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Abstract

We introduce a method for proving Sum-of-Squares (SoS)/ Lasserre hierarchy lower
bounds when the initial problem formulation exhibits a high degree of symmetry. Our
main technical theorem allows us to reduce the study of the positive semidefiniteness to the
analysis of “well-behaved” univariate polynomial inequalities.

We illustrate the technique on two problems, one unconstrained and the other with
constraints. More precisely, we give a short elementary proof of Grigoriev/Laurent lower
bound for finding the integer cut polytope of the complete graph. We also show that the
SoS hierarchy requires a non-constant number of rounds to improve the initial integrality
gap of 2 for the Min-Knapsack linear program strengthened with cover inequalities.

1 Introduction

Proving lower bounds for the Sum-of-Squares (SoS)/Lasserre hierarchy [25, 31] has attracted
notable attention in the theoretical computer science community during the last decade, see
e.g. [7, 12, 13, 18, 19, 27, 28, 29, 34, 36]. This is partly because the hierarchy captures many of
the best known approximation algorithms based on semidefinite programming (SDP) for several
natural 0/1 optimization problems (see [28] for a recent result). Indeed, it can be argued that
the SoS hierarchy is the strongest candidate to be the “optimal” meta-algorithm predicted by
the Unique Games Conjecture (UGC) [22, 32]. On the other hand, the hierarchy is also one of
the best known candidates for refuting the conjecture since it is still conceivable that one could
show that the SoS hierarchy achieves better approximation guarantees than the UGC predicts
(see [6] for discussion). Despite the interest in the algorithm and due to the many technical
challenges presented by semidefinite programming, only relatively few techniques are known for
proving lower bounds for the hierarchy. In particular, several integrality gap results follow from
applying gadget reductions to the few known original lower bound constructions.

Indeed, many of the known lower bounds for the SoS hierarchy originated in the works of
Grigoriev [18, 19].1 We defer the formal definition of the hierarchy for later and only point out
that solving the hierarchy after t rounds takes nO(t) time. In [19] Grigoriev showed that random
3Xor or 3Sat instances cannot be solved even by Ω(n) rounds of the SoS hierarchy (some of
these results were later independently rediscovered by Schoenebeck [34]). Lower bounds, such
as those of [7, 36] rely on [19, 34] combined with gadget reductions. Another important lower
bound was also given by Grigoriev [18] for the Knapsack problem (a simplified proof can
be found in [20]), showing that the SoS hierarchy cannot prove within bn/2c rounds that the
polytope {x ∈ [0, 1]n :

∑n
i=1 xi = n/2} contains no integer point when n is odd. Using essentially

the same construction as in [20], Laurent [27] independently showed that bn2 c rounds are not

∗Supported by the Swiss National Science Foundation project 200020-144491/1 “Approximation Algorithms
for Machine Scheduling Through Theory and Experiments” and by Sciex Project 12.311.

1More precisely, Grigoriev considers the positivstellensatz proof system, which is the dual of the SoS hierarchy
considered in this paper. For brevity, we will use SoS hierarchy/proof system interchangeably.
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enough for finding the integer cut polytope of the complete graph with n nodes, where n is odd
(this result was recently shown to be tight in [15]).2 By using several new ideas and techniques,
but a similar starting point as in [20, 27], Meka, Potechin and Wigderson [29] were able to show
a lower bound of Ω(log1/2 n) for the Planted-Clique problem. Common to the works [20, 27]
and [29] is that the matrix involved in the analysis has a large kernel, and they prove that
a principal submatrix is positive definite by applying the theory of association schemes [16].
It is also interesting to point out that for the class of Max-CSPs, Lee, Raghavendra and
Steurer [28] proved that the SoS relaxation yields the “optimal” approximation, meaning that
SDPs of polynomial-size are equivalent in power to those arising from O(1) rounds of the SoS
relaxations. Then, by appealing to the result by Grigoriev/Laurent [18, 27] they showed an
exponential lower bound on the size of SDP formulations for the integer cut polytope. For
different techniques to obtain lower bounds, we refer for example to the recent papers [5, 23, 24]
(see also Section 5.4) and the survey [13] for an overview of previous results.

In this paper we introduce a method for proving SoS hierarchy lower bounds when the
initial problem formulation exhibits a high degree of symmetry. Our main technical theorem
(Theorem 1) allows us to reduce the study of the positive semidefiniteness to the analysis of
“well-behaved” univariate polynomial inequalities. The theorem applies whenever the solution
and constraints are symmetric, informally meaning that all subsets of the variables of equal
cardinality play the same role in the formulation (see Section 3 for the formal definition). For
example, the solution in [18, 20, 27] for Max-Cut is symmetric in this sense.

We note that exploiting symmetry reduces the number of variables involved in the analysis,
and different ways of utilizing symmetry have been widely used in the past for proving integrality
gaps for different hierarchies, see for example [8, 17, 19, 21, 24, 35]. An interesting difference
of our approach from others is that we establish several lower bounds without fully identifying
the formula of eigenvectors. More specifically, the common task in this context is to identify
the spectral structure to get a simple diagonalized form. In the previous papers the moment
matrices belong to the Bose-Mesner algebra of a well-studied association scheme, and hence
one can use the existing theory. In this paper, instead of identifying the spectral structure
completely, we identify only possible forms and propose to test all the possible candidates.
This is in fact an important point, since the approach may be extended even if the underlying
symmetry is imperfect or its spectral property is not well understood.

The proof of Theorem 1 is obtained by a sequence of elementary operations, as opposed to
notions such as big kernel in the matrix form, the use of interlacing eigenvalues, the machinery
of association schemes and various results about hyper-geometric series as in [18, 20, 27]. Thus
Theorem 1 applies to the whole class of symmetric solutions, even when several conditions and
machinery exploited in [18, 20, 27] cannot be directly applied. For example the kernel dimension,
which was one of the important key property used to prove the results in [18, 20, 27], depends
on the particular solution that is used and it is not a general property of the class of symmetric
solutions. The solutions for two problems considered in this paper have completely different
kernel sizes of the analyzed matrices, one large and the other zero.

We demonstrate the technique with two illustrative and complementary applications. First,
we show that the analysis of the lower bound for Max-Cut in [18, 20, 27] simplifies to few
elementary calculations once the main theorem is in place. This result is partially motivated
by the open question posed by O’Donnell [30] of finding a simpler proof for Grigoriev’s lower
bound for the Knapsack problem.

As a second application we consider a constrained problem. We show that after Ω(log1−ε n)
levels the SoS hierarchy does not improve the integrality gap of 2 for the Min-knapsack
linear program formulation strengthened with cover inequalities [10] introduced by Wolsey [37].
Adding cover inequalities is currently the most successful approach for capacitated covering

2The two problems, Knapsack and Max-Cut in complete graphs, considered respectively in [18, 20] and
in [27], are essentially the same and we will use Max-Cut to refer to both.
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problems of this type [1, 2, 3, 9, 11].
Our result is the first SoS lower bound for formulations with cover inequalities. In this

application we demonstrate that our technique can also be used for suggesting the solution and
for analyzing its feasibility.

Finally we point it out that the same analysis can be used to provide a non trivial lower
bound to an open question raised by Laurent [26] regarding the Lasserre rank of the knapsack
problem (see Section 5.4 for a discussion).

2 The SoS hierarchy

Consider a 0/1 optimization problem with m ≥ 0 linear constraints g`(x) ≥ 0, for ` ∈ [m] and
x ∈ Rn. We are interested in approximating the convex hull of the integral points of the set
K = {x ∈ Rn | g`(x) ≥ 0,∀` ∈ [m]} with the SoS hierarchy defined in the following.

The form of the SoS hierarchy we use in this paper (Definition 1) is equivalent to the one
used in literature (see e.g. [4, 25, 26]). It follows from applying a change of basis to the dual
certificate of the refutation of the proof system [26] (see also [29] for discussion on the connection
to the proof system). We use this change of basis in order to obtain a useful decomposition of
the moment matrices as a sum of rank one matrices of special kind. This will play an important
role in our analysis. We refer the reader to Appendix A for more details and for a mapping
between the different forms.

For any I ⊆ N = {1, . . . , n}, let xI denote the 0/1 solution obtained by setting xi = 1 for
i ∈ I, and xi = 0 for i ∈ N \ I. We denote by g`(xI) the value of the constraint evaluated at
xI . For each integral solution xI , where I ⊆ N , in the SoS hierarchy defined below there is
a variable yNI that can be interpreted as the “relaxed” indicator variable for the solution xI .
We point out that in this formulation of the hierarchy the number of variables {yNI : I ⊆ N}
is exponential in n, but this is not a problem in our context since we are interested in proving
lower bounds rather than solving an optimization problem.

Let Pt(N) be the collection of subsets of N of size at most t ∈ N. For every I ⊆ N , the
q-zeta vector ZI ∈ RPq(N) is a 0/1 vector with J-th entry (|J | ≤ q) equal to 1 if and only if
J ⊆ I.3 Note that ZIZ

>
I is a rank one matrix and the matrices considered in Definition 1 are

linear combinations of these rank one matrices.

Definition 1. The t-th round SoS hierarchy relaxation for the set K, denoted by SoSt(K), is
the set of values {yNI ∈ R : ∀I ⊆ N} that satisfy∑

I⊆N
yNI = 1, (1)

∑
I⊆N

yNI ZIZ
>
I � 0, where ZI ∈ RPt+d(N) (2)

∑
I⊆N

g`(xI)y
N
I ZIZ

>
I � 0, ∀` ∈ [m], where ZI ∈ RPt(N) (3)

where d = 0 if m = 0 (no linear constraints), otherwise d = 1.

It is straightforward to see that the SoS hierarchy formulation given in Definition 1 is a
relaxation of the integral polytope. Indeed consider any feasible integral solution xI ∈ K and
set yNI = 1 and the other variables to zero. This solution clearly satisfies Condition (1), Condi-
tion (2) because the rank one matrix ZIZ

>
I is positive semidefinite (PSD), and Condition (3)

since xI ∈ K.

3In order to keep the notation simple, we do not emphasize the parameter q as the dimension of the vectors
should be clear from the context.
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3 The main technical theorem

The main result of this paper (see Theorem 1 below) allows us to reduce the study of the positive
semidefiniteness for matrices (2) and (3) to the analysis of “well-behaved” univariate polynomial
inequalities. It can be applied whenever the solutions and constraints are symmetric, namely
they are invariant under all permutations π of the set N : zNI = zNπ(I) for all I ⊆ N (equivalently

when zNI = zNJ whenever |I| = |J |),4 where zNI is understood to denote either yNI or g`(xI)y
N
I .

For example, the solution for Max-Cut considered by Grigoriev [18] and Laurent [27] belongs
to this class.

Theorem 1. For any t ∈ {1, . . . , n}, let St be the set of all polynomials Gh(k) ∈ R[k], for
h ∈ {0, . . . , t}, that satisfy the following conditions:

Gh(k) ∈ R[k]2t (4)

Gh(k) = 0 for k ∈ {0, . . . , h− 1} ∪ {n− h+ 1, . . . , n} (5)

Gh(k) ≥ 0 for k ∈ [h− 1, . . . , n− h+ 1] (6)

For any fixed set of values {zNk ∈ R : k = 0, . . . , n}, if the following holds

n−h∑
k=h

zNk

(
n

k

)
Gh(k) ≥ 0 ∀Gh(k) ∈ St (7)

then matrix (8) is positive-semidefinite

n∑
k=0

zNk
∑
I⊆N
|I|=k

ZIZ
>
I (where ZI ∈ RPt(N)) (8)

Note that polynomial Gh(k) in (6) is nonnegative in a real interval, and in (5) it is zero for
a finite set of integers. Moreover, constraints (7) are trivially satisfied for h > bn/2c.

Theorem 1 is a actually a corollary of a technical theorem that is not strictly necessary
for the applications of this paper, and therefore deferred to a later section (see Theorem 7 in
Section 6). The proof (given in Section 6) is obtained by exploiting the high symmetry of the
eigenvectors of the matrix appearing in (8). Condition (7) corresponds to the requirement that
the Rayleigh quotient being non-negative restricted to some highly symmetric vectors (which
we show are the only ones we need to consider).

4 Max-Cut for the complete graph

In the Max-Cut problem, we are given an undirected graph and we wish to find a partition of
the vertices (a cut) which maximizes the number of edges whose endpoints are on different sides
of the partition (cut value). For the complete graph with n vertices, consider any solution with ω
vertices on one side and the remaining n−ω on the other side of the partition. This gives a cut of
value ω(n−ω). When n is odd and for any ω ≤ n/2, Grigoriev [18] and Laurent [27] considered
the following solution (reformulated in the basis considered in Definition 1, see Appendix B):

yNI = (n+ 1)

(
ω

n+ 1

)
(−1)n−|I|

ω − |I|
∀I ⊆ N (9)

It is shown [18, 27] that (9) is a feasible solution for the SoS hierarchy of value ω(n−ω), for any
ω ≤ n/2 up to round t ≤ bωc. In particular for ω = n/2 the cut value of the SoS relaxation is

4We define the set-valued permutation by π(I) = {π(i) | i ∈ I}.
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strictly larger than the value of the optimal integral cut (i.e. bn2 c(b
n
2 c+ 1)), showing therefore

an integrality gap at round bn/2c.
We note that the formula for the solution (9) is essentially implied by the requirement of

having exactly ω vertices on one side of the partition (see [18, 27] and [29] for more details)
and the core of the analysis in [18, 27] is in showing that (9) is a feasible solution for the SoS
hierarchy. By taking advantage of Theorem 1, the proof that (9) is a feasible solution for the
SoS relaxation follows by observing the fact below.

Lemma 2. For any polynomial P (x) ∈ R[x] of degree ≤ n and yNi = yNI defined in (9) we have

n∑
k=0

(
n

k

)
yNk P (k) = P (ω)

Proof. By the polynomial remainder theorem P (k) = (ω − k)Q(k) + P (ω), where Q(k) is a
unique polynomial of degree at most n− 1. It follows that

n∑
k=0

(
n

k

)
yNk P (k) =

n∑
k=0

(
n

k

)
yNk (ω − k)Q(k)︸ ︷︷ ︸

=0

+P (ω)
n∑
k=0

(
n

k

)
yNk︸ ︷︷ ︸

=1

= P (ω)

since
∑n

k=0(−1)k
(
n
k

)
Q(k) = 0 for any polynomial of degree at most n− 1.

Now by Lemma 2 we have
∑n

k=0 y
N
k

(
n
k

)
Gh(k) = Gh(ω) and the feasibility of (9) follows by

Theorem 1, since we have that Gh(ω) ≥ 0 whenever t ≤ ω for ω ≤ n/2.

5 Min-Knapsack with cover inequalities

The Min-Knapsack problem is defined as follows: we have n items with costs ci and profits
pi, and we want to choose a subset of items such that the sum of the costs of the selected items
is minimized and the sum of the profits is at least a given demand P . Formally, this can be

formulated as an integer program (IP ) min
{∑n

j=1 cjxj :
∑n

j=1 pjxj ≥ P, x ∈ {0, 1}n
}

. It is

easy to see that the natural linear program (LP ), obtained by relaxing x ∈ {0, 1}n to x ∈ [0, 1]n

in (IP ), has an unbounded integrality gap.
By adding the Knapsack Cover (KC) inequalities introduced by Wolsey [37] (see also [10]),

the arbitrarily large integrality gap of the natural LP can be reduced to 2 (and it is tight [10]).
The KC constraints are as follows:

∑
j 6∈A p

A
j xj ≥ P−p(A) for all A ⊆ N , where p(A) =

∑
i∈A pi

and pAj = min {pj , P − p(A)}. Note that these constraints are valid constraints for integral
solutions. Indeed, in the “integral world” if a set A of items is picked we still need to cover
P − p(A); the remaining profits are “trimmed” to be at most P − p(A) and this again does not
remove any feasible integral solution.

The following instance [10] shows that the integrality gap implied by KC inequalities is 2:
we have n items of unit costs and profits. We are asked to select a set of items in order to obtain
a profit of at least 1 + 1/(n−1). The resulting linear program formulation with KC inequalities
is as follows (for xi ∈ [0, 1], i = 1, . . . , n)

(LP+) min
n∑
j=1

xj s.t.
n∑
j=1

xj ≥ 1 + 1/(n− 1) (10)

∑
j∈N ′

xj ≥ 1 ∀N ′ ⊆ N : |N ′| = n− 1 (11)

5



Note that the solution xi = 1/(n−1) is a valid fractional solution of value 1+1/(n−1) whereas
the optimal integral solution has value 2. In the following we show that SoSt(LP

+), with t
arbitrarily close to a logarithmic function of n, admits the same integrality gap as the initial
linear program (LP+) relaxation.

Theorem 3. For any δ > 0 and sufficiently large n′, let t = blog1−δ n′c, n = bn′t ct and
ε = o(t−1). Then the following solution is feasible for SoSt(LP

+) with integrality gap of 2−o(1)

yNI =

(
n

|I|

)−1

·


(1+ε)n

(n−1)blognc for |I| = blog nc
εt
jn for |I| = j nt and j ∈ [t]

1−
∑
∅6=I⊆N y

N
I for I = ∅

0 otherwise

(12)

5.1 Overview of the proof

An integrality gap proof for the SoS hierarchy can in general be thought of having two steps:
first, choosing a solution to the hierarchy that attains a superoptimal value, and second showing
that this solution is feasible for the hierarchy. We take advantage of Theorem 1 in both steps.
Here we describe the overview of our integrality gap construction while keeping the discussion
informal and technical details minimal, the proof can be found in Appendix 5.2.

Choosing the solution. We make the following simplifying assumptions about the structure
of the variables yNI : due to symmetry in the problem we set yNI = yNJ = yNk for each I, J
such that |I| = |J | = k, and for every I ⊆ N we set yNI ≥ 0 in order to satisfy (2) for free.
Furthermore, in order to have an integrality gap (i.e. a small objective function value), we guess
that yN0 ≈ 1 forcing the other variables to be small due to (1).

We then show that satisfying (3) for every constraint follows from showing that

n∑
k=0

(
n

k

)
yNk (k − 2)

t∏
i=1

(k − ri)2 ≥ 0 (13)

for every choice of t real variables ri. We get this condition by observing similarities in the
structure of the constraints and applying Theorem 1, then expressing the polynomial in root
form.5 If we set yN1 = 0, the only negative term in the sum corresponds to yN0 . Then, it is
clear that we need at least t + 1 non-zero variables yNk , otherwise the roots ri can be set such
that the positive terms in (13) vanish and the inequality is not satisfied. Therefore, we choose
exactly t+ 1 of the yNk to be strictly positive (and the rest 0 excluding yN0 ), and we distribute
them “far away” from each other, so that no root can be placed such that the coefficient of two
positive terms become small. To take this idea further, for one “very small” k′ (logarithmic in
n), we set yNk′ positive and space out the rest evenly.

Proving that the solution is feasible. We show that (13) holds for all possible ri with our
chosen solution by analysing two cases. In the first case we assume that all of the roots ri are
larger than log3 n. Then, we show that the “small” point k′ we chose is enough to satisfy the
condition. In the complement case, we assume that there is at least one root ri that is smaller
than log3 n. It follows that one of the evenly spaced points is “far” from any remaining root,
and can be used to show that the condition is satisfied.

5We show that the roots ri can be assumed to be real numbers.
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5.2 Proof of Theorem 3

We start by proving the claimed integrality gap. The defined solution has an objective value
that is arbitrarily close to 1 whereas the optimal integral value is 2. Indeed, the objective value
of the relaxation is (see Appendix A):

∑
I⊆N y

N
I |I| =

n
n−1(1 + ε) + εt

n→∞
= 1.

The remaining part of the Theorem 3 follows by showing that the suggested solution satis-
fies (1), (2) and (3). Note that (1) is immediately satisfied by the definition of variables {yNI },
and (2) is satisfied since yNI ≥ 0 and the rank one matrix ZIZ

>
I is positive semidefinite for every

I ⊆ N . It remains to prove that the condition (3) is also satisfied for all the constraints (10)
and (11). Note that the constraint (11) is not symmetric (one variable is missing and sets of
variables of the same size do not play the same role with respect to this constraint). However,
the following lemma shows how to solve this issue by reducing to the form (8) of Theorem 1.

Lemma 4. The constraint (3) holds for both (10) and (11) if the solution of Theorem 3 satisfies

n∑
∅6=I⊆N

yNI (|I| − 2)ZIZ
>
I �

n

n− 1
Z∅Z

>
∅ (14)

Proof. We first show that this implies that (3) holds for the constraint
∑n

j=1 xj ≥ 1+1/(n−1).

Since for a large n, yNI = 0 for |I| = 1 and yN∅ ≤ 1, the condition (3) takes the following form∑
∅6=I⊆N

yNI

(
|I| − n

n− 1

)
ZIZ

>
I � yN∅

n

n− 1
Z∅Z

>
∅

which is implied if (14) is satisfied (recall that yNI ≥ 0). Next, we will show that (14) also
implies that (3) is satisfied for the cover constraint

∑n−1
j=1 xj ≥ 1 (the other cases are similar).

For this constraint Condition (3) can be written as∑
n/∈I⊆N
I 6=∅

yNI (|I| − 1)ZIZ
>
I +

∑
n∈I⊆N

yNI (|I| − 2)ZIZ
>
I − yN∅ Z∅Z

>
∅

�
∑
I⊆N
I 6=∅

yNI (|I| − 2)ZIZ
>
I − yN∅ Z∅Z

>
∅ � 0

which is also implied if (14) is satisfied.

Now by Theorem 1, Condition (14) holds if we have
∑n

k=1 y
N
k (k − 2)

(
n
k

)
Gh(k) ≥ n

n−1Gh(0)
for h = 0, 1, . . . , t and every univariate polynomial Gh(k) of degree 2t such that Gh(k) ≥ 0 for
k ∈ [h− 1, . . . , n− h+ 1] and Gh(k) = 0 for k ∈ {0, . . . , h− 1} ∪ {n− h+ 1, . . . , n}.

Note that the only nontrivial case is for h = 0, since otherwise the above condition is
immediately satisfied. Indeed, for h > 0, we have that Gh(0) = 0 and the only remaining terms
in the sum are non-negative. Thus in order to complete the proof of Theorem 3 it is enough to
show that the following is satisfied

n∑
k=1

yNk (k − 2)

(
n

k

)
P 2(k) ≥ n

n− 1
P 2(0) ∀P : deg(P ) ≤ t (15)

The following lemma (proved in Section 5.3) further reduces the interesting cases.

Lemma 5. In order to prove that Solution (18) satisfies (15) it is sufficient to prove that (18)
satisfies (15) for polynomials P (x) with the following properties:

(a) all the roots r1, ..., rt of P (x) = 0 are real numbers,
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(b) all the roots r1, ..., rt of P (x) = 0 are in the range, 1 ≤ rj ≤ n for all j = 1, . . . , t,

(c) the degree of P (x) is exactly t.

Next we show that Solution (18) satisfies (15) and that there exists an ε = o(t−1) as claimed.
The fundamental theorem of algebra states that any univariate polynomial of degree t has

exactly t complex roots. According to Lemma 5 we can focus to polynomial with t real roots. We
prove that the suggested solution satisfies (15) by expressing the generic univariate polynomial
P (k) using its roots r1, ..., rt, so that (15) becomes

n∑
k=1

(
n

k

)
yNk (k − 2)

t∏
i=1

(ri − k)2 ≥
(

1 +
1

n− 1

) t∏
i=1

r2
i (16)

To show that (16) is satisfied we separate two cases: when all of the roots of the polynomial
are greater or equal to a fixed treshold α = log3 n and when at least one root is smaller than
this treshold. In order to simplify the computations we denote β = blog nc.

1. rj ≥ α for all j. It is sufficient to show that the left–hand side term in (16) corresponding
to k = β satisfies (

n

β

)
yNβ (β − 2)

t∏
i=1

(ri − β)2 ≥
(

1 +
1

n− 1

) t∏
i=1

r2
i

Replacing the variables with the values we get

n

n− 1

1 + ε

β
(β − 2)

t∏
i=1

(ri − β)2 ≥ n

n− 1

t∏
i=1

r2
i

⇐⇒ 1 + ε ≥
t∏
i=1

(
ri

ri − β

)2 1

1− 2β−1

Since by Theorem 1 and assumption, all roots rj satisfy α ≤ rj ≤ n. Since ri
ri−β ≤

α
α−β it

is sufficient that it holds 1 + ε ≥ 1
1−2β−1

(
α

α−β

)2t
.

2. There is at least one root rj such that rj < α. It can be shown by straightforward induction
on the number of roots that if for at least one j, rj < α, then there exists a point u = lnt ,
l = 1, ..., t such that

(
n
u

)
yu > 0 and |u− ri| ≥ n

2t for all i = 1, ..., t. Let u be such a point.

It is sufficient to show that we can satisfy
(
n
u

)
yNu (u− 2)

∏t
i=1(ri − u)2 ≥ n

n−1

∏t
i=1 r

2
i .

We have
(
n
u

)
yNu = ε

u and the estimates u− 2 ≥ u
2 , (ri − u)2 ≥ n2

(2t)2
,
∏t
i=1 ri ≤ nt−1α. Sub-

stituting these we get the condition ε
2

(
n
2t

)2t ≥ n
n−1n

2t−2α2 which gives us the requirement

that ε ≥ 2α2

n2 (2t)2t n
n−1 .

These two cases suggest that we fix ε as

ε = max

{
1

1− 2β−1

(
1− β

α

)−2t

− 1,
n

n− 1

2α2

n2
(2t)2t

}
The proof has now been reduced to showing that with this choice of ε we have εt→ 0, i.e., ε =

o(t−1). Assume ε = 1
1−2β−1

(
1− β

α

)−2t
−1. Then εt = t

(
1

1−2β−1

(
1− β

α

)−2t
− 1

)
≤ t
(

1
1−2β−1 e

4t β
α − 1

)
,

when β/α ≤ 1/2, using the estimate 1−x ≥ e−2x ⇒ (1−x)−2t ≤ e4xt which holds when x ≤ 1/2.
Furthermore, the same estimate yields ex − 1 ≤ 2x when x ≤ 1/2. Hence, we have the bound

εt ≤ t 1

1− 2β−1
· 8tβ

α
+ t

(
1

1− 2β−1
− 1

)
=

8

1− 2β−1
· t2β

α
+

2tβ−1

1− 2β−1

8



The right-hand side goes to 0 if t2β
α → 0 and t

β → 0 as n → ∞. This is clearly the case for

t ≤ log1−δ n, for any δ > 0.
Next, assume ε = n

n−1
2α2

n2 (2t)2t. Then εt = t n
n−1

2α2

n2 (2t)2t, which immediately yields the

condition on α and t that we need tα2

n2 (2t)2t → 0 as n → ∞. Substituting α = log3 n and t =

log1−δ n, for any δ > 0, allows us to write this as tα2

n2 (2t)2t = log1−δ n log6 n
n2 (2 log1−δ n)2 log1−δ n.

By a change of variables of the form w = log1−δ n we get

w2w+ 7−δ
1−δ 22w

e2w
1

1−δ
≤ w4w+ 7−δ

1−δ

e2w
1

1−δ
=
e(4w+ 7−δ

1−δ ) logw

e2w
1

1−δ
= e(4w+ 7−δ

1−δ ) logw−2w
1

1−δ

which tends to 0 as n→∞.

5.3 Proof of Lemma 5

Lemma 5. In order to prove that Solution (18) satisfies (15) it is sufficient to prove that (18)
satisfies (15) for polynomials P (x) with the following properties:

(a) all the roots r1, ..., rt of P (x) = 0 are real numbers,

(b) all the roots r1, ..., rt of P (x) = 0 are in the range, 1 ≤ rj ≤ n for all j = 1, . . . , t,

(c) the degree of P (x) is exactly t.

Proof. First notice that (15) is equivalent to

n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
rj − k
rj

)2

≥
(

1 +
1

n− 1

)
(17)

where for the fixed n the right-hand side is constant.

(a) Let P (k) be the univariate polynomial with 2q complex roots (complex roots appear in
conjugate pairs) i.e. r2j−1 = aj + bji, r2j = aj − bji for j = 1, ..., q and the rest real roots.

Let P ′(k) be the polynomial with all real roots such that r′2j−1 = r′2j =
√
a2

2j + b22j for

j = 1, ..., q and r′j = rj , j > 2q.

For any k ∈ N and j ∈ [t], a simple calculation shows that

(
r2j−1 − k
r2j−1

)2(r2j − k
r2j

)2

≥

(
r′2j−1 − k
r′2j−1

)2(
r′2j − k
r′2j

)2

Hence,

n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
rj − k
rj

)2

≥
n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
r′j − k
r′j

)2

(b) Let P (k) be the univariate polynomial with all positive roots but one i.e. r1 = −a, for
a > 0. Let P ′(k) be the univariate polynomial with all positive roots such that r′1 = a
and r′j = rj , j > 1. Since for any k ∈ N(

−a− k
−a

)2

≥
(
a− k
a

)2

9



and follows that,

n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
rj − k
rj

)2

≥
n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
r′j − k
r′j

)2

Now, let P (k) be the univariate polynomial with r1 ∈ (0, 1) and rj ≥ 1, for j > 1. Let
P ′(k) be the univariate polynomial with r1 = 1 and r′j = rj , j > 1.

Since for any k ∈ N (
r1 − k
r1

)2

≥
(

1− k
1

)2

and follows that,

n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
rj − k
rj

)2

≥
n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
r′j − k
r′j

)2

Next, let P (k) be the univariate polynomial with rt = an for a > 1 and rj ∈ [1, n], for
j 6= t. Let P ′(k) be the univariate polynomial with rt = n and r′j = rj , j 6= t.

Since for any k ∈ N (
an− k
an

)2

≥
(
n− k
n

)2

and follows that,

n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
rj − k
rj

)2

≥
n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
r′j − k
r′j

)2

(c) Let P (k) be the univariate polynomial with degree s < t with all real roots. Let P ′(k)
be the polynomial of degree t with all real roots such that r′j = rj , j ≤ s and r′j = n for
s < j ≤ t
For any k ∈ N , we have

1 ≥
(
n− k
n

)2

Hence, (
r1 − k
r1

)2

· · ·
(
rs − k
rs

)2

≥
(
r1 − k
r1

)2

· · ·
(
rs − k
rs

)2(n− k
n

)2(t−s)

and finally

n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
rj − k
rj

)2

≥
n∑
k=1

yNk

(
n

k

)
(k − 2)

t∏
j=1

(
r′j − k
r′j

)2

10



5.4 Further Results

In a recent paper [23] the authors characterize the class of the initial 0/1 relaxations that are
maximally hard for the SoS hierarchy. Here, maximally hard means those relaxations that still
have an integrality gap even after n − 1 rounds of the SoS hierarchy.6 An illustrative natural
member of this class is given by the simple LP relaxation for the Min Knapsack problem, i.e.

(LP ) min


n∑
j=1

xj :
n∑
j=1

xj ≥ P, x ∈ [0, 1]n


In [23] it is shown that at level n − 1 the integrality gap is k, for any k ≥ 2 if and only if
P = Θ(k) · 22n. A natural question is to understand if the SoS hierarchy is able to reduce the
gap when P is “small”.

This problem, for P = 1/2, was considered by Cook and Dash [14] as an example where
the Lovasz-Schrijver hierarchy rank is n. Laurent [26] showed that the Sherali-Adams hierarchy
rank is also equal to n and raised the open question to find the rank for the Lasserre hierarchy.
She also showed that when n = 2, the Lasserre relaxation has an integrality gap at level 1, but
leaves open whether or not this happens at level n − 1 for a general n. In [23] it is ruled out
the possibility that the Lasserre/SoS rank is n for n ≥ 3.

The following lemma provides a feasible solution for SoSt(LP ) with integrality gap arbi-
trarily close to P when t = Ω(log1−ε n) and for any P < 1. The proof is omitted since it is
similar to the proof of Theorem 3.

Theorem 6. For any δ > 0 and sufficiently large n′, let t = blog1−δ n′c, n = bn′t ct and
ε = o(t−1). Then the following solution is feasible for SoSt(LP

+) with integrality gap arbitrarily
close to P .

yNI =

(
n

|I|

)−1

·


(1+ε)
P blognc for |I| = blog nc
εt
jn for |I| = j nt and j ∈ [t]

1−
∑
∅6=I⊆N y

N
I for I = ∅

0 otherwise

(18)

6 Proof of Theorem 1

Theorem 1 is actually a corollary of a stronger statement (see Theorem 7 below) that provides
necessary and sufficient conditions for the matrix (8) being positive-semidefinite.

Theorem 7 uses a special family of polynomials Gh(k) ∈ R[k] whose definition is deferred
to a later section (see Definition 3 in Section 6.1). We postpone the definition because it will
become natural in the flow of the proof of Theorem 7. Here we remark that the polynomials
Gh(k) of Definition 3 satisfy the conditions (4), (5) and (6) of Theorem 1 (as shown in Lemma 14
to follow).

Theorem 7. Let zNk ∈ R for k ∈ {0, . . . , n}. Then for any t ∈ N the following matrix is
positive-semidefinite

n∑
k=0

zNk
∑
I⊆N
|I|=k

ZIZ
>
I (where ZI ∈ RPt(N)) (19)

if and only if
n∑
k=0

zNk

(
n

k

)
Gh(k) ≥ 0 for h ∈ {0, . . . , t} (20)

for every univariate polynomial Gh(x) ∈ R[x] of degree at most 2t as defined in Definition 3.

6Recall that at level n the integrality gap vanishes.
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By Lemma 14, Theorem 1 is a straightforward corollary of Theorem 7. In the following we
provide a proof for the latter.

6.1 Proof of Theorem 7

We study when the matrix M =
∑n

k=0 zk
∑

I⊆N,|I|=k ZIZ
>
I , where ZI ∈ RPt(N) is positive-

semidefinite. Theorem 7 allows us to reduce the condition M � 0 to inequalities of the form∑n
k=0

(
n
k

)
zkp(k) ≥ 0, where p(k) is a univariate polynomial of degree 2t with some additional

remarkable properties.
A basic key idea that is used to obtain such a characterization is that the eigenvectors of M

are “very well” structured. This structure is used to get p(k) with the claimed properties.

The structure of the eigenvectors. Let Π denote the group of all permutations of the
set N , i.e. the symmetric group. Let Pπ be the permutation matrix of size Pt(N) × Pt(N)
corresponding to any permutation π of set N , i.e. for any vector v we have [Pπv]I = vπ(I) for

any I ∈ Pt(N) (see Footnote 4). Note that P−1
π = P>π .

Lemma 8. For every π ∈ Π we have P>π MPπ = M or, equivalently, M and Pπ commute
MPπ = PπM .

Proof. Let eI denote the vector with a 1 in the I-th coordinate and 0’s elsewhere. Observe

P>π ZI = P>π
∑
Q⊆I

eQ =
∑
Q⊆I

P>π eQ =
∑
Q⊆I

eπ−1(Q) =
∑

π(H)⊆I

eH =
∑

H⊆π−1(I)

eH = Zπ−1(I)

Then, P>π MPπ =
∑n

k=0 zk
∑

I⊆N P
>
π ZIZ

>
I Pπ =

∑n
k=0 zk

∑
I⊆N Zπ−1(I)Z

>
π−1(I) = M .

Corollary 9. If w ∈ RPt(N) is an eigenvector of M then v = Pπw is also an eigenvector of M
for any π ∈ Π.

Proof. By the assumption, Mw = λw and by Lemma 8, Mv = M(Pπw) = PπMw = λv.

By using Corollary 9 we can show that the set of interesting eigenvectors have some “strong”
symmetry properties that will be used in our analysis. In the simplest case, for any eigenvector
w we could take the vector u =

∑
π∈Π Pπw and observe that the elements of u have the form

uI = uJ for each I, J such that |I| = |J |. If ‖u‖ 6= 0 then u/‖u‖ and w/‖w‖ are two eigenvectors
corresponding to the same eigenvalue. The latter implies that by considering only eigenvectors
having the form uI = uJ for each |I| = |J | we would consider the eigenvalue corresponding to
the “unstructured” eigenvector w as well. This is not the case in general, however, since it is
possible that

∑
π∈Π Pπw = 0.

We overcome this obstacle by restricting the permutations in a way which guarantees u to
be non-zero. Before going into the details, we introduce some notation.

Definition 2. For any H ⊆ N , we denote by ΠH the permutation group that fixes the set H
in the following sense: π ∈ ΠH ⇔ π(H) = H.

Note that the definition is equivalent to saying that π ∈ ΠH if and only if π(i) ∈ H for every
i ∈ H and π(i) /∈ H for every i /∈ H.

Now, we choose a subset H ⊆ N such that
∑

π∈ΠI
Pπw = 0 for each I such that |I| < |H|

and u =
∑

π∈ΠH
Pπw 6= 0. Such a set H always exists, since otherwise w is a zero vector, since

if there is one non-zero entry wJ in w, we can take H = J and the resulting u is non-zero. The
choice of H is not unique, but we can always assume that it is the subset of the first h = |H|

12



elements from N , i.e. H = {1, . . . , h}. Indeed, if it is not the case, there exists a permutation
π ∈ Π that maps H to the subset of the first |H| elements from N and such that Pπw is
an eigenvector of M by Lemma 9. Now it holds that u 6= 0 and the vector u/‖u‖ is a unit
eigenvector corresponding to the same eigenvalue as w and has many elements that are equal
to each other.

Lemma 10. Let w ∈ RPt(N) be a unit eigenvector of M corresponding to eigenvalue λ, and
H be the smallest subset of N such that u =

∑
π∈ΠH

Pπw 6= 0. Then u/‖u‖ is also a unit
eigenvector of M corresponding to eigenvalue λ.

The following lemma shows the structure of eigenvectors obtained from summing the per-
mutations of any “unstructured” eigenvector.

Lemma 11. Let u =
∑

π∈ΠH
Pπw. Then the vector u is invariant under the permutations

of ΠH , namely uI = uπ(I) for π ∈ ΠH . Equivalently, uI = uJ for all |I| = |J | such that
|I ∩H| = |J ∩H|.

Proof. We have uI =
[∑

π∈ΠH
Pπw

]
I

=
∑

π∈ΠH
[Pπw]I =

∑
π∈ΠH

wπ(I) =
∑

π∈ΠH
wπ(π(I)) =

uπ(I) where the last but one equality follows since permutations are bijective. The claim follows
by observing that for all |I| = |J | such that |I ∩H| = |J ∩H| there exists π ∈ ΠH such that
π(I) = J .

Lemma 10, Lemma 11 and the arguments above imply Lemma 12.

Lemma 12. For any eigenvalue λ of M there exists an h = 0, 1, . . . , t such that the following
is an eigenvector corresponding to λ:

uh =

t∑
i=0

min{h,i}∑
j=0

αi,jbi,j (21)

where H = {1, . . . , h}, αi,j ∈ R and bi,j ∈ RPt(N) such that [bi,j ]Q = 1 if |Q| = i and |Q∩H| = j,
[bi,j ]Q = 0 otherwise.

By Lemma 12, we have that the positive semidefiniteness condition of M follows by ensuring
that for any h = 0, 1, . . . , t we have u>hMuh ≥ 0, i.e.

u>hMuh =

n∑
k=0

zk
∑
I⊆N
|I|=k

(
u>hZI

)2

︸ ︷︷ ︸
Ak

=

n∑
k=0

zk
∑
I⊆N
|I|=k

 t∑
i=0

min{h,i}∑
j=0

αi,jb
>
i,jZI

2

≥ 0

In the following (Lemma 13) we show that the above values Ak are interpolated by the
univariate polynomial Gh(x) defined in Definition 3. In Lemma 14 we prove some remarkable
properties of Gh(x) as claimed in Theorem 1.

Definition 3. For any h ∈ {0, . . . , t}, let Gh(k) ∈ R[k] be a univariate polynomial defined as
follows

Gh(k) =

h∑
r=0

(
h

r

)
hr(k)

 h∑
j=0

(
r

j

)
pj(k − r)

2

(22)

where hr(k) = kr · (n− k)h−r and pj(k − r) =
∑t−j

i=0 αi+j,j
(
k−r
i

)
(for αi,j ∈ R).7

7Denote by xm = x(x− 1) · · · (x−m+ 1) the falling factorial (with the convention that x0 = 1).
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Lemma 13. For every k = 0, . . . , n the following identity holds Ak =
(
n
k

)
1
nh
Gh(k).

Proof. We start noting that for every i = 0, ..., t, j = 0, ..., |H| we have 8

b>i,jZI =

(
|I ∩H|

j

)(
|I \H|
i− j

)
Indeed

b>i,jZI =
∑

Q∈Pt(N)

(bi,j)Q(zI)Q =
∑

Q⊆I,|Q|=i
|Q∩H|=j

1 =

(
|I ∩H|

j

)(
|I \H|
i− j

)

It follows that we have

∑
I⊆N
|I|=k

(
u>ZI

)2
=
∑
I⊆N
|I|=k

 t∑
i=0

|H|∑
j=0

αi,jb
>
i,jZI

2

=
∑
I⊆N
|I|=k

 t∑
i=0

|H|∑
j=0

αi,j

(
|I ∩H|

j

)(
|I \H|
i− j

)2

Splitting the sum over I by considering the intersections I ∩H of sizes r = 0, ..., |H|, we have

|H|∑
r=0

∑
|I|=k
|I∩H|=r

 t∑
i=0

|H|∑
j=0

αi,j

(
r

j

)(
k − r
i− j

)2

=

|H|∑
r=0

(
|H|
r

)(
n− |H|
k − r

) |H|∑
j=0

(
r

j

) t∑
i=0

αi,j

(
k − r
i− j

)2

Finally, we shift the sum over i by j and thus justify the equality

∑
I⊆N
|I|=k

(
u>ZI

)2
=

|H|∑
r=0

(
|H|
r

)(
n− |H|
k − r

) |H|∑
j=0

(
r

j

) t−j∑
i=0

αi+j,j

(
k − r
i

)2

Now, the sum over i is a Newton polynomial that we denote by pj(k − r) =
∑t−j

i=0 αi+j,j
(
k−r
i

)
.

Note that by definition, here deg(p) = t− j. Furthermore, observe that(
n− |H|
k − r

)
=

(
n

k

)
1

n|H|
kr · (n− k)|H|−r

and writing hr(k) = kr · (n− k)|H|−r yields the claim.

It follows that for any unit eigenvector u of the form (21) the corresponding eigenvalue is
equal to u>Mu = 1

nh

∑n
k=0 zk

(
n
k

)
Gh(k). Theorem 7 requires that

∑n
k=0 zk

(
n
k

)
Gh(k) ≥ 0 which

implies that the eigenvalue u>Mu is nonnegative. In the following section we complete the
proof by showing that the polynomials Gh(k) of Definition 3 satisfy the conditions (4), (5) and
(6) of Theorem 1 (as shown in Lemma 14).

8Recall that
(
n
−k

)
=

(
n
n+k

)
= 0 for any positive integer k.
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6.2 Properties of the univariate polynomials

Lemma 14. For any h ∈ {0, . . . , t}, the polynomials Gh(k) as defined in Definition 3 have the
following properties:

(a) Gh(k) is a univariate polynomial of degree at most 2t,

(b) Gh(k) ≥ 0 for k ∈ [h− 1, n− h+ 1]

(c) Gh(k) = 0 for every k ∈ {0, ..., h− 1} ∪ {n− h+ 1, ..., n}.

Proof of (a).

Gh(k) =

h∑
r=0

(
h

r

)
hr(k)

 h∑
j=0

(
r

j

)
pj(k − r)

2

=

h∑
r=0

(
h

r

)
hr(k)

 h∑
i=0

h∑
j=0

(
r

i

)(
r

j

)
pi(k − r)pj(k − r)


=

h∑
r=0

(
h

r

)
hr(k)

 h∑
i=0

h∑
j=0

(
r

i

)(
r

j

)( t−i∑
a=0

αa+i,i

(
k − r
a

))( t−j∑
b=0

αb+j,j

(
k − r
b

))
=

h∑
i=0

h∑
j=0

t−i∑
a=0

t−j∑
b=0

αa+i,iαb+j,j

a∑
q=0

b∑
s=0

(
k − h
q

)(
k − h
s

)( h∑
r=0

(
h

r

)
hr(k)

(
r

i

)(
r

j

)(
h− r
a− q

)(
h− r
b− s

))
︸ ︷︷ ︸

B(k)

Note that
(
k−r
a

)
=
∑a

q=0

(
k−h
q

)(
h−r
a−q
)

by Vandermonde’s identity. We prove the theorem by
showing that B(k) has degree not larger than 2t.

B(k) =

(
k − h
q

)(
k − h
s

)
h∑
r=0

(
h

r

)
kr(n− k)h−r

f(r)︷ ︸︸ ︷(
r

i

)(
r

j

)(
h− r
a− q

)(
h− r
b− s

)
︸ ︷︷ ︸

C(k)

By Lemma 15 below, the degree of C(k) is at most i+ j + a− q + b− s and thus the degree of
B(k) is at most i+ j + a+ b = 2t

Lemma 15. The degree of C(k) is at most i+ j + a− q + b− s.

The claim follows by showing that the degree of C(k) is at most the degree of f(r). The
degree of f(r) is i+ j + a− q + b− s.

Recall that the forward difference of function g(X) with respect to variable X is a finite
difference defined by ∆X [g(X)] = g(X + 1) − g(X). Higher order differences are obtained by
repeated operations of the forward difference operator. We will use ∆`

X [g(X)]X=b to denote
the `-th forward difference evaluated at X = b. We will us the following easy to check identity:
∆d
X [(k +X)r+d] = (k +X)r(r + d)d.

First note that any polynomial f(r) of degree δ can written as linear combinations of poly-

nomials Pd(r) = (r + 1)d = (r + d)d with 0 ≤ d ≤ δ. It follows that the claim follows by showing
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that the degree of the following C ′(k) is at most the degree of Pd(r)

C ′(k) =
h∑
r=0

(
h

r

)
(n− k)h−r · kr(r + d)d

=

h∑
r=0

(
h

r

)
(n− k)h−r ·∆d

X

[
(k +X)r+d

]
X=0

= ∆d
X

[
h∑
r=0

(
h

r

)
(n− k)h−r(k +X)r+d

]
X=0

= ∆d
X

[
(k +X)d

h∑
r=0

(
h

r

)
(n− k)h−r(k +X − d)r

]
X=0

= ∆d
X

[
(k +X)d(n+X − d)h

]
X=0

where we have used the linearity of the forward difference operator and the Vandermonde’s
identity to derive the last equality. The claim follows by observing that the forward difference
operator does not increase the degree of its argument and therefore C ′(k) has degree at most d.

Proof of (b). Let k ∈ [h− 1, n− h+ 1]. We have

Gh(k) =

h∑
r=0

(
h

r

)
hr(k)

 h∑
j=0

(
r

j

)
pj(k − r)

2

where hr(k) = kr ·(n− k)h−r ≥ 0 for each r = 0, ..., h. Therefore Gh(k) is a sum of non-negative

numbers
(∑h

j=0

(
r
j

)
pj(k − r)

)2
weighted by positive coefficients hr(k).

Proof of (c). From Lemma 13 we have that

1

nh

(
n

k

)
Gh(k) =

∑
I⊆N
|I|=k

(
u>ZI

)2

Therefore Gh(k) = 0 for k ∈ {0, ..., h− 1}∪{n− h+ 1, ..., n} if we can show that u>ZQ = 0 for
all Q ⊆ N such that |Q| = k.

With this aim, we start noting that for every set S ⊆ N we have that the permutation
group ΠS is the same as ΠN\S . Moreover if |S| < h then

∑
π∈ΠS

Pπu = 0, otherwise we would
obtain a set S smaller than H with

∑
π∈ΠS

Pπu 6= 0 (contradicting our assumption that H is a
set with the smallest set size having

∑
π∈ΠH

Pπu 6= 0).
Now consider any set I such that I ⊆ Q with Q ∈ {S,N \ S} and |S| < h. By the previous

observations it follows that [
∑

π∈ΠQ
Pπu]I =

∑
π∈ΠQ

PπuI =
∑

π∈ΠQ
uπ(I) = 0. Note that since

I ⊆ Q the set {π(I) : π ∈ ΠQ} is equal to {J : J ⊆ Q, |J | = |I|}, since ΠQ is the permutation
group that maps any element I from Q to any other element from Q of the same size. It follows
that

∑
π∈ΠQ

uπ(I) =
∑

J⊆Q,|J |=|I| uJ = 0. Using the latter we get

u>ZQ =
∑
J⊆Q

uJ =

|Q|∑
i=0

∑
J⊆Q,|J |=i

uJ = 0

proving the claim.
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Appendix

A The SoS hierarchy

In this section we recall the usual definition of the SoS/Lasserre hierarchy [25] and justify
Definition 1. Notice that the SDP hierarchy that we discuss here is the dual certificate of a
refutation of the positivstellensatz proof system, for further information about the connection
to the proof system we refer the reader to [29]. In our setting we restrict ourselves to problems
with 0/1-variables and linear constraints. More precisely, we consider the following general
optimization problem P: given a multilinear polynomial f : {0, 1}n → R

P : min{f(x)|x ∈ {0, 1}n ∩K} (23)

where K is a polytope defined by m linear inequalities g`(x) ≥ 0 for ` ∈ [m]. Many basic
optimization problems are special cases of P. For example, any k-ary boolean constraint satis-
faction problem, such as Max-Cut, is captured by (23) where a degree k function f(x) counts
the number of satisfied constraints, and no linear constraints g`(x) ≥ 0 are present. Also any
0/1 integer linear program is a special case of (23), where f(x) is a linear function.
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Lasserre [25] proposed a hierarchy of SDP relaxations parameterized by an integer r,

min{L(f)|L : R[X]2r → R, L(1) = 1, L(x2 − x) = 0 and L(u2), L(u2g`) ≥ 0,∀ polynomial u} (24)

where L : R[X]2r → R is a linear map with R[X]2r denoting the ring R[X] restricted to
polynomials of degree at most 2r.9 Note that (24) is a relaxation since one can take L to be
the evaluation map f → f(x∗) for any optimal solution x∗.

Relaxation (24) can be equivalently formulated in terms of moment matrices [25]. In the
context of this paper, this matrix point of view is more convenient to use and it is described
below. In our notation we mainly follow the survey of Laurent [26] (see also [33]).

Variables and Moment Matrix. Let N denote the set {1, . . . , n}. The collection of all
subsets of N is denoted by P(N). For any integer t ≥ 0, let Pt(N) denote the collection of
subsets of N having cardinality at most t. Let y ∈ RP(N). For any nonnegative integer t ≤ n, let
Mt(y) denote the matrix with (I, J)-entry yI∪J for all I, J ∈ Pt(N). Matrix Mt(y) is termed in
the following as the t-moment matrix of y. For a linear function g(x) =

∑n
i=1 gi·xi+g0, we define

g∗y as a vector, often called shift operator, where the I-th entry is (g∗y)I =
∑n

i=1 giyI∪{i}+g0yI .
Let f denote the vector of coefficients of polynomial f(x) (where fI is the coefficient of monomial
Πi∈Ixi in f(x)).

Definition 4. The t-th round SoS (or Lasserre) relaxation of problem (23), denoted as SoSt(P),
is the following

SoSt(P) : min

∑
I⊆N

fIyI |y ∈ RP2t+2d(N) and y ∈M

 (25)

where M is the set of vectors y ∈ RP2t+2d(N) that satisfy the following PSD conditions

y∅ = 1, (26)

Mt+d(y) � 0, (27)

Mt(g` ∗ y) � 0 ` ∈ [m] (28)

where d = 0 if m = 0 (no linear constraints), otherwise d = 1.

Change of variables. A solution of the SoS hierarchy as defined in Definition 4 is given by a
vector y ∈ RP2t+2d(N). Next we show we can make a change of basis and replace the variables yI
with other variables yNI that are indexed by all the subsets of N . Variable yNI can be interpreted
as the “relaxed” indicator variable for the integral solution xI , i.e. the 0/1 solution obtained
by setting xi = 1 for i ∈ I, and xi = 0 for i ∈ N \ I. We use this change of basis in order to
obtain a useful decomposition of the moment matrix as a sum of rank one matrices of special
kind. Here it is not necessary to distinguish between the moment matrix of the variables and
constraints, hence in what follows we denote a generic vector by w ∈ RP2q(N), where q is either
t or t+ 1.

Definition 5. Let w ∈ RP2q(N). For every I ∈ P(N), define a vector wN ∈ RP(N) such that

wI =
∑

I⊆H⊆N
wNH

9In [4], L(p) is written Ẽ[p] and called the “pseudo-expectation” of p.
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Note that the inverse (for |I| ≤ 2t) is

wNI =
∑

H⊆N\I,|H∪I|≤2t

(−1)HwI∪H (29)

To simplify the notation, we note that the moment matrix of the variables is structurally
similar to the moment matrix of the constraints: if z ∈ RP2q(N) is a vector such that zI =∑N

i=1A`iyI∪{i}− b`yI for some `, then [Mt(g` ∗ y)]I,J = zI∪J . Hence, the following lemma holds
for the moment matrix of variables and constraints.

Lemma 16. Let w ∈ RP2q(N), and M ∈ RPq(N)×Pq(N) such that MI,J = wI∪J . Then

M =
∑
H⊆N

wNHZHZ
>
H

Proof. Since MI,J = wI∪J , we have by the change of variables that

[M ]I,J =
∑

I∪J⊆H⊆N
wNH =

∑
H⊆N

χI∪J(H)wNH

where χI∪J(H) is the 0-1 indicator function such that χI(H) = 1 if and only if I ∪ J ⊆ H.
On the other hand, [ZHZ

>
H ]I,J = [ZH ]I [ZH ]J = 1 if I ∪ J ⊆ H, and 0 otherwise. Therefore

[ZHZ
>
H ]I,J = χI∪J(H).

By the previous lemma it follows that given a solution by using variables {wNI } we can
obtain a solution with variables {wI : |I| ≤ 2t}. Viceversa, given any assignment of variables
in {wI : |I| ≤ 2t} we can find an assignment of variables in {wNI } such that MI,J = wI∪J
and M =

∑
H⊆N w

N
HZHZ

>
H . Indeed, set wNI = 0 for every I such that |I| > 2t. For the

remaining ones note that for |I| ≤ 2t the square matrix corresponding to the following equalities
wI =

∑
I⊆H⊆N w

N
H is invertible since it is upper triangular.

Lemma 17. [26] Given y ∈ RP2t+2(N), for the vector zI =
∑n

i=1A`iyI∪{i} − b`yI we have

zNI = g`(xI)y
N
I (30)

where g`(xI) =
∑N

i=1A`ixi − b` is a linear function corresponding to the constraint `, evaluated
at xI such that xi = 1 if i ∈ I and xi = 0 otherwise.

Proof. We need to show that this choice of zNI yields zI =
∑

I⊆H⊆N z
N
H . We plug in (30) to

obtain ∑
I⊆H⊆N

zNH =
∑

I⊆H⊆N
g`(xH)yNH =

∑
I⊆H⊆N

[
n∑
i=1

A`ixi − b`

]
x=xH

yNH

=
∑

I⊆H⊆N

(
n∑
i=1

[A`ixi]x=xH
yNH − b`yNH

)
=

∑
I⊆H⊆N

n∑
i=1

[A`ixi]x=xH
yNH − b`yI

Here the term [A`ixi]x=xH
yNH is A`iy

N
H if i ∈ H and 0 otherwise. Taking this into account and

changing the order of the sums, the above becomes

n∑
i=1

∑
I∪{i}⊆H⊆N

A`iy
N
H − b`yI =

n∑
i=1

A`iyI∪{i} − b`yI

which proves the claim.
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The above discussion together with the observation that y∅ = 1 implies that
∑

J⊆N y
N
J = 1

and justifies Definition 1. Finally, we remark the following

Lemma 18. Let f denote the vector of coefficients of polynomial f(x) of (23). Then the
objective value of the solution y is given by∑

I⊆N
fIyI =

∑
I⊆N

f(xI)y
N
I

Proof. Similar lines as the proof of Lemmas 16 and 17.

B Change of variables for Max-Cut

Grigoriev [18] and Laurent [27] proved that the following solution is feasible for any ω ≤ n/2
up to round t ≤ bωc for the SoS hierarchy given in Definition 4:

yI =

(
ω
|I|
)(

n
|I|
) ∀I ⊆ N : |I| ≤ 2t

Using the change of basis (29), solution {yI} is equivalent to solution {yNI }:

yNI =
∑

H⊆N\I

(−1)|H|yI∪H =

n−|I|∑
h=0

(
n− |I|
h

)
(−1)h

(
ω
|I|+h

)(
n
|I|+h

)
= yI

(
ω − |I| − 1

n− |I|

)
(−1)n−|I| = (n+ 1)

(
ω

n+ 1

)
(−1)n−|I|

ω − |I|
(31)

where we use the identity
∑m

ω=0(−1)ω
(
n
ω

)
= (−1)m

(
n−1
m

)
.
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