
Information Theoretically Secure Databases

Gregory Valiant
gregory.valiant@gmail.com

Paul Valiant
pvaliant@gmail.com

Abstract

We introduce the notion of a database system that is information theoretically secure in between
accesses—a database system with the properties that 1) users can efficiently access their data,
and 2) while a user is not accessing their data, the user’s information is information theoretically
secure to malicious agents, provided that certain requirements on the maintenance of the database
are realized. We stress that the security guarantee is information theoretic and everlasting: it
relies neither on unproved hardness assumptions, nor on the assumption that the adversary is
computationally or storage bounded.

We propose a realization of such a database system and prove that a user’s stored information,
in between times when it is being legitimately accessed, is information theoretically secure both to
adversaries who interact with the database in the prescribed manner, as well as to adversaries who
have installed a virus that has access to the entire database and communicates with the adversary.

The central idea behind our design of an information theoretically secure database system is the
construction of a “re-randomizing database” that periodically changes the internal representation
of the information that is being stored. To ensure security, these remappings of the representation
of the data must be made sufficiently often in comparison to the amount of information that is
being communicated from the database between remappings and the amount of local memory in
the database that a virus may preserve during the remappings. While this changing representation
provably foils the ability of an adversary to glean information, it can be accomplished in a manner
transparent to the legitimate users, preserving how database users access their data.

The core of the proof of the security guarantee is the following communication/data tradeoff
for the problem of learning sparse parities from uniformly random n-bit examples. Fix a set
S ⊂ {1, . . . , n} of size k: given access to examples x1, . . . , xt where xi ∈ {0, 1}n is chosen uniformly
at random, conditioned on the XOR of the components of x indexed by set S equalling 0, any
algorithm that learns the set S with probability at least p and extracts at most r bits of information

from each example, must see at least p ·
(
n
r

)k/2
ck examples, for ck ≥ 1

4 ·
√

(2e)k

kk+3 . The r bits of

information extracted from each example can be an arbitrary (adaptively chosen) function of the
entire example, and need not be simply a subset of the bits of the example.

1 Introduction

With the increasing aggregation of our sensitive data (medical, financial, etc.) in databases that are
accessible over the internet, these databases are increasingly being targeted by malicious agents. Many
of the most worrying and expensive hacks to date have not been due to failures in the transmission
of encrypted data, but due to large-scale attacks on the databases themselves. Stated differently, it is
often not the case that a user requests his/her information, and that information is compromised in
transmission; instead, in between a user’s accesses, an adversary hacks into a database and downloads
thousands or millions of sensitive entries. (See Figure 1 for two such examples.) We introduce a notion
of database security that stipulates that the data being stored is secure in between accesses, which we
refer to as “SIBA security”.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 78 (2016)

Figure 1: Two recent notices that one of the authors received. In both cases, the personal information
was not stolen in transmission—in fact, in the first case, the author has not attempted to access
any information from UC Berkeley’s computer system during the past 3 years. A Secure In Between
Accesses database provides strong defenses against such information theft.

Definition 1. Given a database system D, constructed satisfying some implementation requirements
R, we say that D is information theoretically secure with unconditional guarantees G, if, independent of
any assumptions about the computational or storage limitations of outside agents or of the intractability
of any functions, some guarantees G for users will be achieved independent of the behavior of outside
agents. The guarantees G will be of the form that any user or adversary, even one who has knowledge
of some information I in the database, will be unable to learn anything about the information stored
in the database beyond I, except with a small specified failure probability ε.

We propose a realization of such an information theoretically secure database, which permits users
to access their data efficiently, but which guarantees that any adversary, even one who repeatedly
accesses the database, or installs a virus on the database itself, cannot glean any information about
the users’ data beyond that which it already knows a priori, except with a negligible probability (that
we explicitly bound).

The central idea behind our design of an information theoretically SIBA-secure database system
is to have the database’s representation of the information it stores remap periodically in such a way
that 1) honest database users can continue to access their data by XORing together the information
at a small unchanging set of addresses, but 2) adversaries are information theoretically unable to
piece together information from the different representations in a sufficiently consistent manner to
glean any knowledge. To ensure security, these remappings of the data must occur sufficiently often
in comparison to the amount of information that is being communicated from the database.

The implementation requirements, R, needed by our realization are threefold. First, the database
needs to monitor the total number of bits transmitted from the database to the outside world (whether
transmitted in response to queries of legitimate users, arbitrary queries of illegitimate users, or even
arbitrary information computed by a virus running on the database) and have the ability to cut the
connection to the outside world and re-randomize the database’s representation of user data (in a
manner transparent to users) every time this transmission limit is exceeded. Second, the database
must ensure that at the time of every remapping, for any virus that might be present on the database,
the amount of local memory available to it is also bounded by the prescribed bound on the amount of
communication from the database. And third, the database needs to store the addresses and compute
the remappings securely.

Our information theoretic security guarantees do not extend to the accessing and transmission

2

of a user’s data, or the viewing of the data at the user’s end. At the time of access, a virus in
the database may discover the user’s addresses in the database and exploit them. Improving the
security of the data during accessing and transmission can be attempted via standard oblivious transfer
protocols [18, 16, 11] and encryption, though it will lack the information theoretic guarantees. For
these reasons, we say that our database is “secure in between accesses”. As long as a user’s data is
not being accessed, its security is information theoretically guaranteed.

2 Related Work

While most security and cryptographic schemes rely on the assumptions that adversaries are computa-
tionally bounded and that certain problems require super-polynomial amounts of computation to solve,
there has been significant attention on devising stronger, unconditional security guarantees based on
information theory. This direction, in some sense, began with the proposal of the “one-time-pad” in
the late 1880’s [15] (which was later re-discovered and patented in the 1920’s by Vernam [24]), and
Shannon’s “Communication Theory of Secrecy Systems” [22] in the 1940’s. More recently, Maurer
introduced bounded-storage cryptography, that considered cryptographic protocols with information
theoretic security, under the assumption that the adversary has limited memory [14] (also see the
survey [13]). There has been a great deal of work in this bounded-storage model, including more
recent work on “everlasting” encryption in this model, in which information theoretic security persists
even if the secret key is divulged at some later point in time (assuming the adversary has bounded
storage) [1, 5, 12]. Most of the work on bounded memory cryptography assumes that all parties have
access to some enormous stream of random bits (for example, random bits that are being continuously
broadcast from a satellite), and that the users interact with the stream by selectively storing certain
bits.

Our proposal, in which a database monitors the amount of information communicated from the
database, and refreshes its representation of the data, introduces a significantly different interaction
model from previous approaches to information theoretic security and cryptography. From a technical
perspective, both the previous proposals for everlasting encryption protocols as well as our protocol
proceed by XORing together the values at a certain secret set of indices—in the case of the everlasting
encryption protocols, these index a long stream of random bits, and the XOR is used as a “pad” for
the bit to be communicated. Additionally, both our proof of security, as well as that of [5], proceed by
essentially showing the information theoretic hardness of learning sparse parity functions in a bounded
communication setting, discussed below. What we show is that the combination of re-randomizing
the database and controlling the information flow from it offers strong security guarantees of a novel
nature.

The core of the proof of the information theoretic security of the database system we propose is
a result on the tradeoff between communication and the number of examples necessary to learn a
parity function. There has been significant attention from the learning theory community over the
past few decades on understanding such tradeoffs, perhaps beginning with the work of Ben-David
and Dichterman [3]. In the distributed setting, there has been significant recent work analyzing how
much data is required to learn certain classes of function in the setting in which data is partitioned
across servers, and there are restrictions on the communication between the servers, and/or privacy
constraints (e.g. [2, 6, 25, 7, 4, 23, 21]). In many cases, these results on communication bounded
learning immediately yield analogous statements in the memory bounded streaming setting, where
the learner has limited memory, and is given access to a stream of examples.

As far as analytic methods, the work most closely related to ours are the works of Ding and Ra-
bin [5], Shamir [21], Steinhardt, Valiant, and Wager [23], and Raz [19]. In [5], Ding and Rabin propose
a scheme for “everlasting security” against storage-bounded adversaries, whose proof of correctness

3

can be essentially described as providing a communication/sample tradeoff for the problem of learning
parities of size k from random length n examples. Their result focuses on the regime in which the
communication per example is linear in n, specifically n/6, and show that the security guarantees will
be of the form exp(k). In [21], Shamir considers learning with memory and communication constraints,
and, among other results, shows that: for the problem of identifying one significantly biased bit from
otherwise uniformly random length n examples, any learning algorithm with r bits of memory requires
O(n/r) examples to correctly identify the biased index. This corresponds to the problem of learning
parities of size k = 1, from random examples. In [23], the authors establish a correspondence between
the problems that are learnable via algorithms that communicate/extract few bits of information from
each example, and those problems learnable in Kearns’ statistical query model [10]. Additionally, they
show that in the distributed setting in which parties are given examples from a length n instance of
parity, either some parties must communicate θ(n) bits of information about their example, or an
exponential number of parties are required to learn the parity set, with high probability. They also
conjectured a stronger result, that for any positive ε > 0 and sufficiently large n, any algorithm for
learning a random parity function over length n examples either requires memory at least n2(14 − ε),
or must see an exponential number of examples to recover the parity set with high probability. This
conjecture was proved by Raz, with the slightly weaker constant of 1/25 instead of 1/4 − ε [19]. In
that work, Raz also observes that such a result immediately provides an example of a bounded-storage
cryptographic scheme where a single bit can be communicated given a length n private key, and time
n to encrypt/decrypt, in such a way that it is secure against any adversary with memory less than
n2/25.

3 SIBA–Security via Re-Randomizing Databases

At a high level, our proposed system works as follows: the database can be regarded as an n bit string
x, and each user has a specified set of k indices for each bit to be stored. The user’s bit can be accessed
by computing the XOR of the database values at the specified k indices. Periodically, the database
will replace x with a uniformly random string, subject to the condition that the XOR of the specified
indices is still the desired value. The security of the system rests on the ability of the database to
ensure that a limited number of bits of information have been communicated to the outside world
between these “re-randomizations” of x.

For clarity, we formally describe the proposed system in the case of a single user, “Alice”, who
wishes to access a single fixed bit of information b ∈ {0, 1}.

4

An Information Theoretically Secure Database
The database will consist of n bits, the parameter k denotes the key size, the
parameter r denotes the database refresh rate, and Alice wishes to store bit b ∈
{0, 1}.

Initialization:

• Alice and the database agree on a uniformly random secret, S =
{s1, . . . , sk} ⊂ {1, . . . , n} with |S| = k.

• The database is initialized to a uniformly random bit string x ∈ {0, 1}n such
that b =

∑
i∈S xi mod 2.

Access:

• To access Alice’s bit, b, she requests the values of x at locations i ∈ S, and
computes their XOR.

Maintenance:

• The database counts the total number of bits communicated from the
database (in aggregate across all users.)

• Before this count reaches r, the count resets to 0 and the database “re-
randomizes”: it replaces x with a new x′ ∈ {0, 1}n chosen uniformly at
random conditioned on b =

∑
i∈S xi mod 2.

The crux of the above proposal—that the database “re-randomizes” before too much information
is transmitted about any given instantiation of the database’s memory—can be easily guaranteed in
practice by ensuring that two properties hold. First, that the database is connected to the world via a
communication channel with some known bandwidth, and ensuring that the database re-randomizes
conservatively, assuming that the channel is permanently transmitting at full capacity. And second,
that there is no large tract of database memory that is skipped in the re-randomizations. Specifically,
to ensure that no adversary extracts too much information about the state of the database at a
given time, the database must ensure that any virus that might be present (on the database itself)
is restricted to a limited amount of memory between re-randomizations (as such memory could be
leveraged at a future time to communicate extra information about the current state of the database).

3.1 Time-Varying Data

The above basic design easily extends to support the setting where Alice’s bit changes over time. Let
bt denote the bit as a function of time, t, and assume that time is delimited in discrete intervals. The
above protocol can be trivially adapted to allow Alice access to the time-dependent bit bt, by simply
ensuring that the database re-randomizes both at each time increment, and when the communication
reaches the database refresh rate parameter, r. With a re-randomization that occurs at time t, the
database string x is chosen uniformly at random conditioned on the XOR of the indices of x in Alice’s
secret set equalling bt. This protocol also extends naturally to the multi-user setting, and the setting
where each user stores multiple bits, with security guarantees essentially unchanged, provided the
length of the database string is greater than 2k times the total number of bits to be stored across all
users. We describe these extensions in Section 4.

5

3.2 Security Guarantees

The following observation characterizes the security guarantees of the above system in the setting in
which an adversary can only interact with the database by requesting the database values at specified
indices:

Observation 1. After at most t “re-randomizations” of the database, an adversary that only interacts
with the database by requesting the database values at r specified indices per re-randomization can
correctly guess Alice’s secret subset S with probability at most t (r/n)k, even if the adversary knows
Alice’s sequence of bits b1, . . . , bt a priori. Furthermore, an adversary who knows Alice’s bit values at
times 1, . . . , i− 1, i+ 1, i+ 2, . . . , t, can distinguish the case that bi = 0 from the case that bi = 1 with
probability at most t (r/n)k .

The above observation follows from noting that for any subset of indices Q ⊂ {1, . . . , n} that does
not contain the entire set S, the bits of the database at indices in Q will be a uniformly random
|Q|-length bitstring, and in particular, is independent of Alice’s current bit bi and all of her past and
future bits.

The power of the above observation is that even an adversary who knows Alice’s data ahead of
time cannot leverage this knowledge to any advantage. In practical terms, for a bank implementing
such a system, this would mean that even if an adversary steals a paper copy of Alice’s bank account
balance and all her historical banking information, the adversary cannot leverage this information to
glean any additional information about Alice’s account, and, for example, will not be able to detect
a change to the account balance, or recover any more historic data than what the adversary already
has. Further, this simple setting has the “everlasting security” property [1] that, if after the database
is shut down, the adversary later learns the locations of Alice’s secret bit locations, the adversary will
not be able to recover any of Alice’s secrets (unless, as happens with probability t(r/n)k, during one
of the t periods the adversary had previously got lucky and simultaneously observed all k of the bits
at Alice’s locations).

The following theorem, which is our main result, shows that similar information theoretic security
persists even in the presence of significantly more pernicious attacks on the database. Suppose an
adversary hacks into the database and installs a virus that allows the adversary to interact with the
database in a more general fashion, rather than simply querying the database value at specified indices.
Even if the virus can compute arbitrary functions of the entire database and transmit these function
evaluations to the adversary, the database will be secure with essentially the same bounds provided
at most r bits have been transmitted between “re-randomizations”. This security holds even if the
adversary has infinite memory and computational power, and can communicate arbitrary amounts of
information to the virus—for example, even in the setting where the adversary is able to upload a new
virus with every re-randomization. Alternatively, instead of assuming a bound of r communication to
the outside world, the same results hold when bounding the communication of the virus to its future
self: the assumption that the database can ensure that no virus preserves more than r local memory on
the database between re-randomizations is practically feasible as the database simply needs to ensure
that there is no very-large tract of memory that is left untouched during the “re-randomizations”.

Theorem 1. Given the database system described above with key size k that maintains an n-bit string,
any algorithm that extracts at most r bits of information about the database between re-randomizations

can correctly guess Alice’s secret set, S, with probability at most
(
n
k

)−1
+ t ·

(
r
n

)k/2 · 4√ kk+3

(2e)k
after t

re-randomizations. Furthermore, the security of Alice’s data is “everlasting”: suppose Alice stores
bits b1, . . . , bt−1 in the database for the first t − 1 re-randomizations, and these bits are known to the
adversary ahead of time. If Alice then chooses bit bt at random from {0, 1}, and the adversary extracts
at most r bits of information from the database during each of the first t re-randomizations, then

6

even if the adversary is given Alice’s secret set S after the t+ 1st rerandomization, the adversary can

correctly guess Alice’s bit with probability at most 1/2 + t ·
(
r
n

)k/2 · 4 ·√ kk+3

(2e)k
.

One reasonable setting of parameters would be to use a database string of size n = 1012, with
rerandomization occurring every r = 108 bits transmitted, and where each bit stored in the database
is represented as the XOR of k = 10 secret locations. In this case Theorem 1 guarantees information
theoretic security except with probability < 3·10−17, per database rerandomization, for each bit stored
in the database.

The above theorem can also be viewed as a communication/data tradeoff for the problem of learning
k-sparse parities over n-bit examples:

Corollary 1. Choose a uniformly random set S = {s1, . . . , sk} ⊂ {1, . . . , n} of size k: given access to
a stream of examples x1, . . . , xt where each xi ∈ {0, 1}n is chosen uniformly at random, conditioned
on the XOR of the components of xi with indices in S being bi, any algorithm, given b1, . . . , bt, that
must (even adaptively) compress each example to at most r bits before seeing the next example can

correctly guess the set S with probability at most
(
n
k

)−1
+ t ·

(
r
n

)k/2 · 4√ kk+3

(2e)k
.

This result can be viewed as mapping the intermediate regime between the communication/data
tradeoffs given by Ohad Shamir [21] for the case k = 1 (the “hide-and-seek” problem of detecting
a biased index from otherwise uniformly random length n sequences), and the results in Steinhardt,
Valiant, and Wager [23] for the case k = θ(n), which shows that any algorithm that extracts less than
n− c bits of information from each example, must see at least 2θ(c) examples.

The proof of Theorem 1 is given in Section 7.

4 Extension to Multiple Users and Multiple Bits

We present the straightforward extension of our secure database to the setting where there are multiple
users, each storing multiple bits. Each bit to be stored will have its own associated secret set of k
indices, disjoint from the sets corresponding to all other bits (whether from the same user or a different
user). To construct a length-N string that stores s bits collectively, across various users: for each secret
bi, to be stored in locations hi,1, . . . , hi,k, the database independently chooses a random set of k bits
of parity bi and assigns them to the locations hi,1, . . . , hi,k in the string; the remaining locations in the
string are chosen to be independent coin flips. The security guarantees on a length-N database storing
s bits collectively across all users result from the following observation: for each secret bit of a user,
even assuming the adversary has complete information about all aspects of all s − 1 remaining bits
(from this user and the other users), then the database setup for the remaining secret bit is effectively
identical to the standard setup of Theorem 1 for a database with string length n = N − (s− 1)k.

Thus, provided the size of the database representation N , is at least ”n-k” bits larger than k times
the number of bits being stored, the security guarantees of Theorem 1 persist. Even in the event that
an adversary has prior knowledge of some of the secret sets and bits, with all but negligible probability,
the adversary cannot leverage this knowledge to gain any additional knowledge:

Corollary 2. Consider a database system as described above that maintains a length N string, has
key size k (per bit stored), and stores a total of s bits b1, . . . , bs, with the ith bit corresponding to the
XOR of k indices hi ⊂ {1, . . . , n}, where the sets hi are disjoint. The security guarantees of Theorem 1
hold for n = N − (s− 1)k, for each given bit bi and secret Si, even if the adversary knows partial or
complete information about the remaining s− 1 bits bj and secret key sets hj.

Proof. We consider the case when the adversary has complete information about the remaining s− 1
bits and secret key sets, as such an adversary can accomplish at least as much as one with only partial

7

information. Consider ignoring all the bits in the (s−1)k known secret key locations h2,1, . . . , hs,k from
the database string of length N , the (joint) distribution of what remains is identical to the construction
of a single bit in a database of size n = N − (s− 1)k, since each of the secret key locations is chosen
independently and disjointly, and for each k-tuple of secret locations the k bits at these locations are
chosen independently of the rest of the database, and each bit not at a secret location is chosen by an
independent coin flip.

The above proof can alternatively be viewed as follows: given a database of size n securely storing
a single bit, the adversary could easily simulate having access to a database of size N = n+ (s− 1)k
securely storing s bits, where the adversary knows everything about the s−1 simulated secrets (because
the adversary simulated adding them to the database). If there were any way to extract information
about one of the bits in the s-bit setting by leveraging partial or complete information about the
other s − 1 bits, then an adversary could simulate this attack in the single-bit setting, contradicting
Theorem 1.

4.1 Decreasing the Key Size

In this multiple-bit setting, as described above, a user will store sk secret indices for every s bits of
information that she wishes to store securely. There are many natural approaches to improving this
scaling of parameters, including analogs of the pseudorandom generators induced by random walks
that were used in a related setting to substantially decrease the key size for a user, so as to be sublinear
in the number of bits she wants to store [12].

5 Secure Communication via Re-Randomizing Databases

A variant of the concept of a re-randomizing database can also be leveraged to provide a secure
channel between pairs of people that replicates the guarantees of a one-time pad, but allows the pair
to securely and efficiently generate new one-time pads. In this setting, the “database” is just a source
of randomness, and does not need any secure storage. One can regard the following protocol as a
variant of the setting considered by the work on “everlasting” encryption [1]. That work assumes that
there is a source broadcasting random bits (e.g. a satellite broadcasting a high-rate stream of random
bits) and storage-bounded adversaries; here instead, in our setting the random bits are available on
a database, and the database re-randomizes the bits after a fixed amount of information has been
transmitted. We describe the protocol below in the setting where Alice wishes to communicate one
bit of information, bt at each timestep t, to Bob.

8

The Refreshable One-Time Pad
The “database” will consist of n bits, the parameter r denotes the database refresh
rate, the parameter k denotes the key size.

Alice and Bob Initialization:

• Alice and Bob securely exchange a key set S consisting of a uniformly random
set of k elements of {1, . . . , n}.

Database Maintenance:

• The database initializes to a uniformly random length n vector x ∈ {0, 1}n.

• The database counts the total number of bits communicated from the
database (in aggregate across all users.)

• Before this count reaches r, the count resets to 0 and the database “re-
randomizes”: it replaces x with a new x′ ∈ {0, 1}n chosen uniformly at
random.

Alice and Bob Communication:

• To communicate bit bt to Bob, Alice queries the database at locations cor-
responding to indices in S. She then sends Bob (over an insecure channel)
the XOR of these bits with her message, bt. Bob then queries the database
at the indices specified by S, and computes bt by XORing the message with
the XOR of the retrieved bits. Alice and Bob may send multiple messages
between re-randomizations of the database by sharing multiple secret sets,
S1, S2, etc. and ensuring that they do not use the same secret set S multiple
times between database re-randomizations.

There are two obvious security weaknesses of the above communication protocol. The first is
that the database must be trusted to re-randomize. The second weakness applies even to an honest-
but-curious database: the communication scheme, as stated above, discloses the secret set, S, to the
database, allowing the database to decrypt Alice’s message. To partially address this problem, both
Alice and Bob could elicit the values at locations indexed by set S via a “1–of–n” oblivious transfer
protocol (see e.g. [18, 16, 11]). Such a protocol guarantees that the database does not learn the indices
queried (or resulting values), and that Alice and Bob do not learn anything about the database
other than their desired values. These guarantees are not information theoretic, and instead rely
on cryptographic assumptions (and the assumption that the parties are computationally bounded).
Nevertheless, our “everlasting” information theoretic guarantees at least yield the fact that, unless
the adversary successfully decrypts the oblivious transfer before the database re-randomizes, Alice’s
message will always be secure. In this sense, the above protocol implemented via oblivious transfers
at least has the property that one only needs to ensure that the oblivious transfer is secure against
the current state-of-the-art. One does not need to worry about the development of future technology
(quantum computers, new attacks, etc.)—by the time such attacks are developed, the “database” will
have re-randomized, and the information necessary to decrypt Alice’s message will have been lost.

9

6 Extensions to Larger Fields

In addition to the generalization discussed in Section 4.1 for shortening the key size, there are several
other basic generalizations of our specific realization of an information theoretically secure database.
One such generalization is to have the internal representation correspond to elements of an arbitrary
group G. (For example, G = Zm, for an integer m > 2, as opposed to the Z2 version of the database
system described above.) In these larger groups, the database construction and maintenance would
be analogous to the Z2 setting: a user wishes to access some value b ∈ G, and the database would
maintain a string x ∈ Gn. The user would have a set of k indices S ⊂ {1, . . . , n}, and the database
would ensure at each re-randomization that x is drawn uniformly at random from Gn, subject to∑

i∈S xi = b (where the arithmetic is with respect to the group operation). Such a system would have
analogous security properties, and would benefit from storing more information for a given size of the
secret set, S.

7 Proof of Theorem 1

We begin with a high level overview of the proof of Theorem 1. Because our proof relies on properties
of polynomials of random ±1 variables, which lets one express the parity of k bits as a degree k
monomial, for the entirety of this section we will refer to bits as being ±1 valued rather than 0/1
valued (as was done in the rest of the paper). Given an n-bit database dat from which an adversary
runs an arbitrary computation returning an r-bit output OUTdat, the challenge is to show that OUTdat
gives essentially no information about either of the two aspects of the database we wish to keep secret:
the user’s secret key, specified by k locations h1, . . . , hk; and the user’s secret itself, which is stored
as the XOR of these k locations in the database. Consider the portion of the hypercube of possible
databases dat← {−1, 1}n that induces a particular output OUT—because there are only 2r possible r-
bit outputs, a typical output OUT must be induced by a relatively large, 2−r fraction of the hypercube.
The main technical step is arguing why, for any large subset of the hypercube, most k-bit parities will
return almost exactly as many 1’s as −1’s on this set. In other words, the only subsets of the hypercube
that are biased for many parities are those subsets that are very small. A singleton set is biased for
all parities but consists of a 2−n fraction of the cube; the set of points whose first k coordinates are 0
is a fairly large fraction of the hypercube, but is only strongly biased for the k-way parity consisting
of exactly the first k bits; in general, large subsets of the hypercube are very close to unbiased, on a
typical parity. We analyze this situation in Proposition 1.

Given this tool, the single time-step (t = 1) special instance of Theorem 1 follows by the straight-
forward argument that, even given r bits of output from the database, the joint conditional distribution
of the k secret locations, and XOR of the values in these locations is very close to uniform. Following
the intuition of [12], this implies both that 1) If the adversary has r bits of output and somehow knows
the user’s secret data, then the secret key is still close to independent of this information, and thus
remains secure; 2) If in addition to the r bits of output, the adversary somehow, after the database
has closed down, learns the user’s secret key, then the user’s secret data remains independent of this
information, and thus has “everlasting” security–namely, with high probability it is information the-
oretically impossible to learn Alice’s bit. To obtain the proof of Theorem 1 for general t, we proceed
by induction on t, leveraging the single time-step special case. The details of this proof overview are
given below.

7.1 Large Sets Have Few Biases

In this section we show that for any sufficiently large section of the hypercube, relatively few sized k
parities may have a significant bias. We begin by formalizing the notion of “bias” in a slightly more

10

general setting.

Definition 2. Given a function f : {−1, 1}n → [0, 2−n] and a k-tuple of indices h ⊂ {1, . . . , n}, the
bias of f with respect to h is the average value of the degree k monomial induced by h on the conditional
distribution induced by f . Formally,

bias(h, f) =
1

|f |
∑

x∈{−1,1}n
f(x)

∏
i∈h

xi,

where |f | =
∑

x∈{−1,1}n f(x).

The following proposition shows that no function f : {−1, 1}n → [0, 2−n] can have a significant
bias with respect to too many k-tuples.

Proposition 1. Let S denote the set of all k-tuples of indices in {1, . . . , n} (hence |S| =
(
n
k

)
). For

an even integer k, given a function f : {−1, 1}n → [0, 2−n], the sum over all h ∈ S of the square of
the bias of f with respect to h is bounded as:

∑
h∈S

bias(h, f)2 ≤ 4kk+3(2− log |f |)k

(2e)k
,

where |f | =
∑

x∈{−1,1}n f(x).

Our proof will leverage the following hypercontractivity concentration inequality from [20] (see [17,
9] for details):

Theorem 2 (Thm 1.10 from [20]). For any degree k polynomial P (x) = P (x1, . . . , xn), where the xi
are independently chosen to be ±1,

Pr
x∈{−1,1}n

[|P (x)−E[P (x)]| ≥ λ] ≤ e2 · e−
(

λ2

e2Var[P (x)]

)1/k

,

Additionally, we will leverage the following standard fact about the upper incomplete gamma
function:

Fact 1. Letting Γ(s, α) =
∫∞
t=α t

s−1e−tdt denote the upper incomplete gamma function, for any positive
integer s,

Γ(s, α) = (s− 1)!e−α
s−1∑
i=0

αi

i!
.

Proof of Proposition 1. Define P (x) =
∑

h∈S bias(h, f)
∏
i∈h xi to be the degree k polynomial with

|S| =
(
n
k

)
monomials, with coefficients equal to the biases of the corresponding monomials/sets. Let

s =
∑

h∈S bias(h, f)2 denote the quantity we are trying to bound, and note that

s|f | =
∑

x∈{−1,1}n
f(x) · P (x).

To bound this sum, given the polynomial P , consider the function f∗ : {−1, 1}n → [0, 2−n] with
|f∗| = |f | that maximizes the above quantity. Such an f∗ can be constructed by simply sorting the
points of the hypercube x1, x2, . . . , x2n s.t. P (xi) ≥ P (xi+1), and then setting 1

2n = f∗(x1) = f∗(x2) =
. . . = f∗(xj) for j = |f |/2n, and f(xi) = 0 for all i > |f |/2n. (For simplicity, assume |f | is a multiple

11

of 1/2n; if this is not the case, then we set j = b|f |/2nc and f∗(xj+1) = |f | − j/2n and the argument
proceeds analogously.) We now bound∑

x∈{−1,1}n
f(x)P (x) ≤

∑
x∈{−1,1}n

f∗(x)P (x) =
∑

λ:∃j≤|f |/2n with P (xj)=λ

λ · Pr
x←{−1,1}n

[P (x) = λ],

where the probability is with respect to the uniform distribution over x ∈ {−1, 1}n. Given any
differentiable function g(λ) that satisfies Prx←{−1,1}n [P (x) ≥ λ] ≤ g(λ), we have

∑
λ:∃j≤|f |/2n with P (xj)=λ

λ · Pr
x←{−1,1}n

[P (x) = λ] ≤
∫ ∞
λ0

λ ·
∣∣∣∣ ddλg(λ)

∣∣∣∣ dλ, (1)

where λ0 is chosen to be the largest value that λ can take, such that g(λ0) ≥ |f |. By Theorem 2, we
may take

g(λ) = e2 · e−
(

λ2

e2Var[P (x)]

)1/k

= e2 · e−
(
λ2

e2·s

)1/k

.

Hence taking λ0 so as to satisfy |f | = e2 · e
−
(

λ20
e2·s

)1/k

, yields

λ0 = (2− log |f |)k/2
(
e2 · s

)1/2
.

Plugging this into Equation 1 and noting that λ| ddλg(λ)| = 2
k

(
λ2

e2·s

)1/k
e
−
(
λ2

e2·s

)1/k

, we get the following:

∑
x

f(x)P (x) ≤ 2e2

k

∫ ∞
λ0

(
λ2

e2 · s

)1/k

e
−
(
λ2

e2·s

)1/k

dλ making the substitution u =

(
λ2

e2 · s

)1/k

= e2
(
e2 · s

)1/2 ∫ ∞
u0

uk/2e−udu for u0 =

(
λ20
e2 · s

)1/k

= 2− log |f |

= e3
√
sΓ(k/2 + 1, u0)

= e3
√
s(k/2)!e−u0

k/2∑
i=0

ui0
i!

≤ e
√
s|f |(k/2)!(k/4)(2− log |f |)k/2.

The above establishes that s|f | ≤ e
√
s|f |(k/2)!(k/4)(2− log |f |)k/2 ≤ 2

√
s|f |(2e)−k/2kk/2+3/2(2−

log |f |)k/2, which implies that s ≤ 4(2e)−kkk+3(2− log |f |)k, as desired.

7.2 Completing the Proof

Equipped with Proposition 1, we now analyze the overall behavior of our secure database. We begin
by proving that the security holds for a single re-randomization of the database, and then leverage that
result via a basic induction argument to show that the security guarantees degrade linearly with the
number of re-randomizations. The argument of this section closely follow the proof approach of [12].

We begin by considering an adversary that, given the n bits contained in the database, conducts an
arbitrary computation to produce an output OUT that is r bits long, and show that, over the random
choice of the k locations h1, . . . , hk ∈ [n] and the random choice of the database dat ∈ {−1, 1}n, even
given OUT , the joint distribution of 1) the k locations h1, . . . , hk and 2) the parity of these k locations,
is very close to being jointly uniform and independent.

12

Using the notation 〈OUTdat, h1 . . . hk, dath1⊕· · ·⊕dathk〉 to represent the joint distribution of these
three random variables, and letting Uh and U±1 denote the uniform distribution over the set S =
{h1, . . . , hk} ⊂ [n]k and the uniform distribution on ±1, respectively, we have the following immediate
corollary of Proposition 1, which shows the joint distributions 〈OUTdat, h1 . . . hk, dath1 ⊕ · · · ⊕ dathk〉
and 〈OUTdat, Uh, U±1〉 are exponentially close. This implies that, even with the hints provided by r
bits of output OUT , 1) knowing the user’s secret data dath1 ⊕ · · · ⊕ dathk gives exponentially little
information about the secret key h1 . . . hk implying that the key can be securely reused an exponential
number of times; and 2) if after the database closes, the secret key h1 . . . hk is revealed, everlasting
security still holds and the adversary has exponentially little information about the user’s secret data
dath1 ⊕ · · · ⊕ dathk , which implies the main results of this paper.

Lemma 1. The statistical distance between the distributions 〈OUTdat, h1 . . . hk, dath1 ⊕ · · · ⊕ dathk〉
and 〈OUTdat, Uh, U±1〉 induced by randomly drawing dat← {−1, 1}n is at most

(
r
n

)k/2 · 2kk/2+3/2

(2e)k/2
.

Proof. For a fixed r-bit string OUTdat, consider the function fOUT : {−1, 1}n → [0, 2−n] that on each
string x ∈ {−1, 1}n takes value equal to the joint probability that x is the chosen n-bit string and that
the r bit output string equals OUTdat. Proposition 1 yields that,∑

h∈S
bias(h, fOUT)2 ≤ ck(2− log |fOUT |)k,

where ck = 4kk+3

(2e)k
, and |fOUT | =

∑
x∈{−1,1}n fOUT (x).

Combining this result with the Cauchy-Schwarz inequality relating the sum of the elements of a
vector to the sum of the squares of its elements, we have

∑
h∈S

bias(h, fOUT) ≤

√(
n

k

)
· ck(2− log |fOUT |)k.

We observe that |fOUT |, by definition, equals the probability that the particular value of OUT is
chosen from among all r-bit strings; further, for this fixed OUT , the statistical distance between the
joint distribution 〈h1 . . . hk, dath1 ⊕· · ·⊕dathk〉 and the corresponding uniform distribution 〈Uh, U±1〉
equals

(
n
k

)−1 ·∑h∈S bias(h, fOUT).
Thus the desired statistical distance between the distributions 〈OUT, h1 . . . hk, dath1 ⊕· · ·⊕dathk〉

and 〈OUT,Uh, U±1〉 is bounded by

E
OUT

√(n
k

)−1
· ck(2− log |fOUT |)k

 =
∑
OUT

|fOUT | ·

√(
n

k

)−1
· ck(2− log |fOUT |)k,

subject to the constraint that
∑

OUT |fOUT | = 1. Since x(2 − log x)k/2 is a concave function of x for
x ∈ [0, 1], the statistical distance is thus maximized when for each of the 2r possible outputs OUT ,
the probabilities are all equal: |fOUT | = 2−r. Plugging this in to the above equation gives the desired
bound on the statistical distance:∣∣〈OUTdat, h1 . . . hk, dath1 ⊕ · · · ⊕ dathk〉 − 〈OUTdat, Uh, U±1〉∣∣

≤

√(
n

k

)−1
· ck(2− log 2−r)k =

(r
n

)k/2
· 2kk/2+3/2

(2e)k/2
.

13

We now complete the proof of our main security guarantee, Theorem 1, which we restate below
in the above terminology. We use the notation [t] for an integer t to denote the set {1, . . . , t}. We
show that an adversary repeatedly hijacking the database essentially learns nothing beyond what the
adversary could have learned by staying home and simulating the whole process. This guarantee holds
even if the adversary finds out about all of Alice’s previously stored bits, or, more generally, receives
arbitrary “hints” from an outside source about Alice’s past, present, and future bits. We proceed
to show the information theoretic security of our database scheme by showing that for any adversary
extracting information from the database, there is an analogous simulator that the adversary could run
without any access to the database, whose results are identical with all but negligible probability. Such
simulator constructions were originally developed and employed in the context of semantic security [8].

Theorem 1. For any adversary, there is an efficient simulator S such that for any sequence of bits
bi to be stored at a succession of rerandomization times in the database, and any sequence of (possibly
probabilistic) “hints” Hi that the adversary receives about the (previous, current, or future) bits in the
sequence, then, averaged over the all

(
n
k

)
secret k-tuples of locations h[k], the statistical distance between

the distribution of the view of the adversary after running on the database for t rounds, receiving hint
Hi after each round i versus the view of the simulator who is given hints H[t] but never interacts with

the database, is less than 2t · εr,n,k, where εr,n,k =
(
r
n

)k/2 ·√4kk+3

(2e)k
is the bound given in Lemma 1 for

a single re-randomization.

This theorem has the following immediate interpretations:

1. If at the end of t database rerandomizations an adversary is told Alice’s bits b1, . . . , bt, then it
still cannot guess Alice’s secret indices correctly with probability any better than 2tεr,n,k more
than random guessing.

2. If the database represents a uniformly random bit bt ∈ {−1, 1} during the tth re-randomization,
then even if an adversary is told (at the very beginning) the t− 1 bits, b1, . . . , bt−1, that Alice is
storing during the first t − 1 database rerandomizations, and even if, subsequent to the t + 1st
rerandomization, the adversary is told Alice’s secret set of indices, then the adversary can guess bt
correctly with probability at most 2tεr,n,k better than random guessing. This is the “everlasting
security” property.

Proof. We prove the theorem by induction on the number of rerandomizations t, where the t = 0 case
corresponds to 0 rounds of the database, where the theorem trivially holds since neither the real nor
simulated adversary has any information.

Assume, by the induction hypothesis, that there is an efficient simulator S that on input H[t−1]
can probabilistically construct a sequence of outputs OUT ′[t−1] that is (averaged over all

(
n
k

)
choices of

secret bit locations h[k]) within statistical distance 2(t−1)εr,n,k of the distribution of outputs OUT[t−1]
produced by an adversary running for t rerandomizations on the actual database that encodes Alice’s
secret bits b[t] in secret locations h[k]. We couple the random variables OUT[t−1] and OUT ′[t−1] together

so that they differ with probability ≤ 2(t− 1)εr,n,k.
When the adversary is running on the database during the tth rerandomization, it calculates the

tth output via some function OUTt = f(datt, OUT[t−1], Ht), in terms of the current database (which
was randomly drawn so as to encode Alice’s bit bt as the XOR of locations h[k]), the previous outputs,
and whatever “hint” Ht it receives about Alice’s bits. We change the distribution of OUTt with
probability ≤ 2(t− 1)εr,n,k if we modify it to a “primed” version OUT ′t = f(datt, OUT

′
[t−1], Ht).

Since OUT ′[t−1] is constructed by the simulator, it is independent of the locations h[k], though

possibly dependent on Alice’s current secret bit bt (through hints the adversary received). Thus the
output OUT ′t = f(datt, OUT

′
[t−1], Ht) is a function of datt, independent of the locations h[k], possibly

14

dependent on bit bt (and also possibly dependent on previous bits b1, . . . , bt−1 and future bits bt+1, . . .,
though these do not matter here); we thus denote OUT ′t = fbt(datt), where the function fbt is possibly
stochastic. We thus apply Lemma 1 to both fbt=−1 and fbt=1: we interpret here interpret Lemma 1
as saying that for any function f that outputs r bits, the average over all choices of secret locations
h[k] and both choices of the bit bt of the statistical distance between the output of f applied to a
database generated from h[k] and bt versus the output of f when applied to a uniformly random string
dat← {−1, 1}n is at most εr,n,k.

Since this bound of εr,n,k is averaged over both choices of the bit bt, we bound the statistical
distance for either choice by twice this, 2εr,n,k. Thus, for both bt = −1 and bt = 1 we have that,
averaged over all choices of secret locations h[k], the statistical distance between fbt when evaluated on
a database generated from the secrets h[k] and bt versus when fbt is evaluated on a uniformly random
string dat← {−1, 1}n is at most 2εr,n,k

Thus, our simulator, after having already simulated OUT ′[t−1] (by the induction hypothesis), next

simply draws a random string datt ← {−1, 1}n and lets OUT ′t = f(datt, OUT
′
[t−1], Ht). The coupling

argument shows that the first t− 1 outputs are accurately simulated except with probability ≤ 2(t−
1)εr,n,k, and provided the first t − 1 outputs are accurately simulated, the previous paragraph shows
that the tth output has the desired distribution, up to statistical distance error ≤ 2εr,n,k (in both the
case bt = −1 and the case bt = 1); summing these bounds yields the induction: that our simulator
accurately emulates the first t outputs up to statistical distance error ≤ 2tεr,n,k, as desired.

References

[1] Yonatan Aumann, Yan Zong Ding, and Michael O Rabin. Everlasting security in the bounded
storage model. Information Theory, IEEE Transactions on, 48(6):1668–1680, 2002.

[2] M.F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication complexity
and privacy. In Conference on Learning Theory (COLT), 2012.

[3] Shai Ben-David and Eli Dichterman. Learning with restricted focus of attention. In Proceedings
of the sixth annual conference on Computational learning theory, pages 287–296. ACM, 1993.

[4] M. Braverman, A. Garg, T. Ma, H.L. Nguyen, and D.P. Woodruff. Communication lower bounds
for statistical estimation problems via a distributed data processing inequality. arXiv preprint
arXiv:1506.07216, 2015.

[5] Yan Zong Ding and Michael O Rabin. Hyper-encryption and everlasting security. In STACS
2002, pages 1–26. Springer, 2002.

[6] J. Duchi, M. Jordan, and M. Wainwright. Local privacy and statistical minimax rates. In IEEE
Symposium on Foundations of Computer Science (FOCS), 2013.

[7] A. Garg, T. Ma, and H. Nguyen. On communication cost of distributed statistical estimation and
dimensionality. In Advances in Neural Information Processing Systems (NIPS), 2014.

[8] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing, STOC ’82, pages 365–377, New York, NY, USA, 1982. ACM.

[9] Svante Janson. Gaussian Hilbert Spaces. Cambridge University Press, 1997. Cambridge Books
Online.

15

[10] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[11] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In Information
Security, pages 314–328. Springer, 2005.

[12] Chi-Jen Lu. Hyper-encryption against space-bounded adversaries from on-line strong extractors.
In Advances in Cryptology?CRYPTO 2002, pages 257–271. Springer, 2002.

[13] Ueli Maurer. Information-theoretic cryptography. In Advances in Cryptology?CRYPTO?99, pages
47–65. Springer, 1999.

[14] Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal
of Cryptology, 5(1):53–66, 1992.

[15] Frank Miller. Telegraphic code to insure privacy and secrecy in the transmission of telegrams. CM
Cornwell, 1882.

[16] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algorithms, pages 448–457. Society for Industrial and
Applied Mathematics, 2001.

[17] Ryan O’Donnell. Analysis of boolean functions, lecture notes (lecture 16).
http://www.cs.cmu.edu/ odonnell/boolean-analysis/.

[18] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive, 2005:187, 2005.

[19] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
CoRR, abs/1602.05161, 2016.

[20] Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for polynomials of
independent random variables. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pages 437–446. SIAM, 2012.

[21] Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning
and estimation. In Advances in Neural Information Processing Systems, pages 163–171, 2014.

[22] Claude E Shannon. Communication theory of secrecy systems*. Bell system technical journal,
28(4):656–715, 1949.

[23] Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Electronic Colloquium on Computational Complexity (ECCC), volume 22, page 126,
2015.

[24] Gilbert S Vernam. Cipher printing telegraph systems: For secret wire and radio telegraphic
communications. AIEE, Journal of the, 45(2):109–115, 1926.

[25] Y. Zhang, J. Duchi, M. Jordan, and M. Wainwright. Information-theoretic lower bounds for
distributed statistical estimation with communication constraints. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2013.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

