
Characterization and Lower Bounds for Branching Program Size

using Projective Dimension

Krishnamoorthy Dinesh∗ Sajin Koroth∗ Jayalal Sarma∗

February 9, 2017

Abstract

We study projective dimension, a graph parameter (denoted by pd(G) for a graph G),
introduced by Pudlák and Rödl (1992). For a Boolean function f(on n bits), Pudlák and
Rödl associated a bipartite graph Gf and showed that size of the optimal branching program
computing f (denoted by bpsize(f)) is at least pd(Gf) (also denoted by pd(f)). Hence, proving
lower bounds for pd(f) imply lower bounds for bpsize(f). Despite several attempts (Pudlák and
Rödl (1992), Rónyai et.al, (2000)), proving super-linear lower bounds for projective dimension of
explicit families of graphs has remained elusive.

We observe that there exist a Boolean function f for which the gap between the pd(f) and
bpsize(f)) is 2Ω(n). Motivated by the argument in Pudlák and Rödl (1992), we define two variants
of projective dimension - projective dimension with intersection dimension 1 (denoted by upd(f))
and bitwise decomposable projective dimension (denoted by bpdim(f)). We show the following
results :

(a) We observe that there exist a Boolean function f for which the gap between upd(f) and
bpsize(f) is 2Ω(n). In contrast, we also show that the bitwise decomposable projective
dimension characterizes size of the branching program up to a polynomial factor. That is,
there exists a constant c > 0 and for any function f ,

bpdim(f)/6 ≤ bpsize(f) ≤ (bpdim(f))c

(b) We introduce a new candidate function family f for showing super-polynomial lower bounds
for bpdim(f). As our main result, we demonstrate gaps between pd(f) and the above two
new measures for f :

pd(f) = O(
√
n) upd(f) = Ω(n) bpdim(f) = Ω

(
n1.5

log n

)
(c) Although not related to branching program lower bounds, we derive exponential lower

bounds for two restricted variants of pd(f) and upd(f) respectively by observing that they
are exactly equal to well-studied graph parameters - bipartite clique cover number and
bipartite partition number respectively.

1 Introduction

A central question in complexity theory - the P vs L problem - asks if a deterministic Turing machine
that runs in polynomial time can accept any language that cannot be accepted by deterministic

∗Indian Institute of Technology Madras, Chennai, India. ({kdinesh,sajin,jayalal}@cse.iitm.ac.in)

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 76 (2016)

Turing machines with logarithmic space bound. A stronger version of the problem asks if P is
separate from L/poly (deterministic logarithmic space given polynomial sized advice). The latter,
recast in the language of circuit complexity theory, asks if there exists an explicit family of functions
(f : {0, 1}n → {0, 1}) computable in polynomial time (in terms of n), such that any family of
deterministic branching programs computing them has to be of size 2Ω(n). However, the best known
non-trivial size lower bound against deterministic branching programs, due to Nechiporuk [15] in

1970s, is Ω(n2

log2 n
).

Pudlák and Rödl [16] described a linear algebraic approach to show size lower bounds against
deterministic branching programs. They introduced a linear algebraic parameter called projective
dimension (denoted by pdF(f), over a field F) defined on a natural graph associated with the Boolean
function f . For a Boolean function f : {0, 1}2n → {0, 1}, fix a partition of the input bits into two
parts of size n each, and consider the bipartite graph Gf (U, V,E) defined on vertex sets U = {0, 1}n
and V = {0, 1}n, as (u, v) ∈ E if and only if f(uv) = 1. We call Gf as the bipartite realization of f .
For a bipartite graph G(U, V,E), the projective dimension of G over a field F, denoted by pdF(G), is
defined as the smallest d for which there is a vector space W of dimension d (over F) and a function
φ mapping vertices in U, V to linear subspaces of W such that for all (u, v) ∈ U × V , (u, v) ∈ E if
and only if φ(u) ∩ φ(v) 6= {0}. We say that φ realizes the graph G.

Pudlák and Rödl [16] showed that if f can be computed by a deterministic branching program
of size s, then pdF(f) ≤ s over any field F. Thus, in order to establish size lower bounds against
branching programs, it suffices to prove lower bounds for projective dimension of explicit family of
Boolean functions.

Pudlák and Rödl in [16] showed that for most Boolean functions f : {0, 1}n × {0, 1}n → {0, 1},
pdR(f) is Ω(

√
2n

n). In a subsequent work, the same authors [17] also established an upper bound

pdR(f) = O(2n

n) for all functions. More recently, Rónyai, Babai and Ganapathy [20] established
the same lower bound over all fields. Over finite fields F, Pudlák and Rödl [16] also showed (by a
counting argument) that there exists a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} such that
pdF(f) is Ω(

√
2n). However, till date, obtaining an explicit family of Boolean functions (equivalently

graphs) achieving such lower bounds remain elusive. The best lower bound for projective dimension
for an explicit family of functions is for the inequality function (on 2n bits, the graph is the bipartite
complement of the perfect matching) where a lower bound of εn for an absolute constant ε > 0 is
known [16] over R. For a survey on projective dimension and related linear algebraic techniques,
refer [17, 12]. Thus, the best known size lower bound that was achieved using this framework is
only Ω(n) which is not better than trivial lower bounds.
Our Results : The starting point of our investigation is the observation that projective assignment
appearing in the proof of [16] also has the property that the dimension of the intersection of two
subspaces assigned to the vertices is exactly 1, whenever they intersect (See Proposition 2.2(2)). We
denote, for a function f , the variant of projective dimension defined by this property as upd(f) (See
Section 4). From the above discussion, for any Boolean function f , pd(f) ≤ upd(f) ≤ bpsize(f). A
natural question is whether this restriction helps in proving better lower bounds for the branching
programs. By observing properties about projective dimension and choosing a new candidate
function1, we demonstrate that the above restriction can help by proving the following quadratic
gap between the two measures.

1the candidate function is in NC2 but unlikely to be in NL. See Proposition 5.5.

2

Theorem 1.1. For any d ≥ 0, for the function SId (on 2d2 variables, See Definition 2.3), the
projective dimension is exactly equal to d, while the projective dimension with intersection dimension
1 is Ω(d2).

However, this does not directly improve the known branching program size lower bound for
SId, since it leads to only a linear lower bound on upd(SId). We demonstrate the weakness of
this measure by showing the existence of a function (although not explicit) for which there is an
exponential gap between upd over any partition and the branching program size (Proposition 5.1).
This motivates us to look for variants of projective dimension of graphs, which is closer to the
optimal branching program size of the corresponding Boolean function. We observe more properties
(see Proposition 2.2) about the subspace assignment from the proof of the upper bound from [16].
We call the projective assignments with these properties bitwise decomposable projective assignment
and denote the corresponding dimension2 as bitpdim(f) (See Definition 5.2). Thus, for any Boolean
function f , pd(f) ≤ bitpdim(f). We also show that bitpdim(f) ≤ 6 · bpsize(f) (Lemma 5.3). To
demonstrate the tightness of the definition, we first argue a converse with respect to this new
parameter.

Theorem 1.2. There is an absolute constant c > 0 such that if bitpdim(fn) ≤ d(n) for a function
family {fn}n≥0 on 2n bits, then there is a deterministic branching program of size (d(n))c computing
it.

Thus, super-polynomial size lower bounds for branching programs imply super-polynomial lower
bounds for bitpdim(f). The function SId (on 2d2 input bits - See Definition 2.3) is a natural candidate
for proving bitpdim lower bounds as the corresponding language is hard3 for the complexity class
C=L under logspace Turing reductions.

However, the best known lower bound for branching program size for an explicit family of

functions is Ω
(

n2

log2 n

)
by Nechiporuk [15] which uses a counting argument on the number of sub-

functions. By Theorem 1.2 , bitpdim(f) (for the same explicit function) is at least Ω
(

n2/c

log2/c n

)
. The

constant c is more4 than 3 and hence implies only weak lower bounds for bitpdim. Despite this weak
connection, by combining the counting strategy with the linear algebraic structure of bitpdim, we
show a super-linear lower bound for SId matching the branching program size lower bound5.

Theorem 1.3 (Main Result). For any d > 0, bitpdim(SId) is at least Ω
(

d3

log d

)
.

Theorems 1.1 and 1.3 demonstrate gaps between the pd and the new measures considered. In

particular, for n = d2, pd(SId) = O(
√
n), upd(SId) = Ω(n), and bitpdim(SId) = Ω

(
n1.5

logn

)
. We remark

that Theorem 1.3 implies a size lower bound of Ω(n
1.5

logn) for branching programs computing the

function SId (where n = d2). However, note that this can also be derived from Nechiporuk’s method.
For the Element Distinctness function, the above linear algebraic adaptation of Nechiporuk’s method
for bitpdim gives Ω(n2

log2 n
) lower bounds (for bitpdim and hence for bpsize) which matches with

the best lower bound that Nechiporuk’s method can derive. This shows that our modification of
approach in [16] can also achieve the best known lower bounds for branching program size.

2We do not use the property that intersection dimension is 1 and hence is incomparable with upd.
3Assuming C=L 6⊆ L/poly, SId cannot be computed by deterministic branching programs of size poly(d).
4The value of c can be shown to be at most 3 + ε. See proof of Theorem 1.2 in Section 5.1.
5A lower bound of Ω

(
d3

log d

)
for the branching program size can also be obtained using Nechiporuk’s method.

3

Continuing the quest for better lower bounds for projective dimension, we study two further
restrictions. In these variants of pd and upd, the subspaces assigned to the vertices must be
spanned by standard basis vectors. We denote the corresponding dimensions as spd(f) and uspd(f)
respectively. It is easy to see that for any 2n-bit function, both of these dimensions are upper
bounded by 2n.

We connect these variants to some of the well-studied graph parameters. The bipartite clique
cover number (denoted by bc(G)) is the smallest collection of complete bipartite subgraphs of G such
that every edge in G is present in some graph in the collection. If we insist that the bipartite graphs
in the collection be edge-disjoint, the measure is called bipartite partition number denoted by bp(G).
By definition, bc(G) ≤ bp(G). These graph parameters are closely connected to communication
complexity as well. More precisely, log(bc(Gf)) is exactly the non-deterministic communication
complexity of the function f , and log(bp(Gf)) is a lower bound on the deterministic communication
complexity of f (See [9]). In this context, we show the following:

Theorem 1.4. For any Boolean function f , spd(f) = bc(Gf) and uspd(f) = bp(Gf).

Thus, if for a function family, the non-deterministic communication complexity is Ω(n), then we
will have spd(f) = 2Ω(n). Thus, both spd(DISJ) and uspd(DISJ) are 2Ω(n).

2 Preliminaries

In this section, we introduce the notations used in the paper. For definitions of basic complexity
classes and computational models, we refer the reader to standard textbooks [9, 21].

Unless otherwise stated, we work over the field F2. We remark that our arguments do generalize
to any finite field. All subspaces that we talk about in this work are linear subspaces. Also ~0 and
{0} denote the zero vector, and zero-dimensional space respectively. For a subspace U ⊆ Fn, we call
the ambient dimension of U as n. We denote ei ∈ Fn as the ith standard basis vector with ith entry
being 1 and rest of the entires being zero.

For a graph G(U, V,E), recall the definition of projective dimension of G over a field F(pdF(G)),
defined in the introduction. For a Boolean function f : {0, 1}2n → {0, 1}, fix a partition of the
input bits into two parts of size n each, and consider the bipartite graph Gf defined on vertex sets
U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if f(uv) = 1. A φ is said to realize the
function f if it realizes Gf . Unless otherwise mentioned, the partition is the one specified in the
definition of the function. We denote by bpsize(f) the number of vertices (including accept and
reject nodes) in the optimal branching program computing f .

Theorem 2.1 (Pudlák-Rödl Theorem [16]). For a Boolean function f computed by a deterministic
branching program of size s and F being any field, pdF(Gf) ≤ s.

The proof of this result proceeds by producing a subspace assignment for vertices of Gf from a
branching program computing f . We reproduce the proof of the above theorem in our notation, in
Appendix A and derive the following proposition from the same.

Proposition 2.2. For a Boolean function f : {0, 1}n×{0, 1}n → {0, 1} computed by a deterministic
branching program of size s, there is a collection of subspaces of Fs denoted C = {Uai }i∈[n],a∈{0,1}
and D = {V b

j }j∈[n],b∈{0,1}, where we associate the subspace Uai with a bit assignment xi = a and V b
j

with yj = b such that if we define the map φ assigning subspaces from Fs to vertices of Gf (U, V,E)

4

as φ(x) = span
1≤i≤n

{Uxii }, φ(y) = span
1≤j≤n

{V yj
j }, for x ∈ X, y ∈ Y then the following holds true. Let

S = {ei − ej | i, j ∈ [s], i 6= j}.

1. for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if f(u, v) = 1.

2. for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.

3. For any W ∈ C ∪ D, ∃S′ ⊆ S such that W = span {S′}.

Proof. We reuse the notations introduced in proof of Theorem 2.1 which we have described in
the Appendix A. If Hx denotes the set of edges that are closed on an input a, then the subspace
assignment φ(a) is span of vectors associated with edges of Hx. Denote by Hxi=ai , the subgraph
consisting of edges labeled xi = ai. Hence Ha can be written as span of vectors associated with
Hxi=ai . Hence φ(a) can be expressed as spanni=1Ui where Ui = span(u,v)∈Hxi=ai (eu − ev). A similar
argument shows that φ(y) also has such a decomposition. We now argue the properties of φ.

Note that the first and third property directly follow from proof. To see second property, observe
that the branching program is deterministic and hence there can be only one accepting path. Since
we observed that the vectors in the accepting path contribute to the intersection space and since
there is only one such path, dimension of the intersection spaces is bound to be 1.

We define the following family of functions and family of graphs based on subspaces of a vector
space and their intersections.

Definition 2.3 (SId, Pd). Let F be a finite field. Denote by SId, the Boolean function defined on
Fd×d×Fd×d → {0, 1} as for any A,B ∈ Fd×d SId(A,B) = 1 if and only if rowspan(A)∩ rowspan(B) 6=
{0}. Note that the row span is over the field F (which, in our case, is F2). Denote by Pd, the bipartite
graph (U, V,E) where U and V are the set of all subspaces of Fd. And for any (I, J) ∈ U × V ,
(I, J) ∈ E ⇐⇒ I ∩ J 6= {0}

We collect the definitions of Boolean functions which we deal with in this work. For (x, y) ∈
{0, 1}n × {0, 1}n, IPn(x, y) =

∑n
i=1 xiyi mod 2, EQn(x, y) is 1 if ∀i ∈ [n] xi = yi and is 0 otherwise,

INEQn(x, y) = ¬EQn(x, y) and DISJn(x, y) = 1 if ∀i ∈ [n] xi ∧ yi = 0 and is 0 otherwise. Note that
all the functions discussed so far has branching programs of size O(n) computing them and hence
have projective dimension O(n) by Theorem 2.1.

Let m ∈ N and n = 2m logm. The Boolean function, Element Distinctness, denoted EDn is
defined on 2m blocks of 2 logm bits, x1, . . . , xm and y1, . . . , ym bits and it evaluates to 1 if and only
if all the xis and yis take distinct values when interpreted as integers in [m2]. Let q be a power of
prime congruent to 1 modulo 4. Identify elements in {0, 1}n with elements of F∗q . For x, y ∈ F∗q , the
Paley function PALqn(x, y) = 1 if x− y is a quadratic residue in F∗q and 0 otherwise.

We observe for any induced subgraph H of G, if G is realized in a space of dimension d, then H
can also be realized in a space of dimension d. For any d ∈ N, Pd appears as an induced subgraph
of the bipartite realization of SId. Hence, pd(SId) ≥ pd(Pd).

We need the following definition of Gaussian coefficients. For non-negative integers n, k and a

prime power q,
[
n
k

]
q

is the expression, (qn−1)(qn−q)...(qn−qk−1)
(qk−1)(qk−q)...(qk−qk−1)

if n ≥ k, k ≥ 1, 0 if n < k, k ≥ 1, 1 if

n ≥ 0, k = 0.
Linear Algebra : We recall some basic lemmas from linear algebra which we use later. Unless
otherwise mentioned, all our algebraic formulations are over finite fields (F of size q). For vector

5

spaces V1, V2 with dimensions k1, k2 respectively, the direct sum V1 ⊕ V2 is the vector space formed

by the column space of the matrix M =

[
B1 0
0 B2

]
where B1 is a k1 × k1 matrix whose column

space forms V1, B2 is a k2× k2 matrix whose column space form V2. We now state a useful property
of direct sum.

Proposition 2.4. For an arbitrary field F, let U1, V1 be subspaces of Fk1 and U2, V2 be subspaces
of Fk2. Then, (U1 ⊕ U2) ∩ (V1 ⊕ V2) 6= {0} ⇐⇒ U1 ∩ V1 6= {0} or U2 ∩ V2 6= {0}

Let U, V be two vector spaces. Then the vector space formed by Span
(
{uv> | u ∈ U, v ∈ V }

)
is

called the tensor product of vector spaces U, V denoted as U ⊗ V . Here u, v are column vectors. A
basic fact about tensor product that we need is the following. Let U be a vector space having basis
u1, u2, . . . uk and V be a vector space having basis v1, v2, . . . , v` over some field F then, vector space
U ⊗ V has a basis B = {uiv>j | i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , `}} where u, v are column vectors.
Hence, for any two vector spaces U, V dim(U ⊗ V) = dim(U) · dim(V).

Proposition 2.5. For an arbitrary field F, let U1, V1 be subspaces of Fk1 and U2, V2 be subspaces
of Fk2. Then, (U1 ⊗ U2) ∩ (V1 ⊗ V2) 6= {0} ⇐⇒ U1 ∩ V1 6= {0} and U2 ∩ V2 6= {0}

The proofs of the two Propositions 2.4 and 2.5 are fairly elementary and follows from basic
linear algebra. For example Proposition 2.5 follows as an easy corollary from an exercise from [19,
Chapter 14, exercise 12]6.

Let V be a finite dimensional vector space. For any U ⊆S V , V = U ⊕U⊥. Hence for any v ∈ V
there exists a unique u ∈ U,w ∈ U⊥ such that v = u+ w. A projection map ΠU is a linear map
defined as ΠU (v) = u where u is the component of v in U . For any A,B ⊆S V with A ∩B = {0},
let V = A+B. Then any vector w ∈ V can be uniquely expressed as w = ΠA(w) + ΠB(w). It is
easy to see that, for any A,B ⊆S Fd, with A∩B = {0}, and any w ∈ Fd, ΠA+B(w) = ΠA(w)+ΠB(w).

3 Properties of Projective Dimension

In this section, we observe properties about projective dimension as a measure of graphs and Boolean
functions. We start by proving closure properties of projective dimension under Boolean operations
∧ and ∨. The proof is based on direct sum and tensor product of vector spaces.

Lemma 3.1. Let F be an arbitrary field. For any two functions f1 : {0, 1}2n → {0, 1}, f2 :
{0, 1}2n → {0, 1}, pdF (f1 ∨ f2) ≤ pdF (f1) + pdF (f2) and pdF (f1 ∧ f2) ≤ pdF (f1) · pdF (f2)

Proof. In this proof, for a Boolean f with bipartite representation Gf (U, V,E) we define the map φ
to be from {0, 1}n×{0, 1} where φ(u, 0) denotes the subspace assigned to u ∈ U and φ(v, 1) denotes
the subspace assigned to v ∈ V of Gf . Let f1 and f2 be of projective dimensions k1 and k2 realized
by maps φ1 : {0, 1}n × {0, 1} → Fk1 , φ2 : {0, 1}n × {0, 1} → Fk2 respectively.

• From φ1 and φ2 we construct a subspace assignment φ : {0, 1}n × {0, 1} → Fk1+k2 which
realize f1 ∨ f2 thus proving the theorem.
The subspace assignment is : for u ∈ {0, 1}n, φ(u, 0) = φ1(u, 0)⊕ φ2(u, 0). Similarly for v ∈

6There is a typo in the way the exercise is stated in [19, Chapter 14, exercise 12]. For this reason we give a proof
of this result in Appendix C.

6

{0, 1}n, φ(v, 1) = φ1(v, 1)⊕φ2(v, 1). Now, for u, v ∈ {0, 1}n, if f(u, v) = 1 then it must be that
f1(u, v) = 1 or f2(u, v) = 1. Thus either φ1(u, 0) ∩ φ1(v, 1) 6= {0} or φ2(u, 0) ∩ φ2(v, 1) 6= {0}.
By Proposition 2.4, it must be the case that (φ1(u, 0)⊕ φ2(u, 0)) ∩ (φ1(v, 1)⊕ φ2(v, 1)) 6= {0}.
Hence φ(u, 0) ∩ φ(v, 1) 6= {0}. The dimension of resultant space is k1 + k2.

• From φ1 and φ2 we construct a subspace assignment φ : {0, 1}n × {0, 1} → Fk1k2 , realizing
f1∧f2 thus proving the theorem. Consider the following projective dimension assignment φ: for
u ∈ {0, 1}n, φ(u, 0) = φ1(u, 0)⊗φ2(u, 0). Similarly for v ∈ {0, 1}n, φ(v, 1) = φ1(v, 1)⊗φ2(v, 1).
The proof is similar to the previous case and applying Proposition 2.5, completes the proof.

The ∨ part of the above lemma was also observed (without proof) in [17]. A natural question is
whether we can improve any of the above bounds. In that context, we make the following remarks:
(1) the construction for ∨ is tight up to constant factors, (2) we cannot expect a general relation
connecting pdR(f) and pdR(¬f).

• We prove that the construction for ∨ is tight up to constant factors. Assume that n is a multiple
of 4. Consider the functions f(x1, . . . , xn

4
, xn

2
+1, . . . , x 3n

4
) and g(xn

4
+1, . . . , xn

2
, x 3n

4
+1, . . . , xn)

each of which performs inequality check on the first n
4 and the second n

4 variables. It is
easy to see that f ∨ g is the inequality function on n

2 variables x1, . . . , xn
2

and the next n
2

variables xn
2

+1, . . . , xn. By the fact that they are computed by n size branching programs
and using Theorem 2.1 (Pudlák-Rödl theorem) we get that pd(f) ≤ n and pd(g) ≤ n. Hence
by Lemma 3.1, pd(f ∨ g) ≤ pd(f) + pd(g) ≤ 2n. Lower bound on projective dimension of
inequality function comes from [16, Theorem 4], giving pd(f ∨g) ≥ ε.n2 for an absolute constant
ε. This shows that pd(f ∨ g) = Θ(n).

• A natural idea to improve the upper bound of pd(f1 ∧ f2) is to prove upper bounds for pd(¬f)
in terms of pd(f). However, we remark that over R, it is known [16] that pdR(INEQn) is
Ω(n) while pdR(EQn) = 2. Hence we cannot expect a general relation connecting pdR(f) and
pdR(¬f).

We now observe a characterization of bipartite graphs having projective dimension at most
d over F. Let f : {0, 1}n × {0, 1}n → {0, 1}, and Gf (X,Y,E) be its bipartite realization. Let
pd(Gf) = d.

Proposition 3.2. For any subspace assignment φ realizing Gf , no two vertices from the same
partition whose neighborhoods are different can get the same subspace assignment.

Proof. Suppose there exists x, x′ ∈ S from the same partition, i.e., either X or Y ,such that
φ(x) = φ(x′). Since N(x) 6= N(x′), without loss of generality, there exists z ∈ N(x) \N(x′). Now
since φ(x) = φ(x′), x′ will be made adjacent to z by the assignment and hence φ is no longer a
realization of Gf since z should not have been adjacent to x′.

Lemma 3.3 (Characterization). Let G be a bipartite graph with no two vertices having same
neighborhood, pd(G) ≤ d if and only if G is an induced subgraph of Pd.

7

Proof. Suppose G appears as an induced subgraph of Pd. To argue, pd(G) ≤ d, simply consider the
assignment where the subspaces corresponding to the vertices in Pd are assigned to the vertices of
G.

On the other hand, suppose pd(G) ≤ d. Let U1, . . . , UN and V1, . . . , VN be subspaces assigned
to the vertices. Since the neighborhoods of the associated vertices are different, by Proposition 3.2,
no two subspaces assigned to these vertices can be the same. Hence corresponding to each vertex in
G, there is a unique vertex in Pd which corresponds to the assignment. Now the subgraph induced
by the vertices corresponding to these subspaces in Pd must be isomorphic to G as the subspace
assignment map for G preserves the edge non-edge relations in G.

It follows that pd(Pd) ≤ d. Observe that, in any projective assignment, the vertices with different
neighborhoods should be assigned different subspaces. For pd(Pd), all vertices on either partitions
have distinct neighborhoods. The number of subspaces of a vector space of dimension d − 1 is
strictly smaller than the number of vertices in Pd. Thus, we conclude the following theorem.

Theorem 3.4. For any d ∈ N, pd(Pd) = pd(SId) = d.

For an N vertex graph G, the number of vertices of distinct neighborhood can at most be N .
Thus, the observation that we used to show the lower bound for the graph pd(Pd) cannot be used
to obtain more than a

√
logN lower bound for pd(G). Also, for many functions, the number of

vertices of distinct neighborhood can be smaller.
We observe that by incurring an additive factor of 2 logN , any graph G on N vertices can be

transformed into a graph G′ on 2N vertices such that all the neighborhoods of vertices in one
partition are all distinct. Let f : {0, 1}2n → {0, 1} be such that the neighborhoods of Gf are not
necessarily distinct. We consider a new function f ′ whose bipartite realization will have two copies
of Gf namely G1(A1, B1, E1) and G2(A2, B2, E2) where A1, A2, B1, B2 are disjoint and a matching
connecting vertices in A1 to B2 and A2 to B1 respectively. Since the matching edges associated
with every vertex is unique, the neighborhoods of all vertices are bound to be distinct. Applying
Lemma 3.1 and observing that matching (i.e, equality function) has projective dimension at most n,
pd(f ′) ≤ 2pd(f) + 2n. This shows that to show super-linear lower bounds on projective dimension
for f where the neighborhoods may not be distinct, it suffices to show a super-linear lower bound
for f ′.

4 Projective Dimension with Intersection Dimension 1

Motivated by the proof of Theorem 2.1 (presented in Appendix A) we make the following definition.

Definition 4.1 (Projective Dimension with Intersection Dimension 1). A Boolean function
f : {0, 1}n × {0, 1}n → {0, 1} with the corresponding bipartite graph G(U, V,E) is said to have
projective dimension with intersection dimension 1 (denoted by upd(f)) d over field F, if d is the
smallest possible dimension for which there exists a vector space K of dimension d over F with a
map φ assigning subspaces of K to U ∪ V such that

• for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.

• for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.

By the properties observed in Proposition 2.2,

8

Theorem 4.2. For a Boolean function f computed by a deterministic branching program of size s,
updF(f) ≤ s for any field F.

Thus, it suffices to prove lower bounds for upd(f) in order to obtain branching program size
lower bounds. We now proceed to show lower bounds on upd.

Our approaches use the fact that the adjacency matrix of Pd has high rank.

Lemma 4.3. Let M be the bipartite adjacency matrix of Pd, then rank (M) ≥
[
d
d/2

]
q
≥ q

d2

4

Proof. For 0 ≤ i ≤ k ≤ d, and subspace I,K ⊆s Fdq with dim(I) = i, dim(K) = k, define matrix

Wik over R as Wik(I,K) = 1 if I ∩K = {0} and 0 otherwise. This matrix has dimension
[
d
i

]
q
×
[
d
k

]
q
.

Consider the submatrix Mi of M with rows and columns indexed by subspaces of dimension
exactly i. Observe that Wii = J −Mi where J is an all ones matrix of appropriate order. These
matrices are well-studied (see [8]). Closed form expressions for eigenvalues are computed in [6, 13]
and the eigenvalues are known to be non-zero. Hence for 0 ≤ i ≤ d/2 the matrix Wii has rank

[
d
i

]
q
.

Since Wii = J −Mi, rank (Mi) ≥ rank
(
Wii

)
− 1. This shows that rank (M) ≥ rank (Mi) =

[
d
i

]
q

for

all i such that 2i ≤ d. Choosing i = d/2 gives rank (M) ≥
[
d
d/2

]
q
− 1 ≥ q

d2

4 − 1.

We now present two approaches for showing lower bounds on upd(f) - one using intersection
families of vector spaces and the other using rectangle arguments on Mf .
Lower Bound for upd(Pd) using intersecting families of vector spaces : To prove a lower
bound on upd(Pd) we define a matrix N from a projective assignment with intersection dimension
1 for Pd, such that it is equal to (q − 1)M . Let D = upd(Pd). We first show that rank (N) is at

most 1 +
[
D
1

]
q
. Then by Lemma 4.3 we get that rank (N) is at least q

d2

4 . Let G = {G1, . . . , Gm},
H = {H1, . . . ,Hm} be the subspace assignment with intersection dimension 1 realizing Pd with
dimension D.

Lemma 4.4. For any polynomial p in qx of degree s, with matrix N of order |G| × |H| defined as
N [Gr, Ht] = p(dim(Gr ∩Ht)) with Gr ∈ G, Ht ∈ H, then rank (N) ≤

∑s
i=0

[
D
i

]
q

Proof. This proof is inspired by the proof in [7] of a similar claim where a non-bipartite version of
this lemma is proved. To begin with, note that p is a degree s polynomial in qx, and hence can be
written as a linear combination of polynomials pi =

[
x
i

]
q
, 0 ≤ i ≤ s. Let the linear combination be

given by p(x) =
∑s

i=0 αipi(x). For 0 ≤ i ≤ s define a matrix Ni with rows and columns indexed
respectively by G, H defined as Ni[Gr, Hs] = pi(dimGr ∩Hs). By definition of Ni, N =

∑
i∈[s] αiNi.

To bound the rank of Ni’s we introduce the following families of inclusion matrices. For any j ∈
[D], consider two matrices Γj corresponding to G and ∆j corresponding to H defined as Γj(G, I) = 1
if dim(I) = j,G ∈ G, I ⊆s G and 0 otherwise. ∆j(H, I) = 1 if dim(I) = j,H ∈ H, I ⊆s H and 0
otherwise. Note that rank of the these matrices are upper bounded by the number of columns which
is
[
D
j

]
q
. We claim that for any i ∈ {0, 1, . . . , s}, rank (Ni) ≤

[
D
i

]
q
. This completes the proof since

N =
∑

i∈[s] αiNi.

To prove the claim, let Fi denote the set of all i dimensional subspace of FDq . We show that

9

Ni = Γi∆
T
i . Hence rank (Ni) ≤ min {rank (Γi) , rank (∆i)} ≤

[
D
i

]
q
. For (Gr, Ht) ∈ G ×H,

Γi∆
T
i (Gr, Ht) =

∑
I∈Fi

Γi(Gr, I)∆T
i (I,Ht)

=
∑
I∈Fi

Γi(Gr, I)∆i(Ht, I)

=
∑
I∈Fi

[I ⊆s Gr] ∧ [I ⊆s Ht]

=
∑
I∈Fi

[I ⊆s Gr ∩Ht]

=

[
dim(Gr ∩Ht)

i

]
q

= Ni(Gr, Ht)

We apply Lemma 4.4 on N defined via p(x) = qx − 1 with s = 1, to get qd
2/4 ≤

[
d
d/2

]
q
≤

1 +
[
D
1

]
q

= 1 + (qD − 1)/(q − 1). By definition, rank (N) = rank (M). This gives that D = Ω(d2)
and proves Theorem 1.1.
Lower Bound for upd(Pd) from Rectangle Arguments : We now give an alternate proof of
for Theorem 1.1 using combinatorial rectangle arguments.

Lemma 4.5. For f : {0, 1}n × {0, 1}n → {0, 1} with Mf denoting the bipartite adjacency matrix of

Gf , rankR(Mf) ≤ qO(updF(f)) where F is a finite field of size q.

Proof. Let φ be a subspace assignment realizing f of dimension d with intersection dimension 1. Let
S(v) for v ∈ Fdq denote {(a, b) ∈ {0, 1}n × {0, 1}n | φ(a) ∩ φ(b) = span {v}}. Also let Mv denote the
matrix representation of S(v). That is, Mv(a, b) = 1 ⇐⇒ (a, b) ∈ S(v). Consider all 1 dimensional
subspaces which appear as intersection space for some input (x, y). Fix a basis vector for each space
and let T denote the collection of basis vectors of all the intersection spaces. Note that for any
(x, y) ∈ f−1(1), there is a unique v ∈ Fdq (up to scalar multiples) such that (x, y) ∈ S(v) for otherwise
intersection dimension exceeds 1. Then Mf =

∑
v∈T Mv. Now, rank(Mf) ≤

∑
v∈T rank(Mv). Since

rank(Mv) = 1, rank(Mf) ≤ |T |. The fact that the number of 1 dimensional spaces in Fd can be at

most qd−1
q−1 completes the proof. Note that the rank of Mf can be over any field (we choose R).

We get an immediate corollary. Any function f , such that the adjacency matrix of Mf of the
bipartite graph Gf is of full rank 2n over some field must have upd(f) = Ω(n). There are several
Boolean functions with this property, well-studied in the context of communication complexity (see
textbook [11]). Hence, we have for f ∈ {IPn,EQn, INEQn,DISJn,PALqn}, updF(f) is Ω(n) for any
finite field F.

For arguing about PALqn, it can be observed that the graph is strongly regular (as q ≡ 1 mod 4)
and hence the adjacency matrix has full rank over R [5]. Except for PALqn, all the above functions
have O(n) sized deterministic branching programs computing them and hence the Pudlák-Rödl
theorem (Theorem 2.1) gives that upd for these functions (except PALqn) are O(n) and hence the
above lower bound is indeed tight.

From Lemma 4.3, it follows that the function SId also has rank 2Ω(d2). To see this, it suffices to
observe that Pd appears as an induced subgraph in the bipartite realization of SId. Thus, upd(SId)

10

is Ω(d2). We proved in Theorem 3.4 that pd(SId) = d. This establishes a quadratic gap between the
two parameters. This completes the proof of Theorem 1.1.

Let D(f) denote the deterministic communication complexity of the Boolean function f . We
observe that the rectangle argument used in the proof of Lemma 4.5 is similar to the matrix rank
based lower bound arguments for communication complexity. This yields the Proposition 4.6. If

upd(f) ≤ D, the assignment also gives a partitioning of the 1s in Mf into at most qD−1
q−1 1-rectangles.

However, it is unclear whether this immediately gives a similar partition of 0s into 0-rectangles
as well. Notice that if D(f) ≤ d, there are at most 2d monochromatic rectangles (counting both
0-rectangles and 1-rectangles) that cover the entire matrix. However, our proof does not exploit this
difference.

Proposition 4.6. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and a finite field F,
updF(f) ≤ 2D(f) and D(f) ≤ (pdF(f))2 log |F|

Proof. We give a proof of the first inequality. Any deterministic communication protocol computing
f of cost D(f), partitions Mf into k rectangles where k ≤ 2D(f) rectangles. Define fi : {0, 1}n ×
{0, 1}n → {0, 1} for each rectangle Ri i ∈ [k], such that fi(x, y) = 1 iff (x, y) ∈ Ri. Note that
updF(fi) = 1 and f = ∨ki=1fi. For any (x, y) ∈ {0, 1}n × {0, 1}n if f(x, y) = 1, there is exactly
one i ∈ [k] where fi(x, y) = 1. Hence for each j ∈ [k], j 6= i, the intersection vector corresponding
to the edge (x, y) in the assignment of fj is trivial. Hence the assignment obtained by applying
Lemma 3.1, to f1,∨f2 ∨ . . . fk will have the property that for any (x, y) with f(x, y) = 1, the
intersection dimension is 1. Hence updF(f) ≤ k ≤ 2D(f). To prove the second inequality, consider
the protocol where Alice sends the subspace associated with her input as a pdF(f)× pdF(f) matrix.
Bob then checks if this subspace intersects with his own subspace and sends 1 if it does so and
sends 0 otherwise.

An immediate consequence of Proposition 4.6 is that all symmetric functions f on 2n bits have
have projective dimension O(n). Note that the first inequality is tight, up to constant factors in the
exponent. To see this, consider the function f : {0, 1}n × {0, 1}n → {0, 1} whose pdF(f) = Ω(2n/2)
[16, Proposition 1] and note that D(f) for any f is at most n. Tightness of second inequality is
witnessed by SId since by Lemma 4.3, D(SId) = Ω(d2) while pd(SId) = d.

5 Bitwise Decomposable Projective Dimension

The restriction of intersection dimension being 1, although potentially useful for lower bounds for
branching program size, does not capture the branching program size exactly. We start the section
by demonstrating a function where the gap is exponential. We show the existence of a Boolean
function f such that the size of the optimal branching program computing it is very high but has a
very small projective assignment with intersection dimension 1 for any balanced partition of the
input.

Proposition 5.1. (Implicit in Remark 1.30 of [9]) There exist a function f : {0, 1}n × {0, 1}n that
requires size Ω(2n

n) for any branching program computing f but the upd(f) ≤ O(n) for any balanced
partitioning of the input into two parts.

Proof. Consider the function EQn. The graph GEQn
(U, V,E) with U = V = N is a perfect matching

where N = {0, 1}n. Relabel the vertices in U of this graph to produce a family of G of N ! different

11

labeled graphs. Let F be the set of Boolean functions whose corresponding graph is in G (or
equivalently F of N ! different functions). Let t be the smallest number such that any function in F
can be computed by a branching program of size at most t. The number of branching programs of
size ≤ t (bounded by O(tt) [9]) forms an upper bound on |F|. Thus, 2O(t log t) ≥ N !, and hence t is
Ω
(

2n

n

)
. Hence there must exist a function f ∈ F such that upd(f) = upd(EQn) ≤ n but bpsize(f)

is Ω
(

2n

n

)
for this partition.

We now argue upper bound for upd(f) for any balanced partition. Consider the function fπ
obtained by a permutation π ∈ SN on the U part of EQn graph. Consider a partition Π of [2n]. Let
GΠ
EQn

, GΠ
fπ

be the corresponding bipartite graphs (and EQΠ
n and fΠ

π be the corresponding functions)

with respect to the partition Π, of EQn and fπ respectively.
We claim that upd(GΠ

EQn
) = upd(GΠ

fπ
). By definition for any (u, v) ∈ {0, 1}n×{0, 1}n, fπ(u, v) =

EQn(π−1(u), v). Also, let (u′, v′) be the corresponding inputs according to the partition Π of [2n].
That is fΠ

π (u′, v′) = fπ(u, v) = EQn(π−1(u), v). Let x = π−1(u) and y = v. Observe that,
for (x, y) ∈ {0, 1}n × {0, 1}n there is unique (x′, y′) corresponding to it. Hence fΠ

π (u′, v′) =
EQn(π−1(u), v) = EQΠ

n (x′, y′). Thus for any input (u′, v′) of fΠ
π there is unique input (x′, y′) of

EQΠ
n obtained via the above procedure. Thus, from the upd assignment for EQΠ

n we can get a upd
assignment for fΠ

π . Observing that Theorem 4.2 holds for any partition Π of the input, we get a
upd assignment for EQΠ

n .

The above proposition can be shown by adapting the counting argument presented in Remark
1.30 of [9].

5.1 A Characterization for Branching Program Size

Motivated by strong properties observed in Proposition 2.2, we make the following definition.

Definition 5.2 (Bitwise Decomposable Projective Dimension). Let f be a Boolean function
on 2n bits and Gf be its bipartite realization. The bipartite graph Gf (X,Y,E) is said to have
bit projective dimension, bitpdim(G) ≤ d, if there exists a collection of subspaces of Fd2 denoted
C = {Uai }i∈[n],a∈{0,1} and D = {V b

j }j∈[n],b∈{0,1} where a projective assignment φ is obtained by

associating subspace Uai with a bit assignment xi = a and V b
j with yj = b satisfying the conditions

listed below.

1. for all (x, y) ∈ {0, 1}n × {0, 1}n, φ(x) = span
1≤i≤n

{Uxii }, φ(y) = span
1≤j≤n

{V yj
j } and f is realized by

φ.

2. Let S = {ei − ej | i, j ∈ [d], i 6= j}. For any W ∈ C ∪ D, ∃S′ ⊆ S such that W = span {S′}.

3. for any S1, S2 ⊆ ([n]× {0, 1}) such that S1 ∩ S2 = φ, span
(i,a)∈S1

{Uai } ∩ span
(j,b)∈S2

{U bj } = {0}. Same

property must hold for subspaces in D.

We show that the new parameter bitwise decomposable projective dimension (bitpdim) tightly
characterizes the branching program size, up to constants in the exponent.

Lemma 5.3. Suppose f : {0, 1}n × {0, 1}n → {0, 1} has deterministic branching program of size s
then bitpdim(f) ≤ 6s

12

Proof. The subspace assignment obtained by applying (Theorem A.1) on an arbitrary branching
program need not satisfy Property 3 because there can be a vertex z that has two edges incident on
it reading different variables from the same partition. To avoid this, we subdivide every edge. We
show that this transformation is sufficient to get a bitpdim assignment. We now give a full proof.
Let B be a deterministic branching program computing f . Denote the first n variables of f as x

xi xj

xi = b

xi xj

y1 = 0

y1 = 1

xi = b

Vuv

u v

u v

Figure 1: Edge modification

and the rest as y. We first apply Pudlák-Rödl transformation on B to obtain a branching program
B′ computing f . We note that |V (B′)| = |V (B)|. Obtain B′′ from B′ by subdividing every edge
(u, v) checking a variable xi = b from partition x to get three edges (u, Vuv) checking xi = b and add
two edges between (Vuv, v) one which checks y1 = 0 and another which checks y1 = 1 (see Figure 1).

Clearly the transformation does not change the function computed by the branching program.
Since we are taking every edge of the branching program B′ and introducing two more edges, the
total number of edges in B′ is 3|E(B′)|. Since B′ is a deterministic branching program, every
vertex v ∈ B′ has out degree at most 2 and at least 1 for every node except sink node. Hence
|E(B′)| ≤ 2(|V (B′)|). Along with |E(B′′)| = 3|E(B′)|, we get |E(B′′)| ≤ 6(|V (B′)|) = 6(|V (B)|).
Now label every vertex of B′′ with standard basis vectors as it is done in Pudlák-Rödl Theorem
(Theorem A.1). Let φ be projective assignment obtained from B′′ via Pudlák-Rödl theorem. We
claim that φ satisfies all the requirements of bitpdim(f).

1. Since φ is obtained via Pudlák-Rödl it captures adjacencies of Gf . Hence property 1 holds.
Property 2 is satisfied by Pudlák-Rödl assignment. (See appendix A)

2. The standard basis vector eu corresponding to vertex u appears only in edges incident on u
in Pudlák-Rödl assignment. For any edge (u, v) querying a variable xi = b the other edges
incident to v must query variables from y. All the edges incident on u, except (u, v) must also
query variables from y. Otherwise, there is an edge (w, u) which queries a variable xj and our
transformation would have subdivided the edge. Hence eu, ev belongs only to Hxi=b amongst
{Hxi=b}i∈[n],b∈{0,1}. This implies Property 3.

We show that given a bitpdim assignment for a function f , we can construct a branching program
computing f .

13

Theorem 5.4 (Theorem 1.2 restated). For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} with
bitpdim(f) ≤ d, there exists a deterministic branching program computing f of size dc for some
absolute constant c.

Proof. Consider the subspace associated with the variables C,D of the bitpdim assignment as the
advice string. These can be specified by a list of n basis matrices each of size d2. Note that for
any any f which has a polynomial sized branching program, d = bitpdim(f) is at most poly(n), and
hence the advice string is poly(n) sized and depends only on n.

We construct a deterministic branching program computing f as follows. On input x, y, from
the basis matrices in C,D, construct an undirected graph7 G∗ with all standard basis vectors in
C,D as vertices and add an edge between two vertices u, v if eu − ev ∈ Uxii or eu − ev ∈ V

yj
j for

i, j ∈ [n]. For input x, y, f(x, y) = 1 iff G∗ has a cycle. To see this, let C = C1 ∪ C2 be a cycle in
G∗ where C1 consists of edges from basis matrices in C and C2 contain edges from basis matrices in
D. Note that if one of C1 or C2 is empty then there is a cycle consisting only of vectors from C
which implies a linear dependence among vectors in C. But this contradicts Property 3 of bitpdim
assignment. Hence both C1 and C2 are non-empty.

Then, it must be that
∑

(u,v)∈C1
eu − ev +

∑
(w,z)∈C2

ew − ez = 0. Hence
∑

(u,v)∈C1
eu − ev =

−
∑

(w,z)∈C2
ew − ez. Hence we get a vector in the intersection which gives f(x, y) = 1. Note that if

f(x, y) = 1, then clearly there is a non-zero intersection vector. If we express this vector in terms of
basis, we get a cycle in G∗.

Hence, to check if f evaluates to 1, it suffices check if there is a cycle in G∗ which is solvable in
L using Reingold’s algorithm [18]. The log-space algorithm can also be converted to an equivalent
branching program of size nc for a constant c.

We can improve the constant c to 3 + ε. We achieve this using the well known random walk
based RL algorithm for reachability [1], amplifying the error and suitably fixing the random bits to
achieve a non-uniform branching program of size d3+ε.

The RL algorithm requires to store log d bits to remember the current vertex while doing the
random walk and another log d bits to store the next vertex in the walk. It performs a walk of
length 4d3 and answers correctly with probability of 1/2 [14]. Amplifying the error does not incur
any extra space as the algorithm has a one-sided error and it never errs when it accepts. This gives
a probabilistic Turing machine using 2 log d+ 1 work space. By amplifying the success probability,
we can obtain a choice of a random bits which works for all inputs of a fixed length. The conversion
of this machine to a branching program will incur storing of the head index position of the work
tape and input tape position which incur an additional log log d+ log d space. Hence overall space
is 3 log d+ log log d = (3 + ε) log d for small fixed ε > 0, thus proving that c ≤ 3 + ε.

Assuming C=L 6⊆ L/poly, the function SId (a language which is hard for C=L under Turing
reductions) cannot be computed by deterministic branching programs of polynomial size.

Proposition 5.5. The function family {SId}d≥0 is hard for C=L via logspace Turing reductions.
Moreover, the negation of {SId}d≥0 is in LC=L (and hence in NC2).

Proof. We start with the following claim.

7Note that this is not a deterministic branching program.

14

Claim 5.6 (Corollary 2.3 of [2]). Fix an n ∈ N. There exists a logspace computable function
g : Fn×n → Fn×n such that for any matrix M over Fn×n, det(M) = 0 =⇒ rank(g(M)) = n and
det(M) 6= 0 =⇒ rank(g(M)) = n− 1

Consider the language L =
{

(M1,M2) | rowspan(M1) ∩ rowspan(M2) 6= {0},M1,M2 ∈ Fd×d
}

.
The reduction is as follows. Given an M ∈ Fd×d, apply g (defined in Claim 5.6) on M to get N , and
define for 1 ≤ i ≤ d, H i = (M i

1,M
i
2) where M i

1 is the matrix consisting of ith row of N repeated n
times and M i

2 as same as N with ith row replaced by all 0 vectors. For each 1 ≤ i ≤ d, we make
oracle query to L checking if H i ∈ L and if all answers are no, reject otherwise accept.

We now argue the correctness of the reduction. Suppose det(M) is 0, then N = g(M)
(by Claim 5.6) must have full rank. Hence for all 1 ≤ i ≤ d, rowspan(M i

1) and rowspan(M i
2)

does not intersect. If det(M) 6= 0, then N = g(M) (by Claim 5.6) must have a linearly dependent
column and hence there is some i for which rowspan(M i

1) and rowspan(M i
2) is non-zero. Also the

overall reduction runs in logspace as g is logspace computable.
The upper bound follows by observing that given two d×d matrices M1 and M2, their individual

ranks r1 and r2 can be computed in LC=L [2]. Consider the matrix M of size d× 2d by adjoining M1

and M2. It follows that the rowspace(M1) ∩ rowspace(M2) 6= φ if and only if rank (M) < r1 + r2.
The latter condition can also be tested using a query to C=L oracle.

5.2 Lower Bounds for Bitwise Decomposable Projective dimension

From the results of the previous section, it follows that size lower bounds for branching programs
do imply lower bounds for bitwise decomposable projective dimension as well. As mentioned in
the introduction, the lower bounds that Theorem 1.2 can give for bitwise decomposable projective
dimension are only known to be sub-linear.

To prove super-linear lower bounds for bitwise decomposable projective dimension, we show
that Nechiporuk’s method [15] can be adapted to our linear algebraic framework (thus proving
Theorem 1.3 from the introduction). The overall idea is the following: given a function f and a
bitpdim assignment φ, consider the restriction of f denoted fρ where ρ fixes all variables except the
ones in Ti to 0 or 1 where Ti is some subset of variables in the left partition. For different restrictions
ρ, we are guaranteed to get at least ci(f) different functions. We show that for each restriction ρ, we
can obtain an assignment from φ realizing fρ. Hence the number of different bitpdim assignments
for ρ restricted to Ti is at least the number of sub functions of f which is at least ci(f). Let di be
the ambient dimension of the assignment when restricted to Ti. By using the structure of bitpdim
assignment, we count the number of assignments possible and use this relation to get a lower bound
on di. Now repeating the argument with disjoint Ti, and by observing that the subspaces associated
with Tis are disjoint, we get a lower bound on d as d =

∑
i di.

Theorem 5.7. For a Boolean function f : {0, 1}n×{0, 1}n → {0, 1} on 2n variables, let T1, . . . , Tm
are partition of variables to m blocks of size ri on the first n variables. Let ci(f) be the number of

distinct sub functions of f when restricted to Ti, then bitpdim(f) ≥
∑m

i=1
log ci(f)

log(log ci(f))

Proof. Let (x, y) denote the 2n input variables of f and ρ : {x1, . . . , xn, y1, . . . , yn} → {0, 1, ∗} be
a map that leaves only variables in Ti unfixed. Let φ be a bitpdim assignment realizing f and let
Gf (X,Y, Z) denote the bipartite realization of f . Let C = {Uai }i∈[n],a∈{0,1} ,D = {V b

j }j∈[n],b∈{0,1}
be the associated collection of subspaces. Let ρ be a restriction that does not make fρ a constant

15

and (x, y) ∈ {0, 1}n × {0, 1}n which agrees with ρ. We use x, y to denote both variables as well as
assignment. From now on, we fix an i and a partition Ti.

Define L = span
i∈[n],ρ(i) 6=∗

{Uρ(i)
i } and R = span

j∈[n]
{V ρ(n+j)

j }. For any x ∈ {0, 1}n that agrees with

ρ on the first n bits, define Zx = span
j∈Ti
{Uxjj } Note that for any (x, y), which agrees with ρ,

has φ(x) = L + Zx and φ(y) = R. For any fρ1 6≡ fρ2 , Gfρ1 6= Gfρ2 . Hence the number of
bitpdim assignments is at least the number of different sub functions. We need to give a bitpdim
assignment for Gfρ(V1, V2, E) where V1 = {x | x agrees with ρ}, V2 = {y} where y = ρ[n+1,...,2n] and
E = {(x, y)|x ∈ V1, y ∈ V2, f(x, y) = 1}. We use the following property to come up with such an
assignment.

Property 5.8. Let ρ be a restriction which does not make the function f constant and which fixes
all the variables y1, . . . , yn. For all such ρ and ∀x, y ∈ {0, 1}n which agrees with ρ, any non-zero
w ∈ φ(x) ∩ φ(y), where w = u+ v with u ∈ L and v ∈ Zx must satisfy v 6= ~0.

Proof. Let there exists an intersection vector w ∈ (L+ Zx) ∩R with w = u+ v, u ∈ L and v ∈ Zx
and v = ~0. Since ~0 ∈ Z x̂ for any x̂, w = u+~0 is in L+Z x̂ and R. Thus the function after restriction
ρ is a constant. This contradicts the choice of ρ.

The assignment ψρ for Gfρ defined as : ψρ(x) = Zx and ψρ(y) = span
x∈V1
{ΠZx (R ∩ (L+ Zx))}

Note that for (x, y) ∈ V1 × V2, fρ(x) = f(x, y). Following claim shows that ψρ realize fρ.

Claim 5.9. For any (x, y) ∈ V1 × V2, f(x, y) = 1 if and only if ψρ(x) ∩ ψρ(y) 6= {0}.

Proof. For any (x, y) ∈ X × Y , φ(x) ∩ φ(y) 6= {0} if and only if f(x, y) = 1. Since V1 ⊆ X and
V2 ⊆ Y , it suffices to prove : ∀(x, y) ∈ V1 × V2, ψρ(x) ∩ ψρ(y) 6= {0} ⇐⇒ φ(x) ∩ φ(y) 6= {0}.

We first prove that ψρ(x) ∩ ψρ(y) 6= {0} implies φ(x) ∩ φ(y) 6= {0}. Let v be a non-zero vector
in ψρ(x) ∩ ψρ(y). By definition of ψρ(x), v ∈ Zx. By definition of ψρ(y), there exists a non-empty
J ⊆ V1 such that v =

∑
x̂∈J vx̂ where vx̂ ∈ Z x̂. Also for every x̂ ∈ J , there exists a ux̂ ∈ L such

that wx̂ = ux̂ + vx̂ and wx̂ ∈ R. Define u to be
∑

x̂∈J ux̂. Since each ux̂ is in L, u is also in L.
Hence w = u + v is in L + Zx. Substituting u with

∑
x̂∈J ux̂ and v with

∑
x̂∈J vx̂ we get that

w =
∑

x̂∈J ux̂ + vx̂ =
∑

x̂∈J wx̂. Since each wx̂ ∈ R, w ∈ R. Hence w ∈ R ∩ (L + Zx) and w is
non-zero as J is non-empty.

Now we prove that φ(x) ∩ φ(y) 6= {0} implies ψρ(x) ∩ ψρ(y) 6= {0}. Let w be non zero vector in
φ(x) ∩ φ(y) with w = u+ v where u ∈ L and v ∈ Zx. By Property 5.8 we have v 6= ~0. By definition
v ∈ ψρ(y). Along with v ∈ Zx, we get ψρ(x) ∩ ψρ(y) 6= {0}.

Let Z = span
j∈Ti
{U0

j + U1
j }. We now prove that subspace assignment on the only vertex in the

right partition of Gρ which is span
x∈V1
{ΠZx(R)} is indeed ΠZ(R).

Claim 5.10. ΠZ(R) = span
x∈V1
{ΠZx(R)}

Proof. We show span
x∈V1
{ΠZx(R)} ⊆ ΠZ(R). Note that span

x∈V1
{ΠZx(R)} = span

x∈V1,w∈R
{ΠZx(w)}. For an

arbitrary x ∈ V1 and w ∈ R, let v = ΠZx(w). By definition of Zx and the fact that
{
U bi
}
i∈[n],b∈{0,1}

16

are disjoint, ΠZx(w) = +i∈[n],ρ(i)=∗ΠU
xi
i

(w). As Z = span
j∈Ti
{U0

j + U1
j }, every ΠU

xi
i

(w) ∈ ΠZ(R).

Hence the span is also in ΠZ(R).
Now we show that ΠZ(R) ⊆ span

x∈V1
{ΠZx(R)}. Let Ti = {i1, . . . , ik}. For 1 ≤ j ≤ k define xj to be

x+ej where x ∈ {0, 1}n agrees with ρ and for any index i ∈ [n] with ρ(i) = ∗, xi = 0 and ej ∈ {0, 1}n
is 0 at every index other than ij . Note that for any j1 6= j2, j1, j2 ∈ Ti, Zx

j1∩Zxj2 = {0} by Property 3

of Definition 5.2) Also note that span
j∈Ti
{Zxj} = span

j∈Ti
{Uxjj } = Z. Hence, ΠZ(R) = span

j∈Ti
{Π

Zx
j (R)}.

But span
j∈Ti
{Π

Zx
j (R)} ⊆ span

x∈V1
{ΠZx(R)}.

For any ρ, which fixes all variables outside Ti, Z is the same. And since there is only one vertex
on the right partition, for different ρ, ρ′, ΠZ(Rρ) = ΠZ(Rρ′) implies ψρ = ψρ′ . Hence to count the
number of different ψρ’s for different fρ’s it is enough to count the number of different ΠZ(R). To
do so, we claim the following property on ΠZ(R).

Property 5.11. Let S = {eu − ev|eu − ev ∈ Z}. Then there exists a subset S′ of S such that all
the vectors in S′ are linearly independent and ΠZ(R) = span {S′}.

Proof. By the property of the bitpdim assignment, ∀i ∈ [n] and ∀b ∈ {0, 1}, V b
i = span

{
F bi
}

where

F bi is a collection of difference of standard basis vectors. Recall that R = span
j∈[n]
{V ρ(n+j)

j }. Let

F =
{

(eu − ev) | eu − ev ∈ F ρ(n+j)
j , j ∈ [n]

}
. Since projections are linear maps and the fact that

F
ρ(n+j)
j spans V

ρ(n+j)
j we get that, ΠZ(R) = span

w∈F
{ΠZ(w)}. Since Z is also a span of difference of

standard basis vectors, ΠZ(eu − ev) is one of ~0, eu − ew or ew − ev where ew is some standard basis
vector in Z. Let S′′ = ∪eu−ev∈FΠZ(eu − ev). Hence S′′ ⊆ S. Clearly, span

eu−ev∈S′′
{eu − ev} = ΠZ(R).

Choose S′ as a linear independent subset of S′′.

Property 5.11 along with the fact that ΠZ(R) is a subspace of Z, gives us that the number of
different ΠZ(R) is upper bounded by number of different subsets S′ of S such that |S′| = di where
di = dim(Z). As S′ is a set of difference of standard basis vectors from Z, |S′| ≤

(
di
2

)
. Thus the

number of different such S′ are at most
∑di

k=0

(d2i
k

)
= 2O(di log di).

Hence the number of restrictions ρ (that leaves Ti unfixed) and leading to different fρ is at most
2O(di log di). But the number of such restrictions ρ is at least ci(f). Hence 2O(di log di) ≥ ci(f) giving

di = Ω
(

log ci(f)
log(log ci(f))

)
. Using d =

∑
i di completes the proof.

Theorem 5.7 gives a super linear lower bound for Element Distinctness function. From a
manuscript by Beame et.al, ([4], see also [9], Chapter 1), we have ci(EDn) ≥ 2n/2/n. Hence applying

this count to Theorem 5.7, we get that d ≥ Ω
(

n
logn ·

n
logn

)
= Ω

(
n2

(logn)2

)
.

Now we apply this to our context. To get a lower bound using framework described above it is
enough to count the number of sub-functions of SId.

Lemma 5.12. For any i ∈ [d], there are 2Ω(d2) different restrictions ρ of SId which fixes all entries
other than ith row of the d× d matrix in the left partition.

17

Proof. Fix any i ∈ [d]. Let S be a subspace of Fd2. Define ρS to be SId(A, B) where B is a matrix
whose rowspace is S. And A is the matrix whose all but ith row is 0’s and ith row consists of
variables (xi1 , . . . , xin). Thus for any v ∈ {0, 1}d, rowspace of A(x) is span {v}.

We claim that for any S, S′ ⊆S Fd2 where S 6= S′, (SId)ρS 6≡ (SId)ρ′S
. By definition (SId)ρS ≡

SId(A, B) and (SId)ρ′S
≡ SId(A, B

′) where B and B′ are matrices whose rowspaces are S and S′

respectively. Since S 6= S′ there is at least one vector v ∈ Fd2 such that it belongs to only one of
S, S′. Without loss of generality let that subspace be S. Then SId(A(v), B) = 1 as v ∈ S where
as SId(A(v), B′) = 0 as v 6∈ S′. Hence the number of different restrictions is at least number of
different subspaces of Fd2 which is 2Ω(d2). Hence the proof.

This completes the proof of Theorem 1.3 from the introduction. This implies that for SId, the

branching program size lower bound is Ω
(

d2

log d × d
)

= Ω
(

d3

log d

)
= Ω

(
n1.5

logn

)
where n = 2d2 is the

number of input bits of SId.

6 Standard Variants of Projective Dimension

In this section, we study two stringent variants of projective dimension for which exponential lower
bounds and exact characterizations can be derived. Although these measure do not correspond
to restrictions on branching programs, they illuminate essential nature of the general measure.
We define the measures and show their characterizations in terms of well-studied graph theoretic
parameters.

Definition 6.1 (Standard Projective Dimension). A Boolean function f : {0, 1}n × {0, 1}n →
{0, 1} with the corresponding bipartite graph G(U, V,E) is said to have standard projective dimension
(denoted by spd(f)) d over field F, if d is the smallest possible dimension for which there exists a
vector space K of dimension d over F with a map φ assigning subspaces of K to U ∪ V such that

• for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.

• u ∈ U ∪ V , φ(u) is spanned by a subset of standard basis vectors in K.

In addition to the above constraints, if the assignment satisfies the property that for all
(u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1, we say that the standard projective dimension is with
intersection dimension 1, denoted by uspd(f). We make some easy observations about the definition
itself.

For N ×N bipartite graph G with m edges, consider the assignment of standard basis vectors
to each of the edges and for any u ∈ U ∪ V , φ(u) is the span of the basis vectors assigned to
the edges incident on u. Moreover, the intersection dimension in this case is 1. Hence for any G,
spd(G) ≤ uspd(G) ≤ m.

Even though pd(G) ≤ spd(G), there are graphs for which the gap is exponential. For example,
consider the bipartite realization G of EQn with N = 2n. We know pd(G) = Θ(logN) but
spd(G) ≥ N since each of the vertices associated with the matched edges cannot share any basis
vector with vertices in other matched edges. Hence dimension must be at least N . We show that
standard projective dimension of bipartite G is same as that of biclique cover number.

Definition 6.2 (Biclique cover number). For a graph G, a collection of complete bipartite graphs
defined on V (G) is said to cover G if every edge in G is present in some complete bipartite graph of

18

the collection. The size of the smallest collection of bipartite graph which covers G is its biclique
cover number (denoted by bc(G)). If in addition, we insist that bicliques must be edge-disjoint, the
parameter is known as biclique partition number denoted by bp(G).

Theorem 6.3 (Restatement of Theorem 1.4). For any Boolean function f , bc(Gf) = spd(Gf) and
uspd(Gf) = bp(Gf).

Proof. (spd(f) ≤ bc(Gf)) Let G = Gf , t = bc(G) and A1. . . . , At be a bipartite cover for G. For a
vertex v ∈ V (G), let Iv = {ei | v ∈ Ai}. We claim that {Iv}v∈V (G) is a valid standard projective
assignment. Suppose Iu ∩ Iv 6= ∅, then there exists an i such that u, v ∈ Ai and (u, v) ∈ E(Ai).
Hence (u, v) ∈ E(G). Also if (u, v) ∈ E(G), then ∃ i s.t. (u, v) ∈ E(Ai). By definition of Iu, Iv,
ei ∈ Iu ∩ Iv giving Iu ∩ Iv 6= ∅.

(bc(Gf) ≤ spd(Gf)) Let G = Gf , t = spd(G) and {Iu}u∈V (G) be the subsets assigned. Consider
Gi = {(u, v) | i ∈ Iu and i ∈ Iv} for i ∈ {1, . . . , t}. We claim that the collection of Gi forms a valid
bipartite cover of G. If (u, v) ∈ E(G), we have Iu ∩ Iv 6= ∅. Hence there exists an i ∈ Iu ∩ Iv and
(u, v) ∈ E(Gi). If (u, v) ∈ E(Gi) for some i, then i ∈ Iu and i ∈ Iv implying Iu ∩ Iv 6= ∅. This gives
that (u, v) ∈ E(G) from the definition of standard assignment.

(bp(Gf) ≤ uspd(Gf)) Let φ be the intersection dimension one standard assignment of ambient
dimension d of f . For every ei ∈ Fd, define the set Ci = {(x, y) | φ(x, y) = ei}. We claim that
C = {Ci}i∈[d] is a bipartite partition of Gf . Every Ci thus defined is a biclique, because if φ(x, y) = ei
then that implies ei ∈ φ(x) and ei ∈ φ(y). Note that for every (x, y) ∈ Gf , there exists a unique
i ∈ [d] such that φ(x, y) = ei. Hence any (x, y) ∈ Gf belongs to exactly one of the sets Ci thus
implying that Ci’s are edge disjoint biclique covers. Note that any (x, y) 6∈ Gf do not belong to any
of Ci’s as φ(x, y) = {0}.

(uspd(Gf) ≤ bp(Gf)) Let C = {Ci}i∈[d] where d = bp(Gf) be a biclique partition cover. We
give a standard assignment φ for Gf defined as follows. For any x, φ(x) = span {ei | ∃y, (x, y) ∈ Ci}.
By definition φ is a standard assignment. We just need to prove that (x, y) ∈ Gf if and only
φ(x, y) 6= {0} and dimφ(x, y) = 1. To prove this we would once again employ the rectangle property
of bicliques, that is if (x, y′) ∈ Ci and (x′, y) ∈ Ci then so is (x, y). First we will argue that if
there an intersection then it is dimension 1. Recall that intersection of two standard subspaces
is a standard subspace. Suppose there is exists (x, y) with dimφ(x, y) > 1. Let ej , ek be any two
standard intersection vectors in φ(x, y). By construction and rectangle property of bicliques, we
get that (x, y) ∈ Cj and (x, y) ∈ Ck contradicting the disjoint cover property. Hence for any (x, y),
dimφ(x, y) ≤ 1. If (x, y) 6∈ Gf , then there does not exist an i, (x, y) ∈ Ci. But if φ(x, y) = ei for some
i ∈ [d], then that implies by rectangle property of bicliques that (x, y) ∈ Ci, a contradiction.

7 Discussion & Conclusion

In this paper we studied variants of projective dimension of graphs with improved connection to
branching programs. We showed lower bounds for these measures indicating the weakness and of
each of the variants. A pictorial representation of all parameters is shown in Fig. 2.

An immediate question that arises from our work is whether Ω(d2) lower bound on upd(Pd) is
tight. In this direction, since we have established a gap between upd(Pd) and pd(Pd), it is natural
to study how pd and upd behave under composition of functions, in order to amplify this gap.

In another direction, we believe that the Ω(d2) lower bound on upd(Pd) is not tight. It is natural
to study composition of functions to improve this gap.

19

pd(f)

upd(f) 2D(f)

bitpdim(f) bpsize(f)

bp(Gf)

uspd(f)

bc(Gf)

spd(f)

bitpdim(f)3+ε

D(f) – Deterministic Communication Complexity of f
bc(G) – Bipartite Cover number of G
bp(G) – Bipartite Partition number of G

Figure 2: Parameters considered in this work and their relations

The subspace counting based lower bounds for bitpdim that we proved are tight for functions
like EDn. However, observe that under standard complexity theoretic assumptions the bitpdim
assignment for Pd is not tight. Hence it might be possible to use the specific linear algebraic
properties of Pd to improve the bitpdim lower bound we obtained for Pd.

Acknowledgements: The authors would like to thank the anonymous reviewers for several
suggestions which improved the readability of the paper and specifically for pointing out that the
proof of Proposition 5.1 follows from Remark 1.3 in [9]. The authors would also like to thank Noam
Nisan for pointing out that the a random walk based algorithm for detecting cycles can improve the
the constant in Theorem 1.2 to 3 + ε.

References

[1] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.
Random walks, universal traversal sequences, and the complexity of maze problems. In 20th
Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October
1979, pages 218–223, 1979.

[2] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible systems of
linear equations. Computational Complexity, 8(2):99–126, 1999.

[3] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2007.

[4] Paul Beame, Nathan Grosshans, Pierre McKenzie, and Luc Segoufin. Nondeterminism and an
abstract formulation of Nečiporuk’s lower bound method. CoRR, abs/1608.01932, 2016.

20

[5] Béla Bollobás. Random Graphs, Second edition. Cambridge Studies in Advanced Mathematics
73. Cambridge University Press, 2001.

[6] Philippe Delsarte. Association schemes and t-designs in regular semilattices. Journal of
Combinatorial Theory, Series A, 20(2):230–243, mar 1976.

[7] Péter Frankl and Ronald L Graham. Intersection theorems for vector spaces. European Journal
of Combinatorics, 6(2):183–187, jun 1985.

[8] Péter Frankl and Richard M Wilson. The Erdős-Ko-Rado theorem for vector spaces. Journal
of Combinatorial Theory Series A, 43(2):228–236, nov 1986.

[9] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Series:
Algorithms and Combinatorics. Springer New York Inc., 2012.

[10] Ralf Koetter and Frank R. Kschischang. Coding for errors and erasures in random network
coding. IEEE Transactions on Information Theory, 54(8):3579–3591, 2008.

[11] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
New York, NY, USA, 1997.

[12] Satyanarayana V. Lokam. Complexity lower bounds using linear algebra. Foundations and
Trends in Theoretical Computer Science, 4(1&2):1–155, January 2009.

[13] Benjian Lv and Kaishun Wang. The eigenvalues of q-Kneser graphs. Discrete Mathematics,
312(6):1144 – 1147, 2012.

[14] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

[15] E. I. Nechiporuk. On a boolean function. Doklady of the Academy of Sciences of the USSR,
164(4):765–766, 1966.

[16] P. Pudlák and V. Rödl. A combinatorial approach to complexity. Combinatorica, 12:221–226,
1992.

[17] P. Pudlák and V. Rödl. Some combinatorial-algebraic problems from complexity theory. Discrete
Mathematics, 136(1-3):253–279, dec 1994.

[18] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):17:1–17:24,
September 2008.

[19] S. Roman. Advanced Linear Algebra. Graduate Texts in Mathematics. Springer New York, 3rd
edition, 2007.

[20] Lajos Rónyai, László Babai, and Murali K. Ganapathy. On the number of zero-patterns of a
sequence of polynomials. Journal of the AMS, 14:2001, 2002.

[21] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer New
York Inc., 1999.

21

A Proof of Pudlák-Rödl theorem

In this section, we reproduce the proof of the projective dimension upper bound in terms of branching
program size. The proof is originally due to [16], but we supply the details which are essential for
the observations that we make.

A deterministic branching program is a directed acyclic graph G with distinct start (V0), accept
(V+) and reject (V−) nodes. Accept and reject nodes have fan-out zero and are called sink nodes.
Vertices of the DAG, except sink nodes are labeled by variables and have two outgoing edges, one
labeled 0 and the other labeled 1. For a vertex labeled xi, if input gives it a value b ∈ {0, 1}, then the
edge labeled b incident to xi is said to be closed and the other edge is open. A branching program
is said to accept an input x if and only if there is a path from V0 to V+ along the closed edges in
the DAG. A branching program is said to compute an f : {0, 1}n → {0, 1}, if for all x ∈ {0, 1}n,
f(x) = 1 iff branching program accepts x.

Theorem A.1. Let f : {0, 1}2n → {0, 1} be computed by a branching program B of size s. Let Gf
be the bipartite realization of f , with respect to any partition of [2n] into two parts and F be any
arbitrary field. Then, pdF(GF) ≤ s

Proof. It suffices to come up with a subspace assignment φ such that Gf (P,Q,E) has a projective
representation in F. Associate u, v to be vertices in P,Q respectively. In other words, u corre-
sponds to input variables {x1, x2, . . . , xn} and v corresponds to {xn+1, . . . , x2n} (corresponding
to the given partition). By the acceptance property of branching program B, f(u ◦ v) = 1 ⇐⇒
∃ a path from V0 to accept in B. Since vertices in Gf corresponds to strings in {0, 1}n, it suffices
to give an assignment φ such that

∃ a path from start to accept in B ⇐⇒ Basis of φ(u), φ(v) are linearly dependent (1)

We first assign vectors to vertices of the branching program and then use it to come up with a
subspace assignment.

Suppose there is a path from v0 to accept in B. A simple possible way to have dependence is to
have sum of the vectors assigned to the edges of the path telescoping to zero. This can be achieved
in the following way.

1. Modify B by adding a new start vertex labeled with a variable from the other partition from
which v0 got its label. For example, if V0 is labeled with any of x1, x2, . . . , xn, the new vertex
gets its label from {xn+1, . . . , x2n} and vice-versa. Connect both outgoing edges labeled 0, 1
to V0.

2. Merge the accept node with the new start node. Let C be the resultant graph which is no
longer acyclic. Assign standard basis vectors to each vertex in C.

3. Assign to each edge (u, v) the vector eu − ev.

Now, the subspace assignment to a vertex v ∈ V (Gf) is to take span of all vectors assigned to closed
edges on the input v. If there are no closed edges, we assign the zero subspace. With the above
modification, cycles in the graph would lead to telescoping of difference vectors (along the cycle
edges) to sum to zero.

Modification (1) is necessary as it is possible to have a cycle that does not contain any vertex
labeled with {xn+1, . . . , x2n}. Then φ(v) will be just zero subspace and φ(u) ∩ φ(v) will be trivial

22

00

01

10

11

00

01

10

11

x1 x2 x3 x4

x2 x3 x4

R

A

0 0 0 0

0 0 0

1 1 1 1

1 1

1

1

x1 x2 x3 x4

x2 x3 x4

R
0 0 0 0

0 0 0

1 1 1 1
1 1

1
1

x3
0

1e1 e2 e3 e4 e5 e6

e7 e8 e9

{e2 − e3,

{e4 − e5, e8 − e9, e1 − e2,

f(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4

Gf

Branching program computing f = PARITY4

Modified graph giving subspace assignment for Gf

e3 − e4, e7 − e8}

e5 − e1, e9 − e6}

Figure 3: Pudlák-Rödl Theorem applied to a branching program computing PARITY4

when there is a cycle. It is to avoid this that we add a vertex labeled with variable from the other
partition.

To show that φ is a valid subspace assignment, it remains to show that reverse implication of
statement 1 holds. Suppose for (u, v) ∈ E(Gf), φ(u), φ(v) are linearly dependent. Hence there
exists a non trivial combination giving a zero sum.∑

e∈E(C)
e=(u,v)

λe(eu − ev) = 0, λe ∈ F ∀e ∈ E(C)

Let S be the non-empty set of edges such that λe 6= 0 and V (S) be its set of vertices. Now for any
vertex u ∈ V (S) there must be at least two edges containing u because with just a single edge εu,
which being a basis vector and summing up to zero, must have a zero coefficient which contradicts
that fact that e ∈ S. This shows that every vertex in S has a degree ≥ 2 (in the undirected sense).
Hence it must have an undirected cycle.

Fig. 3 shows the transformations done to the branching program as per the proof of Pudlák-Rödl
Theorem and subspace assignment obtained for 00 and 01. The intersection vector for 00 and
01 is highlighted in blue on the left partition and in red on the right partition. Notice that this
intersection vector corresponds to two halves of a cycle starting from start vertex of the modified
BP. The subspace assignment for each of the vertices is listed in the table below.

23

x1x2 Assignment x3x4 Assignment

00 e2 − e3, e3 − e4, e7 − e8 00 e4 − e5, e8 − e9, e1 − e2, e5 − e6, e9 − e1

01 e2 − e3, e3 − e8, e7 − e4 01 e4 − e5, e8 − e9, e1 − e2, e5 − e1, e9 − e6

10 e2 − e7, e3 − e4, e7 − e8 10 e4 − e9, e8 − e5, e1 − e2, e5 − e6, e9 − e1

11 e2 − e7, e3 − e8, e7 − e4 11 e4 − e9, e8 − e5, e1 − e2, e5 − e1, e9 − e6

Table 1: Subspace assignment for PARITY4 given by proof of Pudlák-Rödl theorem

B Bounds on the Gaussian Coefficients

Proposition B.1 (Lemma 1 of [10]). For integers, k ≥ 0, n ≥ k.

qk(n−k) ≤
[
n

k

]
q

< cqq
k(n−k) (2)

where cq =
∏∞
j=1

1
1−q−j . Note that for all q ≥ 2, cq ≤ c2 = 3.462 . . .

Proof. Note that since n ≥ k, qn ≥ qk, we have qn−t
qk−t ≥

qn

qk
for any 0 ≤ t < qk. Hence the lower

bound follows.
For the upper bound,[

n

k

]
q

=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)

=
qnk

qk2

[
(1− q−n)(1− q−(n−1)) . . . (1− q−(n−k+1))

(1− q−1)(1− q−2) . . . (1− q−(k−1))

]
Numerator of the previous expression can be upper bounded by qnk while denominator can be lower
bounded by qk

2
(cq)

−1. This completes the proof.

Remark B.2. This shows that the total number of subspaces of an n dimensional space is upper

bounded by 2cq
∑n/2

i=0 q
in ≤ 2c2q

(n2+n)/2.

C Proof of Proposition 2.5

Proof. For the reverse direction, suppose there is a non zero vector w1 in U1∩V1 and a non zero vector
w2 in U2∩V2, then wT1 w2 ∈ U1⊗U2 and wT1 w2 ∈ V1⊗V2. Hence w = wT1 w2 ∈ (U1⊗U2)∩ (V1⊗V2).

For the forward direction, let w be a non zero vector in (U1 ⊗ U2) ∩ (V1 ⊗ V2). Let {ei}i∈[k1] be

the set of basis vectors for F k1 and {ẽj}j∈[k2] be the set of basis vectors for F k2 . Hence for some

λij , µij ∈ F, w can be written as, w =
∑

i,j λije
T
i ẽj =

∑
i,j µije

T
i ẽj . Hence,

∑
i,j(λij − µij)eTi ẽj = 0.

By linear independence of tensor basis,

λij = µij ∀ (i, j) ∈ [k1]× [k2] (3)

Since w is non-zero, there exists i1, j1 with (i1, j1) ∈ [k1]× [k2] such that λi1j1 6= 0. Applying
equation 3, we get µi1j1 6= 0. Hence for (i1, j1), λi1j1 , µi1j1 are both non-zero.

Hence it must be that (U1 ⊗ U2) and (V1 ⊗ V2) has the vector eTi1 ẽj1 . So ei1 must be present

in U1 and V1 and ej1 must be present in U2 and V2 (if not, eTi1 ẽj1 would not have appeared in the
intersection). Hence U1 ∩ V1 6= {0} and U2 ∩ V2 6= {0}.

24

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

