
Reducing testing affine spaces to testing linearity of functions

Oded Goldreich

October 21, 2019

Abstract

For any finite field F and k < `, we consider the task of testing whether a function f : F` →
{0, 1} is the indicator function of an (` − k)-dimensional affine space. An optimal tester for
this property (for the case of F = GF(2)) was presented by Parnas, Ron, and Samorodnitsky
(SIDMA, 2002), by mimicking the celebrated linearity tester of Blum, Luby and Rubinfeld
(JCSS, 1993) and its analysis. We show that the former task (i.e., testing (` − k)-dimensional
affine spaces) can be efficiently reduced to testing the linearity of a related function g : F` → Fk.
This reduction yields an almost optimal tester for affine spaces (represented by their indicator
function).

Recalling that Parnas, Ron, and Samorodnitsky used testing (`−k)-dimensional affine spaces
as the first step in a two-step procedure for testing k-monomials, we also show that the second
step in their procedure can be reduced to the special case of k = 1.

A preliminary version of this work was posted in April 2016 as a guest column on the Property
Testing Review. It was significantly revised and appeared as TR16-080 of ECCC. The current
version is the result of an even more extensive revision. In particular, the reduction of testing
affine spaces to testing linearity (of functions) is extended to arbitrary finite fields, many of the
technical justifications are elaborated, and some crucial typos are fixed. In addition, the title has
been augmented for clarity, the brief introduction has been expanded, and the high level structure
has been re-organized (i.e., the original Sections 3 and 5 have been merged and placed after the
original Section 4.)

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for approximate decision mak-
ing. These algorithms are given direct access to items of a huge data set, and determine whether
this data set has some predetermined (global) property or is far from having this property, while
accessing a small portion of the data set. Thus, property testing is a relaxation of decision problems
and it focuses on algorithms, called testers, that only read parts of the input. Consequently, the
testers are modeled as oracle machines and the inputs are modeled as functions to which the tester
has an oracle access.

This paper refers to several basic tasks in property testing, including testing linearity, testing
dictatorship, testing (monotone) k-monomials, and testing affine spaces. Whereas the first three
tasks refer explicitly to an input function (i.e., the object they test is naturally viewed as a function),
in the case of testing affine spaces the object is a set of points and representing this set by an
indicator function is a natural choice but not an immediate one. In particular, this is a very
redundant representation in the case that the set is sparse, but we will consider the case of relatively
dense sets. Furthermore, this representation arises naturally in the study of testing k-monomials.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 80 (2016)

The problem of testing whether a Boolean function is a (monotone) k-monomial was first studied
by Parnas, Ron, and Samorodnitsky [6]. The tester that they presented generalizes their tester of
dictatorship (i.e., the case k = 1), and does so by following the same two-step strategy and using
similar arguments at each step. This raises the question of whether the case of general k can be
reduced to the special case of k = 1. (This question occurred to me when writing [4, Sec. 5.2.2],
and the first version of the current paper was written at that time.)

Specifically, the first step in the strategy of Parnas, Ron, and Samorodnitsky [6] is testing
whether the input function f : {0, 1}` → {0, 1} describes an (`− k)-dimensional affine space, where
the space described by f is f−1(1). In the case of dictatorship (i.e., k = 1), this amounts to testing
whether f itself is an affine function, but in the case of k > 1 a more general task arises (i.e.,
testing whether f−1(1) is an (`−k)-dimensional affine space is fundamentally different from testing
whether f is affine). In the second step, one tests whether this affine space is of the right form (i.e.,
is a translation by 1` of a linear space spanned by axis-parallel vectors). In the case of k = 1, the
latter task amounts to testing whether the affine function depends on a single variable, but in the
case of k > 1 another more general task arises.

Both these general tasks were solved by Parnas, Ron, and Samorodnitsky [6], but their solutions
mimic the solutions used in the case of k = 1. Furthermore, in both cases, the generalization is
very cumbersome. We find this state of affairs quite annoying, and believe that it is more appealing
to reduce the general case to the special case.

Our contribution. This paper partially achieves this goal by (1) replacing the first step of [6] with
a reduction to the (extensively studied) problem of testing linearity of functions, and (2) reducing
the second step to its special case of k = 1. Specifically, we first reduce the problem of testing
affine spaces to the problem of testing the linearity of functions. This reduction actually hold over
any finite field, whereas the application to testing monomials only uses the case of the binary field
(which is the case treated in [6]). The complexity of the testers that we deriver is only slightly
inferior to the complexity of the corresponding optimal testers of [6]; specifically, in the relevant
case of ε = O(2−k), we get a complexity bound of Õ(log(1/ε) · 2k + O(1/ε) rather than O(1/ε).
(Indeed, the bounds coincide for ε < 2−k/Õ(k).)

Organization. In Section 2 we recall the standard definition of property testing and formally
define the properties considered in this paper. The reduction of testing affine spaces to testing lin-
earity of functions is presented in Section 3, whereas the problem of testing monomials is considered
in Section 4.

2 Preliminaries

We assume that the reader is familiar with the basic definition of property testing (see, e.g., [4]),
but for sake of good order we reproduce it here. The basic definition refers to functions with domain
D and range R.

Definition 2.1 (a tester for property Π): Let Π be a set of functions of the form f : D → R.
A tester for Π is a probabilistic oracle machine, denoted T , that, on input a proximity parameter ε
and oracle access to a function f : D→R, outputs a binary verdict that satisfies the following two
conditions.

1. T accepts inputs in Π: For every ε > 0, and for every f ∈ Π, it holds that Pr[T f (ε)=1] ≥ 2/3.

2

2. T rejects inputs that are ε-far from Π: For every ε > 0, and for every function f : D→R that
is ε-far from Π it holds that Pr[T f (ε) = 0] ≥ 2/3, where f is ε-far from Π if for every g ∈ Π
it holds that |{x∈D : f(x) 6=g(x)}| > ε · |D|.

If the first condition holds with probability 1 (i.e., Pr[T f (ε) = 1] = 1), then we say that T has
one-sided error; otherwise, we say that T has two-sided error.

We focus on the query complexity of such testers, while viewing |D| as an additional parameter.
We seek testers of query complexity that is independent of |D|, which means that the complexity
will be a function of the proximity parameter ε and an auxiliary parameter k (of the two properties
that we consider).

The properties we shall consider refer to functions over the domain F `, where F is a finite field.
(In the previous versions of this paper, we confined ourselves to the case that F is the two-element
field GF(2), which is the case treated in [6].)

Definition 2.2 (affine spaces): For fixed k, ` ∈ N and a finite field F , we say that the function
f : F `→{0, 1} describes an (` − k)-dimensional affine space if f−1(1) = {x ∈ F ` : f(x) = 1} is an
(`− k)-dimensional affine space; that is, f−1(1) = {yG+ s : y ∈ F `−k}, where G ∈ F (`−k)×` is an
(`− k)-by-` full-rank matrix and s ∈ F `. When s = 0`, the described space is linear.

Definition 2.3 (linear functions): For fixed k, ` ∈ N and a finite field F , we say that g : F `→Fk
is linear if g(x+ y) = g(x) + g(y) for all x, y ∈ F `. Equivalently, g(z) = zT for a `-by-k matrix T .
We say that f is affine if f(z) = f ′(z) + s for a linear function f ′ and some s ∈ Fk.

When k = 1 and F = GF(2) ≡ {0, 1}, it holds that f : F `→{0, 1} describes an (`−k)-dimensional
affine spacve (resp., linear space) if and only if f is a non-constant affine function (resp., f + 1
is a non-constant linear function). But in the other cases this does not hold; in particular, for
other fields a non-constant affine function must range over F rather than over {0, 1}, whereas for
F = GF(2) and k > 1 the densities do not match (i.e., an (` − k)-dimensional affine space over
GF(2) has density 2−k but a non-constant affine function f : GF(2)`→GF(2) has density 1/2).

Conventions. When writing Prx[event(x)] we refer to the case that x is selected uniformly in
a set that is clear from the context; we sometimes spell out this set by writing Prx∈S [event(x)].
For sake of simplicity, we often use the phrase “with high probability” (abbrev., “w.h.p.”), which
mean that we can obtain arbitrary high constant probability smaller 1 (e.g., 0.99). The image of
a function f : D → R is the set {f(e) : e ∈ D} ⊆ R. The symbol ⊥ denotes a special symbol
that is not in Fk. When stating time complexity bounds we shall assume that basic operations on
elements of F ` have unit cost.

3 The reduction (of testing affine spaces to testing linearity)

We start by restating the problem. We are given access to a function h : F ` → {0, 1} and wish to
test whether h−1(1) is an (` − k)-dimensional affine subspace by reducing this problem to testing
linearity (of a function). We present two reductions. The first (and simpler) reduction increases
the complexities by a factor of |F|k, whereas the second reduction only incurs an overhead of
Õ(log(1/ε)). The first reduction will be used as a subroutine in the second one, and it also provides
a good warm-up towards the second one.

3

3.1 Simplifying assumptions

First, note that we may assume that ε = O(|F|−k), which means that |F|k = O(1/ε), since the case
of ε > 4 · |F|−k can be handled by estimating the density of h−1(1) (and accepting iff the estimate
is below ε/2). Specifically, note that any function that describes an (` − k)-dimensional subspace
(over F) is at distnace exactly |F|−k from the all-zero function. Hence, if h is 0.75ε-close to the
all-zero function, then it is ε-close to describing a (`− k)-dimensional subspace, since |F|−k < ε/4,
and it is OK to accept it. On the other hand, if h is 0.25ε-far from the all-zero function, then it
cannot describe a (` − k)-dimensional subspace (again, since ε/4 > |F|−k), and it is OK to reject
it. Hence, we have

Claim 3.1 (reducing to the case of ε ≤ 4 · |F|−k): Testing whether a function h : F ` → {0, 1}
describes a (`−k)-dimensional affine subspace can be randomly reduced to the case of ε ≤ 4 · |F|−k,
where the reduction introduces an additive overhead of O(|F|k) queries.

(An alternative justification boils down to resetting the proximity parameter to min(ε, 4 · |F|−k);
that is, on input proximity parameter ε and oracle h, we invoke the given tester on proximity
parameter min(ε, 4 · |F|−k) and provide it with oracle access to h.)

Another simplifying assumption is that we are dealing with linear subspaces rather than with
affine ones. Actually, we present a reduction of the general case to this special case.1

Claim 3.2 (reducing to the linear case): Testing whether a function h : F ` → {0, 1} describes a
(`−k)-dimensional affine subspace can be randomly reduced to testing whether a function h′ : F ` →
{0, 1} describes a (` − k)-dimensional linear subspace, where the reduction introduces an additive
overhead of O(|F|k) queries.

The foregoing randomized reduction has a two-sided error probability; obtaining an analogous one-
sided error reduction is left as an open problem. Yet, since the known testers for linear subspaces
(i.e., of [6] and of this paper) have two-sided error probability, our use of Claim 3.2 cause no real
loss.

Proof: On input parameter ε > 0 and oracle access to h, we proceed as follows.

1. Select uniformly a sample of O(|F|k) points in F `. If h evaluates to 0 on all these points,
then reject. Otherwise, let u be a point in this sample such that h(u) = 1.

2. Invoke the tester for linear subspaces on input parameter ε and oracle access to h′ defined by

h′(x)
def
= h(x+ u), and output its verdict. That is, each query x to h′ is emulated by making

the query x+ u to h.

The overhead of the reduction is due to Step 1, whereas in Step 2 we just invoke the tester for the
special case.

If h describes an (` − k)-dimensional affine subspace, then, with high probability, Step 1 finds
u ∈ h−1(1), since h−1(1) has density |F|−k, and we proceed to Step 2. But in this case it holds
that h′(x) = 1 if and only if x+ u ∈ h−1(1), which means that h′ describes the (`− k)-dimensional
linear space h−1(1)− u, and so the invoked test accepts (w.h.p.).

(Indeed, if H = {yG+s : y∈F `−k} is an affine space (as in Definition 2.2) and u = (zG+s) ∈ H,
then H − u = {yG+ s− u : y∈F} = {yG+ s− (zG+ s) : y∈F `−k} = {(y − z)G : y∈F `−k} is a

1This reduction somewhat simplifies the presentation in Section 3.2, and more significantly so in Section 3.3.

4

linear space. Likewise, if H ′ = {yG : y∈F `−k} is a linear space, then H + u = {yG+ u : y∈F} is
an affine space.)

On the other hand, if h is ε-far from being an (` − k)-dimensional affine subspace, then either

Step 1 rejects or else u ∈ h−1(1). But in this case h′ (which was defined by h′(x)
def
= h(x + u))

must be ε-far from describing an (` − k)-dimensional linear subspace. This is so because if h′ is
ε-close to g′ that describes an (`−k)-dimensional linear subspace (i.e., g′ describes the linear space

{yG : y∈F `−k}), then g(x)
def
= g′(x− u) (equiv., g(x+ u) = g′(x)) describes an affine space (i.e., g

describes the affine space {yG+ u : y∈F `−k}), whereas h is ε-close to g (since h(x) = h′(x− u)).
Hence, in this case (i.e., h′ is ε-far from describing an (`− k)-dimensional linear subspace), Step 2
rejects with high probability.

3.2 The first reduction

The key step is the definition of a function g : F ` → Fk∪{⊥} such that if H
def
= h−1(1) is an (`−k)-

dimensional linear space, then g is linear (with image Fk) and g−1(0k) = H. Furthermore, in that
case, g(x) indicates one of the |F|k translations of H in which x resides; that is, if v(1), ..., v(k) ∈ F `
form a basis for the k-dimensional space that complements H, then g(x) represents coefficients
(c1, ..., ck) ∈ Fk such that x ∈ H −

∑
i∈[k] civ

(i).
Indeed, the definition of g is based on any fixed sequence of linearly independent vectors

v(1), ..., v(k) ∈ F ` such that for every non-zero sequence of coefficients (c1, ..., ck) ∈ Fk it holds
that

∑
i∈[k] civ

(i) 6∈ H. Such sequences of vectors exist (actually in abundance) if H is an (`− k)-
dimensional linear space, and so we can find such a sequence in this case (by random sampling and
querying h). Failure to find such a sequence will provide good justification for ruling that H is not
an (`− k)-dimensional linear space.

Fixing such a sequence of v(i)’s, we define g : F ` → Fk ∪ {⊥} such that g(x) = (c1, ..., ck) if
(c1, ..., ck) ∈ Fk is the unique sequence that satisfies x +

∑
i∈[k] civ

(i) ∈ H and let g(x) = ⊥ 6∈
Fk otherwise. Indeed, a unique sequence exists if H is an (` − k)-dimensional linear space, and
in that case g(x) ∈ Fk for every x ∈ F `. But when H is not an (` − k)-dimensional linear
space, it may happen that for some (or even all) x’s there is no sequence (c1, ..., ck) ∈ Fk such
that x +

∑
i∈[k] civ

(i) ∈ H; similarly, it may happen that there are several different sequences

(c1, ..., ck) ∈ Fk that satisfy x+
∑

i∈[k] civ
(i) ∈ H. Anyhow, using matrix notation, we restate the

foregoing definition next (where the v(i)’s are the rows of the matrix V).

Definition 3.3 (the function g = gH,V): Let V be a k-by-` full-rank matrix over F such that
cV ∈ H implies c = 0k. Then, gH,V : F ` → Fk ∪ {⊥} is defined such that gH,V (x) = c if c ∈ Fk is
the unique vector that satisfies x+ cV ∈ H, and gH,V (x) = ⊥ if the number of such k-long vectors
is not one.

(Whenever we say that g is linear, we mean, in particular, that it never assumes the value ⊥.)2

Claim 3.4 (H versus gV,H): Let V be as in Definition 3.3. Then, H is an (` − k)-dimensional
linear space if and only if g = gH,V is a linear function with image Fk.

It follows that if g is ε-close to being a linear function with image Fk, then g−1(0k) is ε-close to
being an ((` − k)-dimensional) linear space (i.e., the indicator functions of these sets are ε-close).

2Indeed, when emulating g for the linearity tester, we shall reject if we ever encounter the value ⊥.

5

To see this, consider a linear g′ that is ε-close to g, and note that H ′ = {x ∈ F ` : g′(x) = 0k} is
ε-close to g−1(0k) (equiv., the Boolean function that indicates membership in H ′ is ε-close to h).

Proof: First note that g−1(0k) ⊆ H always holds, since g(x) = c implies x + cV ∈ H (and so
g(x) = 0` implies x ∈ H). Furthermore, equality (i.e., g−1(0k) = H) holds if g never assumes the
value ⊥, since in this case x+ cV ∈ H implies that g(x) = c (and so x ∈ H implies g(x) = 0`).

Now, on the one hand, if g is a linear function with image Fk (i.e., g(x) = xT for some full-rank
`-by-k matrix T), then H = g−1(0k) (i.e., H = {x ∈ F ` : xT = 0k}), which implies that H is an
(` − k)-dimensional linear subspace (since H = {yG : y ∈ F `−k} for any G that is a basis of the
space orthogonal to T>).3

On the other hand, if H is an (`− k)-dimensional linear space, then, for some full-rank (`− k)-
by-` matrix G, it holds that H = {yG : y ∈ F `−k}. In this case, for every x ∈ F ` there exists a
unique representation of x as yG − cV , since V is a basis for a k-dimensional linear space that
complements the (` − k)-dimensional linear space H, which implies x + cV = yG ∈ H, and so
g(x) = c. It follows that the image of g equals Fk (since g(cV) = c for every c ∈ Fk) and that g is
linear, since for every x = yG− cV and x′ = y′G− c′V in F `, it holds that g(x) + g(x′) = c+ c′ and
c + c′ = g(y′′G − (c + c′)V) for every y′′ ∈ F `−k (and in particualr for y′′ = y + y′, which implies
that c+ c′ = g(x+ x′)).

Claim 3.5 (finding V): If H = h−1(0k) is an (` − k)-dimensional linear space, then a matrix V
as underlying the definition of g can be found (w.h.p.) by making O(|F|k) queries to h.

Proof: The matrix V can be found in k iterations as follows. In the ith iteration we try to find
a vector v(i) such that

∑
j∈[i] cjv

(j) 6∈ H holds for every (c1, ..., ci) ∈ F i \ {0i}. In each trial, we

pick v(i) at random, noting that the probability of success is 1 − |F|i−1 · |F|−k ≥ 1/2, whereas
the condition can be checked by making |F|i − 1 queries to h. (Actually, |F|i−1 queries suffice for
checking in the ith iteration, since it suffuices to check the cases in which ci = 1.)

Combining the above two claims, the desired reduction follows (as detailed next). Note that
this reduction has two-sided error, and that the resulting tester has query complexity O(|F|k/ε)
(rather than O(1/ε), all in case ε < 4 · |F|−k).4 Recall that we have already justified the assumption
ε = O(|F|−k) (see Claim 3.1). In fact, we are going to assume that ε ≤ 0.1/t for some t = O(|F|k),
by possibly resetting ε← min(ε, 0.1/t).

Algorithm 3.6 (testing whetherH is an (`−k)-dimensional linear space): For a universal constant
γ, on input a proximity parameter ε ∈ (0, γ−1 · −k) and oracle access to h : F ` → {0, 1}, specifying
H = h−1(1), proceed as follows.

1. Find an adequate matrix V : Using O(|F|k) queries to h, try to find a k-by-` full-rank matrix
V such that for any non-zero c ∈ Fk it holds that cV 6∈ H. If such a matrix V is found, then
proceed to the next step. Otherwise, reject.

3Alternatively, if g(x + x′) = g(x) + g(x′) for every x, x′ ∈ F`, then x, x′ ∈ H implies x + x′ ∈ H (for every
x, x′ ∈ F`), since g(x) = g(x′) = 0k implies g(x+ x′) = 0k. But, then H = g−1(0k) is spanned by the set of vectors
in it, which implies that it satisfies Definition 2.2, since the image of g equals Fk and |g−1(c)| = |g−1(0k)| holds for
every c ∈ Fk.

4Needless to say, we would welcome a one-sided error reduction. Recall that the case ε ≥ 4 · |F|−k can be handled
by density estimation. A complexity improvement for the main case (of ε < 4 · |F|−k) appears in Section 3.3.

6

2. Test whether the function g = gH,V is linear: Invoke a linearity test with proximity parameter
ε, while providing it with oracle access to the function g = gH,V . When the tester queries g
at x, query h on x + cV for all c ∈ Fk, and answer accordingly; that is, the answer is c if
c is the unique vector satisfying h(x + cV) = 1, otherwise (i.e., g(x) = ⊥) the execution is
suspended and the algorithm rejects.

If the linearity tester accepts, then proceed to the next step. Otherwise, reject.

3. Check whether the image of g equals Fk: Assuming that g is ε-close to linear, check whether
the image of g equals Fk as follows.

(a) Select uniformly at random a target c ∈ Fk.

(b) Select uniformly at random a sample S of t = γ · |F|k elements in F `, and accept if and
only if there exists x ∈ S such that x+ cV ∈ H (i.e., h(x+ cV) = 1).

We stress that we do not compute g at each x ∈ S, which would have required |F|k
queries to h per each x, but rather check whether h(x+cV) = 1 by making a single query
to h.

(Recall that if g is linear and its image equals Fk, then each c ∈ Fk has |F|`−k pre-images
under g, and (w.h.p.) S contains such a pre-image. On the other hand if g is linear and its
image is a proper subsets of Fk, then at most |F|k−1 of the elements of Fk have a pre-image
under g.)

Recalling that linearity testing (with proximity parameter ε) has complexity O(1/ε), the complexity
of the foregoing algorithm is O(|F|k) +O(1/ε) · |F|k +O(|F|k), where the three terms correspond
to the three steps.

Proposition 3.7 (analysis of Algorithm 3.6): Assuming that ε ≤ 0.1/t, the following holds.

1. Algorithm 3.6 accepts every function h that describes an (`−k)-dimensional linear space with
high probability.

2. Algorithm 3.6 rejects every function h that is ε-far from describing an (` − k)-dimensional
linear space with probability at least 0.4.

Repeating Algorithm 3.6 for a constant number of times, we obtain a tester for (`−k)-dimensional
linear spaces over F with query complexity O(|F|k/ε).

Proof: Suppose that H is an (` − k)-dimensional linear space. Then, by Claim 3.5, with high

probability (i.e., with probability 1 − (1 − |F|−k)O(|F|k) > 0.99), a suitable matrix V will be
found (in Step 1) and Step 2 will accept, since (by Claim 3.4) the function gH,V is linear and
its image equals Fk. Likewise, Step 3 will accept with high probability (i.e., with probability

1− (1− |F|−k)O(|F|k) > 0.99).
On the other hand, if h is ε-far from describing an (`− k)-dimensional linear space, then either

no suitable matrix V is found in Step 1 or gH,V is ε-far from the set of linear functions with
image Fk (see discussion following Claim 3.4). Now, if gH,V is ε-far from being linear, then with
high probability Step 2 will reject. Otherwise, gH,V is ε-close to a linear function g′ that has an
image that is a proper subject of Fk, and in this case Step 3 will reject with probability at least
0.5− t · ε ≥ 0.4, since with probability 1− t · ε all queries to gH,V are answered in agreement with
g′. Using ε ≤ 0.1/t, and the claim follows.

7

A modified version of Algorithm 3.6 that works also for ε = Ω(1). In light of Claim 3.1, we
may assume that ε ≤ 0.1/t as done above. Note that t = Ω(|F|k) must hold in order to guarantee
the acceptance of functions having the property (in Step 3), whereas the hypothesis ε ≤ 0.1/t was
used only in the analysis of Step 3 (where functions that are ε-close to a linear function with an
image that is a proper subject of Fk were shown to be rejected with probability at least 0.5− t · ε).
However, towards presenting the more efficient reduction (in Section 3.3), it is useful to consider the
task performed in Step 3 also in the case that ε = Ω(1). Actually, we shall consider a modification
of Algorithm 3.6 in which Step 3 is modified, whereas the other steps remain unchanged.

Algorithm 3.8 (Algorithm 3.6, modified): On input a proximity parameter ε ∈ (0, 1) and oracle
access to h : F ` → {0, 1}, specifying H = h−1(1), perform Steps 1 and 2 as in Algorithm 3.6, and
then test whether the image of g equals Fk as follows.

(Step 3, modified): Select uniformly at random a target c ∈ Fk, and a sample S of t = O(|F|k)
elements in F `, as in the original Step 3. If S contains some x such that h(x+cV) = 1 holds,
then pick such an x arbitrarily and accept if and only if c is the only vector c′ that satisfies
h(x+ c′V) = 1.

(Indeed, this augmentation of the original Step 3 requires |F|k − 1 additional queries. We
stress that we perform the check of uniqueness only for one x ∈ S that satisfies h(x+cV) = 1.)

(As in the original Step 3, the list of x’s that satisfy h(x+ cV) = 1 is determined by querying h on
x+ cV for each x ∈ S.)

We show that for a sufficiently small constant ε0 > 0 (e.g., ε0 = |F|k/10t = Ω(1)), Algorithm 3.8 is
essentially a tester of (`− k)-dimensional linear spaces.

Proposition 3.9 (analysis of Algorithm 3.8): Let ε0 ≤ |F|k/10t. For any ε > ε0, the following
holds.

1. Algorithm 3.8 accepts every function h that describes an (`−k)-dimensional linear space with
probability at least 0.9.

2. Algorithm 3.8 rejects every function h that is ε-far from describing an (` − k)-dimensional
linear space with probability at least 0.4.

Again, by standard error reduction and resetting ε ← (ε, ε0), we obtain a tester for (` − k)-
dimensional linear spaces over F .

Proof: We focus on the analysis of (the modified) Step 3, since the analysis of the other steps
provided before did not depend on the hypothesis ε < 0.1/t. We first observe that if h describes an
(`−k)-dimensional linear space, then g is linear with image Fk, and Step 3 accepts with probability
at least 0.99, since PrS [S∩H = ∅] < 0.01. Hence, we turn to the case that h is ε-far from describing
an (` − k)-dimensional linear space, and focus on the case that g is ε-close to linear function that
has an image that is a proper subset of Fk.

For each c ∈ F `, let Wc denote the set of x’s that satisfy the condition checked by the modified
Step 3 (i.e., x ∈Wc iff c is the unique k-long vector that satisfies h(x+cV) = 1). Note that x ∈Wc if
and only if gH,V (x) = c. Now, given that g = gH,V is ε0-close to a linear function g′ with image that

is a proper subset of Fk, there exists a set B ⊆ Fk of size at least |F|k−|F|k−1 (i.e., the vectors that
are not in the image of g′) such that

∑
c∈B |Wc| ≤ ε0 · |F|`, since

⋃
c∈BWc =

⋃
c∈B{x : g(x) = c}

must be contained in {x∈F ` : g(x) 6= g′(x)}, whereas the Wc’s are disjoint. It follows that, in this

8

case (i.e., g = gH,V is ε0-close to a linear function g′ with image that is a proper subset of Fk),
Step 3 rejects with probability at least

Prc[c ∈ B] ·Prc,S [S ∩Wc = ∅|c ∈ B] =
|B|
|F|k

· 1

|B|
·
∑
c∈B

Prx∈F` [x 6∈Wc]
t

=
1

|F|k
·
∑
c∈B

(1−Prx∈F` [x ∈Wc])
t

≥ (1− |F|−1)− 1

|F|k
·
∑
c∈B

t · |Wc|
|F|`

≥ 1− |F|−1 − t · ε0
|F|k

where the last inequality is due to
∑

c∈B |Wc| ≤ ε0 · |F|`. Using ε0 ≤ |F|k/10t, we lower-bound the

rejection probability by 0.9− |F|−1 ≥ 0.4, and the claim follows.

Remark 3.10 (on the proof of Proposition 3.9): We highlight the fact that the core of the proof
actually establishes that if g = gH,V is ε-close to linear function that has an image that is a proper
subset of Fk, then Step 3 rejects wioth probability at least 0.4.

Remark 3.11 (extension to affine spaces): In light of Claim 3.2 there is no real need to extend
Algorithm 3.6 to the affine case, but let us outline such an extension nevertheless.

• The definition of g will be as in the linear case (i.e., g(x) = c iff x + cV ∈ H), except that
it will be based on a full-rank k-by-` matrix V such that for some u ∈ H and every non-zero
c ∈ Fk it holds that u+ cV 6∈ H. (Indeed, finding such a u ∈ H is moved from Claim 3.2 to
the revised algorithm.)

• Claim 3.4 can be extended to show that H is an (`− k)-dimensional affine space if and only
if g is a affine function with image Fk.

Recall that testing the affinity of g : F ` → Fk can be reduced to testing the linearity of the mapping
x 7→ g(x) − g(0`). Alternatively, one can just use the natural extension of the linearity test of [2]
that selects x, y, z ∈ F ` uniformly at random and checks that g(x+ y)− g(y) = g(x+ z)− g(z).

3.3 The second reduction

In Section 3.2, for h : F ` → {0, 1}, we reduced ε-testing whether h−1(1) is an (` − k)-dimensional
linear subspace to ε-testing the linearity of a function g : F ` → Fk ∪ {⊥}, where the value of g at
any point can be computed by making |F|k queries to h. (Indeed, in order to define the function
g, the reduction made O(|F|k) additional queries to h.) This yields an ε-tester of time complexity
O(|F|k/ε) for testing (` − k)-dimensional linear subspaces. In this section we improve this time
bound.

Our starting point is the fact that, for every ε0 < 1/4, if g is ε0-close to being a linear function,
then it is ε0-close to a unique linear function g′, which can be computed by self-correction of g
(where each invocation of the self-corrector makes two queries to g and is correct with probability
at least 1 − 2ε0). Hence, for a constant ε0 > 0 as in Proposition 3.9, if g is ε0-close to a linear
function g′ with image Fk, then the distance between g and g′ equals the distance between h and
the corresponding function h′ (i.e., h′(x) = 1 iff h′(x) = 0k). This suggests a two-step algorithm in

9

which we first invoke Algorithm 3.8 with proximity parameter ε0, and next test equality between
h and h′, as is detailed next (where we assume again that ε ≤ |F|−k/O(1)).

Step I: Invoke Algorithm 3.8 with proximity parameter set to ε0, where ε0 > 0 is a constant as in
Proposition 3.9. If the said invocation rejects, then reject. Otherwise, let V be the matrix
found in Step 1 of that invocation, and let g = gH,V be the corresponding function.

Let g′ denote the linear function closest to g, and note that g is ε0-close to g′ (or else Algo-
rithm 3.8 would have rejected with high probability). Furthermore, the image of g′ equals
Fk, or else Algorithm 3.8 would have rejected with probability at least 0.4 (see Remark 3.10).
Defining h′ : F ` → {0, 1} such that h′(x) = 1 if and only if g′(x) = 0k, it follows that
h′ describes an (` − k)-dimensional linear subspace. Hence, if h is ε-far from describing an
(`− k)-dimensional linear subspace, then h is ε-far from h′.

Step II: Test whether h equals h′ by using a sample of O(1/ε) points. For each sample point, the
value of h is obtained by querying h, whereas the value of h′ on the sample points is obtained
by evaluating g′ on these points (since h′(x) = 1 iff g′(x) = 0k), where the values of g′ on
these points are computed via self-correction of g.

The problem is that each query to g is implemented by |F|k queries to h. Hence a straight-
forward implementation will result in making O(|F|k/ε) queries to h, which is no better than
Algorithm 3.8. Instead, we shall use a sample of O(1/ε) pairwise-independent points such
that their g′-values are determined by the value of g′ at O(log(1/ε)) points, which in turn are
computed by self-correction of g that uses |F|k queries to h per each point. The details are
given in Algorithm 3.12.

Note that if h describes an (` − k)-dimensional linear subspace, then g = g′. On the other
hand, if h is ε-far from this property and we reached the current step, then h is ε-far from
h′, and a sample of O(1/ε) pairwise-independent points will contain a point of disagreement
(w.h.p.).

The key observation here is that Step II can be implemented in complexity Õ(1/ε) by taking a
sample of m = O(1/ε) pairwise independent points in F ` such that evaluating g′ on these m points
only requires time O(m+ |F|k · Õ(logm)) rather than O(|F|k ·m) time. This is done as follows.5

For t′ = dlog|F|(m+ 1)e, select uniformly s(1),, s(t
′) ∈ F `, compute each g′(s(j)) via self-

correcting g, with error probability 0.01/t′, and use the sample points r(L) = L(s(1), ..., s(t
′)) for m

non-zero linear function L : F t′ → F . The key observations are that (1) the r(L)’s are pairwise
independent, and (2) the values of g′ at all r(L)’s can be determined based on the values of g′ on
the s(j)’s. This determination is based on the fact that g′(r(L)) = L(g′(s(1)), ..., g′(s(t

′)), by linearity
of g′. Hence, the values of g′ on t′ random points (i.e., the s(j)’s) determines the value of g′ on

m ≤ |F|t
′
− 1 pairwise independent points (i.e., the r(L)’s).

Algorithm 3.12 (implementing Step II): For m = O(1/ε) and t′ = dlog|F|(m+ 1)e, set t′′ =
O(1) + log2 t

′, and proceed as follows.

1. Select uniformly s(1),, s(t
′) ∈ F `.

5Inspired by [5] (as presented in [3, Sec. 7.1.3] for F = GF(2)). The salient feature of this sample space is that
the values of any linear function at all points in the sample (i.e., the r(L)’s) can be determined by the values of this
function at very few points (i.e., the s(j)’s).

10

2. For each j ∈ [t′], select uniformly w(1),, w(t′′) ∈ F `, and set σ(j) to equal the majority vote
of g(s(j) + w(1))− g(w(1)), ..., g(s(j) + w(t′′))− g(w(t′′)), where the values of g at each point x
is determined according to the value of h at the points {x+ cV : c ∈ Fk}.
Recall that g(x) = c is c is the unique point in Fk such that h(x + cV) = 1, and is set to ⊥
otherwise. If the value of g at any point is set to ⊥, we can abort this algorithm and reject
h. Alternatively, we can set σ(j) to ⊥, and define the z +⊥ = ⊥ for every z ∈ Fk.

(Indeed, σ(j) is our guess for g′(s(j)), and this guess is correct with probability 1−exp(−Ω(t′′)) >
1− 0.01/t′).

3. For each of m non-zero linear function L : F t′ → F , let r(L) = L(s(1), ..., s(t
′)) and check

whether h(r(L)) equals our guess for h′(r(L)), where the later value is set to 1 if and only if
L(σ(1), ..., σ(t

′)) = 0k. Accept if and only if all checks were successful (i.e., equality holds in
all).

(Indeed, L(σ(1), ..., σ(t
′)) is our guess for g′(r(L)), which equals g′(L(s(1), ..., s(t

′))) = L(g′(s(1)), ..., g′(s(t
′)),

and this guess is correct if all guesses for the g′(s(j))’s are correct, which happens with prob-
ability 0.99).

The time complexity of Algorithm 3.12 is O(t′ · t′′ · |F|k +m) = Õ(log|F|(1/ε)) · |F|
k +O(1/ε). This

dominates the time complexity of Step I, which is O(|F|k/ε0) = O(|F|k). Recall that for ε > 4·|F|−k
there is an almost trivial tester of complexity O(1/ε), and note that for ε < |F|−k−1.01·log|F| k it
holds that Õ(log|F|(1/ε)) · |F|

k = O(1/ε). Hence, our complexity bound is (slightly) inferior to the

optimal bound of O(1/ε) only for a narrow range of parameters (i.e., for ε ∈ [k−1.01 ·|F|−k, 4·|F|−k]).

Theorem 3.13 (analysis of the foregoing algorithm): Consider an algorithm that invokes the al-
gorithm captured by the foregoing Steps I and II, where Step II is as detailed in Algorithm 3.12, for
a constant number of times and accept if and only if at least two third of the invocations accepted.
Then, the resulting algorithm constitutes a tester for (`− k)-dimensional linear subspaces.

Note that this tester has two-sided error probability. Obtaining an analogous one-sided error tester
is left as an open problem. It is indeed possible that such a tester does not exist.

Proof: We consider a single invocation of Steps I and II. If h describes an (` − k)-dimensional
linear subspace, then (w.h.p.) the execution reaches Step II, which always accepts. On the other
hand, if h is ε-far from describing an (` − k)-dimensional linear subspace, then we consider two
cases.

1. If h is ε0-far from describing an (`−k)-dimensional linear subspace, then Step I rejects (w.h.p).

2. Otherwise, assuming that Step II is reached, we consider the corresponding functions g and
g′. Recall that the image of g′ equals Fk, since otherwise Step I rejects with probability at
least 0.4 (see Remark 3.10). Hence, h must be ε-far from h′, since in this case h′ describes an
(`− k)-dimensional linear subspace.

In this case (assuming Step II is reached), with probability at least 0.99, the tester obtains
the correct values of g′ at all s(j)’s and hence determined correctly the values of g′ at all the
r(L)’s. Since these r(L) are uniformly distributed in F ` in a pairwise independent manner,
with probability at least 1 − mε

(mε)2
> 0.9, the sample contains a point on which h and h′

disagree.

11

In conclusion, if h is ε-far from the tested property, then the foregoing algorithm rejects with
probability at least 0.4. Using the threshold decision rule (i.e., accepting if at least two thirds of
the invocations of the foregoing algorithm accept), the theorem follows.

Remark 3.14 (extension to affine spaces): Again, there is no real need to extend the foregoing to
the affine case, but we outline such an extension nevertheless. We first note that self-correction
of an affine g requires querying it at three random locations rather than at two; specifically, to
obtain g′(s), we select uniformly r, r′ ∈ F ` and query g at s+ r + r′, r, r′, while relying on g′(s) =
g′(s + r − r′) − g′(r) + g′(r′). Likewise, the equality g′(r(L)) = L(g′(s(1)), ..., g′(s(t

′)) is replaced by
g′(r(L)) = L(g′(s(1)), ..., g′(s(t

′))−L(v, ..., v) + v, where v = g′(0`) is also obtained by self-correction
of g, which calls for making 3 · |F|k additional queries.

4 On testing monotone monomials

As stated in the introduction, the problem that motivated opur study is trying to reduce testing
monomials to testing dictatorships. Such a reduction is preferable to an extension of the ideas
that underly the tests of (monotone) dictatorship towards testing the set of functions that are
(monotone) k-monomials, for any k ≥ 1. In this section, we first review the said extension, as
performed in Parnas, Ron, and Samorodnitsky [6], and then we present our alternative. We start
with the definition of the relevant properties.

Definition 4.1 (monomial and monotone monomial): A Boolean function f : {0, 1}` → {0, 1}
is called a k-monomial if for some k-subset I ⊆ [`] and σ = σ1 · · ·σ` ∈ {0, 1}` it holds f(x) =
∧i∈I(xi ⊕ σi). It is called a monotone k-monomial if σ = 0`.

Indeed, the definitions of (regular and monotone) 1-monomials coincide with the notions of (reg-
ular and monotone) dictatorships. We focus on the task of testing monotone k-monomials, while
recalling that the task of testing k-monomials is reducible to it (see [6] or [4, Sec. 5.2.2.1]). We
also recall that the testing problem is of interest only when the proximity parameter, denoted ε, is
small (in relation to 2−k). In contrast, when ε > 2−k+2, we may just estimate the density of f−1(1)
and accept if and only if the estimate is below ε/2.

4.1 The tester of Parnas, Ron, and Samorodnitsky

We start by interpreting the dictatorship tester of [1, 6] in a way that facilitates its generalization.
Recall that these works perform a dictatorship test by first testing that the function is linear and
then performing a “conjunction check” (i.e., checking that f(x ∧ y)f(x) ∧ f(y)). Now, if f is a
monotone dictatorship, then f−1(1) is an (`− 1)-dimensional affine subspace (of the `-dimensional
space {0, 1}`), where {0, 1} is associated with the two-element field GF(2). Specifically, if f(x) = xi,
then this subspace is {x ∈ {0, 1}` : xi = 1}. In this case, the linearity tester could be thought of as
testing that f−1(1) is an arbitrary (`− 1)-dimensional subspace, whereas the “conjunction check”
verifies that this subspace is an affine translation by 1` of a linear space that is spanned by ` − 1
unit vectors (i.e., vectors of Hamming weight 1).6

6That is, we requires that this subspace has the form
{

1` +
∑

j∈([`]\{i}) cjej : c1, ..., c` ∈ {0, 1}
}

, where e1, ..., e` ∈
{0, 1}` are the ` unit vectors (i.e., vectors of Hamming weight 1).

12

When generalizing the treatment for abitrary k, we observe that if f is a monotone k-monomial,
then f−1(1) is an (`− k)-dimensional affine subspace. So the foregoing two-step procedure gener-
alizes to first testing that f−1(1) is an (`− k)-dimensional affine subspace, and then testing that it
is an affine subspace of the right form (i.e., it has the form {x∈{0, 1}` : (∀i∈ I) xi= 1}, for some
k-subset I). Following are outlines of the treatment of these two tasks in [6].

Testing affine subspaces. Supposed that the alleged affine subspaceH is presented by a Boolean
function h such that h(x) = 1 if and only if x ∈ H. (Indeed, in our application, h = f .) We wish
to test that H is indeed an affine subspace.

(Actually, we are interested in testing that H has a given dimension, but this extra condition can
be checked easily by estimating the density of H in {0, 1}`, since we are willing to have complexity
that is inversely proportional to the designated density (i.e., 2−k).)7

This task is related to linearity testing and it was indeed solved in [6] using a tester and an
analysis that resembles the standard linearity tester of [2]. Specifically, the tester selects uniformly
x, y ∈ H and z ∈ {0, 1}` and checks that h(x+ y+ z) = h(z) (i.e., that x+ y+ z ∈ H if and only if
z ∈ H). Indeed, we uniformly sample H by repeatedly sampling {0, 1}` and checking whether the
sampled element is in H.

Note that, for co-dimension k > 1, the function h is not affine (i.e., h(x) = h(y) = 0, which
means x, y 6∈ H, does not determine the value of h(x+ y) (i.e., whether x+ y ∈ H)).8 Still, testing
affine subspaces can be reduced to testing linearity (albeit not of h but rather of a related function),
providing an alternative to the presentation of [6]. Presenting such a reduction is the core of this
paper (see Section 3, which handles an arbitrary finite field F whereas the current application only
requires F = GF(2)).

Testing that an affine subspace is a translation by 1` of a linear subspace spanned by
unit vectors. Suppose that an affine subspace H ′ is presented by a Boolean function, denoted

h′, and that we wish to test that H ′ has the form
{

1` +
∑

i∈[`]\I ciei : c1, ..., c` ∈ {0, 1}
}

, where

e1, ..., e` ∈ {0, 1}` are unit vectors, and I ⊆ [`] is arbitrary. That is, we wish to test that h′(x) =
∧i∈Ixi.

This can be done by picking uniformly x ∈ H ′ and y ∈ {0, 1}`, and checking that h′(x∧y) = h′(y)
(i.e., x ∧ y ∈ H ′ if and only if y ∈ H ′). Note that if H ′ has the form 1` + L, where L is a linear
subspace spanned by the unit vectors {ei : i ∈ [`] \ I} for some I, then h′(z) = ∧i∈Izi holds for all
z ∈ {0, 1}`, and h′(x ∧ y) = h′(x) ∧ h′(y) holds for all x, y ∈ {0, 1}`. On the other hand, as shown
in [6], if H ′ is an affine subspace that does not have the foregoing form, then the test fails with
probability at least 2−k−1.

However, as in the case of k = 1, we do not have access to h′ but rather to a Boolean function
h that is (very) close to h′. So we need to obtain the value of h′ at specific points by querying h
at uniformly distributed points. Specifically, the value of h′ at z is obtained by uniformly selecting
r, s ∈ h−1(1) and using the value h(z + r − s). In other words, we self-correct h at any desired
point z by using the value of h at a point obtained by shifting z by the difference between of two
random elements of h−1(1), while hoping that these points actually reside in the affine subspace
H ′ (so that their difference is in the linear sapce H ′ −H ′). This hope is likely to materialize when
h is 0.01 · 2−k-close to h′.

7Recall that if ε < 2−k+2, then O(2k) = O(1/ε), and otherwise (i.e., for ε ≥ 2−k+2) testing affinity of H reduces
to estimating the density of h−1(1).

8In contast, if h(x) = 1, then h(x+ y) = h(y), which means that x+ y ∈ H iff y ∈ H (when x ∈ H).

13

The foregoing is indeed related to the conjunction check performed as part of the dictatorship
tester of [1, 6], and the test and the analysis in [6] (for the case of k > 1) resemble the corresponding
parts in [1, 6] (which handle the case of k = 1).

In contrast, building on the main idea of Section 3, in Section 4.2, we present a simple reduction
from the general case (of any k ≥ 1) to the special case (of k = 1).

4.2 An alternative tester of monotone monomials

As outlined in Section 4.1, the function f : {0, 1}` → {0, 1} is a monotone k-monomial if and only if
f describes an (`− k)-dimensional affine space that is a translation by 1` of an (`− k)-dimensional
axis-parallel linear space; that is, if f−1(1) has the form

{
yG+ 1` : y ∈ {0, 1}`−k

}
, where G is a

full-rank (` − k)-by-` Boolean matrix that contains k all-zero columns. Hence, we may focus on

testing that the function h : {0, 1}` → {0, 1} defined by h(x)
def
= f(x + 1`) describes an (` − k)-

dimensional axis-parallel linear space. (Indeed, the reduction of Section 3.1 is instantiated here by
mandating u = 1`.)

Following [6], we first test that the Boolean function h describes an (`− k)-dimensional linear
space, and next test that this linear space has the right form. Again, we assume that the proximity
parameter ε is upper-bounded by ε0 ·2−k, for some constant ε0 > 0. Hence, if h passes the first test,
then we may assume that h is ε-close to Boolean function h′ that describes an (`− k)-dimensional
linear space. Defining corresponding functions g : {0, 1}` → {0, 1}k and g′ : {0, 1}` → {0, 1}k as
in Section 3.2, we infer that g is 2k · ε-close to the linear function g′, which has image {0, 1}k,
while noting that 2k · ε ≤ ε0. (Indeed, we may use the function g = gh−1(1),V defined in Step 1 of
Algorithm 3.6, or just run this step anew.)

The key observation is that h′ describes an axis-parallel linear space (i.e., the set {x ∈ {0, 1}` :
h′(x) = 1} equals the linear space {yG : y ∈ {0, 1}`−k} for a full-rank matrix G with k all-zero
columns) if and only if g′ is a projection function (i.e., g′(x) = xI for some k-subset I).

At this point, we generalize the observation that underlies the conjunction check that is part
of the dictatorship test of [1, 6]. Specifically, given that g′ is a linear function with image {0, 1}k,
we test that g′(x) = xI (for some k-subset I) by selecting uniformly r, s ∈ {0, 1}` and checking
whether g′(r)g′(s) = g′(rs), where uv denotes the bit-by-bit produce of u and v. The point is that
the analysis of this test can be reduced to the analysis of the conjunction check by considering the
k bits in the output of g′. Details follow.

Let g′i(x) denote the ith bit of g′(x). On the one hand, if g′(x) = xI for some k-subset I,
then for each i ∈ [k] the function g′i is a dictatorship (i.e., g′i(x) = xji for some ji ∈ [`]), and so
g′i(rs) = (rs)ji = g′i(r)g

′
i(s) for all r, s ∈ {0, 1}`. Hence, in this case, g′(rs) = g′(r)g′(s) holds

for all r, s ∈ {0, 1}`. On the one hand, if g′ is not a projection function, then (using the fact
that g′ is linear and its image equals {0, 1}k) there exists i ∈ [k] such that the function g′i is a
linear combination of at least two bits. The known analysis (cf. [1, 6]) implies that in this case
Prr,s[g

′
i(rs) = g′i(r)g

′
i(s)] ≤ 3/4, which implies Prr,s[g

′(rs) = g′(r)g′(s)] ≤ 3/4.
However, as in Section 3, we do not have access to g′, but rather obtain its values at desired

points by applying self-correction to g, which is ε0-close to g′. We can afford to compute g at any
desired point, since we intend to do so only a constant number of times. Specifically, it suffices
to perform the foregoing “conjunction” check once, since such an execution rejects an improper h
(i.e., one that is close to a function h′ that describes a linear space that is not axis-parallel) with
probability at least 0.25− 4ε0 > 0.2 (assuming ε0 > 0 is sufficiently small). To wrap-up, we obtain
the following tester (where we assume again that ε ≤ ε0/2k, for some adequate constant ε0 > 0).

Algorithm 4.2 (testing whether f is a monotone k-monomial): On input a proximity parameter

14

ε ∈ (0, ε0 · 2−k] and oracle access to f : {0, 1}` → {0, 1}, the algorithm proceeds as follows.

1. Apply the tester of Section 3.3 to test whether h : {0, 1}` → {0, 1}, defined by h(x)
def
= f(x+1`),

describes an (` − k)-dimensional linear space over GF(2). The said tester is invoked with
proximity parameter ε, and each query x is answered by the value f(x+ 1`). If the foregoing
tester rejects, then the current algorithm reject.

2. Find a matrix V as in Step 1 of Algorithm 3.6, and let g = gh−1(1),V : {0, 1}` → {0, 1}k

denote the corresponding function. Select uniformly r, s, w ∈ {0, 1}` and accept if and only if
g(r)g(s) = g(rs+w)− g(w), where g(rs+w)− g(w) represents self-correcting the value of g
at rs. (Recall that uv denotes the bit-by-bit produce of u and v, and that the value of g at
x is computed by querying h at the points {x+ cV : c∈{0, 1}k}.)

The complexity of Algorithm 4.2 is dominated by the complexity of Step 1, which is Õ(log(1/ε)) ·
2k +O(1/ε).

Proposition 4.3 (analysis of Algorithm 4.2):

1. Algorithm 4.2 accepts any monotone k-monomial with probability at least 2/3.

2. Algorithm 4.2 rejects any function that is ε-far from being a monotone k-monomial with
probability at least 0.2.

The error probability in the case that f is a monotone k-monomial is due to Step 1. (Indeed, in
this case g(x) = xI , and so Step 2 accepts with probability 1.) The analysis of the case of functions
that are ε-far from being monotone k-monomials reduces to the analysis of Step 2, in which we
may assume that h is ε-close to describing an (` − k)-dimensional linear space. In this case, g is
ε-close to a linear function g′ that is not a projection function and has image {0, 1}k. Using the
fact that g is ε0-close to g′, it follows that, with probability at least 1− 4ε0 (over the choice of r, s
and w), it holds that g(r) = g′(r), g(s) = g′(s), g(rs + w) = g′(rs + w), and g(w) = g′(w). Using
g′(rs+ w)− g′(w) = g′(rs), we have

Prr,s,w[g(r)g(s) 6=g(rs+ w)− g(w)] ≥ Prr,s,w[g′(r)g′(s) 6=g′(rs+ w)− g′(w)]− 4ε0

≥ Prr,s,w[g′i(r)g
′
i(s) 6=g′i(rs)]− 4ε0,

for any i ∈ [k] (where g′i(x) denotes the ith bit of g′(x)). Using the hypothesis g′ is a linear function
with image {0, 1}k that is not projection function, we can pick i such that g′i : {0, 1}` → {0, 1} is
neither a dictatorship nor a constant function. But in this case g′i(x) =

∑
j∈J xj for some subset J of

size at least two, and Prr,s,w[g′i(r)g
′
i(s) 6=g′i(rs)] ≥ 1/4. This completes the proof of Proposition 4.3.

Comparison to [6]. Algorithm 4.2 differs from the tester of [6] in two aspects. Firstly, Step 1
uses the tester of Section 3.3, which is based on a reduction of testing affine spaces to testing
linear functions. Specifically, we reduce testing that f : {0, 1}` → {0, 1} describes an affine space
to testing that a related h : {0, 1}` → {0, 1} describes a linear space, which in turn is reduced to
testing that a related g : {0, 1}` → {0, 1}k is linear. In contrast, testing affine spaces is performed
in [6] by modifying the linearity tester of [2] and mimicking the known analysis of this tester.

Second, Step 2 uses the foregoing function g (of Step 1), and reduces testing that the linear
space h has the right form to testing that g satisfies a conjunction condition that generalizes the
condition used in the case of k = 1. Furthermore, the analysis of this test is reduced to the analysis
of the case k = 1. Again, as can be seen in Section 4.1, the path taken by [6] involves a modification
of the procedure and analysis used in the case of k = 1.

15

Acknowledgements

I am grateful to Roei Tell for reading prior versions of this text and pointing out numerous inac-
curacies and gaps. I also wish to thank Clement Canonne and Tom Gur for their comments. This
research was partially supported by the Israel Science Foundation (grant No. 671/13).

References

[1] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability –
Towards Tight Results. SIAM Journal on Computing, Vol. 27, No. 3, pages 804–915,
1998. Extended abstract in 36th FOCS, 1995.

[2] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-
merical Problems. Journal of Computer and System Science, Vol. 47, No. 3, pages 549–595,
1993. Extended abstract in 22nd STOC, 1990.

[3] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[4] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[5] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions. In the
proceedings of 21st ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[6] M. Parnas, D. Ron, and A. Samorodnitsky. Testing Basic Boolean Formulae. SIAM
Journal on Disc. Math. and Alg., Vol. 16 (1), pages 20–46, 2002.

16

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

