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1. Introduction

Classic work by Shannon [23, 24] shows how to optimally compress one-way com-
munication to its information content, achieving in the limit a transmission cost
equal to the entropy of the message. The corresponding problem for interactive

communication has attracted increasing attention over the past two decades. Con-
sider two computationally unbounded parties, Alice and Bob, with inputs X 2 X
and Y 2 Y , respectively, where X and Y are finite sets and the pair (X,Y ) is
distributed according to some known probability distribution on X ⇥Y . Alice and
Bob exchange messages back and forth according to an agreed-upon randomized
protocol in order to implement some functionality that depends on both inputs.
One distinguishes between public-coin and private-coin protocols, corresponding
to communication with or without a shared source of random bits. Information
complexity theory [11, 3, 2, 4] studies a protocol’s information cost, defined as
the amount of information that Alice and Bob learn on average about each other’s
inputs from the history of messages exchanged between them (the protocol tran-

script). This complexity measure is quite different from communication cost, stud-
ied in Yao’s communication complexity theory [25] and defined as the number of
bits exchanged between Alice and Bob in the worst case on any input.

Basic properties of the entropy function ensure that a protocol’s communica-
tion cost is always at least as large as its information cost, and the gap between
the two quantities can be arbitrary. In this light, it is natural to ask whether the
communication in every protocol ⇡ can be compressed to its information content
while approximately preserving the protocol’s functionality. In more detail, the
approximate simulation of a given protocol ⇡ on given inputs X and Y by another
protocol ⇡0 involves running ⇡0 on (X,Y ) and interpreting the resulting transcript
as a transcript of ⇡. Alice and Bob may base their interpretations on their respec-
tive inputs X and Y , potentially arriving at distinct conclusions. In an accurate
simulation, we require that their interpretations almost always agree and approxi-
mately follow the distribution of ⇡’s transcript on the input in question. Formally,
⇡0

simulates ⇡ with error ✏ if there exist a pair of “transcript interpretation” func-
tions a : {0, 1}⇤ ! {0, 1}⇤ and b : {0, 1}⇤ ! {0, 1}⇤ for Alice and Bob such that the
random variables (X,Y,⇧,⇧) and (X,Y, a(X,⇧0

), b(Y,⇧0
)) are at statistical dis-

tance at most ✏, where ⇧ and ⇧

0 denote the transcripts of ⇡ and ⇡0, respectively,
on input (X,Y ). The compression problem for interactive communication is the
problem of simulating, with small error ✏, a given protocol ⇡ by a protocol with
communication cost as close as possible to the information cost of ⇡. In addition to
its basic importance, protocol compression is closely related to direct sum theorems

in communication complexity theory [11, 19, 7].
Protocol compression has been actively studied [17, 4, 7, 6, 9, 10, 5, 22] over

the past two decades. In a groundbreaking paper, Barak et al. [4] showed how to
compress any protocol with information cost I and communication cost C to a pro-
tocol with communication cost

p
IC polylog(C). Since the original communication

cost C can be essentially infinite, it is natural to ask if compression independent
of C is a possibility. The influential results of Braverman [6] and Braverman and
Weinstein [9] answer this question in the affirmative, showing how to compress the
communication in any protocol to 2

O(I) bits. Despite much subsequent research,
these two incomparable bounds remain the strongest results for general protocol
compression. On the lower bounds side, Ganor, Kol, and Raz [13, 14, 15] prove
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that Braverman’s 2O(I) compression is in general the best possible bound that does
not depend on the original communication cost C. It is consistent with our current
knowledge, however, that any protocol can be compressed to I polylog(C) bits, with
only a nominal dependence on the original communication cost.

In this paper, we focus on the well-studied special case [4, 8, 21] of the protocol
compression problem when Alice and Bob’s inputs X and Y are distributed inde-
pendently. The resulting joint probability distribution µ of the inputs is called a
product distribution, in reference to its representation as µ = µX ⇥ µY for some
distributions µX and µY on Alice and Bob’s input sets, respectively. Table 1 gives
a quantitative summary of this line of work. Braverman’s 2

O(I) compression [6]
of course applies to this special case as well, whereas Barak et al. [4] are able to
strengthen their compression bound to I polylog(C) bits. These two bounds have
complementary strengths, namely, independence of C and moderate growth with I.
In a remarkable recent paper, Kol [21] shows how to achieve these desiderata simul-
taneously, for a compressed communication cost of I2

polylog(I) bits. We obtain a
quadratic improvement on Kol’s work, achieving a compressed communication cost
of O(I log2 I) bits and essentially matching the well-known lower bound of ⌦(I).

Theorem 1.1 (Main result). Let 0 < ✏ < 1/2 be given. Fix any public- or private-

coin protocol ⇡ with input space X ⇥Y . Let µ be a product distribution on X ⇥Y ,
and let I be the information cost of ⇡ under µ. Then there is a public-coin protocol

⇡0
that simulates ⇡ with error ✏ under µ and has worst-case communication cost

O

✓
I

✏
log

2 I

✏

◆
.

Theorem 1.1 improves on previous compression schemes for product distributions
with respect to all parameters. Our proof is inspired by the work of Barak et al. [4]
and Kol [21], which we will describe shortly and contrast with our approach.

Compressed cost Reference

I polylog(C) Barak et al. [4]

2

O(I) Braverman [6], Braverman and Weinstein [9]

I2
polylog(I) Kol [21]

O(I log2 I) This paper

Table 1: Compression of protocols with original communication cost C and

information cost I under a product distribution (I 6 C).
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1.1. Background for protocol compression. We start with a brief review of
relevant terminology and background; a thorough treatment of these technical pre-
liminaries is available in Section 2. Throughout this paper, we consider binary
strings to be ordered by the prefix ordering �. The terms minimal and maximal,
when applied to strings, refer to this ordering �. All trees in our work are binary
and finite. We identify the vertices of a tree with binary strings in the usual man-
ner, namely, the root corresponds to the empty string ", and inductively the left
child and right child of a vertex v correspond to the strings v0 and v1, respectively.
A cut in a binary tree is any subset of the tree’s vertices that intersects every root-
to-leaf path in exactly one vertex. For example, the leaves of the tree form a cut.
More generally, by truncating a given tree arbitrarily and considering the resulting
set of leaves, one obtains a cut in the original tree. Given our identification of tree
vertices with binary strings, we view cuts as subsets of {0, 1}⇤. The floor of cuts C1

and C2, denoted bC1,C2c, is the set of minimal elements of C1 [ C2. Analogously,
the ceiling of cuts C1 and C2, denoted dC1,C2e, is the set of maximal elements of
C1 [ C2. These definitions generalize in the obvious way to three or more cuts.
For any collection of cuts in a binary tree, their floor and ceiling are also cuts in
the same binary tree (Proposition 3.4 and 3.5). For visual correspondence with the
floor and ceiling operations, we draw binary trees in this paper with the root at the
bottom and leaves at the top.

Consider a randomized protocol with input space X ⇥Y . Assume for simplicity
that it is a private-coin protocol, meaning that Alice and Bob do not have access
to a shared source of random bits. They communicate by sending one bit at a
time. A multibit message corresponds to several consecutive single-bit transmissions
by the same sender. For any given history of previously transmitted bits, the
protocol specifies which of the participants must send the next bit, which in turn
is a function of the sender’s private random string, the sender’s input, and the
history of previously transmitted bits. Formally, a private-coin protocol is given
by a finite binary tree and a function ⇡ : (A ⇥ X ) [ (B ⇥ Y ) ! [0, 1], where
the sets A and B form a partition of the tree’s internal vertices. We identify the
protocol with its corresponding function ⇡ and use the same symbol for both. The
vertices in A and B are said to be owned by Alice and Bob, respectively. The
execution of ⇡ on a fixed pair of inputs (x, y) corresponds to a random walk on the
protocol tree that starts at the root and proceeds one edge at a time, as follows.
On reaching a vertex v owned by Alice, the walk proceeds to the left child with
probability ⇡(v, x) and right child with the complementary probability 1� ⇡(v, x).
Analogously, on reaching a vertex v owned by Bob, the walk proceeds to the left
subtree with probability ⇡(v, y) and right subtree with probability 1� ⇡(v, y). The
walk terminates upon reaching a leaf vertex, which represents a transcript of Alice
and Bob’s joint computation on input (x, y). In view of our identification of tree
vertices with binary strings, the transcript on a given input (x, y) is a random
variable with range {0, 1}⇤.

In the rest of the introduction, let ⇡ be an arbitrary but fixed private-coin pro-
tocol, and let µ be a product distribution on the protocol’s input space X ⇥ Y .
Let I denote the information cost of ⇡ with respect to µ. Let X and Y be a pair of
inputs with joint distribution µ, and let ⇧ be the transcript of ⇡ on input (X,Y ).
For fixed values x 2 X and y 2 Y , define P, Px, Py, Px,y to be the probability
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distributions that govern the random variables

⇧,

⇧ | X = x,

⇧ | Y = y,

⇧ | X = x, Y = y,

respectively. Thus, P, Px, Py, Px,y are probability distributions on the leaves of the
protocol tree. For a leaf or internal vertex v, we define P (v), Px(v), Py(v), Px,y(v) to
be the corresponding probabilities of reaching a leaf in the subtree rooted at v. With
this convention, P, Px, Py, Px,y are nonnegative functions defined at every vertex of
the protocol tree. Observe that the restriction of any one of these functions to a
cut of the protocol tree is a probability distribution. We further use the shorthands
P (v | u), Px(v | u), Py(v | u), Px,y(v | u) to refer to the probabilities of reaching a
leaf in the subtree rooted at v conditioned on reaching a leaf in the subtree rooted
at u. Using the fact that µ is a product distribution, one easily verifies the identity
P (v)Px,y(v) = Px(v)Py(v) for all inputs x 2X and y 2 Y and all vertices v.

With this setup in place, we now describe the work of Barak et al. [4] and Kol [21].
We alert the reader that our descriptions are somewhat adapted and reinterpreted
versions of the original papers [4, 21]. In both cases, we have sought to convey the
main ideas as simply and clearly as possible while maintaining consistency with the
notation and methodology of this manuscript.

1.2. Sampling algorithm of Barak et al. For x 2 X and an internal vertex
v, define Dx(v) to be the Kullback–Leibler divergence between the Bernoulli dis-
tributions (Px(v0 | v), Px(v1 | v)) and (P (v0 | v), P (v1 | v)). Similarly, define
Dy(v) to be the Kullback–Leibler divergence between the Bernoulli distributions
(Py(v0 | v), Py(v1 | v)) and (P (v0 | v), P (v1 | v)). Let 0 < � < 1 be a small param-
eter, with order of magnitude � = O(1/ log I). Without loss of generality [4], we
may assume that Dx(v) 6 � and Dy(v) 6 � for all v, x, y. A key notion introduced
by Barak et al. is that of a �-frontier, defined separately for Alice and Bob. Alice’s
�-frontier Fx,� is the set of minimal vertices v such that either v is a leaf or the sum
of the Dx values of v’s proper ancestors is at least �. Analogously, Bob’s �-frontier
Fy,� is the set of minimal vertices v such that either v is a leaf or the sum of the
Dy values of v’s proper ancestors is at least �. A moment’s reflection shows that
Fx,� and Fy,� are cuts in the protocol tree.

Execution of ⇡ on input X,Y corresponds to sampling a random leaf of the pro-
tocol tree according to the probability distribution PX,Y . Unfortunately, neither
Alice nor Bob knows PX,Y . Indeed, Alice only knows P and PX , and Bob only
knows P and PY . As the technical centerpiece of their analysis, Barak et al. prove
that the restrictions of PX and PY to the cut bFX,�,FY,�c are within a multi-
plicative constant c0 of P almost at every vertex. We assume in this overview that
the multiplicative bound holds everywhere. Under this simplifying assumption, the
sampling procedure is as follows. Alice and Bob start by computing their respec-
tive frontiers FX,� and FY,�. They then use the shared randomness to sample a
vertex V of the cut bFX,�,FY,�c according to the probability distribution P , by
sampling a leaf according to P and sending each other its ancestors in FX,� and
FY,�, respectively. To adjust for any multiplicative disparity between P and PX,Y ,
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they use rejection sampling [17, 18, 20, 4], whereby Alice accepts V with probability
PX(V )/c0P (V ) and Bob independently accepts V with probability PY (V )/c0P (V ).
Conditioned on both parties accepting, which happens with probability 1/c20, the
vertex V is a random element of the cut bFX,�,FY,�c governed by the correct
probability distribution:

P (V ) · PX(V )

P (V )

· PY (V )

P (V )

=

PX(V )PY (V )

P (V )

= PX,Y (V ).

By generating V in this manner, Barak et al. execute the initial part of ⇡ that
corresponds to the shaded region of the protocol tree in Figure 1.1 (left). They
then run their algorithm recursively on the protocol subtree rooted at V , eventu-
ally outputting a leaf distributed according to PX,Y . For the cost analysis, consider
the intermediate vertices generated by the algorithm as it works its way from the
root to a leaf. The path segment between any two of them contributes at least
� toward the path’s cumulative DX or DY value. By the chain rule for the Kull-
back–Leibler divergence, it follows that the process terminates on average after
O(I/�) = O(I log I) recursive calls. The communication cost of a single recursive
call is O(logC), where C is the height of the protocol tree for ⇡. As a result, the
overall simulation has communication cost I polylog(C).

1.3. Kol’s sampling algorithm. The most expensive step in the algorithm of
Barak et al. is the transmission of the intersection points of FX,� and FY,� with
the root-to-leaf path sampled according to P . Their implementation involves the
exchange of the actual intersection points, for a communication cost of ⇥(logC)

bits, which can be essentially infinite even when the information cost I is small.

FX,� FY,�
FX,�

FX,�

FY,�

FY,�

Figure 1.1: The sampling step in the algorithms of Barak et al. (left) and Kol

(right). The shaded area corresponds to the sampling subtree.
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Kol [21] proposed an alternate sampling procedure, based on discretization, that
ingeniously eliminates the dependence of the cost on C. Specifically, Kol rounds
the frontiers FX,� and FY,� up with respect to a small and fixed collection of cuts
known to both Alice and Bob, resulting in a pair of approximate frontiers FX,�

and FY,�. Figure 1.1 (right) illustrates Kol’s construction, with the approximate
frontiers shown as dashed lines. Instead of sampling from the cut bFX,�,FY,�c as
Barak et al. do, Kol samples from the cut dbFX,�,FY,�c, bFY,�,FX,�ce. Using the
fact that µ is a product distribution, Kol shows that this new sampling cut coincides
almost always with bFX,�,FY,�c and therefore enables the efficient transmission of
the intersection points with any root-to-leaf path.

Assuming for simplicity that Alice and Bob’s frontiers FX,� and FY,� are dis-
joint, Kol’s complete sampling algorithm is as follows. First, one of the parties is
randomly designated as the leader. Under Alice’s leadership, the algorithm starts
by sampling a root-to-leaf path according to PX . This step uses the correlated sam-
pling algorithm of Braverman and Rao [7] for the probability distributions PX and
P, with expected communication cost O(EKL(PX || P )) 6 O(I). If Bob’s frontier
FY,� precedes Alice’s frontier FX,� along the sampled path, they reject the path
and go back to randomly choosing a leader. Otherwise, they compute the path’s
intersection V with the cut bFX,�,FY,�c, and Bob performs rejection sampling on
V as in the work of Barak et al. If Bob rejects V, they go back to randomly choos-
ing a leader; otherwise they accept V and run the algorithm recursively on the
subtree rooted at V . This completes the description of the algorithm when Alice
is the leader. Under Bob’s leadership, the roles of Alice and Bob, and the roles of
X and Y , are reversed. The cost analysis is similar to that of Barak et al., with
the difference that the expected cost of a recursive call is now O(I) rather than
O(log I). Since the expected number of recursive calls does not exceed I polylog(I),
the overall algorithm has communication cost I2

polylog(I).

1.4. Our sampling algorithm. Kol’s algorithm incurs essentially its entire com-
munication cost at the beginning of a recursive call, when sampling a root-to-leaf
path. The expected communication cost ⇥(I) of this operation far exceeds its
expected contribution ⇥(1/ log I) to the cumulative DX or DY value of the path
that the algorithm eventually outputs. There are two reasons for this inefficiency.
First, the portion of the sampled path beyond the sampling cut is always discarded,
forfeiting the corresponding sampling effort. Second, the entire sampled path is dis-
carded if the follower’s frontier precedes the leader’s along that path. We eliminate
both sources of inefficiency and obtain an algorithm in which every step has com-
munication cost proportional to that step’s expected contribution to the progress
measure.

We address the first problem by sampling the root-to-leaf path according to a
“hybrid” distribution. The portion of the path up to the leader’s sampling cut
is distributed according to either PX or PY as in Kol’s algorithm, whereas the
rest of the path is distributed according to the publicly known distribution P. The
effect of this modification is that the segment of the path beyond the leader’s sam-
pling cut does not contribute to the sampling cost. To address the second source
of inefficiency, we use a sampling cut different from Kol’s. Let RX ,�,1/2 denote
the set of minimal vertices v such that the frontier Fx,� is encountered on the
path from the root to v for at least half of the inputs x 2 X weighted according
to µ. Define RY ,�,1/2 analogously, and abbreviate R�,1/2 = bRX ,�,1/2,RY ,�,1/2c.
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These definitions ensure that for random X and Y, neither of the frontiers FX,�

or FY,� is very likely to precede R�,1/2 along a fixed root-to-leaf path. This
motivates the use of dbFX,�,FY,�,R�,1/2c, bFY,�,FX,�,R�,1/2ce as the sampling
cut, instead of Kol’s dbFX,�,FY,�c, bFY,�,FX,�ce. Figure 1.2 illustrates the re-
sulting sampling subtree. To be precise, the sampling cut that we actually use
is dbFX,�,FX,�,FY,�,R�,1/2c, bFY,�,FY,�,FX,�,R�,1/2ce for a large parameter
�� 1, but the distinction can be ignored on a first reading.

Summarizing, our modifications ensure that the sampling cost of every step in
the algorithm is a constant plus a quantity proportional to the step’s expected
contribution to the progress measure. To prove that the overall sampling cost
is at most I polylog(I), we must further argue that every step of the algorithm
contributes on average 1/ polylog(I) to the progress measure. The corresponding
claims in the work of Barak et al. and Kol were trivial to prove. In particular, the
leader in Kol’s algorithm is always guaranteed to contribute at least � to the progress
measure. Our situation is different because our choice of sampling cut effectively
truncates the tree at R�,1/2, making a zero contribution a possibility for both the
leader and the follower. Information-theoretically, the difficulty is as follows. For
any fixed vertex v 2 R�,1/2 and random X and Y, the probability that at least one
of the frontiers FX,� and FY,� is encountered on the path from the root to v is
at least 1/2. However, the sampled vertex V in the sampling cut is neither fixed
nor independent of X or Y . We solve the problem by showing that any correlation
between V and the protocol inputs causes information to be revealed about X and
Y in a way that on average contributes to the progress measure instead of defeating
it. We complete the proof of our main result with an amortized analysis of the cost
versus progress, which too is more demanding than in previous work.

FX,�

FX,�

FY,�

FY,�

R�,1/2

Figure 1.2: The sampling step in this paper. The shaded area corresponds to

the sampling subtree.
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2. Preliminaries

We let log x denote the logarithm of x to base 2. We adopt the convention that
0/0 = 0, justified throughout this paper by continuity arguments. For a binary
string v, the shorthand |v| stands for the length of v. We use calligraphic letters for
finite sets (A ,B,C ,X ,Y ), lowercase letters for set elements (x, y, u, v, w), and
uppercase letters for random variables (X,Y, U, V,W ). For a random variable X
and an event E in the probability space, we let X | E denote the random variable
obtained from X by conditioning on E. The notation X ⇠ µ means that the random
variable X is governed by the probability distribution µ. For random variables X
and Y with a certain joint probability distribution, recall that E[Y | X] is not a
specific number but a random variable defined as a function of X. Specifically,
E[Y | X] = f(X) where f is given by f(x) = E[Y | X = x]. Analogously, P[E | X]

for an event E is not a specific number but a random variable defined as a function
of X.

2.1. Strings. Recall that {0, 1}⇤ and {0, 1}+ refer to the set of binary strings and
the set of nonempty binary strings, respectively. The empty string is denoted ".
The concatenation of the strings u and v is denoted uv. Consider the standard
partial order � on {0, 1}⇤, whereby u � v if and only if uw = v for a nonempty
string w. The derived relations �,�,⌫ are defined as usual by

u � v , v � u,

u ⌫ v , v � u or v = u,

u � v , u � v or v = u.

Strings u and v are called comparable if u � v or u ⌫ v, and incomparable otherwise.
In addition to their role as relational operators, we use �,�,�,⌫ as the unary
operators given by

�v = {u : u � v},
�v = {u : u � v},
�v = {u : u � v},
⌫v = {u : u ⌫ v}.

We refer to the elements of �v and ⌫v as the ancestors of v and the descendants of

v, respectively. Analogously, we call the elements of �v and �v the proper ancestors

of v and the proper descendants of v, respectively. These unary operators naturally
extend from strings to sets of strings, according to

�V =

[

v2V

�v, �V =

[

v2V

�v, �V =

[

v2V

�v, ⌫V =

[

v2V

⌫v.

In their unary capacity, the operators �,�,�,⌫ have the highest precedence. To
illustrate,

�u \�v = (�u) \ (�v),
�v \ V = (�v) \ V .



COMPRESSING INTERACTIVE COMMUNICATION 11

2.2. Kullback–Leibler divergence. In this subsection and the next, we provide
relevant background from information theory. All definitions and facts referenced
here are well-known and can be found in any standard text on information theory,
such as Cover and Thomas [12]. For the reader’s convenience, we provide proofs
for the more specialized of the facts that we use.

All probability distributions in this work are defined on finite sets. For a probabil-
ity distribution p on a set X , its support is given by supp p = {x 2X : p(x) 6= 0}.
For a subset X 0 ✓ X , we let p|X 0 denote the probability distribution induced
by p on X 0. For probability distributions p and q on X , their Kullback–Leibler

divergence is given by

KL(p || q) =
X

x2X

p(x) log
p(x)

q(x)
.

In the context of the Kullback–Leibler divergence, we frequently identify a real
number 0 6 p 6 1 with the corresponding Bernoulli distribution (p, 1� p) and use
the shorthand KL(p || q) = KL((p, 1 � p) || (q, 1 � q)). The following estimate can
be verified using elementary calculus:

KL

⇣p
3

���
��� p
⌘
> p

3

, 0 6 p 6 1. (2.1)

The Kullback–Leibler divergence KL(p || q) is a measure of distance for probability
distributions p and q in that it is always nonnegative, with KL(p || q) = 0 if and
only if p = q. It falls short of being a metric because in general, it is not symmetric
and does not obey the triangle inequality. The Kullback–Leibler divergence does,
however, have the following approximate symmetry property, which too can be
verified using elementary calculus:

sup

p,q2[1/3,2/3]
p 6=q

KL(p || q)
KL(q || p) <

21

20

. (2.2)

For the sake of completeness, we note that this qualitative phenomenon holds in
greater generality.

Proposition 2.1. For all 0 < ✏ < 1/2,

sup

p,q2[✏,1�✏]
p 6=q

KL(p || q)
KL(q || p) <1. (2.3)

Proof. Let M denote the left-hand side of (2.3). By compactness, there is a sequence
{(pn, qn)}1n=1 in [✏, 1� ✏]2 such that KL(pn || qn)/KL(qn || pn)!M and (pn, qn)!
(p, q). If p 6= q, then KL(p || q) and KL(q || p) are finite and positive, whence
KL(pn || qn)/KL(qn || pn) ! KL(p || q)/KL(q || p) < 1. In the complementary
case p = q, the Taylor series for the logarithm gives

KL(a || b) = (a� b)2

b(1� b) ln 4
· (1 +O(a� b)) (2.4)
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for all a, b 2 [✏, 1� ✏], so that KL(pn || qn)/KL(qn || pn)! 1.

As the next result shows [12, Theorem 2.7.2], the Kullback–Leibler divergence
KL(p || q) is convex in the pair (p, q).

Fact 2.2. Fix probability distributions p1, p2, . . . , pk and q1, q2, . . . , qk on a given

finite set X . Let �1,�2, . . . ,�k be nonnegative reals with

P
�i = 1. Then

kX

i=1

�i KL(pi || qi) > KL

 
kX

i=1

�ipi

�����

�����

kX

i=1

�iqi

!
.

We now recall a basic optimization problem pertaining to the Kullback–Leibler
divergence. Let p1, p2, . . . , pk be probability distributions on a given finite set. Let
�1,�2, . . . ,�k be nonnegative weights with

P
�i = 1. Consider the problem of

finding a probability distribution p that minimizes the weighted sum

kX

i=1

�i KL(pi || p).

The optimal distribution, p⇤ =

P
�ipi, is easy to guess based on convexity con-

siderations (Fact 2.2). There are both analytic and information-theoretic ways to
verify the optimality of p⇤. For the reader’s convenience, we include a proof that is
at once short and self-contained.

Fact 2.3. Fix probability distributions p1, p2, . . . , pk on a given finite set X and

nonnegative reals �1,�2, . . . ,�k with

P
�i = 1. Then the minimum

min

p

(
kX

i=1

�i KL(pi || p)
)

is achieved at

p⇤ =

kX

i=1

�ipi.
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Proof. For any probability distribution p,

kX

i=1

�i KL(pi || p)�
kX

i=1

�i KL(pi || p⇤)

=

kX

i=1

�i

X

x2X

pi(x) log
pi(x)

p(x)
�

kX

i=1

�i

X

x2X

pi(x) log
pi(x)

p⇤(x)

=

kX

i=1

�i

X

x2X

pi(x) log
1

p(x)
�

kX

i=1

�i

X

x2X

pi(x) log
1

p⇤(x)

=

X

x2X

p⇤(x) log
p⇤(x)

p(x)

= KL(p⇤ || p)
> 0,

where the final step uses the nonnegativity of the Kullback–Leibler divergence.

The Kullback–Leibler divergence satisfies the following chain rule, which is par-
ticularly useful when analyzing stochastic processes with hierarchical structure such
as random walks in trees.

Fact 2.4 (Chain rule). Let p and q be probability distributions on a given finite set

X . Then for any partition X =

Sk
i=1 Xi,

KL(p || q) = KL((p(X1), . . . , p(Xk)) || (q(X1), . . . , q(Xk)))

+

kX

i=1

p(Xi)KL(p|Xi || q|Xi).

2.3. Statistical distance. Another distance measure for probability distributions
is statistical distance, also known as total variation distance and defined for p and
q by

TV(p, q) = max

E✓X
|p(E )� q(E )|.

Unlike the Kullback–Leibler divergence, statistical distance is an actual metric. The
following fundamental inequality relates the two notions.

Fact 2.5 (Pinsker’s inequality). For any probability distributions p and q on a

given set X ,

TV(p, q)2 6 ln 2

2

KL(p || q).

We will also need the following first-principles bound on statistical distance.
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Fact 2.6. Let p and q be probability distributions on X such that p(x) 6 c · q(x)
for all x 2X . Then

TV(p, q) 6 1� 1

c
.

Proof:

TV(p, q) =
X

x:p(x)>q(x)

(p(x)� q(x))

6
X

x:p(x)>q(x)

✓
p(x)� 1

c
· p(x)

◆

=

✓
1� 1

c

◆ X

x:p(x)>q(x)

p(x)

6 1� 1

c
.

In the context of the Kullback–Leibler divergence and statistical distance, we
identify random variables with their corresponding probability distributions. For
example, the notation TV(X,Y ) refers to the statistical distance between the prob-
ability distributions of X and Y.

2.4. Mutual information. While the Kullback–Leibler divergence and statisti-
cal distance measure the distance between two probability distributions, mutual
information measures how far two random variables are from being independent.
Let X and Y be random variables with domains X and Y , respectively, governed
by some joint probability distribution. The mutual information of X and Y is
defined as

I(X;Y ) =

X

y2Y

P[Y = y] KL(X | Y = y || X) (2.5)

=

X

x2X

P[X = x] KL(Y | X = x || Y ),

where second equality is straightforward to verify. In particular, the mutual in-
formation I(X;Y ) is always nonnegative, with I(X;Y ) = 0 if and only if X and
Y are independent random variables. It is also clear that mutual information is
symmetric:

I(X;Y ) = I(Y ;X).

Given an additional random variable Z with domain Z , the conditional mutual

information I(X;Y | Z) is given by

I(X;Y | Z) =

X

z2Z

P[Z = z] I(X | Z = z; Y | Z = z).
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In particular, the conditional mutual information I(X;Y | Z) is always nonnegative,
with I(X;Y | Z) = 0 if and only if the random variables X and Y are conditionally
independent given Z. A moment’s thought reveals that the mutual information may
increase, decrease, or remain unchanged as a result of conditioning. The symmetry
of mutual information continues to hold in the presence of conditioning:

I(X;Y | Z) = I(Y ;X | Z).

Mutual information satisfies the chain rule

I(X1X2 . . . Xk;Y ) =

kX

i=1

I(Xi;Y | X1X2 . . . Xi�1).

2.5. Probability distributions in binary trees. Fix a binary tree T and let
µ be a probability distribution on the leaves of T. Throughout this paper, we
identify the vertices of T with binary strings in the usual manner: the root vertex
corresponds to the empty string ", and inductively the left child and right child of
a vertex v correspond to v0 and v1, respectively. For a vertex v of the tree, which
can be either a leaf or an internal vertex, we let µ(v) stand for the probability of
reaching a leaf in the subtree of v. Similarly, µ(v | u) denotes the probability of
reaching a leaf in the subtree of v conditioned on reaching a leaf in the subtree
of u. The following theorem exploits the hierarchical structure of a binary tree to
give an alternate expression for the Kullback–Leibler divergence of two probability
distributions on the tree leaves.

Theorem 2.7. Let µ and µ̃ be probability distributions on the leaves of a given

binary tree. For an internal vertex v, abbreviate

D(v) = KL(µ(v0 | v) || µ̃(v0 | v)).

Then

KL(µ || µ̃) = E
V ⇠µ

"
X

v:v�V

D(v)
#
.

Proof. Immediate by induction on tree depth, with the inductive step following
from the chain rule for the Kullback–Leibler divergence (Fact 2.4).

The next theorem states that two probability distributions on the leaves of a
binary tree are multiplicatively close if the Kullback–Leibler divergence on any
root-to-leaf path is small. The theorem is a minor adaptation of a result due to
Barak et al. [4].

Theorem 2.8. Let µ and µ̃ be probability distributions on the leaves of a binary

tree. For an internal vertex v, abbreviate

D(v) = KL(µ(v0 | v) || µ̃(v0 | v)).

Assume that:
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(i) µ(v0 | v), µ̃(v0 | v) 2 [1/3, 2/3] for every internal vertex v;

(ii)
P

u:u�v D(u) 6 ✓ for every leaf v.

Then:

P
V ⇠µ

⇥
µ(V ) > 2

c+✓µ̃(V )

⇤
6 exp

✓
� c2

52✓

◆
, c > 0, (2.6)

P
V ⇠µ̃

h
µ̃(V ) > 2

c+(21/20)✓µ(V )

i
6 exp

✓
� c2

55✓

◆
, c > 0. (2.7)

Part (2.6) of the theorem conclusion was proved, with different constants, by Barak
et al. [4]. Our applications require the additional upper bound (2.7), which we
infer by appealing to (2.2). For the reader’s convenience, we provide a complete
and self-contained proof of Theorem 2.8 in Appendix A.

2.6. Communication protocols. We consider communication between two com-
putationally unbounded parties, called Alice and Bob, each with an input from
some fixed finite set and with a private source of random bits. They send mes-
sages back and forth according to an agreed-upon protocol, where each message is
a function of the sender’s input, the sender’s private random bits, and previously
exchanged messages. Formally, a private-coin communication protocol is a tuple
(X ,Y , T,A ,B,⇡), where X and Y are the sets of possible inputs for Alice and
Bob, respectively; T is a finite nonempty binary tree; A and B are disjoint sets that
form a partition of the internal vertices of T ; and ⇡ : (A ⇥X ) [ (B ⇥Y )! [0, 1]
is any function. The tree T is called the protocol tree. The vertices of A are said
to be owned by Alice, and those of B are said to be owned by Bob. For brevity,
we will identify a communication protocol with its corresponding function ⇡ since
the other components X ,Y , T,A ,B of the tuple can all be recovered from the
domain of ⇡.

The operational interpretation of a protocol ⇡ on a given pair of inputs x 2 X
and y 2 Y is in terms of a random walk from the root of the protocol tree to
a leaf. Specifically, at an internal vertex v 2 A , Alice sends 0 with probability
⇡(v, x) and sends 1 with the complementary probability 1 � ⇡(v, x), directing the
random walk to the left or right subtree, respectively. At an internal vertex v 2 B,
Bob analogously sends 0 with probability ⇡(v, y), directing the random walk to
the left subtree, and sends 1 with complementary probability. A transcript is the
complete sequence of bits sent by Alice and Bob on a given pair of inputs over the
course of the random walk from the root of the protocol tree to a leaf. Given our
identification of tree vertices with binary strings, we identify the transcript with the
leaf reached by the random walk. The communication cost of protocol ⇡, denoted
|⇡|, is the height of the protocol tree, or equivalently the maximum number of bits
exchanged by Alice and Bob in the worst case on any input. We let V (⇡) denote the
set of vertices of the protocol tree for ⇡, which includes both the internal vertices
and the leaves. The set of leaves of the protocol tree is denoted L (⇡). We regard
V (⇡) and L (⇡) as subsets of {0, 1}⇤.

A public-coin communication protocol is a probability distribution over a finite
number of private-coin communication protocols, each with its own protocol tree. In
a public-coin protocol, Alice and Bob use a shared source of random bits (a “public
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coin”) to sample a random string R and then proceed to execute the private-coin
protocol that corresponds to R. The communication cost of a public-coin protocol
⇡, denoted |⇡|, is the maximum communication cost of the associated private-coin
protocols. In particular, the length of the shared random string R does not count
toward the communication cost of a public-coin protocol. The shared string is,
however, always considered to be a part of the protocol transcript. Unless indicated
otherwise, the term protocol throughout this paper refers to a private-coin protocol.

Recall from the introduction that a product distribution on X ⇥Y is any prob-
ability distribution of the form µ(x, y) ⌘ µX (x)µY (y), where µX and µY are
probability distributions on X and Y , respectively. The following fact is well-
known.

Fact 2.9. For any private-coin protocol ⇡, product distribution µ, and vertex v 2
V (⇡),

P[⇧ ⌫ v]P[⇧ ⌫ v | X,Y ] = P[⇧ ⌫ v | X]P[⇧ ⌫ v | Y ], (2.8)

where X,Y are random variables with joint distribution µ, and ⇧ is the protocol

transcript on input X,Y.

Proof. For notational convenience, we will assume that v = 0

k for some k. Then by
definition,

P[⇧ ⌫ v | X,Y ] =

Y

u2A \�v

⇡(u,X) ·
Y

u2B\�v

⇡(u, Y ). (2.9)

Passing to expectations,

P[⇧ ⌫ v] = E

"
Y

u2A \�v

⇡(u,X) ·
Y

u2B\�v

⇡(u, Y )

#

= E

"
Y

u2A \�v

⇡(u,X)

#
E

"
Y

u2B\�v

⇡(u, Y )

#
, (2.10)

where the last step uses the independence of X and Y. By an analogous argument,
(2.9) yields

P[⇧ ⌫ v | X] =

Y

u2A \�v

⇡(u,X) ·E
"

Y

u2B\�v

⇡(u, Y )

#
(2.11)

and

P[⇧ ⌫ v | Y ] = E

"
Y

u2A \�v

⇡(u,X)

#
·
Y

u2B\�v

⇡(u, Y ). (2.12)

The claimed relationship (2.8) is immediate from (2.9)–(2.12).
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2.7. Information cost. Fix a private-coin communication protocol ⇡ and a prob-
ability distribution µ on the input space of ⇡. Let X and Y be random variables
with joint distribution µ, corresponding to Alice and Bob’s inputs, and let ⇧ be the
transcript of ⇡ on inputs X and Y . The internal information cost of ⇡ with respect

to µ is defined as

ICµ(⇡) = I(⇧;X | Y ) + I(⇧;Y | X).

Introduced by Barak et al. [4], this quantity measures the amount of information
that Alice and Bob learn on average about each other’s inputs by executing the
protocol. A closely related notion is the external information cost, defined for ⇡
with respect to µ as

IC

⇤
µ(⇡) = I(⇧;XY ).

This alternate quantity was introduced several years earlier by Chakrabarti et
al. [11], with implicit uses in several other works. External information cost mea-
sures the amount of information that the protocol transcript reveals to an outside
observer about the inputs X and Y . The chain rule for mutual information implies
that ICµ(⇡) 6 2 IC

⇤
µ(⇡). The following sharper result was proved by Barak et al. [4].

Theorem 2.10 (Barak et al.). For any private-coin protocol ⇡ and any probability

distribution µ,

ICµ(⇡) 6 IC

⇤
µ(⇡),

with equality for product distributions.

For general (nonproduct) distributions µ, the gap between the internal and external
information cost can be arbitrary [4]. The internal and external information cost of
a public-coin protocol ⇡ are defined in a natural way by conditioning on the shared
random string R. Formally,

ICµ(⇡) = I(⇧;X | RY ) + I(⇧;Y | RX),

IC

⇤
µ(⇡) = I(⇧;XY | R).

Put another way, the information cost of a public-coin protocol is the average
information cost of the associated private-coin protocols.

2.8. Local view of information cost. External information cost admits a useful
alternate characterization, based on the chain rule for mutual information. As
before, fix a private-coin communication protocol ⇡ with input space X ⇥ Y and
consider a probability distribution µ on X ⇥Y . Let X and Y be random variables
with joint distribution µ, and let ⇧ be the transcript of ⇡ on input X,Y . For x 2X
and y 2 Y , define P, Px, Py, Px,y to be the probability distributions that govern
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the random variables

⇧,

⇧ | X = x,

⇧ | Y = y,

⇧ | X = x, Y = y,

respectively. Thus, P, Px, Py, Px,y are probability distributions on the leaves of
the protocol tree. For a leaf or internal vertex v, recall from Section 2.5 that the
shorthands P (v), Px(v), Py(v), Px,y(v) refer to the probability of reaching a leaf in
the subtree of v. Similarly, P (v | u), Px(v | u), Py(v | u), Px,y(v | u) refer to the
probability of reaching a leaf in the subtree of v conditioned on reaching a leaf in
the subtree of u. For any vertex v of the protocol tree and inputs x 2X and y 2 Y ,
define

D⇡,µ
x (v) =

(
KL(Px(v0 | v) || P (v0 | v)) if v 2 A ,

0 otherwise

=

(
KL(Px,y(v0 | v) || P (v0 | v)) if v 2 A ,

0 otherwise

and analogously

D⇡,µ
y (v) =

(
KL(Py(v0 | v) || P (v0 | v)) if v 2 B,

0 otherwise

=

(
KL(Px,y(v0 | v) || P (v0 | v)) if v 2 B,

0 otherwise,

where as usual A and B stand for the sets of vertices owned by Alice and Bob, re-
spectively. These quantities, introduced by Barak et al. [4], measure the information
revealed about the protocol inputs locally due to the bit transmission at vertex v.
Observe that for an internal vertex v, at most one of the quantities D⇡,µ

x (v),D⇡,µ
y (v)

is nonzero, whereas for every leaf vertex v, both quantities are zero. Define

D⇡,µ
x,y (v) = D⇡,µ

x (v) + D⇡,µ
y (v)

= KL(Px,y(v0 | v) || P (v0 | v)). (2.13)

For S ✓ V (⇡), we abbreviate

D⇡,µ
x (S ) =

X

v2S

D⇡,µ
x (v),

D⇡,µ
y (S ) =

X

v2S

D⇡,µ
y (v),

D⇡,µ
x,y (S ) =

X

v2S

D⇡,µ
x,y (v).
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We are now in a position to state the alternate characterization of external infor-
mation cost, due to Barak et al. [4].

Theorem 2.11. For any private-coin protocol ⇡ and distribution µ,

IC

⇤
µ(⇡) = ED⇡,µ

X,Y (�⇧),

where X and Y are random variables with joint distribution µ, and ⇧ is the protocol

transcript of ⇡ on input X,Y .

The lower bound in this theorem was proved in [4].

Proof of Theorem 2.11. Recall that P and Px,y stand for the probability distribu-
tions that govern the random variables ⇧ and ⇧ | X = x, Y = y, respectively.
Theorem 2.7 guarantees that

KL(Px,y || P ) = E[D⇡,µ
X,Y (�⇧) | X = x, Y = y],

whence

EKL(PX,Y || P ) = ED⇡,µ
X,Y (�⇧).

The left-hand side of this equation is by definition I(⇧;XY ) = IC

⇤
µ(⇡).

The following related result is inspired by Fact 2.3.

Theorem 2.12. For every private-coin protocol ⇡ and distributions µ and µ̃,

ED⇡,µ
X,Y (�⇧) 6 ED⇡,µ̃

X,Y (�⇧), (2.14)

where X and Y are random variables with joint distribution µ, and ⇧ is the protocol

transcript of ⇡ on input X,Y .

Proof. As usual, let Px,y stand for the probability distribution that governs the
random variable ⇧ | X = x, Y = y. Then

ED⇡,µ
X,Y (�⇧) =

X

x,y

µ(x, y)E[D⇡,µ
X,Y (�⇧) | X = x, Y = y]

=

X

x,y

µ(x, y)KL

0

@Px,y

������

������

X

x0,y0

µ(x0, y0)Px0,y0

1

A

6
X

x,y

µ(x, y)KL

0

@Px,y

������

������

X

x0,y0

µ̃(x0, y0)Px0,y0

1

A

=

X

x,y

µ(x, y)E[D⇡,µ̃
X,Y (�⇧) | X = x, Y = y]

= ED⇡,µ̃
X,Y (�⇧),
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where the second and fourth steps use Theorem 2.7, and the third step is valid by
Fact 2.3.

2.9. Protocol simulation. Simulation of a given protocol ⇡ on given inputs x, y
by another protocol ⇡0 involves running ⇡0 on x, y and interpreting its transcript as
a transcript of ⇡. Alice and Bob may base their interpretations on their respective
inputs x and y, potentially arriving at distinct conclusions. In an accurate simula-
tion, we require that their interpretations almost always agree and approximately
follow the distribution of ⇡’s transcript on the input in question. Naturally, we are
interested in simulating ⇡ efficiently, with communication cost as close to ICµ(⇡)
as possible. This challenge is referred to as protocol compression.

Formally, let ⇡ be a private- or public-coin communication protocol with input
space X ⇥ Y , and let µ be a probability distribution on X ⇥ Y . We say that ⇡0

simulates ⇡ with error ✏ with respect to µ, denoted

⇡0 ,!µ,✏ ⇡,

if there exist a pair of functions a : {0, 1}⇤ ! {0, 1}⇤ and b : {0, 1}⇤ ! {0, 1}⇤ such
that TV((X,Y,⇧,⇧), (X,Y, a(X,⇧0

), b(Y,⇧0
)) 6 ✏, where X and Y are random

variables with joint distribution µ, and ⇧ and ⇧

0 are the transcripts of ⇡ and ⇡0,
respectively, on input X,Y . We remind the reader that for public-coin protocols,
the protocol transcript always includes the shared random string. The notion of
protocol simulation is transitive in the following sense.

Theorem 2.13. Let ⇡,⇡0,⇡00
be private- or public-coin protocols with input space

X ⇥ Y . Let µ be a probability distribution on X ⇥ Y . Assume that

⇡00 ,!µ,✏ ⇡
0,

⇡0 ,!µ,� ⇡.

Then

⇡00 ,!µ,✏+� ⇡.

Proof. Immediate from the triangle inequality for statistical distance.

The following well-known result shows that any public-coin protocol can be faith-
fully simulated by a private-coin protocol with no increase in information cost.
Thus, private- and public-coin protocols can be regarded as equivalent notions
from the point of view of information cost.

Theorem 2.14 (Folklore). Let ⇡ be a public-coin protocol with input space X ⇥Y .

Let µ be a probability distribution on X ⇥Y . Then there is a private-coin protocol

⇡0
such that

⇡0 ,!µ,0 ⇡, (2.15)
ICµ(⇡

0
) = ICµ(⇡), (2.16)

IC

⇤
µ(⇡

0
) = IC

⇤
µ(⇡). (2.17)
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Proof. Recall that Alice and Bob execute ⇡ by sampling a bit string R from a shared
source of random bits and executing the corresponding private-coin protocol ⇡R. To
simulate this behavior with a private-coin protocol ⇡0, Alice will privately sample
a bit string R to be used as shared randomness and send it to Bob, at which
point they will run the private-coin protocol ⇡R as before. On any given input, the
transcript of ⇡0 has the same distribution as the transcript of ⇡, settling (2.15).

It remains to analyze the information cost of ⇡0. Let X and Y be random variables
with joint distribution µ, and let ⇧R be the transcript of ⇡R on input X,Y. Then

IC

⇤
µ(⇡

0
) = I(R⇧R;XY )

= I(R⇧R;XY | R) + I(R;XY )

= I(R⇧R;XY | R)

= IC

⇤
µ(⇡)

and

ICµ(⇡
0
) = I(R⇧R;X | Y ) + I(R⇧R;Y | X)

= I(R⇧R;X | RY ) + I(R⇧R;Y | RX) + I(R;X | Y ) + I(R;Y | X)

= I(R⇧R;X | RY ) + I(R⇧R;Y | RX)

= ICµ(⇡),

where the third step in both derivations uses the independence of R and XY.

A private-coin protocol ⇡ : (A ⇥X )[(B⇥Y )! [0, 1] is �-balanced if the range
of ⇡ is contained in [

1
2 ��, 1

2 +�]. The following result, obtained by Barak et al. [4]
and revisited recently by Kol [21], shows that any protocol can be simulated by a
�-balanced protocol at the expense of an infinitesimal increase in information cost.

Theorem 2.15 (Barak et al., Kol). Let ⇡ be a private-coin protocol with input space

X ⇥ Y . Let µ be a probability distribution on X ⇥ Y . Then for every � > 0 and

✏ > 0, there exists a private-coin �-balanced protocol ⇡0
such that

⇡0 ,!µ,✏ ⇡,

ICµ(⇡
0
) 6 ICµ(⇡) + ✏,

IC

⇤
µ(⇡

0
) 6 IC

⇤
µ(⇡) + ✏.

For the reader’s convenience, we provide a proof of this result in Appendix B. Collec-
tively, Theorems 2.13–2.15 reduce the protocol compression problem to private-coin
�-balanced protocols, where � > 0 can be taken arbitrarily small relative to the
protocol’s information cost.

Another useful tool in protocol compression is correlated sampling, which makes
it possible for two parties to sample a random element according to a probability
distribution known to only one of them. The following theorem, due to Braverman
and Rao [7, Section IV], gives an efficient communication protocol for correlated
sampling in the public-coin randomized model.
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Theorem 2.16 (Braverman and Rao). Fix a finite set Z and an error parameter

0 < ✏ < 1/2. There is a two-party public-coin communication protocol with the

following properties.

(i) Alice and Bob receive as input probability distributions µ and µ̃, respectively,
on Z .

(ii) At the end of the protocol, Alice and Bob privately generate elements Z 2 Z
and

˜Z 2 Z , respectively, such that Z ⇠ µ and P[Z =

˜Z] > 1� ✏.
(iii) The communication cost on input pair (µ, µ̃) is O(log

1
✏ ) +C, where C is a

nonnegative random variable with expected value O(KL(µ || µ̃)).

3. Cuts, floors, and ceilings

Cuts are special families of binary strings that arise in the analysis of binary
trees. This section defines cuts, establishes their basic properties, and examines
natural relations and operations on cuts.

3.1. Cuts defined. A cut in a binary tree is any subset C of the tree’s vertices
such that |C \ �v| = 1 for every leaf v. In other words, a cut C is a set that
intersects any root-to-leaf path in exactly one vertex. Since we identify tree vertices
with binary strings, we view cuts as subsets of {0, 1}⇤. A frequently used fact in
our proofs is that for any cut C , the restriction of the binary tree to �C is again
a binary tree, namely, a truncation of the original. The following two propositions
settle basic properties of cuts.

Proposition 3.1. Let C be a cut in a given binary tree. Then any two distinct

vertices in C are incomparable.

Proof. A pair of vertices are comparable if and only if there is a root-to-leaf path
that passes through both of them. If C contained a pair of distinct vertices that
were comparable, then some root-to-leaf path would intersect C in more than one
vertex, violating the cut property.

Proposition 3.2. Let C be a cut in a given binary tree. Then �C , C , and �C
are pairwise disjoint sets whose union is {0, 1}⇤.

Proof. If any two of the sets �C ,C ,�C had nonempty intersection, then C would
contain a pair of distinct vertices that are comparable, contradicting Proposi-
tion 3.1.

It remains to show that the union �C [ C [ �C contains every binary string.
Fix v 2 {0, 1}⇤ arbitrarily. By extending the tree if necessary, we can view v as a
tree vertex. Now consider any root-to-leaf path that passes through v. By the cut
property, the path intersects C in some vertex u, which by definition is comparable
to v. Put another way, v is contained in at least one of the sets �C ,C ,�C .
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3.2. Relations on cuts. We define the relations �,�,�,⌫ on cuts by

C � D , C ✓ �D ,

C � D , C ✓ �D ,

C � D , C ✓ �D ,

C ⌫ D , C ✓ ⌫D .

Each of the relations �,�,�,⌫ is clearly transitive, a fact that we will often use
in our proofs without explicit mention.

Proposition 3.3. Let C and D be cuts in a given binary tree. Then

C � D , D � C , (3.1)
C � D , D ⌫ C . (3.2)

Proof. Assume that C � D . Then (D \ �C ) ✓ �C ✓ �D . Thus, D \ �C 6=
? would imply that D contains a pair of distinct vertices that are comparable,
contradicting Proposition 3.1. We conclude that D \ �C = ?, which in view of
Proposition 3.2 forces D ✓ �C . Summarizing, C � D =) D � C . One similarly
proves C � D =) D ⌫ C , as well as the converses of these two implications.

For a leaf v and cuts C and D in a given binary tree, we write C � D (mod v)
to mean that (C \ �v) � (D \ �v), i.e., the cut C precedes the cut D along the
root-to-leaf path �v. We analogously define

C � D (mod v),

C = D (mod v),

C ⌫ D (mod v),

C � D (mod v).

For a vertex v and a cut C , we adopt the abbreviations

v � C , v 2 �C ,

v � C , v 2 �C ,

v � C , v 2 �C ,

v ⌫ C , v 2 ⌫C .

Proposition 3.2 ensures that for every v and C , precisely one of the following con-
ditions holds: v � C , v 2 C , v � C .

3.3. Floors and ceilings. A set S ✓ {0, 1}⇤ is downward closed if S = �S .
Analogously, S is upward closed if S = ⌫S . Observe that for any S ✓ {0, 1}⇤,
the sets �S and �S are downward closed, whereas ⌫S and �S are upward
closed. For a set S ✓ {0, 1}⇤, we let bS c and dS e denote the subset of minimal
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elements of S and the subset of maximal elements of S , respectively, relative to
the � ordering:

bS c = {s 2 S : S \ �s = ?},
dS e = {s 2 S : S \ �s = ?}.

We emphasize that the floor and ceiling operations are defined for arbitrary sets S
of binary strings and not just for cuts. A moment’s reflection shows that for any
S ✓ {0, 1}⇤,

bS c = S \�S , (3.3)
dS e = S \�S . (3.4)

For S1,S2, . . . ,Sk ✓ {0, 1}⇤, we abbreviate

bS1,S2, . . . ,Skc = bS1 [S2 [ . . . [Skc,
dS1,S2, . . . ,Ske = dS1 [S2 [ . . . [Ske.

By definition, bS1,S2, . . . ,Skc and dS1,S2, . . . ,Ske are invariant under permu-
tations of the given k sets. It is also straightforward to verify the alternate repre-
sentations

bS1,S2, . . . ,Skc = bS1, bS2, b. . . , bSk�1,Skc . . .ccc, (3.5)
dS1,S2, . . . ,Ske = dS1, dS2, d. . . , dSk�1,Ske . . .eee. (3.6)

We now show that cuts are closed under the floor and ceiling operations.

Proposition 3.4. If C ✓ {0, 1}⇤ is a cut in a given binary tree, then so is bC ,S c
for any S ✓ {0, 1}⇤.

Proof. Let v be a leaf. Then |C \ �v| > 1 by the cut property, and therefore
|bC ,S c\�v| > 1 by the downward closure of �v. For the matching upper bound,
any two vertices in �v are comparable and therefore bC ,S c contains at most one
of them.

Proposition 3.4 has no direct counterpart for the ceiling operator. For example, the
ceiling of S = {0} and of the cut C = {"} is dC ,S e = {0}, which is not a cut.
However, if both of the original sets are cuts, then their ceiling is also a cut.

Proposition 3.5. If C1,C2 ✓ {0, 1}⇤ are cuts in a given binary tree, then so is

dC1,C2e.

Proof. Let v be a leaf. By the cut property, there is a pair of vertices v1 2 C1 \�v
and v2 2 C2 \ �v. Proposition 3.1 implies that v1 has no proper descendant in
C1, and likewise v2 has no proper descendant in C2. This means that the vertex
max{v1, v2} 2 C1 [ C2 has no proper descendant in C1 [ C2 and is therefore an
element of dC1,C2e. For the matching upper bound, any two vertices in �v are
comparable and therefore dC1,C2e contains at most one of them.
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Propositions 3.4 and 3.5 generalize to three or more cuts, using induction and the
alternate representations (3.5) and (3.6). We conclude this section with useful
explicit formulas for the floor and ceiling of a pair of cuts.

Proposition 3.6. Let C and D be cuts in a given binary tree. Then

bC ,Dc = (C \ �D) [ (D \ �C ),

dC ,De = (C \ ⌫D) [ (D \ ⌫C ).

Proof. We have

bC ,Dc = (C [D) \ (�C [ �D)

= (C [D) \ �C \ �D

= (C \ �C \ �D) [ (D \ �C \ �D)

= (C \ �D) [ (D \ �C ),

where the first two steps use (3.3) and Proposition 3.2, respectively. Analogously,

dC ,De = (C [D) \ (�C [ �D)

= (C [D) \ ⌫C \ ⌫D

= (C \ ⌫C \ ⌫D) [ (D \ ⌫C \ ⌫D)

= (C \ ⌫D) [ (D \ ⌫C ),

where the first two steps use (3.4) and Proposition 3.2, respectively.

4. Partial simulation

Let ⇡ be a given communication protocol with information cost I under a prod-
uct distribution µ. Recall that the goal of this paper is to construct a public-coin
randomized protocol that accurately simulates ⇡ with respect to µ and has com-
munication cost O(I log2 I). In keeping with now-standard practice, we start by
developing a public-coin randomized procedure that simulates a nontrivial initial
portion of the protocol ⇡. The complete simulation, analyzed in a later section,
will involve repeated execution of this partial procedure until the communication
allotment is reached.

Theorem 4.1 (Partial simulation, �⇡,µ,✏). Let 0 < ✏ < 1/2 be given. For � =

�(✏) > 0 sufficiently small, fix any �-balanced private-coin protocol ⇡ with input

space X ⇥ Y , and any product distribution µ on X ⇥ Y . Then there is a public-

coin randomized protocol �⇡,µ,✏ with input space X ⇥ Y whose execution allows

Alice and Bob to agree on a vertex of the protocol tree for ⇡, subject to the following
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properties:

X

w�v

P[W = w | X,Y ]

P[⇧ ⌫ w | X,Y ]

6 1 + ✏ 8v 2 V (⇡) (accuracy)

P[W 2 L (⇡)] + log

✓
1

✏

◆
ED⇡,µ

X,Y (�W ) > 1

c
(progress)

C 6 C 0
+ C 00

+ c log
1

✏
EC 0 6 c(ED⇡,µ

X,Y (�W ) + ✏ED⇡,µ
X,Y (�⇧))

P[C 00 > 0] 6 ✏

9
>>=

>>;
(cost)

where

(i) X,Y are random variables with joint distribution µ;

(ii) ⇧ is the transcript of ⇡ on input X,Y ;

(iii) W 2 V (⇡) is Alice and Bob’s agreed-upon vertex after executing �⇡,µ,✏ on

input (X,Y ), and C 2 N is the communication cost of that execution;

(iv) C 0, C 00 2 N are auxiliary random variables;

(v) W,C,C 0, C 00
are completely determined by the transcript of �⇡,µ,✏;

(vi) c > 1 is an absolute constant.

The remainder of this section is devoted to the proof of Theorem 4.1. We have
structured the proof around nine key milestones, corresponding to Sections 4.1–4.9
below.

4.1. Probability space and parameter list. We will assume that the protocol
tree for ⇡ has more than one vertex, the theorem being trivial otherwise. Recall
from the theorem statement that X,Y is a pair of inputs distributed according to
µ, and ⇧ is the protocol transcript of ⇡ on input X,Y. For a pair of inputs x 2X
and y 2 Y , consider the following familiar functions on the vertices of the protocol
tree for ⇡:

P (v) = P[⇧ ⌫ v], (4.1)
Px(v) = P[⇧ ⌫ v | X = x], (4.2)
Py(v) = P[⇧ ⌫ v | Y = y], (4.3)

Px,y(v) = P[⇧ ⌫ v | X = x, Y = y]. (4.4)
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We use analogous notation for conditional probabilities:

P (v | u) = P (v)

P (u)
= P[⇧ ⌫ v | ⇧ ⌫ u],

Px(v | u) = Px(v)

Px(u)
= P[⇧ ⌫ v | ⇧ ⌫ u,X = x],

Py(v | u) = Py(v)

Py(u)
= P[⇧ ⌫ v | ⇧ ⌫ u, Y = y],

Px,y(v | u) = Px,y(v)

Px,y(u)
= P[⇧ ⌫ v | ⇧ ⌫ u,X = x, Y = y]

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

u � v.

For a set C of vertices, we abbreviate

P (C ) =

X

v2C

P (v),

and likewise for Px(C ), Py(C ), Px,y(C ). By definition, each of the functions in
(4.1)–(4.4) is a probability distribution when restricted to the leaves L (⇡) of the
protocol tree. More generally, (4.1)–(4.4) are probability distributions when re-
stricted to any cut of the protocol tree:

P (C ) = Px(C ) = Py(C ) = Px,y(C ) = 1, C a cut. (4.5)

By Fact 2.9,

P (v)Px,y(v) = Px(v)Py(v), v 2 V (⇡), (4.6)

whence

P (v | u)Px,y(v | u) = Px(v | u)Py(v | u), u � v 2 V (⇡). (4.7)

Throughout the proof, we abbreviate D⇡,µ
x ,D⇡,µ

y ,D⇡,µ
x,y to Dx,Dy,Dx,y, respec-

tively. We assume without loss of generality that Alice and Bob’s input sets X
and Y are disjoint, which eliminates the possibility of conflicting interpretations
for Dx and Dy. Among the many applications of (4.7) are the following simplified
expressions for Dx and Dy.

Claim 4.2. Let x 2X and y 2 Y . Then

Dx(v) = KL(Px(v0 | v) || P (v0 | v)) (4.8)
= KL(Px,y(v0 | v) || Py(v0 | v)). (4.9)

Analogously,

Dy(v) = KL(Py(v0 | v) || P (v0 | v)) (4.10)
= KL(Px,y(v0 | v) || Px(v0 | v)). (4.11)
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Proof. By symmetry, it suffices to prove (4.8) and (4.9). There are two cases to
consider. If v is owned by Alice, then Px(v0 | v) = Px,y(v0 | v), which in turn
implies in view of (4.7) that Py(v0 | v) = P (v0 | v). In light of these two identities,
(4.8) and (4.9) are both equivalent to Dx(v) = KL(Px,y(v0 | v) || P (v0 | v)), which
is the defining equation at vertices v owned by Alice.

In the complementary case when v is owned by Bob, we have Py(v0 | v) =

Px,y(v0 | v), which in turn implies in view of (4.7) that Px(v0 | v) = P (v0 | v).
In light of these two identities, (4.8) and (4.9) are both equivalent to Dx(v) = 0,
which is the defining equation at vertices v owned by Bob.

Our proof has three positive parameters �,�, r, whose precise values will be
determined later in terms of ✏. Their orders of magnitude are given by (4.83)–(4.85).
We will ensure that

0 < � <
1

16

, (4.12)

� > 1. (4.13)

4.2. Frontiers and randomized frontiers. By taking � > 0 sufficiently small,
we can ensure that

max

p,q2[ 12��, 12+�]
KL(p || q) < �.

Indeed, (2.4) makes it clear that � = ⇥(

p
�) is an adequate setting. We may

therefore assume that

Dx,y(v) 6 �

Dx(v) 6 �

Dy(v) 6 �

9
>=

>;
x 2X , y 2 Y , v 2 V (⇡). (4.14)

For ✓ > 0, define

Fx,✓ = b{v 2 V (⇡) : Dx(�v) > ✓},L (⇡)c, (4.15)
Fy,✓ = b{v 2 V (⇡) : Dy(�v) > ✓},L (⇡)c. (4.16)

Following previous work on protocol compression [4, 21], we refer to these sets as
✓-frontiers. We will be interested in ✓-frontiers for both 0 < ✓ ⌧ 1 and ✓ � 1.
The notion of a ✓-frontier has a natural randomized counterpart due to Kol [21],
obtained by passing from specific inputs x 2 X and y 2 Y to random inputs X
and Y :

RX ,✓,⇢ = b{v 2 V (⇡) : P[DX(�v) > ✓] > ⇢} ,L (⇡)c (4.17)
= b{v 2 V (⇡) : P[v ⌫ FX,✓] > ⇢}c , (4.18)

RY ,✓,⇢ = b{v 2 V (⇡) : P[DY (�v) > ✓] > ⇢} ,L (⇡)c (4.19)
= b{v 2 V (⇡) : P[v ⌫ FY,✓] > ⇢}c , (4.20)



30 ALEXANDER A. SHERSTOV

where ✓ > 0 and 0 < ⇢ 6 1. We abbreviate

R✓,⇢ = bRX ,✓,⇢,RY ,✓,⇢c.

In the two claims that follow, we settle basic combinatorial and measure-theoretic
properties of these sets.

Claim 4.3. Let ✓ > 0 and 0 < ⇢ 6 1. Then Fx,✓, Fy,✓, RX ,✓,⇢, RY ,✓,⇢, R✓,⇢

for all x 2 X and y 2 Y are nonempty and are cuts in the protocol tree for ⇡.
Moreover,

" /2 Fx,✓, (4.21)
" /2 Fy,✓, (4.22)
" /2 RX ,✓,⇢, (4.23)
" /2 RY ,✓,⇢, (4.24)
" /2 R✓,⇢. (4.25)

Proof. The floor operator in (4.15)–(4.19) is applied to sets that contain the cut
L (⇡). We conclude that Fx,✓, Fy,✓, RX ,✓,⇢, RY ,✓,⇢ are nonempty and by Propo-
sition 3.4 are cuts. This in turn makes R✓,⇢ a cut, again by Proposition 3.4.

By hypothesis, the protocol tree for ⇡ has more than one vertex and therefore "
is not a leaf. As a result, our definitions imply (4.21)–(4.25) directly.

Claim 4.4. Let ✓ > 0 and 0 6 ⇢1 < ⇢2 6 1. Then for any leaf v 2 L (⇡),

P[RX ,✓,⇢1 � FX,✓ � RX ,✓,⇢2 (mod v)] < ⇢2 � ⇢1,

P[RY ,✓,⇢1 � FY,✓ � RY ,✓,⇢2 (mod v)] < ⇢2 � ⇢1.

More generally,

P[bRX ,✓,⇢1 ,C c � bFX,✓,C c � bRX ,✓,⇢2 ,C c (mod v)] < ⇢2 � ⇢1,

P[bRY ,✓,⇢1 ,C c � bFY,✓, C c � bRY ,✓,⇢2 ,C c (mod v)] < ⇢2 � ⇢1

for any fixed cut C .

Proof. The first two bounds are immediate from the definitions of RX ,✓,⇢ and
RY ,✓,⇢ for ✓ > 0 and 0 < ⇢ 6 1. The other two bounds follow directly from the
first two.

Analogous to previous analyses [4, 21], we will need the fact that the ratios
Px,y(v)/Px(v) and Px,y(v)/Py(v) behave reasonably for most vertices below the
�-frontiers.
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Claim 4.5. Let S ✓ {0, 1}⇤ be arbitrary. Then for any x 2X and y 2 Y ,

Px,y

✓⇢
v 2 bS ,Fy,�c :

c0Px,y(v)

Px(v)
> 1

�◆
6 exp

✓
�1

�

◆
, (4.26)

Px

✓⇢
v 2 bS ,Fy,�c :

c0Px(v)

Px,y(v)
> 1

�◆
6 exp

✓
�1

�

◆
(4.27)

and analogously

Px,y

✓⇢
v 2 bS ,Fx,�c :

c0Px,y(v)

Py(v)
> 1

�◆
6 exp

✓
�1

�

◆
, (4.28)

Py

✓⇢
v 2 bS ,Fx,�c :

c0Py(v)

Px,y(v)
> 1

�◆
6 exp

✓
�1

�

◆
, (4.29)

where 0 < c0 < 1 is an absolute constant.

Proof. By symmetry, it suffices to prove (4.26) and (4.27). By Proposition 3.4 and
Claim 4.3, the set bS ,Fy,�c is a cut. As a result, (4.5) allows us to regard Px,y

and Px as probability distributions on bS ,Fy,�c. We have

X

u:u�v

KL(Px,y(u0 | u) || Px(u0 | u)) = Dy(�v)

< 2�, v 2 bS ,Fy,�c, (4.30)

where the first step follows from (4.11) and the second step uses (4.14) and the
definition of Fy,�. Finally, the balance property of ⇡ implies that

1

3

6 Px,y(u0 | u) 6 2

3

, (4.31)

1

3

6 Px(u0 | u) 6 2

3

(4.32)

for all internal vertices u. Now (4.26) and (4.27) follow immediately from (4.12),
(4.30)–(4.32), and Theorem 2.8, applied to the protocol tree truncated at the cut
bS ,Fy,�c.

4.3. Rounded frontiers and sampling cuts. Consider a “rounded” version of
the cut Fx,✓, given by

Fx,✓ =

$
2r[

i=1

RY ,✓, i
2r
\ ⌫Fx,✓, L (⇡)

%
. (4.33)

Put another way, Fx,✓ is obtained by collecting, for each vertex of Fx,✓, its descen-
dants in

RY ,✓, 1
2r
[ · · · [RY ,✓, i

2r
[ · · · [RY ,✓, 2r2r

[L (⇡) (4.34)
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and taking the floor of the resulting collection of descendants. In that sense, Fx,✓ is
the result of rounding Fx,✓ up with respect to the cuts RY ,✓, 1

2r
� · · · � RY ,✓, i

2r
�

· · · � RY ,✓, 2r2r
� L (⇡). We analogously define

Fy,✓ =

$
2r[

i=1

RX ,✓, i
2r
\ ⌫Fy,✓, L (⇡)

%
.

Claim 4.6. Let ✓ > 0. Then for all x 2X and y 2 Y , the sets Fx,✓ and Fy,✓ are

cuts in the protocol tree for ⇡. Moreover,

Fx,✓ ⌫ Fx,✓, (4.35)

Fy,✓ ⌫ Fy,✓. (4.36)

Proof. By symmetry, it suffices to consider Fx,✓. The floor operator in (4.33) is
applied to a set that contains the cut L (⇡), which makes Fx,✓ a cut by Proposi-
tion 3.4. To verify (4.35), observe that each of the sets

RY ,✓, 1
2r
\ ⌫Fx,✓,

...
RY ,✓, i

2r
\ ⌫Fx,✓,

...
RY ,✓, 2r2r

\ ⌫Fx,✓,

L (⇡)

is by definition contained in ⌫Fx,✓. The same containment must therefore apply
to the union of these 2r + 1 sets, as well as to the floor of that union.

In what follows, we abbreviate

Sx = bFx,�,Fx,�,R�,1/2c, x 2X ,

Sy = bFy,�,Fy,�,R�,1/2c, y 2 Y ,

Sx,y = dbSx,Fy,�c, bSy,Fx,�ce, x 2X , y 2 Y .

For reasons that will become clear shortly, we think of these sets as Alice’s sampling
cut, Bob’s sampling cut, and the joint sampling cut, respectively, on input x, y.

Claim 4.7. For all x 2X and y 2 Y , the sets Sx,Sy,Sx,y are cuts in the protocol

tree for ⇡. Moreover,

" /2 Sx, (4.37)
" /2 Sy, (4.38)
" /2 Sx,y. (4.39)
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Proof. That Sx and Sy are cuts is immediate from Proposition 3.4 and Claim 4.3.
Again by Proposition 3.4 and Claim 4.3, the set Sx,y is the ceiling of two cuts and
is therefore itself a cut in view of Proposition 3.5. Finally, (4.37)–(4.39) follow from
Claims 4.3 and 4.6 in view of � > 0 and � > 0.

4.4. A stochastic process. The focal point of our proof is the following discrete
stochastic process, which mimics the operation of ⇡ on input distributed according
to µ. We will study its information-theoretic properties in Sections 4.4–4.7 and
provide its implementation as an efficient two-party communication protocol in
Section 4.8. In the pseudocode below, 0 < c0 < 1 is the absolute constant from
Claim 4.5.

1 X,Y  random input with joint distribution µ

2 leader 
(

Alice with probability 1/2,

Bob with probability 1/2

3 if leader = Alice then

4 V1  random vertex in SX with probability distribution PX

5 V2  bSX ,FY,�c \ �V1

6 V3  
(
V2 with probability min{1, c0PX,Y (V2)/PX(V2)},
" with probability 1�min{1, c0PX,Y (V2)/PX(V2)}

7 ⌘  

8
><

>:

1 if V3 � bSY ,FX,�c,
1/2 if V3 2 bSY ,FX,�c,
0 if V3 � bSY ,FX,�c

8 W  
(
V3 with probability ⌘,

" with probability 1� ⌘

9 else

10 V1  random vertex in SY with probability distribution PY

11 V2  bSY ,FX,�c \ �V1

12 V3  
(
V2 with probability min{1, c0PX,Y (V2)/PY (V2)},
" with probability 1�min{1, c0PX,Y (V2)/PY (V2)}

13 ⌘  

8
><

>:

1 if V3 � bSX ,FY,�c,
1/2 if V3 2 bSX ,FY,�c,
0 if V3 � bSX ,FY,�c

14 W  
(
V3 with probability ⌘,

" with probability 1� ⌘

15 end

As discussed in the introduction, this stochastic process is inspired by Kol’s one-step
protocol [21] but uses a different family of cuts. In particular, the initial vertex V1 is
always sampled at or below the cut R�,1/2, which has far-reaching implications and
is key to our improved results. Further differences with [21] will be highlighted in
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Sections 4.6–4.8 as we discuss the information-theoretic properties of the stochastic
process and its implementation by a two-party communication protocol.

In what follows, we let A and B denote the complementary events

A ⌘ leader = Alice,

B ⌘ leader = Bob.

The corresponding parts of the stochastic process (lines 4–8 and 10–14) are sym-
metric in that either part results from the other by interchanging the roles of X
and Y. We will make frequent use of this symmetry in our analysis. A comment is
in order on the stated distribution of V1 in lines 4 and 10. Recall from Claim 4.7
that SX and SY are cuts. It follows from (4.5) that the restrictions of PX and
PY to these cuts are probability distributions. In particular, the stated probability
distributions of V1 are legitimate. We now examine the probability distributions
that govern the next two vertices in the stochastic process, V2 and V3.

Claim 4.8. The random variable V2 obeys

P[V2 = v | X,Y,A] =

(
PX(v) if v 2 bSX ,FY,�c,
0 otherwise,

P[V2 = v | X,Y,B] =

(
PY (v) if v 2 bSY ,FX,�c,
0 otherwise.

Proof. By symmetry, it suffices to prove the former claim. By the algorithmic
definition of PX , choosing a random element V of a given cut C with probability
distribution PX is equivalent to choosing a random element V 0 of a higher cut
C 0 ⌫ C with probability distribution PX and outputting the unique ancestor of V 0

in C . This proves the claim because V1 is a random element of the cut SX with
probability distribution PX , and V2 is the unique ancestor of V1 in the lower cut
bSX ,FY,�c.

Claim 4.9. Let 0 < c0 < 1 be the absolute constant from Claim 4.5. Then

supp(V3 | X,Y,A) ✓ bSX ,FY,�c [ {"}, (4.40)
P[V3 = v | X,Y,A] 6 c0PX,Y (v), v 6= ", (4.41)

P[V3 6= " | X,Y,A] > c0 � c0 exp

✓
�1

�

◆
. (4.42)

Analogously,

supp(V3 | X,Y,B) ✓ bSY ,FX,�c [ {"}, (4.43)
P[V3 = v | X,Y,B] 6 c0PX,Y (v), v 6= ", (4.44)

P[V3 6= " | X,Y,B] > c0 � c0 exp

✓
�1

�

◆
. (4.45)



COMPRESSING INTERACTIVE COMMUNICATION 35

Proof. By symmetry, it suffices to prove (4.40)–(4.42). Property (4.40) is immediate
by Claim 4.8 and the definition of V3. One similarly verifies

P[V3 = v | X,Y,A] 6 PX(v)min

⇢
1,

c0PX,Y (v)

PX(v)

�

6 c0PX,Y (v)

for v 6= ". It remains to settle (4.42). Recall from Claims 4.3 and 4.7 that " /2
bSX ,FY,�c. As a result,

P[V3 6= " | X,Y,A] =

X

v2bSX ,FY,�c

P[V3 = v | X,Y,A]

=

X

v2bSX ,FY,�c

PX(v)min

⇢
1,

c0PX,Y (v)

PX(v)

�

>
X

v2bSX ,FY,�c:
c0PX,Y (v)6PX(v)

PX(v) · c0PX,Y (v)

PX(v)

= c0

0

BB@
X

v2bSX ,FY,�c

PX,Y (v)�
X

v2bSX ,FY,�c:
c0PX,Y (v)>PX(v)

PX,Y (v)

1

CCA

> c0

✓
1� exp

✓
�1

�

◆◆
,

where the last step uses (4.5) and Claim 4.5.

4.5. Accuracy analysis. Building on the newly obtained facts about V2 and V3,
we now show that the output W of the stochastic process is representative of the
original protocol ⇡ in the sense of the accuracy requirement of Theorem 4.1.

Claim 4.10. The random variable W obeys

supp(W | X,Y ) ✓ SX,Y [ {"}, (4.46)
X

w�v

P[W = w | X,Y ]

P[⇧ ⌫ w | X,Y ]

6 1 + exp

✓
�1

�

◆
, v 2 V (⇡). (4.47)

Proof. For any cuts C and D , Proposition 3.6 implies that

bC ,Dc = (C \ �D) [ (D \ �C ) [ (C \D),

dC ,De = (C \ �D) [ (D \ �C ) [ (C \D),

where in both cases the union on the right-hand side is disjoint by Proposition 3.2.
We will use these facts without further mention for C = bSX ,FY,�c and D =

bSY ,FX,�c, which are cuts by Proposition 3.4 and Claim 4.3.
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For w 6= ",

P[W = w | X,Y,A] = P[V3 = w | X,Y,A]P[W = w | X,Y,A, V3 = w]

=

8
><

>:

P[V3 = w | X,Y,A] if w � bSY ,FX,�c,
P[V3 = w | X,Y,A]/2 if w 2 bSY ,FX,�c,
0 otherwise

6

8
><

>:

c0PX,Y (w) if w 2 bSX ,FY,�c \ �bSY ,FX,�c,
c0PX,Y (w)/2 if w 2 bSX ,FY,�c \ bSY ,FX,�c,
0 otherwise,

where the final step is valid by Claim 4.9. A symmetric line of reasoning shows that

P[W = w | X,Y,B] 6

8
><

>:

c0PX,Y (w) if w 2 bSY ,FX,�c \ �bSX ,FY,�c,
c0PX,Y (w)/2 if w 2 bSY ,FX,�c \ bSX ,FY,�c,
0 otherwise

for w 6= ". Recall from the description of the stochastic process that the events A
and B are complementary and equally likely conditioned on X,Y. Therefore,

P[W = w | X,Y ] 6

8
>>><

>>>:

c0PX,Y (w)/2 if w 2 bSX ,FY,�c \ �bSY ,FX,�c,
c0PX,Y (w)/2 if w 2 bSY ,FX,�c \ �bSX ,FY,�c,
c0PX,Y (w)/2 if w 2 bSX ,FY,�c \ bSY ,FX,�c,
0 otherwise

=

(
c0PX,Y (w)/2 if w 2 SX,Y ,

0 otherwise
(4.48)

for w 6= ". Among other things, this proves (4.46).
We now bound the probability that W = ". The stochastic process description

makes it clear that

P[W = " | X,Y,A] =P[V3 = " | X,Y,A]

+

1

2

P[V3 2 bSY ,FX,�c and V3 6= " | X,Y,A]

+P[V3 � bSY ,FX,�c and V3 6= " | X,Y,A].

To simplify the right-hand side of this equation, recall from Claims 4.3, 4.7, and 4.9
that supp(V3 | X,Y,A) ✓ bSX ,FY,�c [ {"} and " /2 bSX ,FY,�c. As a result,

P[W = " | X,Y,A] =P[V3 = " | X,Y,A]

+

1

2

P[V3 2 bSX ,FY,�c \ bSY ,FX,�c | X,Y,A]

+P[V3 2 bSX ,FY,�c \ �bSY ,FX,�c | X,Y,A].
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Substituting the bounds from Claim 4.9,

P[W = " | X,Y,A] 6 1� c0

✓
1� exp

✓
�1

�

◆◆

+

c0
2

PX,Y (bSX ,FY,�c \ bSY ,FX,�c)

+ c0PX,Y (bSX ,FY,�c \ �bSY ,FX,�c).

An analogous argument yields

P[W = " | X,Y,B] 6 1� c0

✓
1� exp

✓
�1

�

◆◆

+

c0
2

PX,Y (bSY ,FX,�c \ bSX ,FY,�c)

+ c0PX,Y (bSY ,FX,�c \ �bSX ,FY,�c).

Since the events A and B are complementary and equally likely conditioned on
X,Y , we conclude from the last two equations that

P[W = " | X,Y ] 6 1� c0

✓
1� exp

✓
�1

�

◆◆

+

c0
2

PX,Y (bSX ,FY,�c \ bSY ,FX,�c)

+

c0
2

PX,Y (bSX ,FY,�c \ �bSY ,FX,�c)

+

c0
2

PX,Y (bSY ,FX,�c \ �bSX ,FY,�c)

= 1� c0

✓
1� exp

✓
�1

�

◆◆

+

c0
2

PX,Y (bbSX ,FY,�c, bSY ,FX,�cc)

= 1� c0

✓
1� exp

✓
�1

�

◆◆
+

c0
2

, (4.49)

where the final step follows from (4.5) and the fact that bbSX ,FY,�c, bSY ,FX,�cc
is a cut (Proposition 3.4 and Claim 4.3).

We are now in a position to settle (4.47) and thereby complete the proof. Let v
be an arbitrary vertex of the protocol tree. Recall from Claim 4.7 that SX,Y is a
cut. Therefore, (4.46) shows that the intersection of the chain �v and the support
of W is a subset of {", s} for some vertex s 6= ". Applying the newly obtained
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estimates (4.48) and (4.49),

X

w�v

P[W = w | X,Y ]

PX,Y (w)
6 P[W = " | X,Y ]

PX,Y (")
+

P[W = s | X,Y ]

PX,Y (s)

6 1� c0

✓
1� exp

✓
�1

�

◆◆
+

c0
2

+

c0
2

= 1 + c0 exp

✓
�1

�

◆

6 1 + exp

✓
�1

�

◆
.

4.6. Progress is proportional to cost. Key to our amortized analysis is the
quantity EDX,Y (�W ), which is naturally viewed as a measure of progress in sim-
ulating ⇡ on random input. To paraphrase Theorem 4.1, we must show that the
progress remains proportional to the communication cost. This claim does not have
an analogue in Kol’s work [21], where the communication cost may significantly ex-
ceed the progress measure. We start with a claim that relates the distributions of
the initial and final vertices in the stochastic process, V1 and W.

Claim 4.11. Let 0 < c0 < 1 be the absolute constant from Claim 4.5. Then the

inequality

P[W = V1 | A,X, V1] >
c20
8

(4.50)

holds except with probability at most 4 exp(�1/�) conditioned on A. Analogously,

the inequality

P[W = V1 | B, Y, V1] >
c20
8

(4.51)

holds except with probability at most 4 exp(�1/�) conditioned on B.

A comment is in order regarding the notation. The left-hand side of (4.50) is a
real-valued function of the random variables X and V1. Therefore, this inequality
defines an event in the probability space, making it meaningful to speak about its
probability. Similar reasoning applies to (4.51).
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Proof. By symmetry, it suffices to prove (4.50). Let E1 and E2 stand for the events
that V1 � FY,� and PX,Y (V2)/PX(V2) > c0, respectively. Then

P[W = V1 | A,X, V1, E1 ^ E2]

= P


V1 = V2 = V3 = W, ⌘ > 1

2

���� A,X, V1, E1 ^ E2

�

= P[V1 = V2 | A,X, V1, E1 ^ E2]

⇥P[V2 = V3 | A,X, V1, E1 ^ E2, V1 = V2]

⇥P


⌘ > 1

2

���� A,X, V1, E1 ^ E2, V1 = V2 = V3

�

⇥P


W = V1

���� A,X, V1, E1 ^ E2, V1 = V2 = V3, ⌘ > 1

2

�

> 1 · c20 ·P

⌘ > 1

2

���� A,X, V1, E1 ^ E2, V1 = V2 = V3

�
· 1
2

=

c20
2

, (4.52)

where the final step follows from

V1 2 SX

= bFX,�,FX,�,R�,1/2c
⌫ bFX,�,R�,1/2c
⌫ bFX,�,R�,1/2,FY,�,FY,�c
= bFX,�,SY c.

We now analyze the probability of E1 ^ E2 conditioned on A. By definition, V1 2
SX � R�,1/2 � RY ,�,1/2. As a result, the defining equation (4.20) for RY ,�,1/2

reveals that

P[E1 | A,X, V1] >
1

2

. (4.53)

Moving on to E2, recall from Claim 4.8 that V2 is a random element of bSX ,FY,�c
with probability distribution PX . Claim 4.5 now ensures that P[¬E2 | A,X, Y ] 6
exp(�1/�) and in particular P[¬E2 | A] 6 exp(�1/�). By Markov’s inequality,

P[¬E2 | A,X, V1] 6
1

4

except with probability at most 4 exp(�1/�) conditioned on A. Combining this
result with (4.53) shows that

P[E1 ^ E2 | A,X, V1] >
1

4
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except with probability at most 4 exp(�1/�) conditioned on A. This completes the
proof in light of (4.52).

We are now in a position to prove our first lower bound on the progress measure
EDX,Y (�W ). Looking ahead, this claim will be crucial in arguing that the progress
made by the sampling procedure remains proportional to the communication cost.

Claim 4.12. Let 0 < c0 < 1 be the absolute constant from Claim 4.5. Then

E[DX(�V1) | A] +E[DY (�V1) | B]

6 16

c20
EDX,Y (�W ) + 8(� + �) exp

✓
�1

�

◆
.

Proof. It follows from Claim 4.11 that the lower bound

8

c20
E[DX(�W ) | A,X, V1] > DX(�V1) (4.54)

holds with probability at least 1� 4 exp(�1/�) with respect to (X,V1) conditioned
on A. The offending (X,V1) pairs satisfy the weaker inequality

8

c20
E[DX(�W ) | A,X, V1] > DX(�V1)� (�+ �), (4.55)

which can be verified by observing that V1 2 SX � FX,� and therefore DX(�V1) 6
�+ �. Taking a weighted average of (4.54) and (4.55) according to the probabilities
of the corresponding (X,V1) pairs, we arrive at

8

c20
E[DX(�W ) | A] > E[DX(�V1) | A]� 4(�+ �) exp

✓
�1

�

◆
.

An analogous argument yields

8

c20
E[DY (�W ) | B] > E[DY (�V1) | B]� 4(�+ �) exp

✓
�1

�

◆
.

Since the events A and B are complementary and equally likely, the claim follows
immediately from the last two inequalities.

4.7. Progress is nonnegligible. In addition to proving that the progress remains
proportional to the communication cost, Theorem 4.1 requires us to prove that the
progress is nonnegligible. To be precise, we must show that with constant proba-
bility, the output vertex W is either a leaf or has nonnegligible progress measure
DX,Y (�W ). The corresponding claims in the work of Barak et al. [4] and Kol [21]
were trivial to show. Our situation is considerably more involved because W is
always at or below the cut R�,1/2, which a priori makes it possible for the progress
measure to be arbitrarily small. We start with a general claim about cuts in the
protocol tree.
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Claim 4.13. Let C and D be cuts in the protocol tree for ⇡. Then for any x 2 X
and y 2 Y ,

Px,y(C \ ⌫D) = Px,y(bC ,Dc \ ⌫D), (4.56)
Px(C \ ⌫D) = Px(bC ,Dc \ ⌫D), (4.57)
Py(C \ ⌫D) = Py(bC ,Dc \ ⌫D), (4.58)
P (C \ ⌫D) = P (bC ,Dc \ ⌫D). (4.59)

Proof. It suffices to prove (4.56) since each of the equations (4.57)–(4.59) is a convex
combination of (4.56) for appropriate x and y. We have

Px,y(C \ ⌫D) = Px,y(C )� Px,y(C \ �D)

= 1� Px,y(C \ �D)

= Px,y(bC ,Dc)� Px,y(C \ �D)

= Px,y(bC ,Dc)� Px,y(((D \ �C ) [ (C \ �D)) \ �D)

= Px,y(bC ,Dc)� Px,y(bC ,Dc \ �D)

= Px,y(bC ,Dc \ ⌫D),

where the first step uses Proposition 3.2, the second step is immediate from (4.5),
the third step follows from (4.5) and Proposition 3.4, the fourth step uses Propo-
sition 3.2 again, the fifth step uses Proposition 3.6, and the final step is valid yet
again by Proposition 3.2.

Key to our proof of nonnegligible progress is the following information-theoretic
lemma, obtained by an application of the chain rule and convexity.

Claim 4.14. For any cut C and parameters ✓ > 0 and 0 < ⇢ 6 1,

EPX(C \ ⌫FX,✓) >
⇢

3

P (C \ ⌫RX ,✓,⇢)� ✓, (4.60)

EPY (C \ ⌫FY,✓) >
⇢

3

P (C \ ⌫RY ,✓,⇢)� ✓. (4.61)

Proof. By symmetry, it suffices to establish (4.60). Recall from Claim 4.3 that
FX,✓ is a cut. We have

�EPX(C \ ⌫FX,✓) + ✓

= �EPX(bC ,FX,✓c \ ⌫FX,✓) + ✓

> EDX(�(bC ,FX,✓c \ �⇧))
= EKL(PX |bC ,FX,✓c || P |bC ,FX,✓c)

> EKL(PX(bC ,FX,✓c \ ⌫FX,✓) || P (bC ,FX,✓c \ ⌫FX,✓))

= EKL(PX(C \ ⌫FX,✓) || P (C \ ⌫FX,✓))

> KL(EPX(C \ ⌫FX,✓) || EP (C \ ⌫FX,✓)), (4.62)
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where the first step uses Claim 4.13, the second step is immediate from (4.14), the
third step follows from (4.8) and Theorem 2.7, the fourth step uses the chain rule
for the Kullback–Leibler divergence (Fact 2.4), the fifth step uses Claim 4.13 again,
and the final step uses the convexity of the Kullback–Leibler divergence (Fact 2.2).
Moreover,

EP (C \ ⌫FX,✓) > ⇢P (C \ ⌫RX ,✓,⇢) (4.63)

by the definition of RX ,✓,⇢. Now assume for the sake of contradiction that (4.60)
is false. Then

�EPX(C \ ⌫FX,✓) + ✓

> KL(EPX(C \ ⌫FX,✓) || EP (C \ ⌫FX,✓))

> KL

⇣⇢
3

P (C \ ⌫RX ,✓,⇢)

���
��� ⇢P (C \ ⌫RX ,✓,⇢)

⌘

> ⇢

3

P (C \ ⌫RX ,✓,⇢)

> EPX(C \ ⌫FX,✓) + ✓,

where the first inequality restates (4.62), the second uses (4.63) and the assumption,
the third follows from (2.1), and the final step uses the assumption yet again. The
promised contradiction results in view of (4.12).

We are now in a position to give the promised proof that the sampling procedure
simulates a nontrivial portion of protocol ⇡.

Claim 4.15. Let 0 < c0 < 1 be the absolute constant from Claim 4.5. Then

P[W ⌫ bFX,�,FY,�c] >
c20
400

. (4.64)

In particular,

P[W 2 L (⇡)] +
1

�
EDX,Y (�W ) > c20

400

. (4.65)

Proof. We have

P[V1 ⌫ FX,� | A] = EPX(SX \ ⌫FX,�)

= EPX(bSX ,FX,�c \ ⌫FX,�)

= EPX(bR�,1/2,FX,�,FX,�,FX,�c \ ⌫FX,�)

= EPX(bR�,1/2,FX,�c \ ⌫FX,�)

= EPX(R�,1/2 \ ⌫FX,�)

> 1

6

P (R�,1/2 \ ⌫RX ,�,1/2)� �,

where the second step follows from Claim 4.13 and the fact that FX,� and SX are
cuts (Claims 4.3 and 4.7); the third step uses the defining equation for SX ; the
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fourth step is valid by Claim 4.6 and our parameter settings (4.12) and (4.13); the
fifth step uses Claim 4.13 and the fact that R�,1/2 and FX,� are cuts (Claim 4.3);
and the final step is immediate from Claim 4.14 for the cut C = R�,1/2. In view of
Claim 4.11, we conclude that

P[W ⌫ FX,� | A] > c20
8

✓
P[V1 ⌫ FX,� | A]� 4 exp

✓
�1

�

◆◆

> c20
8

✓
1

6

P (R�,1/2 \ ⌫RX ,�,1/2)� � � 4 exp

✓
�1

�

◆◆
.

An analogous argument applied to Bob yields

P[W ⌫ FY,� | B] > c20
8

✓
1

6

P (R�,1/2 \ ⌫RY ,�,1/2)� � � 4 exp

✓
�1

�

◆◆
.

Since the events A and B are complementary and equally likely, the last two in-
equalities imply that

P[W ⌫ bFX,�,FY,�c]

> c20
8

✓
1

12

P (R�,1/2 \ ⌫RX ,�,1/2) +
1

12

P (R�,1/2 \ ⌫RY ,�,1/2)

�� � 4 exp

✓
�1

�

◆◆

> c20
8

✓
1

12

P (RX ,�,1/2 \ �RY ,�,1/2) +
1

12

P (RY ,�,1/2 \ �RX ,�,1/2)

�� � 4 exp

✓
�1

�

◆◆

> c20
8

✓
1

12

P (R�,1/2)� � � 4 exp

✓
�1

�

◆◆

=

c20
8

✓
1

12

� � � 4 exp

✓
�1

�

◆◆
,

where the second and third steps both follow from R�,1/2 = bRX ,�,1/2,RY ,�,1/2c
and Proposition 3.6, whereas the final step uses (4.5) and the fact that R�,1/2 is a
cut (Claim 4.3). In view of (4.12), this completes the proof of (4.64). The remaining
inequality (4.65) now follows by the definition of FX,� and FY,�.

4.8. Implementation and cost analysis. A literal interpretation of the sto-
chastic process as a two-party communication protocol requires Alice and Bob to
transmit labels of vertices of the protocol tree for ⇡, resulting in an arbitrarily high
communication cost. We now give a more efficient implementation that keeps the
communication cost low with respect to the input distribution µ. By symmetry,
it suffices to implement lines 4–8, corresponding to the designation of Alice as the
leader. As elsewhere in the proof, we let X and Y stand for Alice and Bob’s inputs.
We condition every step of the implementation on X and Y, keeping in mind for
the purposes of cost and error analysis that X and Y are distributed independently
according to the product distribution µ.
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Correlated sampling. Given X, consider the following two-step randomized proce-
dure for choosing a leaf of the protocol tree. First, one chooses a random vertex V1

of the cut SX according to the probability distribution PX , exactly as in the sto-
chastic process. Then, one chooses a random leaf in the protocol subtree rooted at
V1, according to the probability distribution induced by P on such leaves. Letting
V denote the leaf so generated,

KL(V || P |L (⇡)) = KL(PX |SX || P |SX )

= E[DX(�V1) | A,X], (4.66)

where the first step holds by the chain rule for the Kullback–Leibler divergence
(Fact 2.4) and the second step uses (4.8) and Theorem 2.7. Alice and Bob begin
their implementation of the stochastic process by executing the correlated sampling
procedure of Theorem 2.16 with error parameter 1/r for the probability distribu-
tions of V and P , respectively, on the leaves of the protocol tree. This incurs a
communication cost of O(log r) + C 0 for a nonnegative random variable C 0 with
expected value

E[C 0 | A] = O(E[DX(�V1) | A]), (4.67)

and results in a pair of leaves V A
= V and V B for Alice and Bob, respectively, such

that V = V A
= V B except with probability at most 1/r. The piecewise definition

of the distribution that governs V is a key departure from the work of Kol [21],
where the correlated sampling is applied to the probability distributions PX and P
on the leaves of the protocol tree.

We may assume that the correlated sampling uses only public randomness be-
cause any private random bits can always be replaced with public ones without
increasing the communication cost. Since Bob’s input distribution P is public
knowledge, we conclude that the transcript of the correlated sampling procedure
reveals his computed vertex V B . If V B

= V, Alice makes an announcement to
that effect. In the complementary case, which by the previous paragraph occurs
with probability no greater than 1/r, she sends V to Bob, incurring an arbitrarily
high communication cost. In either case, the resulting communication transcript
uniquely identifies V.

Key vertices. With V known to both parties, consider the following vertices on the
root-to-leaf path �V :

VX = bR�, 12
,FX,�c \ �V, (4.68)

VX = bR�, 12
,FX,�c \ �V, (4.69)

VY = bR�, 12
,FY,�c \ �V, (4.70)

VY = bR�, 12
,FY,�c \ �V, (4.71)

VY = bR�, 12
,FY,�c \ �V, (4.72)

Ri = bR�, 12
,RY ,�, i

2r
c \ �V, i = 0, 1, 2, . . . , r. (4.73)
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Any two of the vertices in (4.68)–(4.73) are comparable, a fact that we will use
extensively without further mention. Equations (4.8) and (4.10) make it clear that
Alice can compute the frontier FX,✓ on her own for any ✓, and similarly Bob can
compute the frontier FY,✓ on his own. Moreover, the cuts RX ,✓,⇢ and RY ,✓,⇢ for
any ✓ and ⇢ are independent of Alice and Bob’s inputs and are known to them
both. In particular, Alice knows the vertices VX , VX , Bob knows VY , VY , VY , and
they both know R0, R1, . . . , Rr. They now additionally exchange VX and VY by
reporting the smallest indices i⇤, j⇤ 2 {1, 2, . . . , r} such that

VX = bR�, 12
,RY ,�, i

⇤
2r
c \ �V,

VY = bR�, 12
,RX ,�, j

⇤
2r
c \ �V.

Comparing VX and VY . Next, Alice and Bob establish the precise relation (�, =,
or �) between VX and VY . This step is implemented exactly as in Kol’s work [21].
Specifically, recall that Ri⇤�1 � VX � Ri⇤ where i⇤ is known to both Alice and
Bob. In the following cases, to be detected and announced by Bob, the comparison
of VX and VY requires only constantly many bits of communication:

VY � Ri⇤�1,

VY = Ri⇤ ,

VY � Ri⇤ .

The remaining case occurs with probability

P[Ri⇤�1 � VY � Ri⇤ | V, i⇤] 6 1

2r
, (4.74)

by Claim 4.4 and the independence of Y and (V, i⇤). In this exceptional scenario,
Alice and Bob compare VX and VY by exchanging the labels of the corresponding
vertices, for an arbitrarily high communication cost.

Main simulation. Alice checks whether VX � FX,� and informs Bob accordingly.
This event occurs with probability

P[VX � FX,�] 6 P[DX(�(SX \ �V )) > �]

= P[DX(�(SX \ �⇧)) > �]

6 P[DX(�⇧) > �]

6 P[DX,Y (�⇧) > �]

6 EDX,Y (�⇧)

�

, (4.75)

where the final step in the derivation uses Markov’s inequality. If VX � FX,�, then
Alice sets V1 = FX,�\�VX and they proceed with a literal execution of lines 5–8 of
the stochastic process, incurring an arbitrarily high communication cost. In what
follows, we treat the complementary case VX � FX,�, whence V1 = VX . Using
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(4.6), (4.68)–(4.72), and the newly obtained equality V1 = VX , the relevant part of
the stochastic process simplifies as follows.

4
...

5 V2  bVX , VY c

6 V3  
(
V2 with probability min{1, c0PY (V2)/P (V2)},
" with probability 1�min{1, c0PY (V2)/P (V2)}

7 ⌘  

8
><

>:

1 if bVX , VY c � bVX , VY , VY c,
1/2 if bVX , VY c = bVX , VY , VY c,
0 if bVX , VY c � bVX , VY , VY c

8 W  
(
V3 with probability ⌘,

" with probability 1� ⌘

9
...

Bob executes lines 5 and 6 without any help from Alice. For lines 7 and 8, he
observes that

bVX , VY c ⌫ bVX , VY , VY c , VY ⌫ VX or VY = VY , (4.76)

bVX , VY c � bVX , VY , VY c , VY � VX or VX = VX . (4.77)

Therefore, Bob can execute lines 7 and 8 with a single bit of communication from
Alice, indicating whether VX = VX .

Sending back W . As a final step, Bob needs to send Alice W. If W = ", he announces
that fact and the protocol ends. If W 6= ", then necessarily W = V2 and bVX , VY c ⌫
bVX , VY , VY c. Applying (4.76),

W = bVX , VY c

=

8
><

>:

VY if VY � VX ,

VX if VY ⌫ VX ,

VY otherwise.

Based on the communication so far, Bob knows which of the three cases applies. In
the first two cases, Bob identifies W to Alice with constantly many bits by referring
to the previously announced vertices VX and VY . In the third case, Bob sends W
verbatim, incurring an arbitrarily high communication cost. By (4.74), this third
case occurs with probability

P[VX � VY � VX | X,V ] 6 P[Ri⇤�1 � VY � Ri⇤ | V, i⇤]

6 1

2r
. (4.78)

In all three cases, W is fully determined by the communication transcript.
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4.9. Summary and parameter settings. We now summarize our work so far
and set the parameters so as to complete the proof of Theorem 4.1. The cost of the
described implementation on input X,Y is

C 6 O(log r) + C 0
+ C 00, (4.79)

where C 00 is the arbitrarily high communication cost that may be incurred due to
failure in the correlated sampling step or in the exceptional cases (4.74), (4.75),
(4.78). By above,

P[C 00 > 0] 6 EDX,Y (�⇧)
�

+

2

r
. (4.80)

The other cost component, C 0, obeys the upper bound (4.67) and therefore by
symmetry

E[C 0 | B] = O(E[DY (�V1) | B]). (4.81)

Since the events A and B are complementary and equally likely, we obtain from
(4.67), (4.81), and Claim 4.12 that

EC 0
= O

✓
EDX,Y (�W ) + (�+ �) exp

✓
�1

�

◆◆
. (4.82)

Now the accuracy, progress, and cost requirements of Theorem 4.1 follow from
(4.47), (4.65), and (4.79)–(4.82), respectively, by taking

r = ⇥

✓
1

✏

◆
, (4.83)

� = ⇥

✓
1

log(1/✏)

◆
, (4.84)

� =

⇠
2

✏
EDX,Y (�⇧)

⇡
. (4.85)

This concludes the proof of Theorem 4.1.

5. Complete simulation

Building on the sampling procedure of the previous section, we now prove the
main result of this work.

Theorem 5.1 (Main theorem). Let 0 < ✏ < 1/2 be given. Fix any public- or

private-coin protocol ⇡ with input space X ⇥Y . Let µ be a product distribution on

X ⇥ Y , and abbreviate I = ICµ(⇡). Then there is a public-coin protocol ⇡0
with

worst-case communication cost

O

✓
I

✏
log

2 I

✏

◆
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such that

⇡0 ,!µ,✏ ⇡.

The remainder of this section is devoted to the proof of Theorem 5.1. Let � =

�(I, ✏) > 0 be an accuracy parameter to be set later, and let � = �(�) > 0 be
sufficiently small in the sense of Theorem 4.1. By Theorems 2.13–2.15, we may
assume that ⇡ is a private-coin �-balanced protocol. Recall that our proof strategy
in simulating ⇡ will be to repeatedly apply the partial sampling procedure of the
previous section until a communication limit is exceeded. We will argue that the
resulting simulation reaches a leaf with high probability and that its distribution
is statistically close to the distribution of the transcript of ⇡ on the corresponding
input. Following our methodology in Theorem 4.1, we will first define an abstract
stochastic process, settle its information-theoretic properties, and then convert it
to an efficient communication protocol for simulating ⇡.

5.1. A stochastic process. Let X,Y be a pair of inputs with joint distribution
µ. We define a discrete stochastic process given by the random variables X,Y, and

(⇡t, µt, Rt,Mt,Wt, C
0
t, C

00
t ), t = 1, 2, 3, . . . , (5.1)

where µ1, µ2, µ3, . . . are product distributions on X ⇥Y . We let ⇡1 = ⇡ and µ1 = µ.
For t > 1, the random variables X,Y,⇡t, µt give rise to Rt,Mt,Wt, C 0

t, C
00
t ,⇡t+1, µt+1

in an inductive manner as follows.

(i) Execute the public-coin protocol �⇡t,µt,� from Theorem 4.1 on input X,Y .
Let Rt and Mt denote the shared random string and the rest of the protocol
transcript, respectively, from that execution. Let Wt, C 0

t, C
00
t be the corre-

sponding additional random variables from Theorem 4.1, each of which is
completely determined by the tuple (⇡t, µt, Rt,Mt).

(ii) Define ⇡t+1 to be the private-coin protocol corresponding to the protocol
subtree of ⇡t rooted at Wt. Thus, vertex Wt of the protocol tree for ⇡t

corresponds to vertex " (the root) of the protocol tree for ⇡t+1.
(iii) Define µt+1 to be the posterior probability distribution on X ⇥Y obtained

by conditioning µt on the transcript (Rt,Mt) of protocol �⇡t,µt,�. Recall
that conditioning a product distribution on a protocol transcript results in
a product distribution. Thus, µt+1 is a product distribution, maintaining
the promised invariant.

We let P denote the resulting infinite sequence (5.1) of random variables. For
t = 1, 2, 3, . . . , we let P6t denote the restriction of P to the first t stages of the
stochastic process. In other words, P6t stands for

(⇡1, µ1, R1,M1,W1, C
0
1, C

00
1 ), . . . , (⇡t, µt, Rt,Mt,Wt, C

0
t, C

00
t ),⇡t+1, µt+1,

where the inclusion of ⇡t+1 and µt+1 is motivated by the fact that they are fully de-
termined by the previous tuple. In this notation, µt+1 is the probability distribution
that governs the random variable XY | P6t.
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We define the random variable ⇧ as the transcript of ⇡ on input X,Y. More
generally, we define ⇧t as the transcript of ⇡t on input X,Y. We stress that the
inputs X,Y and the auxiliary random variables ⇧,⇧1,⇧2,⇧3, . . . are not part of P
and in particular do not appear in any P6t. Observe also that ⇧t is independent of
P given X,Y,⇡t.

5.2. Accuracy analysis. The focal point of the proof is the random walk

" �W1

�W1W2

�W1W2W3

� . . .

�W1W2 . . .Wt

� . . . (5.2)

in the protocol tree for ⇡. We start by studying how accurately this random walk
models the actual protocol transcript, ⇧. For a fixed string w and any t > 1,

P[Wt⇧t+1 = w | X,Y, P6t�1]

=

X

v�w

P[Wt = v | X,Y, P6t�1]P[v⇧t+1 = w | Wt = v,X, Y, P6t�1]

=

X

v�w

P[Wt = v | X,Y, P6t�1]P[⇧t = w | ⇧t ⌫ v,X, Y, P6t�1]

= P[⇧t = w | X,Y, P6t�1]

X

v�w

P[Wt = v | X,Y, P6t�1]

P[⇧t ⌫ v | X,Y, P6t�1]

6 (1 + �)P[⇧t = w | X,Y, P6t�1], (5.3)

where the second step follows from the definition of ⇧t+1 as the transcript of ⇡t+1

on input X,Y, with ⇡t+1 in turn obtained from ⇡t by restricting to the protocol
subtree rooted at Wt; and the final step uses Theorem 4.1.

The newly derived bound implies that the random walk (5.2) behaves much like
the original communication protocol ⇡. Indeed, rewrite (5.3) to obtain

P[W1W2 . . .Wt⇧t+1 = w | X,Y, P6t�1]

6 (1 + �)P[W1W2 . . .Wt�1⇧t = w | X,Y, P6t�1].

Passing to expectations with respect to P6t�1,

P[W1W2 . . .Wt⇧t+1 = w | X,Y ]

6 (1 + �)P[W1W2 . . .Wt�1⇧t = w | X,Y ],

whence by induction

P[W1W2 . . .Wt⇧t+1 = w | X,Y ] 6 (1 + �)t P[⇧ = w | X,Y ]. (5.4)
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This result has a statistical distance interpretation in view of Fact 2.6:

TV((X,Y,⇧), (X,Y,W1W2 . . .Wt⇧t+1)) 6 1� 1

(1 + �)t

6 1� (1� �)t

6 t�. (5.5)

Here, W1W2 . . .Wt⇧t+1 refers to the concatenation of W1,W2, . . . ,Wt,⇧t+1 rather
than to the composite random variable (W1,W2, . . . ,Wt,⇧t+1). This distinction is
essential from the point of view of information-theoretic distance.

5.3. Expected information gain. We will now obtain an upper bound on the
progress measure ED⇡t,µt

X,Y (�Wt), which plays a critical role in relating the com-
munication requirements of the stochastic process to the information cost of the
original protocol ⇡. Since ⇡t+1 is by definition the protocol corresponding to the
subtree of ⇡t rooted at Wt, we have

ED⇡t,µt

X,Y (�Wt) = ED⇡t,µt

X,Y (�(Wt⇧t+1))�ED⇡t+1,µt|Wt

X,Y (�⇧t+1), (5.6)

where the shorthand µt | v for a string v 2 {0, 1}⇤ refers to the posterior probability
distribution on X ⇥Y obtained from µt by conditioning on ⇧t ⌫ v. Understanding
the two expectations on the right-hand side requires subtle conditioning. As a
consequence of (5.3),

E[D⇡t,µt

X,Y (�(Wt⇧t+1)) | X,Y, P6t�1] 6 (1 + �)E[D⇡t,µt

X,Y (�⇧t) | X,Y, P6t�1]

and hence

ED⇡t,µt

X,Y (�(Wt⇧t+1)) 6 (1 + �)ED⇡t,µt

X,Y (�⇧t). (5.7)

We now examine the other expectation on the right-hand side of (5.6). We claim
that

E[D⇡t+1,µt|Wt

X,Y (�⇧t+1) | P6t] > E[D⇡t+1,µt+1

X,Y (�⇧t+1) | P6t]. (5.8)

Conditioning on P6t fixes ⇡t, µt,Wt, µt+1,⇡t+1, among other things, which means
that the expectation on both sides of this inequality is with respect to random
input X,Y and the resulting transcript ⇧t+1 in protocol ⇡t+1. But by definition, the
posterior probability distribution of X,Y conditioned on P6t is µt+1. The claimed
inequality (5.8) now follows from Theorem 2.12. Passing to expectations with
respect to P6t, we conclude that

ED⇡t+1,µt|Wt

X,Y (�⇧t+1) > ED⇡t+1,µt+1

X,Y (�⇧t+1), (5.9)

which along with (5.6) and (5.7) leads to our sought upper bound on the progress
measure in the t-th step of the stochastic process:

ED⇡t,µt

X,Y (�Wt) 6 (1 + �)ED⇡t,µt

X,Y (�⇧t)�ED⇡t+1,µt+1

X,Y (�⇧t+1). (5.10)
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As a result,

tX

i=1

ED⇡i,µi

X,Y (�Wi) 6
tX

i=1

(1 + �)t�i ED⇡i,µi

X,Y (�Wi)

6
tX

i=1

(1 + �)t�i+1 ED⇡i,µi

X,Y (�⇧i)

�
tX

i=1

(1 + �)t�i ED⇡i+1,µi+1

X,Y (�⇧i+1)

= (1 + �)t ED⇡1,µ1

X,Y (�⇧1)�ED⇡t+1,µt+1

X,Y (�⇧t+1)

6 (1 + �)t ED⇡1,µ1

X,Y (�⇧1)

= (1 + �)t IC⇤
µ1
(⇡1)

= (1 + �)t ICµ1(⇡1)

= (1 + �)tI, (5.11)

where the second, fifth, and sixth steps use (5.10), Theorem 2.11, and Theorem 2.10,
respectively. An analogous calculation involving a telescoping sum shows that

tX

i=1

(ED⇡i,µi

X,Y (�Wi) + �ED⇡i,µi

X,Y (�⇧i)) 6 (1 + 2�)tI. (5.12)

5.4. Expected time to leaf and communication cost. Using the new upper
bound (5.11) on the sum of progress terms, we now show that the random walk (5.2)
reaches a leaf reasonably quickly and with high probability has small communication
cost. The first t stages of the stochastic process fail to reach a leaf with probability
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given by

P[Wt /2 L (⇡t)]

= P[Wi /2 L (⇡i) for i = 1, 2, . . . , t]

=

tY

i=1

P[Wi /2 L (⇡i) | Wi�1 /2 L (⇡i�1)]

6
 
1

t

tX

i=1

P[Wi /2 L (⇡i) | Wi�1 /2 L (⇡i�1)]

!t

6
 
1� 1

c
+

log(1/�)

t

tX

i=1

E[D⇡i,µi

X,Y (�Wi) | Wi�1 /2 L (⇡i�1)]

!t

=

 
1� 1

c
+

log(1/�)

t

tX

i=1

ED⇡i,µi

X,Y (�Wi)

P[Wi�1 /2 L (⇡i�1)]

!t

6
 
1� 1

c
+

log(1/�)

tP[Wt /2 L (⇡t)]

tX

i=1

ED⇡i,µi

X,Y (�Wi)

!t

6
✓
1� 1

c
+

log(1/�)

tP[Wt /2 L (⇡t)]
· (1 + �)tI

◆t

,

where the third, fourth, and last steps use convexity, Theorem 4.1, and (5.11),
respectively, c > 1 being the absolute constant from Theorem 4.1. Switching to the
statistical distance view, we have shown that

TV((X,Y,W1W2 . . .Wt⇧t+1), (X,Y,W1W2 . . .Wt))

6 P[Wt /2 L (⇡t)]

6 min

06p61

(✓
1� 1

c
+

log(1/�)

tp
· (1 + �)tI

◆t

+ p

)

6
✓
1� 1

c
+

3 log(1/�)

t✏
· (1 + �)tI

◆t

+

✏

3

,

which along with (5.5) gives

TV((X,Y,⇧), (X,Y,W1W2 . . .Wt))

6
✓
1� 1

c
+

3 log(1/�)

t✏
· (1 + �)tI

◆t

+

✏

3

+ t�. (5.13)

We now examine the communication requirements. By Theorem 4.1, stages
1, 2, . . . , t of the stochastic process have communication cost

tX

i=1

|Mi| 6
tX

i=1

C 0
i +

tX

i=1

C 00
i + ct log

1

�
,
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where the nonnegative random variables C 0
i, C

00
i obey

E

"
tX

i=1

C 0
i

#
6 c

tX

i=1

(ED⇡i,µi

X,Y (�Wi) + �ED⇡i,µi

X,Y (�⇧i))

6 c(1 + 2�)tI by (5.12)

and

P

"
tX

i=1

C 00
i > 0

#
6 t�.

By Markov’s inequality,

P

"
tX

i=1

|Mi| >
3

✏
· c(1 + 2�)tI + ct log

1

�

#

6 P

"
tX

i=1

C 0
i >

3

✏
· c(1 + 2�)tI

#
+P

"
tX

i=1

C 00
i > 0

#

6 ✏

3

+ t�. (5.14)

5.5. Final communication protocol. Sections 5.1–5.4 suggest a natural com-
munication protocol ⇡0 for simulating ⇡. Specifically, Alice and Bob simulate the
stochastic process on their given inputs, terminating the simulation as soon as they
have completed T stages or exchanged

3

✏
· c(1 + 2�)T I + cT log

1

�
(5.15)

bits of communication (whichever occurs first). The communication transcript
(R1, R2, R3, . . . ,M1,M2,M3, . . .) of this simulation fully determines all the other
random variables in (5.1), which are never explicitly communicated. Let E be the
event that during the first T stages of the stochastic process, the communication
cost exceeds (5.15). Then ⇡0 simulates ⇡ with respect to µ with error

TV((X,Y,⇧), (X,Y,W1W2 . . .WT )) +P[E]

6
✓
1� 1

c
+

3 log(1/�)

T ✏
· (1 + �)T I

◆T

+

2✏

3

+ 2T � (5.16)

by (5.13) and (5.14). The communication cost (5.15) and the simulation error (5.16)
are bounded by O(

I
✏ log

2 I
✏ ) and ✏, respectively, for � = ⇥(

✏
I )

3 and T = ⇥(

I
✏ log

I
✏ ).

This completes the proof of Theorem 5.1.
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Appendix A. A concentration bound

The purpose of this appendix is to prove Theorem 2.8, which states that two
probability distributions on the leaves of a binary tree are multiplicatively close if
the Kullback–Leibler divergence on any root-to-leaf path is small. This result is a
minor adaptation of a theorem due to Barak et al. [4], and we closely follow their
treatment. We start with some preparatory work.

Proposition A.1. Let X be a bounded real random variable with EX = 0. Then

E exp(X) 6 exp

✓
sup(X2

)

2

◆
.

Proposition A.1 is frequently used in the analysis of martingales. Its proof is widely
available in the literature, e.g., Alon and Spencer [1, Theorem A.1.17], and is pro-
vided below for the reader’s convenience.

Proof. Let a = sup |X|. Then

exp(x) = exp

✓
a� x

2a
· (�a) + a+ x

2a
· a
◆

6 a� x

2a
· exp(�a) + a+ x

2a
· exp(a), � a 6 x 6 a,

where the second step follows by convexity. Geometrically, this inequality expresses
the fact that the exponential function exp(x) lies at or below the line segment joining
the points (�a, exp(�a)) and (a, exp(a)). Passing to expectations,

E exp(X) 6 E


a�X

2a
· exp(�a) + a+X

2a
· exp(a)

�

=

1

2

exp(�a) + 1

2

exp(a)

6 exp

✓
a2

2

◆
,

where the final step can be verified using

exp(x) =
1X

i=0

xi

i!
.

Following Barak et al., we now recall a martingale-type inequality due to Habib
et al. [16]. For the sake of completeness, we include its short proof.
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Lemma A.2 (Habib et al.). Let V1, V2, . . . , VN 2 {0, 1} be random variables. Fix

✓ > 0 and consider a function � : {0, 1}+ ! R such that

E[�(V1V2 . . . Vi) | V1, V2, . . . , Vi�1] = 0, i = 1, 2, 3, . . . , N,

N�1X

i=0

max{�(v1v2 . . . vi0)
2,�(v1v2 . . . vi1)

2} 6 ✓, v 2 {0, 1}N .

Then for every c > 0,

P

"
NX

i=1

�(V1V2 . . . Vi) > c

#
6 exp

✓
� c2

2✓

◆
.

Proof. Let a > 0 be a parameter to be chosen later. We claim that

E exp

 
a

NX

i=1

�(V1V2 . . . Vi)

!
6 exp

✓
a2✓

2

◆
.

The proof is by induction on N. The base case N = 1 follows from Proposition A.1.
For N > 2,

E exp

 
a

NX

i=1

�(V1V2 . . . Vi)

!

= E
V1

"
exp(a�(V1)) E

V2,V3,...,VN

"
exp

 
a

NX

i=2
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! ����� V1

##

6 max
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,
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where the third and fourth steps follow from the inductive hypothesis. We conclude
that

P

"
NX

i=1

�(V1V2 . . . Vi) > c

#
= P

"
exp

 
a

NX

i=1

�(V1V2 . . . Vi)

!
> exp(ac)

#

6 E

"
exp

 
a

NX

i=1

�(V1V2 . . . Vi)

!#
exp(�ac)

6 exp

✓
a2✓

2

� ac

◆
,

where the second step uses Markov’s inequality. Setting a = c/✓ completes the
proof.

One final ingredient that we will need is an inequality that involves the Kull-
back–Leibler divergence.

Proposition A.3. For all p, q 2 (0, 1),

✓
log

p

q

◆2

6 min{KL(p || q),KL(q || p)}
(2 ln 2)min{p2, q2} .

Proof. Since log(p/q) = � log(q/p), it is sufficient to consider the case p > q. We
have:

✓
log

p

q

◆2

6 1

ln

2
2

✓
p

q
� 1

◆2

=

(p� q)2

q2
ln

2
2

6 min{KL(p || q),KL(q || p)}
(2 ln 2)q2

,

where the first step follows from basic calculus and the final step uses Pinsker’s
inequality (Fact 2.5).

We are now in a position to prove the desired result, stated earlier as Theo-
rem 2.8. Fix a binary tree T and let µ be a probability distribution on the leaves of
T. Recall that we identify the vertices of T with binary strings in the usual manner:
the root corresponds to the empty string ", and inductively the left child and right
child of a vertex v correspond to v0 and v1, respectively. For a vertex v of the tree,
which can be either a leaf or an internal vertex, we let µ(v) stand for the probability
of reaching a leaf in the subtree of v. Similarly, µ(v | u) denotes the probability of
reaching a leaf in the subtree of v conditioned on reaching a leaf in the subtree of u.

Theorem (restatement of Theorem 2.8). Let µ and µ̃ be probability distributions

on the leaves of a binary tree. For an internal vertex v, abbreviate

D(v) = KL(µ(v0 | v) || µ̃(v0 | v)).

Assume that:

(i) µ(v0 | v), µ̃(v0 | v) 2 [1/3, 2/3] for every internal vertex v;

(ii)
P

u:u�v D(u) 6 ✓ for every leaf v.
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Then:

P
V ⇠µ

⇥
µ(V ) > 2

c+✓µ̃(V )

⇤
6 exp

✓
� c2

52✓

◆
, c > 0, (A.1)

P
V ⇠µ̃

h
µ̃(V ) > 2

c+(21/20)✓µ(V )

i
6 exp

✓
� c2

55✓

◆
, c > 0. (A.2)

Proof. Without loss of generality, we may assume that T is a full binary tree of
height N. In what follows, the random variable V = V1V2 . . . VN stands for a tree
leaf distributed according to µ. By hypothesis,

N�1X

i=0

D(v1 . . . vi) 6 ✓ (A.3)

for every leaf v 2 {0, 1}N . Define � : {0, 1}+ ! R by

�(v1v2 . . . vi) = log

µ(v1 . . . vi | v1 . . . vi�1)

µ̃(v1 . . . vi | v1 . . . vi�1)
� D(v1 . . . vi�1)

for v1, v2, . . . , vi 2 {0, 1}. We proceed to verify the zero expectation and bounded-
ness properties that are required for an appeal to Lemma A.2. For i = 1, 2, . . . , N,
we have

E
V ⇠µ

[�(V1 . . . Vi) | V1 . . . Vi�1]

= E
V ⇠µ


log

µ(V1 . . . Vi | V1 . . . Vi�1)

µ̃(V1 . . . Vi | V1 . . . Vi�1)

���� V1 . . . Vi�1

�
� D(V1 . . . Vi�1)

= KL(µ(V1 . . . Vi�10 | V1 . . . Vi�1) || µ̃(V1 . . . Vi�10 | V1 . . . Vi�1))

� D(V1 . . . Vi�1)

= 0. (A.4)
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For all v1, v2, . . . , vN 2 {0, 1},

N�1X

i=0

max{�(v1 . . . vi0)
2,�(v1 . . . vi1)

2}

=

N�1X

i=0
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b2{0,1}

✓
log

µ(v1 . . . vib | v1 . . . vi)

µ̃(v1 . . . vib | v1 . . . vi)
� D(v1 . . . vi)

◆2

6 4

N�1X

i=0

max
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✓
log

µ(v1 . . . vib | v1 . . . vi)

µ̃(v1 . . . vib | v1 . . . vi)

◆2

6 18

ln 2

N�1X

i=0

max

b2{0,1}
KL(µ(v1 . . . vib | v1 . . . vi) || µ̃(v1 . . . vib | v1 . . . vi))

=

18

ln 2

N�1X

i=0

KL(µ(v1 . . . vi0 | v1 . . . vi) || µ̃(v1 . . . vi0 | v1 . . . vi))

6 18✓

ln 2

, (A.5)

where the first inequality uses the fact that sup((X � EX)

2
) 6 4 sup(X2

) for any
real random variable X; the second inequality follows from Proposition A.3; and
the final inequality is immediate by part (ii) of the theorem hypothesis. By (A.4),
(A.5), and Lemma A.2,

P
V ⇠µ

"
NX

i=1

�(V1V2 . . . Vi) > c

#
6 exp

✓
�c2 ln 2

36✓

◆
(A.6)

for c > 0. Hence,

P
V ⇠µ

⇥
µ(V ) > 2

c+✓µ̃(V )

⇤
= P
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log

µ(V )

µ̃(V )

> c+ ✓

�

= P
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"
NX

i=1

(�(V1 . . . Vi) + D(V1 . . . Vi�1)) > c+ ✓

#

6 P
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"
NX
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�(V1 . . . Vi) > c

#

6 exp

✓
�c2 ln 2

36✓

◆
,

where the last two steps use part (ii) of the theorem hypothesis and (A.6), respec-
tively. Now (A.1) follows directly, whereas (A.2) follows by interchanging the roles
of µ and µ̃ and using (2.2).

Appendix B. Protocol balancing

The purpose of this appendix is to present a proof of Theorem 2.15 on protocol
balancing, due to Barak et al. [4] and Kol [21]. We start with some information-
theoretic preliminaries. The entropy of a random variable X supported on a finite
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set X is given by

H(X) =

X

x2X

P[X = x] log
1

P[X = x]
.

The entropy H(X) is by definition nonnegative and measures the amount of un-
certainty in X, with its maximum value log |X | achieved when X is distributed
uniformly in X . Recall that we identify a real number 0 6 p 6 1 with the Bernoulli
distribution (p, 1� p), resulting in the shorthand

H(p) = p log
1

p
+ (1� p) log

1

1� p
.

For random variables X and Y governed by some joint probability distribution on
the Cartesian product X ⇥Y of their respective domains, the conditional entropy

of X given Y is defined to be

H(X | Y ) =

X

y2Y

P[Y = y]H(X | Y = y).

The conditional entropy H(X | Y ) never exceeds the original entropy H(X). More-
over, the drop in the entropy of X as a result of conditioning on Y is always the
same as the drop in the entropy of Y as a result of conditioning on X, and it is
equal to the mutual information of X and Y :

I(X;Y ) = H(X)�H(X | Y )

= H(Y )�H(Y | X).

In particular,

I(X;Y ) 6 H(X),

I(X;Y ) 6 H(Y ).

We are now ready to present a proof of Theorem 2.15, adapted from [4, 21].

Theorem (restatement of Theorem 2.15). Let ⇡ be a private-coin protocol with

input space X ⇥Y . Let µ be a probability distribution on X ⇥Y . Then for every

� > 0 and ✏ > 0, there exists a private-coin �-balanced protocol ⇡0
such that

⇡0 ,!µ,✏ ⇡, (B.1)
ICµ(⇡

0
) 6 ICµ(⇡) + ✏, (B.2)

IC

⇤
µ(⇡

0
) 6 IC

⇤
µ(⇡) + ✏. (B.3)

Proof (adapted from [4, 21]). For inputs x 2X and y 2 Y and an internal vertex
v of the protocol tree for ⇡, define

⇡(v, x, y) =

(
⇡(v, x) if v 2 A ,

⇡(v, y) if v 2 B.
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Recall that execution of ⇡ on input x, y corresponds to a random walk from the root
to a leaf of the protocol tree. When the walk reaches an internal vertex v, the owner
of that vertex directs the walk to the left subtree with probability ⇡(v, x, y) and to
the right subtree with probability 1 � ⇡(v, x, y), by sending 0 and 1, respectively.
In the new protocol ⇡0, Alice and Bob simulate this random walk one edge at a
time. On reaching an internal vertex v at level i, the owner of that vertex sends
the message

(⇧i �Rv,1,⇧i �Rv,2, . . . ,⇧i �Rv,k), (B.4)

where k = k(|⇡|, ✏,�)� 1 is a large enough integer and ⇧i, Rv,1, Rv,2, . . . , Rv,k are
independent Bernoulli variables distributed according to

⇧i =

(
0 with probability ⇡(v, x, y),

1 with probability 1� ⇡(v, x, y)

and

Rv,j =

(
0 with probability 1

2 + �,

1 with probability 1
2 � �.

If the majority of the bits in (B.4) are 0, Alice and Bob move to the left child of v.
Otherwise, they move to the right child of v.

The described protocol is clearly �-balanced. To verify (B.1), define Gv =

MAJ(Rv,1, Rv,2, . . . , Rv,k) and G =

W
v2V (⇡) Gv. Taking k sufficiently large ensures

that

P[G = 0] > 1� ✏.

Conditioned on the event that G = 0, the simulated random walk on the protocol
tree of ⇡ has the same distribution on any given input as the original random walk,
settling (B.1).

We now examine the information cost. Let X and Y be random inputs to
the protocol with joint distribution µ, and let ⇧i, Rv,j , G be as defined above.
Abbreviate R = (. . . , Rv,j , . . .) 2 {0, 1}|V (⇡)|·k. Then

IC

⇤
µ(⇡

0
) 6 I(XY ;GR⇧0⇧1⇧2 . . .)

6 H(G) +P[G = 0] I(XY ;R⇧0⇧1⇧2 . . . | G = 0)

+P[G = 1] I(XY ;R⇧0⇧1⇧2 . . . | G = 1)

6 H(G) +P[G = 0] I(XY ;R⇧0⇧1⇧2 . . . | G = 0)

+P[G = 1]H(XY ). (B.5)

Conditioning on G = 0 has the following consequences: (i) the string ⇧0⇧1⇧2 . . .
becomes distributed identically to the transcript of ⇡ on input X and Y ; and (ii) the
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random string R becomes independent of X,Y,⇧0⇧1⇧2 . . .. Therefore,

I(XY ;R⇧0⇧1⇧2 . . . | G = 0)

= I(XY ;⇧0⇧1⇧2 . . . | G = 0) + I(XY ;R | G = 0,⇧0⇧1⇧2 . . .)

6 I(XY ;⇧0⇧1⇧2 . . . | G = 0) + I(XY⇧0⇧1⇧2 . . . ;R | G = 0)

= I(XY ;⇧0⇧1⇧2 . . . | G = 0)

= IC

⇤
µ(⇡). (B.6)

We conclude from (B.5) and (B.6) that

IC

⇤
µ(⇡

0
) 6 H(G) +P[G = 0] IC

⇤
µ(⇡) +P[G = 1]H(XY ).

The quantities P[G = 1] and H(G) can be made arbitrarily small by taking k
sufficiently large. This completes the proof of (B.3). The proof of (B.2) is closely
analogous.
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