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Abstract

We present an adaptive and non-interactive protocol for verifying arbitrary efficient computations in fixed polyno-
mial time. Our protocol is computationally sound and can be based on any computational PIR scheme, which in turn
can be based on standard polynomial-time cryptographic assumptions (e.g. the worst case hardness of polynomial-
factor approximation of short-vector lattice problems). In our protocol, the prover and the verifier do not need to
interact at all: The verifier sets up a public key ahead of time, and this key can be used by any prover to prove arbi-
trary statements in a completely adaptive manner. Verification is done using a secret verification key, and soundness
relies on this key not being known to the prover. Our protocol further allows to prove statements about computations
of arbitrary RAM machines.

Previous works either relied on knowledge assumptions, or could only offer non-adaptive two-message proto-
cols (where the first message could not be re-used), and required either obfuscation-based assumptions or super-
polynomial hardness assumptions.

We show that our techniques can also be applied to construct a new type of (non-adaptive) 2-message delegation
protocols for batch NP-statements. Specifically, we can simultaneously prove the membership of multiple instances
in a given NP language, with communication complexity proportional to the length of a single witness.
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1 Introduction
Efficient verification of computation is one of the most fundamental tasks in computer science, and in particular it
lies at the heart of the P vs. NP question. In the most basic setting, a prover P proves to a verifier V that a certain
instance x is in some language L. In a delegation protocol the resources for verification should be much lower than
those required to compute whether x is indeed in L. The most common flavor of this question, which will be the focus
of this work, is to verify computations of time complexity T , with verification complexity polylog(T ).1 However,
our results are not restricted to deterministic computations, and we also obtain non-deterministic (batch) delegation, a
problem that was considered in a recent work of Reingold, Rothblum and Rothblum [RRR16].

If soundness is sought against computationally unbounded provers, then a sound delegation protocol would have
unlikely computational complexity consequences, in particular letting L ∈ EXP, we get an interactive protocol with
communication and computational complexity polylog(T ) = poly(n), where n is the input length, which would
imply that EXP ⊆ PSPACE. We therefore consider computational soundness, i.e. we require that soundness holds
only against computationally bounded provers (such proof systems are also known in the literature as arguments). Of
course this will only make sense if an honest prover (aiming to prove a true statement) can produce a proof efficiently
as well. In this context, we would like to understand which classes of computation adhere to succinct and efficient
delegation schemes, and what amount of communication and interaction are required in order to accomplish this task.

Aside from its foundational value, the question of efficient delegation carries significance to applications as well.
In many cases, computation today is becoming asymmetric, with lightweight local computation, and with large com-
putational tasks performed off-site (e.g. by a cloud server). The ability to verify that the computation is carried out
correctly without investing significant computational resources is obviously useful in this situation.

Probabilistically checkable proofs (PCPs) [AS98, ALM+98] have proven to be an invaluable tool for the task of
constructing efficient arguments, since they allow verification with very little communication. In the PCP model, the
prover writes a proof π for the statement x ∈ L, but the verifier only needs to read very few locations in that proof
(chosen according to a specific distribution) in order to be convinced of the correctness of the statement. Kilian [Kil92]
translated this into an argument system using collision resistant hash functions (CRH), which allow to produce a
succinct computationally binding commitment to a long string (the PCP proof string π), and also to succinctly reveal
specific locations of the committed string, via a technique known as Merkle Trees. Kilian’s protocol requires to
exchange 4 messages between the prover and the verifier. Micali [Mic94] showed that in the random oracle model this
can be done without interaction at all.

Aiello et al. [ABOR00] proposed an approach to reduce the message complexity to 2, i.e. challenge-response,
using a computational private information retrieval (PIR) scheme. For simplicity, in what follows, we explain their ap-
proach using a fully homomorphic encryption scheme (FHE), which is a stronger object than a PIR scheme.2 Loosely
speaking, they suggest to encrypt the PCP queries using an FHE scheme. In such a scheme, computation can be
performed under the encryption without compromising security, so the transition Encpk(x) → Encpk(f(x)) can be
performed publicly with computational complexity which is comparable to that of f . The intuition is that if each PCP
query is encrypted under an independently generated public key, a cheating prover should not be able to correlate the
answers and will therefore respond as if according to a predetermined string π. Unfortunately, it was later shown
in [DLN+01], that this approach might not be sound, i.e., there may exist encryption schemes and PCP schemes for
which this approach fails to produce a sound delegation scheme. Recently in [DHRW16], specific counter examples
were presented. Intuitively, the problem is that this method does not necessarily force the adversary to answer each
query “locally” without looking at the other encrypted queries; rather, it only guarantees that the marginal distribution
of answers under any subset of public keys does not depend on the queries encrypted under other public keys. It
had been established that the two are not the same, with the notable example being “spooky interactions” in quantum
information theory.

We note that the approaches outlined above (as well as the approach we use in this work) relies on PCPs. This
should not come as a surprise, given the work of Rothblum and Vadhan [RV10], which, loosely speaking, shows that
any delegation scheme whose security is based on a standard (falsifiable [Nao03]) assumption, inherently uses a PCP
(implicitly or explicitly).3

1Some subtleties arise when formalizing this problem, e.g. the time it takes to read the input x. These will be discussed below.
2In the technical sections we explain the Aiello et al. [ABOR00] proposal using the PIR terminology.
3An exception are delegation schemes in the preprocessing model, where the verifier must run a long pre-processing phase in order to verify
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The work of Goldwasser, Kalai and Rothblum [GKR08], combined with the work of Kalai and Raz [KR09], give
a 2-message delegation scheme for the class of logspace-uniform NC computations, using a super-polynomially hard
PIR/FHE scheme. More specifically, [GKR08] construct an interactive proof for such languages (where the prover is
efficient), and [KR09] show how to compile the interactive proof of [GKR08] (and interactive proofs in general) into a
2-message delegation scheme using a super-polynomially hard PIR/FHE scheme. Very recently, and in parallel to our
work, Dwork, Naor and Rothblum [DNR16] showed that in certain situations (which include the [GKR08] scheme)
it is possible to improve the compiler of [KR09] and only rely on polynomial hardness of the PIR/FHE scheme. To
date, this (along with our work) is the only 2-message delegation scheme that is proven secure under what’s known as
a falsifiable (or a complexity) assumption [Nao03, GK16].

Kalai, Raz and Rothblum [KRR13] showed that the approach in [ABOR00] is sound, so long as the underlying
PCP is sound against (statistical) no-signaling provers. A no-signaling prover does not have to respond according to
a prescribed string π, rather for any query set Q it answers according to some distribution A. However, for every two
query sets Q,Q′, the marginal distribution of answers on the intersection Q ∩ Q′ are identically distributed, whether
Q or Q′ had been asked. A statistical no-signaling prover is allowed to deviate, but only by a small statistical distance.
It was shown in [KRR13] that a no-signaling PCP allows to apply the [ABOR00] approach to achieve a sound 2-
message delegation, and in [KRR14] such a statistical no-signaling proof system had been presented, thus achieving
a 2-message delegation scheme for all TIME(T ) computation. The underlying computational assumption (to achieve
the best parameters) was again super-polynomially hard PIR/FHE.

Kalai and Paneth [KP15] extended this result to the RAM computational model. They showed that time T RAM
computations can be verified using proofs of length polylog(T ), under the same computational assumptions. RAM
machines more accurately describe real-world computations and in addition this model allows for a clean formal
treatment of the input length and the non-uniformity of the computation. It is obvious that verification cannot succeed
unless the verifier reads the input and knows what is the computation that is being verified (both can be treated in a
unified way by considering a universal machine). In the RAM model, these can be encoded in the initial database (=
memory array) of the machine. In the [KP15] model, the initial database can be preprocessed ahead of time, and a
short digest is produced. The verifier only needs to know this digest in order to verify the computation. Thus, one
can consider the case where the verifier constructs the digest himself, which is equivalent to the previous model where
the verifier’s complexity can depend on the input. Most importantly, in the RAM model, the verifier can use the same
digest to verify many different computations. Moreover, the computations may not only read from the memory, but
also write to the memory, in which case a new digest is produced, and the verifier can efficiently verify the validity of
both the output of the computation and the new digest. Finally, we note that RAM delegation allows us to consider
cases where the digest is produced separately, or even maliciously and provide more extensive security guarantees.

We note that this model of RAM delegation generalizes the model of memory delegation [CKLR11], where the
verifier also saves a short digest of the memory and verifies computations using only the digest. However, in RAM
delegation the prover’s runtime is proportional to the RAM runtime of the computation M , whereas in memory del-
egation the prover’s runtime is proportional to the size of the circuit corresponding to the RAM machine M . The
former can be independent of the total size of the database (= memory) and thus be significantly shorter than the latter,
which must be at least linear in the memory size. Further, the security guarantee we provide is stronger than the notion
suggested for memory delegation.

Adaptivity and the Hunt for a Completely Non-Interactive Protocol. As explained above, several works in recent
years established that delegation is achievable in as little as two messages, dare we even hope for anything better?
Indeed, several works showed that it is possible to delegate even non-deterministic computations [DFH12, BCC+14],
and furthermore, the work of [BCCT13] even constructs a non-interactive delegation scheme for non-deterministic
computations, assuming only a common setup. However, all these works rely on knowledge assumptions. Such
assumptions, are not only not falsifiable [Nao03], but are of a very different nature than standard hardness assumptions.
Gentry and Wichs [GW11] showed that for such languages it will be hard to achieve a non-interactive protocol under
polynomial-time standard assumptions.

One would hope that the techniques of [GKR08, KRR14, KP15] could be adapted to imply a non-interactive
protocol (with setup). Indeed, the first message of these delegation schemes relies only superficially on the input and

proofs. Such schemes do not need to use PCPs, as demonstrated by the works of [GGP10, CKV10, AIK10].
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on the function being computed, essentially only (an upper bound on) the time complexity of the computation needs
to be known in order to produce the first message. One would hope that the first message can be generated once and
for all as setup, and would allow for verification of arbitrary statements.

However, the proof of security is inherently non-adaptive. Namely, even though the input is not required in order
to produce the first message, security is not guaranteed when the adversary gets to choose the instance after seeing the
first message. Technically, this is because the proof of security relies on extracting an entire computation table from
the adversary, and in order to do this, the adversary is rewound and made to respond on different queries with regards
to the same input. Obviously this technique is not applicable in an adaptive setting.

Note that proving adaptive security will make the delegation scheme non-interactive (with setup), since adaptive
security allows to generate the first message during setup. However, verification will still require the secret randomness
that was used to produce the first message. Therefore, the resulting scheme will not enjoy public verifiability as the
aforementioned extractability-based scheme [BCCT13]. Moreover, such a scheme will only be secure in a model
where malicious provers do not learn whether their maliciously crafted proofs are accepted or not; or alternatively,
where the setup is generated anew if such leakage occurs. Our construction will inherit this limitation.

We note that one could try to get adaptive soundness by a “brute force” approach using complexity leveraging: The
observation is that we can always guess the instance that the adversary will choose with probability 2n. Therefore, if
we pick the parameters of the scheme such that we are guaranteed soundness even with this slowdown, then adaptive
security will follow. However, this method, aside from being exorbitant in terms of communication, computation and
underlying hardness assumption, requires that there is a predetermined polynomial upper bound on the length of the
input. This method is therefore completely inapplicable if we intend to support arbitrary polynomial time computations
on arbitrary polynomial length inputs.

1.1 Our Results
We present a 2-message adaptively secure delegation scheme for RAM computations, under standard polynomial
hardness assumptions. In particular, our scheme is non-interactive assuming each verifier is associated with a public
key which is generated ahead of time (e.g. via a public-key infrastructure). The prover generates a proof respective to
the public key of the verifier it wants to convince.

Our scheme works in the aforementioned RAM model: Given the public key of the verifier, the prover can prove the
correctness of the computation of any RAM machineM on any databaseD. More specifically, the prover can produce
a proof that MD outputs a value y after T computational steps, for all T = poly(λ), with λ denoting the security
parameter.4 To verify a proof efficiently, the database D needs to be preprocessed via an efficient deterministic
procedure to create a digest d of length λ. This can be done ahead of time and does not depend on the machine
M .5 Then the verification process can be performed as a polynomial time procedure taking as input the digest d, the
machine M , the output y and the proof.

We note that a RAM computation MD may alter the database D. Therefore the prover, along with the output y,
will also output a digest dnew of the new updated database, and will prove that both y and dnew are correct.

In order to be able to support any polynomial running time, we allow any T ≤ 2λ. The running time of the prover
is poly(T ), and the length of the proof is p(λ) · polylog(T ) ≤ p′(λ) for fixed polynomials p, p′. Namely, the length
of the proof is a priori bounded by p′(λ) and does not depend on the computation. It follows that the verification
complexity is independent of T , and there is a fixed polynomial (in λ) upper bound on the running time of the online
phase (assuming that the description of M does not grow asymptotically, say M is a universal machine). In the formal
description of the model in Section 3, it is convenient for us to consider the proof as containing three pieces: The
output of the machine y, the new digest of the database at the end of the computation dnew, and the proof string itself
pf.

Our notion of security is an adaptive version of the definition of [KP15]. Their definition goes beyond just requiring
that an efficient adversary cannot prove a false statement on any actual computation, i.e. on any machine M and
database D, but rather requires that the prover cannot prove contradicting statements on any digest, even one that is

4The security parameter represents the asymptotics of efficient computations since the input size is irrelevant here. An efficient procedure is one
that runs in time poly(λ).

5Our digest, as in [KP15], is simply a tree commitment of the database D.
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generated maliciously and does not correspond to any database. Namely, a prover cannot find a digest d, machine M ,
and two accepting proofs for two different outputs of MD. This means that even if the verifier has been cheated and
given a malicious digest, there is still a well defined “functionality” associated with this digest for any machine M .
This makes the separation between the offline and online stages even more substantial.

The soundness of our scheme relies on the polynomial hardness of a 2-message private information retrieval (PIR)
scheme, or a homomorphic encryption scheme for a sufficiently rich class of functions (the latter implies the former).
Unlike previous works, we do not require super-polynomial hardness of our underlying primitive. We note that in the
independent work of [DNR16], they present a delegation scheme under polynomial hardness assumptions, but only
for NC circuits and only in the non-adaptive setting.

We mention again that our delegation scheme is not publicly verifiable (similarly to previous works [GKR08,
KRR13, KRR14, KP15] and the concurrent work of [DNR16]). There is a recent line of work that constructs pub-
licly verifiable delegation schemes for deterministic computations [PR14, KLW15], as well as for RAM computa-
tions [BGL+15, CHJV15, CCHR15, ACC+15, CH16, CCC+16]. However, all these works rely on indistinguisha-
bility obfuscation, except the work of [PR14] which relies on new assumptions on multi-linear maps. It is not clear,
however, whether secure indistinguishability obfuscators actually exist, as current proposals of multi-linear maps,
as well as obfuscation candidates, appear to have flaws. Despite their strong assumptions, all of the aforementioned
schemes except [PR14] require 2 messages, and it is not known how to achieve a non-interactive scheme from standard
assumptions as we do in this work.

As a main tool in our constructions, we define and construct computationally no-signaling PCPs in Section 4.
Recalling that in statistical no-signaling, given sets of queries Q,Q′, the marginal distribution of prover answers on
Q ∩ Q′ had to be statistically close whether the prover was asked on Q or on Q′, now we only require that these
distributions are computationally indistinguishable. This captures a potentially much larger set of cheating provers.
Furthermore, our PCPs are adaptively sound, allowing the prover to first see the PCP query and then choose the
instance to be proven, so long as computational no-signaling (CNS) holds even conditioned on the chosen instance.
Whereas many parts in the construction of the computational no-signaling PCP mirror ones from previous works, and
especially [KRR14], our proof is somewhat shorter and more modular due in part to its use of abstractions introduced
by [PR14]. The transition from PCPs to a delegation scheme in Section 5 is similar to [KP15], but the proof is quite
different. Along the way, we are able to simplify a significant component – specifically, we do away with delegating
the construction of the low degree extension to the prover. We view these as additional contributions of our work,
deepening our understanding of the interplay of the different components in the proof. See more details in Section 1.2
below.

Batch delegation for NP. Our new techniques enable us to make progress on the task of delegating NP computations
as well. In particular, we construct a batch delegation scheme for any NP language, a problem that was recently con-
sidered by Reingold, Rothblum and Rothblum [RRR16]. More specifically, we construct a 2-message (non-adaptive)
batch delegation for NP which allows a prover to prove that x1, . . . , xk are all in L ∈ NP, where the communication
complexity is m · poly(λ) with m being the length of a single witness. The security of this scheme is also based
on the same assumption as our RAM delegation scheme, i.e., polynomial hardness of the underlying PIR scheme.
Previously this was only achievable under knowledge assumptions (or in the Random Oracle Model). We also show
that non-falsifiable assumptions are inherent if one wishes to obtain batch delegation with adaptive soundness. This
contribution is described in Section 6.

1.2 Our Techniques
We make novel technical contributions in two aspects: First, in constructing a PCP scheme that is secure against
adaptive and computational no-signaling cheating provers, as opposed to non-adaptive and statistical no-signaling
provers as in previous work. Second, in converting such a PCP into protocols for adaptively secure RAM delegation or
batched NP delegation. Previous proof techniques were insufficient for this, even given the enhanced PCPs. We will
start by describing the delegation protocols, assuming we have a PCP at hand. Then, once we realize what properties
of the PCP are actually required for the construction, we will describe the former contribution.

We will consider PCP systems for 3SAT with a standard completeness property, and will be interested in their
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performance against computational no-signaling (CNS) adaptive provers. A CNS adaptive prover P is a possibly
randomized function, that takes a query set Q as input, and outputs a 3CNF formula ϕ as well as a set of answers A.
We require that for every two query sets Q,Q′, and for (ϕ,A) distributed according to P (Q) and (ϕ′, A′) distributed
according to P (Q′), it holds that (ϕ,A|Q∩Q′) ≈ (ϕ′, A′|Q∩Q′), where “≈” denotes computational indistinguishability.
Clearly, the honest prover that answers according to a prescribed proof string has this property (where “≈” can be
replaced with equality). In the non-adaptive setting, which has been considered in previous works, ϕ is known ahead
of time to both the prover and verifier and is not generated adaptively.

We start with recalling the aforementioned [ABOR00] delegation approach: generate a set of PCP queries {qi}
according to the PCP verifier distribution. Then encrypt the queries using a homomorphic encryption scheme, each
using its own key, and send the encrypted queries {Encpki(qi)} as the verifier’s message. An honest prover will
generate a PCP proof string π proving that ϕ is satisfiable, and use the homomorphism to compute {Encpki(π|qi)}.
The verifier can then decrypt and check that the PCP indeed accepts. We note that the generality of homomorphic
encryption is not needed here, and all we need is to be able to obliviously select an entry out of a string, which is
exactly the functionality provided by private information retrieval.

As for soundness, the important observation of [KRR13] is that any efficient prover, when converted to a PCP
prover, must be CNS, since a non CNS prover would necessarily violate the security of the encryption scheme: If
the distributions A1 = A|Q∩Q′ and A2 = A′|Q∩Q′ are distinguishable, then we can also distinguish between an
encryption of Q1 = Q \ Q′ and an encryption of Q2 = Q′ \ Q, which would violate the FHE security. This is done
by taking the encryptions of the elements of Qi (where the secret key is unknown), and appending the encryptions of
Q ∩ Q′ under a known secret key. Then we run the prover on the set of encrypted queries, and examine the prover’s
response using the distinguisher. If the distinguisher says A1, this means we probably started with Q1, and vice versa.

The [KRR14] approach to delegation was to construct a PCP that has soundness against no-signaling provers
(statistical, in their case, but the distinction will not concern us at this point). Consider a computation, and consider
a 3CNF formula ϕ that represents the evolution of this computation. Namely, consider the complete computation
tableau, and assign a variable to each of the bits in it. A proof for a correct computation thus becomes a matter
of proving that ϕ is satisfiable, when the variables that correspond to the initial state and the output are fixed to
the respective input and output of the computation. Note that if ϕ is satisfiable then there is exactly one satisfying
assignment which corresponds to the correct evolution of the computation.

The formula ϕ described above corresponds to a translation of the computation into a circuit. Thus, the prover
complexity suffers accordingly (indeed the protocol of [KRR14] was designed for circuits and not for RAM ma-
chines). This was improved by [KP15], who considered RAM computations. Their approach was as follows: Rather
than considering the state of the RAM memory database at every point in time, they only considered a computation-
ally binding commitment to the memory contents. By using locally updatable commitments (Merkle Trees), it was
possible to construct a formula ϕ that describes the evolution of the computation, and in particular the evolution of
the committed memory database, in a compact manner, only requiring a fixed polynomial number of variables per
time step, regardless of the length of the database. Since the commitments are only computationally binding, it was
no longer true that ϕ only has one satisfying assignment. The guarantee that they get, however, is that finding two
different satisfying assignments will break the underlying cryptographic primitive (a collision resistant hash function),
and therefore cannot be done efficiently.

In order to use this guarantee, [KP15], following the footsteps of [KRR14], and using an abstraction due to Paneth
and Rothblum [PR14], showed that any successful no-signaling prover against their PCP can be efficiently converted
into a partial assignment generator. A partial assignment generator is an algorithm that takes any sufficiently small
subset of the variables of ϕ and outputs an assignment for these variables that does not violate any of the clauses in
which they appear. The generator is allowed to give different responses for the same variable, depending on the other
elements in the set, but the assignments have to be no-signaling in an analogous sense to above: intersecting sets of
variables should induce the same distribution on the values (up to negligible statistical or computational distance).
Combining this with computational binding, they get a way to extract an entire satisfying assignment for the formula,
by starting from the initial state, and filling up the table sequentially and locally, each time asking about the next
variable and the previous variables that determine its value. The no-signaling property guarantees that the distribution
on each and every variable is independent of the set it belongs to, and computational binding guarantees that this
distribution is in fact constant, otherwise the binding of the commitment is broken. Thus, assuming that they have a
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cheating prover that successfully proves two contradicting statements about the final state of MD, this translates into
two formulae ϕ1, ϕ2 that correspond to computations with the same initial state but different final state. Using the
assignment generator they can find the point of divergence in the two computations which will necessarily imply that
they can open a commitment in two different ways, thus breaking the underlying commitment.

Adaptivity, At Last. How can we generalize this approach to the adaptive setting? We now consider a PCP whose
query distribution is independent of the instance in question (most known PCPs have this property), and we allow a
cheating prover to choose the formula ϕ, for which it wants to provide a proof adaptively, based on the query set Q.
This means that a prover who wants to make our lives harder will never even output the same formula twice. Indeed,
we can generalize the previous technique, and construct a partial assignment generator, but it will be severely crippled:
Upon receiving a set of variables as input, the assignment generator will output an assignment for these variables
together with a formula ϕ to which the assignment relates. Whereas all output formulae still relate to some RAM
computation, we lose our anchor for constructing the computation tableau, namely the uniqueness of the initial state.
The only ray of light in this situation is that the no-signaling property is still preserved for this assignment generator.
Namely the marginal distributions on subsets of variables need to be computationally indistinguishable, regardless of
the sets in which they are contained, and this indistinguishability holds even in the presence of the respective ϕ’s (in
particular, the ϕ distribution itself should be computationally indistinguishable for different values of query sets Q).

To see how to use these properties, let us recall our notion of security. We consider a prover that is able to
adaptively output M, d (where d is an alleged digest, or commitment to the initial state), together with two possible
alleged outputs for the computation MD, and respective computationally no-signaling (CNS) PCP responses. This
means that even though the adversary might change the formulae ϕ1, ϕ2, it is always the case that it outputs two
formulae with the same initial state and different final state. Therefore, there has to exist a step in the computation
where the two RAM computations diverge. Perhaps surprisingly, we can find this point of divergence even if the
adversary tries to shift it around! The idea is to extend the partial assignment generator into one that outputs ϕ1, ϕ2 at
the same time, and allows to make local tests on variables of both formulae at the same time. This means that we can
define a predicate of the sort “ϕ1 agrees with ϕ2 at step i”, denote this predicate by θi, and test θi or even (θi ∧¬θi+1)
using our assignment generator, since these predicates only depend on a small number of variables of the original
ϕ1, ϕ2. The critical observation is that CNS should hold even with respect to the θ predicates, since they are efficiently
computable from the variables of ϕ1, ϕ2. We know that θ0 is true and θT is false, therefore from the CNS property,
there must exist an i such that (θi ∧ ¬θi+1). Having found this i, we can look at the specific assignment of the ϕ1, ϕ2

variables to find the inconsistency and thus break the binding of the commitment scheme. This allows us to achieve
an adaptive delegation scheme in spite of an elusive prover.

Efficiently Computing Low-Degree Extensions. In the verification process, it is necessary to compute the low-
degree extension (LDE) of ϕ. This is the case in our scheme, as well as in previous schemes [GKR08, KRR13,
KRR14, KP15]. A low degree extension of a function is a multivariate low degree polynomial over a finite field whose
restriction to a specific subset of the domain is exactly the original function. Usually the cardinality of the field is
polylogarithmic in the input length. In our setting, we seek an LDE of the indicator function φ, which takes labels of 3
literals and checks whether the clause they define appears in ϕ. Recall that the verifier only has M, d, which implicitly
defines ϕ, and in particular it can compute φ at any point, but computing the LDE requires a global view of φ that
cannot necessarily be computed with the resources of the verifier. Note that the verifier cannot run in time |ϕ| since
this is proportional to the runtime of the RAM computation.

In previous works [KRR13, KRR14, KP15] there was an additional step to the delegation process, where the
computation of the LDE itself had been delegated to the prover. A fairly complicated proof was required in order to
show that the delegation of the LDE can be composed with the delegation of the computation. We get rid of this step
completely, and show that the LDE can be computed in time poly(|M |, |d|, log T ).

In a related work, Paneth and Rothblum [PR14] show that, if φ : {0, 1}3m → {0, 1} is a clause indicator function
for the computation defined by a Turing machine M and input x, then one can efficiently evaluate a somewhat low
(but not minimal) degree extension φ̂ : R3m → R for any ring R. To show this, they observe that low-depth boolean
circuits have low-degree ring-independent arithmetic circuits, and thus they rely heavily on the fact that the domain of
φ is {0, 1}3m.
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However, in this work we cannot use the same setting of parameters. Specifically, to obtain an efficient prover
which relies only on PIR, we need |R|3m to be polynomial in T , but our PCP’s analysis requires |R| ≥ 3m = 3 log T ,
which is a contradiction. Instead, we think of the clause indicator function as a function φ : H3m → {0, 1}, where
H ⊂ F is a set with |H| = log T , and m = log T

log log T . We compute the low degree extension of such a φ, using
techniques that depend on the structure of our ring (namely, we show that the formula for φ factors well enough for
Lagrange interpolation to be an efficient technique). See details in Section 5.1 (and in particular in Lemma 3).

Batch NP Delegation. We show that similar methods also allow us to achieve 2-message non-adaptive delegation
protocols for batch NP verification. Specifically, to prove that all x1, . . . , xk ∈ L, for some L ∈ NP, we only require
m · poly(λ) bits of communication, where m is the length of a single witness for L (note that since we are in the
non-adaptive setting, we can assume that m is known ahead of time).

To see how this is done, let us first consider the degenerate case where k = 1. In this case the solution is clear:
The prover sends the witness w, together with a short proof of the NP verification process of (x,w) via the former
delegation protocol. We emphasize that we must require adaptive security of the original protocol even to achieve
selective security here, since the computation that is actually being verified depends on w which is adversarially
chosen. We note that this protocol still has advantages over the trivial verification of (x,w) since its computational
complexity is independent of the specific NP relation. Moreover, we note that prior to this work, such an NP delegation
protocol, even for k = 1, was known only in the random oracle model or under knowledge assumptions.

Next, consider a slight variation of this protocol, where instead of sending w in the clear, the adversary encodes
it into a RAM database, and sends a digest of this database along with the proof. Proving such a protocol is already
beyond the abilities of our proof methods, since our assignment generator is local and therefore can only “see” a
(possibly small) part of the witness at the same time. Since the actual value of the witness is not “anchored” in any
way, we cannot go from local to global consistency. This can be fixed, however, if we extend our assignment generator
to allow reading sets of > m variables in one go, which will allow to read the witness value itself and thus bring us
back to a situation similar to the previous adaptive delegation setting with the witness playing the role of the input.
Doing this will require to make more PCP queries so as to allow assignments to additional variables, which makes
the communication complexity proportional to m. However, these additional PCP queries can be “reused” to verify
additional instances, which will allow the batch functionality as explained next.

Indeed this is the intuition behind the k-instance setting. Loosely speaking, the idea is that the prover, rather than
sending all the witnesses in the clear (which is too long), will send a digest of the witnesses, along with a proof that
these are accepting witnesses. From a similar argument to the one above, if the number of PCP queries is more than
m, then we can can locally check that each witness is valid. We note that this intuition is an oversimplification, and
there are several technical hurdles that we need to overcome to make this idea work. We refer the reader to Section 6
for details.

Negligible Soundness Error via Amplification Finally, we attend to the construction of the adaptively sound PCP
required for our protocols as described above. In fact, our PCP is exactly the same as the one used in [KRR13,
KP15]. We prove soundness in the adaptive and computational no-signaling setting. Namely, we show that adaptive
assignment generators (of the type we want) can be constructed given any computational no-signaling adaptive prover
(as opposed to non-adaptive statistical no-signaling). The overall proof outline remains the same, and the repetitive
parts of the proof are deferred to the appendix. Along the way we were able to simplify parts of the proof.

The PCP of [KRR14] is in fact a repetition of a more simple PCP. The repetition is required in order to amplify
soundness. In this work we prove a more efficient soundness amplification, which is also more modular. Specifically,
we present an amplification lemma that applies in general to no-signaling PCPs, and shows that a polynomial-time
prover with noticeable success probability against a repeated PCP can be transformed into a polynomial-time prover
with success probability almost 1 against a relaxed PCP verifier that only checks that some of the copies of the
repetition verify correctly. This part is completely self contained (appears in Section 4.3), and is used in a black-box
way in the remainder of the proof.

We remark that in our application to RAM delegation, the efficiency of the soundness amplification is crucial, and
indeed retroactively fixes a gap in the soundness proof for the beautiful scheme of Kalai and Paneth [KP15]. They
state a lemma (attributed as an abstraction of claims in [KRR14]) which implicitly and mistakenly assumes a more
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efficient soundness amplification than was actually proved in [KRR14]. In [KRR14], the soundness amplification was
inefficient – it produced a cheating prover whose running time was exponential in the size of the proof, even if starting
from an efficient prover that cheats with non-negligible probability. As a result, the constructed partial assignment
generator was also inefficient.

This was not a problem when delegating Turing machine computations, because the existence of an unbounded
partial assignment generator is sufficient for soundness. When delegating RAM computations as in [KP15], the sound-
ness proof finds a hash collision from a cheating prover by using the constructed partial assignment generator, which
should contradict collision-resistance. However, collision-resistance applies only against efficient algorithms, and in
[KRR14] the partial assignment generator is so inefficient that not even sub-exponentially secure collision-resistance
is applicable.

2 Preliminaries

2.1 Low Degree Extensions
Let F be a finite field, and let H be a subset of F, and let m be some integer. If f is a function mapping Hm → {0, 1},
then there exists a unique extension of f into a function f̂ : Fm → F (which agrees with f on Hm; i.e., f̂ |Hm ≡ f ),
such that f̂ is an m-variate polynomial of degree at most (|H| − 1) in each variable. This function f̂ is called the low
degree extension of f .

Low-Degree Extensions of Strings. If x is a binary string of length n, we pick H ⊆ F such that |H| = log n and
|F| = polylog(n), and m such that m = log n/ log log n. By mapping [n] into Hm (in lexicographical order), we can
view x as a function mapping Hm → {0, 1}, and we define x’s low-degree extension accordingly.

Low-Degree Extensions of 3-CNF Formulas. If ϕ is a 3-CNF over a set V of n variables, then (with some ordering
of V ) an assignment to these variables is an n-bit string. As above, such an assignment can be represented by a
function mapping Hm → {0, 1}, where each variable of ϕ is associated with an element of Hm. We similarly write a
“clause indicator function” φ : H3m × {0, 1}3 → {0, 1} for ϕ:

φ(v1, v2, v3, b1, b2, b3) =

{
1 if the clause v1 = b1 ∨ v2 = b2 ∨ v3 = b3 is in ϕ
0 otherwise

In fact, we view φ as a function from H3m+3 → {0, 1} by defining the output of φ as 0 if b1, b2, or b3 is not in
{0, 1}. When we refer to the low-degree extension of a formula ϕ, we mean the low-degree extension of this clause
indicator function φ.

In the following we assume that all algorithms have access to m, the set H and the field F, and we assume that the
elementary field operations over F have unit cost.

2.2 Cryptographic Primitives
We start with a standard definition of computational indistinguishability.

Definition 1 (Computational Indistinguishability). Two ensembles of distributions (or of random variables) X =
{Xλ}λ∈N, Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y if for every PPT algorithm A it
holds that ∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ = negl(λ) .

We define length halving collision resistant hashing (we will not require more elaborate variants).
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Definition 2. A family of collision resistant hash functions is an ensemble of efficiently sampleable distributions
{Hλ}λ∈N (i.e. given 1λ one can efficiently sample from Hλ) such that Hλ ⊆

(
{0, 1}2λ → {0, 1}λ

)
, and for every

probabilistic polynomial time algorithm A:

Pr
h←Hλ

[
(x 6= x′) ∧ (h(x) = h(x′))

∣∣ (x, x′)← A(1λ, h)
]

= negl(λ) .

We define the notion of computational polylogarithmic PIR scheme below, and then proceed to derive a variant that
will be useful for our construction.

Definition 3. A 2-message private information retrieval (PIR) scheme over alphabet Γ = Γλ, with log |Γ| ≤ poly(λ),
is a tuple of PPT algorithms (PIR.Send,PIR.Respond,PIR.Decode), where:

• (q, s) ← PIR.Send(1λ, i, N): given 1λ and some i,N ∈ N such that i ≤ N , outputs a query string q and a
secret state s.

• a← PIR.Respond(q,D): given a query string q and a database D ∈ ΓN , outputs a response string a.

• x← PIR.Decode(s, a): given an answer a and state s, outputs an element x ∈ Γ.

We say that the scheme is a polylogarithmic PIR if |a| = poly(λ, log(N)). We say that it is (perfectly) correct if for all
i ≤ N ≤ 2λ and D ∈ ΓN it holds that when setting (q, s) ← PIR.Send(1λ, i, N), a ← PIR.Respond(1λ, q,D), and
x← PIR.Decode(1λ, s, a), then x = D[i] with probability 1.

We say that the scheme is secure if for any sequence of Nλ = poly(λ), iλ, i′λ ≤ Nλ it holds that q ≈ q′, where:
(q, s)← PIR.Send(1λ, i, N), (q′, s′)← PIR.Send(1λ, i′, N).

It had been shown in [IKO05] that a succinct 2-message PIR implies the existence of a family of collision resistant
hash functions. Succinct PIR can be constructed based on the φ-hiding assumption [CMS99] or based on the existence
of leveled fully homomorphic encryption scheme [Gen09], which in turn can be based on the (polynomial) hardness of
approximating short-vector lattice problems (SIVP and GapSVP) to within a polynomial factor in worst case lattices
[BV14].

We define a variant that we call “succinct” PIR, where only a bound on the size of the database N needs to be
known. This notion will be useful for our construction and can be derived from the standard notion of PIR as we
explain below.

Definition 4. A succinct 2-message private information retrieval (PIR) scheme over alphabet Γ = Γλ, with log |Γ| ≤
poly(λ), is a tuple of PPT algorithms (ScPIR.Send,ScPIR.Respond,ScPIR.Decode), where:

• (q, s)← ScPIR.Send(1λ, i): given 1λ and some i ≤ 2λ, outputs a query string q and a secret state s.

• a← ScPIR.Respond(q,D): given a query string q and a database D ∈ Γ≤2
λ

, outputs a response string a.

• x← ScPIR.Decode(s, a): given an answer a and state s, outputs an element x ∈ Γ.

We say that the scheme is a succinct PIR if |a| = poly(λ). We say that it is (perfectly) correct if for all i ≤ 2λ and
D ∈ Γ≤2

λ

with |D| ≥ i it holds that when setting (q, s) ← ScPIR.Send(1λ, i), a ← ScPIR.Respond(1λ, q,D), and
x← ScPIR.Decode(1λ, s, a), then x = D[i] with probability 1.

We say that the scheme is secure if for any sequences iλ, i′λ it holds that q ≈ q′, where: (q, s)← ScPIR.Send(1λ, i),
(q′, s′)← ScPIR.Send(1λ, i′).

Whereas the definition here is syntactically stronger (since N does not need to be known), succinct PIR can be
constructed from any polylogarithmic PIR scheme as in Definition 3. This can be done by considering all databases of
size 2t, for t = 1, . . . , λ, and running the query algorithm on all of them in parallel. This will incur an overhead of λ
which does not change the polynomial dependence on λ. Furthermore, specific constructions of PIR, e.g. from leveled
homomorphic encryption, can be adapted to the new definition without overhead at all.
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3 Our Model: Public-Key Delegation for RAM Computations
In this section we motivate and formally define the model for adaptive non-interactive RAM delegation.

RAM Computation. We consider the standard model of RAM computation where a program M can access an
initial database D ∈ {0, 1}n. We denote by MD an execution of the program M with initial database D. For a bit
y ∈ {0, 1} and for a string Dnew ∈ {0, 1}n we also use the notation y ← MD→Dnew to denote that y is the output of
the program M on initial database D, and Dnew is the final database contents after the execution. For simplicity we
think only of RAM programs that output a single bit.6

RAM Delegation. Delegation, or verifiable outsourcing, is concerned with a client that wishes to know the result
of some computation without performing it himself. Thus the computation is delegated to a prover (or worker), that
performs the computation and sends the output back to the client. However, the client wishes to ensure that the prover
indeed sent the correct output, and to this end it sends to the prover a challenge message, and the prover responds
with the output, accompanied by a proof. One can show that such a proof can only be computationally sound, i.e. the
protocol relies on the computational limitations of the prover.

As for efficiency, denoting the complexity of the computation by T , we would like the client’s work to only depend
(poly)logarithmically on T . This goal might seem beside the point, since the client should at least be able to read the
input and have some description of the function being computed. These could already be super-polylogarithmic in
the T . Indeed, in almost all previous works on Turing machine delegation, the client’s running time was allowed to
be linear in the input size n, and in the description of the computation (which was assumed to be uniform and thus
asymptotically constant).

This approach can be generalized even further when thinking about RAM computations as in [KP15]. One can
think of a uniform RAM machine (w.l.o.g this can even be a universal machine), where the input and code are stored
in the RAM database (a.k.a memory or array) itself. In the RAM delegation model, the initial database is preprocessed
ahead of time, so as to produce a succinct digest. Given this digest, any computation on the given database can be
verified in (fixed) polylog(T ) complexity. One can consider, as above, a client that constructs the database himself
(and thus runs in time that depends on n and the description of the computation), but this modeling is significantly
adventagous when multiple computations are ran on the same database, or in an offline-online setting.

A Public-Key Delegation Scheme. In previous works, the soundness of the protocol was only guaranteed if the
input (which in the RAM setting contains the machine and the database) was known before the challenge message
is sent. If a polynomial upper bound on the length of the input was known, then complexity leveraging could have
been used to remove this restriction, at the expense of a significant increase in the communication complexity and
significant strengthening of the underlying hardness assumption (namely, sub-exponential hardness would be needed).

In this work, we present an adaptively secure delegation protocol, where nothing about the input (machine and
database) needs to be known in order to generate the client’s challenge message, not even the input size. This amounts
to a significant qualitative difference in the applicability of the protocol. In fact, the adaptive protocol can be casted as
public key scheme for delegation of computation. In particular, a client can generate at their own leisure a pair of secret
key sk and public key pk. These keys are persistent and can be used throughout the life of the system (assuming that
an adversary cannot learn whether maliciously generated proofs are accepted). As usual, the public key is posted for
everybody to use, and the secret key is kept private by the client. A server can then prove any statement about arbitrary
computations using a client’s public key, without the client’s involvement. The proof can then be posted for the client
to verify whenever it wants. For the verification process, the client needs the description of the computation, which is
represented by the RAM machine M and the digest d of the database in the beginning of the computation. It needs to
receive from the prover the final state of the computation, represented as an output y, a digest d′ of the final state of
the database, and the running time T , as well as the proof of correctness pf. As mentioned above, the running time
of the verifier can only depend polylogarithmically on the running time of the computation T . One could consider
a stronger notion where the verification is done using public information, as opposed to a secret key. This variant

6A program that outputs multiple bits can be simulated by executing several programs in parallel, or by writing the output directly to the database.
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does not require any change in the syntax of our scheme, only in the definition of soundness (i.e. allowing our “secret
key” to be known to the attacker). Unfortunately, we cannot achieve this stronger notion of security and therefore our
definition only considers verification using a secret key.

For correctness, we require that if indeed the initial digest was properly generated, then the prover can produce
an accepting proof using only the client’s public key (and the description of the computation), and that he can do so
in poly(T ) time, i.e. the complexity of proving is comparable to the complexity of computing. The formal syntax of
the primitive is given below. Note that we allow a set of public parameters to be generated ahead of time and can
be used by all parties, which will allow us to strengthen the notion of soundness we can provide. We remark that in
our construction, the public parameters contain only a collision resistant hash function, which can be generated using
public randomness from lattice assumptions or discrete log.

The Syntax of a Public-Key Delegation Scheme. A public key delegation scheme consists of a tuple of PPT
algorithms

(Setup,ProcessDB,KeyGen,Prove,Verify)

with the following syntax and efficiency:

• Setup(1λ) → pp: A PPT algorithm that takes as input a security parameter 1λ, and outputs public parameters
pp.

• ProcessDB(pp, D) → dt, d: A deterministic algorithm running in time |D| · poly(λ) that takes as input public
parameters pp and database D, and outputs the processed data dt of size |D| · poly(λ) and a digest d of size
poly(λ). We will write Digest(pp, D) to denote just d. The processed dt will contain a copy of D, which we
will denote dt.D.

• KeyGen(1λ) → (pk, sk): A randomized polynomial-time algorithm that takes as input the security parameter
1λ (in unary representation), and outputs a public key pk and a secret key sk.

• Provedt(pp, pk,M) → (y, dnew, T, pf): A deterministic algorithm, that takes as input public parameters pp, a
public key pk and a RAM machine M , it runs in time poly(T, λ), where T = TIME(Mdt.D) is the runtime of
the RAM machine M with database dt.D. Prove then outputs the result y of executing Mdt.D, a digest dnew of
the resulting database contents, the runtime T of the computation, and a proof pf of size poly(λ).

• Verify(pp, sk, (M, d, y, dnew, T ), pf)→ b: A deterministic algorithm running in time |M | · poly(λ) that outputs
an acceptance bit b.

Soundness. The basic requirement of soundness is that a prover cannot convince the verifier of a false statement. Our
public-key structure allows us to consider adaptive security, where an adversary is allowed to choose the computation
it wants to forge on after seeing the public parameters and the public key. No prior work was able to achieve such a
strong notion of security under a standard cryptographic assumption (especially for unbounded input length).

The weakest flavor of adaptive soundness that we can require is one where a cheating prover attempts to generate
a database D and a RAM machine M , such that it can convince the verifier of a false output of the computation
MD, providing Verify with an honestly generated digest of D. This corresponds to a setting where the client himself
generated the digest ahead of time and kept it for verification time (or alternatively the digest had been generated or
certified by a trusted party). However, we can consider (and achieve) an even stronger notion of soundness.

In our final soundness definition, even if the digest d upon which verification is performed is completely spoofed by
the cheating prover (i.e. does not necessarily correspond to any database), the prover still cannot prove the correctness
of two different outputs with respect to the same RAM machine M and digest d. That is, the cheating prover gets
access to the public parameters and the public key of the verifier. It will generate a machine M and a digest d, and
two different output values y1, y2, each alongside a value for the final digest of the computation d′1, d

′
2. It will produce

proofs pf1, pf2, and will try to convince the verifier that there exists a time bound T such that applyingM to a database
whose digest is d results in output yi and digest d′i for both i = 1, 2.

We also require that the prover also outputs T in unary to prevent a degenerate case where the prover claims to
have performed a very complex computation that the security reduction itself cannot recreate. This requirement can be
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removed, and the prover can be allowed to prove arbitrary time T ≤ 2λ computations, but only if we assume stronger
(super-polynomial) cryptographic hardness. A formal definition follows.

Definition 5 (RAM Delegation). A non-interactive adaptive RAM delegation scheme

(Setup,ProcessDB,KeyGen,Prove,Verify)

must satisfy the following properties.

• Correctness. For every RAM machine M and database D, such that MD→Dnew → y, it holds that

Pr [y′ = y ∧ d′ = Digest(pp, Dnew)] = 1

in the probability space defined by sampling

pp← Setup(1λ)
(pk, sk)← KeyGen(1λ)
(dt, d)← ProcessDB(pp, D)

(y′, d′, T, pf)← Provedt(pp, pk,M)

• Completeness. For every RAM machine M and database D such that TIME(MD) ≤ T ≤ 2λ, it holds that

Pr [Verify(pp, sk, (M, d, y, dnew, T ), pf) = 1] = 1

in the probability space defined by sampling

pp← Setup(1λ)
(pk, sk)← KeyGen(1λ)
(dt, d)← ProcessDB(pp, D)

(y, dnew, T, pf)← Provedt(pp, pk,M)

• Soundness. For every ensemble P∗ = {P ∗λ}λ∈N of poly-sized probabilistic circuits,

Pr

 Verify(pp, sk, (M, d, y1, d
′
1, T ), pf ′1) = 1 ∧

Verify(pp, sk, (M, d, y2, d
′
2, T ), pf ′2) = 1 ∧

(y1, d
′
1) 6= (y2, d

′
2)

 ≤ negl(λ)

in the probability space defined by sampling

pp← Setup(1λ)
(pk, sk)← KeyGen(1λ)
(M, d, y1, d

′
1, pf

′
1, y2, d

′
2, pf

′
2, 1

T )← P ∗λ (pp, pk)

Stronger Notions to Consider for Future Work. As explained above, we cannot achieve (and therefore do not
consider) public verifiability where verification does not require a secret key. Our notion of security does not even allow
a “chosen proof attack” where a cheating prover gets to interact with a verifier and observe its outputs on maliciously
crafted proofs. Indeed, our construction (as well as any other known construction from standard assumptions) falls
short of achieving any type of security in this setting.

With regards to the definition of soundness, a desirable feature would be to forbid the cheating prover from proving
inconsistent statement on related computations (as opposed to inconsistencies on the same computation as in our
definition above). Namely, the prover should not be able to prove that f(x) = 0 and also that g(x) = 0 if g := f + 1.
An even more ambitious goal would be to require that if a cheating prover successfully proved a statement with respect
to a digest, then there exists a database that corresponds to this digest. The latter notion would imply an extension of
our proof system beyond polynomial time computation and allow verification of non-deterministic computation.
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4 Adaptively Sound PCPs
In this section, we present a new notion of adaptively sound PCPs. These are probabilistically checkable proofs
[AS98, ALM+98] where a cheating prover is allowed to first see all of the PCP queries, and only then adaptively
choose both the (non-accepting) input on which it wants to generate a cheating proof, as well as the proof string itself.
Naturally, it is impossible to achieve security against such adaptive adversaries. Therefore, we limit the cheating
provers to be computationally no-signaling (CNS).

Adaptive CNS provers must satisfy the property that for any two sets of PCP queriesQ′ ⊆ Q (such thatQ is not too
large), the distributions of answers on Q′ are computationally indistinguishable, even given the respective adaptively
selected inputs. Namely, an adaptive CNS cheating prover, must satisfy that for every such Q,Q′ it holds that

(x,A|Q′) ≈ (x′, A′),

where (x,A) ← Prover∗(Q) and (x′, A′) ← Prover∗(Q′). We note that this means that unlike the conventional
definition of PCP, the PCP queries are chosen independently of the instance. This might seem weird at first glance, but
in fact known PCP constructions usually have this property. All that is required is some upper bound on the length of
the instance, which we take to be 2λ, where λ is our security parameter.

For technical reasons, we need to consider cheating provers that are somewhat more involved. As explained in
Section 3, to prove soundness of our RAM delegation scheme, we need to rule out the adversary’s ability to come up
with a RAM computation M , a digest d, two outputs y1, y2, with corresponding new digests, d1, d2, together with two
valid proofs. As we show in Section 5, this translates, via our construction, to a PCP prover Prover∗ that given a set
of queries Q, produces two such instances (M, d, y1, d1) and (M, d, y2, d2) (which we will think of as two 3CNFs),
together with answers A1 and A2, respectively, corresponding to the PCP queries Q.

We thus consider any PCP cheating prover, Prover∗, that for any two sets of PCP queries Q′ ⊆ Q (such that Q is
not too large), outputs (ϕ1, ϕ2, A1, A2)← Prover∗(Q) and (ϕ′1, ϕ

′
2, A

′
1, A

′
2)← Prover∗(Q′), and we require that

(ϕ1, ϕ2, (A1)|Q′ , (A2)|Q′) ≈ (ϕ′1, ϕ
′
2, A

′
1, A

′
2)

We note that since the prover is adaptive, working on each of the instances separately is insufficient: the prover might
output pairs of inconsistent instances, but if we look at the marginal distribution of each element in the pair, these
distributions might even be identical. Therefore, our soundness crucially relies on the cheating prover outputting two
instances together with PCP answers for both.

The notion of soundness that we prove is a refinement of notions presented in previous works7. We prove that
an adaptive CNS adversary that convinces our PCP verifier with noticeable probability implies a partial assignment
generator. A partial assignment generator is an algorithm that takes as input a set of variables W for a 3SAT formula,
and outputs a pair of formulae ϕ1, ϕ2, together with assignments for the variables W in both ϕ1, ϕ2 that does not
refute the formulae. Furthermore, the distribution of the formulae should be computationally indistinguishable from
the one output by the cheating prover, and the partial assignment needs to be (computational) no-signaling (otherwise
the task may be trivial).

To understand why this is a meaningful notion of soundness, recall that a cheating prover outputs formulae that
correspond to inconsistent statements. A partial assignment generator will allow us to track down the point in the
computation where the two statements diverge, and show that being able to prove divergent statements allows to break
the underlying hardness assumption. See details in Section 5. The crux of our approach is that even though the
adversary is allowed to adaptively change the formulae it’s outputting, the no-signaling property guarantees that it
cannot shift around the point of divergence.

Organization of This Section. We start in Section 4.1 with the definition of adaptively sound PCP, and our notion
of adaptive cheating provers. Then, in Section 4.2 we present Theorem 1, which states that there exists a PCP system,
that considers adaptive CNS cheating provers, which has (local) soundness guarantees. The PCP construction itself,
and parts of the proof, are very similar to [KRR14], and hence are deferred to the appendix. However, the part of the
proof, which consists of a soundness amplification lemma, we change completely and simplify. The new proof for this
is presented in Section 4.3.

7Formally, our theorem is incomparable to that of [KRR14], but its use of computational no-signaling seems to make it more suited to crypto-
graphic applications.
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4.1 Definitions
We start with a variant of the classical definition of a PCP system. The only change is that the PCP queries Q do not
depend on the instance x. As we mentioned above, known PCP constructions have this property.

Definition 6. A k(·)-query PCP for an NP language L is a tuple of PPT algorithms (V0, V1, P ), such that:

• (Completeness) For all λ ∈ N and x ∈ L (with witness w) such that |x| ≤ 2λ,

Pr

[
V1(st, x, π|Q) = 1

∣∣∣∣ (Q, st)← V0(1λ)
π ← P (1λ, x, w)

]
= 1 ,

The PCP proof π is a string of characters over some alphabet Σ. It will be convenient for us to view this string
as indexed by a set Γ (w.l.o.g think of Γ = [`] where ` is the length of the string), and Q ⊆ Γ. Alternatively, π
can be thought of as a function from Γ to Σ.

• (Soundness) For all λ ∈ N, x /∈ L, |x| ≤ 2λ, and all proof strings π,

Pr
[
V1(st, x, π|Q) = 1

∣∣(Q, st)← V0(1λ)
]
≤ 1

2

• (Query Efficiency) If (Q, st)← V0(1λ), then |Q| ≤ k(λ) and the combined run-time of V0 and V1 is poly(λ).

• (Prover Efficiency) The prover P runs in polynomial time, where its input is (1λ, x, w).

Remark. A reader may wonder, since V0 is not given |x|, how P can achieve proofs with length polynomial in |x|,
rather than polynomial in the bound on |x| that V0 knows (which is 2λ). In a typical PCP scheme, we assume the
verifier and prover are both given a bound N such that |x| ≤ N . The prover runs in time poly(N) and the verifier runs
in time poly(logN). From such a PCP, we can achieve the above “instance-specific efficiency” generically: we just
use λ schemes in parallel, where in the ith scheme N = 2i. When given x, a prover generates a proof for the scheme
in which N/2 < x ≤ N .

Adaptive CNS Provers. We now consider cheating PCP provers, who are adaptive and computationally no-signaling
(CNS) provers, as described above.

Definition 7 (Adaptive Adversarial PCP Prover). An adaptive adversarial PCP prover for a languageL is an ensemble
of PPT algorithms {P ∗λ} which takes a finite set of queries Q and outputs strings x0 and x1 that it claims are in L,
together with assignments A0 and A1 : Q→ Σ.

Definition 8 (Adaptive Computationally No-Signaling Prover). An adaptive adversarial PCP prover is said to be
kmax(·)-wise computationally no-signaling if for all sets Q′λ ⊆ Qλ, with |Qλ| ≤ kmax(λ), it holds that

(x0, x1, A0|Q′λ , A1|Q′λ) ≈c (x′0, x
′
1, A

′
0, A

′
1)

∣∣∣∣ (x0, x1, A0, A1)← P ∗λ (Qλ)
(x′0, x

′
1, A

′
0, A

′
1)← P ∗λ (Q′λ)

Adaptive Local Soundness. As explained above, our notion of adaptive local soundness relies on the notion of
partial assignment generators. A formal definition follows. From this point and on, we will focus only on proofs for
3SAT (with the natural witness relation).

Definition 9 (Adaptive Local Assignment Generator). An adaptive (`(·), ε(·))-partial assignment generator Assign
on variables {Vλ}λ∈N is an algorithm that takes as input a security parameter 1λ and a set of at most `(λ) queries
W ⊆ Vλ, and outputs two 3-CNFs (ϕ0, ϕ1) (each on variables Vλ) and assignments A0 : W → {0, 1} and A1 :
W → {0, 1}, such that the following two properties hold.
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• Everywhere Local Consistency. For every λ, every set W ⊆ Vλ with |W | ≤ `(λ), with probability at least
1− ε(λ) over sampling

(ϕ0, ϕ1, A0, A1)← Assign(1λ,W ),

the assignments A0 and A1 are respectively “locally consistent” with the formulas ϕ0 and ϕ1. That is, every
clause in ϕb whose variables v1, v2, v3 are in W is satisfied by the assignment Ab(v1), Ab(v2), Ab(v3).

• Computational No-Signaling. For every ensemble {W ′λ,Wλ}λ∈N of subsets W ′λ ⊂ Wλ ⊂ Vλ with |Wλ| ≤
`(λ), we have

ϕ0, ϕ1, A0|W ′λ , A1|W ′λ ≈c ϕ
′
0, ϕ
′
1, A

′
0, A

′
1

in the probability space defined by sampling

(ϕ0, ϕ1, A0, A1)← Assign(1λ,Wλ)
(ϕ′0, ϕ

′
1, A

′
0, A

′
1)← Assign(1λ,W ′λ)

We say that Assign is an `(·)-partial assignment generator if it is an (`(·), negl(·))-partial assignment generator for
some negligible function negl.

Threshold Verifiers. For the purpose of our construction and proof, we consider a variant of the common sequential
repetition principle, where properties of a PCP are enhanced by running the verifier several times on the same proof
string. In our case, the purpose will not be to enhance soundness but rather to prove no-signaling properties. We would
like to consider a case where the verifier accepts even if not all answers are satisfying, but rather only some fraction.
We will require the definition of a threshold verifier as follows.

Definition 10 (Threshold Verifier). Given a PCP verifier V = (V0, V1), we define the t-of-n threshold verifier
(V ⊗n0 , V ≥t1 ) (where both n and t may be functions of λ).

V ⊗n0 takes a security parameter 1λ and does the following:

1. Compute (Qi, sti)← V0(1λ) for i = 1, . . . , n.

2. Output (∪ni=1Qi, (Q1, st1), . . . , (Qn, stn)).

V ≥t1 takes input (((Q1, st1), . . . , (Qn, stn)), x, A) and does the following:

1. Compute yi ← V1(sti, x, AQi) for i = 1, . . . , n.

2. Output 1 if at least t of the yi’s are 1; otherwise outputs 0.

For the special case where t = n, we write V ⊗n1 instead of V ≥n1 .

4.2 Existence of Adaptively Sound PCP with Local Soundness
We show that there exists an adaptively sound PCP with local soundness against CNS cheating provers. Relating our
result to previous work, [KRR14] showed a PCP in which: if a non-adaptive statistically no-signaling prover convinces
the verifier to accept a 3-CNF ϕ, then there is a (non-adaptive) partial assignment generator for ϕ. We show that the
same PCP provides stronger soundness guarantees. The cheating prover is now allowed to only be computationally no-
signaling, and can be adaptive (i.e. output the instances on which they attempt to convince the verifier). Consequently,
the partial assignment generator, which results from a cheating prover, is computationally no-signaling and adaptive.

Theorem 1. There is a PCP (Ṽ0, Ṽ1, P̃ ) for 3-SAT satisfying the following soundness property.
For every c > 0 there is a PPT oracle machine Assignc and a polynomial `0 such that for all polynomials `, for

all poly-sized adversarial PCP provers P∗ = {P ∗λ}λ∈N which are (` · `0 + λ2)-wise CNS, if for all λ in an infinite set
Λ,

Pr

[
1← Ṽ1(st, ϕ0, A0) ∧
1← Ṽ1(st, ϕ1, A1)

∣∣∣∣ (Q, st)← Ṽ0(1λ)
(ϕ0, ϕ1, A0, A1)← P ∗λ (Q)

]
≥ λ−c,
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then for all λ ∈ Λ, AssignP
∗
λ
c (1λ, ·) is an adaptive `-partial assignment generator such that for any set of variables

W , sampling
(ϕ0, ϕ1, A0, A1)← AssignP

∗
λ
c (1λ,W )

produces a computationally indistinguishable distribution on (ϕ0, ϕ1) as sampling (ϕ0, ϕ1) according to the condi-
tional distribution

(Q, st)← Ṽ0(1λ)
(ϕ0, ϕ1, A0, A1)← P ∗λ (Q)

∣∣∣∣ Ṽ1(st, ϕ0, A0) = 1 ∧
Ṽ1(st, ϕ1, A1) = 1.

Moreover, Ṽ1 only uses the LDEs of ϕ0 and ϕ1. Given oracle access to these LDEs, Ṽ0 and Ṽ1’s total running time
is poly(λ) for some fixed (i.e. independent of |ϕ0| or |ϕ1|) polynomial poly.

Proof. As explained above, our PCP is identical to the one from [KRR14]. However, our theorem requires different
guarantees than previous works and we do it in a more modular manner and prove a new amplification theorem on CNS
provers along the way. We start with a “base PCP” which is formally described in Appendix A. We denote this PCP by
(V0, V1, P ), and we let k (=polylog(λ)) denote the number of queries made by V0. We define our PCP (Ṽ0, Ṽ1, P̃ ) to
be (V ⊗λ0 , V ⊗λ1 , P ), i.e. the λ-repeated (λ-out-of-λ) version of (V0, V1, P ), as per Definition 10. Completeness holds
trivially. We thus focus on proving the adaptive computational no-signaling local soundness property.

To this end, fix any `, and suppose there exists an (` · `0 + λ2)-wise computationally no-signaling cheating prover,
Prover∗, (where `0 is a polynomial that will be determined later), and there exists a constant c ∈ N such that for
infinitely many λ’s,

Pr

 (Q, st)← V ⊗λ0 (1λ);
(ϕ1, ϕ2, A1, A2)← Prover∗(Q);

1←
(
V ⊗λ1

)φ̂1,φ̂2
(st, A1, A2)

 ≥ 1

λc
.

We show that by lowering the threshold for verification to a small yet super-logarithmic value, the success prob-
ability of a related cheating prover increases to near perfect. In particular, Lemma 1, which is stated and proven in
Section 4.3 below, implies that there exists a (` · `0 + λ2 − λ · k)-wise computationally no-signaling cheating prover,
which will be denoted by Prover∗∗, and there exists a negligible function ε such that for infinitely many λ’s,

Pr


(Q, st)← V ⊗λ0 (1λ);
(ϕ′1, ϕ

′
2, A1, A2)← Prover∗∗(Q);

1←
(
V ≥λ−r1

)φ̂′1,φ̂′2
(st, A1, A2)

 ≥ 1− ε,

for any r = ω(log λ) (for concreteness, the reader can think of r =
√
λ). Moreover, the distribution of (ϕ′1, ϕ

′
2) is

indistinguishable from the distribution of (ϕ1, ϕ2)|(V accepts). Note that since λ ≥ k,

` · `0 + λ2 − λ · k ≥ ` · `0.

In what follows we let kmax = ` · `0.
The remainder of the proof is showing how to construct an assignment generator out of the amplified cheating

prover. This is done using methods that are very similar to those of [KRR14]. In particular, Lemma 6 in Appendix B
implies that there exists a probabilistic polynomial-time oracle machine Assign such that AssignProver

∗∗
is an adaptive

(`, ε′)-partial assignment generator with ε′ = ε · poly(λ) + negl(λ) = negl(λ), which completes the proof of the
theorem.

4.3 New Soundness Amplification for No-Signaling PCPs
In the proof of Theorem 1, we use a soundness amplification lemma, which uses the notion of PCPs with “t-of-n
threshold” verifiers.

Roughly speaking, in our soundness amplification lemma below, we show that if an adaptive CNS prover convinces
a λ-of-λ threshold verifier with any non-negligible probability, then there is an adaptive CNS prover which convinces
a corresponding (λ − ω(log λ))-of-λ verifier with high probability. Further, the second prover produces the same
distribution of (ϕ0, ϕ1) as the first, conditioned on the first convincing the λ-of-λ verifier.

18



Lemma 1 (Soundness Amplification). For all k(·)-query PCPs (V0, V1, P ) for 3SAT and all c > 0, there is a PPT
oracle algorithm Amplifyc such that if there is an adaptive kmax-wise CNS adversarial prover {P ∗λ}λ∈N such that

Pr

[
1← V ⊗λ1 (st, ϕ0, A0) ∧
1← V ⊗λ1 (st, ϕ1, A1)

∣∣∣∣ (Q, st)← V ⊗λ0 (1λ)
(ϕ0, ϕ1, A0, A1)← P ∗λ (Q)

]
≥ λ−c

for infinitely many λ, then {AmplifyP
∗
λ
c (1λ, ·)}λ∈N is an adaptive (kmax − λ · k)-wise adversarial prover ensemble

and for any r = ω(log λ), there is a negligible function negl such that for infinitely many λ,

Pr

[
1← V ≥λ−r1 (st, ϕ0, A0) ∧
1← V ≥λ−r1 (st, ϕ1, A1)

∣∣∣∣ (Q, st)← V ⊗λ0 (1λ)

(ϕ0, ϕ1, A0, A1)← AmplifyP
∗
λ
c (1λ, Q)

]
≥ 1− negl(λ).

Furthermore, the distributions on (ϕ0, ϕ1) obtained by sampling the conditional distribution

(Q, st)← V ⊗λ0 (1λ)
(ϕ0, ϕ1, A0, A1)← P ∗λ (Q)

∣∣∣∣ 1← V ⊗λ1 (st, ϕ0, A0) ∧
1← V ⊗λ1 (st, ϕ1, A1)

and
(Q, st)← V ⊗λ0 (1λ)

(ϕ0, ϕ1, A0, A1)← AmplifyP
∗
λ
c (1λ, Q)

are computationally indistinguishable.

Proof. By assumption, there exists a constant c > 0 such that for infinitely many λ, P ∗λ convinces V with probability
at least λ−c. Let Λ denote this set of λ.

We describe the algorithm Amplifyc. On an input set of queries Q ∈ Γkmax−λ·k, Amplifyc independently samples
(Qi, sti)← V ⊗λ0 (1λ) and (ϕ0

i , ϕ
1
i , A

0
i , A

1
i )← P ∗λ (Q ∪Qi) for i = 1, . . . , λc+1.

Amplifyc then outputs (ϕ0
i∗ , ϕ

1
i∗ , (A

0
i∗)Q, (A

1
i∗)Q) for the first i∗ such that

V ⊗λ1 (sti∗ , ϕ
0
i∗ , (A

0
i∗)Qi∗ ) = 1 ∧ V ⊗λ1 (sti∗ , ϕ

1
i∗ , (A

1
i∗)Qi∗ ) = 1.

Call such an i∗ “good”. If no good i∗ exists, then Amplifyc outputs ⊥ (in Claim 2 below, we show that for λ ∈ Λ, this
happens with negligible probability).

Let us first show the “furthermore” of the lemma.

Claim 1. The distribution on (ϕ0, ϕ1) obtained by sampling the conditional distribution

(Q, st)← V ⊗λ0 (1λ)
(ϕ0, ϕ1, A0, A1)← P ∗λ (Q)

∣∣∣∣ 1← V ⊗λ1 (st, ϕ0, A0) ∧
1← V ⊗λ1 (st, ϕ1, A1)

(1)

and the distribution on (ϕ0, ϕ1) obtained by sampling

(Q, st)← V ⊗λ0 (1λ)

(ϕ0, ϕ1, A0, A1)← AmplifyP
∗
λ
c (1λ, Q)

(2)

are computationally indistinguishable.

Proof. Recall that the definition of computational no-signaling says that for all Q′λ ⊆ Qλ, such that |Qλ| ≤ kmax, the
distributions

(ϕ0, ϕ1, (A0)|Q′ , (A1)|Q′λ)

and
(ϕ′0, ϕ

′
1, A

′
0, A

′
1)

are computationally indistinguishable, when sampling

(ϕ′0, ϕ
′
1, A

′
0, A

′
1)← P ∗λ (Q′λ)

(ϕ0, ϕ1, A0, A1)← P ∗λ (Qλ).

This is equivalent to the following, seemingly stronger statement:
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Corollary 1. For all poly-sized auxiliary information auxλ and sets Q′λ ⊆ Qλ, such that |Qλ| ≤ kmax, the distribu-
tions

(auxλ, ϕ0, ϕ1, (A0)|Q′ , (A1)|Q′λ)

and
(auxλ, ϕ

′
0, ϕ
′
1, A

′
0, A

′
1)

are computationally indistinguishable, when sampling

(ϕ′0, ϕ
′
1, A

′
0, A

′
1)← P ∗λ (Q′λ)

(ϕ0, ϕ1, A0, A1)← P ∗λ (Qλ).

Consider Amplify′c, a modified version of Amplifyc which samples each (ϕ0
i , ϕ

1
i , A

0
i , A

1
i ) from P ∗λ (Qi) instead of

from P ∗λ (Q ∪Qi). But, (ϕ0, ϕ1) are distributed identically in (1) as they are in the conditional probability space

(Q, st)← V ⊗λ0 (1λ)

(ϕ0, ϕ1, A0, A1)← Amplify′c
P∗λ (1λ, Q)

∣∣∣∣∣a good i∗ exists

We later show (as part of Claim 2) that a good i∗ exists with overwhelming probability, this distribution on (ϕ0, ϕ1) is
statistically close to that obtained by sampling

(Q, st)← V ⊗λ0 (1λ)

(ϕ0, ϕ1, A0, A1)← Amplify′c
P∗λ (1λ, Q)

(3)

without any condition.
We claim that this distribution on (ϕ0, ϕ1) is computationally indistinguishable from that obtained by sampling

(Q, st)← V ⊗λ0 (1λ)

(ϕ0, ϕ1, A0, A1)← Amplifyc
P∗λ (1λ, Q)

(4)

It suffices for us to show that the distribution on

(sti, ϕ
0
i , ϕ

1
i , (A

0
i )|Qi , (A1

i )|Qi)

obtained when sampling (3) is computationally indistinguishable from that obtained when sampling (4), because
these are all the intermediate values needed to compute the first good i∗ and hence the resultant (ϕ0, ϕ1). But this
indistinguishability follows from Corollary 1, where sti is the auxiliary information.

Claim 2. For λ ∈ Λ,

Pr

[
1← V ≥λ−r1 (st, ϕ0, A0) ∧
1← V ≥λ−r1 (st, ϕ1, A1)

∣∣∣∣ (Q, st)← V ⊗λ0 (1λ)

(ϕ0, ϕ1, A0, A1)← AmplifyP
∗
λ
c (1λ, Q)

]
≥ 1− negl(λ).

Proof. The probability that the verifier isn’t convinced is bounded by the probability that there is no good i∗ plus the
probability that V ≥λ−r1 (sti∗ , ϕ

0
i∗ , (A

0
i∗)Q) = 0 or V ≥λ−r1 (sti∗ , ϕ

1
i∗ , (A

1
i∗)Q) = 0 for a good i∗. We show that both of

these probabilities are negligible.
First, because P ∗λ convinces (V ⊗λ0 , V λ1 ) with probability λ−c and because P∗ is CNS, the probability that no good

i∗ exists is bounded by (1− λ−c + negl(λ))λ
c+1

, which is negligible.
The probability that V ≥λ−r1 (sti∗ , ϕ

b
i∗ , (A

b
i∗)Q) = 0 for a good i∗ is equal to the conditional probability

Pr

[
V ≥λ−r1 (st, ϕbi∗ , (A

b
i∗)Q) = 0

∣∣∣∣ V ⊗λ1 (sti∗ , ϕ
0
i∗ , (A

0
i∗)Qi∗ ) = 1 ∧

V ⊗λ1 (sti∗ , ϕ
1
i∗ , (A

1
i∗)Qi∗ ) = 1

]
(5)

in the probability space defined by sampling (Q, st)← V ⊗λ0 (1λ) and (Qi∗ , sti∗)← V ⊗λ0 (1λ) and (ϕ0
i∗ , ϕ

1
i∗ , A

0
i∗ , A

1
i∗)←

P ∗λ (Q ∪Qi∗).
This is negligible because:
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• P ∗λ convinces with probability λ−c and is kmax-CNS, so

Pr

[
V ⊗λ1 (sti∗ , ϕ

0
i∗ , (A

0
i∗)Qi∗ ) = 1 ∧

V ⊗λ1 (sti∗ , ϕ
1
i∗ , (A

1
i∗)Qi∗ ) = 1

]
≥ λ−c − negl(λ),

which is non-negligible; and

•
Pr

[(
V ≥λ−r1 (st, ϕ0

i∗ , (A
0
i∗)Q) = 0 ∨

V ≥λ−r1 (st, ϕ1
i∗ , (A

1
i∗)Q) = 0

)
∧
(
V ⊗λ1 (sti∗ , ϕ

0
i∗ , (A

0
i∗)Qi∗ ) = 1 ∧

V ⊗λ1 (sti∗ , ϕ
1
i∗ , (A

1
i∗)Qi∗ ) = 1

)]
≤ negl(λ),

which holds because P ∗λ does not learn Q or Qi∗ ; only Q ∪ Qi∗ . Let us fix Q ∪ Qi∗ (but importantly not Q
or Qi∗ individually), on P ∗λ ’s responses, and on the randomness used by each instance of V1. Suppose that a
fraction p of the answers given by P ∗λ are accepted by both of the corresponding calls to V1. Now

Pr
Q,Qi∗

[
V ⊗λ1 (sti∗ , ϕ

0
i∗ , (A

0
i∗)Qi∗ ) = 1 ∧

V ⊗λ1 (sti∗ , ϕ
1
i∗ , (A

1
i∗)Qi∗ ) = 1

]
≤ pλ,

and by Hoeffding’s inequality8and a union bound,

Pr
Q,Qi∗

[
V ≥λ−r1 (st, ϕ0

i∗ , (A
0
i∗)Q) = 0 ∨

V ≥λ−r1 (st, ϕ1
i∗ , (A

1
i∗)Q) = 0

]
≤ e−2(λ−r−pλ)

2

We claim that one of these bounds is negligible in λ. If p < 1 − r
2λ , then pλ < e−ω(log λ). Otherwise,

λ − r − pλ ≤ −r/2 = −ω(log λ), and so e−2(λ−r−pλ)
2 ≤ e−ω(log λ). These two cases cover (non-disjointly)

all possible p.

So the total probability that V ≥λ−r1 is not convinced for a good i∗ is negligible. By the definition of conditional
probability, Pr [A|B] = Pr [A ∧B] /Pr [B]. In particular, we have shown that the probability in Equation 5 is
negl(λ) · λc′ , which is negligible.

Claim 3. {AmplifyP
∗
λ
c (1λ, ·)}λ∈N is (kmax − λ · k)-wise CNS.

Proof. We need to show that for all sets Sλ and Qλ with Sλ ⊂ Qλ and |Qλ| ≤ kmax − λ · k, it holds that

AmplifyP
∗
λ
c (1λ, Qλ)Sλ ≈ AmplifyP

∗
λ
c (1λ, Sλ).

We will show this by defining indistinguishable distributions Bλ and Cλ, and giving an efficiently computable ran-
domized function f such that as distributions,

AmplifyP
∗
λ
c (1λ, Qλ)Sλ ≡ f(Bλ) (6)

and
AmplifyP

∗
λ
c (1λ, Sλ) ≡ f(Cλ). (7)

Here, ≡ denotes equality of distributions.
DefineBλ as the distribution on {(i, sti, Qi, ϕ0

i , ϕ
1
i , (A

0
i )Sλ∪Qi , (A

1
i )Sλ∪Qi)}λ

c+1

i=1 in the probability space defined
by sampling, for each i,

(sti, Qi)← V ⊗λ0 (1λ)
(ϕ0
i , ϕ

1
i , A

0
i , A

1
i )← P ∗λ (Qλ ∪Qi)

8Hoeffding’s inequality[Hoe63] states that if X1, . . . , Xn are independent Bernoulli distributions with parameter p, and H denotes
∑
iXi,

then
Pr [H ≥ (p+ ε)n] ≤ e−2ε2n.

Hoeffding also showed that this inequality holds even if X1, . . . , Xn are not independent, but are chosen uniformly without replacement from a
population of {0, 1}’s, a fraction p of which are 1’s.
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Define Cλ as the distribution on {(i, sti, Qi, ϕ0
i , ϕ

1
i , A

0
i , A

1
i )}λ

c+1

i=1 in the probability space defined by sampling,
for each i,

(sti, Qi)← V ⊗λ0 (1λ)
(ϕ0
i , ϕ

1
i , A

0
i , A

1
i )← P ∗λ (Sλ ∪Qi)

Then, f is defined to find the first “good” i∗, and output (ϕ0
i∗ , ϕ

1
i∗ , (A

0
i∗)Sλ , (A

1
i∗)Sλ). Equations (6) and (7) are

then easy to verify.
It remains to show that Bλ ≈ Cλ. This follows by a simple hybrid argument over the different i’s. Indeed, we just

need that for each i,
P ∗λ (Qλ ∪Qi)Sλ∪Qi ≈ P ∗λ (Sλ ∪Qi),

which is guaranteed by the fact that P∗ is kmax-wise CNS.

5 Adaptive RAM Delegation
In this section, we use Theorem 1 to construct a RAM delegation scheme. Our construction is essentially the same as
in [KP15]: To prove that MD→Dnew → y for dnew = Digest(Dnew) and TIME(M,D) ≤ T , we use the PCP to prove
the local satisfiability of a related 3-CNF ϕ = ϕM,d,y,dnew,T (where d = Digest(D)). The formula ϕ is defined in
Section 5.1. It has O(T · poly(λ)) variables and verifies a transcript of M using a CRHF h : {0, 1}2λ → {0, 1}λ. If
MD 6→ y, then a collision in h can be found from M , D, and any assignment to ϕ. In fact, even a local assignment
generator for ϕ suffices, and this is the property that was used in [KP15].

First, we show how to make the verifier in this scheme run in fixed polynomial time, independent of TIME(M,D).
To do this, we show how to take advantage of the repetitive and local structure of ϕ to efficiently compute its clause in-
dicator function’s low-degree extension φ̂ (see Claim 3). In [KRR14], the verifier delegates the computation of φ̂ using
the protocol of [GKR15]. We note that this is not straight-forward: [KRR14] proved the soundness of this composi-
tion against statistically no-signaling provers, but the proof does not apply to provers which are only computationally
no-signaling. We consider the verifier’s direct computation of φ̂ to be a simplification as well as an optimization to the
overall protocol.

Finally, we show adaptive soundness. Here we grapple with the fact that even if the PCP verifier accepts a 3-CNF
ϕ given by an adaptive cheating prover P ∗, there is not necessarily a partial assignment generator for ϕ. Rather,
there is an adaptive partial assignment generator Assign which outputs ϕM,d,y,dnew,T for some distribution on (M, d =
Digest(D), y, dnew). While this does not allow us to reconstruct the full execution transcript of MD for any single
(M,D), we are still able to find a fixed set of variables W such that by querying Assign(W ), we observe a false hash
tree proof (and hence obtain a hash collision) with non-negligible probability.

As mentioned in Section 3, we actually achieve a stronger notion of soundness: no prover can prove two different
“correct” (y, dnew) outputs for any adversarially chosen digest d and machine M (in particular, there is not necessarily
a D such that d = Digest(D)). This is stronger because if d were equal to Digest(D), then completeness guarantees
we can prove the correct result, and hence cannot prove any incorrect result.

5.1 RAMs as 3-CNF Formulas
[KP15] gives a 3-CNF that succinctly verifies a RAM machine’s execution transcript (under computational assump-
tions) by using Merkle trees. The following lemma describes its essential properties.

Lemma 2 ([KP15]). There exist deterministic polynomial-time algorithms

MakeCNF,ProcessDB,Transcript,FindCollision,

such that for any hash function h : {0, 1}2λ → {0, 1}λ, RAM machine M , digest d, output y, digest d′, and time
bound T , MakeCNF(h,M, d, y, d′, T ) is a 3-CNF ϕ , ϕM,d

in ∧ ϕM,T,h ∧ ϕy,d
′

out with the following structure:
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1. ϕM,T,h has T ′ = T · |M | · poly(λ) variables. The set of variables V is partitioned into T + 1 disjoint sets
V0, . . . , VT with identical sets of clauses in ϕM,T,h between adjacent layers. Each layer Vi contains (among
other things):

• Variables Vi.q whose values encode the RAM machine’s local state after i execution steps.

• Variables Vi.d whose values encode a digest of the database contents after i execution steps.

• Variables Vi.y whose values encode the output of M if it has terminated by the ith step, and encode ⊥
otherwise.

2. ϕM,d
in has clauses only on V0, which enforce that V0.q = M.q0, V0.d = d, and V0.y = ⊥. ϕy,d

′

out has clauses only
on VT , which enforce that VT .y = y and VT .d = d′.

3. If MD→Dnew → y with (d, dt) = ProcessDB(h,D) and d′ = Digest(h,Dnew) and TIME(MD) ≤ T , then
Transcriptdt(1T ,M) outputs a satisfying assignment A for ϕ in time T · |M | · poly(λ) such that A(V0.d) = d
and A(VT .d) = d′.

4. If two locally-consistent assignmentsA andA′ for ϕ, both on Vi∪Vi+1, agree on Vi.q∪Vi.d∪Vi.y but disagree
on Vi+1.q∪Vi+1.d∪Vi+1.y, then FindCollision(1T , ϕ,A,A′) outputs (x, x′) such that x 6= x and h(x) = h(x′)
– in other words, a collision under h.

Now fixM, d, T, h, y, d′, and let ϕ and T ′ be as above. Let φ : V 3×{0, 1}3 denote the “clause indicator function”
of ϕ. That is,

φ(v1, v2, v3, b1, b2, b3) =

{
1 if the clause (v1 = b1 ∨ v2 = b2 ∨ v3 = b3) is in ϕ
0 otherwise

Let F be any finite field with a subset H of size log T ′, and let m be log T ′

log log T ′ . Given any injective mapping e : V ↪→
Hm, one can view φ as a function mapping H3m+3 → {0, 1}.

φe(i1, i2, i3, b1, b2, b3) =

{
1 if the clause (e−1(i1) = b1 ∨ e−1(i2) = b2 ∨ e−1(i3) = b3) is in ϕ
0 otherwise (including if bj /∈ {0, 1} or ij /∈ Img(e))

Using property 1 of Lemma 2 above, we prove the following lemma, assuming that operations on F have unit cost.

Lemma 3. There is an efficiently computable and invertible mapping e : V ↪→ Hm such that the low-degree extension

φ̂ : F3m+3 → F

of
φ : H3m+3 → {0, 1}

is efficiently computable at any point z ∈ F3m+3 in time poly(|M |, λ).

Proof. We first note that it suffices to efficiently compute the low-degree extension of φM,T,h, because φ̂ = φ̂M,d
in +

φ̂M,T,h + φ̂y,d
′

out , and ϕM,d
in and ϕy,d

′

out are on a small (poly(λ)) number of variables W , so their LDEs can be computed
in time Õ(W 3) = poly(λ).

We next show a few basic functions whose low-degree extensions can be efficiently computed.

Claim 4. For any h∗ ∈ H , there is a univariate polynomial χh∗ over F with degree at most |H| − 1 such that for all
h ∈ H ,

χh∗(h) =

{
1 if h = h∗

0 otherwise

and χh∗(x) for x ∈ F can be evaluated in O(|H|) time.
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Proof. This follows from Lagrange interpolation.

Claim 5. For all k > 0 and n > 1, there is an nk-variate polynomial δ over F with degree at most |H| − 1 in each
variable such that for h1, . . . , hn ∈ Hk,

δ(h1, . . . , hn) =

{
1 if h1 = . . . = hn

0 otherwise.

and δ can be evaluated in time O(nk · |H|2)

Proof. We observe that the hi’s are all equal if and only if for all coordinates j ∈ [k], there is some value xj such that
for all i, (hi)j = xj . Furthermore, there can be at most one such xj .

Thus, for all h1, . . . , hn ∈ Hk,

δ(h1, . . . , hn) =

k∏
j=1

∑
xj∈H

n∏
i=1

χxj ((hi)j).

Claim 6. When Hk is identified with [|H|k] using a lexicographic ordering, there is a 3k-variate polynomial s of
degree at most |H| − 1 in each variable such that for every x, y, z ∈ Hk,

s(x, y, z) =

{
1 if x = y ∧ z = x+ 1

0 otherwise.

and s is computable in time O(k3 · |H|3).

Proof. We observe that when represented as a string in base |H|, x + 1 has the same digits as x up to some index i,
after which x+ 1 is h+ 1‖0 · · · ‖0, while x is h‖|H − 1|‖ · · · ‖|H − 1|. As an illustrative example, the representation
of 79 in binary is 101111, while 80 is 110000.

Thus,

s(x, y, z) =

|H|−2∑
h=0

k∑
i=1

i−1∏
j=1

δ(xj , yj , zj)

 · χh(xi)χh(yi)χh+1(zi) ·

 k∏
j=i+1

χ0(zj)χ|H|−1(xj)χ|H|−1(yj)

 .

We now have the necessary tools to prove Lemma 3. Let k = dlog|H| T e, and define e : V ↪→ Hk × Hm−k so
that the jth variable in Vi maps to (i, j), with lexicographic correspondences between [T ] and Hk and between [|Vi|]
and Hm−k. We will let W denote the size of each layer. Note W = poly(M,λ).

Now, recall that the clauses in ϕ are repeated and identical between adjacent layers. We consider separately the
clauses which are entirely contained within a layer, and the clauses which have variables in both layers. We can assume
without loss of generality that the latter type of clauses have one variable in layer i+ 1 and two variables in layer i.

These clauses can be described by functions

ψA : [W ]3 × {0, 1}3 → {0, 1}

and
ψB : [W ]3 × {0, 1}3 → {0, 1}

such that ϕ contains the clause (vt,w1
= b1 ∨ vt,w2

= b2 ∨ vt,w3
= b3) iff ψA(w1, w2, w3, b1, b2, b3) = 1 and contains

the clause (vt,w1
= b1 ∨ vt,w2

= b2 ∨ vt+1,w3
= b3) iff ψB(w1, w2, w3, b1, b2, b3) = 1.
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Now, we claim that φ̂ can be evaluated efficiently in terms of the low-degree extensions ψ̂A and ψ̂B , which
themselves take only Õ(W 3) = poly(λ) time. This follows from the following formula for φ̂, where each ij ∈ Fm is
parsed as a tuple (tj , wj) ∈ Fk × Fm−k.

φ̂(i1, i2, i3, b1, b2, b3) = δ(t1, t2, t3)ψ̂A(w1, w2, w3, b1, b2, b3)

+ s(t1, t2, t3)ψ̂B(w1, w2, w3, b1, b2, b3)

We will next combine this lemma with Theorem 1 to obtain an adaptive RAM delegation protocol.

5.2 RAM Delegation Protocol
First, we observe that without loss of generality we can assume a fixed polynomial poly such that the RAM machines
delegated are of size at most poly(λ). Otherwise, we can instead delegate a universal RAM machine, with a pre-
ceding sequence of delegated constant-sized computations that add the desired machine to the persistent database.
For machines of this size, let `(λ) = maxi{|Vi|}, where {Vi} are the variables of the CNF given by Lemma 2. Let
(V0, V1, PPCP) denote the PCP of Theorem 1 and let kmax(λ) = 2`(λ)`0(λ) + λ2, where `0(·) is defined in the state-
ment of Theorem 1. We will use a succinct PIR scheme (ScPIR.Send,ScPIR.Respond,ScPIR.Decode) as defined in
Definition 4.

Construction 1. The algorithms (Setup,KeyGen,ProcessDB,Prove,Verify) are defined as below.

Setup Setup(1λ) samples a collision-resistant hash function h : {0, 1}2λ → {0, 1}λ and outputs pp = h.

Key Generation KeyGen(1λ) samples
(Q, st)← V0(1λ),

and a random injection
ζ : Q ↪→ [kmax].

It then defines, for each i ∈ [kmax],

(q̃i, si) =

{
ScPIR.Send(1λ, q) if ζ(q) = i for some (unique) q ∈ Q
ScPIR.Send(1λ, 0) otherwise

KeyGen outputs
pk = (q̃1, . . . , q̃kmax)

and
sk = (st, Q, ζ, (s1, . . . , skmax))

Processing Database ProcessDB is the same as in Lemma 2.9

Proving Provedt(pp, pk,M) outputs (y, dnew, T, (ã1, . . . , ãkmax)) after sampling

y ←MD→Dnew

T = TIME(M,D)
(d′, dt′) = ProcessDB(Dnew)
ϕ← MakeCNF(h,M, d, y, d′, T )

w ← Transcriptdt(1T ,M)
π ← PPCP(1λ, ϕ, w)
ãi ← ScPIR.Respond(q̃i, π) for i = 1, . . . , kmax

9For the curious reader, ProcessDB(D,h) simply computes the hash-tree of D with respect to h, and lets d be the root.
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Verifying Verify(pp, sk, (M, d, y, d′, T ), pf = (ã1, . . . , ãkmax) computes

A : Q→ Σ

where for every q ∈ Q,
A(q) = ScPIR.Decode(sζ(q), ãζ(q))

and outputs V φ̂1 (st, A), where φ̂ is the low-degree extension of ϕ = MakeCNF(h,M, d, y, d′, T ) and queries to
φ̂ are efficiently answerable by Lemma 3.

Theorem 2. Construction 1 is an adaptively secure non-interactive RAM delegation protocol.

Proof. Completeness is easy to see; we therefore focus on proving soundness.
Suppose for contradiction that there is a poly-sized prover ensemble {P ∗λ}λ and a constant c > 0 such that for

infinitely many λ (let Λ denote this set of λ),

Pr

 Verify(h, sk, (M, d, y0, d
′
0, T ), pf0) = 1 ∧

Verify(h, sk, (M, d, y1, d
′
1, T ), pf1) = 1

∣∣∣∣∣∣
h← Setup(1λ)
(pk, sk)← KeyGen(1λ)
(M, d, y0, d

′
0, pf0, y1, d

′
1, pf1, 1

T )← P ∗λ (h, pk)

 > λ−c

Let Hλ denote the set of h for which

Pr

[
Verify(h, sk, (M, d, y0, d

′
0, T ), pf0) = 1 ∧

Verify(h, sk, (M, d, y1, d
′
1, T ), pf1) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(M, d, y0, d

′
0, pf0, y1, d

′
1, pf1, 1

T )← P ∗λ (h, pk)

]
>
λ−c

2
.

By a simple probability argument, the above equations, together with the definition of Hλ, imply that for every
λ ∈ Λ,

Pr
h←Setup(1λ)

[h ∈ Hλ] ≥ λ−c

2

We define the ensemble {P ∗PCP,h(·)}λ such that on input Q ⊆ N (where N is the length of a proof), it does the
following:

1. Pick a random injection ζ : Q→ [kmax] and, for each i ∈ kmax, define

(q̃i, si) =

{
ScPIR.Send(1λ, q) if ζ(q) = i for some (unique) q ∈ Q
ScPIR.Send(1λ, 0) otherwise

2. Define a public-key pk = (q̃1, . . . , q̃kmax).

3. Compute (M, d, y0, d
′
0, pf0, y1, d

′
1, pf1, 1

T )← P ∗λ (h, pk), where pfb = (ãb1, . . . , ã
b
kmax

).

4. Decrypt abi ← ScPIR.Decode(si, ã
b
i ) for each b ∈ {0, 1} and i ∈ {1, . . . , kmax}. Define

Ab : Q→ Σ

so that for every q ∈ [Q],
Ab(q) = abζ(q)

5. For b ∈ {0, 1}, compute ϕb ← MakeCNF(h,M, d, yb, d
′
b, T ).

6. Output (ϕ0, ϕ1, A0, A1).
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By definition, it follows immediately that

Pr

[
V1(st, ϕ0, A0) = 1 ∧
V1(st, ϕ1, A1) = 1

∣∣∣∣ (Q, st)← V0(1λ)
(ϕ0, ϕ1, A0, A1)← P ∗PCP,h(Q)

]
is the same as

Pr

[
Verify(h, sk, (M, d, y0, d

′
0, T ), pf0) = 1 ∧

Verify(h, sk, (M, d, y1, d
′
1, T ), pf1) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(M, d, y0, d

′
0, pf0, y1, d

′
1, pf1, 1

T )← P ∗λ (h, pk)

]
.

If h ∈ Hλ, this probability is at least λ−c/2. Furthermore, for each h, P ∗PCP,h(·) produces ϕ0, ϕ1 distributed as

(pk, sk)← KeyGen(1λ)
(M, d, y0, d

′
0, y1, d

′
1)← P ∗λ (h, pk)

ϕb ← MakeCNF(h,M, d, yb, d
′
b, T )

Claim 7. For all h, {P ∗PCP,h(·)}λ is a kmax-computationally no-signaling ensemble.

Proof. This follows from the security of the PIR scheme. Suppose otherwise – namely, suppose there exists Q′ ⊆ Q
such that the distributions

(ϕ0, ϕ1, (A0)Q′ , (A1)Q′)
∣∣∣(ϕ0, ϕ1, A0, A1)← P ∗PCP,h(Q) (8)

and
(ϕ0, ϕ1, A0, A1)

∣∣∣(ϕ0, ϕ1, A0, A1)← P ∗PCP,h(Q
′) (9)

are efficiently distinguishable. By averaging, there exists some injection ζ : Q→ [kmax] such that using this ζ in the
definition of P ∗PCP,h still yields distinguishable results. By a hybrid argument, we can assume without loss of generality
that |Q| = |Q′|+ 1. In particular, let q∗ denote the sole element of Q \Q′ and let i∗ denote ζ(q∗). Now, given a PIR
query q̃∗ = ScPIR.Send(1λ, q,N), we show how to distinguish the case when q = q∗ from the case when q = 0.

First, for all i ∈ [kmax] \ {i∗}, sample

(q̃i, si) =

{
ScPIR.Send(1λ, q) if i = ζ(q) for some (unique) q ∈ Q′

ScPIR.Send(1λ, 0) otherwise.

Define q̃i∗ = q̃∗. Then, compute

(M, d, y0, d
′
0, ã

0, y1, d
′
1, ã

1)← P ∗λ (h, (Tλ, (pk1, . . . , pkkmax), (q̃1, . . . , q̃kmax))).

For each i ∈ ζ(Q′), compute
abi ← ScPIR.Decode(si, ã

b
i ).

From this, compute (ϕ0, ϕ1, A0|Q′ , A1|Q′) as in P ∗PCP,h(·).
If q were q∗, then (ϕ0, ϕ1, A0|Q′ , A1|Q′) would be distributed as in (8). If it were 0, then it would be distributed

as in (9). By assumption, these distributions are efficiently distinguishable, so we have broken the security of the PIR
scheme.

Now, for h ∈ Hλ, we have a kmax-CNS PCP prover which with probability λ−c/2 convinces the PCP verifier
to accept two conflicting proofs. Thus, by Theorem 1, there is a PPT oracle algorithm Assignc and a negligible

function negl such that for all λ ∈ Λ and all h ∈ Hλ, Assign
P∗PCP,h(·)
c is an adaptive 2`(λ)-partial assignment generator.

Furthermore, for any set of variables V ⊆ [T ′λ] with |V | ≤ 2`(λ), when we sample

(ϕ0, ϕ1, A0, A1)← Assign
P∗PCP,h(·)
c (1λ, V ),

we have that the distribution on (ϕ0, ϕ1) is indistinguishable from that obtained in the course of running P ∗PCP,h,
conditioned on P ∗PCP,h convincing the verifier. In particular, there are (with high probability) (M, d, y0, d

′
0, y1, d

′
1, T )

such that:
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For each b ∈ {0, 1}, ϕb is the formula

ϕM,d
in ∧ ϕM,T,h ∧ ϕy,d

′

out .

We know that any locally consistent assignments to such pairs of formulas must agree on V0.q ∪ V0.d ∪ V0.y and
with non-negligible probability they must disagree on VT .q ∪ VT .d ∪ VT .y. Thus, there exists some i such that when
querying

(ϕ0, ϕ1, A0, A1)← Assign
P∗PCP,h(·)
c (1λ, Vi ∪ Vi+1),

A0 and A1 are two locally consistent assignments to ϕM,Tλ,h such that A0 and A1 agree on Vi.q ∪ Vi.d ∪ Vi.y but
disagree on Vi+1.q ∪ Vi+1.d ∪ Vi+1.y.

Thus for h ∈ Hλ, with non-negligible probability, FindCollision(1T , ϕM,T,h, A0, A1) outputs a collision in h.
Since h ∈ Hλ with non-negligible probability, this violates the assumption that h is sampled from a collision-resistant
hash family.

6 Batch Arguments of Knowledge for NP

In this section, we consider batch arguments of knowledge for NP languages, in which a prover wants to prove that
each of x1, . . . , xk is in L. We will show a 2-message protocol where the communication complexity and the running
time of the verifier are both m · poly(λ), where m is the size of a witness that a single xi is in L, and as previously, λ
is the security parameter.

We emphasize that we only prove non-adaptive soundness of this 2-message protocol, as opposed to RAM dele-
gation where we proved adaptive soundness and hence got a non-interactive delegation scheme. Intuitively, the reason
for this discrepancy is that in the case of NP, a polynomial size distinguisher cannot distinguish between xi ∈ L
and xi /∈ L, whereas in the case of polynomial-time RAM computations, a polynomial time distinguisher can do the
computation on its own. We elaborate on this later.

Definition 11 (BARKs). A (non-adaptive, 1-message) Batch Argument of Knowledge (BARK) for an NP language L
defined by RL is a tuple of algorithms (KeyGen, V, P ) satisfying the following properties:

Completeness For all x1, . . . , xk and w1, . . . , wk such that for each i ∈ [k], RL(xi, wi) = 1, it holds that

Pr

[
V (sk, (x1, . . . , xk), π) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
π ← P (pk, (x1, . . . , xk), (w1, . . . , wk))

]
= 1

(Non-Adaptive) Proof of Knowledge There exists an algorithmE such that for all poly-sized P ∗λ and all x1, . . . , xk,
if

Pr

[
V (sk, (x1, . . . , xk), π) = 1

∣∣∣∣ (pk, sk)← KeyGen(1λ)
π ← P ∗λ (pk)

]
= ε ≥ 1

poly(λ)

then E(P ∗λ , (x1, . . . , xk)) outputs, with high probability, witnesses (w1, . . . , wk) in time poly(|P ∗λ |, |x1|+ . . .+
|xk|, 1ε ) such that for each i, RL(xi, wi) = 1.

Remark. In our construction, the knowledge extractor uses P ∗λ as a black-box, and runs in time poly(|x1| + . . . +
|xk|, 1ε ). For the sake of generality, the definition above allows for non-black extractors.

Theorem 3. Let L ∈ NP be any language defined by a relation RL such that x ∈ L if and only if there is a witness
w such that RL(x,w) = 1. If a succinct PIR scheme exists as in Definition 4, then there is a BARK for L with the
following efficiency:

• The length of a proof π when sampling

π ← P (q, (x1, . . . , xk), (w1, . . . , wk))

is (maxi |wi|) · poly(λ). Furthermore the length of q is also (maxi |wi|) · poly(λ).
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• The total running time of (V0, V1) is (
∑
i |xi|+ maxi |wi|) · poly(λ).

Remark. If the verifier is given (or has pre-computed) the digests of each xi, the verifier can actually run in time
(k + maxi |wi|) · poly(λ).

Remark. From now on, we write f = Õ(g) if there is a polynomial poly such that f(λ) ≤ g(λ) · poly(λ), departing
from the usual convention that Õ hides logarithmic factors.

Proof Overview. Let us suppose for simplicity that all the xi’s have the same length n, and all wi’s have the same
length m.

Recall that Theorem 110, together with a succinct PIR (as in Theorem 2), allows one to prove for any ` and any
satisfiable 3-CNF ϕ, that ϕ is `-locally satisfiable via a 1-message (adaptively sound) protocol with communication
complexity Õ(`), where the running time of the verifier is Õ(` + Tφ̂), where Tφ̂ is the time it takes to evaluate the

low-degree extension of φ, where φ is the clause indicator function of ϕ. We denote by φ̂ the low-degree extension
of φ.

It therefore suffices to define a 3-CNF ϕx1,...,xk such that:

• ϕx1,...,xk is Õ(m)-locally satisfiable if and only if xi ∈ L for every i. Furthermore, for any i, a witness that
xi ∈ L can be efficiently extracted from any such partial assignment generator.

• φ̂x1,...,xk is computable in time Õ(kn+m).

First we construct ϕx that is satisfiable if and only if x ∈ L, for a single x, and we ensure that given a Õ(m)-partial
assignment generator for ϕx, one can efficiently extract a witness w such that RL(x,w) = 1. Once we have done this,
we build ϕx1,...,xk =

∧
i ϕxi , and give each ϕxi a disjoint set of variables. One point that we must carefully address is

that the LDE of the clause indicator function of ϕx1,...,xk needs to be efficiently computable (i.e. in time Õ(kn+m)).
This is done in Lemma 5.

We first show the existence of such a ϕx when m = Ω(n). To this end, consider the RAM machine M which
operates on a database whose initial contents are x‖w, and computes RL(x,w). Let T be a bound on the running
time of RL, let h : {0, 1}2λ → {0, 1}λ be a hash function, and let d be the digest of x‖w with respect to the hash
function h. Lemma 2 constructs a 3-CNF ϕ , ϕM,d

in ∧ϕM,T,h ∧ϕout of a particular structure,11 so that (we show this
“local-to-global” argument in Theorem 2) given a poly(λ)-partial assignment generator Assign for ϕ and a database
D ∈ Digest−1(d), either MD → 1 or one can efficiently find a collision in h. Importantly, this holds even if the
database D is chosen adaptively as a (no-signaling) function of the queries that Assign receives. A stronger version of
this “local-to-global” claim is part of Theorem 2.

We define ϕx as the 3-CNF consisting of ϕ′in ∧ ϕM,T,h ∧ ϕout, where ϕM,T,h and ϕout are the 3-CNFs given by
Lemma 2 as above, and where ϕ′in is a 3-CNF on v = Õ(n + m) new variables, as well as the variables V0.d from
ϕM,T,h. The first n+m variables, denoted by VD, supposedly contain x‖w, and the other v − (n+m) variables are
auxiliary variables, denoted by Vaux. The clauses of ϕ′in ensure that V0.d = Digest(VD), and ensure that the first n
variables of VD are x.

Now suppose we are given a Õ(n)-partial assignment generator G for ϕx, and imagine querying VD ∪ Vaux ∪
V0.d ∪ Q for any Q with |Q| ≤ poly(λ). We can view this as an adaptive poly(λ)-partial assignment generator for
ϕM,T,h on queries Q, which by local satisifiability, must sastify the following:

• Define D by the answers on VD. Then D must be of the form x‖w.

• The answers on Vd must be equal to Digest(x‖w).

• The answers on Q must locally satisfy ϕM,Digest(x‖w),h.

10In fact, a weaker variant of Theorem 1 without adaptivity suffices.
11In Lemma 2, the 3-CNFϕout = ϕy,d

′

out checks that the output is indeed y and checks that the digest of the database at the end of the computation
is d′. In our setting, we do not care about d′, and we check that the output of the computation is 1, therefore we omit the notation of y, d′ from
ϕout.
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By the “local-to-global” argument of Theorem 2 referenced above, it means that MD → 1. Furthermore, the answers
on VD directly give us a witness to this fact, so extractability is straight-forward.

Note that above the locality of the partial assignment generator is Õ(m + n). Note that if m = o(n) then we do
not get the efficiency we desire, of locality Õ(m). To obtain our desired efficiency, we think of M as a RAM with two
databases, one which initially holds x and the other which initially holdsw. The point here is that instead of computing
the digest of x‖w, ϕx will have the digest of x (computed by the verifier) hard-coded, and will only compute the digest
of w. As a result we will need a Õ(m)-partial assignment generator G for ϕx, in order to extract w, as desired.

We proceed with a formal proof of Theorem 3.

Proof. Let T (·) and m(·) be polynomials such that there is a Turing machine M which computes RL(x,w) in time
T (|x|), provided that |w| ≤ m(|x|). Without loss of generality, we can think of M as a two-tape machine, where the
first tape initially holds x and the second tape initially holds w.

We begin with the following lemma, which sums up the required modifications to Lemma 2.

Lemma 4. There exist deterministic polynomial-time algorithms

MakeCNF,Transcript,FindCollision,

such that for any hash function h : {0, 1}2λ → {0, 1}λ, any input x with digest dx, MakeCNF(h, x) is a 3-CNF ϕ

with the following structure: Let T = T (|x|) and m = m(|x|). Then, ϕ , ϕM,dx
in ∧ ϕh,mwit ∧ ϕ

M,T,h
main ∧ ϕout. We will

now define each component.

1. ϕ has T ′ = Õ(T · |M |+m) variables. The set of variables V contains T + 1 disjoint sets V0, . . . , VT each of
size Õ(|M |), as well as a set Vwit with Õ(m) variables. Each set Vi (for i = 1, . . . , T ) contains (in addition to
Õ(m) auxiliary variables):

• Variables Vi.q whose values encode the Turing machine’s local state after i execution steps.

• Variables Vi.d1 and variables Vi.d2 whose values are the digests of the two tapes after i execution steps.
The first tape initially holds x and the second tape initially holds w.

• Variables Vi.y whose values encode the output of M if it has terminated by the ith step, and encode ⊥
otherwise.

Vwit has m variables Vwit.w whose values encode a witness that x ∈ L. Vwit also has auxiliary variables
Vwit.aux.

2. ϕM,dx
in has clauses on V0, which enforce that V0.q = M.q0, V0.d1 = dx, and V0.y = ⊥.

3. ϕh,mwit has Õ(m) clauses on Vwit ∪ V0 which enforce that V0.d2 = Digest(h, Vwit.w),

4. ϕM,T,h
main has clauses only within each Vi and between Vi and Vi+1. These clauses are identically repeated

between every pair of (Vi, Vi+1).

5. ϕout has only one clause on VT , which enforces that VT .y = 1.

Furthermore:

1. If RL(x,w) = 1 then Transcript(x,w) outputs a satisfying assignment A for ϕ in time T · |M | · poly(λ) such
that A(Vwit.w) = w. If RL(x,w) = 0, then Transcript(x,w) outputs an assignment which satisfies all clauses
except for the one in ϕout (that is, VT .y = 0).

2. For any two locally-consistent assignments A and A′ for ϕ, both on Vi ∪ Vi+1, such that:

• A|Vi.q∪Vi.d1∪Vi.d2∪Vi.y ≡ A′|Vi.q∪Vi.d∪Vi.y (i.e. are equal as functions) but

• A|Vi+1.q∪Vi+1.d1∪Vi+1.d2∪Vi+1.y 6≡ A′|Vi+1.q∪Vi+1.d∪Vi+1.y

30



it holds that FindCollision(1T , ϕ,A,A′) outputs (z, z′) such that z 6= z′ and h(z) = h(z′) – in other words, a
collision under h.

Proof. (Sketch) An assignment to any layer Vi contains the two digests corresponding to the two work tapes of the
Turing machine M at computation step i (where initially the first work tape contains x and the second work tape
contains a corresponding witness w), it contains the memory operations (i.e. reads or writes) that are performed by M
on the ith step, as well as the alleged results of these operations (i.e. the value read from memory or the value written
to memory). This is used to compute the internal state of M on the i + 1th step, which in turn is used to compute
the updated digests of the two work tapes in step i+ 1. The constraints on Vi use cryptographic machinery (based on
Merkle trees) to ensure that the claimed memory operation results are consistent with the previous memory digests.

Claim 8. Fix any x and sample a hash function h chosen from a collision-resistant hash family. Let ϕ be the 3-CNF
as in Lemma 4, corresponding to x and h. Given a (non-adaptive) Õ(m)-partial assignment generator Assign for ϕ,
one can efficiently obtain a witness w such that RL(x,w) = 1 with overwhelming probability.

Proof. We will show that querying Assign(Vwit.w) yields the desired witness with overwhelming probability. We
know from local consistency and the definition of ϕM,dx

in and ϕh,mwit that if we query A← Assign(Vwit ∪ V0) and then
computeA′ ← Transcript(x,A(Vwit.w)), thenA|V0.q∪V0.d1∪V0.d2∪V0.y is equal (as a string) toA′|V0.q∪V0.d1∪V0.d2∪V0.y

with overwhelming probability (and both are equal to (q0, dx, dw,⊥) with overwhelming probability, where dw is the
digest of A(Vwit.w)).

Similarly, by local consistency, and by the definition of ϕout, if we queryA← Assign(Vwit∪VT ), thenA(VT .y) =
1 with overwhelming probability.

We next show that with overwhelming probability A′(VT .y) = 1 where A′ ← Transcript(x,A(Vwit.w)), which
implies that RL(x, Vwit.w) = 1. Suppose otherwise – that with non-negligible probability A′(VT .y) 6= 1. Then there
is some i such that when querying A← Assign(Vwit ∪ Vi ∪ Vi+1) and A′ ← Transcript(x,A(Vwit.w)), it holds with
non-negligible probability that

A|Vi.q∪Vi.d1∪Vi.d2∪Vi.y ≡ A′|Vi.q∪Vi.d1∪Vi.d2∪Vi.y

but
A|Vi+1.q∪Vi+1.d1∪Vi+1.d2∪Vi+1.y 6≡ A′|Vi+1.q∪Vi+1.d1∪Vi+1.d1∪Vi+1.y,

where again ≡ denotes equality as functions. This implies that we can efficiently find a collision in h by using
FindCollision, which is a contradiction.

In this argument, we only ever needed to query Assign at Õ(m) variables – specifically, we queried the number
of variables in Vwit plus the number of variables in any Vi. Hence, it is only required that Assign is a Õ(m)-partial
assignment generator.

Corollary 2. For any x1, . . . , xk, let ϕ1, . . . , ϕk be as in Lemma 4. Given an Õ(m)-partial assignment generator for
ϕ =

∧
i ϕi, one can efficiently find witnesses w1, . . . , wk so that for each i, RL(xi, wi) = 1.

Proof. This follows from the fact that an Õ(m)-partial assignment generator for ϕ =
∧
i ϕi is an Õ(m)-partial

assignment generator for each ϕi.

Lemma 5. Let x1, . . . , xk ∈ {0, 1}n be any strings. Let h : {0, 1}2λ → {0, 1}λ be any hash function. For each
i ∈ {1, . . . , k}, define

ϕi = MakeCNF(h, xi).

Let V be the variables of ϕ =
∧
i ϕi.

For any finite field F with |F| > log |V |, and any subset H ⊆ F with |H| = dlog |V |e, let m = dlog |V |/ log |H|e.
There is an efficiently computable and invertible mapping e : V ↪→ Hm such that the low-degree extension

φ̂ : F3m+3 → F
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of the clause-indicator function
φ : H3m+3 → {0, 1}

φ(i1, i2, i3, b1, b2, b3) =

{
1 if ϕ contains the clause e−1(i1) = b1 ∨ e−1(i2) = b2 ∨ e−1(i3) = b3

0 otherwise

is efficiently computable at any point z ∈ F3m+3 in time Õ(kn+m).

Proof. We will need the following claims about functions whose low-degree extensions can be efficiently computed.

Claim 9. Associate Hm with [|H|m] by lexicographically extending an arbitrary correspondence of H with [|H|].
Then, for any k ∈ [|H|m], we can compute the low-degree extension of

eq≥k : H3m → {0, 1}

eq≥k(x, y, z) =

{
1 if x = y = z ≥ k
0 otherwise

in poly(|H|,m) time (assuming field operations have unit cost).

Proof. We will think of x, y, z, and k all as being m-digit base-|H| numbers, left-padding with 0’s if necessary. Then,
x > k if and only if either:

• The most significant digit of x is larger than the most significant digit of k or

• The most significant digit of x is equal to the most significant digit of k and the remaining digits of x and k form
x′ and k′ with x′ > k′.

Thus let k = k1‖ · · · ‖km where k1 is the most significant digit. We can write the conditions for eq≥k(x, y, z) as a
small number of disjoint cases corresponding to the first digit i at which x (or equivalent y or z) differs from k, plus
another case for if x = k. This results in the following formula.

eq≥k(x, y, z) =

m∑
i=1

i−1∏
j=1

δ(xj , yj , zj , kj)

(∑
h>ki

δ(xi, yi, zi, h)

) m∏
j=i+1

δ(xj , yj , zj)

+

m∏
i=1

δ(xi, yi, zi, ki)

Claim 10. Associate Hm with [|H|m] by lexicographically extending an arbitrary correspondence of H with [|H|].
Then for any k ∈ [|H|m], we can compute the low-degree extension of

s≥k : H3m → {0, 1}

s≥k(x, y, z) =

{
1 if x = y = z − 1 ≥ k
0 otherwise

in poly(|H|,m) time (assuming field operations have unit cost).

Proof. This is similar to the proof of Claim 9, but more involved. We now sum over at mostm2 disjoint cases in which
x can be greater than k, guessing two values:

• The first digit a at which x differs from k (and in particular, is larger).

• The first digit b after which the rest of the digits of x have the value |H| − 1.
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Now s≥k(x, y, z) is the sum of m2 terms for each possible choice of a and b. For convenience of notation, we will
consider three cases, plus an extra case for if x = k:

• When a < b, the term is(
a−1∏
i=1

δ(xi, yi, zi, ki)

)
·

(∑
h>ka

δ(xi, yi, zi, h)

)
·

(
b−1∏
i=a+1

δ(xi, yi, zi)

)
· ∑

h<|H|−1

δ(xb, yb, h)δ(zb, h+ 1)

 ·( m∏
i=b+1

δ(xi, yi, |H| − 1)δ(zi, 0)

)

• When a = b, the term is(
a−1∏
i=1

δ(xi, yi, zi, ki)

)
·

 ∑
ka<h<|H|−1

δ(xa, ya, h)δ(za, h+ 1)

 ·( m∏
i=a+1

δ(xi, yi, |H| − 1)δ(zi, 0)

)

• When a > b, the term is(
b−1∏
i=1

δ(xi, yi, zi, ki)

)
· δ(xb, yb, kb)δ(zb, kb + 1) ·

(
m∏

i=b+1

δ(xi, yi, |H| − 1)δ(zi, 0)

)

if kb < |H| − 1 and ka < |H| − 1 and for each i ∈ {b+ 1, . . . , a− 1}, ki = |H| − 1. Otherwise, the term is 0.

• The term for if x = k is
m∏
i=1

δ(xi, yi, ki)δ(zi, (k + 1)i)

Armed with the ability to compute low-degree extensions of eq≥k and s≥k, we can now write the formula for
φ̂ : F3m+3 → F.

Let a = dlog|H| ke, let b = dlog|H| T e, and let ` = dlog|H| |Vwit|e. We will define e to map the variables of each
ϕi into {i}×Hm−a, where i ∈ [k] is interpreted in Ha as number in base |H|. In particular, the wth variable of layer
Vj in ϕi is mapped to (i, w, j + `) ∈ Ha ×Hm−a−b ×Hb. The variables of Vwit are mapped to

Ha ×Hm−a−b × {t ∈ Hb : t < `}

in an arbitrary way.
Recall from the statement of Lemma 4 that the clauses of each ϕi are highly repetitive. In particular, there are

“small” clause-indicator functions ψA and ψB such that for any i ∈ [k] and any t ≥ `, ϕi contains the clause

e−1((i, j1, t)) = b1 ∨ e−1((i, j2, t)) = b2 ∨ e−1((i, j3, t)) = b3

iff ψA(j1, j2, j3, b1, b2, b3) = 1. Also, ϕi contains the clause

e−1((i, j1, t)) = b1 ∨ e−1((i, j2, t)) = b2 ∨ e−1((i, j3, t+ 1)) = b3

iff ψB(j1, j2, j3, b1, b2, b3) = 1.
Because ϕwit has Õ(m) (efficiently enumerable) clauses, its low-degree extension φ̂wit can be computed in Õ(m)

time. ϕ
M,dxi
in has poly(λ) constraints which take Õ(|xi|) time to enumerate, and each of ψ̃A and ψ̃B is computable in
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time poly(λ). Thus, Lemma 5 follows from the following formula, where each zj is interpreted as a tuple (ij , wj , tj) ∈
Fa × Fm−a−b × Fb.

φ̂(z1, z2, z3, b1, b2, b3) = δ(i1, i2, i3) ·

 eq≥t(t1, t2, t3)ψ̂A(j1, j2, j3, b1, b2, b3)+

s≥t(t1, t2, t3)ψ̂B(j1, j2, j3, b1, b2, b3)+

φ̂h,mwit (w1, t1, w2, t2, w3, t3, b1, b3)

+
∑
i

φ̂
M,dxi
in (z1, z2, z3, b1, b2, b3)

Now that we have shown how to efficiently compute the low-degree extension of φ, the construction and proof of
Theorem 3 proceeds similarly to the proof of Theorem 2. We can now describe our BARK scheme. Let M be the
Turing machine such that x ∈ L ∩ {0, 1}n if and only if there is a witness w ∈ {0, 1}m(n) such that M(x,w) = 1 in
time T (n). Let (V 0

PCP, V
1
PCP, PPCP) be the PCP of Theorem 1 and let

(ScPIR.Send,ScPIR.Respond,ScPIR.Decode)

be a succinct PIR scheme as defined in Definition 4.

Verifier’s Message V0(1λ, (x1, . . . , xk)) first computes

(Q, st)← V 0
PCP(1λ).

Let m be the maximum length of any witness corresponding to an xi, and let m′ be the locality in the statement
of Claim 8. Let T be the corresponding running time of M . Let kmax = m′ · `0(λ) + λ2, where `0(·) is defined
as in the statement of Theorem 1.
V0 samples a random injection

ζ : Q ↪→ [kmax].

It then defines, for each i ∈ [kmax],

(q̃i, si) =

{
ScPIR.Send(1λ, q) if ζ(q) = i for some (unique) q ∈ Q
ScPIR.Send(1λ, 0) otherwise

and sends (q̃1, . . . , q̃m′) to the prover.

Prover’s Message P ((h, q̃1, . . . , q̃m′), (x1, . . . , xk), (w1, . . . , wk)) uses (w1, . . . , wk) to compute a satisfying as-
signment w to the 3-CNF ϕ =

∧
i ϕi, where ϕi ← MakeCNF(h,M, xi,m(|xi|), T (|xi|)). It generates

π ← PPCP(1λ, ϕ, w) and computes ãi ← ScPIR.Respond(q̃i, π) for i = 1, . . . ,m′.
The prover sends (ã1, . . . , ã

′
m) to the verifier.

Verifier Checks The verifier then computes A : Q→ Σ where for every q ∈ Q,

A(q) = ScPIR.Decode(sζ(q), ãζ(q))

and outputs (V 1
PCP)φ̂(st, A), where φ̂ is the low-degree extension of

∧
i ϕi, and queries to φ̂ are efficiently

answerable by Lemma 5.

Extraction First, the security of the PIR implies that any BARK prover P ∗ for which

Pr

[
V1(st, π) = 1

∣∣∣∣ (q, st)← V0(1λ, x1, . . . , xk)
π ← P ∗(q)

]
≥ ε(λ)

can be turned into a kmax-wise CNS PCP prover P ∗PCP such that

Pr

[
V 1
PCP(st, ϕ,A) = 1

∣∣∣∣ (Q, st)← V 0
PCP(1λ)

A← P ∗PCP(Q)

]
≥ ε(λ)

where ϕ =
∧
i ϕi and ϕi = MakeCNF(h,M, xi,m, T ). By Theorem 1, any such P ∗PCP can be turned into an

Õ(m)-partial assignment generator for ϕ. By Corollary 2, this can be used, for each i, to extract a witness that
xi ∈ L.
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6.1 Barrier to Adaptively Sound BARKs
We argue that the non-adaptivity of the above scheme is inherent – namely, we cannot prove adaptive soundness of
any BARK with a black box reduction to falsifiable assumptions. To show this, we show a black-box construction of
a SNARK from any adaptively sound BARK. We then rely on the beautiful separation of [GW11], which shows that
SNARKs cannot have a black-box reduction to falsifiable assumptions.

Our first observation is that a BARK allows one to succinctly prove that a Merkle digest d is honestly generated, i.e.
prove knowledge ofD ∈ {0, 1}n such that d = Digest(D). The prover just needs to prove knowledge of an opening of
D[i] that is consistent with d, for each i ∈ {1, . . . , n}. But simultaneously proving knowledge of n different witnesses
each of length Õ(log n) is something a BARK can accomplish with a proof of length Õ(log n).

Building on this observation, we build a designated-verifier SNARK as follows. The SNARK public key consists
of a collision-resistant hash function h, as well as a public key pkRAM for our adaptive RAM delegation protocol. A
proof for x consists of a digest d under h, a proof of knowledge as described above of a witness w ∈ {0, 1}n such that
d = Digest(w), and a proof (using the RAM protocol) that the NP relation accepts (x,w).
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A The Base PCP

Our PCP is the same as in [KRR14], which in turn is based on the PCP of [BFLS91].
As in the remark following Definition 6, we can assume we are given N which bounds the number of variables of

ϕ. First pad ϕ so that it has exactly N variables. Let x = (x1, . . . , xN ) ∈ {0, 1}N denote a satisfying assignment to
the variables of ϕ. Let

X : Fm → F

be the low-degree extension of x (as defined in Section 2.1), where F is defined so that

O(log2N) ≤ |F| ≤ polylog(N).

Namely, let H = {0, 1, . . . , logN − 1} and let m = logN
log logN , so that N = |H|m. (For simplicity and without loss

of generality we assume that logN and logN
log logN are integers). Since N = |H|m, we can identify [N ] and Hm by the

lexicographic order on Hm. Thus, we can view x1, . . . , xN as indexed by i ∈ Hm (rather than i ∈ [N ]). We can
hence view x = (x1, . . . , xN ) as a function x : Hm → {0, 1} (given by x(i) = xi, where we identify [N ] and Hm).
The low-degree extension of x is the (unique) multi-variate polynomial

X : Fm → F

of degree |H| − 1 in each variable, such that X|Hm ≡ x
Let φ : (Hm)3 × {0, 1}3 → {0, 1} be the clause indicator function of ϕ. Namely,

φ(i1, i2, i3, b1, b2, b3) = 1 if and only if the clause (wi1 = b1) ∨ (wi2 = b2) ∨ (wi3 = b3) appears in ϕ.

In what follows, we think of φ as a function φ : (Hm)3 ×H3 → {0, 1} where for every (b1, b2, b3) ∈ H3 \ {0, 1}3
and for every (i1, i2, i3) ∈ (Hm)3,

φ(i1, i2, i3, b1, b2, b3) = 0.

We denote by ` = 3m+ 3, and thus φ : H` → {0, 1}.
Let

φ̂ : F` → F

be the low-degree extension of φ (of degree at most |H| − 1 in each variable).
The fact that X : Fm → F encodes a satisfying assignment for ϕ implies that for every z = (i1, i2, i3, b1, b2, b3) ∈

(Hm)3 ×H3 = H`,
φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3) = 0 (10)

Let P0 : F` → F be the `-variate polynomial defined as follows:
For z = (i1, i2, i3, b1, b2, b3) ∈ (Fm)3 × F3 = F`,

P0(z) , φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3)

Equation (10) implies that P0|H` ≡ 0 (assuming that indeed X encodes a satisfying assignment). Moreover, the
fact that X has degree < |H| in each variable, and φ̂ has degree < |H| in each variable, implies that P0 has degree
< 2|H| in each variable, and hence total degree < 2|H|`.

Next we define P1 : F` → F. For every z = (z1, . . . , z`) ∈ F`, let

P1(z) =
∑
h∈H

P0(h, z2, . . . , z`)z1
h

Note that P1|F×H`−1 ≡ 0. More generally, we define by induction P1, . . . , P` : F` → F where for every z =
(z1, . . . , z`) ∈ F`,

Pi(z) =
∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)zi
h
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Note that P1, . . . , P`−1 have degree < 2|H| in each variable, and hence total degree < 2|H|`. Note also that
Pi|Fi×H`−i ≡ 0, and in particular P` ≡ 0.

The PCP proof for the fact that ϕ is satisfiable consists of the polynomial X : Fm → F (which is the low-degree
extension of a satisfiable assignment), and the ` polynomials Pi : F` → F, for i = 0, . . . , `− 1. To these polynomials
we add the polynomial P` ≡ 0. The polynomial P` can be removed from the PCP proof (as it is the 0 polynomial)
and is added just for simplicity of the notation. When the verifier queries P`(z) she gets 0 automatically.

Let DX = Fm be the domain of X , and let D0, . . . , D` be `+ 1 copies of F`, the domain of P0, . . . , P`. We view
DX , D0, . . . , D` as the domains of X,P0, . . . , P`, respectively. Denote,

D = DX ∪D0 ∪ . . . ∪D`

The set D is the alphabet of queries in the PCP. We will refer to D as the domain of the PCP.

Remark. Note that the entire PCP proof can be generated in time poly(N).

A.1 The PCP Verifier, V = (V0, V1)

As mentioned above, we assume that the verifier V is not given ϕ explicitly, since we require the runtime of V to be
significantly smaller than |ϕ|. Rather, we assume that the verifier is given oracle access to φ̂ which is the low-degree
extension of φ, where φ is the clause indicator function of ϕ and is viewed as a function φ : H3m+3 → {0, 1}.12 We
also assume that the verifier is given N , the number of variables of ϕ.

Thus, we assume that the verifier has oracle access to honestly generated φ̂. That is, we assume that V can get the
correct value of φ̂(z) for free, for as many points z ∈ F` as she wants.

Notation. We denote by λ the security parameter, we denote by ai the ith coordinate of a vector a. In particular, for
a line L : F→ F`, a field element t ∈ F and a coordinate i ∈ {1, . . . , `}, we denote by L(t)i the ith coordinate of the
point L(t) ∈ F`. We say that a line L : F → F` is orthogonal to the ith coordinate if for every t1, t2 ∈ F, we have
L(t1)i = L(t2)i.

The verifier V makes the following tests on the PCP proof (the exact tests are described below):

• Low Degree Test for X .

• Low Degree Tests for Pi.

• Sum Check for Pi.

• Consistency Test of X and P0.

We note that we will have four types of low degree tests for each Pi, rather than just one. This is only for the simplicity
of the analysis. It would be sufficient to do only one test, similar to the low degree test for X (but repeated on O(|F|2)
random lines, rather than a single random line), since all four types of tests that we actually do (and are formally
described below) can be embedded in such a test.

Formally, the verifier V makes the following tests, and accepts if and only if the PCP proof passes all of them:

1. Low Degree Test for X: Choose a random line L : F→ Fm, and query X on all the points {L(t)}t∈F. Check
that the univariate polynomial X ◦ L : F→ F is of degree < m|H|.

2. Low Degree Test for Pi: Type 1 (fixed L(0)i+1): For every i ∈ {0, . . . , ` − 1} and every u ∈ F, choose a
random line L : F → F`, such that L(0)i+1 = u. Query Pi on all the points {L(t)}t∈F, and check that the
univariate polynomial Pi ◦ L : F→ F is of degree < 2|H|`.

12Jumping ahead, we note that when we use this PCP for delegation, we will use it with specific formulas ϕ for which the verifier can compute
φ̂ on his own efficiently (in time polylog(N)).
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3. Low Degree Test for Pi: Type 2 (orthogonal to the (i + 1)th coordinate): For every i ∈ {0, . . . , ` − 1},
choose a random line L : F→ F` that is orthogonal to the (i+ 1)th coordinate.

Query Pi on all the points {L(t)}t∈F, and check that the univariate polynomial Pi ◦ L : F → F is of degree
< 2|H|`.

4. Low Degree Test for Pi: Type 3 (fixed L(0)i+1; orthogonal to the ith coordinate): For every i ∈ {1, . . . , `−
1}, and every u ∈ F, choose a random line L : F → F` that is orthogonal to the ith coordinate, and satisfies
L(0)i+1 = u. Query Pi on all the points {L(t)}t∈F, and check that the univariate polynomial Pi ◦L : F→ F is
of degree < 2|H|`.

5. Low Degree Test for Pi: Type 4 (fixed L(0)i; orthogonal to the (i + 1)th coordinate): For every i ∈
{1, . . . , ` − 1}, and every u ∈ F, choose a random line L : F → F` orthogonal to the (i + 1)th coordinate,
and satisfies L(0)i = u. Query Pi on all the points {L(t)}t∈F, and check that the univariate polynomial
Pi ◦ L : F→ F is of degree < 2|H|`.

6. Sum Check for Pi: For every i ∈ {1, . . . , `}, choose a random point z = (z1, . . . , z`) ∈ F`. Query Pi, Pi−1 on
all the points
{(z1, . . . , zi−1, t, zi+1, . . . , z`)}t∈F, and check that for every t ∈ F,

Pi(z1, . . . , zi−1, t, zi+1, . . . , z`) =
∑
h∈H

Pi−1(z1, . . . , zi−1, h, zi+1, . . . , z`)t
h

7. Consistency of X and P0: Choose a random point z = (i1, i2, i3, b1, b2, b3) ∈ (Fm)3×F3 = F`. Query P0 on
the point z and X on the points i1, i2, i3, and check that

P0(z) = φ̂(z) · (X(i1)− b1) · (X(i2)− b2) · (X(i3)− b3)

A.1.1 Complexity of the Verifier

Note that the total number of queries made by V to the PCP proof, as well as the total number of queries made by V
to the function φ̂, are both at most k = 6`|F|2. The time complexity of V is polylog(N).

B From Amplified Cheating Prover to Assignment Generator
Lemma 6. Let (V0, V1, P ) be the PCP from Appendix A. There exists a probabilistic polynomial-time oracle machine
Assign and a polynomial `0 such that for every negligible ε = ε(λ), every polynomial `, every security parameter
λ ∈ N, and every adaptive kmax = ` · `0-computational no-signaling cheating prover Prover∗, if

Pr


(Q, st)← V ⊗λ0 (1λ);
(ϕ1, ϕ2, A1, A2)← Prover∗(Q);

1←
(
V ≥λ−r1

)φ̂1,φ̂2

(st, A1, A2)

 ≥ 1− ε,

then AssignProver
∗

is an adaptive (`, ε′)-partial assignment generator with

ε′ = ε · poly(λ) + negl(λ) = negl(λ).

Moreover, the distribution (ϕ′0, ϕ
′
1), generated by

(ϕ′0, ϕ
′
1, A0, A1)← AssignProver

∗

c (1λ,W ),

is computationally indistinguishable from (ϕ0, ϕ1) generated as above.

40



Fix `0 = λ · |F|2 ≤ poly(λ). The probabilistic polynomial-time oracle machine Assign is defined as follows: For
any ` ≤ poly(λ), any ε = ε(λ) > 0, and any adaptive kmax-computational no-signaling cheating prover Prover∗,
where kmax = ` · `0, such that

Pr


(Q, st)← V ⊗λ0 (1λ);
(ϕ1, ϕ2, , A1, A2)← Prover∗(Q);

1←
(
V ≥λ−r1

)φ̂1,φ̂2

(st, A1, A2)

 ≥ 1− ε,

AssignProver
∗
(λ, q1, . . . , q`) does the following:

1. For each i ∈ [`], choose λ random lines Li,1, . . . , Li,λ : F → DX such that for every j ∈ [λ] it holds that
Li,j(0) = qi. (Note that qi ∈ DX .)

2. Run
(ϕ′1, ϕ

′
2, {a

(1)
i,j (t)}, {a(2)i,j (t)})← Prover∗

(
{Li,j(t)}i∈[`],j∈[λ],t∈F

)
.

3. For every i ∈ [`] and every j ∈ [λ] do the following for every v ∈ F:

(a) Define fv : F → F by setting fv(t) = a
(1)
i,j (t) for every t 6= 0 and setting fv(0) = v. Similarly, define

gv : F→ F by setting gv(t) = a
(2)
i,j (t) for every t 6= 0 and setting gv(0) = v.

(b) If fv is a polynomial of degree≤ m·|H| then set v(1)i,j , v. If no such v exists then set v(1)i,j = ⊥. Similarly,

if gv is a polynomial of degree ≤ m · |H| then set v(2)i,j , v. If no such v exists then set v(2)i,j = ⊥.

4. For every i ∈ [`], let v(1)i = maj{v(1)i,1 , . . . , v
(1)
i,λ} and let v(2)i = maj{v(2)i,1 , . . . , v

(2)
i,λ}.

5. Output {ϕ′1, ϕ′2, (v
(1)
1 , . . . , v

(1)
` ), (v

(2)
1 , . . . , v

(2)
` )}.

We need to prove that AssignProver
∗

is an adaptive (`, ε′)-partial assignment generator with

ε′ = ε · poly(λ) + negl(λ).

Moreover, we need to prove that for any k′ ≤ kmax, any (q1, . . . , qk′) ∈ Dk′ , and any Q ⊂ DX such that |Q| ≤ `,

(ϕ1, ϕ2) ≈ (ϕ′1, ϕ
′
2),

where (ϕ1, ϕ2) denotes the instances that Prover∗(Q) outputs, and (ϕ′1, ϕ
′
2) denotes the instances that the assigner

AssignProver
∗
(Q) outputs. The latter follows immediately by the fact that Prover∗ is computationally no-signaling,

together with the fact that AssignProver
∗
(Q) always runs the prover Prover∗ with some set of queries Q′ ⊆ DX and

outputs the instances (ϕ′1, ϕ
′
2) that Prover∗(Q′) outputs. A similar argument shows that Assign is computational

no-signaling.
It thus remains to prove that Assign satisfies the local soundness condition. The proof of the latter is quite involved,

and is very similar to the proof from [KRR14].13

Local Soundness. Fix ` = `(λ) and ε = ε(λ), and fix an adaptive kmax-computational no-signaling cheating prover
Prover∗, where kmax = ` · `0, such that

Pr


(Q, st)← V ⊗λ0 (1λ);
(ϕ1, ϕ2, A1, A2)← Prover∗(Q);

1←
(
V ≥λ−r1

)φ̂1,φ̂2

(st, A1, A2)

 ≥ 1− ε.

13Much of the text below is indeed taken from [KRR14].
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We assume, without loss of generality that |ϕ1|, |ϕ2| ≥ λ. This is without loss of generality, since otherwise a proof
can consist of an entire satisfying assignment. Roughly speaking, the proof of local soundness can be partitioned into
three parts.

We prove local soundness of ϕ1. The proof of local soundness of ϕ2 is identical. Denote the computationally
no-signaling strategy of Prover∗ by

{AS}S⊂D,|S|≤kmax ,

whereAS is a distribution that generates (ϕ,A) as follows: Run (ϕ1, ϕ2, A1, A2)← Prover∗(S), and set ϕ = ϕ1 and
A = A1.

Part 1. We start with the following definition that will be useful in the proof. Intuitively, a point z satisfies property
Z(ε′, r′) if when taking λ lines through it, and sending all these points to Prover∗, then with high probability, for most
of these lines, the answers of Prover∗ correspond to low degree polynomials that “evaluate” the point z to 0.

Definition 12. Property Z(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let i ∈ {0, . . . , `}. Let z ∈ Di.

Let L1, . . . , Lλ : F → Di be λ random lines, such that for every L ∈ {L1, . . . , Lλ}, we have L(0) = z. Let
S = {Lj(t)}j∈[λ],t∈F ⊂ Di. Let (ϕ,A) ∈R AS .

Define A0 : S → F by A0(z′) = A(z′) for z′ 6= z and A0(z) = 0.
We say that the point z satisfies property Z(ε′, r′) (also denoted z ∈ Z(ε′, r′)) if with probability ≥ 1− ε′, for at

least λ− r′ of the lines L ∈ {L1, . . . , Lλ}, we have that A0 ◦L : F→ F is a univariate polynomial of degree < 2`|H|
(where the probability is over L1, . . . , Lλ, A).

Our main lemma about property Z(ε′, r′) is that the property is satisfied, with small ε′ and r′, for any point
z = (z1, . . . , z`) ∈ D0 such that z1, . . . , z` ∈ H . (Intuitively, this is analogous to the formula P0|H` ≡ 0, that is
satisfied for x ∈ L).

Lemma 7. There exists a negligible function µ = µ(λ) such that for any z = (z1, . . . , z`) ∈ D0 such that z1, . . . , z` ∈
H , we have z ∈ Z(ε′, r′), where ε′ = 6`|F|ε+ µ and r′ = 8`|F|r.

Part 2. In the second part of the proof we show that when taking a large number of lines through a point z ∈ DX ,
with high probability, there exists a value v ∈ F, such that for most of these lines, the answers of Prover∗ correspond
to low degree polynomials that “evaluate” the point z to v.

Lemma 8. There exists a negligible function µ = µ(λ) such that for any z ∈ DX the following holds. LetL1, . . . , Lλ :
F → DX be λ random lines, such that for every L ∈ {L1, . . . , Lλ}, we have L(0) = z. Let S = {Lj(t)}j∈[λ],t∈F ⊂
DX . Let (ϕ,A) ∈R AS .

For any v ∈ F, define Av : S → F by Av(z′) = A(z′) for z′ 6= z and Av(z) = v. Let r′ = 30|F|r and let
ε′ = 2|F|ε+ µ. Then, with probability ≥ 1− ε′, there exists v ∈ F, such that, for at least λ− r′ of the indices j ∈ [λ],
Av ◦ Lj : F→ F is a univariate polynomial of degree < m|H| (where the probability is over L1, . . . , Lλ, A).

Part 3. In the third part of the proof we use Lemma 7 and Lemma 8 above to prove the local consistency guarantee.

Lemma 9. There exists a negligible function µ = µ(λ) such that the following holds. Let r′ = 9`|F|r and let
ε′ = 7`|F|ε+ µ. Let i1, i2, i3 ∈ Hm and view i1, i2, i3 as points in DX .

Let L1,1, . . . , L1,λ : F → DX be λ random lines, such that for every L ∈ {L1,1, . . . , L1,λ}, we have L(0) = i1.
Let L2,1, . . . , L2,λ : F → DX be λ random lines, such that for every L ∈ {L2,1, . . . , L2,λ}, we have L(0) = i2. Let
L3,1, . . . , L3,λ : F→ DX be λ random lines, such that for every L ∈ {L3,1, . . . , L3,λ}, we have L(0) = i3.

Let S = {L1,j(t), L2,j(t), L3,j(t)}j∈[λ],t∈F ⊂ DX . Let (ϕ,A) ∈R AS . For any i ∈ DX and v ∈ F, define
Ai→v : S → F by Ai→v(i′) = A(i′) for i′ 6= i and Ai→v(i) = v.

With probability ≥ 1 − ε′, there exist v1, v2, v3 ∈ F, such that, for at least λ − r′ of the indices j ∈ [λ], the
following is satisfied (where the probability is over L1,1, . . . , L1,λ, L2,1, . . . , L2,λ, L3,1, . . . , L3,λ, ϕ,A):

1. Ai1→v1 ◦ L1,j : F→ F is a univariate polynomial of degree < m|H|.
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2. Ai2→v2 ◦ L2,j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3 ◦ L3,j : F→ F is a univariate polynomial of degree < m|H|.

4. If ϕ contains a clause of the form (wi1 = b1)∨(wi2 = b2)∨(wi3 = b3), then (v1−b1) ·(v2−b2) ·(v3−b3) = 0.

Note that Lemma 9, together with the computational no-signaling property, implies local soundness. As mentioned
above, we prove this lemma using Lemma 7 and Lemma 8 above.

B.1 Proof of Lemma 7
In the proof of Lemma 7 we use a variant of property Z(ε′, r′), where the random lines are restricted to be orthogonal
to the (i′)th coordinate. (We will use this property only for i′ ∈ {i, i + 1}). In particular, we use the following
definition.

Definition 13. Property Zi′(ε′, r′):
Let ε′ ≥ 0 and r′ ≥ 0. Let i′ ∈ {1, . . . , `}. Let i ∈ {0, . . . , `}. Let z ∈ Di.

Let L1, . . . , Lλ : F → Di be λ random lines, such that for every L ∈ {L1, . . . , Lλ} we have L(0) = z, and L is
orthogonal to the (i′)th coordinate. Let S = {Lj(t)}j∈[λ],t∈F ⊂ Di. Let (ϕ,A) ∈R AS .

Define A0 : S → F by A0(z′) = A(z′) for z′ 6= z and A0(z) = 0.
We say that the point z satisfies property Zi′(ε′, r′) (also denoted z ∈ Zi′(ε′, r′)) if with probability ≥ 1− ε′, for

at least λ − r′ of the lines L ∈ {L1, . . . , Lλ}, we have that A0 ◦ L : F → F is a univariate polynomial of degree
< 2`|H| (where the probability is over L1, . . . , Lλ, A).

The proof of Lemma 7 follows from the following three claims (Claims 11, 12, and 13).

Claim 11. There exists a negligible function µ = µ(λ) = negl(λ) such that for every ε1 ≥ 0, every r1 ≥ 0, every
i ∈ {1, . . . , ` − 1}, and every z ∈ Di, if z ∈ Zi+1(ε1, r1) then z ∈ Zi(ε2, r2), where ε2 = ε1 + 2|F|ε + µ(λ), and
r2 = r1 + 3|F|r.

Claim 12. There exists a negligible function µ = µ(λ) = negl(λ) such that for every ε1 ≥ 0, every r1 ≥ 0, every
i ∈ {0, . . . , ` − 1}, and every z ∈ Di, if z ∈ Zi+1(ε1, r1) then z ∈ Z(ε2, r2), where ε2 = ε1 + 2|F|ε + µ(λ), and
r2 = r1 + 3|F|r.

Claim 13. There exists a negligible function µ = µ(λ) = negl(λ) such that for every ε1 ≥ 0, every r1 ≥ 0, and
every i ∈ {1, . . . , `}, the following holds: Let z = (z1, . . . , z`) ∈ F` be a point such that zi ∈ H . For every t ∈ F,
let z(t) = (z1, . . . , zi−1, t, zi+1, . . . , z`) ∈ F`. Assume that for every t ∈ F, the point z(t), viewed as a point in
Di, satisfies property Zi(ε1, r1). Then the point z, viewed as a point in Di−1, satisfies property Zi(ε2, r2), where

ε2 = ε1
1−γ + |F|ε+ µ, and r2 = r1

1−γ + 2|F|r, and γ =
√
|H|
|F| .

Before we prove these claims, we prove Lemma 7 based on these claims.

Proof of Lemma 7. Recall that we assume that for every distributionAS in the family {AS}, every query in S ∩D`

is answered by 0 with probability 1 (since the polynomial P` was just the 0 polynomial and was added to the PCP
proof for simplicity of notations). Therefore, any point z ∈ D` satisfies property Z`(ε`, r`), where ε` = 0 and r` = 0.

Combining Claim 11 and Claim 13 we obtain the following claim.

Claim 14. There exists a negligible function µ = µ(λ) for which the following holds: Let ε1 ≥ 0. Let r1 ≥
0. Let i ∈ {2, . . . , `}. Let z = (z1, . . . , z`) ∈ F` be a point such that zi ∈ H . For every t ∈ F, let z(t) =
(z1, . . . , zi−1, t, zi+1, . . . , z`) ∈ F`. Assume that for every t ∈ F, the point z(t), viewed as a point in Di, satisfies
property Zi(ε1, r1). Then the point z, viewed as a point in Di−1, satisfies property Zi−1(ε2, r2), where ε2 = ε1

1−γ +

3|F|ε+ µ, and r2 = r1
1−γ + 5|F|r, and γ =

√
|H|
|F| .
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By inductive application of Claim 14, for any i ∈ {1, . . . , ` − 1}, any point z = (z1, . . . , z`) ∈ Di, such that

zi+1, . . . , z` ∈ H , satisfies property Zi(εi, ri), where εi = εi+1

1−γ + 3|F|ε+ µ and ri = ri+1

1−γ + 5|F|r, and γ =
√
|H|
|F| .

In particular, any point z = (z1, . . . , z`) ∈ D1, such that z2, . . . , z` ∈ H , satisfies property Z1(ε1, r1), where
ε1 ≤ 3`|F|ε+`·µ

(1−γ)` < 4`|F|ε+ 2` · µ and r1 ≤ 5`|F|r
(1−γ)` < 6`|F|r.

Hence, by Claim 13, any point z = (z1, . . . , z`) ∈ D0, such that z1, . . . , z` ∈ H , satisfies property Z1(ε0, r0),
where ε0 = ε1

1−γ + |F|ε+ µ < 5`|F|ε+ 3` · µ and r0 = r1
1−γ + 2|F|r < 7`|F|r.

Finally, by Claim 12, any point z = (z1, . . . , z`) ∈ D0, such that z1, . . . , z` ∈ H , satisfies property Z(ε′, r′),
where ε′ < 6`|F|ε+ 4` · µ and r′ < 8`|F|r.

In what follows we prove Claims 11, 12, and 13.

Proof of Claim 11. Assume that z ∈ Zi+1(ε1, r1).
Let L1, . . . , Lλ : F → Di be λ random lines, such that for every L ∈ {L1, . . . , Lλ} we have L(0) = z, and

L is orthogonal to the (i + 1)st coordinate. Let L′1, . . . , L
′
λ : F → Di be λ random lines, such that for every

L′ ∈ {L′1, . . . , L′λ} we have L′(0) = z, and L′ is orthogonal to the ith coordinate.
LetM1, . . . ,Mλ : F2 → Di be λ planes, whereMj(t1, t2) = Lj(t1)+L′j(t2)−z (where the addition/substraction

are over the vector space Di = F`).
Let S = {Mj(t1, t2)}j∈[k],t1,t2∈F ⊂ Di. Let (ϕ,A) ∈R AS . Define A0 : S → F by A0(z′) = A(z′) for z′ 6= z

and A0(z) = 0.
We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F \ {0}, the function A0 ◦Mj(t1, ∗) : F→ F is a univariate polynomial of degree < 2`|H|.

2. For every t2 ∈ F, the function A0 ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|.

By Claim 15 below (applied with f = A0 ◦Mj and d = 2`|H|), if Mj is good then A0 ◦ L′j = A0 ◦Mj(0, ∗) :
F→ F is a univariate polynomial of degree < 2`|H|.

Claim 15. Let f : F2 → F be a function. Assume that for every t1 ∈ F \ {0}, the function f(t1,∗) : F → F is a
univariate polynomial of degree < d, and for every t2 ∈ F, the function f(∗,t2) : F→ F is a univariate polynomial of
degree < d, where d < |F|. Then, f(0,∗) : F→ F is a univariate polynomial of degree < d.

Proof. For every t2 ∈ F, the function f(∗,t2) : F→ F is a univariate polynomial of degree < d. Therefore, there exist
a1, . . . , ad ∈ F, (where a1, . . . , ad are the Lagrange interpolation coefficients), such that for every t2 ∈ F, we have
f(0, t2) =

∑d
t=1 at · f(t, t2). That is, f(0,∗) =

∑d
t=1 at · f(t,∗). Since f(1,∗), . . . , f(d,∗) are univariate polynomials of

degree < d, their linear combination f(0,∗) is also a univariate polynomial of degree < d.

We will show that with high probability, at least λ − r2 of the planes M ∈ {M1, . . . ,Mλ} are good (where the
probability is over L1, . . . , Lλ, L

′
1, . . . , L

′
λ, A). By Claim 15, this implies that with high probability, at least λ− r2 of

the lines L′ ∈ {L′1, . . . , L′λ} satisfy that A0 ◦ L′ : F → F is a univariate polynomial of degree < 2`|H| (where the
probability is over L1, . . . , Lλ, L

′
1, . . . , L

′
λ, A).

Claim 16. There exists a negligible function µ = µ(λ) (independent of i ∈ [`]) such that with probability ≥ 1− ε1 −
2|F|ε− µ, for at least λ− r1 − 3|F|r of the indices j ∈ [λ], we have that Mj is good.

Proof. For every t1 ∈ F\{0}, consider the set of lines {Mj(t1, ∗)}j∈[λ] and note that this is a set of λ random lines in
Di, such that every lineL ∈ {Mj(t1, ∗)}j∈[λ] is orthogonal to the ith coordinate, and satisfiesL(0)i+1 = zi+1. Hence,
by the computational no-signaling condition, there exists a negligible function µ1 = µ1(λ) (independent of i ∈ [`])
such that with probability > 1− ε− µ1, for at least λ− r of the indices j ∈ [λ], we have that A ◦Mj(t1, ∗) : F→ F
is a univariate polynomial of degree < 2`|H|.

Denote byEj the event that the linesLj , L′j are in general position, that is, the vectorsLj(1)−Lj(0), L′j(1)−L′j(0)

span a linear subspace of dimension 2 (as vectors in Di = F`). Note that event Ej occurs with probability 1− 1
|F|`−1 .

Moreover, note that if event Ej occurs then z /∈ Mj(t1, ∗), and hence A0 ◦Mj(t1, ∗) = A ◦Mj(t1, ∗). Therefore, if
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A◦Mj(t1, ∗) : F→ F is a univariate polynomial of degree < 2`|H| and event Ej holds, then A0 ◦Mj(t1, ∗) : F→ F
is also a univariate polynomial of degree < 2`|H|.

For every t2 ∈ F \ {0}, consider the set of lines {Mj(∗, t2)}j∈[λ] and note that this is a set of λ random lines
in Di such that every line L ∈ {Mj(∗, t2)}j∈[λ] is orthogonal to the (i + 1)th coordinate, and satisfies L(0)i = zi.
Hence, by the computational no-signaling condition, there exists a negligible function µ2 = µ2(λ) (independent of
i ∈ [`]) such that with probability > 1− ε− µ2, for at least λ− r of the indices j ∈ [λ], we have that A ◦Mj(∗, t2) :
F → F is a univariate polynomial of degree < 2`|H|. As above, if event Ej occurs then z /∈ Mj(∗, t2), and hence
A0 ◦Mj(∗, t2) = A ◦Mj(∗, t2). Therefore, if A ◦Mj(∗, t2) : F → F is a univariate polynomial of degree < 2`|H|
and event Ej holds then A0 ◦Mj(∗, t2) : F→ F is also a univariate polynomial of degree < 2`|H|.

Consider the set of lines {Mj(∗, 0)}j∈[λ] and note that Mj(∗, 0) = Lj . The fact that z ∈ Zi+1(ε1, r1), together
with the computational no-signaling condition, implies that there exists a negligible function µ3 = µ3(λ) (independent
of i ∈ [`]) such that with probability ≥ 1 − ε1 − µ3, for at least λ − r1 of the indices j ∈ [λ], we have that
A0 ◦Mj(∗, 0) : F→ F is a univariate polynomial of degree < 2`|H|.

Recall that each event Ej occurs with probability 1− 1
|F|`−1 , and these events are independent. This, together with

our assumption that
|F|`−1 ≥ |H|3·(`−1) ≥ |H|3·3m ≥ λ9

(where the latter inequality follows from our assumption that |H|m ≥ λ), implies that

Pr [|{j : ¬Ej}| ≥ |F|] ≤
(
λ

|F|

)
·
(

1

|F|`−1

)|F|
≤
(
eλ

|F|`

)|F|
≤
(

1

λ8

)|F|
.

Let µ0 =
(

1
λ8

)|F|
. Note that µ0 = negl(λ).

Adding up all this, by the union bound, we obtain that with probability ≥ 1 − ε1 − 2|F|ε − µ, where µ =
µ0 + µ1 + µ2 + µ3, for at least λ− r1 − 2|F|r − |F| ≥ λ− r1 − 3|F|r of the indices j ∈ [λ], we have that:

1. For every t1 ∈ F \ {0}, A0 ◦Mj(t1, ∗) is a univariate polynomial of degree < 2`|H|.

2. For every t2 ∈ F \ {0}, A0 ◦Mj(∗, t2) is a univariate polynomial of degree < 2`|H|.

3. A0 ◦Mj(∗, 0) is a univariate polynomial of degree < 2`|H|.

That is, with probability at least 1− ε1− 2|F|ε−µ, for at least λ− r1− 3|F|r of the indices j ∈ [λ], we have that Mj

is good.

Proof of Claim 12. The proof of this claim is identical to the proof of Claim 11, except that we let L′1, . . . , L
′
λ :

F → Di be λ random lines such that for every L′ ∈ {L1, . . . , Lλ} we have that L′(0) = z (without the requirement
that L′ is orthogonal to the ith coordinate).

Proof of Claim 13. Fix ε1 ≥ 0, r1 ≥ 0, and i ∈ {1, . . . , `}. Fix z = (z1, . . . , z`) ∈ F` such that zi ∈ H . Assume
that for every t ∈ F, the point z(t) = (z1, . . . , zi−1, t, zi+1, . . . , z`), viewed as a point in Di, satisfies property
Zi(ε1, r1).

Let L1, . . . , Lλ : F → F` be λ random lines, such that for every L ∈ {L1, . . . , Lλ}, we have L(0) = 0, and L is
orthogonal to the ith coordinate.

Let M1, . . . ,Mλ : F2 → F` be λ planes, where Mj(t1, t2) = Lj(t1) + z(t2) (where the addition is over the vector
space F`).

Let Si and Si−1 be two copies of the set of points {Mj(t1, t2)}j∈[λ],t1,t2∈F ⊂ F`, and view Si as a subset of Di

and Si−1 as a subset of Di−1. Let S = Si ∪ Si−1 ⊂ D. Let (ϕ,A) ∈R AS . Recall that we view A as a function
A : S → F, and we denote by Ai, Ai−1 the restriction of that function to Si, Si−1, respectively.

Define A0
i : Si → F by A0

i (z
′) = Ai(z

′) for z′ 6∈ {z(t)}t∈F, and A0
i (z
′) = 0 for z′ ∈ {z(t)}t∈F. Define

A0
i−1 : Si−1 → F by A0

i−1(z′) = Ai−1(z′) for z′ 6∈ {z(t)}t∈F and A0
i−1(z′) = 0 for z′ ∈ {z(t)}t∈F.

We say that Mj is good if the following is satisfied:
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1. For every t1 ∈ F, and every t ∈ F,

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

2. For at least |H| values t2 ∈ F, the function A0
i ◦ Mj(∗, t2) : F → F is a univariate polynomial of degree

< 2`|H|.

By Claim 17 below (applied with f = A0
i ◦Mj , f ′ = A0

i−1 ◦Mj and d = 2`|H|), if Mj is good then for every
t2 ∈ H , the function A0

i−1 ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|.

Claim 17. Let f : F2 → F and f ′ : F2 → F be two functions. Assume that:

1. For every t1 ∈ F and every t ∈ F,
f(t1, t) =

∑
h∈H

f ′(t1, h)th

2. For at least |H| values t2 ∈ F, the function f(∗,t2) : F→ F is a univariate polynomial of degree < d.

Then, for every t2 ∈ H , the function f ′(∗,t2) : F→ F is a univariate polynomial of degree < d.

Proof. For every h ∈ H , present the function f ′(∗,h) : F→ F as a univariate polynomial (in the free variable y),

f ′(y, h) = f ′(∗,h)(y) =

|F|−1∑
s=0

ah,s · ys

where ah,0, . . . , ah,|F|−1 ∈ F. Thus, for every y ∈ F and every t ∈ F,

f(∗,t)(y) = f(y, t) =
∑
h∈H

f ′(y, h)th =
∑
h∈H

|F|−1∑
s=0

ah,s · ys · th =

|F|−1∑
s=0

(∑
h∈H

ah,s · th
)
· ys

Assume for a contradiction that for some s ≥ d, the polynomial
∑
h∈H ah,s · th is not the identically 0 polynomial,

and let s be the largest such index. Since
∑
h∈H ah,s · th is not identically 0, and its degree is ≤ |H| − 1, it gives 0 on

at most |H| − 1 values of t ∈ F. Hence, the polynomial f(∗,t)(y) is of degree < s for at most |H| − 1 values of t ∈ F,
which is a contradiction to the assumption that for at least |H| values t ∈ F, the function f(∗,t) : F→ F is a univariate
polynomial of degree < d.

Thus, for every s ≥ d, the polynomial
∑
h∈H ah,s · th is the identically 0 polynomial. That is, for every s ≥ d and

every h ∈ H we have ah,s = 0. Hence, for every h ∈ H , the function f ′(∗,h) : F → F is a univariate polynomial of
degree < d.

We will show that with high probability, at least λ − r2 of the planes M ∈ {M1, . . . ,Mλ} are good (where the
probability is over L1, . . . , Lλ, A).

Claim 18. There exists a negligible function µ = µ(λ) (independent of i ∈ [`]) such that with probability≥ 1−|F|ε−
ε1

1−γ − µ, for at least λ− 2|F|r − r1
1−γ of the indices j ∈ [λ], we have that Mj is good, where γ =

√
|H|
|F| .

Proof. First note that for t1 = 0,
A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

is satisfied trivially (for every j ∈ [λ], and every t ∈ F), since A0
i ◦Mj(0, ∗) and A0

i−1 ◦Mj(0, ∗) are the identically 0
function (by the definitions).

For every t1 ∈ F \ {0}, consider the set of points {Mj(t1, 0)}j∈[λ] and note that this is a set of λ random points
in F`, such that the ith coordinate of each of these points is 0 (that is, all other coordinates of all these points are
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uniformly distributed and independent random variables). Hence, by the computational no-signaling property, there
exists a negligible function µ1 = µ1(λ) (independent of i ∈ [`]) such that with probability > 1 − ε − µ1, for at least
λ− r of the indices j ∈ [λ], the following is satisfied for every t ∈ F:

Ai(Mj(t1, t)) =
∑
h∈H

Ai−1(Mj(t1, h))th

For every j ∈ [λ], denote by Ej the event that the line Lj is in a general position (as a line in F`), that is, its
image is not just a single point. Note that event Ej occurs with probability 1 − 1

|F|`−1 . Moreover, note that if event
Ej occurs, then for every t ∈ F we have that z(t) /∈ Mj(t1, t), and hence A0

i (Mj(t1, t)) = Ai(Mj(t1, t)) and
A0
i−1(Mj(t1, t)) = Ai−1(Mj(t1, t)). Therefore, if event Ej occurs and Ai(Mj(t1, t)) =

∑
h∈H Ai−1(Mj(t1, h))th

then
A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

(and recall that for t1 = 0 this is satisfied trivially).
Recall that each event Ej occurs with probability 1− 1

|F|`−1 , and these events are independent. This, together with
our assumption that

|F|`−1 ≥ |H|3·(`−1) ≥ |H|3·3m ≥ λ9

(where the latter inequality follows from our assumption that |H|m ≥ λ), implies that

Pr [|{j : ¬Ej}| ≥ |F|] ≤
(
λ

|F|

)
·
(

1

|F|`−1

)|F|
≤
(
eλ

|F|`

)|F|
≤
(

1

λ8

)|F|
.

Denote by µ0 = µ0(λ) =
(

1
λ8

)|F|
, and note that µ0 = negl(λ). Adding up all this, by the union bound, with

probability > 1 − |F|ε − |F|µ1 − µ0, for at least λ − |F|r − |F| ≥ λ − 2|F|r of the indices j ∈ [λ], the following is
satisfied for every t1 ∈ F and every t ∈ F:

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th (11)

For every t2 ∈ F, consider the set of lines {Mj(∗, t2)}j∈[λ] and note that this is a set of λ random lines, such that
for every L ∈ {Mj(∗, t2)}j∈[λ], we have L(0) = z(t2), and L is orthogonal to the ith coordinate. The fact that z(t2),
viewed as a point in Di, satisfies property Zi(ε1, r1), together with the computational no-signaling property, implies
that there exists a negligible function µ2 = µ2(λ) (independent of i ∈ [λ]) such that with probability ≥ 1 − ε1 − µ2,
for at least λ − r1 of the indices j ∈ [λ], we have that A0

i ◦Mj(∗, t2) : F → F is a univariate polynomial of degree
< 2`|H|.

Since this is true for every t2 ∈ F, by Claim 19 below, applied with α = ε1 + µ2, we obtain the following for any
γ < 1:

With probability≥ 1− ε1+µ2

1−γ , for at least γ|F| values t2 ∈ F we have that for at least λ− r1 of the indices j ∈ [λ],
the function A0

i ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|.

Claim 19. Let {Vt}t∈F be a set of events, such that, for every t ∈ F, Pr[Vt] ≥ 1 − α. Then, for any γ < 1, with
probability of at least 1− α

1−γ , at least γ|F| events in {Vt}t∈F occur.

Proof. Let It be the characteristic function of the event ¬Vt. Let I =
∑
t∈F It. Thus, E[I] ≤ α|F|. By Markov’s

inequality, Pr[I > (1− γ)|F|] < α/(1− γ). Thus, with probability of at least 1− α/(1− γ), at least γ|F| events in
{Vt}t∈F occur.

Recall that with probability ≥ 1− ε1+µ2

1−γ , for at least γ|F| values t2 ∈ F we have that for at most r1 of the indices
j ∈ [λ], the function A0

i ◦Mj(∗, t2) : F→ F is not a univariate polynomial of degree < 2`|H|.
Since in a {0, 1}-matrix with γ|F| rows and [λ] columns, with at most r1 ones in each row, there are at most

γ|F|r1
γ|F|−|H| columns with more than γ|F| − |H| ones (otherwise, the total number of ones is > γ|F|r1), this implies that
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with probability ≥ 1 − ε1+µ2

1−γ , for all but at most γ|F|r1
γ|F|−|H| indices j ∈ [λ] we have that for at least |H| of the values

t2 ∈ F, the function A0
i ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < 2`|H|.

Combined with Equation (11), by the union bound, with probability > 1− |F|ε− |F|µ1 − µ0 − ε1+µ2

1−γ , for at least

λ− 2|F|r − γ|F|r1
γ|F|−|H| of the indices j ∈ [λ], we have that:

1. For every t1 ∈ F and every t ∈ F:

A0
i (Mj(t1, t)) =

∑
h∈H

A0
i−1(Mj(t1, h))th

2. For at least |H| of the values t2 ∈ F the function A0
i ◦Mj(∗, t2) : F → F is a univariate polynomial of degree

< 2`|H|.

That is, with probability ≥ 1− |F|ε− |F|µ1−µ0− ε1+µ2

1−γ , for at least λ− 2|F|r− γ|F|r1
γ|F|−|H| of the indices j ∈ [λ],

we have that Mj is good. In particular, for γ =
√
|H|
|F| , we have that with probability≥ 1−|F|ε−|F|µ1−µ0− ε1+µ2

1−γ ,
for at least λ− 2|F|r − r1

1−γ of the indices j ∈ [λ], we have that Mj is good.
Setting µ = |F|µ1+µ0+ µ2

1−γ , we conclude that with probability ≥ 1−|F|ε− ε1
1−γ −µ, for at least λ−2|F|r− r1

1−γ
of the indices j ∈ [λ], we have that Mj is good.

By Claim 17, Claim 18 implies that with probability ≥ 1− |F|ε− ε1
1−γ − µ, at least λ− r2 of the indices j ∈ [λ]

satisfy that for every t2 ∈ H , the function A0
i−1 ◦Mj(∗, t2) : F → F is a univariate polynomial of degree < 2`|H|,

(where the probability is over L1, . . . , Lλ, A).
Fix t2 = zi. Consider the set of lines {Mj(∗, t2)}j∈[λ] and note that this is a set of λ random lines, such that for

every L ∈ {Mj(∗, t2)}j∈[λ], we have L(0) = z(t2) = z, and L is orthogonal to the ith coordinate.
Thus, by the above, with probability ≥ 1 − |F|ε − ε1

1−γ − µ, at least λ − r2 of the indices j ∈ [λ] satisfy that
the function A0

i−1 ◦Mj(∗, t2) : F → F is a univariate polynomial of degree < 2`|H|. Thus, by the computational
no-signaling property, there exists a negligible function µ3 = µ3(λ) (independent of i ∈ [λ]) such that the point z,
viewed as a point in Di−1, satisfies property Zi(ε2, r2), with ε2 = |F|ε− ε1

1−γ − µ
∗, for µ∗ = µ+ µ3.

This concludes the proof of Claim 13.

B.2 Proof of Lemma 8
Proof. Fix z ∈ DX . Let L1, . . . , Lλ : F → DX be λ random lines, such that for every L ∈ {L1, . . . , Lλ}, we have
L(0) = z.

Let L′1, . . . , L
′
λ : F → DX be λ random lines, such that for every L ∈ {L′1, . . . , L′λ}, we have L(0) = z. Let

M1, . . . ,Mλ : F2 → DX be λ planes, where Mj(t1, t2) = Lj(t1) + L′j(t2)− z (where the addition/substraction are
over the vector space DX = Fm).

Let S = {Mj(t1, t2)}j∈[λ],t1,t2∈F ⊂ DX . Let (ϕ,A) ∈R AS . For any v ∈ F, define Av : S → F by Av(z′) =
A(z′) for z′ 6= z and Av(z) = v.

We say that Mj is good if the following is satisfied:

1. For every t1 ∈ F \ {0}, the function A ◦Mj(t1, ∗) : F→ F is a univariate polynomial of degree < m|H|.

2. For every t2 ∈ F \ {0}, the function A ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < m|H|.

For every j ∈ [λ], let Ej denote the event that the lines Lj and L′j are in general position; i.e., the vectors
Lj(1) − Lj(0) and L′j(1) − L′j(0) span a linear subspace of dimension two. Note that each event Ej occurs with
probability 1− 1

|F|`−1
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Claim 20 below (applied with f = A ◦Mj and d = m|H|) implies that if Mj is good and event Ej holds, then
there exists v ∈ F, such that, Av ◦ Lj = Av ◦Mj(∗, 0) : F → F and Av ◦ L′j = Av ◦Mj(0, ∗) : F → F are both
univariate polynomials of degree < m|H|.

Claim 20. Let f : F2 → F be a function. Assume that for every t1 ∈ F \ {0}, the function f(t1,∗) : F → F is
a univariate polynomial of degree < d, and for every t2 ∈ F \ {0}, the function f(∗,t2) : F → F is a univariate
polynomial of degree < d, where d < |F|. For any v ∈ F, define fv : F2 → F by fv(t1, t2) = f(t1, t2) for
(t1, t2) 6= (0, 0) and fv(0, 0) = v. Then, there exists v ∈ F, such that, fv(0,∗) : F → F and fv(∗,0) : F → F are both
univariate polynomials of degree < d.

Proof. For every t2 ∈ F\{0}, the function f(∗,t2) : F→ F is a univariate polynomial of degree < d. Therefore, there
exist a1, . . . , ad ∈ F, (where a1, . . . , ad are the Lagrange interpolation coefficients), such that for every t2 ∈ F \ {0},
we have f(0, t2) =

∑d
t=1 at · f(t, t2). Since fv(t1, t2) = f(t1, t2) for (t1, t2) 6= (0, 0), this implies that for every

t2 ∈ F \ {0} and every v ∈ F, we have fv(0, t2) =
∑d
t=1 at · fv(t, t2).

Let v =
∑d
t=1 at · f(t, 0). Since fv(0, 0) = v, we now have for every t2 ∈ F (including t2 = 0), fv(0, t2) =∑d

t=1 at · fv(t, t2). That is, fv(0,∗) =
∑d
t=1 at · fv(t,∗). Since fv(1,∗), . . . , f

v
(d,∗) are identical to f(1,∗), . . . , f(d,∗) and are

hence univariate polynomials of degree < d, their linear combination fv(0,∗) is also a univariate polynomial of degree
< d.

The proof now follows from Claim 15, applied on the function fv (with variables t1, t2 switched).

We show (in Claim 21 below) that with high probability, for at least λ− 3|F|r of the indices j ∈ [λ], the event Ej
holds and the plane Mj is good (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A). By Claim 20, this implies

that with high probability, for at least λ − 3|F|r of the indices j ∈ [λ], there exists v ∈ F (which may depend on j)
such that Av ◦ Lj = Av ◦Mj(∗, 0) : F→ F and Av ◦ L′j = Av ◦Mj(0, ∗) : F→ F are both univariate polynomials
of degree < m|H| (where the probability is over L1, . . . , Lk, L

′
1, . . . , L

′
k, A).

Claim 21. There exists a negligible function µ = negl(λ) such that with probability ≥ 1 − 2|F|ε − µ, for at least
λ− 3|F|r of the indices j ∈ [λ], we have that event Ej holds and Mj is good.

Proof. Recall that each event Ej occurs with probability 1− 1
|F|`−1 , and these events are independent.

This, together with our assumption that

|F|`−1 ≥ |H|3·(`−1) ≥ |H|3·3m ≥ λ9

(where the latter inequality follows from our assumption that |H|m ≥ λ), implies that

Pr [|{j : ¬Ej}| ≥ |F|] ≤
(
λ

|F|

)
·
(

1

|F|`−1

)|F|
≤
(
eλ

|F|`

)|F|
≤
(

1

λ8

)|F|
.

Denote by µ0 = µ0(λ) =
(

1
λ8

)|F|
, and note that µ0 = negl(λ).

For every t1 ∈ F \ {0}, consider the set of lines {Mj(t1, ∗)}j∈[λ] and note that this is a set of λ random lines
in DX . Hence, by the computational no signaling, there exists a negligible function µ1 = µ1(λ) such that with
probability > 1− ε− µ1, for at least λ− r of the indices j ∈ [λ], we have that A ◦Mj(t1, ∗) : F→ F is a univariate
polynomial of degree < m|H|.

For every t2 ∈ F \ {0}, consider the set of lines {Mj(∗, t2)}j∈[λ] and note that this is a set of λ random lines in
DX . Hence, by the computational no-signaling property, with probability> 1−ε−µ1, for at least λ−r of the indices
j ∈ [λ], we have that A ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < m|H|.

Adding up these facts, by the union bound, we obtain that with probability ≥ 1 − 2|F|ε − 2|F|µ1, for at least
λ− 2|F|r of the indices j ∈ [λ], we have that:

1. For every t1 ∈ F \ {0}, A ◦Mj(t1, ∗) : F→ F is a univariate polynomial of degree < m|H|.

2. For every t2 ∈ F \ {0}, A ◦Mj(∗, t2) : F→ F is a univariate polynomial of degree < m|H|.
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That is, with probability ≥ 1− 2|F|ε− 2|F|µ1, for at least λ− 2|F|r of the indices j ∈ [λ], we have that Mj is good.
By setting µ = 2|F|µ1 +µ0 we conclude that with probability ≥ 1− 2|F|ε−µ for at least λ− 3|F|r of the indices

j ∈ [λ], we have that event Ej holds and Mj is good, as desired.

So far we proved that with probability ≥ 1 − 2|F|ε − µ it holds that for at least λ − 3|F|r of the indices j ∈ [λ]
there exists a value v ∈ F (which may depend on j), such that Av ◦ Lj : F → F and Av ◦ L′j : F → F are univariate
polynomials of degree < m|H|.

To conclude the proof, we need to prove that there exists a negligible function µ′ such that with probability
≥ 1 − 2|F|ε − µ′ there exists a single value v ∈ F such that for at least λ − r′ of the indices j ∈ [λ] it holds that
Av ◦ Lj is univariate polynomials of degree < m|H|, where r′ = 30|F|r.

To this end, denote by E the event that indeed there exists v ∈ F, such that for at least λ− r′ of the indices j ∈ [λ],
Av ◦ Lj : F → F is a univariate polynomial of degree < m|H|. We need to prove that there exists a negligible
function µ′ such that Pr[E] ≥ 1− 2|F|ε− µ′ (where the probability is over L1, . . . , L2λ, A).

Denote by E′ the event that for at least λ− 3|F|r of the indices j ∈ [λ], there exists v ∈ F (that may depend on j),
such that both Av ◦ Lj : F→ F and Av ◦ L′j : F→ F are univariate polynomials of degree < m|H|. By Claim 21,

Pr[E′] ≥ 1− 2|F|ε− µ.

Claim 22. Pr[E′ | ¬E] = negl(λ)

Proof. In what follows, to simplify notation, we denote the random lines L′1, . . . , L
′
λ by Lλ+1, . . . , L2λ, and consider

the 2λ lines L1, . . . , L2λ. Note that these are 2λ random lines such that for every j ∈ [2λ], it holds that Lj : F→ DX

and Lj(0) = z.
For every v ∈ F, let Jv be the set of indices j ∈ [2λ] such that Av ◦ Lj : F → F is a univariate polynomial of

degree < m|H|. Note that for every v 6= v′ ∈ F,

Jv ∩ Jv′ = ∅.

If event ¬E occurs then for every v ∈ F,
|Jv| < 2λ− r′.

Denote by J the largest set Jv and by J̄ the complement of J in [2λ]. Thus, if event ¬E occurs then |J̄ | > r′.
Note that given the sets {Jv}v∈F, the probability that E′ occurs is the probability that when partitioning [2λ]

randomly into λ pairs, for at least λ − 3|F|r pairs the two indices in the pair are in the same set Jv . Assuming that
|J̄ | > r′, this probability can be bounded by 2−|F|r by the following argument:

Choose the partition as follows: First choose randomly λ′ = r′/2 = 15|F|r different indices j1, . . . , jλ′ in J̄ .
Match the indices j1, . . . , jλ′ one by one, each to a random index in [2λ] that was still not chosen. Say that jt ∈
{j1, . . . , jλ′} is good if it was matched to an index in a set Jv such that jt ∈ Jv . Finally, extend the partial partition
randomly into a partition of [2λ] into λ pairs. Note that the probability for an index jt to be good is at most λ

2λ−r′ <
0.51, independently of all previous choices of indices. Thus, the probability that at least λ′ − 3|F|r indices jt ∈
{j1, . . . , jλ′} are good is at most(

λ′

3|F|r

)
· 0.51λ

′−3|F|r ≤
(
λ′ · e
3|F|r

)3|F|r
· 0.5112|F|r =

(
(5e)3 · 0.5112

)|F|r ≤ 0.8|F|r = negl(λ),

where the first inequality follows from the standard inequality that
(
n
k

)
≤
(
n·e
k

)k
, and the second to last inequality

follows from basic calculations.

Thus, Pr[E′ | ¬E] = negl(λ).
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We can now bound,
1− 2|F|ε− µ ≤ Pr[E′] ≤ Pr[E′ | ¬E] + Pr[E]

Thus,
Pr[E] > 1− 2|F|ε− µ− Pr[E′ | ¬E].

Let µ′ = µ+ Pr[E′ | ¬E]. Thus,
Pr[E] > 1− 2|F|ε− µ′,

and by Claim 22, µ′ is indeed a negligible function, as desired.

B.3 Proof of Lemma 9
Proof. Since ϕ is polynomially-sized, it suffices to fix any i1, i2, i3 ∈ Hm and b1, b2, b3 ∈ {0, 1} and view i1, i2, i3
as points in DX . Let L1,1, . . . , L1,λ : F → DX be λ random lines, such that for every L ∈ {L1,1, . . . , L1,λ} we
have L(0) = i1. Let L2,1, . . . , L2,λ : F → DX be λ random lines, such that for every L ∈ {L2,1, . . . , L2,λ} we
have L(0) = i2. Let L3,1, . . . , L3,λ : F→ DX be λ random lines, such that for every L ∈ {L3,1, . . . , L3,λ} we have
L(0) = i3. Let

SX = {L1,j(t), L2,j(t), L3,j(t)}j∈[λ],t∈F .

Let z = (i1, i2, i3, b1, b2, b3) ∈ H`. Let L1
b1,b2,b3

, . . . , Lλb1,b2,b3 : F → D0 be λ random lines such that for every
j ∈ [λ] the following holds:

1. Ljb1,b2,b3(0) = z.

2. L1,j : F→ DX is the restriction of Ljb1,b2,b3 to coordinates {1, . . . ,m}.

3. L2,j : F→ DX is the restriction of Ljb1,b2,b3 to coordinates {m+ 1, . . . , 2m}.

4. L3,j : F→ DX is the restriction of Ljb1,b2,b3 to coordinates {2m+ 1, . . . , 3m}.

Let
S0
b1,b2,b3 =

{
Ljb1,b2,b3(t)

}
j∈[λ],t∈F

.

Let S0 = {S0
b1,b2,b3

}b1,b2,b3∈{0,1} and let S = S0 ∪ SX ⊂ D. Let (ϕ,A) ∈R AS . We denote A = AX ∪ A0,
where AX corresponds to the answers corresponding to the queries in SX and A0 are the answers corresponding to
the queries in S0.

In what follows, for any i ∈ DX and v ∈ F, we define Ai→vX : SX → F by Ai→vX (i′) = AX(i′) for i′ 6= i and
Ai→vX (i) = v.

Claim 23. There exists a negligible function µ such that with probability ≥ 1− 7`|F|ε− µ, there exist v1, v2, v3 ∈ F
such that for at least λ− 9`|F|r of the indices j ∈ [λ], the following is satisfied:

1. Ai1→v1X ◦ L1,j : F→ F is a univariate polynomial of degree < m|H|.

2. Ai2→v2X ◦ L2,j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai3→v3X ◦ L3,j : F→ F is a univariate polynomial of degree < m|H|.

4. φ(i1, i2, i3, b1, b2, b3) · (v1 − b1) · (v2 − b2) · (v3 − b3) = 0.

By computational no-signaling requirement, Claim 23 immediately implies Lemma 9. Thus, in the remaining of
the proof we focus on proving Claim 23.

LetA0
0◦L

j
b1,b2,b3

: F→ F be the function defined byA0
0◦L

j
b1,b2,b3

(0) = 0 andA0
0◦L

j
b1,b2,b3

(t) = A0◦Ljb1,b2,b3(t)
for every t 6= 0. By Lemma 7, together with the computational no-signaling property, there exists a negligible function
µ1 = µ1(λ), such that with probability ≥ 1− 6`|F|ε− µ1, for at least λ− 8`|F|r of the indices j ∈ [λ], we have that

A0
0 ◦ L

j
b1,b2,b3

: F→ F
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is a univariate polynomial of degree < 2`|H|.
By Lemma 8, together with the computational no-signaling property, there exists a negligible function µ2 = µ2(λ),

such that the following holds:

1. With probability ≥ 1− 2|F|ε− µ2, there exists v1 ∈ F, such that, for at least λ− 30|F|r of the indices j ∈ [λ],
we have that Ai1→v1X ◦ L1

j : F→ F is a univariate polynomial of degree < m|H|.

2. With probability ≥ 1− 2|F|ε− µ2, there exists v2 ∈ F, such that, for at least λ− 30|F|r of the indices j ∈ [λ],
we have that Ai2→v2X ◦ L2

j : F→ F is a univariate polynomial of degree < m|H|.

3. With probability ≥ 1− 2|F|ε− µ2, there exists v3 ∈ F, such that, for at least λ− 30|F|r of the indices j ∈ [λ],
we have that Ai3→v3X ◦ L3

j : F→ F is a univariate polynomial of degree < m|H|.

For every t ∈ F \ {0}, consider the set of points
{
Ljb1,b2,b3(t)

}
j∈[λ]

and note that this is a set of λ random points

in D0. Each point Ljb1,b2,b3(t) ∈ F` can be written as

Ljb1,b2,b3(t) =

(
L1,j(t), L2,j(t), L3,j(t),

(
Ljb1,b2,b3(t)

)
`−2

,
(
Ljb1,b2,b3(t)

)
`−1

,
(
Ljb1,b2,b3(t)

)
`

)
∈ (Fm)3×F3 = F`

where
(
Ljb1,b2,b3(t)

)
`−2

,
(
Ljb1,b2,b3(t)

)
`−1

,
(
Ljb1,b2,b3(t)

)
`

are the last 3 coordinates of Ljb1,b2,b3(t). By the compu-

tational no-signaling condition, there exists a negligible function µ3 = µ3(λ) such that for every t ∈ F \ {0}, with
probability > 1− ε− µ3, for at least λ− r of the indices j ∈ [λ], we have

A0

(
Ljb1,b2,b3(t)

)
= φ̂

(
Ljb1,b2,b3(t)

)
·
(
AX(L1,j(t))−

(
Ljb1,b2,b3(t)

)
`−2

)
·
(
AX(L2,j(t))−

(
Ljb1,b2,b3(t)

)
`−1

)
·
(
AX(L3,j(t))−

(
Ljb1,b2,b3(t)

)
`

)
For every j ∈ [λ] denote by Ej the event that for every w ∈ {1, 2, 3} the line Lw,j is in a general position (as a

line in Fm); i.e., it’s image is not a single point. Note that event Ej occurs with probability at least 1− 3
|F|m−1 .

Moreover, note that if event Ej holds then for every t ∈ F \ {0} it holds that L1,j(t) 6= i1 and L2,j(t) 6= i2 and
L3,j(t) 6= i3. In particular, Ljb1,b2,b3(t) 6= z. Thus, if the equation above holds and event Ej holds, then for every
v1, v2, v3 ∈ F,

A0
0

(
Ljb1,b2,b3(t)

)
= φ̂

(
Ljb1,b2,b3(t)

)
·
(
Ai1→v1X (L1,j(t))−

(
Ljb1,b2,b3(t)

)
`−2

)
·
(
Ai2→v2X (L2,j(t))−

(
Ljb1,b2,b3(t)

)
`−1

)
·
(
Ai3→v3X (L3,j(t))−

(
Ljb1,b2,b3(t)

)
`

)
Our assumption that |H|m ≥ λ, together with the assumption that |F| ≥ |H|3, implies that

|F|m−1 ≥ λ2,

which implies that

Pr [|{j : ¬Ej}| ≥ |F|] ≤
(
λ

|F|

)
·
(

3

|F|m−1

)|F|
≤
(

3eλ

|F|m

)|F|
≤
(

3

λ

)|F|
.
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Let µ4 =
(
3
λ

)|F|
. Adding up all this, by the union bound, we obtain that with probability ≥ 1− ε′, where

ε′ = 6`|F|ε+ µ1 + 3(2|F|ε+ µ2) + |F|(ε+ µ3) + µ4 ≤ 7`|F|ε+ µ

(and where µ = µ1 + 3µ2 + |F|µ3 + µ4) there exist v1, v2, v3 ∈ F, such that, for at least λ − r′ of the indices
j ∈ [λ], where

r′ = 8`|F|r + 30|F|r + r + |F| ≤ 9`|F|r,

the following is satisfied (where the probability is over L1, . . . , Lλ, A):

1. A0
0 ◦ L

j
b1,b2,b3

: F→ F is a univariate polynomial of degree < 3`|H|.

2. Ai1→v1X ◦ L1,j : F→ F is a univariate polynomial of degree < m|H|.

3. Ai2→v2X ◦ L2,j : F→ F is a univariate polynomial of degree < m|H|.

4. Ai3→v3X ◦ L3,j : F→ F is a univariate polynomial of degree < m|H|.

5. For every t ∈ F \ {0},

A0
0

(
Ljb1,b2,b3(t)

)
= φ̂

(
Ljb1,b2,b3(t)

)
·
(
Ai1→v1X (L1,j(t))−

(
Ljb1,b2,b3(t)

)
`−2

)
·
(
Ai2→v2X (L2,j(t))−

(
Ljb1,b2,b3(t)

)
`−1

)
·
(
Ai3→v3X (L3,j(t))−

(
Ljb1,b2,b3(t)

)
`

)
Note that since both sides of the equation are polynomials of degree < |F| in the variable t, the equation must
be satisfied for t = 0 as well. Substituting t = 0, since Ljb1,b2,b3(0) = z = (i1, i2, i3, b1, b2, b3), we have

0 = φ(z) · (v1 − b1) · (v2 − b2) · (v3 − b3),

as desired.
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