, after choosing its internal randomness,
V (z) always depends on at most Q indices of z ∈ FA.

Such that

• (Completeness) For any x ∈ C, V (P (x)) = accept with probability one.

• (Soundness) For any x ∈ Fn such that ∆(x,C) ≥ d/3, and any y ∈ FA−n, V ((x, y)) = reject with probability at
least 1/2.

Defining concrete efficiency of PCPPs [BCGT13] introduced the notion of the concrete efficiency threshold of a
PCPP, which is central to our results.

Let us begin with some intuition before the formal definition. Recall that our goal is to have a system where P
convinces V that a long string x ∈ Fn to which V has oracle access, is close to a codeword of C. Typically, x is
an encoding of a string w ∈ Fk that is a satisfying assignment to some constraint satisfaction problem φ. Consider
first the following “trivial” proof system: P sends to V the message w ∈ Fk whose encoding is x. V checks that the
encoding of w is indeed x. Let us look for a simple way to measure the efficiency, or cost, of this proof system. We
ignore computational costs and only count the numberA of field elements P writes and the numberQ of field elements
V reads; i.e., we do not count the computations done by P and V . This is certainly a lower bound on the complexity
of the system, and [BCGT13] argue (see Remark 2.7 there) that it is a reasonable approximation as all calculations in
the [BS08] PCPP are quasilinear with small constants in A and Q. [BCGT13] suggest taking the product of these two
numbers as a measure of the cost of a proof system (See Remark 1.3 following Definition 1.2). Using this measure,
the cost of the trivial proof system is k2. They go on to define a proof system as “useful” for a given input length if its
cost under this measure is at most k2/2. In other words, a proof system is useful if it is at least twice more efficient
than the trivial system (according to the chosen cost function). The concrete efficiency threshold of the system is thus
defined as the smallest input length where it is useful. We proceed with the formal definitions.

Definition 1.2 (Concrete efficiency threshold of a PCPP). Using the notation of Definition 1.1, we define the cost of
an (A,Q)-PCPP system for a code C to be A ·Q. We say the system is efficient if the cost A ·Q ≤ k(C)2/2.

Fix an ensemble of linear codes C =
{
C ⊆ Fn(C)

}
, and functions A,Q : N→ N. An (A,Q)-PCPP system for C

is an ensemble of PCPP systems S = {SC |C ∈ C} where SC is an (A(k(C)), Q(k(C)))-PCPP system for C.
The concrete efficiency threshold of S is the smallest integer k such that for any C ∈ C of dimension k(C) ≥ k,

SC is efficient.

Remark 1.3 (On the particular choice of cost function). • One may question why specifically the product ofA andQ
should be defined as the cost function. Indeed, [BCGT13] suggests looking at general polynomial cost functions
C(x, y), and defining C(A,Q) as the cost of the system. Naturally, one may desire to choose a cost function
giving larger weight to A or Q depending on whether they want to focus more on prover or verifier complexity
respectively. However, [BCGT13] end up presenting their results using C(x, y) = x · y; thus, for simplicity, and to
enable comparison with their results, we focus solely on the product cost function.

• In similar vein, defining a system to be efficient\useful when it is twice as efficient as the trivial system, rather than
some other constant (or function), is an arbitrary choice made in [BCGT13] that we stick with.

We now proceed to describe our results.
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log(message length) log(codeword length) log(proof length) log(# of queries)
23 26 31 16.5
24 27 32 16.75
25 28 33 17
26 29 34 17.25
27 30 35 17.5
28 31 36 17.75
29 32 37 18
30 33 38 18.25
31 34 39 18.5
32 35 40 18.75
33 36 41 19
34 37 42 19.25
35 38 43 19.5

Table 1: Instantiations of our analysis of a depth two test (see Subsection 4.1.4). All numbers are logs in base two of the described quantity. The
first column describes the length (in field elements) of the message w to be encoded into a word x ∈ RSL[3]. The second column is the length of
x. The third column is the length of x together with the proof y that x ∈ RSL[3]. The fourth is the number of field elements a verifier needs to read
to be convinced with probability 1/2 that x is at least 7

24
-close to RSL[3].

1.2 First contribution — Improved concrete efficiency threshold
Before presenting our results we need to formally define RS codes.

Reed-Solomon codes on subspaces Fix a positive integer η. Let F be a field of characteristic two. Fix an F2-
subspace L ⊆ F. We define RSL[η] to be the set of functions g : L→ F that are evaluations of a univariate polynomial
p ∈ F[Z] of degree at most 2−η · |L| − 1.

We define RSa[η] to be the ensemble of Reed-Solomn codes over some subspace L ⊆ F, of degree at most
2−η · |L| − 1.

That is,
RSa[η] , {RSL[η]|L ⊆ F is a subspace} .

Note that in this notation the fixed field F is implicit.

In this terminology, we show the following.

Theorem 1.4. Fix any field F of characteristic two. There is a PCPP system for RSa[3] with concrete efficiency
threshold at most 223.

Theorem 1.4 improves the bound of 243 from [BCGT13]. It will follow from the first item of

Theorem 1.5. Fix any field F of characteristic two. There is a

1. (2`+5, 2`/2+5.5)-PCPP system for RSa[3],

2. (2`+8, 2`/4+10.75)-PCPP system for RSa[3],

where 2` denotes the message length k(C).

Table 1 shows instantiations of the second item of the above theorem for input lengths up to 235. We note again that
filling the same table with the last column being the number of queries needed according to the analysis of [BCGT13],
would give a trivial result where the verifier needs to read more locations than the original message length.
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1.3 Second contribution — Introducing the analysis of PCPP security rather than sound-
ness

We informally use the term pseudo-proof here to refer to an attempted proof to show that x ∈ C, when in fact x is far
from C.

The soundness s of a PCPP system is defined as the smallest (i.e., worst) rejection probability of a pseudo-proof;
and soundness error is 1− s. According to this definition, soundness is measured with respect to all possible pseudo-
proofs, even those that are intractable to find. Thus far, all analyses of PCPP systems have used mathematically
proven lower bounds on soundness, even when these bounds are not known to be tight. In particular, for the RS PCPP
of [BS08], we are not aware of pseudo-proofs, including ones that are not efficiently constructible, whose rejection
probability is close to being as “bad”, i.e., low, as the proven lower bound on s.

This may be one reason why the known bounds on PCPP soundness (including the improvements of this paper) are
currently far away from guaranteeing small soundness error (say, 2−60) while maintain reasonable verifier and prover
efficiency.

Motivated by the need for small soundness error “in the real world”, we initiate a “practical security/cryptanalytic”
approach to investigate how well PCPPs will perform in practice, as is commonly done in cryptanalysis and security
research [BS93, Mat93]. In this research approach one suggests concrete attacks on various cryptographic primitives,
and defines their security level according to how well they withstand these currently known attacks. In the context
of PCPPs, if know known method for generating a pseudo-proof succeeds to fool the verifier with probability greater
than 2−λ, we could say that “P has security level λ”.

As a first step in the study of PCPP security, we suggest two natural attacks on the RS-PCPP of [BS08], that we
call the “row-compliant attack” and “column-compliant attack”. (See overview in Section 3.2 and Section 6). Ideally,
we would want to show that for any g : L → F that is far from RSL[η] these pseudo-proofs would be rejected with
much higher probability than what is known for a general pseudo-proof. We fall short of this, and pose this as an
interesting open question. However, we manage to show that for almost all g : L → F these attacks fail with high
probability.

When discussing security for concrete, non-asymptotic, input lengths like 230, one faces certain definitional chal-
lenges; for instances, there exists a Turing machine that has encoded in its transition function the optimal pseudo-proof
for each input of size 230, i.e., the pseudo-proof achieving minimal rejection probability; thus, care is needed in defin-
ing what security means to avoid having it collapse to soundness. To deal with this issue (and others) we define
in Appendix B the notion of feasible soundness that abstracts “security” for concrete input lengths; we believe this
definitional approach may be useful in other studies of concrete (non-asymptotic) efficiency and security.

Remark 1.6 (Why study PCP security?). A reasonable question to ask is why should one engage in a security analysis
of PCP systems that inevitably leads to conjectural results, when one can apply the “bullet-proof” method of soundness
analysis that relies on pure mathematical proofs? We give three answers:

• As mentioned, analyzing security may lead to more efficient PCP systems (say, with shorter proofs) than what
unconditional soundness allows for, given that we want a reasonable security level.

• PCPs used in practical cryptographic applications (e.g., [Kil92, Mic00]) use cryptographic primitives (like SHA256)
that have no proven soundness anyways; in other words, avoiding conditional security analysis of PCPs will not
remove the need for cryptographic assumptions (backed up by analysis of known attacks) in PCP-based systems.

• Thinking about attacks on PCPs and PCPPs may lead to new insights and interesting theoretical questions. This
already seems to be the case for the two simple attacks we analyze, that quickly lead to algebraic geometry questions
about distinguishing rational functions from low-degree polynomials (will be discussed in subsequent work).

Related work Kalai and Raz introduced in [KR09] the notion of a probabilistically checkable argument (PCA).
In the PCA model soundness is relaxed to hold only against computationally-bounded adversaries, and the verifier,
which is designated, uses cryptographic primitives (namely, a computational private information retrieval scheme) to
make the interactive process more efficient. The emphasis of our security analysis is different. Rather than proving
security against all computationally bounded adversaries under cryptographic assumptions, we focus on analyzing a
few natural computationally bounded attacks without cryptographic assumptions.
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1.4 Third contribution — Reducing proof length by adding interaction in the style of [BCG+16]
The main factor driving up the cost of a PCPP system (cf. Definition 1.2) is proof length (denoted A there). All
efficient PCPPs known to date use some form of proof composition originally suggested by [AS98]. Proofs written
this way are “composed” of several “layers”. The topmost layer π0 is a string that contains part of the proof. A “view”
of π0 is a restriction of it to a small number of coordinates. Now, for each “interesting” view v the composed proof
will contain a specific sub-proof πv . This process is now repeated recursively, generating sub-sub-proofs for views of
πv etc. The bulk of the final PCPP is due to the many leaves of this recursive process.

However, proof verification is extremely efficient and the verifier inspects only a negligible fraction of views, sub-
views, etc. When applying composition to PCPs of proximity (PCPP) as suggested in [BGH+06], the verifier loses no
soundness if the prover writes down only those subproofs that are eventually queried (cf. Lemma 7.2).

To preserve verifier-efficiency (small query complexity) while improving prover-efficiency (shorter proof), [BCG+16]
use Interactive Oracles Proofs of Proximity (IOPP); whose definition is based on the concept of an Interactive Oracle
Proof [BSCS16] 4 An IOPP is similar to Definition 1.1 of a PCPP, but in an IOPP P writes down the proof as part of
an interactive process with V . However, contrary to a standard interactive protocol and similarly to a PCPP, V does
not pay the cost of receiving and storing P ’s messages, but only the cost of accessing the locations he actually reads.

We show that, for concrete instance sizes, the proof length drops dramatically in this model because the RS-PCPP
verifier works recursively, each step deciding which subproof to query. In the IOPP setting P can generate only those
subproofs that V is actually going to query. See Section 7 for details.

Remark 1.7. Though the idea of V receiving multiple oracles is intuitively clear, formalizing this notion proves tricky
in existing models like IP, MIP, PCP and IPCP. In Appendix A we present a formal model to describe IOPPs using the
concept of a notary. The notary is a third party (in addition to Prover and Verifier) that records prover-messages on
behalf of the verifier V , and V later queries these messages at a small number of locations.

1.5 Illustration of results
Recall again that the objective of a PCPP prover on input x is to convince V that x is close to an element of some code
C. Our results regard Reed-Solomon codes of the form RSL[η] as defined in Section 1.2. Let us define an (A,Q)-
PCPP system with soundness error 2−λ identically to Definition 1.1 but with the rejection probability of V being at
least 1 − 2−λ for “large” λ, rather than 1/2 (λ = 1); we call λ the security parameter. Recall we defined the cost of
such a system to be A · Q. To illustrate our different results, we compare in Figure 1.1 the cost of the proof system
for RSL[3] as a function of the security parameter λ on messages of size 235. We note that the previous analysis of
[BCGT13] does not enable improving upon than the trivial system for such message size. The following four cases
are displayed5:

1. The “trivial” system (black dotted line), where prover simply sends the message being encoded, and the verifier
reads all of it.

2. The improved (unconditional) soundness analysis of Theorem 1.5, described in Section 1.2 (red broken line);

3. The security analysis described in Section 1.3 applied to random functions, assuming the prover can only use the
row and column-compliant attacks; cf. Corollary 6.10 (purple solid line)

4. The security analysis described in Section 1.4 in the IOPP model, applied to random functions, assuming the prover
can only use the row and column-compliant attacks. Cf. Lemma 7.2 (light blue dotted line).

The plot emphasizes how assuming the prover is limited to natural attacks, and using the interactive IOPP model,
helps us get smaller soundness error while maintaining cost that is lower than the trivial system; and this is done for
“reasonable” input length, where “asymptotics have not completely kicked in”.

4The concepts of IOPs and IOPPs also appeared independently in [RRR16], where they are called Probabilistically Checkable Interactive Proofs,
and used there to construct doubly efficient interactive protocols.

5An excel sheet where different cost functions C(A,Q) may be experimented with is available at request.
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Figure 1.1: A comparison of cost as a function of security parameter λ for messages of length 235 with RSL[3]. Notice that the break-even point
for soundness (where cost is no better than that of the trivial system) is at security parameter λ ≈ 10, whereas for security the break-even point is
≈ 16 and for IOPP it is highest (best), approximately 22.
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2 Preliminaries
We present some notation and basic facts that will be used throughout the paper. F always denotes a finite field of
characteristic two. Recall that F is a vector space over F2. When we refer to a subspace L ⊆ F we always mean an
F2-subspace of F when viewed as such a vector space.

Product Sets Fix sets A,B, an element a ∈ A and subset S ⊆ B. We denote by (a, S) or a × S the subset
{(a, b)|b ∈ S} of A×B.

Functions and Polynomials For polynomials F,G ∈ F[Z] we will write F = G or F (Z) = G(Z) to denote
equality of formal polynomials. For a subset S ⊆ F and polynomial F ∈ F[Z] we denote by F |S the function defined
by F |S(x) , F (x). For functions f, g : S → F we write f = g to mean f and g are identical on S. For a domain
S′ ⊆ S we use the notation ∆S′(f, g) to denote the fractional disagreement of f and g on S′. That is,

∆S′(f, g) , Pr
x←S′

(f(x) 6= g(x)).

We also use the notation ∆(f, g) , ∆S(f, g). For F ∈ F[Z] and a function g : S → F we use the abbreviated
notations F = g to mean F |S = g, and ∆S(F, g) to mean ∆S(F |S , g).

When discussing bivariate polynomials Q(X,Y ) ∈ F[X,Y ], we say Q has degree (d, e) if degX(Q) ≤ d and
degY (Q) ≤ e. For a bivariate function f : A × B → F, α ∈ A and β ∈ B; we denote f(X,β) , f |X×β and
f(α, Y ) , f |α×Y We use similar notation for Q(X,Y ) ∈ F[X,Y ]. For example, Q(X, γ) denotes the univariate
polynomial obtained by substituting Y = β in Q. Note that Q(X,β) = f(X,β) means f and Q identify as functions
on A× β.

Subspace Polynomials For a subspace L ⊆ F, we denote by qL the subspace polynomial of L, defined as,

qL(Z) ,
∏
v∈L

(Z − v). (2.1)

These polynomials are well-studied. We mention the essential relevant properties for our results. Suppose that L is
the direct sum of the linear spaces L0 and L1. Then
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• qL0 |L is |L0|-regular.

• qL0
(L) = qL0

(L1) = L′1 for a subspace L′1 ⊆ F with |L′1| = |L1|. In particular, qL0
is injective on L1.

3 Overview of the main contributions

3.1 An overview of first Contribution — the Ben-Sasson-Sudan PCPP for RS and our im-
proved analysis

Fix a function g : L→ F. The purpose of the Ben-Sasson-Sudan PCPP is to convince V that g is (close to) an element
of RSL[η], i.e., that it is an evaluation of a polynomial of degree at most d , 2−η · |L| − 1. For this overview, let us
assume that V is willing to read O(

√
d) entries of g and an auxiliary proof π(g). Observe first, that reading any t < d

entries of g gives V no information on whether g ∈ RSL[η]; as a degree d univariate polynomial could be interpolated
to match any t values. The basic idea is to “embed” g into a bivariate polynomial Q of degree O(

√
d). The proof π(g)

consists of values of Q on a carefully chosen set. For this overview we use the term degree of a bivariate polynomial
to mean individual degree.

The embedding of g works by choosing a certain univariate polynomial q(Z) of degree O(
√
d), and then con-

structing Q ∈ F[X,Y ] of (individual) degree6 ` = O(
√
d), such that the values of g on L correspond to the values of

Q on the “curve” T (L) , {(z, q(z)|z ∈ L} (See Claim 4.2 and Definition 4.3). q is chosen such that T (L) will have
the following convenient properties.

• There are only O(
√
d) different “y values” in T (L); that is |q(L)| = | {q(z)|z ∈ L} | = O(

√
d). Let L1 ⊂ L be a

set of size |q(L)| such that q(L1) = q(L).

• All “row restrictions” have the same size in T (L); that is, for any β ∈ L1 the set {(z, q(β)|z ∈ L, q(z) = q(β)} ⊂
T (L) is of size |T (L)|

|q(L)| .

Checking whether g has degree d is reduced by this embedding to checking whether a bivariate function f on T (L)
has degree `; that is, whether f |T (L) identifies with a bivariate polynomial Q of degree `. This seems more doable as
bivariate polynomials have more local structure. For example, their restriction to any “row” or “column” should satisfy
the same degree bound as the polynomial itself. That is, if Q has degree ≤ `, the univariate polynomials Q(X,β) and
Q(α, Y ) also have degree at most `. Polishchuk and Spielman[PS94] proved a strong converse to this: Fix a table of
a function f(X,Y ) on a product set S = A× B ⊆ F2, where |A|, |B| ≥ 4`. If many rows f(X, γ) or many columns
f(α, Y ) are far from degree ` (as univariate polynomials), then f is far from any bivariate polynomial of (individual)
degree `.

This is not immediately helpful, as the set T (L) on which g’s values correspond to values of Q, is quite far from a
product set - for any value z ∈ L of the first coordinate, there is only one value (z, q(z)) ∈ T (L).

The proof π(g) consists of the values of a function f - that is supposed to beQ - on a product set S(L) , A×q(L)
where |A| = O(`) . Note that |π(g)| = O(d). We think of (g, π(g)) as jointly describing a bivariate function f on the
domain7 Ω(L) , S(L) ∪ T (L).

The sets S(L) - on which we know how to test closeness of f to degree `, and T (L)- on which we desire to test
closeness to degree ` have almost no intersection. What ties them together are the extended rows

extrowβ , (L, q(β)) ∩ Ω(L),

for β ∈ L1. Ω(L) is precisely the disjoint union of |q(L)| such rows. Any extended row will have large, specifically
size Θ(`), intersection with both S(L) and T (L). Roughly speaking, this is what enables to relate the distance of
f |S(L) from degree ` to the distance of f |T (L) from degree `. Ultimately, the crux of the PCPP proof is to relate the
following five measures

6In the actual construction it is important to differentiate between the degree ofQ inX and Y . We avoid this here, for simplicity of presentation.
7In the actual definition (Definition 4.1), Ω(L) actually needs to be defined as a similar but larger set, as the analysis sometimes requires that

the restriction of Ω(L) to any row be an F2-subspace.
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1. δrect(f) - the distance of f |S(L) from bivariate polynomials of degree `.

2. δc(f) - the average over α ∈ A of the distance of a “column” f |α×q(L) from univariate polynomials of degree `.

3. δr(f) -the average over β ∈ L1 of the distance of a “row” f |extrowβ∩S(L) from univariate polynomials of degree `.

4. δextr (f) -the average over β ∈ L1 of the distance of an “extended row” f |extrowβ from univariate polynomials of
degree `.

5. δuni(f) - the distance of f |T (L) from bivariate polynomials of degree `. This turns out to be the same as the distance
of g from univariate polynomials of degree d.

What is implicit in the proofs of [BS08] and [BCGT13] is a relation of the form

c1 · δc(f) + c2 · δr(f) + c3 · δextr (f) ≥ c · δuni(f)

for non-negative c1, c2, c3 with c1 + c2 + c3 = 1 and c > 0. This relation suggests a natural recursive test: Think of
c1, c2, c3 as probabilities according to which either a random column, row, or extended row is chosen; Now check if f
has the required degree on this restricted domain. The equation implies that if we started with a function g that is δ-far
from degree d, we recurse, on average, on a function on a much smaller domain that is still c · δ-far from the degree
we expect it to have. Intuitively, the larger c we can get, the larger bound we can get on V rejecting a function that
is far from low degree; and the larger the bound, the less repetitions, and therefore verifier queries, we need to reject
with probability 1/2.

Making this relation more explicit is the starting point for several improvements over the analysis of [BCGT13].
For example

• The [BS08], [BCGT13] verifier recurses only on columns and extended rows. They analyze this by using the bound
δextr (f) ≥ δr(f)/2 to move to a relation with c2 = 0. This decreases the obtained c.

• The [BS08],[BCGT13] verifier simply chooses a column or extended row each with probability 1/2; so they are
implicitly using a relation with c1 = 1/2, c2 = 0, c3 = 1/2. This also decreases the obtained c.

• [BCGT13] using the analysis of Polishchuk-Spielman [PS94], in fact first implicitly obtain a bound the form
min{c · δuni(f), γ} for some 0 < γ < 1/100 on the right-hand side of the relation. Since they need to work
with expectations over such expressions in their proof they move to the more convenient and much smaller quantity
γ · c · δuni(f). We show that, at least when V uses only two recursion levels, there is no need to “move from the
minimum to the product” and lose this large factor. See Lemma 5.1.

Finally, we observe that for only one recursion level, a simple direct analysis is possible that avoids heavy factors
coming from [PS94]. (See Claim 4.14 and Lemma 4.15).

3.2 An overview of second contribution — Security analysis of PCPP systems
Suppose now that P has in his possession a function g : L→ F that is far from any element of RSL[η]. He wishes to
devise a pseudo-proof that will cause V to accept with high probability, i.e., V will conclude wrongly that g ∈ RSL[η].
Using the notation of Section 3.1, such a proof is a bivariate function f on the domain Ω(L), such that f |T (L) = g,
i.e., g is embedded in Ω(L) on the curve T (L). f is supposed to be an evaluation of a polynomial Q ∈ F[X,Y ] of
(individual) degree ` = O(

√
d). To check this, V chooses either a random “column” α × q(L) or “extended row”

extrowβ , and checks if the restriction of f to this column or extended row is a univariate function of degree at most
`. (Here we look at a simpler verifier used in [BS08, BCGT13] that does not use the non-extended rows, as opposed
to what is described in Section 3.1.) A natural way to try to cheat is to choose an f with f |T (L) = g such that all
extended rows have degree at most `. This is what we call the “row-compliant attack”. Similarly, one can choose f
with f |T (L) = g such that all columns and at least a 2−η-fraction of the extended rows have degree at most `. We call
this a “column-compliant attack”. In Appendix 6, we show that for most choices of g, V rejects f with much higher
probability than what can be shown for a general pseudo-proof. Roughly speaking, we show that “while making all
rows low degree, you will make many columns far from low degree”, and vice-versa.
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Summary The study of security of concrete feasible soundness of PCP systems is inevitable, if we wish to use such
systems for concrete cryptographic applications with reasonable soundness.

We hope that these initial results will motivate others to study in more detail the feasible security of various PCP
systems.
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4 Improved analysis of the concrete efficiency of the BSS PCPP
We proceed with the formal definitions and analysis outlined in the previous section. We mention again that one reason
we improve over [BCGT13] is by performing a tailored analysis of the first and second recursion level of (a variant
of) the [BS08] PCPP, in which many factors can be saved, as compared to a generic analysis for any recursion depth.

Notation For a, b ∈ R, it will be convenient to use the notation a ∨ b , min {a, b}.
Fix a positive integer k. We make the convention that an F2-subspace L ⊂ F of dimension k is always associated

with some default basis {b1, . . . , bk} of L. Using this convention, for c ∈ [k], we define L≤c ⊆ L to be the subspace
spanned by the first c vectors of this default basis. That is, L≤c , span {b1, . . . , bc}. We define the midpoint of k to
be
⌊
k−1

2

⌋
.

The Ben-Sasson-Sudan PCPP [BS08] is based on a special, somewhat complex, subset of F2 that we describe next.
We recommend looking at Appendix D for a helpful visualization of this set.

Definition 4.1 (BSS sets). Let L ⊆ F be an F2-subspace of dimension k. The Ben-Sasson-Sudan (BSS) Set of L
,Ω(L), is defined as follows. First denote

• L0 , L≤b k−1
2 c.

• L′0 , L≤b k−1
2 c+1.

• L1 , span
{
bb k−1

2 c+1, . . . , bk

}
, and L′1 , qL0

(L1). From the properties of subspace polynomials discussed in

Section 2 we have |L′1| = |L1| and L′1 = qL0
(L).

• For each β ∈ L1, let Lβ , span {L′0, β} if β /∈ L′0 and Lβ = span
{
L′0, bb k−1

2 c+2

}
otherwise. (For simplicity,

always think of Lβ as “L′0 with β added” , i.e., span {L′0, β}).

• For each β ∈ L1, now define the ‘β’th extended row’ as extrowβ , (Lβ , qL0(β)) ⊂ F2 .

Finally, we define
Ω(L) ,

⋃
β∈L1

extrowβ .

Note that |Ω(L)| = 4 · |L| = 2k+2.
For α ∈ L′0, define the ‘α’th column’ as colα , (α,L′1) ⊂ Ω(L). A useful property of Ω(L), that can be easily

verified, is that the following two sets are contained in it:

• The ‘product set of Ω(L)’: S(L) , L′0 × L′1 ⊂ Ω(L). 8

• The ‘curve of Ω(L)’: T (L) , {(v, qL0
(v))|v ∈ L} ⊂ Ω(L).

(We think of T (L) as an embedding of L into Ω(L), and for this reason think of Ω(L) as an extension of L. We note
again that a helpful visualization of the above sets is found in appendix D.)

Now fix a function f : Ω(L) → F. Define the univariate function P [f ] : L → F by P [f ](Z) , f(Z, qL0
(Z)).

We assume a function f on a BSS-Set Ω(L) will always be associated with an integer parameter η = η(f) - which
informally ‘represents the degree the prover is claiming P [f ] has’. Thus, we can use the parameter η in definitions
relating to f .

We define various measures describing distances of restrictions of f to low degree polynomials. We will be most
interested in the distance of P [f ] from RSL[η].

• Define δuni(f) , ∆(P [f ],RSL[η]).

8In [BS08, BCGT13] the set S was defined differently as a larger set.
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• For α ∈ L′0, define f col
α : L′1 → F by f col

α (Z) , f(α,Z). Define δc,α(f) to be the distance of f col
α from polynomials

of degree 2−η · |L1| − 1. That is,
δc,α(f) , ∆(f col

α ,RSL′1 [η]).

Finally, define δc(f) , E
α∈L′0

[δc,α(f)].

• For β ∈ L1, define f row
β : L′0 → F by f row

β (Z) , f(Z, qL0
(β)). Let δr(f) , E

β∈L1

[δr,β(f)] where

δr,β(f) , ∆(f row
β ,RSL′0 [1]).

• For β ∈ L1 define f ext
β : Lβ → F by f ext

β (Z) , f(Z, qL(β)). Let δextr (f) , E
β∈L1

[
δext
r,β (f)

]
where

δext
r,β (f) , ∆(f ext

β ,RSLβ [2]).

Finally, define δrect(f) to be the distance of f |S from the set of bi-variate polynomials of degree (|L0|−1, 2−η ·|L1|−1).

Similarly to extending a subspace L to Ω(L) we want to have a canonical way of extending a function g ∈ RSL[η]
to a function on Ω(L). For this purpose the following claim from [BS08] will be useful.

Claim 4.2. Let L ⊆ F be a subspace, and fix g ∈ RSL[η]. There exists a bivariate polynomialQg ∈ F[X,Y ] of degree
(|L0| − 1, 2−η · |L1| − 1) such that Qg(X,Y ) ≡ g(X) mod (Y − qL0

(X)). In particular, for any z ∈ L

Qg(z, qL0
(z)) = g(z).

Definition 4.3 (BSS Extension). Fix a positive integer η. Let L ⊆ F be a subspace, and fix g ∈ RSL[η]. We define the
Ben-Sasson-Sudan extension of g, Ω(g) : Ω(L) → F, to be the evaluation of the polynomial Qg from Claim 4.2 on
Ω(L).

The following bound on the sizes of the subspaces arising in Definition 4.1 will be useful for analyzing the effi-
ciency of our tests.

Claim 4.4. Fix a subspace L ⊆ F of dimension k. Let L1 and Lβ be as in Definition 4.1. Then

• |L1|, |Lβ | ≤ 2k/2+1.5

• |L1|+ |Lβ | ≤ 2k/2+2.1

Proof. The first item is immediate from the definition. When k is even we have

|L1|+ |Lβ | = 2k/2+1 + 2k/2+1 = 2k/2+2.

When k is odd we have

|L1|+ |Lβ | = 2k/2+1.5 + 2k/2+0.5 = (21.5 + 20.5) · 2k/2 ≤ 2k/2+2.1.

We proceed to show relations between the different measures defined. Intuitively we reduce the problem of verifying
a function g : L → F is close to some polynomial of low degree, to the problem of verifying f = Ω(g) : Ω(L) → F
is close to some bivariate polynomial of low degree. For this purpose we need to bound the distance of g from RSL[η]
by some attributes of f that are easier for the verifier to approximate. Lemma 4.5 shows the distance of g from RSL[η]
can not be much larger than max {δrect(f), δextr (f)}.

Lemma 4.5. Fix a subspace L ⊂ F, and function f : Ω(L)→ F. We have

δuni(f) ≤ 2 · δrect(f) + 4 · δextr (f).
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This improves the bound δuni(f) ≤ 2 · δrect(f) + 8 · δextr (f) implicit in Section 11 of [BCGT13] based on [BS08].

Proof. Fix Q ∈ F[X,Y ] of degree (|L0| − 1, 2−η · |L1| − 1) with ∆S(L)(Q, f) = δrect(f). For β ∈ L1, denote by

• Pβ an element of RSLβ [2] closest to f ext
β ; formally, Pβ satisfies ∆Lβ (Pβ , f

ext
β ) = δext

r,β (f).

• Qβ the univariate polynomial Qβ(X) , Q(X, qL(β)).

Denote
γ , Pr

β∈L1

(Qβ 6= Pβ).

For β ∈ L1 such that Qβ 6= Pβ , we have ∆L′0
(Qβ , Pβ) ≥ 1/2.

Thus
1

2
· γ ≤ E

β∈L1

[
∆L′0

(Qβ , Pβ)
]

Using the triangle inequality

≤ E
β∈L1

[
∆L′0

(Qβ , f
row
β )

]
+ E
β∈L1

[
∆L′0

(f row
β , Pβ)

]
.

Recall that δrect(f) is the fractional distance between Q and f on S(L), and note that S(L) = L′0 × L′1 is the
union over β ∈ L1 of rowβ , L′0 × {qL(β)}. Thus, δrect(f) is equal to the average over β ∈ L1 of the fractional
distance between Q and f on rowβ . Hence, we can replace the first term and get

= δrect(f) + E
β∈L1

[
∆L′0

(f row
β , Pβ)

]
.

Let us call β ∈ L1 good if Qβ = Pβ . Calculation shows that deg(Q(Z, qL(Z))) ≤ 2k−η − 1 (see proof of Claim
4.14); and so P [Q] : L→ F defined by P [Q](z) , Q(Z, qL(Z)) is in RSL[η]. Also, ∆(P [Q], P [f ]) = ∆T (L)(Q, f).
Thus,

δuni(f) ≤ ∆T (L)(Q, f) = E
β∈L1

[
∆Tβ(L)(Qβ , f

ext
β )

]
≤ γ + (1− γ) · E

β is good

[
∆Tβ(L)(Q, f)

]
≤ γ + E

β∈L1

[
∆Tβ(L)(Pβ , f)

]
Using our bound on γ we get

≤ 2 · δrect(f) + E
β∈L1

[
2 ·∆L′0

(f row
β , Pβ) + ∆Tβ(L)(Pβ , f

ext
β )

]
Below we explain that this is

≤ 2 · δrect(f) + 4 · E
β∈L1

[
δext
r,β (f)

]
= 2 · δrect(f) + 4 · δextr (f).

We now explain the last inequality above. For β ∈ L1, δext
r,β (f) is equal to the fractional number of disagreements

between Pβ and f ext
β on Lβ . Denote this set of locations of disagreements by D ⊆ Lβ . Thus, δext

r,β (f) = |D|
|Lβ | .

L′0 and Tβ(L) are disjoint subsets of Lβ of density 1/2 and 1/4 respectively. Thus,

∆L′0
(f row
β , Pβ) =

|D ∩ L′0|
|L′0|

=
2 · |D ∩ L′0|
|Lβ |

and

∆Tβ(L)(Pβ , f
ext
β ) =

|D ∩ Tβ(L)|
|Tβ(L)|

=
4 · |D ∩ Tβ(L)|

|Lβ |
.

So
2 ·∆L′0

(f row
β , Pβ) + ∆Tβ(L)(Pβ , f

ext
β ) ≤ 4

|Lβ |
· (|D ∩ L′0|+ |D ∩ Tβ(L)|) ≤ 4 · δext

r,β (f).
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For integer η > 1 define the constant δη , (1/4 − 2−η−1)2. For example, δ2 = 1/64 and δ3 = 9/256. The
following is a corollary of Lemma 5.1 below.

Lemma 4.6. Fix a subspace L ⊂ F, and function f : Ω(L)→ F with η(f) ≥ η for integer η > 1. We have

δr(f) + δc(f) ≥ δη ∨ (2/3) · δrect(f).

Corollary 4.7. Fix a subspace L ⊂ F, and function f : Ω(L)→ F with η(f) ≥ η for integer η > 1. Then

3 · δc(f) + 3 · δr(f) + 4 · δextr (f) ≥ δuni(f) ∨ 3 · δη.

Proof. Using Lemma 4.6 we know that either

1. δr(f) + δc(f) ≥ δη which implies 3 · δc(f) + 3 · δr(f) + 4 · δextr (f) ≥ 3 · δη or

2. δr(f) + δc(f) ≥ (2/3) · δrect(f) which implies, using Lemma 4.5,

3 · δc(f) + 3 · δr(f) + 4 · δextr (f)

≥ 2 · δrect(f) + 4 · δextr (f) ≥ δuni(f).

For integer η > 1 let us define cη , 3·δη
10 . For example, c2 ≥ 1

250 , c3 ≥
1

100 . Simple calculations now show

Corollary 4.8. Fix a subspace L ⊂ F, and function f : Ω(L)→ F with η(f) ≥ η for integer η > 1. Then

3

10
· δc(f) +

3

10
· δr(f) +

4

10
· δextr (f) ≥ δuni(f)

10
∨ cη.

4.0.1 Tightness of bounds

Note that the inequality of Lemma 4.5 is obviously an equality if we take f : Ω(L) → F to be identically zero. One
may wonder if for non-zero f the bound can be improved. That is, can we get a better lower bound on δrect(f) and
δextr (f) in terms of δuni(f)? (The quality of such a lower bound directly relates to the soundness of our PCPPs). We
show that the bound cannot be improved beyond a factor exponentially small in the dimension of L.

Claim 4.9 (Tightness of bound). Fix any integers η > 1 and i > 2, and let Li ⊂ F be a vector space of dimension i
over F2. There is a function fi : Ω(Li)→ F with η(fi) = η such that:

δuni(fi) ≥ 2 · δrect(fi) + 4 · δextr (fi)− 2−(i−1) > 0.

Proof. Fix integer i > 2, and let L = Li be an i dimensional subspace. Choose distinct β0 6= β1 ∈ L1 \ L′0.
Let h : L0 → F be a mapping that is identically 0, except on x = 0. More precisely,

h(x) =

{
1 if x = 0

0 otherwise

We define hβ0
: Lβ0

→ F to be the “low degree extension of h on Lβ0
”. That is, hβ0

is the unique polynomial of
degree smaller than |L0|, with hβ0

|L0
= h. We define f = fi : Ω(L)→ F in the following way:

f(x, y) =


hβ0(x) if y = β0

1 if (x, y) ∈ Tβ1
(L)

0 otherwise
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Note that P [f ] differs from the zero polynomial Z, only on Tβ0(L) ∪ Tβ1(L), and thus

δuni(f) ≤ ∆L(Z,P [f ]) ≤ 2

|L1|
,

and therefore, as 2
|L1| ≤ 2−(i−1) < (1−2−η)/2, which is less than half the unique distance of RSL[η], δuni(f) = 2

|L1| .
The only non zero entries of f in S are (0 ∪ (L′0 \ L0), qL0(β0)), so the closest polynomial of degree (|L0| −

1, 2−η · |L1| − 1) to f over S is the zero polynomial, and we get δrect(f) = 1
2·|L1| + 1

|L| .
There is only one extended row which is not low degree, and it is f ext

β0
which is not zero only on Tβ0

(L), so we get
δextr (f) = 1

4·|L1| .
Putting everything together, we get the required result

δuni(f) = 2 · δrect(f) + 4 · δextr (f)− 2

|L|
= 2 · δrect(f) + 4 · δextr (f)− 21−i.

4.1 Constructing PCPPs for RSa[η]

We describe in this subsection a few PCPP systems for the codes RSL[η]. We will need to introduce some more
definitions and conventions before describing the PCPPs.

4.1.1 BSS sets and extensions of depth greater than one

Informally speaking, we wish to design tests where a verifier, examining a function on a BSS-Set, can recursively
focus on a column, row, or extended row, and ask for the BSS-extension of the function restricted to that part. To
formalize this we need to define BSS sets and BSS extensions of depth greater than one. We mention that in this
section we only use extensions of depth one or two. In fact, we recommend skipping the following definition on a first
read, as in this section it is only used in Subsection 4.1.4, where its use will probably be intuitively clear.

Definition 4.10 (Ben-Sasson-Sudan sets and extensions of arbitrary depth). Fix a subspace L ⊆ F and integer d > 0.
For each β ∈ L1 we denote by βext a distinct symbol disjoint from F.

The depth d BSS-Set of L, denoted Ωd(L), is defined inductively as follows.

• Ω1(L) , Ω(L). Ω1(L) , Ω1(L) \ T (L).

• Ωd(L) is defined as the disjoint union of

1. Ω(L).

2. ∪α∈L′0(α,Ωd−1(L′1)).

3. ∪β∈L1
(β,Ωd−1(L′0)).

4. ∪β∈L1(βext,Ωd−1(Lβ)).

• Ωd(L) , Ωd(L) \ T (L).

We add that

1. As Ωd(L) contains the depth one extension Ω(L), we can define for a function f : Ωd(L) → F all measures that
were defined for a function f ′ : Ω(L)→ F - δc(f ′),δr(f ′),etc as the corresponding value defined for the restriction
Ωd(f)|Ω(L).

2. For α ∈ L′0, we define the ‘α’th copy of Ωd−1(L′1) ⊂ Ωd(L)’, denoted Ωαd−1(L′1), as the union of (α,L′1) and
(α,Ωd−1(L′1)). We identify Ωαd−1(L′1) with Ωd−1(L′1) by mapping (α, z) ∈ (α,Ωd−1(L′1)) to z ∈ Ωd−1(L′1) and

mapping (α, z) ∈ (α,L′1) to (z, q(L′1)0(z)). We define Ωβd−1(L′0) and Ωβ
ext

d−1(Ld−1) similarly.

16



Fix a function g ∈ RSL[η]. The depth d BSS-extension of g, denoted Ωd(g), is a function Ωd(L) → F defined
inductively as follows.

• Ω1(g) , Ω(g). Ω1(g) , Ω1(g)|Ω1(L).

• Ωd(g) is defined as the union9 of

1. f : Ω(L)→ F defined as the (depth one) BSS-extension of g.

2. ∪α∈L′0Ωd−1(f col
α ) viewed as a function (α,Ωd−1(L′1))→ F.

3. ∪β∈L1Ωd−1(f row
β ) viewed as a function (β,Ωd−1(L′0))→ F.

4. ∪β∈L1Ωd−1(f ext
β ) viewed as a function (βext,Ωd−1(Lβ))→ F.

• Ωd(g) , Ωd(g)|Ωd(L).

1. We mention that the depth d extension of g contains the depth d−1 extensions of the restrictions Ω(g)col
α ,Ω(g)row

β ,Ω(g)ext
β

of Ω(g). For example, identifying Ωαd−1(L′1) with Ωd−1(L′1) as described above, the restriction Ωd(g)|Ωαd−1(L′1) is
precisely Ωd−1(gcol

α ).

2. In similar spirit, for an arbitrary function f : Ωd(L) → F, and α ∈ L′1, we define Ωd−1(f col
α ) , f |Ωαd−1(L′1).

Ωd−1(f row
β ) and Ωd−1(f ext

β ) are defined similarly.

Calculation shows that if L has dimension k, |Ωd(L)| ≤ 2k+2+3(d−1) (See Claim C.1 in Appendix C).

Remark 4.11 (Intersection of recursive extended rows with the curve of L). In Definition 4.1 we made no assumptions
regarding the default basis {b1, . . . , bk} of the subspace L. When working with BSS sets of depth greater than one, it
is important that bases are chosen so that “all recursive extended rows have intersection with the original univariate
polynomial”. To formalize this let Ωd(L) be a BSS-Set of depth d. For β1, . . . , βd define Lβ1...βd as Lβ1...βd ,
(((Lβ1)β2)..)βd . Note that Lβ1...βd is defined only when βi ∈ (Lβ1...βi−1)1 for all i ∈ [d]. In such a case, let us
call β1, . . . , βd compatible. We would like to view the subspace Lβ1...βd as a subset of Ωd(L). We define such an
embedding using induction on d: For d = 1, we identify Lβ1

with (β1, Lβ1
) ⊂ Ω(L) in the natural way. Assume

we have now embedded Lβ2...βd as a subset Lβ2...βd ⊂ Ωd−1(Lβ1
). Now using the identification of Ωd−1(Lβ1

) with

Ω
βext
1

d−1(Ld−1) ⊂ Ωd(L), we obtain the embedding Lβ1...βd ⊂ Ωd(L).
Assume k ≥ 2d · 2d. We claim that the bases of Lβ1...βi can be chosen such that, for every compatible β1, . . . , βd

and every i ∈ [d], Lβ1...βi ∩T (L) is an affine subspace of co-dimension 2i in Lβ1...βi (when Lβ1...βi is embedded into
Ωd(L) as described above). In particular, |Lβ1...βd ∩ T (L)| ≥ 4−d · |Lβ1...βd |. We show this by induction on i. For
i = 1, we know that Lβ1

∩ T (L) is the subspace L0 + β1 and dim(Lβ1
) = dim(L0) + 2. Assume the claim for i. Let

t , dim(Lβ1...βi). Thus, we have a basis v1, . . . , vt for Lβ1...βi such that

Lβ1...βi ∩ T (L) = {x = (x1, . . . , xt) ∈ Lβ1...βi |x1 = a1, . . . , x2i = a2i} ,

for some a1, . . . , a2i ∈ F2 when x is written in the basis v1, . . . , vt. This is the basis of Lβ1...βi we use. Calculation
shows dim(Lβ1...βi+1

) ≥ k/2d, and therefore

dim((Lβ1...βi)0) ≥ k/2d − 2 ≥ 2i,

where the second inequality follows from our assumption on k and i < d. Thus, when using v1, . . . , vt as a basis
for Lβ1...βi , (Lβ1...βi)0 will have basis {v1, . . . , vt′} for t′ ≥ 2i; and so (Lβ1...βi)0 ∩ T (L) will have co-dimension
2i in Lβ1...βi . As (Lβ1...βi)0 ⊂ Lβ1...βi+1

and dim(Lβ1...βi+1
) = dim((Lβ1...βi)0) + 2, Lβ1...βi+1

∩ T (L) will have
co-dimension 2(i+ 1) in Lβ1...βi+1 .

9We define a single function by a union of several functions on disjoint domains.
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4.1.2 Viewing functions on BSS sets as PCPP proofs for RSL[η]:

When describing our PCPP systems, we explicitly describe only the verifiers, which we think of as tests that are given
access to a function f : Ωd(L)→ F, and try to determine whether P [f ] ∈ RSL[η]. The PCPP system for RSL[η] that
is implicitly defined by the test works as follows. The prover P starts with a function g : L → F that he wishes to
convince the verifier V belongs to RSL[η]. He constructs a function y : Ωd(L) → F and sends (g, y) to V . V thinks
of (g, y) as a single function f : Ωd(L) → F by identifying L with T (L) = Ωd(L) \ Ωd(L) as described before, i.e.,
mapping z to (z, qL0

(z)); now V applies the test on f . The honest prover, given g ∈ RSL[η], will take y to be the
BSS-extension of g restricted to Ωd(L), i.e., y = Ωd(g). In other words, the honest prover simply sends Ωd(g) to V .

Before presenting our first verifier, we define the soundness function of a PCPP verifier V . Loosely speaking, on
input δ the function equals the minimal probability that V rejects an input x that is δ-far from the code.

Definition 4.12 (Soundness of test). Fix a randomized function V : F∗ → {accept, reject}, and a code ensemble C
over F. Fix 0 < δ < 1. We define SC [V ](δ) as the infimum over all C ∈ C, all x ∈ Fn(C) that are δ-far from C, and
all y ∈ F∗ of

Pr(V (x, y) = reject).

For integer η > 0, we use the shortened notation Sη[V ](δ) , SRSa[η][V ](δ).

4.1.3 A test of depth one

We define the test T1,η .

T1,η(f) input: f : Ω(L)→ F.

1. Choose random α ∈ L′0. Check if f col
α has degree at most 2−η · |L1| − 1.

2. Choose random β ∈ L1. Check if f ext
β has degree at most |L0| − 1.

3. Return reject if one of the above checks failed. Return accept otherwise.

The following claim will be used to analyze the test.

Claim 4.13. Fix subsets A = {α1, . . . , αn} , B = {β1, . . . , βm} of F. Fix positive integers d < n and m′ ≤ m.
Suppose we have a function f : A×B → F such that

• for 1 ≤ j ≤ m′ we have that f(X,βj) has degree at most d.

• For 1 ≤ i ≤ d+ 1 we have that f(αi, Y ) has degree at most e.

Then there exists a bivariate polynomial Q ∈ F[X,Y ] of degree (d, e) such that for every 1 ≤ j ≤ m′ f(X,βj) =
Q(X,βj).

Proof. For 1 ≤ i ≤ d + 1, define a polynomial δi(X) of degree at most d such that δi(αi) = 1, and δi(α`) = 0 for
1 ≤ ` ≤ d+ 1, ` 6= i. Let gi(Y ) be the polynomial of degree at most e that identifies with f(αi, Y ) on B.

Now define

Q(X,Y ) ,
d+1∑
i=1

δi(X) · gi(Y ).

Clearly Q has degree (d, e). It is immediate from Q’s formula that Q(αi, Y ) = gi(Y ) for 1 ≤ i ≤ d + 1. Thus, for
any 1 ≤ i ≤ d + 1 and 1 ≤ j ≤ m′, Q(αi, βj) = gi(βj) = f(αi, βj). In other words, Q(X,βj) and f(X,βj) agree
on d+ 1 points and therefore agree on all of A.

Lemma 4.14 (Soundness of depth one test). For any 0 < δ < 1

Sη[T1,η](δ) ≥ δ ∨ 1/2 ≥ δ/2.
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Proof. Fix f : Ω(L) → F. Denote d = |L0| − 1 and e = 2−η · |L1| − 1. Suppose that Pr(T1,η(f) = accept) ≥
max {1/2, 1− δ}. In particular there is a set C ⊂ L′0 with |C| ≥ |L′0|/2 such that deg(f col

α ) ≤ e for all α ∈ C. It
follows from Claim 4.13 that there exists a bivariate polynomial Q(X,Y ) of degree (d, e) such that

Q(X, qL0
(β)) = f(X, qL0

(β))

for any β ∈ R ⊂ L1 where R is a set of size at least (1− δ) · |L1|. Now defining

P (Z) , Q(Z, qL0(Z))

We see that

1. P agrees with P [f ] on L with probability at least 1− δ: As

Pr
z←L

(P (z) = P [f ](z)) ≥ Pr
β←L1

(Q(X,β) = f ext
β ) ≥ 1− δ.

2.
degP ≤ |L0| − 1 + |L0| · (2−η · |L1| − 1)

= 2k−η − 1

Thus, as P is δ-close to P [f ] and deg(P ) ≤ 2k−η − 1, δuni(f) ≤ δ.

Amplifying T1,η with repetitions we get

Lemma 4.15. There is a (2`+5, 2`/2+5.5)-PCPP system for RSa[3], where 2` denotes the message length.

Reminder

A (2`+5, 2`/2+5.5)-PCPP system for some code C will generate a proof of length A = 2`+5 field elements, of
which the verifier V reads only Q = 2`/2+5.5 field elements, and is guaranteed to reject with probability at least
1
2 any x that is d(C)/3-far from C. (Definition 1.1) In case C ∈ RSa[3] we have d(C) = 7/8.

Proof. Fix a subspace L ⊆ F of dimension k = `+3. Fix f : Ω(L)→ F with η(f) = 3 and δuni(f) ≥ δ , 7
8 ·

1
3 ≥

1
4 .

Consider the verifier V that given such f runs T1,3(f) 3 times and accepts if and only if T1,3 accepted every time. We
have

Pr(V (f) = accept) ≤ (1− 1/4)3 ≤ 1/2.

At each repetition V queries |Lβ | + |L′1| field elements (for some β ∈ L′0) which is at most 2k/2+2.1 by Claim
4.4. So Q ≤ 3 · 2k/2+2.1 ≤ 2k/2+4 = 2`/2+5.5. P needs to write down the table of f : Ω(L)→ F which is of length
|Ω(L)| = 4 · |L| = 2k+2 = 2`+5.

Corollary 4.16. Fix any field F of characteristic two. There is a PCPP system for RSa[3] with concrete efficiency
threshold at most 223.

Proof. Using the system from Lemma 4.15 we need to see for what ` we have

2`+5 · 2`/2+5.5 ≤ 22`−1.

Equivalently
`/2 ≥ 11.5,

which is satisfied when ` ≥ 223.

4.1.4 A test of depth two

We define the test T2,η .
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T2,η(f) input: f : Ω2(L)→ F.

1. With probability 3
10 , choose random α ∈ L′0; and return T1,η(Ω(f col

α )).

2. With probability 3
10 , choose random β ∈ L1; and return T1,1(Ω(f row

β )).

3. Otherwise, i.e. with probability 4
10 , choose random β ∈ L1; and return T1,2(Ω(f ext

β )).

Lemma 4.17. [Soundness of depth 2 test] Fix any integer η > 1. For any 0 < δ < 1

Sη[T2,η](δ) ≥ δ

20
∨ cη

2
.

For instance,

S3[T2,3](δ) ≥ δ

20
∨ 1

200

and
S2[T2,2](δ) ≥ δ

20
∨ 1

500
.

Proof. Fix any f : Ω(L)→ F with δuni(f) = δ.

Pr[T2,η(f) = reject] =

3

10
· E
α∈L′0

[
Pr(T1,η(Ω(f col

α )) = reject)
]
+

3

10
· E
β∈L1

[
Pr(T1,1(Ω(f row

β ) = reject)
]
+

4

10
· E
β∈L1

[
Pr(T1,2(Ω(f ext

β ) = reject)
]

Using Claim 4.14 this is

≥ 3

10
· E
α∈L′0

[δc,α(f)/2] +
3

10
· E
β∈L1

[δr,β(f)/2] +
4

10
· E
β∈L1

[
δext
r,β (f)/2

]
≥ 1/2 ·

(
3

10
· δc(f) +

3

10
· δr(f) +

4

10
· δextr (f)

)
Using Corollary 4.8, this is

≥ 1/2 ·
(
δuni(f)

10
∨ cη

)
=

δ

20
∨ cη

2
.

Amplifying the test by repetition to soundness half we can get

Lemma 4.18. There is a (2`+8, 2`/4+10.75)-PCPP system for RSa[3].

Proof. Fix a subspace L ⊆ F of dimension k = `+3. Fix f : Ω(L)→ F with η(f) = 3 and δuni(f) ≥ δ , 7
8 ·

1
3 ≥

1
4 .

Consider the verifier V that given such f runs T2,3(f) 140 times and accepts if and only if T2,3 accepted every time.
We have

Pr(V (f) = accept) ≤ (1− 1

200
)140 ≤ 1/2.

Using Claim 4.4, we can see that at each repetition V queries at most 2k/4+2.85 field elements. So Q ≤ 140 ·
2k/4+2.85 ≤ 2k/4+10 = 2`/4+10.75. P needs to write down the table of f : Ω2(L) → F of size |Ω2(L)| ≤ 2k+5 =
2`+8.
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5 Improving the bound obtained from Polishchuk-Spielman [PS94]
Fix a bivariate function f : A×B → F. As in [BCGT13] we denote in this section by

• δ(d,∗)
A×B(f) - the distance of f from polynomials of degree (d, |B| − 1). This is the same as the average over γ ∈ B

of the distance between f(X, γ) and polynomials of degree d.

• δ(∗,e)
A×B(f) - the distance of f from polynomials of degree (|A| − 1, e). This is the same as the average over α ∈ A

of the distance between f(α, Y ) and polynomials of degree e.

• δ(d,e)
A×B(f) - the distance of f from polynomials of degree (d, e).

Using a more careful pass of the proof of Lemma 10.6 in [BCGT13], we prove

Lemma 5.1. Fix a field F. Fix positive integers d,m, e, n such that d/m + e/n < 1. Fix δ > 0 such that δ <
1/2(1− d/m− e/n). Fix A,B ⊆ F with |A| = m and |B| = n. Fix any function f : A×B → F. Then

δ
(d,∗)
A×B(f) + δ

(∗,e)
A×B(f) ≥ min

{
δ2, δ

(d,e)
A×B(f)/1.5

}
We remark that the bound in Lemma 10.6 of [BCGT13] was δ2 · δ(d,e)

A×B(f) which can be significantly smaller.

Proof. If δ(d,∗)
A×B(f) + δ

(∗,e)
A×B(f) ≥ δ2 we are done. Suppose from now on that δ(d,∗)

A×B(f) + δ
(∗,e)
A×B(f) < δ2. Let R be

the10 polynomial of degree (d, |B| − 1) closest to f . We have ∆A×B(f,R) = δ
(d,∗)
A×B(f). From the triangle inequality

δ
(d,e)
A×B(f) ≤ ∆A×B(f,R) + δ

(d,e)
A×B(R) = δ

(d,∗)
A×B(f) + δ

(d,e)
A×B(R)

Similarly, let C be the polynomial of degree (|A|− 1, e) closet to f . We have ∆A×B(f, C) = δ
(∗,e)
A×B(f). From the

triangle inequality
δ

(d,e)
A×B(f) ≤ ∆A×B(f, C) + δ

(d,e)
A×B(C) = δ

(∗,e)
A×B(f) + δ

(d,e)
A×B(C).

Now define δ′ ,
√
δ

(d,∗)
A×B(f) + δ

(∗,e)
A×B(f). We have

∆A×B(R,C) ≤ ∆A×B(R, f) + ∆A×B(f, C) = δ
(d,∗)
A×B(f) + δ

(∗,e)
A×B(f) = δ′2.

It follows from the analysis of [BCGT13] of the Polishchuk-Spielman test (Theorem 10.5 of [BCGT13]) that there
exists a polynomial Q of degree (d, e) that disagrees on a uniform point of A×B with either R or C with probability
at most 2δ′2. It follows that

δ
(d,e)
A×B(R) + δ

(d,e)
A×B(C) ≤ 2δ′2 = 2 · (δ(d,∗)

A×B(f) + δ
(∗,e)
A×B(f))

and thus

δ
(d,e)
A×B(f) =

δ
(d,e)
A×B(f)

2
+
δ

(d,e)
A×B(f)

2
≤
δ

(d,∗)
A×B(f) + δ

(d,e)
A×B(R)

2
+
δ

(∗,e)
A×B(f) + δ

(d,e)
A×B(C)

2

<
δ

(d,∗)
A×B(f) + δ

(∗,e)
A×B(f)

2
+ δ′2 = 1.5(δ

(d,∗)
A×B(f) + δ

(∗,e)
A×B(f)).

10If there is not a unique polynomial closest to f , pick one arbitrarily.
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6 Attacks and security of the BSS RS-PCPP system
In this section we analyze the security of the RS-PCPP system from Definition 4.10 against two natural and efficient
attacks. We start by defining these attacks (Definition 6.3) and then study security against them on random functions
in Section 6.2.

Remark 6.1 (Choice of verifier). In this section we analyze the “standard BSS verifier” as described in [BS08] (See
definition 6.2). Using the terminology of Section 4 this verifier looks only at columns and extended rows. Hence, when-
ever we use the term row informally in this section, we mean an extended row in the terminology of Section 4. Similarly,
when we refer to BSS-sets Ωd(L), we think of of the containing the only the subproofs Ωd−1(f col

α ),Ωd−1(f ext
β ) of the

columns and extended rows, but not the subproofs Ωd−1(f row
β ) of the non-extended rows (See Claim ) .

6.1 Two attacks
Our starting point is a function f : L→ F where L is a subspace and we assume f is δ-far from RSL[η]. Recalling the
recursive construction of the BSS proof (Definition 4.10), and the fact that the tests applied by the standard BSS verifier
V to (the first level of) the BSS proof are either “row”-tests or “column”-tests, two natural attacks arise. In the first
attack the pseudo-prover constructs a pseudo-proof in which all rows are low-degree and in the second one all columns
of the pseudo-proof are low-degree. Each pseudo-proof is a generalization of the BSS extension (Definition 4.3) to the
case that f does not belong to RSL[η], and coincides with the BSS extension when f ∈ RSL[η]. The row-compliant
pseudo-proof is obtained by computing a BSS extension with η′ = 0 and the column-compliant is constructed using
the first 2−η fraction of entries of f to define a new low-degree polynomial for which the BSS extension is derived.

We start by defining the “standard” BSS verifier, one that interacts with the BSS proof from Definition 4.10 and
uses the notation given there.

Recall first, from Definition 4.1, that we sometimes implicitly identify a subspace L with the subset T (L) ⊂ Ω(L).
As Ω(L) ⊂ Ωd(L)(See Definition 4.10), we can similarly think of L as a subset of Ωd(L). Recall further, from
Definition 4.10, that we use the notation Ωd(L) = Ωd(L) \ T (L).

Definition 6.2 (Depth d RS-PCPP verifier). Fix integer η. Let f : L→ F and πd : Ωd(L)→ F be a purported PCPP
for f ∈ RSL[η] as in Definition 4.10. Let g , (f‖πd) : Ωd(L) → F denote the concatenation of f and πd. The
BSS-verifier V gRS operates as follows:

• If d = 0 (in which case Ω0(L) = ∅) then read f entirely (on all of L) and accept iff f ∈ RSL[η].

• For d > 0,

– with probability 1/2 pick a uniformly random row β ∈ L1 and return V
Ωd−1(gextβ )

RS ,

– with probability 1/2 pick a uniformly random column α ∈ L′0 and return V Ωd−1(gcolα )
RS .

(See Definition 4.10 for the definition of Ωd−1(gext
β ) and Ωd−1(gcol

α ). In words, they are simply the parts of Ωd(g)

corresponding to the depth d− 1 extensions of gext
β and gcol

α ).

Calculation shows that given g : Ωd(L)→ F, for L of dimension k, V gRS reads at most q0(k, d) , 2k/2
d+3(1−1/2d)

locations of g. Next we formally define two natural attacks on the BSS RS-PCPP verifier. Recall that the BSS-
extension of a function f ∈ RSL[η] was a function g : Ωd(L) → F. We define the attacks by giving two ways to
extend an arbitrary function f : L→ F, i.e., f that may not belong to RSL[η], into a function g : Ωd(L)→ F.

Definition 6.3 (Row- and Column-compliant BSS extension of arbitrary functions). Fix a positive integer η. Let
L ⊆ F be a subspace, and fix f : L→ F. We define two “BSS extensions” of f :

• Row-compliant: We define the row-compliant Ben-Sasson-Sudan extension of f , denoted Ω−(f) : Ω(L) → F,
as follows. First, using the identification of L and T (L) define Ω−(f)(z, qL0(z)) = f(z), for z ∈ L. Recall that
Tβ(L) = T (L)∩extrowβ has size |Lβ |/4. Thus, there is a unique P ∈ RSLβ [2], i.e. a unique polynomial of degree
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at most |Lβ |/4 − 1, such that P (x) = Ω−(f)(x, β) for each (x, β) ∈ Tβ(L). We define Ω−(f)ext
β , i.e., Ω−(f) on

the β’th row, according to P . That is, for each (x, β) ∈ extrowβ ,

Ω−(f)ext
β (x) = Ω−(f)(x, β) , P (x).

Note that Ω−(f)ext
β ∈ RSLβ [2] for each β ∈ L1. Equivalently, Ω−(f) can be defined as the evaluation of the

polynomial Qf from Claim 4.2 on Ω(L), where Qf is computed there with respect to f ∈ RSL[0].

• Column-compliant: Let L̂ be the subspace of L of co-dimension η spanned by the first dim(L) − η elements
of the basis of L. Let f̂ be the low-degree extension to L of f |L̂; that is, f̂ : L → F is the unique element of
RSL[η] that identifies with f on L̂. We define the column compliant Ben-Sasson-Sudan extension of f , denoted
Ω|(f) : Ω(L)→ F, to be the BSS-extension Ω(f̂) of f̂ .

It can be seen that this is equivalent to the following. Denote by RL̂ ⊂ L1 the set of 2−η · |L1| elements β ∈ L1

such that qL0
(β) ∈ qL0

(L̂). As in the row-compliant extension, define Ω|(f) on T (L) according to f . Now define
Ω|(f) on extended rows extrowβ for β ∈ RL̂ by a low degree extension of Ω|(f)|Tβ(L). Now complete each column
colα by a low degree extension of the values {(α, β)}β∈RL̂ . Now complete the values extrowβ \ Tβ(L) for β /∈ RL̂
as a low degree extension of the values in rowβ .

The depth d row-compliant BSS extension of f , denoted Ωd,−(f) is obtained by using the row-compliant BSS extension
recursively. Formally, this is obtained by setting Ω1(f) = Ω−(f) in Definition 4.10 and then recursively (for recursion
depth d − 1) computing the row-compliant BSS extension of every row and column of Ω−(f). The depth d column-
compliant BSS extension of f is denoted Ωd,|(f) and computed recursively analogously by computing the column-
compliant BSS extension of f and repeating this process for every row and column of Ω|(f).

Notice that when f ∈ RSL[η] then by Claim 4.2 we have Ω−(f) = Ω(f) by construction. Furthermore, in this
case f̂ = f so we also have Ω|(f) = Ω(f). In other words, when f ∈ RSL[η] then both row- and column-compliant
BSS extensions are equal to the “standard” BSS extension from Definition 4.3. The following claim justifies the names
of these pseudo-proofs.

Claim 6.4. For any f : L→ F and integer η < dim(L), and for Ω−(f),Ω|(f) : Ω(L)→ F we have

• For α ∈ L′0 we have Ω|(f)col
α ∈ RSL′1 [η]. Consequently, δc(Ω|(f)) = 0

• For β ∈ L1, we have Ω−(f)row
β ∈ RSL′0 [1]. Consequently, δr(Ω−(f)) = 0. Similarly, Ω−(f)ext

β ∈ RSLβ [2] and
δextr (Ω−(f)) = 0.

Proof. The first bullet means that all columns of Ω|(f) belong to RSL′1 [η]. This holds because each such α-column is
the evaluation of Qf̂ on α × L′1 and degY (Qf̂ ) ≤ 2−η|L′1| − 1 by Claim 4.2 and because by construction deg(f̂) <

2−η|L|. Similarly, the second bullet holds because any f : L → F belongs to RSL[0], so Claim 4.2 implies that
degX(Qf ) < |L0|, and by construction |L0|/|L′0| = 1/2 and |L0|/|Lβ | = 1/4.

By construction of the BSS verifier, if it selects the α-column and Ω(f)col
α = Ω|(f)col

α then the test will pass with
probability 1. Similarly, if Ω(f) = Ω−(f) then all row-tests pass with probability 1. The interesting question from
the point of view of soundness is what happens, recursively, to the other kind of tests.

6.2 Security analysis on random functions
In the two lemmas below we analyze the security of the BSS PCPP on random functions. Random functions are a
good starting point for analyzing security of the PCP system of [BS08] for two reasons:

• We are not aware of “natural” unsatisfiable instances for which a pseudo-proof leads to evaluations of functions that
have lower (i.e., worse) soundness than what can be obtained for a uniformly random function.
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• As far as we currently understand, random functions resemble rational functions and rational functions arise nat-
urally in the only nontrivial attack on PCP systems that we are aware of (details on this attack will be given in
subsequent work).

Lemma 6.5 (Row-compliant soundness on random functions). Assume |F| ≥ 512. With probability 0.9 over random
f : L→ F

Pr
[
V

Ω−(f)
RS = reject

]
≥ 2−d

where the probability is over the randomness of VRS.

Proof. For simplicity, we focus on the case d = 1. The general case is analogous. The proof relies on the following
claim.

Claim 6.6. For any fixed α ∈ L′0 we have that (Ω−(f))
col
α is a uniformly random function.

Note that a random function g : L′1 → F is in RSL′1 [η] with probability at most 1/|F| by our assumption on k.
Assuming the claim, we conclude by the Markov inequality that with probability 0.9 over the choice of f : L → F,
(Ω−(f))

col
α is in RSL′1 [η] for at most a 10/|F| fraction of α ∈ L′0. As |L′0| ≤ 2 ·

√
|F|, we have 10/|F| < 1/|L′0|.

We conclude for such f that (Ω−(f))
col
α /∈ RSL′1 [η] for all α ∈ L′0. Thus, whenever VRS chooses to query a column,

he will reject. A similar argument shows that if VRS is given a depth d row-compliant BSS extension of f : L → F,
he will always reject on a 0.9 fraction of f : L → F, given that he recursively chose to query only columns, which
happens with probability 2−d.

Proof of Claim 6.6. If f is uniformly random then for β ∈ L1 we have that Ω−(f)ext
β : Lβ → F is a uniformly

random element of RSLβ [2]. Furthermore, the rows of Ω−(f) are independent. It follows that the α-column of Ω−(f)
is a uniformly random function, as claimed.

We proceed to analyze the column-compliant attack.

Lemma 6.7 (Column-compliant soundness on random functions). Assume that k = dim(L) ≥ 2d · 2d and |F| ≥ 512.
Assume η ≥ 2. Then, with probability at least 0.9 over uniform f : L→ F

Pr
[
V

Ω|(f)

RS = reject
]
≥
(

3

8

)d
, (6.1)

where the probability is over a uniformly random function f : L→ F and the randomness of V .

Proof. Consider first the case d = 1. For brevity denote F = Ω|(f). The main point is that g is defined outside of
T (L), only as a function of the values of f on L, or equivalently, the values of F on {Tβ(L)}β∈RL̂ . Thus, for random
f and β /∈ RL̂, the values of F on Tβ(L), and random and independent from the values F |rowβ , for which there
corresponds a unique P ∈ RSLβ [2]. Thus, the probability that F ext

β ∈ RSLβ [2] is at most 1/|F|. A Markov argument
show that with probability 0.9 on the choice of f , there will be at most a 10|RL̂|/|F| < 1 values β /∈ RL̂ such that
F ext
β ∈ RSLβ [2]; in which case VRS will reject whenever he chooses a row extrowβ with β /∈ RL̂, which happens with

probability at least 1/2 · (1− 2η) ≥ 3/8
Note that this argument in fact, only required that there is at least one element (α, β) ∈ Tβ(L) such that F (α, β) is

random and independent of other row values. This will be the case when VRS always recursively chooses a row rather
than column, and specifically a row that is not in RL̂. This is because, under our assumption on k and d, Remark 4.11
shows that when VRS always recurses on rows for every β, the recursive row Lβ1...βd will always intersect T (L), i.e.,
the values of the original f : L→ F.
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6.3 Concrete security threshold of depth-2 PCPPs on random functions
To phrase our results on random functions, we give a formal definition of a PCPP system that is secure against most
inputs x, when the prover is limited to a certain set of strategies for generating the auxiliary proof y.

Definition 6.8 (ε-PCPP for a code C against prespecified attacks). Fix integers A,Q ∈ N and 0 < ε, δ < 1. Let
C ⊆ Fn be an [n = n(C), k = k(C), d = d(C)]-code. LetH be a set of functions h : Fn → FA−n

An (A,Q, ε)-H-resistant PCPP system S for C with soundness error δ is a pair S = (P, V ), where

• P is a systematic mapping P : C → FA.

That is, for any x ∈ C, P (x) = (x, y) for some y ∈ FA−n.

• V is a Q-local randomized mapping V : FA → {accept, reject}. That is, after choosing its internal randomness,
V (z) always depends on at most Q indices of z ∈ FA.

Such that

• (Completeness) For any x ∈ C, V (P (x)) = accept with probability one.

• (Soundness) For a (1 − ε)-fraction of x ∈ Fn , and any y ∈ FA−n of the form y = h(x) for some h ∈ H,
V ((x, y)) = accept with probability at most δ.

We define a concrete efficiency threshold in this setting analogously to Definition B.5

Definition 6.9 (ε-Concrete efficiency threshold of a PCPP against prespecified attacks). We say an (A,Q, ε)-H-
resistant PCPP system S for C is efficient if the cost A ·Q ≤ k(C)2/2.

Fix an ensemble of linear codes C =
{
C ⊆ Fn(C)

}
, and functions A,Q : N→ N. An (A,Q, ε)-H-resistant PCPP

system for C is an ensemble of PCPP systems S = {SC |C ∈ C} where SC is an (A(k(C)), Q(k(C)), ε)-H-resistant
PCPP system for C. The ε-concrete efficiency threshold of S is the smallest integer k such that for any C ∈ C of
dimension k(C) ≥ k, SC is efficient.

For the sake of comparison with the improved concrete soundness studied in Section 4 and summarized in Table 1,
we present here the concrete soundness threshold where soundness is measured on random functions using only the
pair of attacks studied previously; for the sake of comparison, we fix the recursion depth to 2, as studied there. The
bottom line is quite encouraging, showing a far better concrete threshold security, and stressing the importance of
suggesting and analyzing other attacks on PCPP systems.

Corollary 6.10. Fix positive integer d. Assume |F| ≥ 512. There is a (2`+5+2.6·(d−1), q0(k, d) ·m, 0.1)-PCPP system
for RSa[3] resistant to the row- and column-compliant attacks; where m , d log(0.5)

log((5/8)d)
e, for k = `+ 3

Proof. Fix a subspace L ⊆ F of dimension k. Fix f : L → F . Let f ′ be the row-compliant or column-compliant
depth d extension of f . Similarly to Lemma 4.15, we simply run the verifier from Definition 6.2 on f ′ m times and
reject if one of the runs rejected. Using Lemma 6.5 and Lemma 6.7, with probability 0.9 over the choice of f each run
rejects with probability at least (3/8)d. As each run requires reading q0(k, d) entries of f ′, the claim follows.

In particular,we can compare the improved concrete efficiency threshold to the concrete threshold with respect to
the row- and column-compliant “attacks”.

Corollary 6.11 (Security on random functions). Assume |F| ≥ 512. The BSS verifier from Section 4.1.2 has 0.1-
concrete efficiency threshold of 217 with respect to the row- and column-compliant pseudo-provers from Definition 6.3.

We end by asking whether, for random f : L → F, the minimal rejection probability taken over all pseudo-
proofs, is significantly smaller than the rejection probability with respect to row- and column-compliant pseudo-proofs.
Currently, we cannot rule out the possibility that no better pseudo-proof exists!
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message length codeword length proof length # of queries
23 26 30.6 9.57
24 27 31.6 9.82
25 28 32.6 10.01
26 29 33.6 10.32
27 30 34.6 10.57
28 31 35.6 10.82
29 32 36.6 11.07
30 33 37.6 11.32
31 34 38.6 11.57
32 35 39.6 11.82
33 36 40.6 12.07
34 37 41.6 12.32
35 38 42.6 12.57

Table 2: Instantiations of the system in Corollary 6.10 with d = 2. All numbers are logs in base two of the described quantity. The first column
describes the length (in field elements) of the message w to be encoded into a word x ∈ RSL[3]. The second column is the length of x. The third
column is the length of x together with the proof y that x ∈ RSL[3]. The fourth is the number of field elements a verifier needs to read to be reject
with probability 1/2 for a 0.9 fraction of x : L→ F.

7 Reducing proof length with interactive oracle proofs of proximity
In this section we show that, when allowing a few rounds of interaction between the prover and verifier, the efficiency
of the PCPP can be significantly improved. This interaction uses the IOPP model as presented in [BCG+16], based on
the IOP model defined in [BSCS16, RRR16]. We give a tailored definition of IOPPs convenient for our purposes.

Definition 7.1. Fix integers A,Q ∈ N Let C ⊆ Fn be an [n = n(C), k = k(C), d = d(C)]-code.An (A,Q)-IOPP
system S for C is a pair S = (P, V ), of players that run an interactive protocol, where

• The first message is a systematic mapping P : C → FA1

• The total size of messages sent by P is at most A.

• The total number of locations read by V from P ’s answers is ≤ Q.

Such that

• (Completeness) For any x ∈ C, V (P (x)) = accept with probability one.

• (Soundness) For any z = (x, y) ∈ FA such that ∆(x,C) ≥ d/3, V (z) = reject with probability at least 1/2.

Given ε > 0, we also define an (A,Q, ε)-IOPP system in a similar way to Definition 6.8; that is, the soundness
condition needs to hold for a (1− ε)-fraction of x ∈ Fn, rather than x that is d/3-far from C.

Lemma 7.2. Assume |F| ≥ 512. There is a (4 · 2k + 13 · 4 · (2k/2+1.5 + 2k/4+2.25), 13 · 2k/8+2.25, 0.1)-IOPP system
for RSa[3] with resistant to the row- and column-compliant “attacks”, where k = `+ 3

Proof. The proof is similar to that used in the results of [BCG+16] on IOPPs for RS codes (see Theorem 1.2 and
Section 5 there), and we do not give a fully formal argument. Fix g : L → F. As in the proof of Corollary 6.10 we
use the verifier from Section 4.1.2; here we fix depth d = 3. The difference is that know we are constructing an IOPP
system so P only has to write down the depth one BSS-extension f of g at the start. Afterwards he will send the depth
one extension f ′ of f col

α or f ext
β according to V ’s decision to query an extended row or column. As V is using depth

3, he will choose once more a depth one extension of a column or extended row of f ′ for P to send.
Thus, for each repetition, P will need to write at most 4 · (2k/2+1.5 + 2k/4+2.25) elements in addition to writing f

at the start, which has length 2k+2.
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message length codeword length proof length # of queries
23 26 28.1 8.1
24 27 29.1 8.3
25 28 30.1 8.4
26 29 31.1 8.5
27 30 32.1 8.6
28 31 33.1 8.8
29 32 34.1 8.9
30 33 35.1 9
31 34 36.1 9.1
32 35 37.1 9.3
33 36 38.1 9.4
34 37 39.1 9.5
35 38 40.1 9.6

Table 3: Instantiations of the system in Lemma 7.2. All numbers are logs in base two of the described quantity. The first column describes the
length (in field elements) of the message w to be encoded into a word g ∈ RSL[3]. The second column is the length of g. The third column is
the total length of P ’s messages while proving g ∈ RSL[3]. The fourth is the number of field elements a verifier needs to read to be reject with
probability 1/2 for a 0.9 fraction of g : L→ F.
.
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A Defining IOPs and IOPPs using a notary
We assume familiarity with the standard models of (i) an interactive proof (IP) [GMR85] which involves two parties
— a verifier V and prover P , (ii) a multiprover interactive proofs (MIP) [BOGKW88] that involves a single verifier
and two non-communicating provers, and (iii) the PCP model which can be modeled by an Oracle Turing machine,
i.e., a randomized Turing machine with oracle access to a fixed string. The IOP model [BSCS16, RRR16] does not fall
under any of these three models: The prover needs to send long messages (one message per oracle) that the verifier
does not want to explicitly recieve and store, so the IP and MIP models do not suffice. On the other hand, as the verifier
receives a sequence of adaptively selected oracles, the model of an Oracle Turing machine is inadequate. To provide
a clear and formal computational footing for IOPs and IOPPs, we provide the following definition that is a hybrid
of an IP and an Oracle Turing machine. It is interactive, like IP, but introduces a third party, the notary, to provide
the verifier with oracle access to long messages written by the prover interactively. The notary is also convenient for
defining our complexity measures: We measure proof length as the number of bits sent from prover to notary, and
query complexity as the number of bits sent from the notary to the verifier.

Definition A.1 (Notarized Interactive Proof (NIP)). A notarized interactive proof (NIP) is an interactive protocol
involving three parties: a prover P, a randomized verifier V, and notary N. The notary is a machine that (i) records
long messages from the prover that are intended for the verifier, and (ii) answers verifier queries to previously recorded
prover messages. In more detail:

• Notary The notary N has a counter c and a countably infinite number of infinitely long memory tapes. At the
beginning of the protocol all tapes are blank and c = 0. The notary is honest and operates (only) as specified below.

• Communication channels The verifier and notary use only broadcast channels, i.e., all their messages are seen by
the prover. The prover has a private one-way error-less channel to the notary, called the proof channel.

• Interaction and querying Verifier broadcast messages are one of the following three types, that involve four special
symbols: record, query, accept, reject

– Record When V broadcasts a message (record, n, s) with n ∈ N, s ∈ Σ∗ it instructs the notary to (i) increment
c and (ii) record the next n bits arriving on the prover channel sequentially on tape number c. The auxiliary
information s is intended for the prover (later it will used to send random bits to the prover). The verifier and
notary know the rate of the proof channel and compute an upper bound on the time it will take for the n-bit
message to be computed and delivered to the notary over the proof channel. After that time has passed, the
notary will no longer record information on tape number c (unfilled entries remain blank).

– Query When V broadcasts a message (query, S) with S a query set, a sequence of pairs of integers (i1, j1), . . . , (iq, jq),
it instructs the notary to broadcast the sequence a1, . . . , aq where ak is the symbol recorded in the jk position of
the ik tape.

– Verdict The protocol terminates with a single message broadcast that is either accept or reject and marks the
end of the protocol.

• Complexity measures The round complexity is the number of record messages. The proof length is the sum of n
values appearing in all record messages. The query complexity is the sum of sizes of query-sets. The randomness
complexity is the sum of lengths of s strings appearing in “record” messages.

• Non-adaptivity and public randomness A protocol is non-adaptive if it includes a single query message (the
query set may be large) and it is said to use public randomness if the verifier sends as s the next sequence of
symbols appearing on its tape of randomness.

This allows for an improved soundness in proofs of a given size and query complexity. To instantiate the notary
in real-world setting, one can consider a decentralized consensus system such as Bitcoin [Nak08, GKL15], where the
prover commits each required record into a Bitcoin block, and the verifier waits until the probability that this block
could be reversed becomes negligible.

With this definition in hand, we can define the NIP analog of a PCPP.
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Definition A.2 (NIPP). A code C of blocklength n0 is said to have a notarized interactive proof of proximity (NIPP)
with r ≥ 1 rounds, q queries, length `, soundness function s : (0, 1] → [0, 1] if there exists an r-round, q-query,
length-` NIP that satisfies the following constraints

• Initialization The first message of the verifier is (record, n0, ∅), i.e., it involves no randomness. Let w1 denote the
first prover message (which is of length n0).

• Completeness If w1 ∈ C then there exist messages w2, . . . , wr that cause the verifier’s verdict to be accept with
probability 1.

• Soundness Ifw1 is δ-far in relative hamming distance from C then for any sequencew2, . . . , wr of prover messages,
the probability that V announces reject at the end of the protocol is at least s(δ); this probability is taken over the
verifier’s (random) messages.

Remark A.3 (NIPP as a generalization of PCPP and LTC). A NIPP for a code C is a generalization of a PCPP for
C which is, in turn, a generalization of a locally testable code (LTC). A PCPP system for C can be defined as a 2-
round NIPP for C in which both record messages contain empty randomness strings. The first prover-message is the
codeword, and the second is its PCPP. Similarly, a q-query LTC is a 1-round, q-query (non-adaptive) NIPP, in which
the prover sends only the codeword in his first (and only) message.

We mention again that the concepts of NIP and NIPP are equivalent to those of IOP and IOPP introduced in
[BSCS16, BCG+16, RRR16], where [RRR16] use the term PCIP rather than IOP.

B Formal definition of feasible soundness
To discuss feasible soundness for concrete (as opposed to asymptotic) input lengths, we first need to address prelimi-
nary definitional issues.

Non-asymptotic statements and non-trivial input length For the purposes of discussion here a statement τ is
called asymptotic if it is of the form “For every algorithm (in a computational class C) there exists n0 such that
τ ′ holds for inputs of length > n0.” Notice this statement says nothing about concrete input lengths, and we are
interested precisely in such inputs. To phrase a non-asymptotic statement, one that holds unconditionally for all n, we
face problems such as the following:

• Kolmogorov complexity For any language L (e.g., the undecidable Halting Problem) and integer n0 there exists a
machine deciding L ∩ {0, 1}n0 . If L has large Kolmogorov complexity then the length of the description of M is
Ω(2n0).

• Exhaustive search For any language L ∈ NTIME(T (n)) and integer n0 there exists a machine that runs in time
2n0 ·O(n) = O(n) and decides L ∩ {0, 1}n0 correctly.

Both of these cases can be regarded as a special case of a polynomial time machine M such that the degree of
its polynomial bound is high relative to n0, hence M can use predefined hardcoded data or exhaustive search loop to
decide inputs of length shorter than n0. To avoid these issues we use the following definition.

Definition B.1 (Non-trivial input length). Let M be a Turing machine over alphabet Σ with a polynomial running
time. The f -trivial length threshold of M , denoted n0(M,f), is the smallest n for which the following two conditions
hold:

1. |Σ|f(n)
> p0(n), where p0 is a polynomial.

2. p0 bounds the running time of M , i.e., ∀k: M terminates in time p0(k) or less on inputs of length k.

Inputs of length at most n0(M,f) are called (M,f)-trivial and inputs of length greater than n0(M,f) are (M,f)-
nontrivial. When f is unspecified we take it to be the identity function (f(n) = n) in which case we shall talk about
M -trivial (or nontrivial) input length.
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In the above definition f(n) = n can be regarded as exhaustive search over all witnesses of length n,
and for example f(n) =

√
n can be considered for brute-force lookup over an inverse quadratic subset of the

search space, i.e., subset of size |Σ|
√
n.

Defining feasible soundness We assume familiarity with the standard definition of a PCP system (P, V ) and use
err(n) to denote the maximal soundness error of V on inputs of length n. The feasible error of such a system is the
smallest error obtainable by an efficient procedure, disregarding its trivial inputs. For concreteness, a randomized
algorithm R is a 2-tape Turing machine over alphabet {0, 1,⊥} (with an auxiliary read-only tape for the randomness)
and |R| is the number of states in the transition function of A.

Definition B.2 (Feasible soundness error). Let P be a set of randomized polynomial time algorithms. A PCP system
(P, V ) for L ∈ NTIME(T (n)) is said to have f -feasible soundness error errfP : N → [0, 1] against P if for every
P ∗ ∈ P and non-trivial input length n > n0(P ∗, f), with all but probability errf

P(n) over x ∈ {0, 1}n \ L and the
internal randomness of P ∗, err(V, x, P ∗(x)) is no greater than errf

P(n). Formally,

∀P ∗ ∈ P, n > n0(P ∗, f), Pr
x∈{0,1}n\L

[
err(V, x, P ∗(x)) > errf

P(n)
]
≤ errf

P(n) (B.1)

Remark B.3 (On the need for instance-distribution). It may seem better to define and study “worst-case feasible
soundness”, in which one quantifies universally over all instances x and replaces (B.1) with

∀P ∗ ∈ P, n > n0(P ∗, f), x ∈ {0, 1}n \ L Pr
[
err(V, x, P ∗(x)) > errf

P(n)
]
≤ errf

P(n). (B.2)

The probability above is (only) over the randomness of P ∗. This approach is problematic, because there may exist
“pathological” examples of x 6∈ L for which a high-soundness-error pseudo-proof can be found efficiently. Thus, we
prefer a definition that seems immune to pathological pseudo-provers that succeed only on pathological instances.

The distribution on instances in (B.1) can be naturally replaced with a different distribution µ, say, one that
“simulates” the distribution on “typical instances arising in practice”.

For any PCP system we have err(n) ≥ errf(n) because err(n) is the maximum error taken over all pseudo-
proofs whereas errf(n) is the maximum error over all efficiently computable pseudo-proofs. Computing errf(n) is
beyond our current ability because it requires bounding the error over all efficient, polynomial-time, pseudo-proofs
(for nontrivial input lengths). Moreover, a strict inequality in (B.1) implies that P 6= NP because otherwise there
exists a polynomial time algorithm that searches for the proof with maximal soundness error. When P is the full set of
randomized polynomial time algorithms we also say that the PCP system S = (P, V ) has absolute feasible soundness
errf
P(n). On the other hand, when P = Pdate=DD/MM/YYYY is the set of “published” algorithms (say, those described

on the web) by date DD/MM/YYYY we refer to− log errf
P(n) as the security level of the PCP system S. E.g., saying

errf
Pdate=1/1/2016(230) = 2−128 means that for the particular PCP system S, fixing any pseudo-proof P ∗ posted on the

web by the end of 2015 (that runs in time < n230

and has program length less than 2230

) for all but a 2−128-fraction of
unsatisfiable x, |x| = 230, has probability that V accepts x, when given oracle access to P ∗(x), is at most 2−128.

Remark B.4 (Absolutely trivial inputs). There exists a constant c such that every polynomial time machineM requires
a description of length > 2c. Inputs of length < c can be called “absolutely trivial”, as they are trivial for all
polynomial time machines. The value of c is likely very small (in particular c < 20 seems likely), so much so that
shorter inputs are of no practical (or theoretical) interest.

We shall also be interested in the feasible soundness of PCPs of proximity for families of error correcting codes,
because the feasible soundness of the PCP systems we study is tightly related to the feasible soundness of quasilinear
PCPPs for RS codes. The definition below generalizes that of the concrete soundness threshold of a PCPP system
(Definition 1.2).

Definition B.5 (Feasible soundness of PCPPs and its concrete threshold). Fix an ensemble of linear codes C ={
C ⊆ Fn(C)

}
, and functions L,Q : N → N. An (L,Q)-PCPP system for C is an ensemble of PCPP systems S =

{SC |C ∈ C} where SC is an (L(k(C)), Q(k(C)))-PCPP system for C (cf. Definition 6.8).
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We say S has feasible soundness error errfP : N× [0, 1]→ [0, 1] with respect to a set P of randomized polynomial
time “pseudo-provers” if for every P ∗ ∈ P and C ∈ C of non-trivial blocklength n = n(C) > n0(P ∗) (cf. Defini-
tion B.1) with all but probability errfP(n) over x ∈ Fn \C and the internal randomness of P ∗, err(V, x, P ∗(x)) is no
greater than errf

P(n,∆(x,C)). Formally,

∀P ∗ ∈ P, n > n0(P ∗), Pr
x∈Fn\C

[
err(V, x, P ∗(x)) > errf

P(n,∆(x,C))
]
≤ errf

P(n,∆(x,C)) (B.3)

B.1 Defining feasible soundness of PCPPs
We now give a definition of feasible concrete soundness of PCPP systems; it uses the notion of nontrivial input length
(Definition B.1).

Definition B.6 (Feasible concrete soundness). Fix integers A,Q ∈ N. Let P be a set of polynomial time (randomized)
algorithms. Let C ⊆ Fn be an [n = n(C), k = k(C), d = d(C)]-code. S = (P, V ) is called an (A,Q, ε)-PCPP
system for C with respect to P (cf. Definition 6.8) if it satisfies the first three bullets of Definition 1.1 and the following
weaker soundness condition:

• (P-feasible soundness) For any P ∗ ∈ P such that n is a non-trivial input for P ∗, with probability at least 1 − ε
over x ∈ Fn,

Pr[V (x, y = P ∗(x)) = reject] ≥ 1/2. (B.4)

We say S is ε-efficient on C with respect to P if furthermore A ·Q ≤ k(C)2/2. A PCPP system for an ensemble C of
codes has ε-concrete feasible efficiency threshold k with respect to P if for any C ∈ C of dimension k(C) ≥ k, SC is
ε-efficient on C with respect to P .

C Size of a BSS set
Claim C.1. Fix L ⊆ F of dimension k. Then, |Ωd(L)| ≤ 2k+2+3·(d−1).

Furthermore, if Ωd(L) is defined as in Definition 4.10 but while taking depth d− 1 extensions only of columns and
extended rows, i.e. omitting the union over the sets (α,Ωd−1(L′0)) in the definition, then |Ωd(L)| ≤ 2k+2+2.6·(d−1)

Proof. We use induction on d.
Base: As Ω1(L) = Ω(L) is a union of rowβ over β ∈ L1, and |rowβ | = |Lβ | = 2 · |L′0|We have

|Ω(L)| ≤ |L1| · 2 · |L′0| ≤ 4 · |L| = 2k+2.

Induction step:
|Ωd(L)| ≤ |L′0| · |Ωd−1(L′1)|+ |L1| · (|Ωd−1(L′0)|+ |Ωd−1(Lβ)|)

Using induction hypothesis
≤ (|L′0| · |L′1|+ |L1| · (|L′0|+ |Lβ |)) · 22+3·(d−2)

Using |L| = |L′0| · |L′1| = |L1| · |L′0| and |Lβ | = 2 · |L′0|

= 8 · |L| · 22+3·(d−2) = 2k+2+3·(d−1).

The “furthermore” case would follow by a similar induction step, while omitting the |L1| · |L′0| term:

|Ωd(L)| ≤ |L′0| · |Ωd−1(L′1)|+ |L1| · |Ωd−1(Lβ)|

≤ (|L′0| · |L′1|+ |L1| · |Lβ | · 22+2.6·(d−2)

= 6 · |L| · 22+2.6·(d−2) ≤ 2k+2+2.6·(d−1),

where we used 6 ≤ 22.6 in the last inequality.
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D Set visualization
The purpose of this appendix is to give a concrete example of a BSS set, with a visualization, in order to help clarify
Definition 4.1.

Let L ⊂ F be an F2-subspace of dimension k = 5, and let {b1, · · · , b5} be its basis. We visualize the set of
elements L as an ordered vector of points. We think of the indices of the points as the boolean vectors in {0, 1}5. Each
index (a1, . . . , a5) represents the element

∑5
i=1 ai · bi of L; and they are ordered by the standard alphanumeric order

(see figure D.1).

0

b1

b2

b1 + b2

∑5
i=1 bi

Figure D.1: Visualization of the vector space L

We view this space as a direct sum L = L0 ⊕ L1 where L0 = span (b1, b2) and L1 = span (b3, b4, b5).
A convenient way to visualize these spaces is thinking of L as the union of L0 cosets shifted by L1 elements as we

see in figure D.2, where the beginning of a new coset is indicated by a change in color.

The space L0

The space L1

The space L as a union of shifts of the space L0

Figure D.2: Visualization of the spaces L0 and L1 and L as their direct sum. Each cyan node in L indicates the ”beginning” of a new affine shift
of L0 by some element of L1

The space L′0 is span (b1, b2, b3) and is the common subset of all the spaces Lβ for all β ∈ L1. The space Lβ is
defined as Lβ = span (b1, b2, b3, β) for all β /∈ L′0, and otherwise Lβ = span (b1, b2, b3, b4).

An illustration of the construction of Lβ for arbitrary value of β can be seen in figure D.3.
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The space L1

chosen β ∈ L1

The space Lβ

The space L′0 The space L′0 + β

Figure D.3: Visualization of the spaces L′0 and Lβ

For all β ∈ L1 we define the set extrowβ ⊂ F2 to be the embedding of Lβ into F2 using the mapping φβ that is
defined by ∀α ∈ Lβ : φβ(α) = (α, qL0

(β)). The BSS set Ω(L) is defined as the union of extrowβ for all β ∈ L1. We
embed the space L into Ω(L) using the mapping φΩ that is defined by ∀α ∈ L0, β ∈ L1 : φΩ(α + β) = φβ(α) (see
figure D.4).

T
he

sp
ac

e
q L

0
(L

1
)

The space L

φΩφΩφΩφΩφΩφΩφΩφΩ

Figure D.4: Visualization of Ω(L) and the embedding of L into it. The subset of qL0 (L1)× L is Ω(L), and the purple arrows from the space L
into Ω(L) illustrate the embedding ψΩ. The purple elements in Ω(L) is the image of this embedding, which is denoted T (L) in Definition 4.1.
The product set S(L) = qL0 (L1)× L′0 can be easily seen as the block of full columns at the left part of Ω(L).

The set Ω(L) is defined as Ω(L) \ T (L) and visually illustrated in figure D.5.

Figure D.5: Illustration of the set Ω(L). The elements in the set are blue. The remaining elements are the set T (L) from Definition 4.1.
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